
Bachelor’s Degree in Aerospace Technologies Engineering

Evaluation of pulse detection

of the Geostationary Lightning

Mapper (GLM)

Bachelor’s Thesis

Author

Morán Domı́nguez, Jaime Francisco

Director

Montanyà Puig, Joan

Co-Director

López Trujillo, Jesús Alberto

Escola Superior d’Enginyeries Industrial, Aeroespacial i

Audiovisual de Terrassa (ESEIAAT)

—

Terrassa, September 2021

mailto:jaime.francisco.moran@estudiantat.upc.edu
mailto:joan.montanya@upc.edu
mailto:jesus.alberto.lopez@upc.edu

TABLE OF CONTENTS

Contents

Nomenclature IV

List of Figures V

List of Tables VII

List of Listings VIII

Declaration of Honour IX

Abstract X

1 Introduction 2

1.1 Object . 2

1.2 Justification . 2

1.3 Scope . 3

1.3.1 Preliminary study . 3

1.3.2 Lightning detection data study 3

1.3.3 Lightning detection performance 4

1.4 Requirements . 4

2 Background 7

2.1 GLM . 7

2.2 ASIM . 9

3 Explanation of the resolution algorithm 12

3.1 General resolution algorithm . 12

3.2 Initial data management . 13

3.2.1 GLM’s data order . 13

3.2.2 LINET’s data handling . 15

3.2.3 MMIA’s data handling . 17

3.3 GLM and MMIA data extraction and conditioning 17

I

CONTENTS
Contents

3.3.1 MMIA data extraction and conditioning 18

3.3.2 GLM data extraction and conditioning 20

3.4 Cross-correlation of signals and peak detections 24

3.4.1 Cross-correlation basic functioning 24

3.4.2 Cross-correlation of GLM and MMIA vectors 25

3.4.3 Detection of peaks in GLM and MMIA signals 29

4 Results 33

4.1 Presentation of final results . 33

4.1.1 Delays between GLM and MMIA 33

4.1.2 Peak correspondence . 35

4.2 Conclusions . 38

4.3 Future Continuation . 39

4.4 Budget . 41

References 42

Appendices 43

A Code of the main TFG.py script 44

B Code for important functions in order of appearance in main TFG.py 51

B.1 Function GLM data ordering.py . 51

B.2 Function get MMIA dates.py . 52

B.3 Function check existance.py . 53

B.4 Function get linet timing.py . 54

B.5 Function MMIA data ordering.py . 58

B.6 Function extract MMIA.py . 60

B.7 Function unify MMIA data.py . 61

B.8 Function condition MMIA data.py 63

B.9 Function extract GLM.py . 65

B.10 Function unify GLM data.py . 67

B.11 Function condition GLM data.py . 68

II

CONTENTS
Contents

B.12 Function fit vector in MMIA timesteps.py 72

B.13 Function signal delay.py . 74

B.14 Function cross correlate GLM MMIA.py 76

B.15 Function get GLM MMIA peaks.py . 79

III

NOMENCLATURE

Nomenclature

CCD Charge Coupled Device

CHU Camera Head Unit

FOV Field Of View

GLM Geostationary Lightning Mapper

GOES Geostationary Operational Environmental Satellites

GPST Global Positioning System Time

ISS International Space Station

LCFA Lightning Cluster Filter Algorithm

LMA Lightning Mapping Array

MMIA Modular Multispectral Imaging Array

MXGS Modular X- and Gamma- ray Sensor

NetCDF Network Common Data Form

NOAA National Oceanic and Atmospheric Administration

OTD Optical Transient Detector

PHOT Photometer

TGF Terrestrial Gamma-ray Flashes

TLE Transient Luminous Events

TRMM Tropical Rainfall Measuring Mission

IV

LIST OF FIGURES

List of Figures

2.1 Illustrations of GLM instrument aboard the GOES-16 satellite, both

from [5] . 8

2.2 Combined FOV view from the GOES-R series constellation (75 W,

137 W) superimposed on 10-yr of lightning observations from the

NASA Lightning Imaging Sensor on board the Tropical Rainfall Mea-

suring Mission (TRMM/LIS) and Optical Transient Detector (OTD)

low earth-orbiting satellites, from [5] 9

2.3 Illustrations of ASIM payload and MMIA ubication 10

3.1 Visual representation of the global resolution algorithm 12

3.2 Example of a Panoply capture for GLM data of October 30th, 2019 . 14

3.3 Examples of unaltered (red) and filtered (blue) MMIA 777.4nm pho-

tometer detection signals . 20

3.4 Fast visualization of GLM’s data extraction restriction fonts for a

generic snippet, day matches[i] position j 21

3.5 Pre-integration and integrated snippet time vector VS samples 23

3.6 Example of an integrated GLM signal in MMIA timesteps for June

27th, 2020, snippet 2 . 23

3.7 Fast visualization of cross-correlation dynamics for ’full’ mode . . . 25

3.8 Representation of example signals Vector1 (blue) and Vector2 (red)

before and after being cross-correlated and synchronised 26

3.9 Representation cross correlation of GLM and MMIA signals for June

27th, 2020, snippet 2 . 30

3.10 Example of GLM and MMIA detected peaks for June 27th, 2020,

snippet 2 . 31

4.1 Simple example of delay sign convention 34

4.2 Basic delay statistics for GLM and MMIA signals 35

4.3 Distributions of MMIA delays separated for positive and negative,

based on average energy of the whole signal and its standard deviation 36

V

LIST OF FIGURES
List of Figures

4.4 Example of GLM and MMIA signals displaying their detected peaks

in blue, and with common peaks in yellow 37

VI

LIST OF TABLES

List of Tables

1.1 Project Requirements . 5

3.1 Example of the structure of a given .csv file with LINET data 15

3.2 Basic structure of events (linet times) variable 16

3.3 Representation of the MMIA raw data-type variable structure 19

3.4 Example of an output .txt for June 27th, 2020, snippet 2 21

4.1 Main work packages and cost associated 41

VII

LIST OF LISTINGS

List of Listings

3.1 Example of user input for GLM directories 14

3.2 Generation of the Cross-Correlation x vector regarding even and odd

values of len(Vector1) + len(Vector2) 27

3.3 Variation of delay samples value considering different lengths of

Vector1 and Vector2 . 28

3.4 Variation of delay samples value considering samples in between

same times in GLM and MMIA time vectors 28

A.1 Full code for the main TFG.py script of the program 44

B.1 Full code for GLM data ordering.py function 51

B.2 Full code for get MMIA dates.py function 52

B.3 Full code for check existance.py function 53

B.4 Full code for get linet timing.py function 54

B.5 Full code for MMIA data ordering.py function 58

B.6 Full code for extract MMIA.py function 60

B.7 Full code for unify MMIA data.py function 61

B.8 Full code for condition MMIA data.py function 63

B.9 Full code for extract GLM.py function 65

B.10 Full code for unify GLM data.py function 67

B.11 Full code for condition GLM data.py function 68

B.12 Full code for fit vector in MMIA timesteps.py function 72

B.13 Full code for signal delay.py function 74

B.14 Full code for cross correlate GLM MMIA.py function 76

B.15 Full code for get GLM MMIA peaks.py function 79

VIII

DECLARATION OF HONOUR

Declaration of Honour

I declare that,

the work in this Degree Thesis is completely my own work,

no part of this Degree Thesis is taken from other people’s work without giving

them credit,

all references have been clearly cited,

I’m authorised to make use of the research group related information I’m pro-

viding in this document.

I understand that an infringement of this declaration leaves me subject to the

foreseen disciplinary actions by the Universitat Politècnica de Catalunya - Barcelona

TECH.

Jaime F. Morán Domı́nguez

Student’s Name Signature

September 28th, 2021

Date

Title of the Thesis:

Evaluation of pulse detection of the Geostationary Lightning Mapper (GLM)

IX

ABSTRACT

Abstract

This study evaluates the sensitivity of the Geostationary Lightning Map-

per (GLM) versus the Modular Multispectral Imaging Array (MMIA)’s pho-

tometer 3, both operating at the oxygen band at 777.4nm of wavelength. To

do so, both GLM’s and MMIA’s data is extracted from pre-processed data

files by a Lightning Cluster Filter Algorithm (LCFA) -data classified by time,

geolocalization, detection intensity and with an ID number- to be treated by

classification of their signals according to Linet detections in Colombia, signal

synchronization and peak comparison.

Resumen

En este estudio se evalúa la sensibilidad del sistema GLM (Geostationary

Lightning Mapper) frente a la de los fotómetros de MMIA (Modular Multis-

pectral Imaging Array), en concreto el fotómetro 3 captando la luz en 777.4

nm de longitud de onda. Para ello, tanto los datos de GLM como de MMIA

son extráıdos de los ficheros con información preprocesada por LCFA (Light-

ning Cluster Filter Algorithm) -datos clasificados por tiempo, geolocalización,

intensidad de la detección y con un número identificativo- para posteriormen-

te ser tratados mediante la clasificación sus señales en detecciones dadas por

la red de detección de rayos Linet en Colombia, sincronización de señales y

comparación de picos de señal.

X

Introduction

1 INTRODUCTION

1 Introduction

1.1 Object

The objective of this study is to develop a program to evaluate the pulse detection

sensitivity of the Geostationary Lightning Mapper (GLM) aboard the GOES-16

satellite against the sensitivity of the 777.4nm photometer of the Modular Multi-

spectral Imaging Array (MMIA) on the Columbus Module aboard the International

Space Station (ISS) over lightning detections in Colombia.

To achieve that goal, given data from both instruments is broken into data

snippets according to Colombian Lightning Location Network (LINET) and com-

pared snippet-to-snippet, cross-correlating their signals and outputting their relative

delay as well as their detected and non-detected peaks.

1.2 Justification

As comprehension of atmospheric phenomena increase, more effort is put into the

study of their consequences and possible potential or risk. One of those atmospheric

phenomena is thunderstorm processes, especially lightning activity.

Understanding of those phenomena allows for improvement in many different

areas of knowledge as well as it has many direct practical applications. Lightning

activity monitoring given by different systems can allow for, for instance, better com-

prehension of severe thunderstorm lead times and dynamics, early warning of light-

ning ground strikes or even provide valuable data for improving numerical weather

prediction models, as well as decreasing weather prediction uncertainty and false

alarm probabilities. In more direct applications, this knowledge can be applied to

improving aero- and nautical routing over oceanic regions where lightning activity

information is scarce and work as an assistant to storm radar systems in locations

where radar coverage is poor [7].

All that valuable information must be given by a lightning detection system in

2

1 INTRODUCTION
1.3 Scope

which to rely on to assure detection accuracy in geolocation, time and magnitude.

In this study the GLM instrument is evaluated against a MMIA’s photometer, both

space-based, to account just how reliable its detections really are and how many of

them are ignored by this system. This would allow for better future analysis and

results in lightning detection studies as well as for better tuning in future detection

systems.

While GLM is an operational-purpose instrument with built-in GPS Time

(GPST), MMIA is a high time-resolution and sensitivity scientific instrument with

own time. This leads to a GLM time accuracy of 2ms, while MMIA’s time accuracy

is to up to 20ms. With this study, high quality lightning detections from MMIA

are cross-correlated with time-accurate GLM detections in order to have ASIM data

with a time accuracy of 2ms, 10 times better than before, reporting high-detailed,

time-accurate detection data in a high sample rate of 100kHz.

1.3 Scope

In order to compare signals from GLM and MMIA using cross-correlation, both

different datasets must be treated and driven into a similar structure to allow direct

analysis. This section schematizes the key elements to proceed from study on the

field to results outputting.

1.3.1 Preliminary study

• Review on previous research on lightning detection.

• Review on GLM and MMIA instruments.

• Review on future lightning detection systems.

1.3.2 Lightning detection data study

• Development of a general resolution algorithm.

3

1 INTRODUCTION
1.4 Requirements

• Development of tools for extracting GLM and MMIA data from their given

file formats to similar data structures.

• Development of tools for trimming GLM and MMIA data into snippets from

LINET data.

• Development of tools for GLM and MMIA data conditioning before cross-

correlation.

• Development of tools for rejection of trivial snippets.

• Development of a snippet synchronisation system via cross-correlation.

• Development of signal time delay counter.

1.3.3 Lightning detection performance

• Development of tools for peak detection in GLM and MMIA cross-correlated

signals.

• Development of tools for accounting detected and non-detected peaks among

those instruments.

• Development of tools for accounting difference in order of magnitude in com-

mon detected peaks.

1.4 Requirements

Requirements and restrictions on the development of the architecture of the solution

algorithm, the result presentation on this report and the developed code is presented

in Table (1.1).

4

1 INTRODUCTION
1.4 Requirements

Table 1.1: Project Requirements

Requirement ID Description
REQ-1 Comparisons must be made independently of the differ-

ent instruments’ nature.
REQ-2 Data output must be equivalent among different instru-

ments in order to be able to make a comparison.
REQ-3 The developed program and its functions should be

based on free software for compatibility reasons.
REQ-4 Accuracy of results must be inside acceptable margins

as to base a scientific study upon them.
REQ-5 Verification plots must be included in the report as to

understand all processes and their accuracy.
REQ-6 Result plots must be included in the report as to show

the final output of the program.
REQ-7 The program must check a minimum correlation among

different instruments’ data to better determine a match.
REQ-8 The program must be fully modular in order to make it

comprehensive and easy to retouch.
REQ-9 Statistics about GLM and MMIA peak detections must

be outputted from the program.
REQ-10 The analysis must accept automatization of routines to

study n cases without problems, regardless of the size
of the input.

REQ-11 A full documentation of the code should be made in the
report.

REQ-12 Code documentation must explain clearly every step of
the script.

5

Development

2 BACKGROUND

2 Background

In this section a brief introduction to GLM and MMIA instruments is made, as

these are the instruments to be analysed and compared along the study.

2.1 GLM

The Geostationary Lighting Mapper (GLM) (Fig.(2.1)) is a high-speed event detec-

tor operating at near-infrared wavelength to study both cloud and cloud-to-ground

lightning activity 24 hours a day over the American continent. It is a major aid

in detecting potentially dangerous storms or weather elements that may affect avi-

ation [5]. The GLM is designed to operate on The Geostationary Operational En-

vironmental Satellite R-series (GOES-R) which becomes part of the original GOES

constellation. This set of satellites deployed by the National Aeronautics and Space

Administration (NASA) and the National Oceanic and Atmospheric Administration

(NOAA) is responsible for providing weather forecasts and warnings. The aim of

adding the GLM is to obtain greater accuracy in both timing and prediction.

Currently there are other methods for lightning detection such as the NASA

Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) that

operate in low Earth orbit. The GLM is able to obtain very similar data and extend

its combined climatology to study long-term effects such as climate change for about

the next 20 years [4, 1].

To perform well, the GLM has many more requirements than a simple imager.

The transient nature of lightning, daylight sampling when there may be solar reflec-

tions or spectral characteristics are some of the challenges it faces. A field-of-view

(FOV) lens is used together with a narrow-band interference filter and is focused to

a high speed Charge Coupled Device (CCD) focal plane. The data is then sent to

and processed on the satellite’s Local Area Network (LAN). Even though, the LIS

also had similar characteristics and made use of the same techniques, with the GLM

they have been considerably improved to obtain a much higher accuracy.

7

2 BACKGROUND
2.1 GLM

(a) Illustration of the GOES-16 geostationary satellite, car-
rying GLM

(b) Illustration of the GLM

Figure 2.1: Illustrations of GLM instrument aboard the GOES-16 satellite, both from [5]

Through the two satellites GOES-E (75 W) and GOES-W (135 W), the focal

CCD of the GLM with a resolution of 1372 × 1300 pixels can focus on the storms

at any time (see Fig.(2.2)). Being in a geostationary orbit, it has a field of view of

practically the whole hemisphere with a resolution at nadir of about 8 km and 14

km for the FOV edge. To achieve such a uniform coverage, the pixel distribution

has been densified at the extremes by using smaller pixels that compensate the

resolution [3].

The device can detect approximately 86% of the lightning strikes and can even

reach 90%. To achieve such good performance it is necessary to use a solar blocking

filter at the aperture of the instrument together with a solar rejection filter to limit

8

2 BACKGROUND
2.2 ASIM

Figure 2.2: Combined FOV view from the GOES-R series constellation (75 W, 137 W)
superimposed on 10-yr of lightning observations from the NASA Lightning Imaging Sensor on
board the Tropical Rainfall Measuring Mission (TRMM/LIS) and Optical Transient Detector

(OTD) low earth-orbiting satellites, from [5]

the light outside the band from entering the instrument. In addition, a 1-nm narrow-

band interference filter is added to ensure that the 777.4 OI oxygen triplet passes

to the detector [5].

2.2 ASIM

The latest discoveries related with thunderstorms caused a huge amusement in the

scientific community. These discoveries show that lightning and thunderstorm can

produce electrical breakdown above storms. This event is called Transient Luminous

Events (TLEs). TLE can be shown in different forms such as “sprites” (electrical

discharges in the mesosphere at 50 to 80 km) and the “blue jets” (streamer type

discharges propagating upward from clouds) among others. The electrical band in

which these phenomena occur mostly are 337nm, near ultraviolet (NUV).

Due to the great interest of TLEs, a scientific experiment was designed to study

this phenomenon, the Atmosphere-Space interactions Monitor (ASIM) (Fig.(2.3)).

