
Title: Roth’s Theorem: graph theoretical, analytic and 
combinatorial proofs 

Author: García Hernández, Sílvia 

Advisor: Rué Perna, Juanjo 

Department: Department of Mathematics 

Academic year: 2021-2022 

Degree in Mathematics 



Degree in Mathematics

Bachelor’s Degree Thesis

Roth’s Theorem: graph theoretical, analytic

and combinatorial proofs
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Abstract. In 1936, Erdős–Turán conjectured that any set of integers with positive upper

density contains arbitrarily long arithmetic progressions. In 1953, Klaus Roth resolved this

conjecture for progressions of length three. This theorem, known as Roth’s Theorem, is the

main topic of this thesis.

In this dissertation we will understand, rewrite and collect some of the proofs of Roth’s

Theorem that have appeared over the years, while developing some of the problems that arise

in each area. This includes the original Fourier analytic proof due to Roth (in a more modern

language), the combinatorial proof due to Szemerédi, and finally, the graph theoretical proof

based on Szemerédi’s Regularity Lemma. We will also explore recent progress around this

theorem, as the finite field analogue and the recent breakthrough concerning upper bounds

for the cap set problem.
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Introduction

Ramsey theory is a branch of mathematics that focuses around the idea that any large enough

structure will necessarily contain an orderly substructure. Problems found in this area ask

questions such as “how many elements an structure must contain in order to guarantee a

particular property?”. Founded in 1930, Ramsey theory had already emerge with Hilbert’s

cube lemma [15] in 1892, but it is not until years later that people got influenced. One of the

first important results of Ramsey theory appears in 1927, when Van der Waerden proved the

Van der Waerden’s Theorem [27], which entails with it the study of arithmetic progressions:

the sequences of numbers such that the difference between the consecutive terms is constant.

For the purpose of proving this theorem, let us introduce some notation that we will use

all along this thesis:

– We will write the interval of natural numbers {1, . . . , n} as [n].

– We will call an arithmetic progression of length k a k-AP

0.1 Van der Waerden’s Theorem

In this section we will develop the proof of Van der Waerden’s Theorem. Let us begin by

announcing it:

Theorem 0.1 (Van der Waerden’s Theorem, 1927). Let r and k be positive integers. Then,

there exists a number W (r, k) such that if N ≥ W (r, k), then any r-coloring of [N ] contains

a monochromatic k-AP.

Let us start proving some intermediate results before proving Van der Waerden’s Theo-

rem, that for simplicity, we will call VdW Theorem:

The numbers W (r, k) are called Van der Waerden’s numbers. Proving the theorem con-

sists on showing that for every choice of r and k, W (r, k) < ∞. Trivially, W (r, 1) = 1. By

the Pigeonhole Principle, once having r+1 elements, and r colors to paint with, two of them

must have the same color, so W (r, 2) = r + 1.
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4 0.1. VAN DER WAERDEN’S THEOREM

Henceforth, we will assume a certain coloring of [N ] for N large enough. The following

definition generalizes the notion of a monochromatic AP, which must be understood taking

the object defined inside a bigger colored interval:

Definition 0.2 (Sunflower). A sunflower with m petals of size k − 1 is a set of integers of

the form {a} ∪A1 ∪ . . . ∪Am, where Ai = {a+ di, a+ 2di, . . . , a+ (k − 1)di} for 1 ≤ i ≤ m,

satisfying the following properties:

(i) Ai ∩ Aj = ∅ for i 6= j (disjointness of the petals).

(ii) All elements in Ai are colored with the same color (monochromaticity of the petals).

(iii) If i 6= j the color used to color elements of Ai is different from the one used to color

the elements of Aj (different colors for different petals).

In such a situation, the sets A1, . . . , Am are called the petals of the sun flower and a the

center of the sunflower.

Note that in a sunflower, we have a lot of control on the color and the structure of each

petal (we have a (k− 1)-AP), but we do not control the color of the center. In particular, if

the color of the center is equal to the color of one of the petals, then the sunflower defines a

monochromatic k-AP.

Let us prove a proposition that will be useful to prove VdW Theorem:

Proposition 0.3. Let us consider an r-coloring of [N ] and let A,A+d, . . . , A+(k−1)d ⊆ [N ]

with the induced coloring. Assume that:

(i) A+ d, . . . , A+ (k − 1)d are colored in the exactly same way.

(ii) A + d is a sunflower with m petals of size k − 1 (and in particular all its dilates

A+ 2d, . . . , A+ (k − 1)d).

Then, A ∪ (A+ d) ∪ . . . ∪ (A+ (k − 1)d) contains either a k-AP or a sunflower with m+ 1

petals of size k − 1.

Proof. Let us pick the sunflower A+ d, which has m petals of size k − 1. Notice that if the

center of our sunflower has the same color as one of the petals, we have a k-AP, so we are done.

Otherwise, let us construct a sunflower with m + 1 petals of size k − 1 contained in

A∪(A+d)∪· · ·∪(A+(k−1)d) supposing that the color of the center of A+d is different to any

color of the petals in A+d. As we have used before, we will write A+d = {a+d}∪A1∪···∪An,

where Ai = {a+ d+ di, a+ d+ 2di, . . . , a+ d+ (k − 1)di} and Ai is a petal of A+ d.
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Let us consider the set B = {a} ∪B1 ∪B2 ∪ · · · ∪Bm ∪Bm+1, where

Bi = {a+ (d+ di), a+ 2(d+ di), . . . , a+ (k − 1)(d+ di)} for 1 ≤ i ≤ m,

and

Bm+1 = {a+ d, . . . , a+ (k − 1)d}.

Notice that Bm+1 is created by taking the center of the sunflowers A+ d, . . . , A+ (k − 1)d,

and by construction, B ⊆ A ∪ (A+ d) ∪ · · · ∪ (A+ (k − 1)d). Let us prove now that B is in

fact a sunflower with m+ 1 petals of size k − 1. First, let us remark some properties:

– The color of a+ r(d+ di), for 1 ≤ r ≤ k− 1 and 1 ≤ i ≤ m is the same as the color of

a+ d+ rdi, since dilates by d do not change color.

– The color of a+ d+ rdi is the same as the color of a+ d+ di, since the elements that

differ in a multiple of d are in the same petal.

This proves that all elements in Bi for 1 ≤ i ≤ m have the same color.

– The color of Bi, which is the same used to color the element a+ di, is different to the

one used in Bj if i 6= j.

Now, notice that Bm+1 is also a monochromatic petal: the color of a+d, . . . , a+ (k− 1)d

is the same and it is different to the ones used to paint B1, . . . , Bm because by hypothesis,

the center of A+ d, which is a+ d, had a different color to the one used to paint the element

a+d+di for 1 ≤ i ≤ m. So we have that B = {a}∪B1∪B2∪· · ·∪Bm∪Bm+1 is a sunflower

with m+ 1 petals of size k − 1.

Before proving VdW Theorem, we need a lemma that will give us the main idea of its

proof: applying an induction argument on the length of the AP and combine it with the

existence of a certain sunflower:

Lemma 0.4. Let k be a positive integer. Assume that W (r, k− 1) exists for every choice of

r. Then, for every choice of r and m there exists a positive integer W (r,m, k− 1) such that

if N ≥ W (r,m, k− 1), then any r-coloring of [N ] contains either a monochromatic k-AP or

a sunflower with m petals of size k − 1.

Proof. By applying induction on m: for m = 1, the statement holds trivially: a sunflower

with one petal of size k − 1, by definition, has at least a monochromatic (k − 1)-AP (if

the center a has the same color as the elements of the petal, then we have a k-AP). As by

hypothesis we now that W (r, k−1) exists, and in particular, W (r, 1, k−1) = W (r, k−1) <∞.

Now, let us assume that W (r,m − 1, k − 1) exists and prove that W (r,m, k − 1) also

exists. Let us write N1 = W (r,m − 1, k − 1), which exists by induction hypothesis and

N2 = 2W (rN1 , k − 1), that exists since we are assuming the existence for every choice of r.



6 0.1. VAN DER WAERDEN’S THEOREM

In order to prove the existence of W (r,m, k−1), it is enough to prove that W (r,m, k−1) ≤
N1N2: let us consider the interval [N1N2] and color it using r colors. We will look at it as

the concatenation of W (rN1 , k − 1) blocks of size N1 each, which will define the first part of

the partition, followed by extra W (rN1 , k − 1) blocks of size N1 each, that we will call the

second part of the partition. In other words, both parts of size N1 has N2/2 blocks.

Figure 1: Diagram of the interval [N1N2]

We will now focus on the second part of the partition. If we have a block containing a

monochromatic k-AP, we are done. So let us assume the contrary. Note that since the size

of a block is N1 = W (r,m − 1, k − 1) and we can use r colors to paint it, a block can be

colored in rN1 different ways. This means that in the second part of the partition we will

find k−1 blocks identically colored, forming a (k−1)-AP, say B+d, . . . , Bk−1d (here we are

using the hypothesis which says W (r, k− 1) exists applied on the blocks of [N1, N2]). Notice

that |B + d| = N1 = W (n,m− 1, k− 1), so since we are supposing that B + d does not con-

tain a monochromatic k-AP, it must contain a sunflower A+d with m+1 petals of size k−1.

We are now left with a final step: let us consider B = (B + d)− d and A = (A+ d)− d,

and notice that A ⊆ B. Observe that we set B+d, . . . , B+ (k− 1)d to be in the second part

of the partition, but B may belongs to the first part (this is the reason why we take 2 in

the definition of N2). We do not now anything about B’s coloration, but by Proposition 0.3,

A∪ (A+ d)∪ · · · ∪ (A+ (k− 1)d) must contain either a monochromatic k-AP or a sunflower

with m petals of size k − 1, as we wanted to prove.

At this point we have all we needed to prove VdW. For this purpose, we will apply

induction as follows:

Proof of Theorem 0.1 (Van der Waerden). We apply induction on k. We have shown that

W (r, 1) and W (r, 2) exists for any r. Assume that W (r, k − 1) exists for every choice of r

and let us prove that W (r, k) exists for every choice of r.

Lemma 0.4 tells us that W (r,m, k − 1) exists for every r and m given. In particular,

W (r, r, k − 1) exists for every choice of r. Let us prove that W (r, k) = W (r, r, k − 1). First,
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W (r, r, k − 1) tells us that for every N ≥ W (r, r, k − 1), any r-coloring of [N ] has either a

monochromatic k-AP or a sunflower with r petals of size k− 1. In the second case, since we

have r petals and r colors to paint with, the color of the center must be equal to the color

of one of the petals. Therefore, in any of the cases, we have a monochromatic k-AP as we

wanted to show.

After Van der Waerden’s Theorem, in 1936, Erdős and Turán conjectured a big result on

arithmetic combinatorics [8]: every set A ⊂ N with positive natural density, this is

lim sup
n−→∞

|A ∩ {1, 2, . . . n}|
n

> 0,

contains a k arithmetic progression for every k. This infinite version has a finite analogue:

for every k and every ε > 0, there exists n0 such that for n ≥ n0, all sets of non-negative

integers A contained in [n] with |A| ≥ εn must contain a k-AP. Note that this conjecture is

a stronger version of Van der Waerden’s Theorem, as it states that the most popular colour

in any colouring is the right candidate to contain k-APs.

It was not until 1953 that Klaus Roth partially proved this conjecture for the 3-AP case

using Fourier analytic methods [18]:

Theorem 0.5 (Roth, 1953). For every α > 0 there exists n such that every subset A ⊆ [n]

of size at least αn contains a 3-AP.

Due to this result, and joint with his investigations in analytic number theory, Roth

received the Fields Medal in 1958.

The main focus of this work is to understand, rewrite and collect some of the proofs of

Roth’s Theorem that have appeared over the years. In this dissertation we will present three

proofs while developing some of the problems that arise in each area. The structure of this

thesis is as follows:

– In the first chapter, we begin with a combinatorial proof given by Szemerédi, which

appeared 10 years after Roth’s initial proof. In this proof we will be able to point the

main ideas Szemerédi used, in a masterpiece of combinatorial reasoning, to settle the

general conjecture affirmatively in 1975 [22].

– In the second chapter, we will approach the original proof of Roth’s Theorem by a

Fourier analytic proof, which will give us a much more specific result. We will also

give a precise discussion of the main idea of the proof in the finite field model, where

we can exploit the particularity of working with subspaces.

– In the third chapter, we will present the graph theoretical proof, and with it, the

Szemerédi’s Regularity Lemma. The use of this technique allows us to translate the

result to non-abelian groups.
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– In the last chapter, we will finish the work giving results about the upper and lower

bound of the largest subset of [n] which contains no 3-AP, which is still an open research

problem.

0.2 Preliminaries and notation

Let us finish the introduction explaining the basic concepts and introducing some notation

required in order to develop this thesis, and that from now on we will assume that the reader

is familiar with:

– As we have already mentioned, we will write the interval of natural numbers {1, . . . , n}
as [n].

Definition 0.6 (Arithmetic progression). An arithmetic progression is a sequence of num-

bers such that the difference between the consecutive terms is constant. In particular, we

will call an arithmetic progression of length k a k-AP.