The ASIM mission’s major scientific objectives are to examine thunderstorm electri-

9

2 BACKGROUND
2.2 ASIM

(a) Illustration of the ASIM payload, from [6]

(b) Illustration of MMIA instrument, from [2]

Figure 2.3: Illustrations of ASIM payload and MMIA ubication

cal activity such as lightning, Transient Luminous Emissions (TLEs), and Terrestrial

Gamma-ray Flashes (TGFs) by studying the associated emissions in the UV, near-

infrared, x-, and gamma-ray spectral bands. The ASIM is formed by two main

instruments placed on the Colombus module of the European Space Agency on the

International Space Station; the The Modular Multispectral Imaging Array (MMIA)

and the Modular X- and Gamma- ray Sensor (MXGS).

The MMIA consists of an array of optical sensors [2]. It is in charge of analysing

the TLE phenomenon using three co- aligned photometers and two camaras with

the highest sensity, dynamical range and temporal resolution. The instruments are

so sensitive to light that they are only operated during nighttime. The two cameras

called Camera Head Units (CHUs) are composed by three key elements; an optical

assembly consisting of a baffle to reduce stray light and optics hosting a narrow band

10

2 BACKGROUND
2.2 ASIM

filter, a focal plane assembly containing an Electron Multiplication Charge Coupled

Device (EM-CCD) of high sensitivity, and control and readout electronics capable

of reading out up to 12 full frames per second from the sensor. The three co- aligned

photometers (PHOTs) are made up of an optical assembly that includes a baffle to

limit stray light, lenses that concentrate on the photocathode of a Photo-Multiplier

Tube (PMT) in photon counting mode, proximity electronics, and a calibration light

emitting diode (LED).

The software is separated into two parts: Boot Software (BSW) and Applica-

tion Software (ASW), with the BSW running when the computer turns on. Both

BSW and ASW are implemented in Ada 2012 using AdaCore GNAT Pro for LEON

Bare Board, eliminating the need for an operating system.

MMIA may function in a variety of operational modes focused on main and

secondary science goals. The triggered data collection mode enables for the record-

ing of rapid changes in light for the major research objectives of observing transient

bright flashes of emissions from thunderstorms. This is used to collect informa-

tion about lightning strikes, TLEs, meteors, and TGFs. The timed data collection

mode enables the performance of programmed periodic observations of set length

for secondary research purposes such as auroras.

In conclusion, MMIA is composed of two cameras imaging in the 337 nm and

777.4 nm bands, with a frame rate up to 12 frames per second, and three high-speed

photometers in the 180–230 nm, 337 nm and 777.4 nm bands, sampling at rates up

to 100 kHz.

11

3 EXPLANATION OF THE RESOLUTION ALGORITHM

3 Explanation of the resolution algorithm

In this section the approach to the problem is explained with detail. Section 3.1

presents a visual representation of the main TFG.py program architecture, sections

3.2 and 3.3 describe the initial approach to data handling and its information ex-

traction for analysis, accordingly. Finally, section 3.4 explains data synchronisation

and peak detection on the signals for later result outputting by the program.

3.1 General resolution algorithm

Figure 3.1: Visual representation of the global resolution algorithm

12

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.2 Initial data management

3.2 Initial data management

As explained in section 3, this section explains how LINET’s, GLM’s and MMIA’s

data is being given as well as how its information is treated into easily manipulable

data in order to identify those vector sections with useful information to study.

3.2.1 GLM’s data order

GLM data is given by National Oceanic and Atmospheric Administration (NOAA)

via a Google Cloud Platform Repository , where thousands of .nc files are stored with

GLM information for 200ms each and ordered by year, day-of-year and hour-of-day.

Network Common Data From (NetCDF, giving .nc files) is a vastly used multi-

platform open-source binary file format to share large amounts of array-oriented

data in a way that is self-describing, portable and efficient [11]. In the case of GLM

data, those .nc files contain information of events, flashes and groups as well as

positioning and configuration of the satellite at every moment. Fig.(3.2) gives an

idea of the structure of the information inside a GLM .nc file and its contents, using

the specialized program Panoply. As it can be seen it hosts many different variables

(rows) with a short description each in the form of arrays (1D).

Once the files of the dates to analyse have been downloaded from the reposi-

tory, an algorithm to analyse each GLM date range was developed as follows. The

program main TFG.py asks for having them all together inside a single directory. It

demands the existence of two more void directories, one for hosting multiple daily

directories with files inside, and another to host extracted snippet data. Inside

USER INPUT DATA section in main TFG.py (see appendix A) the paths to those

directories has to be written as a string1. Code snippet 3.1 shows an example of

this input.

Function GLM data ordering.py (see appendix B.1) then sweeps along all .nc

files inside the directory GLM files path where they are located creating a new

1IMPORTANT: Those paths must NOT contain a final ’/’ (slash) as it will be added when
needed.

13

https://console.cloud.google.com/storage/browser/gcp-public-data-goes-16/GLM-L2-LCFA/

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.2 Initial data management

Figure 3.2: Example of a Panoply capture for GLM data of October 30th, 2019

Listing 3.1: Example of user input for GLM directories

107 # Path where GLM's .nc files are located

108 GLM_files_path =

'/Users/jaimemorandominguez/Desktop/Final/GLM_archivos/nc'↪→

109

110 # Path where you want your daily ordered GLM's .nc files to be

located↪→

111 GLM_ordered_dir = '/Users/jaimemorandominguez/Desktop/Final/GLM_arc c

hivos/Dairy_dir'↪→

112

113 # Path where you want your daily ordered extracted GLM's .txt

files to be located↪→

114 GLM_ordered_outputs = '/Users/jaimemorandominguez/Desktop/Final/GLM c

_archivos/GLM_output'↪→

directory inside GLM ordered dir for every different date with existing GLM data,

and moving all files with data of that day inside. This new directory is named after

the date it contains files of, in the form YearMonthDay.

14

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.2 Initial data management

3.2.2 LINET’s data handling

In this study, lightning location data from LINET are used as the ground-truth,

and allowed to find the corresponding GLM and MMIA space-based detection as is

discussed below. Tab.(3.1) shows the basic structure of the .csv file where LINET

data is stored in a graphical way for an example of 5 rows.

Table 3.1: Example of the structure of a given .csv file with LINET data

date trunc ms linet ka lat lon type id group id
2020-02-22 08:37:46 46.294 10.3 3.4295 -75.1912 Lightning 6005 246325
2020-02-22 08:37:46 46.294 10.3 3.4295 -75.1912 Lightning 5990 246325
2020-05-12 23:58:16 16.583 12.6 5.2109 -71.8171 Lightning 5751 313357
2020-05-12 23:58:16 16.583 12.6 5.2109 -71.8171 Lightning 5752 313357
2020-02-23 07:48:37 37.816 16.9 0.4223 -74.8342 Lightning 6957 245729
2020-06-06 02:06:25 25.798 11.3 5.1966 -72.5463 Lightning 25277 0
2020-06-06 02:06:54 53.235 39.4 10.2725 -79.1761 Lightning 25713 0

...

As it can be seen LINET data comes with important time (columns date trunc

and ms linet) and location (columns lat and lon) information of detections and

their corresponding ID for MMIA’s .cdf files (column id). Ideally, rows are ordered

with increasing date and increasing time, i.e. from January 1st at 00:00:00.000 to

December 31st at 23:59:59.999, where every row corresponds to an existing LCFA-

processed MMIA trigger and belongs into a group marked by its group ID column.

Group ID’s can be shown, of course, in one or more rows, depending on time and

location of its row trigger.

Once all GLM files have been ordered into different daily directories as ex-

plained in the previous section, function get MMIA dates.py (see appendix B.2)

returns a list of dates with existing MMIA data as strings in the form YearMonth-

Day. Function check existance.py (appendix B.3) returns the list matches with

those dates with existing GLM and MMIA data (it already accounts for different

number of dates for each instrument, only returning those that match).

With those date matches computed and with LINET’s data already uploaded

as a matrix, function get linet timing.py first gets those lines of the LINET

15

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.2 Initial data management

.csv that correspond to a date inside matches. Then separates those lines with

an existing value for Group ID from those with a value of 0 (see Tab.(3.1) as an

example). For those lines with an existing value a little subset is created storing

in a list the starting time and end time (lowest and highest time value of the rows

with same Group ID, respectively), minumum and maximum latitude and longitude

(following the same philosophy as with time) and a list of all MMIA trigger ID’s

with that Group ID. In case multiple lines had the same Group ID incorrectly, the

program creates new Group ID’s for those lines that do not match that group2. This

list of data defines a snippet. Its structure can be seen as:

[start time, end time, min lat, max lat, min lon, max lon, [ID1, ID2,...]]

A snippet is a fraction of a signal corresponding to one single group, which is the

minimum set of data to compare between GLM and MMIA. All those snippets are

stored into a variable called events3, whose structure is widely used along the pro-

gram. Tab.(3.2) shows a graphical visualization of the structure of this variable. As

Table 3.2: Basic structure of events (linet times) variable

matches[0] matches[1] matches[2] ... matches[-1]

snippet 0 snippet 0 snippet 0 snippet 0
snippet 1 snippet 1 snippet 1 snippet 1
snippet 2 snippet 2 snippet 2 snippet 2

...
snippet -1 snippet -1 snippet -1 snippet -1

seen, events variable is just a list of daily lists of snippets. Every snippet informa-

tion list is stored inside the day position in matches of its information (columns), and

its position inside the day column is the snippet identification number. Of course

every different day will have a different number of snippets according to available

detection data for that day. This structure of storing snippets is maintained all over

the program, as seen in upcoming sections.

2In the case there were highly separated lines with the same Group ID, the program checks if
those lines have a maximum separation of 20 lines. If not, new Group ID’s are created for those
last lines in order not to generate future problems.

3Note that in events is the name of the variable inside the function get linet timing.py.
In main TFG.py this variable is called linet times.

16

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.3 GLM and MMIA data extraction and conditioning

3.2.3 MMIA’s data handling

During the development of this study, all MMIA data has been given due to the

need of credentials for their download from the server. This data comes in .cdf files

and, similarly to GLM case, each file is defined by its detection date and hour, and

more importantly, its trigger ID number. As in GLM case, the program asks for a

directory with all .cdf files inside, a void directory for creating new directories and

another void directory to store extracted data files. In section USER INPUT DATA

of main TFG.py (appendix A) paths to those directories are asked in a similar way

as in code snippet 3.1 in section 3.2.1.

Once all snippets have been identified and delimited using LINET’s data,

MMIA .cdf files are ordered in different directories according to the snippet where

their ID number appears (see snippet structure in section 3.2.2 and function MMIA data

ordering.py in appendix B.5). This new snippet directory is named after the day

of the detections in the form YearMonthDay and the position of the snippet they

contain (0 to n-1), while copied MMIA’s .cdf files’ names are changed to their ID

number. It is important to note that, as MMIA data is ordered following LINET’s

information just for matches, only those MMIA .cdf files regarding a matching date

with GLM will be ordered (and extracted, processed and compared), acting as a

first filter for MMIA data.

As this GLM and MMIA ordering process is done just once per dataset and

all new directories are already installed, boolean variables called pre ordered GLM

and pre ordered MMIA let bypass this process once it has been done, accelerating

the program and avoiding a new unnecessary ordering.

3.3 GLM and MMIA data extraction and conditioning

This section explains how ordered MMIA’s and GLM’s data is extracted from given

files into easily-working arrays and how those arrays are treated and conditioned to

be cross-correlated to one another. It is important to note that both functions for

17

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.3 GLM and MMIA data extraction and conditioning

explicitly extracting data from the GLM’s .nc and MMIA’s .cdf files were given,

and no major changes were made to them.

3.3.1 MMIA data extraction and conditioning

Having all MMIA’s .cdf files ordered by snippet in different directories, the pro-

gram proceeds to extract their data using a given MatLab script that concatenates

all .cdf files inside a directory and saves their important information as a variable.

Function extract MMIA.py (see appendix B.6) hovers over all MMIA’s snippet di-

rectories calling a MatLab engine for every snippet, executing the given .m script

and returning only a .mat file per directory with just time and 777.4 photometer

data vectors. This file is called after the directory of the snippet (i.e. ’YearMon-

thDay index.mat’, being index the position of the snippet in that day column) and

stored in the outputs directory of MMIA. Some snippets do not output a .mat file

due to false triggers in the instrument for photometers usually caused by triggers

in MMIA’s ’CHU’ cameras. When a camera starts a trigger using the first frame

for storing its data, a decompensation in photometer’s signal and time vectors oc-

cur causing an error while saving photometer data, so if the case was presented

this step is simply avoided and no .mat file is outputted. The program prints the

day and snippet index for those snippets with no data while writing the variable

MMIA raw data, which in that position remains as type None.

A new function, unify MMIA data.py (appendix B.7) reads all those snip-

pet data tables and writes them inside a similar structure as seen in Tab.(3.2)

for LINET’s data variable linet times. Tab.(3.3) shows how this data vectors

are stored inside MMIA raw data. As seen, the variable is a list of daily lists of

snippet vectors. For every daily position of the variable (i.e. MMIA raw data[0],

MMIA raw data[1], ..., MMIA raw data[-1]) a list of snippets is stored. The or-

der of daily positioning is the same as in linet times variable, following matches

order, and the order of snippets is also the same. Snippet information is then

given by MMIA raw data[i][j], and is presented as a n×2 matrix of points where

MMIA raw data[i][j][:,0] represents the time vector of points of the snippet and

18

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.3 GLM and MMIA data extraction and conditioning

MMIA raw data[i][j][:,1] represents its signal vector. All this stored data coming

Table 3.3: Representation of the MMIA raw data-type variable structure

Snippet day
position

matches[0] matches[1] ... matches[-1]

0

[time[0], signal[0]
time[1], signal[1]

...
time[-1], signal[-1]]

[time[0], signal[0]
time[1], signal[1]

...
time[-1], signal[-1]]

[time[0], signal[0]
time[1], signal[1]

...
time[-1], signal[-1]]

1

[time[0], signal[0]
time[1], signal[1]

...
time[-1], signal[-1]]

[time[0], signal[0]
time[1], signal[1]

...
time[-1], signal[-1]]

[time[0], signal[0]
time[1], signal[1]

...
time[-1], signal[-1]]

...

-1

[time[0], signal[0]
time[1], signal[1]

...
time[-1], signal[-1]]

[time[0], signal[0]
time[1], signal[1]

...
time[-1], signal[-1]]

[time[0], signal[0]
time[1], signal[1]

...
time[-1], signal[-1]]

from the .cdf files need to be treated in order to improve the signal quality and the

correlation with GLM signal. Function condition MMIA data.py (appendix B.8)

applies a filter to every snippet signal vector to reduce noise, as well as applies an

absolute threshold of 1.75
µW

m2
to bypass those snippets whose signal vector does

not contain any important detection data, just noise. This noise snippets can be

caused by triggers in other photometers or cameras of MMIA, while 777.4nm pho-

tometer does not detect any significant peak. All snippets are then input to function

fit vector in MMIA timesteps.py to assure all time and signal vectors have a sam-

ple every exactly 0.00001s, as sometimes MMIA data comes with little time jumps or

missing timesteps. Those unexisting samples are filled by a linear regression taking

the last and next existing samples as reference points. New time and filtered sig-

nal pair of vectors per snippet are stored inside the variable MMIA filtered, which

has the exactly same structure as the previous MMIA raw data structure shown in

Tab.(3.3).

Fig.(3.3) shows two examples of unaltered signal vectors as extracted from the

.cdf files and stored in MMIA raw data as well as the filtered signals. It is notorious

how noise in signal is reduced and how important peaks are more easily detectable,

easily seen in Fig.(3.3a). Of course, as signal detection values increase the noise

19

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.3 GLM and MMIA data extraction and conditioning

0.55 0.60 0.65 0.70 0.75 0.80
Time [s] +1.7153e4

0

1

2

3

4

Ir
ra

di
an

ce
 [W m

2
]

Untreated signal
Filtered signal

(a) November 5th, 2020, snippet 1

6.4 6.6 6.8 7.0 7.2 7.4 7.6
Time [s] +2.386e4

0

20

40

60

80

100

Ir
ra

di
an

ce
 [W m

2
]

Untreated signal
Filtered signal

(b) June 26th, 2020, snippet 2

Figure 3.3: Examples of unaltered (red) and filtered (blue) MMIA 777.4nm photometer
detection signals

contribution to the final vector is reduced, translating into a clearer curve. It is

also important to note how peak values are also altered by their own prominence

with respect to the noisy signal, as the filter crops part of their absolute magnitude.

Comparing Fig.(3.3a) with Fig.(3.3b) it can be seen how peak magnitude is better

conserved in those snippets with less noise (i.e. higher detection energies) and more

prominent peaks, where the filtered signal fits the unaltered vector much better.

3.3.2 GLM data extraction and conditioning

With all GLM’s .nc files daily ordered in separate directories as explained in section

3.2.1, a similar extraction process as followed with MMIA’s .cdf files is computed

with GLM data. Function extract GLM.py (appendix B.9) uses a given Python

script that concatenates all .nc files inside a given directory, extracting all usefull

20

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.3 GLM and MMIA data extraction and conditioning

Table 3.4: Example of an output .txt for June 27th, 2020, snippet 2

Second
of Day

Lat.
Event

Lon.
Event

ID
Lat.
Flash

Lon.
Flash

Radiance
[J]

23866.493860 3.527283 -71.354897 53555 3.701137 -71.503380 1.40757e-15
23866.496149 3.527283 -71.354897 53555 3.701137 -71.503380 1.78805e-15
23866.498056 3.527283 -71.354897 53555 3.701137 -71.503380 1.38854e-15

...
23867.720686 3.600410 -71.137550 53578 3.530246 -71.177681 1.80707e-15

data from those files that fit inside some restrictions and transcripting it into a

.txt output for every date directory. The structure of this .txt file can be seen in

Tab.(3.4) with an example. As every daily directory contains all GLM’s .nc files for

that day, restrictions in data extraction into the .txt file stand for a better delimi-

tation in both time and space for every snippet. Data for those snippet restrictions

is given by MMIA variable MMIA filtered as well as by LINET’s data variable

linet times. For doing so, main TFG.py program hovers over every snippet inside

linet times[i][j] = [start time, end time, min lat, max lat,

[time[0], signal[0]
time[1], signal[1]

... ...
time[-1], signal[-1]]

MMIA filtered[i][j] =

Restrictions = [min lat-angle margin, max lat+angle margin,

matches[i] j.txt

min lon, max lon, [ID0, ID1, ... , ID-1]]

min lon-angle margin, max lon+angle margin,
time[0]-cropping margin,time[-1]+cropping margin]

Figure 3.4: Fast visualization of GLM’s data extraction restriction fonts for a generic snippet,
day matches[i] position j

MMIA filtered variable, calling the given data extraction function for every MMIA

non-None-type snippet position (positions that lacked of a .mat file as explained

in the previous section). For those positions with data (of type numpy.ndarray),

restrictions for GLM data extraction are the minimum and maximum latitudes and

longitudes given by LINET’s data, and the first and last time points of MMIA time

vector for that particular snippet. A plus of time cropping margin (default 0.2s)

21

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.3 GLM and MMIA data extraction and conditioning

and angle angle margin (default 0.5o) are given to increase probability of matches

due to MMIA time uncertainty. Fig.(3.4) summarizes this data acces for a generic

snippet. Note again that as linet times and MMIA filtered variables follow the

same structure (day order after matches and same snippet order inside each day

list) every day position - snippet position combination [i][j] refers to the same

snippet. As in the case of MMIA’s .cdf files, every GLM snippet .txt file is named

afer its day and snippet index inside that day (i.e. ’YearMonthDay index.txt’), as

well as the ordering and data extraction processes can be bypassed once done by

setting boolean variables pre ordered GLM and pre extracted GLM to 1.

Once GLM data has been extracted, function unify GLM data.py (appendix

B.10) reads all snippet’s .txt ’s, sorts lines by ascending time and writes their in-

formation inside the respective snippet position in variable GLM raw data. This

variable has exactly the same structure as MMIA raw data, seen in Tab.(3.3), but

with more information per snippet (all the information from the .txt).

Having all GLM data uploaded to the program, its conditioning needs to be

done. For every snippet the only important data is the time and radiance vectors,

as these are the ones to compare with MMIA. Function condition GLM data.py

(appendix B.11) first checks if the resulting .txt had information in it or if the infor-

mation inside is too poor as to generate a vector (low number of different timesteps)

by checking the snippet position in GLM raw data. If the information contained for

that snippet is enough as to generate a vector, it integrates every 0.002s. This

step allows for a smoother more reliable curve as well as creates a continuous time

vector. Fig.(3.5) shows how the original time vector lacks of some timesteps, while

the integrated dataset has a perfect time vector with a sample every 0.002s. The

integrated snippet is stored inside variable GLM int data just before calling function

fit vector in MMIA timesteps.py (see appendix B.12). As one of the functions

of the program is to cross-correlate GLM and MMIA signals, and cross-correlation

works on samples, this is an important step as fit vector in MMIA timesteps.py

function expands the GLM snippet into a set of longer time and signal vectors in

MMIA timesteps of 0.00001s. To do so, it places the existing GLM timesteps into

22

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.3 GLM and MMIA data extraction and conditioning

0 200 400 600 800 1000 1200 1400 1600
Samples

6.6

6.8

7.0

7.2

7.4

7.6

7.8

T
im

e
[s

]

+2.386e4

(a) Pre-integration

0 100 200 300 400 500 600 700
Samples

6.6

6.8

7.0

7.2

7.4

7.6

7.8

T
im

e
[s

]

+2.386e4

(b) Integrated

Figure 3.5: Pre-integration and integrated snippet time vector VS samples

the longer vectors and fills the new blank timesteps with a linear regression be-

tween the last and next timestep with data from the previous shorter vector. Of

course, this function just adds resolution to the vector without changing its contents

or varying the lineality in time. The resulting time and signal vectors are stored

into variable GLM data. Both variables GLM int data and GLM int data have the

exact same structure as shown for MMIA raw data in Tab.(3.3). Fig.(3.6) shows an

example of an integrated and expanded GLM signal.

6.6 6.8 7.0 7.2 7.4 7.6 7.8
Time (second of the day) [s] +2.386e4

0

1

2

3

4

5

6

7

R
ad

ia
nc

e
[J

]

1e−13

Figure 3.6: Example of an integrated GLM signal in MMIA timesteps for June 27th, 2020,
snippet 2

23

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.4 Cross-correlation of signals and peak detections

3.4 Cross-correlation of signals and peak detections

In this section it is explained how basic cross-correlation works and how it is im-

plemented to correlate GLM and MMIA signals, as well as how those signals are

treated to detect their peaks and then extract some statistics values as is discussed

below.

3.4.1 Cross-correlation basic functioning

Cross-correlation is a method for computing the similarity between two signals. In

order to do so, two arrays of data Vector1 and Vector2 are inputted into the cor-

relation function (in this study correlate() function is used from Python package

scipy.signal), which slides Vector1 over Vector2 over every overlapping position

from Vector1[0]-Vector2[-1] to Vector1[-1]-Vector2[0][10]. For every position

a correlation factor is computed based on the similarity of the two signals (higher

similarity translates into a higher correlation factor), outputting a new vector of cor-

relation factors and length len(xcorr factors) = len(Vector1)+len(Vector2)-14.

See Fig.(3.7) for a visual respresentation of the process.

Knowing when those signals resemble the most, one can easily move one of them

to make it fit perfectly between them. Taking as an example two simple signals of

same length (for example, 10) and only one peak of value 1 in a different position

for every signal (Fig.(3.8a) plots those signals):

Vector1 = [0,0,0,0,0,0,0,1,0,0]

Vector2 = [0,0,0,1,0,0,0,0,0,0]

One can see how Vector1 is delayed by 4 samples with respect to Vector2, as it

has its peak 4 samples after Vector2’s peak. This is translated into a maximum in

4The correlation function allows for 3 different modes for cross-correlation. Mode ’full’ is
the one used in the study and therefore explained, where the two vectors slide for every over-
lapping position. Mode ’same’ returns a vector of len(xcorr factors) = max(len(Vector1),

len(Vector2)) and centered with respect to the ’full’ mode, and mode ’valid’ computes
cross-correlation just for those overlepping positions where every sample of one vector overlaps a
sample of the other, returning a vector with length len(xcorr factors) = max(len(Vector1),

len(Vector2)) - min(len(Vector1), len(Vector2)) + 1 [8].

24

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.4 Cross-correlation of signals and peak detections

0 1

Vector 1

Vector 2 Correlation factor

Correlation factor

Maximum correlation factor

0 0 0 0 0 0 0 0

0 10 0 00 0 0 0 0

0 10 0 0 0 0 0 0 0

0 10 0 00 0 0 0 0

0 10 0 00 0 0 0 0

0 10 0 0 0 0 0 0 0

Figure 3.7: Fast visualization of cross-correlation dynamics for ’full’ mode

xcorr factors’s position where the two positions with 1 in Vector1 and Vector2

match, as the correlation factor in that position increases. Assigning a value to

every xcorr factors position where the center position gets a 0, values on the left

of the center position get single-spaced negative numbers and values on the right

get single-spaced positive positions, this new vector x tells the delay samples of

Vector1 with respect to Vector1. Following the previous example, xcorr factors

and x are presented below. Note how the value inside the x vector in position

where xcorr factors has its absolute maximum tells the delay. Fig.(3.8c) show

both signals overlapped represented over samples, as well as xcorr factors over x.

Finally, Fig.(3.8b) shows Vector1 and Vector2 after cross-correlation after using

the delay value to align them properly.

xcorr factors = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]

x = [-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9]

3.4.2 Cross-correlation of GLM and MMIA vectors

While synchronising GLM and MMIA signals some more steps must be done in

order to get an overall good agreement. Although the cross-correlation process

follows the same philosophy as in the previous section, the given example considered

same-length vectors, an even value of len(Vector1) + len(Vector2) and most

25

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.4 Cross-correlation of signals and peak detections

0 2 4 6 8
Time

0.0

0.2

0.4

0.6

0.8

1.0

V
ec

to
r

V
al

ue

Vector 1
Vector 2

(a) Signal representation before XCorr

−4 −2 0 2 4 6 8
Time

0.0

0.2

0.4

0.6

0.8

1.0

V
ec

to
r

V
al

ue

Vector 1
Vector 2

(b) Synchronised signals after XCorr

0 2 4 6 8
Vector samples

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Vector 2
Vector 1

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
Diff. samples Vector1 with respect to Vector2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

Fa
ct

or

(c) Signal representation by samples and correlation factor per overlapping position

Figure 3.8: Representation of example signals Vector1 (blue) and Vector2 (red) before and
after being cross-correlated and synchronised

importantly, both vectors followed the same time vector. While analysing GLM and

MMIA’s signals, any length of those vectors can be input to the cross correlate

GLM MMIA.py function (see appendix B.14) and there is no need for GLM signal

vector to be in the same time vector as MMIA’s.

Firstly, cross correlate GLM MMIA.py function calls signal delay.py func-

tion (appendix B.13) to compute the real delay of the GLM signal with respect to

MMIA’s. The first step to compute this delay is exactly the same as in the example

before, but considering even and odd values for len(Vector1) + len(Vector2),

which would cause problems. Code snippet 3.2 shows how the x vector is generated

26

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.4 Cross-correlation of signals and peak detections

with the consideration in mind, deleting the even or odd problem. In this case,

data1 corresponds to GLM signal vector, while data2 corresponds to MMIA signal

vector. Note that when len(Vector1) + len(Vector2) is an even number the

Listing 3.2: Generation of the Cross-Correlation x vector regarding even and odd values of
len(Vector1) + len(Vector2)

27 len_x = len(data1)+len(data2)-1

28 x = np.empty(len_x)

29

30 for i in range(len_x):

31 if (len_x % 2) == 0: # Even number

32 x[i] = (i - (len_x/2))

33 if (len_x % 2) != 0: # Odd number

34 x[i] = (i - (len_x/2 - 0.5))

resulting x vector has an odd length and has the exactly same structure as in the

example, with a 0 in the center position. If the length sum is odd, the x vector has

even length and 0 value falls on the first position of the second half of the vector:

xodd length sum = [0,0,0,0,0,1,0,0,0,0]

xeven length sum = [0,0,0,0,0,1,0,0,0,0,0]

The next step is to account for different lengths of Vector1 and Vector2. Code

snippet 3.3 shows how the delay value given by vector x in the position where

xcorr factors has its maximum value does not match the real delay when the

signal vectors have different lengths. Note how a correction of 0.5 samples is made

to delay when len(Vector1) + len(Vector2) is odd to account for the position in

x. Once the even/odd length sum and different lengths problems are solved, the

given delay represents the number of samples GLM signal is shifted with respect

to MMIA signal if both vectors started from the same timestep. As this is not the

case (every signal vector has its own time vector) another readjustment is needed.

Code snippet 3.4 shows this correction, adjusting delay samples value by getting

the difference in samples between same times in GLM and MMIA time vectors.

This value, real delay samples, is the delay in samples of MMIA signal with

27

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.4 Cross-correlation of signals and peak detections

Listing 3.3: Variation of delay samples value considering different lengths of Vector1 and
Vector2

52 # Delay samples accounting actual positioning due to

different lengths:↪→

53 max_factor_pos = np.where(xcorr_factors ==

max(xcorr_factors))[0][0]↪→

54

55 if ((len(data1)+len(data2)) % 2 == 0): # len(x) is Odd

56 delay_samples = x[max_factor_pos]+(len(data1)-len(data2))/2

57

58 if ((len(data1)+len(data2)) % 2 != 0): # len(x) is Even

59 delay_samples = x[max_factor_pos]+(len(data1)-len(data2))/2

+ 0.5↪→

Listing 3.4: Variation of delay samples value considering samples in between same times in
GLM and MMIA time vectors

61 # Delay samples accounting actual positioning due to time:

62 if data1[0,0] > data2[0,0]: # GLM vector starts later

63 pos_MMIA_start_GLM = np.where(data2[:,0] <=

data1[0,0])[0][-1]↪→

64 real_delay_samples = delay_samples + pos_MMIA_start_GLM

65 elif data1[0,0] < data2[0,0]: # GLM vector starts earlier

66 pos_GLM_start_MMIA = np.where(data1[:,0] <=

data2[0,0])[0][-1]↪→

67 real_delay_samples = delay_samples - pos_GLM_start_MMIA

68 else:

69 real_delay_samples = delay_samples

respect to GLM signal accounting for different lengths of their signal vectors, differ-

ent even/odd value for their length sum and considering different time vectors for

each signal vector. A positive value of this variable means GLM signal is behind

MMIA’s (MMIA anticipated), while a negative value means GLM signal came be-

fore MMIA signal (MMIA delayed). After signal delay.py functions returns this

value to cross correlate GLM MMIA.py, it just moves the MMIA signal by chang-

ing its time vector, adding ’real delay samples’ times MMIA’s period, 0.00001s.

GLM time is taken as reference because of its better time resolution of 2ms. That

28

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.4 Cross-correlation of signals and peak detections

is the reason behind always moving MMIA signal instead of GLM’s, regardless of

the sign of the delay. Delay value per snippet is stored in variable delays as it is

an important piece of data to know how time-shifted is GLM data with respect to

MMIA’s.

Fig.(3.9) shows an example of uncorrelated signals between GLM and MMIA

signals ready to be synchronised. In Fig.(3.9a) both signals can be seen plotted with

their respective time vector. Fig.(3.9b) shows those signals plotted by samples and

the correlation factor for every position. Note that as those signals are plotted by

samples before the delay corrections, time vector is ignored, and the delay seen is

not the real one as neither is the difference in samples given by the position of the

maximum correlation factor as explained before. Finally, Fig.(3.9c) shows the cross-

correlated, synchronised GLM and MMIA signals over their time vectors. For this

example, June 27th 2020, snippet 2, the delay is of 2587 samples (positive, MMIA

anticipated as seen in the figure) or 0.02587s (very close to MMIA maximum time

accuracy of 20ms).

3.4.3 Detection of peaks in GLM and MMIA signals

After cross-correlating GLM and MMIA signals both can be directly compared.

Function get GLM MMIA peaks.py (appendix B.15) first trims correlated GLM and

MMIA signals on every snippet to the same length and finds all prominent peaks on

both signals, returning a list of indexes where peaks have been detected for every

snippet, storing this data in variables GLM peaks and MMIA peaks, both following a

similar structure as seen in previous snippet-structured variables (a list of snippet

data inside a daily list following matches order). Fig.(3.10) shows an example of

both GLM and MMIA signals over samples with their detected peaks marked.

29

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.4 Cross-correlation of signals and peak detections

6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8
Time [s] +2.386e4

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 e
ne

rg
y

MMIA
GLM

(a) Signal representation before XCorr

0 20000 40000 60000 80000 100000 120000 140000
Vector samples

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

MMIA signal
GLM signal

−100000 −50000 0 50000 100000
Diff. Samples

0

100

200

300

400

C
or

re
la

tio
n

Fa
ct

or

(b) Signal representation by samples and correlation factor per overlapping position

6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8
Time [s] +2.386e4

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 e
ne

rg
y

MMIA
GLM

(c) Synchronised signals after XCorr

Figure 3.9: Representation cross correlation of GLM and MMIA signals for June 27th, 2020,
snippet 2

30

3 EXPLANATION OF THE RESOLUTION ALGORITHM
3.4 Cross-correlation of signals and peak detections

0 20000 40000 60000 80000 100000 120000
Samples

0

1

2

3

4

5

6

7

R
ad

ia
nc

e
[J

]

1e−13

(a) GLM signal

0 20000 40000 60000 80000 100000 120000
Samples

0

20

40

60

80

100

Ir
ra

di
an

ce
 [W m

2
]

(b) MMIA signal

Figure 3.10: Example of GLM and MMIA detected peaks for June 27th, 2020, snippet 2

31

Results

4 RESULTS

4 Results

In this section final results are presented after all data management and treatment.

Section 4.1 explains all results from the analysis, section 4.2 presents final conclu-

sions while section 4.3 shows possible avenues for improvement for better and more

consistent outputs, and finally, section 4.4 details the total budget for developing

this study.

4.1 Presentation of final results

This study covers the detection of lightning for 114 different dates in 2020. For every

day, an average of 5.39 snippets have been found. A total of 1507 MMIA triggers

were studied, obtaining 615 different snippets, out of which only 340 were suited

for cross-correlation and peak comparison (55.28%). Snippets may be discarded if

lack of MMIA or GLM data is found after extraction, or if the extracted data is too

poor as to conform a snippet. This lack of data may be given by no GLM or MMIA

datafiles for a particuar event, or by no detections in the time and space restrictions

for a snippet (LINET captured a lightning while MMIA did not have Colombia in

its FOV or simply GLM and/or MMIA didn’t detect anything, for example). After

comparing those snippets that could be analysed, some important statistics can

be extracted. In the following sections delays between GLM and MMIA data are

studied for a better comprehension of which instrument delays, how often and how

much, as well as a better study of signal peaks is explained.