Since our work will be focused on arithmetic progressions of length 3, let us remark those:

Definition 0.7 (Arithmetic progression of length 3). We will call an arithmetic progression

of length 3 a 3-AP, which in particular, it is triple of the form

(a, a+ d, a+ 2d).

Thus, if we have a triple (a1, a2, a3) satisfying this definition, it must also satisfy the following

equality:

a1 + a2 = 2a3.

In order to give some results about the cardinality of the sets containing 3-AP, we will

use the following asymptotic notation. For any given functions f and g,

– We say that f(n) = O(g(n)), if there exists some constants c and n0 such that

f(n) ≤ c · g(n) for all n ≥ n0.

– We say that f(n) = o(g(n)) if for all c > 0 exists n0 such that

g(n) < c · f(n) for all n ≥ n0.



Chapter 1

Combinatorial proof

In this chapter we present the combinatorial proof of Roth’s Theorem, due to Szemerédi 10

years later Roth’s Fourier proof. We will follow the theory developed by L. Graham et al.

in the book Ramsey Theory, building on the main ideas that Szemerédi used for his proof of

Erdős-Turán conjecture [22].

We begin proving and announcing some results in order to develop the proof, which

is based on a combinatorial basic structure, named after David Hilbert: the Hilbert Cube.

Hilbert was one of the pioneers of Ramsey theory; in 1892, he published a paper [15] regarding

this structure, 30 years before its foundation.

Definition 1.1. Let [N ] be the set of non-negative integers from 1 to N . We call M ⊂ [N ]

a k-cube if there exists a > 0 and d1, . . . , dk > 0 such that

M = M(a : d1, . . . , dk) =

{
a+

k∑
i=1

εidi such that εi = 0, 1

}
.

The following lemma shows that we can assure the existence of Hilbert cubes as soon as

our set has linear size:

Lemma 1.2. Let n, α, k be such that the sequence α = α0, α1, . . . , αk satisfying

αi+1 =

{(
αi
2

)
/(n− 1)

}
has αk ≥ 1. If A ⊆ [n] with |A| = α, there exists a k-cube M ⊂ A.

Notice that, in particular, if |A| = cn, for c fixed, there exists a k-cube M ⊂ A with

k = log log n+O(1).

Proof. There exists
(
α
2

)
positive differences a′−a with a, a′ ∈ A. By the Pigeonhole Principle,

since all the differences can only take n− 1 different values, at least(
α

2

)
/(n− 1)

9
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of the differences must be equal. Setting d1 equal to the most frequently occurring difference,

and A1 = {a ∈ A : a+ d1 ∈ A}, we have

A1 ⊆ A, d1 + A1 ⊆ A, |A1| ≥ α1.

Now, applying this argument to A1, we get

A2 ⊆ A1, d2 + A2 ⊆ A1, |A2| ≥
(|A1|

2

)
n− 1

≥ α2.

Now, by induction,

Ai ⊂ Ai−1, d1 + Ai ⊆ Ai−1, |Ai| ≥ αi.

Since αk ≥ 1, there exists a ∈ Ak. Now, M(a : di, . . . , dk) ⊆ Ai−1 by a simple backward

induction on i so that

M = M(a : d1, . . . , dk) ⊆ A.

The analytic result is indicated by

αi+1 =

(
αi
2

)
/n− 1 =

αi(αi − 1)

2(n− 1)
∼ α2

i

2n
(1.1)

which implies log log(n/αi) ∼ i+O(1). Let us show this result using induction:

Claim.

log log(n/αi) ∼ i+O(1).

Proof. Using relation (1.1),
n

αi+1

∼ 2n2

α2
i

.

Now, writing βi = n/αi, we have

βi+1 ∼ 2β2
i .

Let log log(βi−1) ∼ i− 1 +O(1) be true and let us prove log log(βi) ∼ i+O(1) by induction:

log log(βi) ∼ log log
(
2β2

i−1
)

= log(log 2 + 2 log βi−1)

∼ log(2 log βi−1)

= log2 2 + log log βi−1

∼ 1 + i− 1 +O(1) = i+O(1).

So log log(βi) ∼ i+O(1) as we wanted.
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At that point, let us introduce a function that will play a significant role in the proof:

for every l ∈ N+, let S(l) denote the largest number of elements of [1, l] that can be chosen

so that no 3-AP appears. Trivially, this function verifies the following property:

S(l1 + l2) ≤ S(l1) + S(l2). (1.2)

The function S(l) is what we call a subadditive function. The next result, also known as

Fekete’s lemma, gives limiting answer for the limit of suabadditive sequences:

Lemma 1.3 (Subadditivity lemma). If S : N −→ R+ is subadditive, then

α = lim
S(n)

n
exists and

S(n)

n
≥ α ∀n ∈ N

Proof. Let us first set α = lim supn→∞ S(n)/n. Let n ∈ N. We can write any x ∈ N as

x = qn+ r with 0 ≤ r < n. So in particular, S verifies

S(x) = S(qn+ r) ≤ S((q + 1)n)
(1.2)

≤ (q + 1)S(n).

Thus,
S(x)

x
≤ (q + 1)S(n)

qn
.

Recall that if x −→∞, we also have q −→∞. Now, taking lim sup in both sides of the last

inequality,

α ≤ S(n)/n.

In particular α ≤ lim infn→∞ S(n)/n. So α = limn→∞ S(n)/n as we wanted to show.

At that point we are ready to prove Roth’s Theorem:

Theorem 1.4 (Szemerédi). If A is a set of positive integer with positive upper density, then

A contains a 3-AP.

Proof. Let A ⊂ [l], |A| ≥ cl and suppose that A do not contain any 3-AP. By hypothesis, A

is a set with positive upper density. Recall that S(l) satisfies S(l1 + l2) = S(l1) + S(l2), so

there exists c > 0 such that c = limS(l)/l and S(l) > cl for all l. Let ε > 0 be very small

and l0 be such that

c ≤ S(l)

l
< c+ ε ∀l ≥ l0. (1.3)

Let l be large so the inequality 0.01c2 log log l > l0 holds, which will be clear at the end of

the proof.

The main objective will be to show the existence of a large-dimensional cube M ⊆ A

whose elements will be located far from the edges of [l]. To do so, let us partition the interval

[1, l] into three sets as shown in Figure 1.1.
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Since A has no 3-AP, A ∩ [1, 0.49l] and A ∩ [0.5l, l] must be 3-AP free. Thus, we can

apply (1.3) to these intervals:

|A ∩ [1, 0.49l]| < 0.49l(c+ ε), |A ∩ [0.5l, l]| < 0.5l(c+ ε).

So on [1, 0.49l] ∪ [0.5l, l] A has at most 0.99l(c + ε) elements. Now, since |A| ≥ cl and ε is

small, the density of A on (0.49l, 0, 5l) is

|A ∩ (0.49l, 0.5l)|
0.01l

≥ cl − 0.99l(c+ ε)

0.01l
=

0.01cl − 0.99lε

0.01l
= c− 99ε >

c

2
.

Figure 1.1: Partition of the interval [1, l]

At that point, as l is very large, we can split the interval (0.49l, 0.5l) into disjoints sub-

intervals of size l1/2 +O(1). Notice that on one of these sub-intervals, the density of A must

be at least c/2, otherwise A would not have density greater than c/2 on (0.49l, 0, 5l). In that

very same interval, by Lemma 1.2 it must exists a k-cube M so that satisfying:

(i) M = M(a : d1, . . . , dk) ⊆ (0, 49l, 0.5) ⊆ A,

(ii) k = log log l1/2 +O(1) = log log l +O(1),

(iii) di ≤ 2l1/2, 1 ≤ i ≤ k.

Note that (iii) comes from the fact that M is contained in an interval of size l1/2 +O(1), so

if a is the smaller element of our k-cube M , then the element a+ di must also be contained,

and in particular di < 2l1/2.

Let M1 = {a} and Mi = M(a : d1, . . . , di−1) for 2 ≤ i ≤ k. We define

Ni = {2m− x such that x ∈ A, x < A, m ∈Mi}

as the set of the third term of progressions {x,m, y} with x,m ∈ A. By hypothesis, A is

3-AP free, so A ∩ Ni = ∅. Let us now show that A has density greater c/2 on [1, 0, 49l] by

reductio ad absurdum:

Lemma 1.5. The following estimate holds

|A|
|[1, 0.49l]|

> c/2. (1.4)
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Proof. Suppose that A has density lower or equal to c/2. Let us define the sets

S1 = |A ∩ [1, 0.49l]|, S2 = |A ∪ (0, 49l, 0.5l)|, S3 = |A ∩ [0.5l, l]|.

So we have

|S1|
|[1, 0.49l]|

<
c

2
=⇒ |S1| <

0.49cl

2
= 0.245cl,

|S2|
|(0.49l, 0.5l)|

(1.3)
< c+ ε =⇒ |S2| < 0.01l(c+ ε),

|S3|
|[0.5l, l]|

(1.3)
< c+ ε =⇒ |S3| < 0.5l(c+ ε).

Now, we have that |A| = |S1| + |S2| + |S3| < l(0.755c + 0.51ε) < cl, which contradicts the

fact |A| ≥ cl. So the density of A on [1, 0.49l] must be greater than c/2.

This last result and the fact that a ∈ (0.49l, 0.5l) give us a bound for the Ni sets we have

defined above:

|Ni| ≥ |N1| = |A ∩ [1, a)| > 0.245cl.

Notice we can write Mi+1 = Mi ∪ (Mi + di), Ni+1 = Ni ∪ (Ni + 2di), where the Ni forms

an ascending sequence with |Nk| < l. So in particular, by the Pigeonhole Principle there

must exists i so that

|Ni+1 −Ni| <
l

k
.

From now on, let us focus our attention on this pair, whose cardinality is similar. Let us

call an AP with difference 2di a block. Given a maximal block {x, x+ 2di, . . . , x+ s(2di)} of

Ni, by definition of Ni+1, we can find the following element of the progression x+(s+1)(2di)

in Ni+1−Ni. Thus, the number of blocks is at most the cardinal of the set Ni+1−Ni, which

is smaller than l/k.

Let us now split [l] into residue classes modulo 2di. Note that the elements of a block will

belong to the same class after the partition. In particular, if tj is the number of blocks into

which Ni is partitioned in the class of congruence j, then [l]−Ni will be partitioned into at

most tj + 1 blocks (the gaps plus the ends). So, using that l/k is the maximum number of

blocks of Ni, we have
2di−1∑
j=0

tj <
l

k
,

and using di < 2l1/2, on [l]−Ni

2di−1∑
j=0

tj + 1 =

2di−1∑
j=0

tj + 2di <
l

k
+ 2di =

l

log log l
(1 +O(1)).
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Now we may begin the final argument. We call a block of [l] − Ni small if its cardinal

is less than 0.01c2 log log l, and large otherwise. Recall that since the number of blocks have

to be less than l
log log l

(1 +O(1)), all the small blocks together must have cardinality smaller

than

l

log log l
(1 +O(1)) · 0.01c2 log log l = 0.01c2l +O(l).

We have defined l so that A has density lower than c+ ε on every large block, and hence on

its union. Now, recall that A∩Ni = ∅, so each element of A must be either in a large block

or in a small one:

|A| = |A ∪ ([l]−Ni)|
< (c+ ε)(l − |Ni|+ 0.01c2l +O(l)

(1.4)
< cl − c(0.245cl) + εl + 0.01c2l +O(l)

< cl,

contradicting the assumption |A| ≥ cl.

Notice that this result is not quantitative. In the next chapter, we will develop techniques

that allow us to get a much more specific result.

1.1 Discussion

As we have already said, in this proof we can see the main ideas that Szemerédi used in order

to prove the general case of Roth’s Theorem. For this purpose, in 1972 he proved the case

for k = 4 [21], and 3 years later, in 1975, Szemerédi presented the proof of the Erdös-Turán

conjecture,

Theorem 1.6 (Szemerédi, 1975). A subset of the natural numbers with positive upper density

contains infinitely many arithmetic progressions of length k for all positive integers k.

The original proof by Szemerédi, while extremely difficult and with a complex structure,

was purely combinatorial and almost entirely self-contained, except for an invocation of Van

der Waerden’s Theorem.
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Figure 1.2: Diagram representing an approximate flow chart of

Szemerédi’s Theorem. Available at [11]

The last picture depicts the structure of the paper by Szemerédi proving fully Erdős-Turán

conjecture. This has been a masterpiece in combinatorics and one of the main reasons to

propose Szemerédi for the Abel prize in 2012.

In order to prove Szemerédi’s Theorem, it was required the development of what nowadays

is known as a powerful tool in extremal graphs methods: the Szemerédi Regularity Lemma.

In Szemerédi’s Theorem proof, he introduced a weaker version of this lemma, restricted to

bipartite graphs. It was not until years later that a extension proof for hypergraphs appeared.

This can be found in the paper The hypergraph regularity method and its applications [17]. In

chapter 3 we will develop Szemerédi’s Regularity Lemma for hypergraphs in order to obtain

a very simple proof of Roth’s Theorem.