4.1.1 Delays between GLM and MMIA

While cross-correlating signals the delay of MMIA with respect to GLM signal in

samples for every snippet was stored in order to compare the results. The to-

tal average delay (a positive delay means that MMIA signal anticipated as shown

in the simple example of Fig.(4.1)) is total delaysamples = −1423.72 samples or

total delays = −0.014 seconds, meaning the average MMIA displacement among

33

4 RESULTS
4.1 Presentation of final results

Figure 4.1: Simple example of delay sign convention

all 340 studied snippets. Although it may seem that MMIA uses to delay more of-

ten (negative value), 62.06% of the snippets show it actually anticipates more (211

of GLM over 129 for MMIA). This means that average MMIA delay time is (in ab-

solute value) higher than anticipation time. Indeed, average MMIA anticipation is

MMIA anticipationsamples = 11541.42 samples (0.115 seconds) while average delay is

MMIA delaysamples = −22630.26 samples (-0.226 seconds), with standard deviations

being σGLM = 14644.11 and σMMIA = 18760.87 samples (0.146 and 0.188 seconds),

respectively. Fig.(4.2) shows this data for easier understanding. It is also interesting

to analyse the relationship between the energy of the detections and the probability

of being delayed. Fig.(4.3) shows separated scattered data for MMIA-anticipated

snippets and MMIA-delayed snippets, where all snippet delays are displayed as a

function of the average radiance of the snippet and its standard deviation. As clearly

seen, most of the snippets fall into a low-energy, low-delay zone. It can also be seen

how as average energy increase, or more peaks are present (higher standard devia-

tion), the delay in the signal decreases. In those cases where MMIA was anticipated

a bigger concentration of snippets is found in the low-low zone, but the gradient

of delay vs average energy and delay vs average energy is higher than in MMIA’s

delays (it is easier to have a low delay if the snippet has a high average energy or

many peaks on MMIA anticipated-snippets than in MMIA delayed-snippets).

34

4 RESULTS
4.1 Presentation of final results

(a) Valid snippets over total snippets (b) Delayed instrument per snippet

(c) Averages in delays

Figure 4.2: Basic delay statistics for GLM and MMIA signals

4.1.2 Peak correspondence

Once GLM and MMIA have correlated their signals their peak values and frequency

distribution are calculated.

After computing all 114 dates, GLM has, in average, 10.84 peaks per snippet,

while MMIA presents an average of 24.29 peaks per snippet (MMIA detects more

peaks than GLM of about 44.63%). A function compares both peak vectors in order

to determine what peaks on one instrument were detected by the other instrument

35

4 RESULTS
4.1 Presentation of final results

0 1 2 3 4 5 6
GLM snippet average radiance [J] 1e 19

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sn
ip

pe
t

de
la

y
[s

]

(a) MMIA anticipations VS Average Radiance
distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0

MMIA snippet average irradiance [W
m2] 1e 5

1.0

0.8

0.6

0.4

0.2

0.0

Sn
ip

pe
t

de
la

y
[s

]

(b) MMIA delays VS Average Radiance distri-
bution

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
GLM snippet's radiance stantard deviation [J] 1e 18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sn
ip

pe
t

de
la

y
[s

]

(c) MMIA anticipations VS Std. Deviation dis-
tribution

0 1 2 3 4 5 6 7

MMIA snippet's irradiance stantard deviation [W
m2] 1e 5

1.0

0.8

0.6

0.4

0.2

0.0

Sn
ip

pe
t

de
la

y
[s

]

(d) MMIA delays VS Std. Deviation distribution

Figure 4.3: Distributions of MMIA delays separated for positive and negative, based on average
energy of the whole signal and its standard deviation

and vice versa. On GLM, from every average of 10.84 peaks per snippet, 7.6 peaks

are detected by MMIA. That means that 70.42% of GLM maxima are detected by

MMIA. On the other way around, numbers flip. For every MMIA average of 24.29

peaks per snippet, only those 7.6 are detected (of course, average detected peaks on

both instruments simultaneously does not vary). Exactly, just 36.97% of MMIA’s

peaks are detected by GLM. Fig.(4.4) shows the example snippet displaying common

peaks. The function that compares peaks starts by hovering over all GLM detections

and trying to find the nearest MMIA detection in vector position, giving preference

to higher peaks.

36

4 RESULTS
4.1 Presentation of final results

0 20000 40000 60000 80000 100000 120000
Samples

0

1

2

3

4

5

6

7

R
ad

ia
nc

e
[J

]

1e−13

(a) GLM over samples displaying detected peaks

0 20000 40000 60000 80000 100000 120000
Samples

0

20

40

60

80

100

Ir
ra

di
an

ce
 [W m

2
]

(b) MMIA over samples displaying detected peaks

Figure 4.4: Example of GLM and MMIA signals displaying their detected peaks in blue, and
with common peaks in yellow

37

4 RESULTS
4.2 Conclusions

4.2 Conclusions

To conclude this report, some considerations have to be taken. One of the main

purposes of this project was to develop useful tools for determine the detection

sensitivity of the Geostationary Lightning Mapper with respect to the Modular

Multispectral Imaging Array. Another important step this study has made is to

reduce MMIA’s uncertainty from about 20ms to 2ms thanks to LINET’s and GLM’s

data, of much more timing precision.

In the development of those tools several difficulties have been found. First

of all, the main architecture of the analysis was designed, showing what functions

where needed for the whole analysis. Snippets were defined and trimmed to evaluate

their single-piece-of-analysis capability.

As seen in previous sections, GLM instrument lacks of sensitivity when com-

pared to MMIA’s photometer of much more resolution. When given data contains

signals of low energy, it has been proved how MMIA data is more likely to come

more delayed than in those high energy signals with prominent peaks. It also has

been shown how GLM’s low sensitivity concatenates a lower peak detection number

than MMIA.

This study also opens an avenue to consolidate a program to easily automatise

the process of MMIA normalisation using GLM data and its comparison, as it is a

widely frequented process during thunderstorm and lightning activity studies.

38

4 RESULTS
4.3 Future Continuation

4.3 Future Continuation

Although this study has been performed in a period of 7 months and great attention

to detail has been put into every function, there are some key points in the way to

continue with the study. As the main weight of the process has been the program-

ming process of the resolution, future continuation on this work should follow the

same line.

All the process is maintained by the importance of the snippets, as they are

the minimum datasets for comparison. As so, their definition is key to a good cross-

correlation and posterior analysis, as well as their initial treatment. One of the

main points to retouch in the program is MMIA filter’s parameters, when the initial

non-processed data is smoothered (see section 3.3.1). The optimal filter should

straighten the signal as much as possible without losing any shape, specially when

finding prominent peaks.

Focusing on snippets, their characterization must be perfect in order to get

good results in the following steps as mentioned before. Not all snippets are valid

for analysis, as many of them are noise signals in MMIA, for example, or extremely

short data vectors in GLM. Although the program detects most of those problematic

snippets and takes them out of next steps, a good way of continuing the study would

be to better characterize those non-valid snippets and even looking for a better way

to understand their procedence. If not deleted as soon as possible, final statistics

may be highly biased by those non-constructive snippets.

Another important step for the analysis of the signals is done in cross-correlation.

So far the presented function cross-correlates and synchronises any two sets of data

regardless of their length or time vectors, as explained in section 3.4.2, successfully.

In order to mantain a good cross-correlation, good quality snippets should be used,

returning to the main previous idea. If not, extreme values of delays may be seen

in further statistics that can lead to great confusion regarding GLM timing.

One of the most improvable points of all the program is executed as peak de-

tection. Due to the noisy MMIA signal, which is not constant for all snippets, it is

39

4 RESULTS
4.3 Future Continuation

difficult to detect a real peak from a noise peak. This problem leads to snippets with

large amounts of ’ghost’ peaks than can alter future statistics reducing drastically

GLM detection rate, when those peaks are just fake. So far a threshold is computed

as the 90th percentile of all snippet signal vector, assuming most of the samples are

located as noise in the lowest energy levels. A retouch on peak detection functions’

parameters would probably allow for more accurate peak detections, improving re-

sults drastically. It would be even useful to cross-correlate the peak position vectors

to compare how many peaks were detected by both instruments even better.

Finally, although some other considerations such as output data quantity, code

cleanup and reestructure or optimization for faster code using less computer re-

sources could be done, there is a key point during data ordering processes, explained

in section 3.2. All file ordering is done by using the os Python library, which allows

for direct command line orders using the function os.system(). This function takes

as a input a command line order as a string, and just executes it on a terminal. As

all the study has been developed using a Unix-like OS, those commands are witten

in a Unix-like command interpreter (namely zsh) that are not directly compatible

with Microsoft’s cmd interpreter. This means that the initial steps of file ordering

should be run by a Unix-like OS, opening a new future work of translating those

commands to be used in Windows NT OS. After the ordering steps (that can be

bypassed with variables pre ordered GLM and pre ordered MMIA), the only uso for

the os library is to list directories entries, which based on Python documentation,

just calls the native OS directory iteration system [9].

40

4 RESULTS
4.4 Budget

4.4 Budget

In this section a complete breakdown of the study’s budget is given, detailing every

major cost with a brief description.

As this study does not require any type of material or support apart from the

computer, the major cost is given by the salary of a junior engineer, estimated as

15€/h. Tab.(4.1) shows a simple breakdown of the main work packages developed

and the time dedicated to each one.

Table 4.1: Main work packages and cost associated

Work Package Dedication [h] Unitary Cost [€/h] Cost [€]
Documentation 20 15 600
Code design 50 15 750
Code development 200 15 3000
Debugging and testing 100 15 1500
Code documentation 50 15 750
Runtime 20 0.015 0.45

Total: 6600.5€

Where documentation accounts for initial approach with the area, article con-

sultation and coding package documentation. Design of the code accounts for the

structure of the program, how steps are placed in order to achieve the final desired

output. Code development and debbuging and testing packages are the longest by

far as this study required a great dedication to developing the program. Runtime

package is the cost derived from having a computer constantly plugged-in to com-

pute operations while alone (some processes took long running times before some

optimization). Finally, code documentation accounts for the development of this

report as an introductory manual to the code as well as code presentation.

41

REFERENCES

References

[1] e. a. Albrecht, R., The 13 years of TRMM lightning imaging sensor: from

individual flash characteristics to decadal tendencies, (2011).

[2] O. Chanrion, T. Neubert, and et al., The Modular Multispectral Imaging

Array (MMIA) of the ASIM Payload on the International Space Station, Space

Science Reviews, 215 (2019).

[3] H. Christian and E. K. Aamodt, Device for detecting an image of a non-

planar surface, (2011).

[4] S. Goodman, D. Buechler, K. Knupp, K. Driscoll, and E. McCaul,

The 1997–98 El Nino event and related wintertime lightning variations in the

southeastern United States, 4 (2000), pp. 541–554.

[5] S. J. Goodman, R. J. Blakeslee, W. J. Koshak, D. Mach, J. Bai-

ley, D. Buechler, L. Carey, C. Schultz, M. Bateman, E. McCaul,

and G. Stano, The GOES-R Geostationary Lightning Mapper (GLM), At-

mospheric Research, 125-126 (2013).

[6] T. Neubert, N. Østgaard, V. Reglero, E. Blanc, O. Chanrion,

C. A. Oxborrow, A. Orr, M. Tacconi, O. Hartnack, and D. D.

Bhanderi, The ASIM Mission on the International Space Station, Space Sci-

ence Reviews, 215 (2019).

[7] NOAA, Instruments: Geostationary Lighting Mapper (GLM).

[8] NumPy, numpy.convolve documentation page.

[9] Python, Python os library Documentation.

[10] SciPy, scipy.signal.correlate Documentation.

[11] UniData, Network Common Data Form (NetCDF).

42

Appendices

A CODE OF THE MAIN TFG.PY SCRIPT

A Code of the main TFG.py script

Listing A.1: Full code for the main TFG.py script of the program

1 """

2 README

3

4 This script extracts data from GLM .nc files and MMIA .cdf files

and prepares

5 it for comparison to extract detection sensitivity of GLM.

6

7 To do so, a time snippet for every day with GLM and MMIA files is

extracted

8 to use only instead of the whole signal vectors using LINET's data

from a

9 .csv file , where date , time , latitude , longitude , trigger ID and

group_ID

10 are taken.

11

12 Every file from a given path 'GLM_files_path ' (for GLM files) and

13 'MMIA_files_path ' (for MMIA files) is classified in a different

directory

14 according to the snippet (given by LINET 's data) if MMIA , or date (

day) of

15 the event if GLM , and stored in given paths 'GLM_ordered_dir ' and

16 'MMIA_Ordered_dir ' (for GLM and MMIA , respectively).

17

18 CAUTION!

19 This step needs to be run by a UNIX -like OS , as explicit terminal

commands

20 are given using Python 's library "os".

21

22 As the files have been ordered , data extraction is done using a

Python

23 script for GLM and a MatLab script for MMIA , both given by Jes ús Ló

pez , only

24 for the matching dates between the existing GLM and MMIA files.

This main

25 script initialises the MatLab engine by its own. This extracted

data is

26 stored in different snippet .txt files for GLM and .mat files for

MMIA at

27 given paths 'GLM_ordered_outputs ' and 'MMIA_ordered_outputs '.
28

29 IMPORTANT

30 Extracting data from GLM's .nc files and MMIA's .cdf files takes a

lot of time

31 and is a one -time step , specially for MMIA .cdf files where a

MatLab engine

32 has to be started for every snippet. Because of that , one can set

special

33 parameters 'pre_extracted_GLM ' and 'pre_extracted_MMIA ' to '0' to

make that

44

A CODE OF THE MAIN TFG.PY SCRIPT

34 extraction once , and then set those parameters to '1' to bypass the

extracting

35 operations as the data has already been stored in '...
_ordered_outputs '.

36 Again , this process needs to be run by a UNIX -like OS.

37

38 This data is then uploaded to the Python workspace and treated to

allow

39 a comparison analysis using cross -correlation.

40

41 For GLM data , an integration of radiance is made every 0.002s (GLM

sample rate)

42 and time and signal vectors are accommodated to MMIA sample rate of

0.00001s.

43

44 For MMIA data , afilter is applied to the 777.4nm photometer data

vector in

45 order to reduce signal noise , and again accommodated to MMIA sample

rate

46 in case any time jump was there.

47

48 Both types of data are then normalised and cross -correlated to get

the time

49 shift between them , aligned and compared by counting peaks in their

signals.

50

51 All functions are imported from 'TFG_library.py' to make this

script simple

52 and clean.

53

54

55 @ Jaime Francisco Mor án Dom ı́nguez , 2021

56

57 """

58

59 import TFG_library as TFG

60 import pandas as pd

61 import numpy as np

62 import matplotlib.pyplot as plt

63 import pickle

64

65 # Just for plot presentation in LaTeX Style (slows the program)

66 plt.rc('font', **{'family ': 'serif ', 'serif ': ['latin modern roman '
]})

67

68

69

70 '''
71 ###

72 ## USER INPUT DATA ##

73 ###

74 '''
75

76 ### GENERAL ###

77

78 # Boolean variable for pre -ordered files

45

A CODE OF THE MAIN TFG.PY SCRIPT

79 pre_ordered_GLM = 1

80 pre_ordered_MMIA = 1

81

82 # Boolean variable for pre -extracted files

83 pre_extracted_GLM = 1

84 pre_extracted_MMIA = 1

85

86 # Boolean variable for generating plots

87 show_plots = 0

88

89

90 ### LINET ###

91

92 # CAUTION !! Make sure to write the 'r' before the path string

93 # Example: LINET_path = r'path_to_csv_file '
94 LINET_path = r'/Users/jaimemorandominguez/Desktop/Final/

MMIA_match_pos_LINET_2020.csv'
95

96 # Time in seconds to analyze GLM and MMIA before and after LINET 's
time snippet

97 # Recommended 0.2

98 cropping_margin = 0.15

99

100 # Plus of angle in latitude and longitude to snip GLM data (with

respect to LINET data)

101 # Recommended 0.5

102 angle_margin = 0.5

103

104

105 ### GLM ###

106

107 # Path where GLM's .nc files are located

108 GLM_files_path = '/Users/jaimemorandominguez/Desktop/Final/
GLM_archivos/nc'

109

110 # Path where you want your daily ordered GLM's .nc files to be

located

111 GLM_ordered_dir = '/Users/jaimemorandominguez/Desktop/Final/
GLM_archivos/Dairy_dir '

112

113 # Path where you want your daily ordered extracted GLM's .txt files

to be located

114 GLM_ordered_outputs = '/Users/jaimemorandominguez/Desktop/Final/
GLM_archivos/GLM_output '

115

116

117 ### MMIA ###

118

119 # Path where MMIA's .cdf files are located

120 MMIA_files_path = '/Users/jaimemorandominguez/Desktop/Final/
MMIA_archivos/cdf'

121

122 # Path where you want your snippet ordered MMIA's .cdf files to be

located

123 MMIA_ordered_dir = '/Users/jaimemorandominguez/Desktop/Final/
MMIA_archivos/MMIA_dairy '

46

A CODE OF THE MAIN TFG.PY SCRIPT

124

125 # Path where you want your snippet ordered extracted MMIA's .mat

files to be located

126 MMIA_ordered_outputs = '/Users/jaimemorandominguez/Desktop/Final/
MMIA_archivos/MMIA_output '

127

128

129 '''
130 ###

131 ## END OF USER INPUT DATA ##

132 ###

133 '''
134

135

136

137 ########### LINET 'S DATA UPLOAD ###########

138

139 # Uploading Linet 's data from .csv

140

141 print(' ')
142 print("Uploading Linet 's data ...")

143 linet_data = pd.read_csv (LINET_path)

144 linet_data = linet_data.to_numpy ()

145 print('Done!')
146 print(' ')
147

148

149 ########### DAILY ORDERING GLM FILES ###########

150

151 if pre_ordered_GLM == 0:

152

153 # Ordering GLM .nc files in dairy directories

154 TFG.GLM_data_ordering(GLM_files_path , GLM_ordered_dir)

155

156 else:

157 print('All GLM .nc files are already daily ordered ')
158 print(' ')
159

160

161 ########### CHECKING FOR MATCHING DATES ###########

162

163 MMIA_dates= TFG.get_MMIA_dates(MMIA_files_path)

164

165 # Searching for dates that both GLM and MMIA have data from

166 matches = TFG.check_existance(GLM_ordered_dir , MMIA_dates)

167

168

169 ########### EXTRACTING SNIPPET DATA FROM LINET 'S DATAFRAME

###########

170

171 # Getting times from LINET data

172 [linet_times ,indx] = TFG.get_LINET_timing(linet_data , matches)

173 del linet_data

174

175 ###### MMIA'S DATA ORDERING , EXTRACTION , UPLOAD AND CONDITIONING

######

47

A CODE OF THE MAIN TFG.PY SCRIPT

176

177 # Ordering MMIA data files into daily snippet folders

178 if pre_ordered_MMIA == 0:

179

180 TFG.MMIA_data_ordering(MMIA_files_path , MMIA_ordered_dir ,

linet_times , matches)

181 else:

182 print('All MMIA .cdf files are already daily ordered ')
183 print(' ')
184

185 # Extracting MMIA data into dairy .mat files

186 # CAUTION! Only matching dates with GLM are being extracted

187 if pre_extracted_MMIA == 0:

188

189 TFG.extract_MMIA(MMIA_files_path , MMIA_ordered_dir ,

MMIA_ordered_outputs , matches , linet_times)

190

191 else:

192 print('All data from MMIA .cdf files has already been extracted

')
193 print(' ')
194

195 # Unifying all data in a structure of lists

196 MMIA_raw_data = TFG.unify_MMIA_data(MMIA_ordered_outputs ,

linet_times , matches , show_plots)

197

198 # Conditioning MMIA data for further analysis

199 MMIA_filtered = TFG.condition_MMIA_data(MMIA_raw_data , matches ,

show_plots)

200

201 del MMIA_raw_data

202

203

204 ########### GLM'S DATA EXTRACTION , UPLOAD AND CONDITIONING

###########

205

206 # Extracting GLM data into dairy .txt files

207 # CAUTION! Only snippets with MMIA data are being extracted

208 if pre_extracted_GLM == 0:

209

210 TFG.extract_GLM(GLM_ordered_dir , GLM_ordered_outputs ,

linet_times , matches , MMIA_filtered , angle_margin ,

cropping_margin)

211

212 else:

213 print('All data from GLM .nc files has already been extracted ')
214 print(' ')
215

216 del linet_times

217

218 # Unifying all data in a structure of matrices

219 GLM_raw_data = TFG.unify_GLM_data(GLM_ordered_outputs ,

MMIA_filtered , matches , show_plots)

220

221

222 # Conditioning GLM data for further analysis

48

A CODE OF THE MAIN TFG.PY SCRIPT

223 GLM_data = TFG.condition_GLM_data(GLM_raw_data , matches , show_plots

)

224 del GLM_raw_data

225

226

227 ########### CROSS -CORRELATION ###########

228

229 # Normalizing GLM data to cross -correlate with MMIA data

230 print('Normalizing GLM data ...')
231 GLM_norm = [None] * len(GLM_data)

232 for i in range(len(GLM_data)):

233 snip = [None] * len(GLM_data[i])

234 GLM_norm[i] = snip

235

236 for i in range(len(GLM_data)):

237 for j in range(len(GLM_data[i])):

238 if type(GLM_data[i][j]) == np.ndarray:

239 snippet = np.zeros((len(GLM_data[i][j]) ,2))

240 GLM_norm[i][j] = snippet

241 GLM_norm[i][j][:,0] = GLM_data[i][j][:,0]

242 GLM_norm[i][j][:,1] = TFG.normalize(GLM_data[i][j

][: ,1])

243 print('Done!')
244 print(' ')
245

246 # Normalizing MMIA data to cross -correlate with GLM data

247 print('Normalizing MMIA data ...')
248 MMIA_norm = [None] * len(MMIA_filtered)

249 for i in range(len(MMIA_filtered)):

250 snip = [None] * len(MMIA_filtered[i])

251 MMIA_norm[i] = snip

252

253 for i in range(len(MMIA_filtered)):

254 for j in range(len(MMIA_filtered[i])):

255 if type(MMIA_filtered[i][j]) == np.ndarray:

256 snippet = np.zeros((len(MMIA_filtered[i][j]) ,2))

257 MMIA_norm[i][j] = snippet

258 MMIA_norm[i][j][:,0] = MMIA_filtered[i][j][:,0]

259 MMIA_norm[i][j][:,1] = TFG.normalize(MMIA_filtered[i][j

][: ,1])

260 print('Done!')
261 print(' ')
262

263 # Cross -correlating snippets

264 show_plots = 1

265 [GLM_xcorr , MMIA_xcorr , delays] = TFG.cross_correlate_GLM_MMIA(

GLM_data , MMIA_filtered , GLM_norm , MMIA_norm , matches ,

show_plots)

266 del GLM_data

267 del MMIA_filtered

268

269 # Saving cross -correlated data

270 f = open('xcorr_data.pckl', 'wb')
271 pickle.dump([GLM_xcorr ,MMIA_xcorr , GLM_norm , MMIA_norm , matches ,

delays], f)

272 f.close ()

49

A CODE OF THE MAIN TFG.PY SCRIPT

273 del GLM_norm

274 del MMIA_norm

275

276 # Getting peaks from cross -correlated signals

277 [GLM_peaks , MMIA_peaks] = TFG.get_GLM_MMIA_peaks(GLM_xcorr ,

MMIA_xcorr , matches , show_plots)

278

279 # Getting delay statistics

280 [total_snippets , avg_delay , avg_abs_delay , avg_MMIA_delay ,

std_MMIA_delay , avg_GLM_delay , std_GLM_delay , MMIA_delays ,

GLM_delays , no_delays] = TFG.study_delays(delays , GLM_xcorr ,

MMIA_xcorr , show_plots)

50

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B Code for important functions in order of ap-

pearance in main TFG.py

B.1 Function GLM data ordering.py

Listing B.1: Full code for GLM data ordering.py function

1 def GLM_data_ordering(read_path , dir_path):

2 '''
3 This function gets a directory where unordered .nc files are

located

4 and gets them daily ordered in diferent directories inside

dir_path.

5 Those new directories are named by year -month -day.

6

7 Parameters

8 ----------

9 read_path : string

10 Path of the directory where the unordered .nc files are

located.

11 dir_path : string

12 Path to the directory where the new daily -ordered

directories with

13 ordered separated .nc files will be located.

14

15 Returns

16 -------

17 None. Daily -ordered GLM files in new directories.

18 '''
19

20 print('Ordering GLM data into separate dates ...')
21 with os.scandir(read_path) as files:

22 files = [file.name for file in files if file.is_file () and

file.name.endswith('.nc')]
23 if len(files)==0:

24 print('Error: No GLM .nc files found to process!')
25

26 for i in range(len(files)):

27 date = datetime.datetime.strptime(files[i][44:48] + "-" +

files[i][48:51] , "%Y-%j").strftime("%Y%m%d")

28 if i==0: # First file does not have any folder yet

29 os.system('mkdir ' + dir_path+'/'+date)
30 os.system('cp ' + read_path+'/'+files [0] + ' ' +

dir_path+'/'+date)
31 else: # All the other files

32 subfolders = [f.path for f in os.scandir(dir_path) if f

.is_dir ()]

33 if subfolders.count(date)==0: # If there is not a

folder with that date

34 os.system('mkdir '+dir_path+'/'+date)

51

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.2 Function get MMIA dates.py

35 os.system('cp ' + read_path+'/'+files[i] + ' ' +

dir_path+'/'+date)
36 else: # If there already exists a folder with

that date

37 os.system('cp ' + read_path+'/'+files[i] + ' ' +

dir_path+'/'+date)
38 print('Done')
39 print(' ')

B.2 Function get MMIA dates.py

Listing B.2: Full code for get MMIA dates.py function

1 def get_MMIA_dates(read_path):

2 '''
3 This function just hovers over MMIA .cdf files to extract a

list with

4 all existing dates with MMIA data.

5

6 Parameters

7 ----------

8 read_path : string

9 Path to the directory where all MMIA .cdf files are stored.

10

11 Returns

12 -------

13 MMIA_dates : list

14 List of strings with all dates with existing MMIA data , in

the form

15 YearMonthDay.

16 '''
17

18 print('Getting the list of MMIA dates with existing data..')
19

20 with os.scandir(read_path) as files:

21 files = [file.name for file in files if file.is_file () and

file.name.endswith('.cdf')]
22 if len(files)==0:

23 print('Error: No MMIA .cdf files found to process!')
24

25 MMIA_dates = []

26

27 for i in range(len(files)):

28 date = files[i][50:54]+ files[i][55:57]+ files[i][58:60]

29

30 if i==0: # First file does not have any existing

date

31 MMIA_dates.append(date)

32 else: # All the other files

33 if MMIA_dates.count(date) == 0: # If there is no

register of that date

34 MMIA_dates.append(date)

35

52

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.3 Function check existance.py

36 print('Done')
37 print(' ')
38

39 return MMIA_dates

B.3 Function check existance.py

Listing B.3: Full code for check existance.py function

1 def check_existance(GLM_ordered_dir , MMIA_dates):

2 '''
3 This function determines which dates are present among both GLM

and MMIA

4 sets of data. It returns a vector with the matching dates as

strings in

5 the form YearMonthDay.

6

7 Parameters

8 ----------

9 GLM_ordered_dir : str

10 Path to the directory where daily ordered GLM .nc files are

located.

11 MMIA_dates : array

12 Vector containing all the dates in the MMIA's set of data.

13

14 Returns

15 -------

16 matches : array

17 Vector containing just the dates that are present in GLM

and MMIA

18 sets of data.

19 '''
20

21 print('Checking for matching dates between GLM and MMIA data ...

')
22 print(' ')
23

24 GLM_dates = os.listdir(GLM_ordered_dir)

25

26 if GLM_dates.count('.DS_Store ')!=0:
27 GLM_dates.remove('.DS_Store ')
28

29 GLM_len = len(GLM_dates)

30 MMIA_len = len(MMIA_dates)

31 matches = []

32

33 if GLM_len <= MMIA_len:

34 for i in range(GLM_len):

35 if GLM_dates[i] in MMIA_dates:

36 matches.append(GLM_dates[i])

37

38 elif MMIA_len < GLM_len:

39 for i in range(MMIA_len):

53

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.4 Function get linet timing.py

40 if MMIA_dates[i] in GLM_dates:

41 matches.append(MMIA_dates[i])

42

43 if len(matches) == GLM_len and len(matches) == MMIA_len:

44 print('Both GLM and MMIA data correspond to same days. All

data will be analyzed ')
45 elif len(matches) < GLM_len and len(matches) < MMIA_len:

46 print('There is/are just %d matching date/s, which will be

analyzed. Both GLM and MMIA daily ordered folders contain more

dates that do not match each other ' % len(matches))

47 elif len(matches) == GLM_len and len(matches) < MMIA_len:

48 print('All GLM dates correspond to MMIA dates and will be

analyzed. The folder where MMIA daily ordered folders are

located contais %d more date/s than GLMs' % (MMIA_len -len(

matches)))

49 elif len(matches) == MMIA_len and len(matches) < GLM_len:

50 print('All MMIA dates correspond to GLM dates and will be

analyzed. The folder where GLM daily ordered folders are located

contais %d more date/s than MMIAs' % (GLM_len -len(matches)))

51 print(' ')
52

53 return matches

B.4 Function get linet timing.py

Listing B.4: Full code for get linet timing.py function

1 def get_LINET_timing(linet_data , matches):

2 '''
3 This function gets the data from linet_data and generates a

list of lists

4 where information of different events is stored only for dates

with

5 existing GLM and MMIA data. Date order is the same as in

matches.

6

7 Parameters

8 ----------

9 linet_data : matrix

10 Linet 's data from the .csv file ordered in a numpy array.

11 matches : list

12 List of dates with existing GLM and MMIA data files.

13

14 Returns

15 -------

16 events : list

17 List of lists containing different events for every

existing GLM

18 and MMIA data. For every day layer , the structure is:

19 Events structure (for every day layer):

20 1st column: Event starting time

21 2nd column: Event ending time

22 3rd column: Event min latitude

54

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.4 Function get linet timing.py

23 4th column: Event max latitude

24 5th column: Event min longitude

25 6th column: Event max longitude

26 7th column: List of MMIA trigger ID's in this snippet

27 '''
28

29 print('Getting time snippets from LINET data ...')
30

31 # Getting only dates with existing GLM and MMIA data

32 linet_subset = []

33 # linet_subset structure:

34 # 1st column: Event date

35 # 2nd column: Event hour

36 # 3rd column: Event latitude

37 # 4th column: Event longitude

38 # 5th column: Event ID

39 # 6th column: Group ID

40

41 for i in range(len(linet_data)):

42 date = datetime.datetime.strptime(linet_data[i ,0][0:10] , "%

Y-%m-%d").strftime("%Y%m%d")

43 if date in matches:

44 hour = float(linet_data[i ,0][11:13]) *3600 + float(

linet_data[i ,0][14:16]) *60 + linet_data[i,1]

45 linet_subset.append ([date , hour , linet_data[i,3],

linet_data[i,4], linet_data[i,6], linet_data[i,7]])

46 if len(linet_subset) == 0:

47 print('Your .csv file does not contain any data of the

dates of existing GLM and MMIA data files ')
48 else:

49 # Extracting times from linet data , generation of days:

50 events = []

51 for i in range(len(matches)):

52 events.append ([])

53 # events structure (per day layer):

54 # 1st column: Event min hour

55 # 2nd column: Event max hour

56 # 3rd column: Event min latitude

57 # 4th column: Event max latitude

58 # 5th column: Event min longitude

59 # 6th column: Event max longitude

60 # 7th column: Event MMIA ID's
61

62 # Extracting data from those lines with group ID != 0

63 linet_subset_gID = []

64 gIDs = []

65 no_gID = []

66 for i in range(len(linet_subset)):

67 if linet_subset[i][5] != 0: # If group ID is not 0 (no

data)

68 linet_subset_gID.append(linet_subset[i])

69 if i == 0:

70 gIDs.append(linet_subset[i][5])

71 else:

72 if gIDs.count(linet_subset[i][5]) == 0:

73 gIDs.append(linet_subset[i][5])

55

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.4 Function get linet timing.py

74 else:

75 no_gID.append(i)

76

77 # Removing all lines with group_ID from linet_subset

78 linet_subset = [linet_subset[index] for index in no_gID]

79

80

81 # Checking for wrongly repeated Group ID's
82 indx = []

83 for i in range(len(gIDs)):

84 indx.append ([])

85

86 for i in range(len(indx)): # Creating lists of indexes with

same GroupID

87 for j in range(len(linet_subset_gID)):

88 if linet_subset_gID[j][5] == gIDs[i]:

89 indx[i]. append(j)

90

91 for i in range(len(indx)): # Checking incorrect index jumps

92 if len(indx[i]) > 1:

93 jumps = []

94 for j in range(1,len(indx[i])):

95 if indx[i][j] > indx[i][j -1]+5:

96 jumps.append(j)

97 if len(jumps) != 0:

98 new_gIDs = [None] * len(jumps)

99 new_groups = [None] * len(jumps)

100 for k in range(len(jumps)):

101 new_gIDs[k] = int(str(i)+str(k))*100000 #

Assign a non -existent GroupID of 6 digits

102 gIDs.append(new_gIDs[k])

103 if k != len(jumps) -1:

104 new_groups[k] = indx[i][jumps[k]:jumps[

k+1]]

105 else:

106 if jumps[k] < len(indx[i]) -1:

107 new_groups[k] = indx[i][jumps[k

]:-1]

108 new_groups[k]. append(indx[i][-1])

109 else:

110 new_groups[k] = [indx[i][-1]]

111 for k in range(len(new_groups)):

112 for m in range(len(new_groups[k])):

113 linet_subset_gID[new_groups[k][m]][5] =

new_gIDs[k]

114

115 day_per_gID = []

116 hour_per_gID = []

117 lat_per_gID = []

118 lon_per_gID = []

119 ID_per_gID = []

120 for i in range(len(gIDs)):

121 day_per_gID.append ([])

122 hour_per_gID.append ([])

123 lat_per_gID.append ([])

124 lon_per_gID.append ([])

56

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.4 Function get linet timing.py

125 ID_per_gID.append ([])

126

127 for i in range(len(linet_subset_gID)):

128 pos = gIDs.index(linet_subset_gID[i][5])

129 day_per_gID[pos] = linet_subset_gID[i][0]

130 hour_per_gID[pos]. append(linet_subset_gID[i][1])

131 lat_per_gID[pos]. append(linet_subset_gID[i][2])