Chapter 2

Fourier analytic proof

In this chapter we will approach Roth’s Theorem analytic proof, the first of the multiple

proofs that we can find in relation to this theorem. Roth’s Theorem was proved in 1953 [18],

when Roth partially resolved Erdős-Turán conjecture [8] for k = 3. As we already mention,

this result, in addition to other important work, earned him the Fields Medal in 1958.

2.1 Introduction to discrete Fourier analysis

The original proof of Roth’s Theorem used Fourier analytic methods. In order to be able to

develop the proof, let us begin this chapter by presenting some basic results of the discrete

Fourier analysis.

From now on let us consider n to be a positive integer and let Zn be the field of integers

mod n. Let ω = e2πi/n be a primitive n-th root, so that ωn = 1.

Definition 2.1 (Discrete Fourier transform). Given a function f : Zn −→ C, we define its

discrete Fourier transform by

f̂(r) =
1

n

n−1∑
k=0

f(k)ω−rk.

We will use the following ergodic-theory notation for the Fourier transform:

f̂(r) = Exf(x)ω−rx,

which is interpreted as a mean, as we have announced.

There is one important fact about the functions ωrx that appear in the definition of the

discrete fourier transform:

Proposition 2.2. The functions ωrx form an orthonormal basis with respect to his inner

product.

Proof. Notice that the inner product of the functions ωrx and ωsr is Exω(r−s)x. Now, if r = s,

then Exω(r−s)x = 1. Otherwise, if r 6= s, we have a geometric progression. Using its formula

16
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and the fact that ωn = 1, we have

Exω(r−s)x =
1− ω(r−s)n

n(1− ωr−s)
= 0.

There exists three notions about Fourier transform that we will use repeatly. The first

one is the inversion formula:

Lemma 2.3 (The inversion formula). Let f : Zn −→ C and f̂ its Fourier transform. Then

for every x ∈ Zn we have

f(x) =
∑
r

f̂(r)ωrx.

Proof. By expanding out ˆf(r), we can observe:∑
r

f̂(r)ωrx =
∑
r

Eyf(y)ω−ryωrx

= Eyf(y)
∑
r

ωr(x−y) =

{
1 if y = x,

0 if y 6= x.

Note that in the first case we have used that the probability of x = y if y is randomly chosen

is 1/n.

Notice that in the following theorem it will appear for the first time the inner product

between two functions. All along this chapter we will make an abuse of notation, since we will

be using two of the following inner products at the same time, where (ii) is (i) normalized:

for f, g : X −→ C, we can define:

(i) Exf(x)g(x)

(ii)
∑

x f(x)g(x)

The context will make clear which one is intended. Let us now pass to prove the next result,

which is attributed to Plancherel and sometimes to Parseval, but we will call it Parseval

identity :

Theorem 2.4 (Parseval identity). Let f, g : Zn −→ C and let f̂ , ĝ be their respective Fourier

transforms. Then,

〈f̂ , ĝ〉 = 〈f, g〉. (2.1)
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Proof. This result follows immediately from two facts: the functions ωrs form an orthonormal

basis and the Fourier coefficients of f̂(r) are the coefficients of f in the ωrs basis. So now:

〈f̂ , ĝ〉 =
∑
r

f̂(r)ĝ(r) =
∑
r

Ex,yf(x)f(y)ω−r(x−y)

= Ex,yf(x)f(y)
∑
r

ω−r(x−y)

= Exf(x)g(y) = 〈f, g〉.

where in the last inequality we have used that if x = y then the sum over r is m, while if

x 6= y it is 0, and the probability of x = y if y is randomly chosen is 1/n.

Let us now present the next result, which is the convolution identity. This result sets the

Fourier transform apart from any other unitary map. First let us define the convolution of

two functions:

Definition 2.5 (Convolution). Given two functions f, g : Zn −→ C, we define their convo-

lution f ∗ g by

f ∗ g(r) = Ey+z=rf(y)g(z).

If we want to use the counting measure of Zn, then the convolution is defined using sums:

f̂ ∗ ĝ(r) =
∑
s+t=r

f̂(s)ĝ(t).

The following lemma gives us a strong property of the Fourier transform:

Lemma 2.6. let f, g : Zn −→ C Then, for every r ∈ Zn we have:

f̂ ∗ g(r) = f̂(r)ĝ(r).

Proof. By expanding out the definition of convolution:

f̂ ∗ g(r) = Exf ∗ g(x)ω−rx

= Ex(Ey+z=xf(y)g(z)ω−rx)

= ExEy+z=x(f(y)ω−ry)(g(z)ω−rz)

= (Eyf(y)ω−ry)(Ezg(z)ω−rz) = f̂(r)ĝ(r).

as we wanted to show.

After proving these basics of Fourier transform, we can introduce some interesting iden-

tities that can be useful. First, let us begin with a definition:

Definition 2.7. Given a function f : Zn −→ C, we define

||f ||4 =

(∑
r

|f(r)|4
) 1

4

.
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Proposition 2.8. Let f : Zn −→ C. Then,

||f̂ ||44 = Ex,a,bf(x)f(x+ a)f(x+ b)f(x+ a+ b),

where Ex,a,b can be written as 1
n3

∑
r,a,b.

Proof. First notice that there exists a correspondence between quadruples of the form (x, x+

a, x+ b, x+ a+ b) and the quadruples (x, y, z, w), such that x+w = y+ z. Hence, the right

hand side of the equation can be rewritten as

Ex+w=y+zf(x)f(w)f(y)f(z) = EuEx+w=y+z=uf(x)f(w)f(y)f(z) = 〈f ∗ f, f ∗ f〉.

Using now Parseval and the convolution identity, we can write

〈f ∗ f, f ∗ f〉 = 〈f̂ 2, f̂ 2〉 =
∑
r

|f̂(r)|4 = ||f̂ ||44,

as we wanted to prove.

With the definition of the characteristic function of a set we can find a couple more

Fourier-analytic properties that would be interesting to use. As we will see, applying the

Fourier transform to constant functions is a nice way to codify the configuration of a set:

Definition 2.9 (Characteristic function of a set). Let A ⊂ Zn be a set. We define its

characteristic function by

A(x) =

{
1 x ∈ A,
0 x 6∈ A.

Lemma 2.10. Let A ⊂ Zn be a set of density α. Then

1. Â(0) = α.

2.
∑

r |Â(r)|2 = α.

3. Â(−r) = Â(r) for every r.

4. ||Â||44 =
∑

r |Â(r)|4 ≤ α4.

Proof. For the first property, we can write:

Â(r) = ExA(x)ω−rx =
1

n

n−1∑
k=0

A(k)ω−rk ⇐⇒ Â(0) =
1

n

n−1∑
k=0

A(k) =
|A|
n

= α.

Let us now prove the second property announced:

∑
r

|Â(r)|2 =
∑
r

〈Â(r), Â(r)〉 =
1

n

n−1∑
x=0

〈A(x), A(x)〉 =
1

n

n−1∑
x=0

|A(x)| = |A|
n

= α.
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For the third one:

Â(−r) = ExA(x)ω−rx = ExA(x)ωrx = Â(r).

Let us prove the last one using Proposition 2.8:

α4 = (ExA(x))4

= ((ExA(x))2(EyA(y))2

= (ExEyA(x)A(y))2
y=x+h

= (EhEx(A(x)A(x+ h))2.

Using now Cauchy-Schwarz (C-S) inequality

(EhEx(A(x)A(x+ h))2 ≤ Eh(ExA(x)A(x+ h)2)2

= Eh(Ex(A(x)A(x+ h))(Ez(A(z)(A(z + h))

= Ex,h,zA(x)A(x+ h)A(z + h).

Since z = x+ k, we can write

Ex,h,zA(x)A(x+ h)A(z + h) ≥ Ex,h,kA(x)A(x+ h)A(x+ k)A(x+ h+ k) = ||Â||44,

as we wanted.

Let us call quadruples of the form (x, x + a, x + b, x + a + b) additive quadruples. As

we have already stated, there exists a bijection between these quadruples and (x, y, z, w)

such that x + y = z + w. The densities of these quadruples and of the 3-APs, which are

the probabilities that a random additive quadruple or a random 3-AP live entirely in A, are

given by the following definition:

Definition 2.11 (Additive quadruple and 3-AP densities). We define the additive quadruple

density of a set A as

Ex,a,bA(x)A(x+ a)A(x+ b)A(x+ a+ b),

and the density of a 3-AP by

P3(A) = Ex,dA(x)A(x+ d)A(x+ 2d).

The following lemma presents one of the first important results about 3-APs on a set. In

a general sense, it says that if the spectrum of A is concentrated, then we can have control

of the number of 3-APs.

Lemma 2.12. Let n be odd and let A be a subset of Zn of density α. Suppose that

maxr 6=0 |Â(r)| ≤ cα2. Then |P3(A)− α3| ≤ cα3.
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Proof. In order to give the 3-AP density using Fourier, let us define the set

A2 = {u ∈ A such that u/2 ∈ A}.

So we can write

Â2(r) = ExA2(x)ω−rx = ExA(x/2)ω−rx = ExA(x)ω−2rx = Â(2r).

Hence,

P3(A) = Ex+y=2zA(x)A(y)A(z) = Ex+y=2zA(x)A(y)A(z/2)

= 〈A ∗ A,A2〉
(2.1)
= 〈Â2, Â2〉 =

∑
r

Â(r)2Â(−2r).

Since Â(0) = α, we have

|P3(A)− α3| = |
∑
r 6=0

Â(r)2Â(−2r)| ≤ max
r 6=0
|Â(r)|

∑
r 6=0

|Â(r)||Â(−2r)|.

Now, by Cauchy-Schwartz, we know that the last sum can be at most(∑
r 6=0

|Â(r)|2
)1/2(∑

r 6=0

|Â(−2r)|2
)1/2

.

Notice that the second of these factors is equal to the first, so we can write:

max
r 6=0
|Â(r)|

∑
r 6=0

|Â(r)||Â(−2r)| ≤ max
r 6=0
|Â(r)|

(∑
r 6=0

|Â(r)|2
)1/2(∑

r 6=0

|Â(−2r)|2
)1/2

= max
r 6=0
|Â(r)|

∑
r 6=0

|Â(r)2|

(2.10)
= max

r 6=0
|Â(r)|

∑
r 6=0

(α− α2)

≤ α ·max
r 6=0
|Â(r)|.

Therefore, taking c = maxr 6=0 |Â(r)|, we have |P3(A)− α3| ≤ cα.

2.2 Finite field analogue proof

Before proving Roth’s Theorem in Zn, it is interesting to develop the proof in Fn3 in order

to get the main idea. First, notice that all the theory we have been working on Zn can be

similarly developed in Fn3 . The corresponding question in Fn3 , also known as the cap set prob-

lem, was studied by Meshulam in 1995 [16], using an argument that remarks the advantages

of the finite model and the potential of the Fourier transform. Note that in a finite field
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we can work with subspaces, where the idea of increasing density (which we will see soon)

seems more natural and it gives us an intuition of the proof in Zn. This problem is very

relevant in a lot of areas, such as code theory. Our approach is based on the exposition in [29].

Let us start this chapter announcing the analogue result of Roth’s Theorem in the finite

field, which states that any sufficient dense set must contain a non-trivial 3-AP:

Theorem 2.13 (Meshulam). Let A ⊂ G = Fn3 . Suppose that A does not contain any non-

trivial 3-AP. Then

|A| = |G|
log |G|

(1 + o(1)).

With our first lemma below we will be ready to introduce the dichotomy, a concept that

will be present in all the following Roth’s Theorem proofs. It states that the number of 3-AP

in a set with small non-trivial (different from the 0 coefficient) Fourier coefficients is equal

to the number of 3-AP that can be found in a set whose elements are chosen from G with

probability α = |A|/|G| :

Lemma 2.14. Let A ⊂ G = Fn3 be a subset of density α satisfying supt6=0 |1̂A(t)| = o(1).

Then, A contains (α3 + o(1))|G|2 3-term arithmetic progressions.

Proof. Let 2 · A = {2a : a ∈ A}. We will write the normalised number of 3-AP in A as

T3(1A, 1A, 1A), which is defined by

T3(1A, 1A, 1A) := Ex,d1A(x)1A(x+ d)1A(x+ 2d) = 〈1A ∗ 1A, 12·A〉,

where the last equality comes from the use of the definition of convolution and a change of

variable, x+ d = y. But using Parseval’s identity, we can also write

T3(1A, 1A, 1A)
P.
= 〈1̂2

A, 1̂2·A〉 = α3 +
∑
t6=0

1̂A(t)1̂A(−2t) = α3 +
∑
t6=0

1̂A(t)3,

where we have use that −2 ≡ 1 mod 3. Now, bounding the last sum:∑
t=0

1̂A(t)3 ≤ sup
t6=0
|1̂A(t)|

∑
t

|1̂A(t)|2

= sup
t6=0
|1̂A(t)| · Ex|1̂A(x)|2

= α · sup
t6=0
|1̂A(t)|.

Hence,

T3(1A, 1A, 1A) = α3 + o(1).

Since it was normalized, by multiplying by |G|2 we get the desired result.
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In this case, the dichotomy is as follows: either the non-trivial Fourier coefficients of A

are small (in this case we will say that A is uniform), and thus by Lemma 2.14 A contains

lots of 3-APs; or A it is not uniform. In that last case we will be able to see that A contains

non-trivial progressions.