132 lon_per_gID[pos]. append(linet_subset_gID[i][3])

133 ID_per_gID[pos]. append(linet_subset_gID[i][4])

134

135 for i in range(len(gIDs)):

136 day_pos_in_matches = matches.index(day_per_gID[i])

137 list_to_events = [min(hour_per_gID[i]), max(

hour_per_gID[i]), min(lat_per_gID[i]), max(lat_per_gID[i]), min(

lon_per_gID[i]), max(lon_per_gID[i]), ID_per_gID[i]]

138 events[day_pos_in_matches]. append(list_to_events)

139

140

141 # Extracting data from those lines with group ID == 0

142 event_pos = [None] * len(matches)

143 # Accounting for positions taken by lines with group_ID !=

0

144 for i in range(len(events)):

145 event_pos[i] = len(events[i])

146

147 row_0 = [linet_subset [0][1] , linet_subset [0][1] ,

linet_subset [0][2] , linet_subset [0][2] , linet_subset [0][3] ,

linet_subset [0][3] , [linet_subset [0][4]]]

148

149 events[matches.index(linet_subset [0][0])]. append(row_0)

150

151 for i in range(1,len(linet_subset)):

152

153 current_day = linet_subset[i][0]

154 prev_day = linet_subset[i -1][0]

155 same_day = current_day == prev_day

156 day_pos = matches.index(current_day)

157

158 current_hour = linet_subset[i][1]

159 prev_hour = linet_subset[i -1][1]

160 same_hour = prev_hour <= current_hour and current_hour

<= prev_hour + 1

161

162 current_lat = linet_subset[i][2]

163

164 current_lon = linet_subset[i][3]

165

166 current_ID = linet_subset[i][4]

167

168 same_event = [same_day , same_hour]

169

170 if all(same_event) == True:

171 # Refresh end time

172 events[day_pos][event_pos[day_pos]][1] =

current_hour

173 # Refresh max and min latitude if necessary

57

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.5 Function MMIA data ordering.py

174 if current_lat < events[day_pos][event_pos[day_pos

]][2]:

175 events[day_pos][event_pos[day_pos]][2] =

current_lat

176 elif current_lat > events[day_pos][event_pos[

day_pos]][2]:

177 events[day_pos][event_pos[day_pos]][3] =

current_lat

178 # Refresh max and min longitude if necessary

179 if current_lon < events[day_pos][event_pos[day_pos

]][4]:

180 events[day_pos][event_pos[day_pos]][4] =

current_lon

181 elif current_lon > events[day_pos][event_pos[

day_pos]][5]:

182 events[day_pos][event_pos[day_pos]][5] =

current_lon

183 # Add trigger ID to snippet list of ID's
184 events[day_pos][event_pos[day_pos]][6]. append(

current_ID)

185

186 else:

187 events[day_pos]. append ([current_hour , current_hour ,

current_lat , current_lat , current_lon , current_lon , [current_ID

]])

188 if same_day == True:

189 event_pos[day_pos] = event_pos[day_pos] + 1

190

191 print('Done!')
192 print(' ')
193 return [events ,indx]

B.5 Function MMIA data ordering.py

Listing B.5: Full code for MMIA data ordering.py function

1 def MMIA_data_ordering(read_path , dir_path , linet_times , matches):

2 '''
3 This function gets a directory where unordered .cdf files are

located

4 and gets them snippet -ordered in diferent directories inside

dir_path.

5 Those new directories are named by YearMonthDay_snippetIndex ,

and files

6 are named after their ID number.

7

8 Parameters

9 ----------

10 read_path : string

11 Path of the directory where the unordered .cdf files are

located.

12 dir_path : string

58

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.5 Function MMIA data ordering.py

13 Path to the directory where the new daily -ordered

directories with

14 ordered separated .cdf files will be located.

15 linet_times : list_to_events

16 List of daily lists of snippet info (time , geolocation and

MMIA Id's)
17 matches : list

18 List of dates with existing GLM and MMIA files.

19

20 Returns

21 -------

22 Snippet -ordered files in new directories.

23 '''
24

25 print('Ordering .cdf files according to ID in snippet ...')
26

27 with os.scandir(read_path) as files:

28 files = [file.name for file in files if file.is_file () and

file.name.endswith('.cdf')]
29

30 to_analize = []

31 for i in range(len(files)):

32 file_date = files[i][50:54] + files[i][55:57] + files[i

][58:60]

33 if matches.count(file_date) != 0: # Exists in matches

34 to_analize.append(i)

35 files = [files[index] for index in to_analize]

36

37 if len(files)==0:

38 print('Error: No matching MMIA .cdf files found to process!

')
39

40 ID_path = read_path+'/cdf_ID '
41 os.system('mkdir ' + ID_path)

42

43 for i in range(len(files)):

44 if len(files[i]) == 92:

45 ID = files[i][85:88]

46 elif len(files[i]) == 93:

47 ID = files[i][85:89]

48 elif len(files[i]) == 94:

49 ID = files[i][85:90]

50 elif len(files[i]) == 108:

51 ID = files[i][85:88]

52 elif len(files[i]) == 109:

53 ID = files[i][85:89]

54 elif len(files[i]) == 110:

55 ID = files[i][85:90]

56

57 os.system('cp ' + read_path+'/'+files[i] + ' ' + ID_path+'/
'+ID+'.cdf')

58

59 for i in range(len(linet_times)):

60 for j in range(len(linet_times[i])):

61 os.system('mkdir '+dir_path+'/'+matches[i]+'_'+str(j))
62 IDs = linet_times[i][j][-1]

59

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.6 Function extract MMIA.py

63 for k in range(len(IDs)):

64 os.system('mv '+ID_path+'/'+str(IDs[k])+'.cdf' + '
' + dir_path+'/'+matches[i]+'_'+str(j))

65 os.system('rm -rf '+ID_path)
66 print('Ordering done!')
67 print(' ')

B.6 Function extract MMIA.py

Listing B.6: Full code for extract MMIA.py function

1 def extract_MMIA(MMIA_files_path , MMIA_ordered_dir ,

MMIA_ordered_outputs , matches , linet_times):

2 '''
3 This function gets the ordered .cdf files and calls a MatLab

script

4 to process them , returning the .mat files to an output folder

whose

5 names match the file's date.

6

7 Parameters

8 ----------

9 MMIA_files_path : string

10 Path to the directory where the ordered .cdf files are

located.

11 MMIA_ordered_outputs : string

12 Path to the directory where the snippet -ordered files are

located.

13 MMIA_ordered_outputs : string

14 Path to the directory where the processed files will be

located.

15 matches : list

16 List of common dates with GLM and MMIA data , as strings in

the form

17 YearMonthDay.

18 linet_times : list

19 List of daily lists of important snippet information.

20

21 Returns

22 -------

23 Snippet -ordered and extracted MMIA .cdf files into a folder

with

24 .mat extension.

25 '''
26

27 print('Extracting data from MMIA .cdf files ...')
28 print(' ')
29

30 for i in range(len(linet_times)):

31

32 print('Processing MMIA data , date %d %d / %d...' % (int(

matches[i]), i+1, len(matches)))

33

60

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.7 Function unify MMIA data.py

34 for j in range(len(linet_times[i])):

35

36 current_snippet_path = MMIA_ordered_dir + '/' + matches

[i] + '_' + str(j)

37

38 with os.scandir(MMIA_ordered_outputs) as pre_done:

39 pre_done = [file.name for file in pre_done if file.

is_file () and file.name.endswith('.mat')]
40

41 if pre_done.count(matches[i] + '_' + str(j)+'.mat') ==

0:

42

43 with os.scandir(current_snippet_path) as files:

44 files = [file.name for file in files if file.

is_file () and file.name.endswith('.cdf')]
45 size = len(files)

46

47 if size != 0:

48 print('Starting the MatLab engine and

extracting data from .cdf files for snippet %d, %d / %d...' % (

int(matches[i]),j, len(linet_times[i])))

49 eng = matlab.engine.start_matlab ()

50 path = MMIA_ordered_dir + '/' + matches[i] + '_
' + str(j) + '/'

51 eng.workspace['str'] = path

52 eng.MMIA_symplified_v4(nargout =0)

53 eng.quit()

54 wd = os.getcwd ()

55 os.system('mv '+wd+'/MMIA_data.mat ' +

MMIA_ordered_outputs+'/'+matches[i]+'_' + str(j) +'.mat')
56 else:

57 print('There is no MMIA data for date %d,

snippet %d' % (int(matches[i]), j))

58 else:

59 print('MMIA data for day %d snippet %d was pre -

extracted ' % (int(matches[i]), j))

60 print('Date',matches[i],' done')
61 print(' ')
62 print('Your processed .mat files can be accessed at ',

MMIA_ordered_outputs)

63 print(' ')

B.7 Function unify MMIA data.py

Listing B.7: Full code for unify MMIA data.py function

1 def unify_MMIA_data(output_path , linet_times , matches , show_plots):

2 '''
3 This functions gets all the MMIA's extracted data .mat files

4 from the directory output_path and creates and returns list

MMIA_raw_data.

5

6 Parameters

61

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.7 Function unify MMIA data.py

7 ----------

8 output_path : string

9 Path to the existing directory where the resulting daily .

mat files

10 are located.

11 linet_times : list

12 List of daily lists of important snippet information.

13 matches : list

14 List of common dates with GLM and MMIA data , as strings in

the form

15 YearMonthDay.

16 show_plots : bool

17 Boolean variable for showing plots all through the program.

18

19 Returns

20 -------

21 MMIA_data : list

22 A list of tables with all the information fount in the .mat

files.

23 '''
24

25 # Creation of the list of lists for MMIA data

26 MMIA_raw_data = [None] * len(linet_times)

27 for i in range(len(linet_times)):

28 snippets = [None] * len(linet_times[i])

29 MMIA_raw_data[i] = snippets

30

31 with os.scandir(output_path) as files:

32 files = [file.name for file in files if file.is_file () and

file.name.endswith('.mat')]
33 size = len(files)

34 if size == 0:

35 print('No MMIA .mat files found!')
36

37 print('Uploading MMIA data from .mat files ...')
38 print(' ')
39

40 for i in range(size):

41 current_path = output_path + '/' + files[i]

42 day = files[i][0:8]

43 day_pos = matches.index(day)

44 ID = int(files[i][9: -4])

45

46 mat = sio.loadmat(current_path)

47 current_data = mat.get('MMIA_all ')
48

49 time_jump = 0

50 min_jump_time = 5 # [s]

51 pos = 1

52 while time_jump == 0:

53 # If there is a time jump

54 if current_data[pos ,0]- current_data[pos -1,0] >=

min_jump_time:

55 time_jump = 1

56 # If there is no time jump and position is not last

62

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.8 Function condition MMIA data.py

57 elif current_data[pos ,0]- current_data[pos -1,0] <

min_jump_time and pos != len(current_data) -1:

58 pos = pos+1

59 # If there is no time jump and position is last

60 elif current_data[pos ,0]- current_data[pos -1,0] <

min_jump_time and pos == len(current_data) -1:

61 time_jump = 2

62

63 if time_jump == 1:

64 print('Day %s snippet %d has a time jump!' % (day , ID))

65 print("This means that two or more lines in Linet 's .

csv have the same ID while they do not belong to the same group"

)

66 current_data = None

67

68 MMIA_raw_data[day_pos][ID] = current_data

69

70 if show_plots == 1 and time_jump !=1:

71 plt.figure ()

72 plt.plot(MMIA_raw_data[day_pos][ID][:,0], MMIA_raw_data[

day_pos][ID][:,1], linewidth =0.1, color='r')
73 plt.title('MMIA 777.4 nm Photometer Detections for day %

d snippet %d with no filter applied ' % (int(day), ID))

74 plt.xlabel('Time [s]')
75 plt.ylabel('Energy ')
76 plt.grid('on')
77 plt.show()

78

79 print('Done!')
80 print(' ')
81 return MMIA_raw_data

B.8 Function condition MMIA data.py

Listing B.8: Full code for condition MMIA data.py function

1 def condition_MMIA_data(MMIA_data , matches , show_plots):

2 '''
3 This functions takes 'MMIA_data ', a list of MMIA tables of

information

4 and applies a filter in 777.4nm photometer information vector

to reduce

5 noise.

6 It also plots every signal with and without the filter applied

7 if 'show_plots ' is True.

8

9 Parameters

10 ----------

11 MMIA_data : list

12 List of MMIA tables of information.

13 matches : list

14 List of common dates with GLM and MMIA data , as strings in

the form

63

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.8 Function condition MMIA data.py

15 YearMonthDay.

16 show_plots : bool

17 Boolean variable for plotting. Not ploting makes the

program faster.

18

19 Returns

20 -------

21 MMIA_filtered : list

22 A list of MMIA tables of information with a filter applied

23 and only regarding time and 777.4nm photometer information

24 '''
25

26 # Creation of the new list of lists of MMIA data with Moving

Average

27 MMIA_filtered = [None] * len(MMIA_data)

28 for i in range(len(MMIA_data)):

29 snippets = [None] * len(MMIA_data[i])

30 MMIA_filtered[i] = snippets

31

32 for i in range(len(MMIA_data)): # For every day of MMIA data

33 print('Date %d, %d / %d...' % (int(matches[i]), i+1, len(

matches)))

34 for j in range(len(MMIA_data[i])):

35

36 if type(MMIA_data[i][j]) == np.ndarray:

37

38 print('Applying a filter to reduce noise to MMIA

signal , date %d snippet %d / %d...' % (int(matches[i]), j, len(

MMIA_data[i])))

39

40 current_data=np.zeros((len(MMIA_data[i][j]) ,2))

41 current_data [:,0] = MMIA_data[i][j][: ,0]

42 current_data [:,1] = MMIA_data[i][j][: ,1]

43

44

45 if show_plots == 1:

46 plt.figure(figsize =(9, 3))

47 plt.plot(current_data [:,0], current_data [:,1],

linewidth =0.5, color='r')
48 #

49 n = 15 # the larger n is , the smoother curve will

be

50 b = [1.0 / n] * n

51 a = 1

52 current_data [:,1] = lfilter(b,a,current_data [:,1])

53

54 if (current_data [:,1] < 1.75).all() == True:

55 MMIA_filtered[i][j] = None

56 print('MMIA data for day %d snippet %d was just

noise!' % (int(matches[i]), j))

57 print(' ')
58 else:

59

60 # Assuring continuity in MMIA_MA timesteps

64

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.9 Function extract GLM.py

61 MMIA_filtered[i][j] = TFG.

fit_vector_in_MMIA_timesteps(current_data , int(matches[i]), j,

1, 1)

62 #MMIA_filtered[i][j] = current_data

63

64 if show_plots == 1:

65 # MMIA representation with filter and with

rectified time

66 #plt.figure ()

67 plt.plot(MMIA_filtered[i][j][:,0],

MMIA_filtered[i][j][:,1], linewidth =0.5, color='b')
68 plt.title("Untreated (red) and filtered (

blue) MMIA 777.4 nm photometer detections of day %d snippet %d" %

(int(matches[i]), j))

69 plt.xlabel('Time [s]')
70 plt.grid('on')
71 plt.ylabel(r"Irradiance $\left[\ dfrac{\mu W

}{m^2}\ right]$")
72 plt.legend (['Untreated signal ', 'Filtered

signal '])
73 plt.show()

74

75 else:

76 print('There is no MMIA data for day %d, snippet %d

' % (int(matches[i]), j))

77 print(' ')
78

79 print('Done!')
80 print(' ')
81 return MMIA_filtered

B.9 Function extract GLM.py

Listing B.9: Full code for extract GLM.py function

1 def extract_GLM(dir_path , output_path , linet_times , matches ,

MMIA_MA , angle_margin , cropping_margin):

2 '''
3 This function calls every directory with .nc files and extracts

the data

4 of all the files in it via GLM_processing function.

5

6 Parameters

7 ----------

8 dir_path : string

9 Path to the directory where the daily -ordered directories

with

10 ordered separated .nc files are located.

11 output_path : string

12 Path to the existing directory where the resulting daily .

txt files

13 will be located.

14 linet_times : list_to_events

65

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.9 Function extract GLM.py

15 List of daily lists of snippet info (time , geolocation and

MMIA Id's)
16 matches : list

17 List of dates with existing GLM and MMIA files

18 MMIA_MA : list

19 List of daily lists of MMIA's time and signal (with a

filter

20 applied) vectors for every snippet

21 angle_margin : float

22 Plus of latitude and longitude angle for extracting GLM

data with

23 respect to Linet's data.

24 cropping_margin : float

25 Plus of time before and afer MMIA snippet times (or Linet

times) for

26 extracting GLM data.

27

28 Returns

29 -------

30 .txt files for every snippet with GLM data prepared to be

analyzed.