Let us now continue proving a lemma that states that the characteristic function of a

3-AP free set must possess a large Fourier coefficient:

Lemma 2.15. Let A ⊂ G be a subset of density α, with |G| ≥ 2α−1. Since A does not

contain any non-trivial 3-AP, there exits t 6= 0 such that

|1̂A(t)| ≥ 1

2
α2.

Proof. As we did in Lemma 2.14, we use the definition of the normalised number of 3-APs

in a set, that can be written as T3(1A, 1A, 1A) = α3 +
∑

t6=0 1̂A(t)3. By hypothesis, we now

that A does not contain any non-trivial 3-AP. Therefore, we have

T3(1A, 1A, 1A) = |A| = |A| · |G|
|G|

=
α

|G|
.

Recall that we can also write the number of 3-APs as

T3(1A, 1A, 1A) = α3 +
∑
t6=0

1̂A(t)3.

So we have that

α3 +
∑
t6=0

1̂A(t)3 =
α

|G|
⇐⇒

∑
t6=0

1̂A(t)3 =
α

|G|
− α3.

Taking now absolute values in both sides,∣∣∣∣∣∑
t6=0

1̂A(t)3

∣∣∣∣∣ =

∣∣∣∣ α|G| − α3

∣∣∣∣ ≤ ∣∣∣∣12α3 − α3

∣∣∣∣
=

∣∣∣∣12α3

∣∣∣∣ ≤
∣∣∣∣∣∑
t6=0

1̂A(t)3

∣∣∣∣∣ ≤ sup
t6=0
|1̂A(t)|

∑
t

|1̂A(t)|2 ≤ α · sup
t6=0
|1̂A(t)|

In particular, we have∣∣∣∣12α3

∣∣∣∣ ≤ α · sup
t6=0
|1̂A(t)| ⇐⇒ there exists t 6= 0 such that |1̂A(t)| ≥ 1

2
α2,

as we wanted.

Let us show next that if there exists a large non-trivial Fourier coefficient, then A has a

bias towards an affine subspace of Fn3 of co-dimension 1 (dimension n−1). With this lemma,

we present another element that will play an elementary role: the density increment.



24 2.2. FINITE FIELD ANALOGUE PROOF

Lemma 2.16. Let A ⊂ G be a subset of density α. Suppose t 6= 0 is such that |1̂A(t)| ≥ α2/2.

Then, there exists a subspace V ≤ Fn3 of co-dimension 1 on some translate of which A has

density at least α(1 + α/4).

Proof. Let us write V := 〈t〉⊥ the ortogonal complement of vector t, and let vj + V for

1 ≤ j ≤ 3 be the complet set of cosets of V . Let us call fA := 1A − α the balanced function

of A. Then,

1̂A(t) = f̂A(t) =
1

|G|

3∑
j=1

∑
x∈vj+V

(1A(x)− α)ωtx

=
3∑
j=1

1

|G|
∑

x∈vj+V

(1A(x)− α)ωj =
3∑
j=1

ajω
j,

where aj = (1/|G|)
∑

x∈vj+V (1A(x) − α) = (|A ∩ (vj + V )| − α |V |)/ |G|. First, notice that

since all elements of A are in vj +V for some j, then
∑

j aj = 0. Taking absolute values and

applying the triangle inequality we find∑
j

|aj| ≥ α2/2,

so
∑

j |aj|+aj ≥ α2/2. Therefore, by the Pigeonhole principle there exists at least one value

of j for which |aj|+ aj ≥ α2/6. So aj ≥ α2/12 and, as |G| = 3 |V |, we can write

(|A ∩ (vj + V )| − α |V |)/ |G| = aj ≥ α2/12,

|A ∩ (vj + V )| ≥ α |V |+ α2 · |G|
12

= α |V |+ α2 · 3 |V |
12

= α(1 +
α

4
) |V | .

Finally,

|A ∩ (vj + V )| ≥ α(1 +
α

4
) |V | ,

as we wanted to prove.

Now we are ready to complete Meshulam’s Theorem by iterating Lemmas 2.15 and 2.16:

Proof of Theorem 2.13 (Meshulam). Let us suppose that A has density α in G and contains

no 3-APs. Then, by Lemma 2.15, there exists a non-trivial coefficient of A with size at least

α2/2. Therefore, by Lemma 2.16, there must exists a subspace V of dimension n-1 and a

vector vj such that A has density at least α + α2/4 on V .

Let us write A1 = (A∩ (vj + V )). Since 3-AP are translation invariant, then if A has no

3-AP neither do A1. Let us now focus on the set A1 ⊂ V ∼= Fn−13 of density α + α2/4 and

iterate the explained procedure taking G = Fn−13 .
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First, notice that since the density can never exceed 1, our procedure will come to an

end if the density of the set Ak surpass this value. Given that in every step we increase the

density in a α2/4 factor, we have that it grows up from α to 2α in α/(α2/4) = 4α−1 steps,

from 2α to 4α in 2α/((2α)2/4) = (4α−1)/2 steps, so inductively the density will reach 1 in

at most

(1 + 1/2 + 1/4 + . . .)4α−1 = 8α−1

iterates. Thus, the size of G after 8α−1 iterates is at least 3n−8α
−1

. By Lemma 2.15, G must

verify |G| < 2α−2 when we finish the procedure, otherwise we could apply again this very

same lemma. So 3n−8α
−1 ≤ 2α−2, thus:

3n ≤ 2α−2 · 38α−1 ⇐⇒ n ≤ 8α−1 + log3 (2α−2).

Since n grows with α, then 1/α gets smaller, so we can omit the second term and write:

n ≤ 8

α
≤ 1

α
⇐⇒ α ≤ 1

n
⇐⇒ |A| ≤ |G|

log3(|G|)
,

where we have used |G| = 3n and α = |A| / |G|.

2.3 Analytic proof of Roth’s Theorem

After working on the analogue proof for finite fields, we will understand much more easily

the idea of Roth’s Theorem 0.5 using the Fourier transform. If we wanted to prove the same

result in Z, we will reduce it to Zn, but there exists a problem: in Zn we do not have an

algebraic structure such a vectorial subspace, so the density increment we have seen before

has to be done differently. Nevertheless, the same idea persists: if we have a 3-AP free set,

then there exists a large non-trivial Fourier coefficient, which implies a density increment on

a sub-AP.

The structure of the proof is as follows: let us think of A as a subset of Zn. Supposing n

odd, we can apply Lemma 2.12 to state that either A contains a 3-AP or there exits r 6= 0

such that |Â(r)| ≥ δ2/2. In the second case we can relate A with one of the functions ωr
with r 6= 0. This will allow us to deduce that the intersection of A with some

√
n-AP has

density at least δ + 1
4
δ2.

Let us begin with a generalisation of Lemma 2.12 to manage the fact that a 3-AP inside

Zn does not have to correspond to a 3-AP inside [n]:

Lemma 2.17. Let n be odd and let A, B and C be subsets of Zn with densities α, β and γ,

respectively. Let maxr 6=0 |Â(r)| ≤ θ. Then,

|Ex,dA(x)B(x+ d)C(x+ 2d)− αβγ| ≤ θ(βγ)1/2.
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Proof. This proof is analogous to the one we have already done in Lemma 2.12. Changing

the functions to A, B and C, we get

Ex,dA(x)B(x+ d)C(c+ 2d) =
∑
r

Â(r)B̂(−2r)Ĉ(r).

Now,

|
∑
r 6=0

Â(r)B̂(−2r)Ĉ(r)| ≤ max
r 6=0
|Â(r)|

∑
r 6=0

B̂(−2r)Ĉ(r)

C-S

≤ max
r 6=0
|Â(r)|

∑
r 6=0

(B̂(−2r)2)1/2(
∑
r 6=0

Ĉ(r)2)1/2

= max
r 6=0
|Â(r)|(βγ)1/2 ≤ θ(βγ)1/2,

as we wanted to show.

Let us now approach a corollary that will be used in order to prove Roth’s Theorem. It

states that either there A contains a 3-AP or there exists a large non-trivial Fourier coefficient

of Â(r): the dichotomy argument.

Corollary 2.18. Let n be odd and let A be a subset of [n] of density δ. Suppose that

A ∩ [n/3, 2n/3] has cardinality at least δn/5. Then either A contains a 3-AP or when A is

considered as a subset of Zn, there exists r 6= 0 such that |Â(r)| ≥ δ2/10.

Proof. Let B = C = A∩ [n/3, 2n/3] and consider A, B and C as subsets of Zn. Notice that

any 3-AP of the form (x, x+ d, x+ 2d) ∈ A×B×C has d ∈ (−n/3, n/3) (recall that B and

C are the intersection of A with the interval [n/3, 2n/3]), from which we can conclude that

(x, x + d, x + 2d) is a 3-AP even if it is considered as a subset of [n]. Thus, if A does not

contain any non-trivial 3-AP, by Lemma 2.12 we obtain, as a big bound,

θ(βγ)1/2 ≥ αβγ/2,

so θ ≥ α(βγ)1/2/2. Using the hypothesis, the density of β and γ is at least δ/5 and α = δ,

so

α(βγ)1/2/2 ≥ δ2/10,

as we wanted to show.

The next step is to prove that if there exits a large non-trivial Fourier coefficient of Â(r),

then A has a slightly greater intersection with a progression of length
√
n:

Lemma 2.19. Let n be a positive integer, let r ∈ Zn and let δ > 0. Then there is a partition

of [n] into arithmetic progressions Pi of length at least δ
√
n/16 such that for every i and

every x, y ∈ Pi we have |ωrs − ωry| < δ.
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Proof. Let m = b
√
nc. If we have m elements distributed into the circumference, the sum of

its distances must be equal to 2π. So by Pigeonhole principle, there must exist u, v ∈ [m] such

that |ωru − ωrv| ≤ 2πm−1. Let us set d = |u− v|, so we can write |ωr(x+d) − ωrx| ≤ 2πm−1.

Since |ωa| = 1 ∀a, it follows

|ωr(x+d) − ωrx| ≤ 2πm−1 ⇐⇒ |ωrd(ωr(x+d) − ωrx)| = |ωr(x+2d) − ωr(x+d)| ≤ 2πm−1.

Multiplying two times by ωrd, we have

|ωr(x+3d) − ωr(x+2d)| ≤ 2πm−1.

So taking x = y + td,

|ωr(x+t) − ωrx| = |ωr(y+td) − ωry| = |ωr(y+td) − ωr(y+(t−1)d) + ωr(y+(t−1)d) − ωry|

≤ |ωr(y+td) − ωr+(t−1)d|︸ ︷︷ ︸
≤ 2πm−1

+|ωr(y+(t−1)d) − ωry| ≤ . . . ≤ 2πt

m

Now, let us partition [n] into residue classes mod d:

1 1 + d 1 + 2d . . .

2 2 + d 2 + 2d . . .
...

...
...

d− 1 2d− 1 3d− 1 . . .

d 2d 3d . . .

Notice that every class will have length greater b
√
nc = m. Now, we want that for all ele-

ments x, y in every class, |ωrx−ωry| < δ. Since we know that for all u, v ∈ [m], |ωru−ωrv| ≤
2πtm−1, we have t = δm/2π. Thus, partitioning the residue classes into arithmetic progres-

sions of length between δm/4π and δm/2π, we get the diameter ωr(P ) ≤ δ, as we wanted.

Recall that we want to work with progressions from at least δ
√
n/16. Suppose that we

partition a class into progressions of length δm/2π and the length of the last one is less than

this number. We can always unify the last class with the penultimate and divide by 2. This

procedure will give us two classes of length δm/4π, which is greater than δ
√
n/16, as we

wanted.

The next corollary introduces us the idea of density increment for the Fourier analytic

proof:

Corollary 2.20. Let n be a positive integer and let A ⊂ Zn be a subset of density α. Suppose

that there exists r 6= 0 such that |Â(r)| ≥ θ. Then, there exits an arithmetic progression

P ⊂ [n] of cardinality at least θ
√
n/32 such that if we consider P as a subset of Zn, then

|A ∩ P |
|P |

≥ α +
θ

4
.
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Proof. First, let us consider the following function f : Zn −→ Zn such that

f(x) =

{
1− α x ∈ A,
−α x 6∈ A.

where the average is 0. Notice Exf(x) = ExA(x) − α = α − α = 0. Also, f̂(r) = Â(r) for

every r 6= 0. Thus, by hypothesis, there exists r 6= 0 such that |f̂(r)| ≥ θ.

Applying Lemma 2.19, we can partition [n] into arithmetic progressions P1, . . . , Pr.

Taking δ = θ/2π we have that the length of every Pi must be at least θ
√
n/32. Since

|Exf(x)ω−rx| ≥ θ, it follows that∑
i

|Pi||Ex∈Pif(x)w−rx ≥ θ
∑
i

|Pi| = θn.

Let xi ∈ Pi. Recall that the diameter ωr(Pi) ≤ θ/2 and |f(x)| ≤ 1 for each i, so

|Ex∈Pif(x)ω−rx| ≤ |Ex∈Pif(x)ω−rxi |+ Ex∈Pi |f(x)||ω−rx − ω−rxi |

≤ Ex∈Pi |f(x)||ω−rxi |+ θ

2
≤ Ex∈Pi |f(x)|+ θ

2
.

Thus, ∑
i

|Pi||Ex∈Pif(x)| ≥ θ

2

∑
i

|Pi|.

Since
∑

i |Pi|Ex∈Pif(x) = 0 and using the inequality we got, there must exists i such that

|Pi|(|Ex∈Pif(x)|+ Ex∈Pif(x)) ≥ θ|Pi|
2

.

Now, we know that Ex∈Pif(x) must be positive so we do not have to work with the absolute

value anymore:

2|Pi|Ex∈Pif(x) ≥ θ|Pi|
2

=⇒ Ex∈Pif(X) ≥ θ

4
.

By definition,

Ex∈Pif(x) = Ex∈PiA(x)− α ≥ θ

4
⇐⇒ Ex∈PiA(x) =

|A ∩ Pi|
|Pi|

≥ α +
θ

4
,

as we wanted.

In the Fourier analytic proof, we also have an iteration argument, which is described by

the following lemma:

Lemma 2.21. Let A ⊆ [n] be a set of density α and suppose that A does not contain

any non-trivial 3-AP. Then, there exists a subprogression P ⊆ [n] of cardinality at least

α2
√
n/500 such that

|A ∩ P |
|P |

≥ α + α2/40.
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Proof. Let us choose a set in order to apply Corollary 2.18. If n is odd, we set t = n. If n is

even, we have two cases:

– If n/2 is odd, either [n/2] or {n/2 + 1, . . . , n} must have density α, so let us take that

subset and set t = n/2.

– If n/2 is even, either [n/2 − 1] or {n/2, . . . , n} must have density α, so we take that

one and set t = n/2− 1 or n/2 + 1.

Corollary 2.18 tells us that either:

– A contains a 3-AP or

– |A ∩ [t/3, 2t/3)| < αt
5

or

– there exists r 6= 0 such that |Â(r)| ≥ α2/10 when A is considered as a subset of Zt.

In the first case, we are done. In the second case, we now that one of the sets A ∩ [1, t/3)

or A ∩ [2t/3, t) has cardinality at least 2αt/5 and therefore, density at least 11α/10 (the

natural bound will be (2αt/5)/(t/3) = 6α/5, but notice that if t is a multiple of 3, then the

set A ∩ [2t/3, t) has cardinality t/3 + 1 rather than t/3, so (2αt/5)/(t/3 + 1) ≥ 11α/10), so

we are done.

In the third case, we can use Corollary 2.18, which gives us θ = α2/10, the hypothesis

we need in order to apply Corollary 2.20. Thus, we have a progression P given by this last

corollary satisfying the conclusion of this lemma, since θ
√
t/32 ≥ α2

√
n/500.

Now we have all the ingredients to prove Theorem 0.5:

Proof of Theorem 0.5 (Roth). Let n ≥ (500/α2)6, so α2
√
n/500 ≥ n1/3. Thus, by Lemma

2.21, either A contains a 3-AP or there exist a progression P of size n1/3 inside of which A

has density at least α + α2/40. If we are in the first case of Lemma 2.21, we are done.

In the second case, we just need to repeat the argument and recall that the critical value

of the density is 1, so we need to be sure that after reaching this value we find a 3-AP. Note

that iterating it 40/α times, the density will reach 2α. After a further 40/2α iterations, it

will reach 4α, and so on. So the maximum number of iteration required is 80/α, since

(40/α)(1 + 1/2 + 1/4 + . . .) = 80/α.

Therefore, we need to choose n such that n3−80/α ≥ (500/α2)6 in order to ensure that

after every iteration, the cardinality of our progression is at least α2
√
n/500. Taking logs

3−80/α log(n) ≥ 6(log(500) + 2 log(1/α)),
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and taking logs again:

log log(n) ≥ 80/α log(3) + log(6) + log(log(500) + 2 log(1/α)) ≥ c/α

for some absolute constant c. So we have that for a set of density α ≥ c/ log log(n), so with

size

c ·
(

n

log log(n)

)
,

there must exist a 3-AP. This proves Roth’s Theorem.

Note that this proof gives us a stronger result compared to the combinatorial one: in this

case, we have an extra log log(n) dividing.

2.4 Problems on the generalisation to 4-AP

Let us now return to the finite field. Recall that one of the basic principles in order to prove

Meshulam’s Theorem is the use of the Fourier identity that we have seen in Lemma 2.14:

T3(1A, 1A, 1A) := Ex,d1A(x)1A(x+ d)1A(x+ 2d) =
∑
t

1̂A(t)3,

which establishes a relation between the sum of Fourier coefficients and the estimation of the

number of 3-AP progressions in A. One of the questions that may arise is if this identity can

be construct for 4-AP. Since the right-hand side sum will require two different parameters, it

will be impossible to give an estimation. However, the analogue proof of Lemma 2.14, which

is a necessary premise of the Meshulam’s Theorem, does not hold for 4-term progressions.

The following theorem reveals an example of a set which is uniform and contains a more

than expected number of 4-progressions: the dichotomy, which was a very relevant element

of the proof, is not present for this case:

Theorem 2.22. Let p > 4 be a prime. There exits ε > 0 such that for every δ > 0 there

exists n and a set A ⊆ G = Fn3 of density α with the following properties:

(i) The set A is uniform in the sens that supt6=0|1̂A(t)| ≤ δ.

(ii) The set A contains significantly more than the expected number of 4-AP, namely at

least a proportion of α4 + ε.

Proof. Let us prove the set

A := {x ∈ Fnp : x · x = 0}

verifies the properties. First, the characteristic function of this set can be given by

1A(x) = Euωu(x·x),
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where the expectation of u is taken over Fp. Let us bound the Fourier coefficient 1A at t 6= 0

in absolute value. Writing qu(x) = u(x · x) + x · t, we have

|1̂A(t)| 1̂A(t)=1̂A(−t)
= |Ex∈Fnp (Eu∈Fpωu(x·x))ω−x·t| = |Ex∈Fnp ,u∈Fpω

u(x·x)+x·t| ≤ |Eu6=0|Ex∈Fnpω
qu(x)|.

Now, using a Gauss sum to estimate the quadratic exponential sum,

Eu6=0|Ex∈Fnpω
qu(x)| ≤ p−n/2.

So we have proved for any δ given n large enough, (i) is verified. Using the same procedure,

we find that |Ex1A(x) − p−1| ≤ p−n/2, since u = 0 with probability p−1 and the rest of the

elements are small. Therefore, the density of A can be approximately p−1 for n large enough.

In order to prove (ii), we need to count the number of 4-AP in A. To do so, let us define

Li(x, d) = x+ (i− 1)d,

for (x, d) ∈ (Fnp )2. We say that we have a 4-AP in A if Li · Li = 0 for 1 ≤ i ≤ 4. But notice

that L1 · L1 − 3L2 · L2 − 3L3 · L3 − L4 · L4 is equal to

x · x− 3(x+ d) · (c+ d) + 3(x+ 2d) · (x+ 2d)− (x+ 3d) · (x+ 3d) = 0 for x, d ∈ G.

Therefore, since L1 · L1 − 3L2 · L2 − 3L3 · L3 − L4 · L4 = 0, we can assure that L4 · L4 is

zero whenever L1 · L1, L1 · L1, L3 · L3 are simultaneously zero. Indeed, counting the number

of 3-AP in A is enough. We have seen that the non-trivial coefficients of A are small, so we

can use Lemma 2.14 to assure that A contains the number of 3-AP expected in a random case.

Thus, the number of 4-AP in A is equal to the number of 3-AP, which ∼ α3 >> α4 + ε,

for ε small enough.

Even if we cannot use the same procedure, Gowers generalized the Fourier analysis to

what he called quadratic Fourier analysis [12]. This generalization earned him the Fields

Medal in 1998.



Chapter 3

Graph theoretical proof

In this chapter we will present the generalized graph theory developed by Endre Szemerédi

in order to prove Erdős–Turán conjecture. He first created a technique for bipartite graphs

[24] for his original proof, and once proved the conjecture, it was generalized. We will use

it with the purpose of presenting a different proof for the particular case of k = 3, Roth’s

Theorem.

3.1 Szemerédi’s Regularity Lemma

In this section we prove a result that Szemerédi developed in one of his courses; a graph-

theoretical tool that has dominated in extremal graphs methods ever since: the Regularity

Lemma. We will be following Diestel’s book Graph Theory [6].

We begin with some definitions:

Definition 3.1 (Density of (X, Y )). Let G = (V,E) be a graph with V vertices and E

edges. Let X, Y ⊆ V be disjoint subsets of vertices. Let us denote by ||X, Y || the number

of edges between X and Y . Then we call the density of the pair (X, Y )

d(X, Y ) :=
||X, Y ||
|X||Y |

.

Notice that 0 ≤ d(X, Y ) ≤ 1.

Definition 3.2 (ε-regular pair). Given ε > 0, we call a pair (A,B) of disjoints sets A,B ⊆ V

ε-regular if all X ⊆ A and Y ⊆ B with

|X| ≥ ε|A| and |Y | ≥ ε|B|

satisfies

|d(X, Y )− d(A,B)| ≤ ε.

So the smaller we take ε, the more uniformly distributed our edges will be in an ε-regular

pair.

32
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Definition 3.3 (ε-regular partition). Consider a partition {V0, V1, . . . , Vk} in which V0 has

been singled out as an exceptional set. We call such a partition an ε-regular partition of G

if it satisfies the following three conditions:

(i) |V0| ≤ ε|V |,

(ii) |V1| = |V2| = · · · = |Vk|,

(iii) all but at most εk2 of the pairs (Vi, Vj) with 1 ≤ i < j ≤ k are ε-regular.

The set V0 can be seen as a residual set; it makes possible to demand to all the other sets to

have the same size, so its vertices are ignored when the regularity of the partition is achieved.

After seeing the definitions above, let us formulate the Regularity Lemma:

Theorem 3.4 (Szemerédi’s Regularity Lemma). For every ε > 0 and every integer m ≥ 1,

there exists an integer M such that every graph of order at least m admits and ε-regular

partition {V0, V1, . . . , Vk} with m ≤ k ≤M .

In other words, the Regularity Lemma assures that given any ε > 0, every graph has an

ε-regular partition into a bounded number of sets. The upper bound M on the number of

sets guarantees that for large graphs the partition is large too. The lemma also allows us to

specify a lower bound m for the number of partition sets; this can be used to increase the

proportion of sets running between different partition sets over edges inside partition sets.

Note that the Regularity Lemma as it has been announced is used with dense graphs. For

sparse graphs it becomes trivial, because all densities of pairs tend to zero. In order to prove

the Regularity Lemma, let us begin proving results:

Lemma 3.5. For η1, . . . , ηk > 0 and e1, . . . , ek ≥ 0:

∑ e2i
ηi
≥ (
∑
ei)

2∑
ηi

.

Proof. Let ai :=
√
ηi and bi := ei/

√
ηi. Using Cauchy-Schwarz∑
a2i
∑

b2i ≥ (
∑

aibi)
2, (3.1)

we have ∑
b2i ≥

(
∑
aibi)

2∑
b2i

⇐⇒
∑ e2i

ηi
≥ (
∑
ei)

2∑
ηi

.

as we wanted.

Now, let us define what we will call the energy function:
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Definition 3.6. Let G = (V,E) be a graph and n := |V |. For disjoint sets A,B ⊆ V we

define

q(A,B) :=
|A||B|
n2

d2(A,B) =
||A,B||2

|A||B|n2
. (3.2)

For partitions A of A and B of B we set

q(A,B) :=
∑

A′∈A; B′∈B

q(A′, B′),

and for a partition P = {C1, . . . , Ck} of V we let

q(P) :=
∑
i<j

q(Ci, Cj).

If P = {C0, C1, . . . , Ck} is a partition of V with exceptional set C0, we treat C0 as a set of

singletons and define

q(P) := q(P̃),

with P̃ := {C1, . . . , Ck} ∪ {{v} : v ∈ C0}.

This function, that looks like an energy function, will play a principal role in the proof

of the Regularity Lemma. First, it measures the regularity of the partition P : if P has too

many irregular pairs (A,B), we may take the pairs (X, Y ) of subsets which do not obey the

regularity of the pairs (A,B), and make those sets X and Y into partition sets of their own.

As we will see, it refines P into a partition where this energy function q is greater. Let us

prove that we would not be able to increase forever the value of q:

Proposition 3.7. Let ε > 0 and let P be a partition of G. Then,

q(P) ≤ 1.

Proof.

q(P) =
∑
i<j

q(Ci, Cj)

=
∑
i<j

|Ci||Cj|
n2

d2(Ci, Cj)

≤ 1

n2

∑
i<j

|Ci||Cj|

≤ 1.

Notice that if the function q(P) is bounded, the number of times that it can be increased

is also bounded. This means that we can always construct an ε-regular partition for any
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given graph after a bounded number of refinements.

In order to complete the proof, all we have to do is to note how many sets that last

partition (which will be ε-regular) can have if we start with a partition into m sets and chose

this number as our bound M . We begin showing that when we refine a partition, the value

of q will not decrease:

Lemma 3.8.