31 '''
32

33 print('Extracting data from GLM .nc files into snippet .txt...'
)

34 print(' ')
35

36 for i in range(len(linet_times)): # Analyzing each directory 's
.nc files

37 for j in range(len(linet_times[i])):

38

39 if type(MMIA_MA[i][j]) == np.ndarray:

40

41 print('Extracting GLM data for date %d snippet %d

...' % (int(matches[i]), j))

42

43 min_lat = linet_times[i][j][2] - angle_margin

44 max_lat = linet_times[i][j][3] + angle_margin

45

46 min_lon = linet_times[i][j][4] - angle_margin

47 max_lon = linet_times[i][j][5] + angle_margin

48

49 start_time = MMIA_MA[i][j][0,0] - cropping_margin

50 end_time = MMIA_MA[i][j][-1,0] + cropping_margin

51

52 # If willing to use Linet 's timing , uncomment below

53 #start_time = linet_times[i][j][0] -

cropping_margin

54 #end_time = linet_times[i][j][1] + cropping_margin

55

56 TFG.GLM_processing(dir_path+'/'+matches[i]+'/',
output_path , matches[i]+'_'+str(j), min_lat , max_lat , min_lon ,

max_lon , start_time , end_time)

57

58 print('Date %s snippet %d done' % (matches[i], j))

59 print(' ')

66

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.10 Function unify GLM data.py

60 else:

61 print('GLM data for date %d snippet %d will not be

extracted due to lack of MMIA data' % (int(matches[i]), j))

62 print(' ')
63

64 print('Your processed .txt files can be accessed at ',
output_path)

65 print(' ')

B.10 Function unify GLM data.py

Listing B.10: Full code for unify GLM data.py function

1 def unify_GLM_data(output_path , MMIA_MA , matches , show_plots):

2 '''
3 This function gets all the GLM's extracted data .txt files from

the

4 directory output_path and creates and returns list GLM_data.

5

6 Parameters

7 ----------

8 output_path : string

9 Path to the existing directory where the resulting daily .

txt files

10 are located.

11 MMIA_MA : list

12 List of daily lists of MMIA's time and signal (with a

moving average

13 applied) vectors for every snippet

14 matches : list

15 List of dates with existing GLM and MMIA files

16 show_plots : bool

17 Boolean value for outputting plots all through the program.

18

19 Returns

20 -------

21 GLM_data : list

22 A list of daily lists with all the information found in the

.txt files ,

23 ordered by snippets.

24 '''
25

26 print('Uploading GLM data from .txt files ...')
27 # Creation of a new list of daily GLM snippets

28 GLM_data = [None] * len(MMIA_MA)

29 for i in range(len(MMIA_MA)):

30 snippets = [None] * len(MMIA_MA[i])

31 GLM_data[i] = snippets

32

33 with os.scandir(output_path) as files:

34 files = [file.name for file in files if file.is_file () and

file.name.endswith('.txt')]
35 size = len(files)

67

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.11 Function condition GLM data.py

36 if size == 0:

37 print('No GLM .txt files found!')
38

39 column_subset = ['Time', 'Event_lat ', 'Event_lon ', 'Event_ID ',
'Flash_lat ', 'Flash_lon ', 'Radiance ']

40

41 for i in range(size):

42

43 day = files[i][0:8]

44 day_pos = matches.index(day)

45 snip = int(files[i][9: -4])

46

47 current_path = output_path + '/' + files[i]

48

49 # Uploading the GLM's .txt using Pandas to sort it by time

50 current_data = pd.read_csv(current_path , names=

column_subset , sep='\s+')
51 # Sorting data by time

52 current_data = current_data.sort_values(by='Time')
53 # Translating Pandas Dataframe to Numpy Matrix for easy

data access

54 current_data = current_data.to_numpy ()

55 # Appending current day to GLM_data

56 GLM_data[day_pos][snip] = current_data

57

58 if show_plots == 1:

59 # Showing event map

60 plt.figure ()

61 plt.scatter(current_data [:,2], current_data [:,1])

62 plt.scatter(current_data [:,5], current_data [:,4], marker=

'x')
63 plt.axis('equal ')
64 plt.grid('on')
65 plt.title('Event grid for day %d snippet %d' % (int(day

), snip))

66 plt.xlabel('Longitude [deg]')
67 plt.ylabel('Latitude [deg]')
68 plt.show()

69 print('Done!')
70 print(' ')
71

72 return GLM_data

B.11 Function condition GLM data.py

Listing B.11: Full code for condition GLM data.py function

1 def condition_GLM_data(GLM_total_raw_data , matches , show_plots):

2 '''
3 This function takes all the extracted data from GLM .txt files ,

integrates

4 it and fits it in MMIA sample rate (0.002s of GLM to 0.00001s

of MMIA)

68

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.11 Function condition GLM data.py

5

6 Parameters

7 ----------

8 GLM_total_raw_data : list

9 List of daily GLM tables of data.

10 matches : list

11 List of dates with existing GLM and MMIA files

12 show_plots : bool

13 Boolean variable for plotting. Not ploting makes the

program faster.

14

15 Returns

16 -------

17 GLM_data : list

18 List of daily lists of snippets with integrated GLM

radiance in MMIA

19 sample rate.

20 '''
21

22 # Creating a new set of data

23 GLM_data = [None] * len(GLM_total_raw_data)

24 for i in range(len(GLM_total_raw_data)):

25 snippets = [None] * len(GLM_total_raw_data[i])

26 GLM_data[i] = snippets

27

28 # Integrating and extending GLM vectors by date

29 for i in range(len(GLM_total_raw_data)): # For every date

with GLM data

30 print('Integrating and extending GLM data vector for day %d

...' % int(matches[i]))

31 for j in range(len(GLM_total_raw_data[i])):

32

33 if type(GLM_total_raw_data[i][j]) == np.ndarray and len

(GLM_total_raw_data[i][j]) <= 1:

34 print('GLM detection for day %d snippet %d is void!

' % (int(matches[i]), j))

35 print(' ')
36 GLM_total_raw_data[i][j] = None

37

38 elif type(GLM_total_raw_data[i][j]) == np.ndarray and

len(GLM_total_raw_data[i][j]) != 0:

39 just_one_timestep = 1

40 check_pos = 1

41 while just_one_timestep == 1:

42 # If last position and same as timestep before

in the .txt

43 if check_pos == (len(GLM_total_raw_data[i][j])

-1) and GLM_total_raw_data[i][j][check_pos -1,0] ==

GLM_total_raw_data[i][j][check_pos ,0]:

44 just_one_timestep = 2

45 else:

46 # Different timestep in the .txt as in line

before

47 if GLM_total_raw_data[i][j][check_pos -1,0]

!= GLM_total_raw_data[i][j][check_pos ,0]:

48 just_one_timestep = 0

69

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.11 Function condition GLM data.py

49 else: # Same timestep in the .txt as in

line before

50 check_pos = check_pos + 1

51

52 if type(GLM_total_raw_data[i][j]) == np.ndarray and

just_one_timestep == 2:

53 print('GLM detection for day %d snippet %d contains

only 1 timestep and will not be compared ' % (int(matches[i]), j

))

54 print(' ')
55 GLM_total_raw_data[i][j] = None

56

57 if type(GLM_total_raw_data[i][j]) == np.ndarray:

58

59 # Showing non -inflated time vector

60 if show_plots == 1:

61 plt.figure ()

62 plt.plot(GLM_total_raw_data[i][j][: ,0])

63 plt.xlabel('Samples ')
64 plt.ylabel('Time [s]')
65 plt.title('Original GLM Time VS Samples for

date %d snippet %d' % (int(matches[i]), j))

66 plt.grid('on')
67 plt.show()

68

69 # Integration

70

71 print('Integrating GLM data , date %d snippet %d / %

d' % (int(matches[i]), j, len(GLM_total_raw_data[i])))

72

73 GLM_length = math.ceil((GLM_total_raw_data[i][j

][-1,0] - GLM_total_raw_data[i][j][0 ,0]) / 0.002)

74

75 # Current table of data (current day)

76

77 GLM_int_data = np.zeros((GLM_length , 2))

78

79 pos_0 = 0

80 for k in range(GLM_length): # For every sample

accounting zeroes at GLM rate

81 GLM_int_data[k,0] = round(GLM_total_raw_data[i

][j][0 ,0] + k*0.002 , 3)

82 t_min = GLM_int_data[k,0]

83 t_max = t_min + 0.002

84 inside = True

85 count = 0

86

87 while inside == True:

88 raw_pos = pos_0 + count

89

90 if GLM_total_raw_data[i][j][raw_pos ,0] >=

t_min and GLM_total_raw_data[i][j][raw_pos ,0] < t_max:

91 GLM_int_data[k,1] = GLM_int_data[k,1] +

GLM_total_raw_data[i][j][raw_pos ,6]

92

70

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.11 Function condition GLM data.py

93 # Check if the next GLM_total_raw_data

sample will be added

94

95 raw_end = (raw_pos == (len(

GLM_total_raw_data[i][j]) -1))

96

97 if raw_end == False:

98 inside = (GLM_total_raw_data[i][j][

raw_pos +1,0]) < t_max

99 if inside == True:

100 count = count + 1

101 else:

102 count = count + 1

103 pos_0 = raw_pos

104 else:

105 inside = False

106 print('Done!')
107

108 GLM_data[i][j] = fit_vector_in_MMIA_timesteps(

GLM_int_data , int(matches[i]), j, show_plots , 0)

109

110 # Check for too short snippet vectors

111 if len(GLM_data[i][j]) <=100:

112 print('Data for day %s snippet %d is too poor ,

only %d samples. This snippet will be omitted.' % (matches[i], j

, len(GLM_data[i][j])))

113 GLM_data[i][j] = None

114

115 if show_plots == 1 and type(GLM_data[i][j]) == np.

ndarray:

116 # Plotting lineality in GLM time vector with

GLM sampling rate

117 plt.figure ()

118 plt.plot(GLM_int_data [:,0])

119 plt.title('GLM Time vector of day %d snippet %d

with 0.002s period ' % (int(matches[i]), j))

120 plt.xlabel('Samples ')
121 plt.ylabel('Time [s]')
122 plt.grid('on')
123 plt.show()

124

125 # Integrated GLM radiance vs time graph

representation

126 plt.figure ()

127 plt.plot(GLM_int_data [:,0], GLM_int_data [:,1],

linewidth =0.5, color='black ')
128 plt.grid('on')
129 plt.title('GLM signal of day %d snippet %d with

GLM sample rate (0.002s)' % (int(matches[i]), j))

130 plt.xlabel('Time [s]')
131 plt.ylabel('Radiance [J]')
132 plt.show()

133

134 print('Integration of GLM vectors done!')
135 print(' ')
136

71

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.12 Function fit vector in MMIA timesteps.py

137 return GLM_data

B.12 Function fit vector in MMIA timesteps.py

Listing B.12: Full code for fit vector in MMIA timesteps.py function

1 def fit_vector_in_MMIA_timesteps(GLM_int_data , day , snippet ,

show_plots , is_MMIA):

2 '''
3 This function takes a time and signal pair of vectors and

accommodates it

4 into MMIA timesteps of 0.00001s. Inexistent values in between

are filled

5 by simple linear regression.

6

7 Parameters

8 ----------

9 GLM_int_data : list

10 List of daily lists of data snippets. NOT necessarily GLM

data.

11 day : int

12 Date of the form YearMonthDay.

13 snippet : int

14 Index of the current snippet to expand inside day "day".

15 show_plots : bool

16 Boolean variable for showing plots all through the program.

17 is_MMIA : bool

18 Boolean variable for sepparating GLM expansion from MMIA

expansion.

19

20 Returns

21 -------

22 GLM_current_data : list

23 List of daily lists of snippets like "GLM_int_Data" input ,

but with

24 accomodation to 0.00001s timesteps done.

25 '''
26

27 # Expanding snippet to fit missing MMIA timesteps to cross -

correlate data

28 if is_MMIA == 0:

29 print('Fitting GLM data in MMIA timesteps date %d snippet %

d...' % (day ,snippet))

30 else:

31 print('Completing MMIA data in MMIA timesteps date %d

snippet %d...' % (day ,snippet))

32

33 new_length = 1 # New length of the timestep -wise

matrix

34 acumulated_voids = 0 # Number of non -existing timesteps up

to current line

35 void_info = np.zeros ((len(GLM_int_data) ,4)) # Matrix of special

info for each line:

72

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.12 Function fit vector in MMIA timesteps.py

36 # 1st column: .txt row number

37 # 2nd column: void timesteps after that row until next

existing timestep

38 # 3rd column: Accumulated void timesteps before current

line

39 # 4th column: Differential energy between existing

timesteps ([i]-[i-1])

40

41 # Updating new_length value to make a new table with 1st

dimension being new_length

42

43 GLM_int_data [0,0] = round(GLM_int_data [0,0],5) # Rounding

to MMIA period

44

45 for j in range(1,len(GLM_int_data)):

46

47 GLM_int_data[j,0] = round(GLM_int_data[j,0] ,5) # Rounding

to MMIA period

48 void_info[j][0] = j # Filling first void_info column

49

50 if GLM_int_data[j,0] == GLM_int_data[j-1,0] + 0.00001: #

Exactly one timestep ahead

51 new_length = new_length + 1

52 void_info[j][2] = acumulated_voids

53

54 elif GLM_int_data[j,0] < GLM_int_data[j-1,0] + 0.00001: #

Less than a whole timestep (sometimes occur)

55 new_length = new_length + 1

56 void_info[j][2] = acumulated_voids

57

58 else: # There are missing timesteps in between current

and last row

59 void_timesteps = round((GLM_int_data[j,0] -

GLM_int_data[j-1,0]) /0.00001) - 1

60 new_length = new_length + 1 + void_timesteps

61 void_info[j -1][1] = void_timesteps

62 acumulated_voids = acumulated_voids + void_timesteps

63 void_info[j][2] = acumulated_voids

64 void_info[j -1][3] = GLM_int_data[j,1] - GLM_int_data[j

-1,1]

65

66 # Filling the new time -wise matrix

67

68 GLM_current_data = np.zeros((new_length ,2)) # New matrix with

void lines for non -existing timesteps

69

70 for j in range(0,len(GLM_int_data)):

71 new_j = int(j + void_info[j,2]) # Row position in the

new matrix

72 GLM_current_data[new_j ,:] = GLM_int_data[j,:] # Filling

rows with existing data

73

74 if void_info[j,1] != 0: # Lines with non -existing

timesteps afterwards

75 counter = 1 # Adds 0.00001s and a linear

energy fraction

73

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.13 Function signal delay.py

76 for k in range(new_j+1, new_j +1+int(void_info[j,1])):

77 GLM_current_data[k,0] = GLM_int_data[j,0] + counter

* 0.00001

78 GLM_current_data[k,1] = GLM_int_data[j][1] +

counter * (void_info[j][3]/ void_info[j][1])

79 counter = counter + 1

80

81 if show_plots == 1 and is_MMIA == 0:

82 # GLM time representation at MMIA sample rate

83 plt.figure ()

84 plt.plot(GLM_current_data [:,0])

85 plt.title('GLM Time vector of day %d snippet %d with

0.00001s period ' % (day , snippet))

86 plt.xlabel('Samples ')
87 plt.ylabel('Time [s]')
88 plt.grid('on')
89 plt.show()

90

91 # Radiance vs time graph representation

92 plt.figure ()

93 plt.plot(GLM_current_data [:,0], GLM_current_data [:,1],

linewidth =0.5, color='black ')
94 plt.grid('on')
95 plt.title('GLM signal of day %d snippet %d with MMIA sample

rate (0.00001s)' % (day , snippet))

96 plt.xlabel('Time (second of the day) [s]')
97 plt.ylabel('Radiance [J]')
98 plt.show()

99

100 print('Date %d snippet %d fit' % (day , snippet))

101 print(' ')
102

103 return GLM_current_data

B.13 Function signal delay.py

Listing B.13: Full code for signal delay.py function

1 def signal_delay(data1 , data2 , show_plots , day , snip):

2 '''
3 This function determines the delay in samples of two signals

using a

4 cross -correlation method.

5

6 Parameters

7 ----------

8 data1 : Array

9 First signal to be analyzed. In this case , GLM signal.

10 data2 : Array

11 Second signal to be analyzed. In this case , MMIA signal.

12 show_plots : bool

13 Boolean variable for showing plots all through the program.

14 day : int

74

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.13 Function signal delay.py

15 Day of the snip to be cross -correlated in shape

YearMonthDay

16 snip : int

17 Position of snip in day "day"

18

19 Returns

20 -------

21 real_delay_samples : The number of samples that data1 is

shifted with

22 respect to data2.

23 '''
24

25 xcorr_factors = correlate(data1 [:,1], data2 [:,1], mode='full',
method = 'auto')

26

27 len_x = len(data1)+len(data2) -1

28 x = np.empty(len_x)

29

30 for i in range(len_x):

31 if (len_x % 2) == 0: # Even number

32 x[i] = (i - (len_x /2))

33 if (len_x % 2) != 0: # Odd number

34 x[i] = (i - (len_x /2 - 0.5))

35

36 if show_plots == 1:

37 plt.subplot(2, 1, 1)

38 plt.plot(data2[:,1],'-r', linewidth = 0.5)

39 plt.plot(data1[:,1],'-k', linewidth = 0.5)

40 #plt.title('Non -correlated GLM (black) and MMIA (red)

signals , day %d snippet %d' % (day , snip))

41 plt.ylabel('Normalized Energy ')
42 plt.xlabel('Vector samples ')
43 plt.legend (['MMIA signal ', 'GLM signal '])
44 plt.grid('on')
45

46 plt.subplot(2, 1, 2)

47 plt.plot(x, xcorr_factors , '-b', linewidth = 0.5)

48 plt.xlabel('Diff. Samples ')
49 plt.ylabel('Correlation Factor ')
50 plt.grid('on')
51

52 # Delay samples accounting actual positioning due to different

lengths:

53 max_factor_pos = np.where(xcorr_factors == max(xcorr_factors))

[0][0]

54

55 if ((len(data1)+len(data2)) % 2 == 0): # len(x) is Odd

56 delay_samples = x[max_factor_pos]+(len(data1)-len(data2))/2

57

58 if ((len(data1)+len(data2)) % 2 != 0): # len(x) is Even

59 delay_samples = x[max_factor_pos]+(len(data1)-len(data2))/2

+ 0.5

60

61 # Delay samples accounting actual positioning due to time:

62 if data1 [0,0] > data2 [0,0]: # GLM vector starts later

75

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.14 Function cross correlate GLM MMIA.py

63 pos_MMIA_start_GLM = np.where(data2 [:,0] <= data1 [0 ,0])

[0][-1]

64 real_delay_samples = delay_samples + pos_MMIA_start_GLM

65 elif data1 [0,0] < data2 [0,0]: # GLM vector starts earlier

66 pos_GLM_start_MMIA = np.where(data1 [:,0] <= data2 [0 ,0])

[0][-1]

67 real_delay_samples = delay_samples - pos_GLM_start_MMIA

68 else:

69 real_delay_samples = delay_samples

70

71 return (real_delay_samples)

B.14 Function cross correlate GLM MMIA.py

Listing B.14: Full code for cross correlate GLM MMIA.py function

1 def cross_correlate_GLM_MMIA(GLM_snippets , MMIA_snippets , GLM_norm ,

MMIA_norm , matches , show_plots):

2 '''
3 This function gets snippets from GLM and MMIA and cross -

correlates them

4 to syncronize the signals and compare peaks.