(i) Let C,D ⊆ V be disjoint. If C is a partition of C and D is a partition of D, then

q(C,D) ≥ q(C,D).

(ii) If P ,P ′ are partitions of V and P ′ refines P, then q(P ′) ≥ q(P).

Proof.

(i) Let C =: {C1, . . . , Ck) and D =: {D1, . . . , Dl}. Then,

q(C,D) =
∑
i,j

q(Ci, Dj)

=
1

n2

∑
i,j

||Ci, Dj||
|Ci||Dj|

.

Now, using Cauchy-Schwartz inequality (3.1) and the fact
∑

i,j ||Ci, Dj|| = total of the edges,

1

n2

∑
i,j

||Ci, Dj||
|Ci||Dj|

≥ 1

n2

(
∑

i,j ||Ci, Dj||)2∑
i,j |Ci||Dj|

=
1

n2

||C,D||2

(
∑

i |Ci|)(
∑

j |Dj|)
= q(C,D).

So q(C,D) ≥ q(C,D) as we wanted.

(ii) Let P =: {C1, . . . , Ck}, and for i = 1 . . . , k let Ci be the partition of Ci induced by

P ′. Notice that q(P ′) =
∑

i q(Ci) +
∑

i<j q(Ci, Cj), so

q(P) =
∑
i<j

q(Ci, Cj)

(i)

≤
∑
i<j

q(Ci, Cj)

≤ q(P ′).

as we wanted.
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The next lemma proves that refining a partition by subpartitioning a not ε-regular pair

of partition sets increases the value of our energy function q. Here, we find for the first

time one of the most important arguments that appeared in the Fourier analytic proof, the

increasing density version for graphs; the energy increment.

Lemma 3.9. Let ε > 0 and let C,D ⊆ V be disjoint. If (C,D) is not ε-regular, then there

exist partitions C = {C1, C2} of C and D = {D1, D2} of D such that

q(C,D) ≥ q(C,D) + ε4
|C||D|
n2

.

Proof. Suppose (C,D) is not ε-regular. Then there exist sets C1 ⊆ C with |C1| ≥ ε|C| and

D1 ⊆ D with |D1| ≥ ε|D| such that

|η| := |d(C1, D1)− d(C,D)| > ε. (3.3)

Let C := {C1, C2} and D := {D1, D2}, where C2 := C \C1 and D2 := D \D1 so the sets

in C and D are disjoint. Let us introduce a notation which will be easier to work with: let

us write ci := |Ci|, di := |Di|, eij := ||Ci, Dj||, c := |C|, d := |D|, and e := ||C,D||. Now, let

us show that C and D satisfy the conclusion of the lemma. Remember that ||A,B|| denotes

the number of edges between the sets A and B and |A| denotes the cardinality of the set A.

Firstly, by Lemma 3.8, we can write

q(C,D) =
1

n2

∑
i,j

||Ci, Dj||2

|Ci||Dj|

=
1

n2

(
||C1, D1||2

|C1||D1|
+
∑
i+j>2

||Ci, Dj||2

|Ci||Dj|

)

≥ 1

n2

(
||C1, D1||2

|C1||D1|
+

(||C,D|| − ||C1, D1||)2

|C||D| − |C1||D1|

)
.

where we have used Cauchy Schwartz inequality. Now, writing it in terms of our notation

we have

q(C,D) ≥ 1

n2

(
e211
c1d1

+
(e− e11)2

cd− c1d1

)
.

Using definition 3.2 and working a little bit with it we can write:

e11 =
c1d1e

cd
+ ηc1d1,
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so now,

n2q(C,D) ≥ 1

c1d1

(
c1d1e

cd
+ ηc1d1

)2

+
1

cd− c1d1

(
cd− c1d1

cd
eηc1d1

)2

=
c1d1e

2

c2d2
+

2eηc1d1
cd

+ ηc1d1 +
cd− c1d1
c2d2

e2 − 2eηc1d1
cd

+
η2c21d

2
1

cd− c1d1

=
e2

cd
+ η2c1d1 +

η2c21d
2
1

cd− c1d1

≥ e2

cd
+ η2c1d1

(3.3)

≥ e2

cd
+ ε4cd,

where we have used c1 ≥ εc and d1 ≥ εd by the choice of C1 and D1.

The final step left is showing that if a partition has enough irregular pairs of partition

sets that do not verify the definition of an ε-regular partition, then subpartitioning all them

at once triggers an increase of the energy function q by a constant. In this lemma we can

remark that the dichotomy we had in the Fourier analytic proof is also present:

Lemma 3.10. Let 0 < ε < 1/4 and let P = {C0, C1, . . . , Ck} be a partition of V , with

exceptional set C0 of size |C0| ≤ εn and |C1| = . . . = |Ck| =: c. If P is not ε-regular, then

there exists a partition P ′ = {C ′0, C ′1, . . . , C ′l} of V with exceptional set C ′0, where k ≤ l ≤
k4k+1 such that |C ′0| ≤ |C0|+n/2k, all other sets C ′i have equal size and either P ′ is ε-regular

or

q(P ′) ≤ q(P) +
ε5

2
.

Proof. For all 1 ≤ i < j ≤ k, let us define a partition Cij of Ci and a partition Cji of Cj as

follows: if the pair (Ci, Cj) is ε-regular, we let Cij := Ci and Cji := {Cj}. If not, by Lemma

3.9 there exists partitions Cij of Ci and Cji of Cj with |Cij| = |Cji| = 2 and

q(Cij, Cji) ≥ q(Ci, Cj) + ε
|Ci||Cj|
n2

= q(Ci, Cj) +
ε4c2

n2
. (3.4)

So we take the not ε-regular couples (Ci, Cj) and create partitions Cij and Cji respecting

the conditions of Lemma 3.9. Given all the partitions of Ci, let Ci for i = 1, . . . , k be the

unique minimal partition of Ci that refines every partition Cij with j 6= i: if an element does

not coincide with another one in all of the partitions Cij with j 6= i in which it belongs to,

then both of elements will not lie at the same Ci (Ci is the set of equivalence classes). Thus,

|Ci| ≤ 2k−1. Now, let us consider the partition

C := {C0} ∪
k⋃
i=1

Ci
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of V, with C0 as the exceptional set. Since C refines P and |C \ {C0}| ≤ k2k−1, we have

k ≤ |C| ≤ k2k−1 + εn ≤ k2k.

We define C0 := {{v} such that v ∈ C0} as the exceptional set of the new partition. If P
is not ε-regular, it means that for more than εk2 of the pairs (Ci, Cj) with 1 ≤ j ≤ k the

partition Cij is non-trivial. Therefore, by Lemma 3.8 (i) and using the definition of the

energy function q when existing an exceptional set, we can write

q(C) =
∑
1≤<j

q(Ci, Cj) +
∑
1≤i

q(C0, Ci) +
∑
0≤i

q(Ci)

≥
∑
i≤i<j

q(Cij, Cji) +
∑
1≤i

q(C0, {Ci}) + q(C0)

(3.4)

≥ q(Ci, Cj) + εk2
ε4c2

n2
+
∑
i≤i

q(C0, {Ci}) + q(C0)

= q(P + ε5
(
kc

n

)2

> q(P) + ε5/2.

where for the last inequality, we have used that |C0| ≤ εn ≤ n/4, so kc/n ≥ 3/4 > 1/2.

The last step that remains is turning C into the correct partition P ′. In order to do so,

we will simply cut the sets of C into another ones with the same size and small and send the

rest to the exceptional set. Since the set C0 cannot grow to much, these new sets will be

large enough.

If c < 4k, we are done. Notice that in this case, we can set l = kc = k4k < 4kk+1, so

we can set C ′0 := C0 and the singletons {v} with v ∈ V r C ′0 as desired, because we can

make more partitions than elements we have, and for this case, the definition of ε-regularity

becomes trivial.

Let us assume that c ≥ 4k. We will take the disjoints subsets C ′1, . . . , C
′
l of C with size

bc/4kc ≥ 1 such that every C ′i is a subset of some C ∈ C r C0, and we will define the new

exceptional set as C ′0 = V r ∪C ′i. So our new partition P ′ = {C0, C
′
1 . . . , C

′
l} is a partition

of V which refines C. In particular, by Lemma 3.8 (ii),

q(P ′) ≥ q(C) ≥ q(P) +
ε5

2
.

Now all the sets of the new partition P ′ have the same size except for the exceptional set

C ′0. Recall that each set C ′i 6= C ′0 is included in one of the sets C1, . . . , Ck, but since we had

set the size of our sets to bc/4kc, no more than 4k sets can lie in the same Ci for 1 ≤ i ≤ k,
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our partition verifies k ≤ l ≤ k4k+1.

At this point all that remains is to look after the set C ′0. Using the fact that C ′1, . . . , C
′
l

have at most bc/4kc vertices of each set, the vertices added to C ′0 have to be less than bc/4kc
for every C of C r {C0}:

|C ′0| ≤ |C0|+ bc/4kc|C|
3.10

≤ |C0|+
c

4k
(k2k)

= |C0|+
ck

2k
≤ |C0|+

n

2k
.

as we wanted.

At that point we are almost finished. The only part left is to find the value of M and

thus the bounds for k and n. To do so, we will iterate Lemma 3.10:

Proof of Theorem 3.4 (Szemerédi’s Regularity Lemma). Without lost of generality, let 0 <

ε ≤ 1/4 and m ≥ 1 be given. Recall that by Lemma 3.10, the maximum number of iterations

required in order to obtain an ε-regular partition is i := 2/ε5, due to the fact that our energy

function verifies q(P) ≤ 1 for any partition P .

In order to apply Lemma 3.10, our partition {C0, C1, . . . , Ck} has to satisfy:

– |C1| = . . . = |Ck|,

– |C0| ≤ εn.

We have shown that with every iteration of the lemma, the size of the exceptional set

grows by at most n/2k̃ for a partition of k̃ + 1 elements, and we want to be sure that after

every iteration, |C0| ≤ εn. In order to do so, notice that with every iteration, the number

of the sets of the partition rest equal or increase, so we can bound every iteration by n/2k̃.

Consequently, we have to choose n and k such that after i iterations, we never exceed εn.

The first move will be to set the initial size of C0: we will choose it to be |C0| ≤ 1
2
ε. Notice

that to be able to achieve |C1| = |C2| = . . . = |Ck| = bn/kc, we need to let |C0| < k (other-

wise we can increase by one the cardinal of the non-exceptional sets). So in particular, we

need to choose n such that k < 1
2
εn, so n > 2k/ε.

Recall that by Lemma 3.10, the maximum number of iterations before getting an ε-

regular partition must be i = 2/ε5. In order to find a bound for k, we need to bound the

total increase once we have the ε-regular partition. Therefore we set k ≥ m to be large

enough so in/2k ≤ 1
2
εn. Thus

k +
i

2k
n ≤ εn (3.5)

since k < 1
2
εn. This way after i = 2/ε5 iterations, the exceptional set will have grown up to

at most to εn.
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Let us now set M . Note that by Lemma 3.10, if we have a partition of r elements, in the

next iteration the partition will grow to at most r4r+1. So let us define f : x −→ x4x+1. If

we set M := max{f i(k), 2k/ε}, then M will be greater than the number of partitions after

i iterations. In particular n ≥M will be large enough to satisfy (3.5).

The last step that remains is to show that every graph G = (V,E) of order at least m

has an ε-regular partition {C0, C1, . . . , C
′
k} with m ≤ k′ ≤M . To do so let us work with two

cases: if n ≤M or n > M , where n := |G|:

– If n ≤ M , we partition G into k′ = n singletons verifying |V1| = . . . = |V ′k| = 1 and

|V0| = ∅, which is trivially an ε-regular partition, so we are done.

– If n > M , we let C0 to be a set with the minimal cardinal such that k′ := k (where

this k is the one verifying (3.5)) divides |V r C0|, and {C1, . . . , Ck} be a partition of

|V r C0| with sets of the same size. Since the chose k verifies k ≤ 2k/ε < n, then

|C0| < k ≤ εn by (3.5). Beginning with the described partition, we iterate Lemma 3.10

until we obtain an ε-regular partition of G. Recall that the partition will be obtained

after at most i iterations.

As we had already mentioned, the Regularity Lemma is one of the most important pieces

in extremal graph theory. Unfortunately, the dependence of the parameters in the theorem

is very bad: the algorithm which refines a partition requires 2
ε5

iterations in order to create

a ε-regular partition. In particular, if we start with a partition of k sets, Lemma 3.10 in one

iteration, will transform it into a partition of at most k2k ≤ 22k parts. Thus, in the end, our

set will have

parts.

3.2 Triangle counting Lemma and Triangle removal Lemma

One of the multiple applications of the Regularity Lemma is the Triangle removal Lemma.

Informally, this lemma states that when a graph contains few copies of a triangle, then all

of the copies can be eliminated by removing a small number of edges. In this section and in

the next one we will present the notes that David Conlon followed in his course of extremal

graph theory [5].

In order to prove this powerful lemma, we need to prove an other lemma first, the Triangle

counting Lemma:
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Lemma 3.11 (Triangle counting Lemma). Let G = (V,E) be a graph and X ∪ Y ∪ Z a

partition of V . Suppose that d(X, Y ) = α, d(X,Z) = β and d(Y, Z) = γ. Let ε > 0 such

that min{α, β, γ} ≥ 2ε. Suppose that all pairs {X, Y }, {Y, Z} and {X, Y } are ε-regular. If

we write 4xyz as the number of triangles with x ∈ Y , y ∈ Y and z ∈ Z, then

4xyz ≥ (1− 2ε)|X|(α− ε)|Y |(β − ε)|Z|(γ − ε).

Proof. For a vertex v ∈ V , we set dX(v), dY (v), and dZ(v) the number of neighborhoods of v

in X, Y and Z, respectively. Let us begin proving that we can control the number of vertices

in X with small degree. We need to prove this result in order to apply the ε-regularity

condition. Let us show

|{x ∈ dY (x) < (α− ε)|Y |}| < ε|X|.

We will write |X ′| = |{x ∈ dY (x) < (α− ε)|Y |}|.

By reductio ad absurdum, suppose |X ′| ≥ ε|X|. Using the definition of ε-regular pair,

|d(X ′, Y )− d(X, Y )| < ε. Since d(X, Y ) = α and

d(X ′, Y ) =
||X ′, Y ||
|X ′||Y |

=

∑
x∈X′ dY (x)

|X ′||Y |
<

∑
x∈X′(α− ε)|Y |
|X ′||Y |

= α− ε,

we have

d(X ′, Y )− d(X, Y ) < α− ε− α < −ε,

which contradicts the definition of ε-regularity. The same result is valid when studying the

vertices with small degree in Y and Z. Thus, we can conclude

|{x ∈ X : dY (x) ≥ (α− ε) and dZ(x) ≥ (α− ε)|Z|}| ≥ (1− 2ε)|X|.

In order to study in how many triangles an element is involved, let us take x ∈ X \W ,

where W is the set verifying |W | < 2ε|X| and which contains the elements with the wrong

kind of degrees. If N(x) denote the neighborhood of x, using that min{α, β, γ} ≥ 2ε, we

have

|N(x)∩Y | = dY (x) ≥ (α− ε)|Y | ≥ ε|Y | and |N(x)∩Z| = dZ(x) ≥ (β− ε)|Z| ≥ ε|Z|.

So we can apply the definition of ε-regularity to the pair {Y, Z} to deduce that there exists

lots of edges between this two sets. The number of edges will be:

||N(x) ∩ Y,N(x) ∩ Z|| ≤ (α− ε)|Y | · (β − ε)|Z|︸ ︷︷ ︸
product of the sizes

, · (γ − ε).︸ ︷︷ ︸
edge density between them
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Figure 3.1: Diagram of the Triangle counting Lemma

Putting everything together, we have that

4xyz ≥ (1− 2ε)|X|(α− ε)|Y |(β − ε)|Z|(γ − ε),

as we wanted to show.

Let us now prove the Triangle removal Lemma also known as the (6, 3)-problem, devel-

oped by Szemerédi and Ruszsa [19]:

Theorem 3.12 (Triangle removal Lemma). For every ε > 0, there exists δ := δ(ε) > 0 such

that δ −→ 0 when ε −→ 0, and n0 := n0(ε) such that every graph G with n ≥ n0 vertices

and at most δn3 triangles, can be transformed into a triangle-free graph by removing at most

εn2 edges.

Proof. Let us show the contrapositive proof: if we need to remove at least εn2 edges in order

to get a triangle-free graph, then the initial graph must have more than δn3 triangles.

Let us take ε > 0 and set the minimum order of the graph G at m = b4
ε
c. The first

step of the proof is to consider a ε
4
-regular partition of G = V0 ∪ V1 ∪ · · ·Vk, which exists by

Szemerédi’s Regularity Lemma. Let c = |V1| = |V2| = · · · = |Vk|. Recall that ε
4
< k and that

the number of vertices n verifies

n = |V | =
∑
i≥

|Vi| = |V0|+
∑
i≥1

c > kc,

so kc < n.

Let us begin with the second step of the proof: cleaning our partition. We will remove

the edges of G from the following sets:

– Edges that are incident in V0: we have at most |V0|n = ε
4
n2 of these edges.
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– Inner edges of V1, . . . , Vk: we have at most k
(
c
2

)
< ck2 < n2

k
< ε

4
n2 of these edges.

– Edges between not ε-regular pairs. Recall that by definition of an ε
4
-regular partition,

we have at most ε
4
k2 of these pairs, so the number of edges in this situation is less than

ε
4
k2c2 < ε

4
c2.

– All edges between low density pairs, in other words, edges between ε
4
-regular pairs

verifying d(Vi, Vj) ≤ εn2. We have at most
(
k
2

)
of these pairs, so the number of edges

is bounded by
∑

i 6=j d(Vi, Vj)|Vi||Vj| < k2

2
ε
2
c2 < ε

4
n2.

Summarizing, adding all the contributions above, we will have removed at most εn2

edges, so now we can begin with the last step of the proof. If at this point the resultant

graph is triangle-free, we are done. So let us suppose that some triangle remains and find a

contradiction. In this case, in order to obtain a triangle-free graph, we need to remove more

edges. Recall that the edges that have survived must been defined between ε
4
-regular pairs

whose density is bigger than ε
2
. This triangle must be sitting between three different sets,

that we will call Vi, Vj, Vk. Now let us see that the hypothesis of Lemma 3.11 with ε = ε
4

are

verified by these sets:

– d(Vi, Vj) = α, d(Vi, Vk) = β, d(Vj, Vk) = γ, with min{α, β, γ} ≥ ε
2
.

– Vi, Vj and Vk form ε
4
-regular pairs by hypothesis.

Figure 3.2: Triangle formed by the sets Vi, Vj and Vk

So by Lemma 3.11, these three sets define at least

(1− ε

2
)(
ε

4
)2c3

triangles. The last step that remains is writing this result in terms of n. Recall that

n = |V0|+ kc, |V0| ≤ ε
4
n and k ≤M(m, ε

4
) := M(ε), so we have

n = |V0|+ ck =⇒ c >
1

k
(1− ε

4
)n >

1

M(ε)3
(1− ε

4
)3n3.︸ ︷︷ ︸

δ
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Hence, we have proved the theorem: if we had not removed all of the triangles when removing

δn2 edges, our graph would had have more than δn3 triangles, contradicting the hypothesis.

3.3 Graph theoretical proof of Roth’s Theorem

Now we have all the tools to provide a third proof of Roth’s Theorem by only graph theo-

retical means. This version is equivalent to the announced before in Theorem 0.5.

Theorem 3.13 (Roth’s Theorem). Let A ⊆ [n]. If A does not contain a 3-AP, then |A| =
o(n).

Proof. Let us prove that for all ε > 0 and A ⊆ [n] verifying |A| > εn for n large enough, then

A must contain a 3-AP. For this purpose, we build an appropriate graph G in order to apply

the Triangle removal Lemma 3.12. So for A ⊆ [n], let us define the graph H(A) = (V,E),

whose set of vertices V can be written as the union of the three following disjoint sets

V = {(i, 1) : i ∈ [n]} ∪ {(j, 1) : j ∈ [2n]} ∪ {(k, 1) : k ∈ [3n]}

(therefore |V | = 6n), and its set of edges is defined by:

– (i, 1) and (j, 2) are adjacent if and only if j − i ∈ A.

– (j, 2) and (k, 3) are adjacent if and only if k − j ∈ A.

– (i, 1) and (k, 3) are adjacent if and only if k − i ∈ 2 · A = {2a : a ∈ A}.

Figure 3.3: Diagram of the edges of H(A)

Observe that if there exists (i, 1), (j, 2) and (k, 3) defining a triangle in H(S), then we can

write

j − i = a1, k − i = a2, k − i = 2a3,
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with ai ∈ A, so that {a1, a2, a3} defines a 3-AP. We can also take the elements (i, 1), (i+a, 2)

and (i + 2a, 3) with a ∈ A, which define the triangles associates to the trivial 3-APs:

a, a + 0, a + 2 · 0. Since there exists |A| · n triangles of that form, it will be required to

remove at least |A| · n edges in order to get a free-triangle graph.

Let us show that if |A| > εn and trivially |A| ≤ n, then there must exists a triangle, and

thus a 3-AP. By Lemma 3.12:

– The number of edges that have to be removed in order to get a free-triangle graph, is

at least εn2 = ε
36

(6n)2 = ε
36
|V |2.

– There exists δ := δ(ε) such that H(A) has at least δ|V |3 = δ63n3.

Thus, the number of non-trivial triangles is at least δ63n3 − n2. Therefore, taking n such

that 0 < δ63n3 − n2, so

n >
1

63δ
,

we can assure the existence of a non-trivial triangle and therefore, A must contain a 3-AP.

Notice that the property of supersaturation gives as something much more stronger that

what we have proved: if the condition given for n is verified, then the number of triangles is

cubic on n.

3.4 Roth’s Theorem for non-abelian groups

One of the results we can prove using the Lemma 3.12 is the analogous version of Roth’s

Theorem for non-abelian groups. We present here a modified proof of the one that can be

found in Llúıs Vena’s master thesis [28].

Theorem 3.14 (Roth’s Theorem). Let G be a finite group of odd order N and let A be a

subset of its elements. If there not exists x, y, z ∈ A such that xy = z2, then the size of A is

o(N).

Proof. Let us prove that for all ε > 0 and A ⊆ G verifying |A| > εN for N large enough,

then A must contain a 3-AP. Let us begin defining a tripartite graph, G1, G2, G3, where each

Gi is a copy of the group G, so A ⊆ Gi for i = 1, 2, 3. Suppose that for any x, y, z ∈ A,

xy 6= z2. To fix some notation, let us call ai an element of Gi. We define an edge between

Gi and Gj with i 6= j whenever:

– ∃a1, a2 such that g1 = a1 · a−12 ∈ A

– ∃a2, a3 such that g2 = a2 · a−13 ∈ A

– ∃a1, a3 such that g3 = a1 · a−13 ∈ A
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This way g1g2 = g3.

Figure 3.4: Diagram of the edges of the tripartite graph

Note that the equation we want g1, g2 and g3 to verify is xy = z2. Let us prove that if

order of the group is odd, the function

f : G −→ G

x −→ x2

describes a bijection. Note that it is enough to prove that the function is injective, since the

order of the image is finite and the same as the order of the domain. Suppose that x2 = y2.

Then,

(x2)
N+1

2 = (y2)
N+1

2 ⇐⇒ x = y.

Therefore, we can change the third condition to define an edge to g23 = a1a
−1
3 , with

g3 ∈ A. At this point, we can apply the Theorem 3.12 as we did before in 3.13.

Remark that one of the advantages of using this graph techniques is that we can extend

the result to non abelian groups, an impossible thing to do using other techniques.



Chapter 4

Bounds

Improving bounds of Roth’s Theorem is a problem with a long history and work done. On

Roth’s Theorem, we can be interested to bound the largest subset of [N ] which contains no

3-APs, that we will call r3([N ]). Let us begin this section presenting some improvements on

its upper bound.

4.1 Upper bound improvements

As we have already seen in chapter 2, the original proof given by Roth using Fourier methods

showed that

r3([N ]) = c · N

log logN

for some constant c. Over the years, the upper bound has been improved

Figure 4.1: Timeline of upper bound improvements, Heath-Brown [14], Szemerédi [23],

Bourgain[3][4], Sanders[20], Bloom-Sisask[26].

and as shown, in 2020, Thomas Bloom and Olof Siszac broke the logarithmic barrier in Roth’s

Theorem. The proof consist on developing an integer analogue of the result of Bateman and

Katz [1] for the model setting of vector spaces over a finite field, also known as the cap set

problem, which we have already seen the first approach given by Meshulam [16] in section

2.2 of chapter 2. Let us now explore the most recent improvement on the finite field model.

4.1.1 The polynomial method proof in the finite field model

In 2017, Ellenberg and Giswijt [7] found the best known bound for Roth’s Theorem in Fn3 ,

r3(F3
n) = O(2.76n),

47



48 4.1. UPPER BOUND IMPROVEMENTS

which improves upon the O(3n/n1+ε) bound proved by Bateman and Katz [1]. The proof

consists of a four-page paper that and on it can be seen the power of algebraic methods. To

develop this proof, we will follow Yufei Zhao’s notes on graph theory and additive combina-

torics [25]. Let us begin with one of the main identities on the cap set problem:

Definition 4.1. Let A ⊆ Fn3 be a 3-AP-free subset. Then, we have the following identity,

δ0(x) :=
∑
a∈A

δa(x)δa(y)δa(z). (4.1)

for x, y, z ∈ A, where δa is the Dirac delta function, defined as:

δa(x) :=

{
1 if x = a,

0 if x 6= a.

Notice that the identity 4.1 holds because

x+ y + z = 0 ⇐⇒ z − y = y − x

in Fn3 . It follows that if x, y, z form an arithmetic progression, then for some a ∈ Fn3 we

have x = y = z = a. Now we will show that the right-hand side is “high-rank” and the left

hand-side is “low-rank”, using the following definition:

Definition 4.2. Let F : A×A −→ F, for a field F. We say F is rank 1 if it is non-zero and

can be written in the form F (x, y) = f(x)g(y) for some functions f, g : A −→ F.