5

6 Parameters

7 ----------

8 GLM_snippets : list

9 List of daily lists of GLM snippets.

10 MMIA_snippets : list

11 List of daily lists of MMIA snippets.

12 GLM_norm : list

13 List of daily lists of GLM normalized snippets.

14 MMIA_norm : list

15 List of daily lists of MMIA normalized snippets.

16 matches : list

17 List of existing GLM and MMIA dates.

18 show_plots : bool

19 Boolean variable for plotting. Not ploting makes the

program faster.

20

21 Returns

22 -------

23 GLM_xcorr : list

24 List of daily lists of synchronized GLM data.

25 MMIA_xcorr : list

26 List of daily lists of synchronized MMIA data.

27 delays : list

28 List of daily lists of delay between GLM and MMIA signal

per snippet.

29 '''
30

31 print('Starting cross -correlation of snippets and

syncronization of signals ...')
32

76

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.14 Function cross correlate GLM MMIA.py

33 # Creation of new lists for daily GLM and MMIA cross -correlated

data

34 GLM_xcorr = [None] * len(GLM_snippets)

35 MMIA_xcorr = [None] * len(MMIA_snippets)

36 delays = [None] * len(GLM_snippets)

37 for i in range(len(GLM_snippets)):

38 snips = [None] * len(GLM_snippets[i])

39 GLM_xcorr[i] = snips

40 for i in range(len(MMIA_snippets)):

41 snips = [None] * len(MMIA_snippets[i])

42 MMIA_xcorr[i] = snips

43 for i in range(len(GLM_snippets)):

44 snips = [None] * len(GLM_snippets[i])

45 delays[i] = snips

46

47 for i in range(len(GLM_snippets)):

48 print('Date %d, %d / %d...' % (int(matches[i]), i+1, len(

matches)))

49 for j in range(len(GLM_snippets[i])):

50 if i == 6 and j == 2:

51 show_plots = 1

52 else:

53 show_plots = 0

54 # If there 's no info for this snippet due to lack of .

nc or .cdf files

55

56 if type(GLM_snippets[i][j]) == np.ndarray and type(

MMIA_snippets[i][j]) == np.ndarray:

57

58 current_GLM = GLM_norm[i][j]

59 current_MMIA = MMIA_norm[i][j]

60

61 if show_plots == 1:

62 # Plotting cross -correlated and syncronized GLM

and MMIA normalized signals

63 plt.figure ()

64 plt.plot(current_MMIA [:,0], current_MMIA [:,1],

color = 'r', linewidth = 0.5)

65 plt.plot(current_GLM [:,0], current_GLM [:,1],

color = 'black ', linewidth = 1)

66 plt.legend (['MMIA','GLM'])
67 plt.title('GLM (black) and MMIA (red)

correlated normalized signals for day %d snippet %d' % (int(

matches[i]), j))

68 plt.xlabel('Time [s]')
69 plt.ylabel('Normalized energy ')
70 plt.grid('on')
71 plt.show()

72

73 # Calculation of delay in samples of GLM with

respect to MMIA

74 delay = int(TFG.signal_delay(current_GLM ,

current_MMIA , show_plots , int(matches[i]), j))

75

76 delays[i][j] = delay

77

77

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.14 Function cross correlate GLM MMIA.py

78 MMIA_xc = current_MMIA

79 GLM_xc = np.zeros((len(current_GLM) ,2))

80

81 for k in range(len(current_GLM)):

82 if delay != 0: # There is delay

83 # Adjust Normalized vector

84 GLM_xc[k,0] = current_GLM[k,0] - delay

*0.00001

85 GLM_xc[k,1] = current_GLM[k,1]

86 # Adjust original vector

87 GLM_snippets[i][j][k,0] = GLM_snippets[i][j

][k,0] - delay *0.00001

88 else: # delay ==0 so no delay at all

89 GLM_xc[k,:] = current_GLM[k,:]

90

91 if show_plots == 1:

92 # Plotting cross -correlated and syncronized GLM

and MMIA normalized signals

93 plt.figure ()

94 plt.plot(MMIA_xc [:,0], MMIA_xc [:,1], color = 'r
', linewidth = 0.5)

95 plt.plot(GLM_xc [:,0], GLM_xc [:,1], color = '
black ', linewidth = 1)

96 plt.legend (['MMIA','GLM'])
97 plt.title('GLM (black) and MMIA (red)

correlated normalized signals for day %d snippet %d' % (int(

matches[i]), j))

98 plt.xlabel('Time [s]')
99 plt.ylabel('Normalized energy ')

100 plt.grid('on')
101 plt.show()

102

103 # Plotting cross -correlated and syncronized GLM

and MMIA non normalized signals

104 plt.figure ()

105 plt.plot(MMIA_snippets[i][j][:,0],

MMIA_snippets[i][j][:,1], color = 'r', linewidth = 0.5)

106 plt.plot(GLM_snippets[i][j][:,0], GLM_snippets[

i][j][:,1], color = 'black ', linewidth = 1)

107 plt.legend (['MMIA','GLM'])
108 plt.title('GLM (black) and MMIA (red)

correlated normalized signals for day %d snippet %d' % (int(

matches[i]), j))

109 plt.xlabel('Time [s]')
110 plt.ylabel('Energy ')
111 plt.grid('on')
112 plt.show()

113

114 GLM_xcorr[i][j] = GLM_snippets[i][j]

115 MMIA_xcorr[i][j] = MMIA_snippets[i][j]

116

117 print('Date %d snippet %d cross -correlated and

aligned!' % (int(matches[i]), j))

118 elif type(GLM_snippets[i][j]) == np.ndarray and type(

MMIA_snippets[i][j]) != np.ndarray:

78

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.15 Function get GLM MMIA peaks.py

119 print('Date %d snippet %d was pre -avoided for lack

of MMIA data' % (int(matches[i]), j))

120 elif type(GLM_snippets[i][j]) != np.ndarray and type(

MMIA_snippets[i][j]) == np.ndarray:

121 print('Date %d snippet %d was pre -avoided for lack

of GLM data' % (int(matches[i]), j))

122 else:

123 print('Date %d snippet %d was pre -avoided for lack

of GLM and MMIA data' % (int(matches[i]), j))

124

125 print(' ')
126 print('All snippets checked!')
127 print(' ')
128 return [GLM_xcorr , MMIA_xcorr , delays]

B.15 Function get GLM MMIA peaks.py

Listing B.15: Full code for get GLM MMIA peaks.py function

1 def get_GLM_MMIA_peaks(GLM_xcorr , MMIA_xcorr , matches , show_plots):

2 '''
3 This function gets the cross -correlated vector snippets from

GLM and MMIA

4 and finds their indexes for every prominent peak in their

signals.

5 It returns a list of lists of index vectors for every snippet.

6

7 Parameters

8 ----------

9 GLM_xcorr : list

10 List of daily lists of synchronized GLM data.

11 MMIA_xcorr : list

12 List of daily lists of synchronized MMIA data.

13 matches : list

14 List of existing GLM and MMIA dates

15 show_plots : bool

16 Boolean variable for plotting. Not ploting makes the

program faster.

17

18 Returns

19 -------

20 GLM_peaks : list

21 List of daily lists with vectors of GLM_xcorr indexes for

peaks in the

22 signal.

23 GLM_peaks : list

24 List of daily lists with vectors of MMIA_xcorr indexes for

peaks in the

25 signal.

26 '''
27

28 print('Finding peaks in GLM and MMIA cross -correlated signals ')
29 print('This process can take a while ...')

79

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.15 Function get GLM MMIA peaks.py

30 GLM_peaks = [None] * len(GLM_xcorr)

31 MMIA_peaks = [None] * len(MMIA_xcorr)

32 for i in range(len(GLM_xcorr)):

33 snips = [None] * len(GLM_xcorr[i])

34 GLM_peaks[i] = snips

35 for i in range(len(MMIA_xcorr)):

36 snips = [None] * len(MMIA_xcorr[i])

37 MMIA_peaks[i] = snips

38

39 for i in range(len(GLM_xcorr)):

40 print('Date %s, %d / %d...' % (matches[i], i+1, len(

GLM_xcorr)))

41 for j in range(len(GLM_xcorr[i])):

42

43 if type(GLM_xcorr[i][j]) == np.ndarray and type(

MMIA_xcorr[i][j]) == np.ndarray:

44

45 print('Finding peaks for date %s snippet %d / %d' %

(matches[i], j, len(GLM_xcorr[i])))

46

47 # Cropping in order to have the same time to

compare

48

49 # Not overlapping conditions

50 GLM_left_cond = GLM_xcorr[i][j][-1,0]<= MMIA_xcorr[i

][j][0 ,0]

51 GLM_right_cond = GLM_xcorr[i][j][0,0]>= MMIA_xcorr[i

][j][-1,0]

52

53 if GLM_left_cond == True or GLM_right_cond == True:

54 print('Correlated snippets for date %s snippet

%d do not overlap at all' % (matches[i], j))

55 else:

56

57 # Finding the starting position

58 GLM_first = 0

59 if GLM_xcorr[i][j][0 ,0] < MMIA_xcorr[i][j

][0 ,0]: # GLM starts first

60 start_pos = np.where(GLM_xcorr[i][j][:,0]

<= MMIA_xcorr[i][j][0 ,0]) [0][-1]

61 GLM_first = 1

62 elif GLM_xcorr[i][j][0 ,0] > MMIA_xcorr[i][j

][0 ,0]: # MMIA starts first

63 start_pos = np.where(MMIA_xcorr[i][j][:,0]

<= GLM_xcorr[i][j][0 ,0]) [0][-1]

64 else: # Both start at the sime timestep

65 start_pos = 0

66

67 # Finding the end position

68 GLM_last = 0

69 if GLM_xcorr[i][j][-1,0] < MMIA_xcorr[i][j

][-1,0]: # GLM ends first

70 end_pos = np.where(MMIA_xcorr[i][j][: ,0] <=

GLM_xcorr[i][j][-1,0]) [0][-1]

71 elif GLM_xcorr[i][j][-1,0] > MMIA_xcorr[i][j

][-1,0]: # MMIA ends first

80

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.15 Function get GLM MMIA peaks.py

72 end_pos = np.where(GLM_xcorr[i][j][: ,0] <=

MMIA_xcorr[i][j][-1,0]) [0][-1]

73 GLM_last = 1

74 else: # Both end at the sime timestep

75 end_pos = -1

76

77 # Cropping vectors accordingly

78 if GLM_first == 1 and GLM_last == 1:

79 GLM_vector = GLM_xcorr[i][j][start_pos:

end_pos ,1]

80 GLM_time_vector = GLM_xcorr[i][j][start_pos

:end_pos ,0]

81 MMIA_vector = MMIA_xcorr[i][j][: ,1]

82 MMIA_time_vector = MMIA_xcorr[i][j][: ,0]

83

84 elif GLM_first == 1 and GLM_last != 1:

85 GLM_vector = GLM_xcorr[i][j][start_pos

:-1,1]

86 GLM_time_vector = GLM_xcorr[i][j][start_pos

:-1,0]

87 MMIA_vector = MMIA_xcorr[i][j][0: end_pos ,1]

88 MMIA_time_vector = MMIA_xcorr[i][j][0:

end_pos ,0]

89

90 elif GLM_first != 1 and GLM_last == 1:

91 GLM_vector = GLM_xcorr[i][j][0: end_pos ,1]

92 GLM_time_vector = GLM_xcorr[i][j][0: end_pos

,0]

93 MMIA_vector = MMIA_xcorr[i][j][start_pos

:-1,1]

94 MMIA_time_vector = MMIA_xcorr[i][j][

start_pos :-1,0]

95

96 elif GLM_first != 1 and GLM_last != 1:

97 GLM_vector = GLM_xcorr[i][j][:,1]

98 GLM_time_vector = GLM_xcorr[i][j][:,0]

99 MMIA_vector = MMIA_xcorr[i][j][start_pos:

end_pos ,1]

100 MMIA_time_vector = MMIA_xcorr[i][j][

start_pos:end_pos ,0]

101

102

103 # Calculating indexes of peaks in GLM signal

104 GLM_peak_vec , _ = find_peaks(GLM_vector ,

prominence = 0.3e-14, rel_height = 20)

105

106 # Calculating indexes of peaks in MMIA signal

107 MMIA_noise_level = np.percentile(MMIA_vector

,90, axis =0)

108 MMIA_peak_vec , _ = find_peaks(MMIA_vector ,

rel_height = 100, height = MMIA_noise_level , prominence = 0.4,

distance =400)

109

110 GLM_peaks[i][j] = GLM_peak_vec

111 MMIA_peaks[i][j] = MMIA_peak_vec

112

81

B CODE FOR IMPORTANT FUNCTIONS IN ORDER OF APPEARANCE IN
MAIN TFG.PY

B.15 Function get GLM MMIA peaks.py

113 # Cropping GLM_xcorr and MMIA x_corr

114 GLM_xcorr_new_snippet = np.zeros ((len(

GLM_vector) ,2))

115 GLM_xcorr_new_snippet [:,0] = GLM_time_vector

116 GLM_xcorr_new_snippet [:,1] = GLM_vector

117 GLM_xcorr[i][j] = GLM_xcorr_new_snippet

118

119 MMIA_xcorr_new_snippet = np.zeros ((len(

MMIA_vector) ,2))

120 MMIA_xcorr_new_snippet [:,0] = MMIA_time_vector

121 MMIA_xcorr_new_snippet [:,1] = MMIA_vector

122 MMIA_xcorr[i][j] = MMIA_xcorr_new_snippet

123

124 if show_plots == 1:

125

126 plt.figure ()

127 plt.plot(GLM_vector , color = 'black ',
linewidth =0.5)

128 plt.plot(GLM_peak_vec , GLM_vector[

GLM_peak_vec], "*", color='b')
129 plt.title('GLM peaks on day %d, snippet %d'

% (int(matches[i]), j))

130 plt.xlabel('Samples ')
131 plt.ylabel('Radiance [J]')
132 plt.grid('on')
133 plt.show()

134

135 plt.figure ()

136 plt.plot(MMIA_vector , color = 'r',
linewidth =0.5)

137 plt.plot(MMIA_peak_vec , MMIA_vector[

MMIA_peak_vec], "*", color='b')
138 plt.title('MMIA peaks on day %d, snippet %d

' % (int(matches[i]), j))

139 plt.xlabel('Samples ')
140 plt.ylabel(r'Irradiance $\left[\ dfrac{\mu W

}{m^2}\ right]$')
141 plt.grid('on')
142 plt.show()

143

144 else:

145 print('Date %s snippet %d was not cross correlated '
% (matches[i], j))

146 print(' ')
147

148 print('Done!')
149 return [GLM_peaks , MMIA_peaks]

82

	Nomenclature
	List of Figures
	List of Tables
	List of Listings
	Declaration of Honour
	Abstract
	Introduction
	Object
	Justification
	Scope
	Preliminary study
	Lightning detection data study
	Lightning detection performance

	Requirements

	Background
	GLM
	ASIM

	Explanation of the resolution algorithm
	General resolution algorithm
	Initial data management
	GLM's data order
	LINET's data handling
	MMIA's data handling

	GLM and MMIA data extraction and conditioning
	MMIA data extraction and conditioning
	GLM data extraction and conditioning

	Cross-correlation of signals and peak detections
	Cross-correlation basic functioning
	Cross-correlation of GLM and MMIA vectors
	Detection of peaks in GLM and MMIA signals

	Results
	Presentation of final results
	Delays between GLM and MMIA
	Peak correspondence

	Conclusions
	Future Continuation
	Budget

	References
	Appendices
	Code of the main_TFG.py script
	Code for important functions in order of appearance in main_TFG.py
	Function GLM_data_ordering.py
	Function get_MMIA_dates.py
	Function check_existance.py
	Function get_linet_timing.py
	Function MMIA_data_ordering.py
	Function extract_MMIA.py
	Function unify_MMIA_data.py
	Function condition_MMIA_data.py
	Function extract_GLM.py
	Function unify_GLM_data.py
	Function condition_GLM_data.py
	Function fit_vector_in_MMIA_timesteps.py
	Function signal_delay.py
	Function cross_correlate_GLM_MMIA.py
	Function get_GLM_MMIA_peaks.py