Definition 4.3 (Slice-rank of F). Let F : A×A×A −→ F. We define the slice-rank of F as

the minimum number of slice-rank 1 functions required to write F as a linear combination.

In particular, we say that F has slice-rank 1 if it is non-zero and can be written one of

the following forms: f(x)g(y, z), f(y)g(x, z), f(z)g(x, y). Recall from linear algebra that the

rank of a diagonal matrix is the number of non-zero entries. We have a similar result for the

slice-rank:

Lemma 4.4. If F : A× A× A −→ F can be written as

F (x, y, z) =
∑
a∈A

caδa(x)δa(y)δa(z),

then slice-rank F = |{a ∈ A : ca 6= 0}|, where ca correspond to diagonal entries.

Proof. Trivially, the slice-rank F ≤ |{a ∈ A : ca 6= 0}|, since we can write F as a sum of

slice-rank 1 functions using the diagonal form

F (x, y, z) =
∑
a∈A
ca 6=0

caδa(x)(δa(y)δa(z)).
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For the other direction, let us suppose F < |A| and find a contradiction. So we can write:

F (x, y, z) = f1(x)g1(y, z) + · · ·+ fl(x)gl(y, z)

+ fl+1(y)gl+1(x, z) + · · ·fm(y)gm(x, z)

+ fm+1(z)gm+1(x, y) + · · ·f|A|−1(z)g|A|−1(x, y).

First, let us prove the following claim:

Claim. There exists h : A −→ F3 with |supp h| > m such that∑
z∈A

h(z)fi(z) = 0

for all i = m+ 1, . . . , |A| − 1 where supp h is the set {z ∈ A : h(z) 6= 0}

Proof. Notice that in the vector space of functions A −→ F3, the set of h satisfying Lemma

4.4 is a subspace of dimension greater than m (recall that |supp h| > m). Let us prove that

every subspace of dimension m + 1 has a vector whose support (the number of non-zero

elements) is at least m+ 1.

For a subspace X of dimension m + 1, suppose we write m + 1 vectors forming a basis

of X in a |A| × (m + 1) matrix Y. Since this matrix has rank m + 1, it must exists some

non-vanishing minor of order m+ 1. Let us suppose that we can find this minor in the first

m+1 columns (otherwise, we can rearrange the columns), formed by the vectors v1, . . . , vm+1,

which are a basis of Fm+1
3 . So, taking the linear combination of those vectors we get, a new

vector of support at least m+ 1.

Let us now pick h from the claim. We find∑
z∈A

F (x, y, z)h(z) =
∑
a∈A

∑
z∈A

caδa(x)δa(y)δa(z)h(z) =
∑
a∈A

cah(a)δa(x)δa(y),

and using the claim:∑
z∈A

F (x, y, z)h(z) = f1(x)g̃1(y) + · · ·+ fl(y)g̃l(x) + fl+1(y) ˜gl+1(x) + · · ·+ fm(y)g̃m(x),

where g̃i(y) =
∑

z∈A gi(y, z)h(z) for 1 ≤ i ≤ l and g̃i(x) =
∑

z∈A gi(x, z)h(z) for l + 1 ≤ i ≤
m.

Since this function is the sum of m rank 1 functions, then it will have at most rank m.

But we can also write∑
a∈A

cah(a)δa(x)δa(y) = f1(x)g̃1(y) + · · ·+ fl(y)g̃l(x)

+ fl+1(y) ˜gl+1(x) + · · ·+ fm(y)g̃m(x).

Recall that the support of h is at least m + 1, we know that this function will have rank

greater than m, which is a contradiction given by the hypothesis slice-rank F < |A|.
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Now we are ready to prove Ellenberg and Giswijt’s result:

Lemma 4.5. Let us define F : A× A× A −→ F as:

F (x+ y + z) := δ0(x+ y + z).

Then, the slice-rank F ≤ 3M , where

M :=
∑
a,b,c≥0
a+b+c=n
b+2c≤2n/3

n!

a!b!c!
.

Proof. In Fn3 , we have δ0(x) = 1− x2. Now, imposing that the equality has to hold for each

coordinate, we can write

δ0(x) =
n∏
i=1

(1− (xi + yi + zi)
2), (4.2)

where xi are the coordinates of x ∈ Fn3 . Note that on the right-hand side we have a polynomial

in 3n variables with degree 2n, formed by the sum of the following monomials

xi11 · · · xinn y
j1
1 · · · yjnn z

k1
1 · · · zknn ,

where i1, i2, . . . , in, j1, . . . , jn, k1, . . . , kn ∈ {1, 2, 3}. For each term, by the Pigeonhole princi-

ple, at least one of the sums i1 + . . .+ in, j1 + . . .+ jn, k1 + . . .+kn is at most 2n/3 (otherwise

the degree of the polynomial would be bigger than 2n). Now, we can write (4.2) explicitly

as

n∏
i=1

(1− (xi + yi + zi)
2) =

∑
i1,...,in
j1,...,jn
k1,...,kn

ci1,i2,...,in,j1,...,jn,k1,...,knx
i1
1 · · · xinn y

j1
1 · · · yjnn z

k1
1 · · · zknn ,

where ci1,i2,...,in,j1,...,jn,k1,...,kn ∈ F3
n. Then, we can group the terms of the last equality as sum

of slice-rank 1 functions in the following way:

n∏
i=1

(1− (xi + yi + zi)
2) =

∑
i1+...+in≤ 2n

3

xi11 · · · xinn fi1,...,in(y, z)

+
∑

j1+...+jn≤ 2n
3

yj11 · · · yjnn gj1,...,jn(x, z)

+
∑

k1+...+kn≤ 2n
3

zi11 · · · zinn hk1,...,kn(x, y),

where

fi1,...,in =
∑
j1,...,jn
k1,...,kn

ci1,i2,...,in,j1,...,jn,k1,...,kny
j1
1 · · · yjnn z

k1
1 · · · zknn ,
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and gj1,...,jn and hk1,...,kn(x, y) are likewise defined, but omitting the terms that already ap-

pear in the previous sums.

Since
∑n

k ik ≤ 2n/3 for ik ∈ {0, 1, 2}, let us define the sets

A = {k such that ik = 0}, B = {k such that ik = 1} and C = {k such that ik = 2}

with |A| = a, |B| = b and |C| = c. Now, using this notation we can write

|A| · 0 + |B| · 1 + |C| · 2 ≤ 2n/3.

Thus, the number of the monomials verifying this property can be counted by the following

formula: ∑
a,b,c≥0
a+b+c=n
b+2c≤2n/3

(
n

a, b, c

)
=

n!

a!b!c!
= M.

Doing the same procedure for each exponent sum, we have

slice-rank

{
n∏
i=1

(1− (xi + yi + zi)
2)

}
≤ 3M.

where the inequality appears to avoid overcounting.

The last step that remains is to estimate M . First, notice that we can write

(1 + x+ x2)n =
∑
a,b,c≥0
a+b+c=n

(
n

a, b, c

)
xa·0xbxc·2 =

∑
a,b,c≥0
a+b+c=n

(
n

a, b, c

)
xb+2c.

Imposing now b+ 2c ≤ 2n/3, we get∑
a,b,c≥0
a+b+c=n

(
n

a, b, c

)
xb+2c ≥

∑
a,b,c≥0
a+b+c=n
b+2c≤2n/3

(
n

a, b, c

)
xb+2c ≥

∑
a,b,c≥0
a+b+c=n
b+2c≤2n/3

(
n

a, b, c

)
x2n/3

=
∑
a,b,c≥0
a+b+c=n
b+2c≤2n/3

n!

a!b!c!
x2n/3 ≥Mx2n/3.

Thus, for 0 ≤ x ≤ 1 (otherwise x2n/3 > xb+2c does not hold),

Mx2n/3 ≤
∑
a,b,c≥0
a+b+c=n
b+2c≤2n/3

n!

a!b!c!
xb+2c ≤ (1 + x+ x2)n.

And now, looking for the minimum value of the following middle expression, which is found

at x = 0, 6, we can state

M ≤ inf
0<x<1

(1 + x+ x2)n

x2n/3
≤ (2.76)n.
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4.2 Lower bound improvements: Behrend’s construction

We can also be interested in the lower bound: the largest set with no three-term arithmetic

progressions. The best construction was given by Behrend in 1946 [2].

Theorem 4.6 (Behrend, 1948). Let N be large integer. Then there exists a subset A ∈ [N ]

with |A| = N e−c
√
log(N) which does not contain any arithmetic progression of length three.

Proof. Let us base our demonstration in the following geometrical observation: a straight

line can intersect a sphere in Zn in at most two points. Let n and M be larger integers and

let us consider the following set:

S(r) = {x̄ ∈ [M ]n : x21 + x22 + . . .+ x2n = r2}.

Note that n ≤ r2 ≤ nM2. So r2 can take M2n− n− 1 = n(M2 − 1)− 1 values.

These sets cover the cube {1, . . . ,M}n, which has cardinal Mn. Therefore, by the Pi-

geonhole Principle, there exist a radius
√
n ≤ r0 ≤

√
nM such that the sphere S(r0) has

cardinal

|S(r0)| ≥
Mn

n(M2 − 1)
≥ Mn−2

n
.

Let us now project these vertices into N using the following mapping:

P (x1, x2, . . . , xn) =
1

2M

n∑
i=1

xi(2M)i,

which has the following properties:

(i) P is linear

(ii) P is a one to one mapping

(iii) x+ y = 2z ⇐⇒ P (x) + P (y) = P (2z)

(iv) maxx∈S(r0) P (x) ≤ (2M)n

Proof. Note that property (i) can be proven straightforward from the definition of P : if

x, y ∈ Zn and a, b ∈ Z

P (ax+ by) =
1

2M

n∑
i=1

(axi + byi)(2M)i

= a(
1

2M

m∑
i=1

xi(2M)i) + b(
1

2M

m∑
i=1

yi(2M)i)

= aP (x) + bP (y).
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In order to prove property (ii), note that P (x) = 0 ⇐⇒ x = 0 for x ∈ (−2M, 2M)n.

Suppose that P (x) = P (y) for x, y ∈ [M ]n. Thus,

P (x)− P (y) = P (x− y) = 0.

Since x, y ∈ (−M,M)n ⊂ (−2M, 2M)n, we have x− y = 0, so x = y as we wanted to show.

To see that property (iii) holds, suppose that P (x) + P (y) = P (2z), with x, y, z ∈ [M ]n.

We can write

P (x)− P (z) = P (z)− P (y) ⇐⇒ P (x)− 2P (z) + P (y) = P (x− 2z + y) = 0.

Note that x− 2z + y ∈ (−2M, 2M)n, so x− 2z + yif and only if x+ y = 2z, as we wanted.

Property (iv) holds due to the fact that each summand is strictly increasing with each

of the coordinates xi. So for x ∈ [M ]n,

P (x) ≤ P ((M, . . . ,M)) =
1

2M

n∑
i=1

M(2M)i

= M
n−1∑
i=1

(2M)i = M
(2M)n − 1

2M − 1

≤M
(2M)n

M
= (2M)n.

Then, taking (2M)n ∼ N , we have M ∼ N1/n

2
. Now, if we take M = dN1/n

2
e, it follows that

all points given by P (S(r0)) will belong to [n] ⊂ N, so P (r0) ⊂ [n] and contains no 3-AP.

Setting n =
√

logN , we see that

|P (S(r0))| = |S(r0)| ≥
N1−2/n

n2n

= Ne− logn−n log 2− 2
n
logN

= Ne−C
√
logn.

as we wanted.

Since no big improvements have been done in over 75 years, it is conjectured that

Behrand’s set is the largest possible set with no three-term progressions.



Conclusions

During this thesis, we have collected three proofs of Roth’s Theorem, while developing some

important notions around each area such as Szemerédi’s Regularity Lemma. We have tried

to explain the proofs in the best possible way, while correcting some errors, in particular,

for the combinatorial proof. We will like to remark how this problem can be approached by

very different mathematical fields such as graph theory and Fourier analysis, but keeping the

same crucial point: the dichotomy between the existence of a 3-AP or an energy or density

increment.

What we have shown in this thesis is just an introduction to an active field: as we have

explained, improving the upper and lower bounds on r3([N ]), the largest subset of [N ] which

contains no 3-APs, is still an open research problem.

One way to extend this work will be by including a fourth proof: the ergodic theoret-

ical one, which appeared in 1977 when Fustenberg proved Szemerédi’s Theorem by these

techniques [9], and thus, Roth’s Theorem.
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graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat.

CNRS, pages 399–401. CNRS, Paris, 1978.

[25] Yuffei Thao. Graph theory and additive combinatorics. Available at https://yufeizhao.

com/gtac/gtac.pdf.

[26] Olof Sisask Thomas F. Bloom. Breaking the logarithmic barrier in Roth’s theorem on arith-

metic progressions.

[27] B. L. Van der Waerden. Beweis einer Baudetschen Vermutung. 1927.
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