
ARTICLE TEMPLATE

A recursive LMI-based algorithm for efficient vertex reduction in

LPV systems

Adrián Sanjuana, Damiano Rotondob, Fatiha Nejjaria, and Ramon Sarratea

a Research Center for Supervision, Safety and Automatic Control (CS2AC), Universitat
Politècnica de Catalunya (UPC). Address: Rambla Sant Nebridi 10, 08222 Terrassa, Spain.
Edifici TR11;
b Department of Electrical Engineering and Computer Science (IDE), University of
Stavanger, Kristine Bonnevies vei 22, 4021, Stavanger, Norway

ARTICLE HISTORY

Compiled August 10, 2021

ABSTRACT
This paper proposes a new algorithm to reduce the number of gains of a polytopic
LPV controller considering generic tuples of vertices, for which a common controller
gain can be used. The use of Frobenius norm and the inclusion of the input matrix
in the LMIs perturbation matrix allows decreasing the conservativeness to select
vertices which are combinable, with respect to existing conditions based on Gersh-
gorin circles (Sanjuan, Rotondo, Nejjari, & Sarrate, 2019). The proposed algorithm
is developed by defining a combinability metric that can be applied to an arbitrary
partition of the set of vertices. Then, a recursive algorithm finds a lesser-fragmented
combinable partition at each iteration by combining together two elements of a par-
tition. The algorithm aims at finding combinable partitions with minimal cardinality
in fewer attempts, with the objective of reducing the number of gains of a polytopic
controller, always preserving the original performance specifications. The proposed
method is validated using numerical examples, a twin rotor MIMO system (TRMS)
and a two-link robotic manipulator.

KEYWORDS
Linear parameter varying (LPV); linear matrix inequalities (LMIs); vertex
reduction; state-feedback control.

1. Introduction

Linear parameter varying (LPV) systems are among the most successful approaches
to control nonlinear systems. By means of a suitable embedding of the nonlinearities
within some scheduling variables (Kwiatkowski, Boll, & Werner, 2006; Rotondo, Puig,
Nejjari, & Witczak, 2015), many nonlinear systems can be transformed in a so-called
equivalent quasi-LPV representation. The term quasi refers to the dependence of the
varying parameters on endogenous signals, such as states and/or inputs (Marcos &

Email addresses: adrian.sanjuan@upc.edu (ADRIÁN SANJUAN), damiano.rotondo@uis.no (DAMIANO

ROTONDO), fatiha.nejjari@upc.edu (FATIHA NEJJARI), ramon.sarrate@upc.edu (RAMON SARRATE)

Balas, 2004). Then, linear-like analysis and design techniques can be applied straight-
forwardly to nonlinear systems, with the main advantage of retaining their simplicity
(Apkarian, Gahinet, & Becker, 1995; Blanchini & Miani, 2003; Bokor & Balas, 2004;
Pfifer & Seiler, 2015; Rotondo, Nejjari, & Puig, 2014). In the last years, a wide range of
fields have benefited from the application of LPV control, such as wind power produc-
tion (Ibáñez, Inthamoussou, & De Battista, 2019), aviation (López-Estrada, Ponsart,
Theilliol, Zhang, & Astorga-Zaragoza, 2016; Rotondo, Cristofaro, Johansen, Nejjari,
& Puig, 2019), or robotics (Rotondo, Puig, Nejjari, & Romera, 2015), just to name a
few (the interested reader is referred to the survey paper (Hoffmann & Werner, 2015)).

When using LPV models, analysis and control synthesis tasks usually take the
form of a set of parameter-dependent linear matrix inequalities (LMIs), which are not
tractable computationally because they correspond to infinite-dimensional constraints.
In order to reduce them to a finite number of conditions, some kind of manipulation
should be performed, e.g. the parameter-varying matrices (among which one finds the
LPV controller gain) can be described as a convex combination of constant vertex
matrices, which is referred to in the literature as the polytopic approach (see the tu-
torial (Rotondo, Sánchez, Nejjari, & Puig, 2019) for further information). However,
in polytopic approaches, the complexity of the controller depends exponentially on
the number of scheduling variables, which means that a large number of these vari-
ables would lead to a much higher number of vertex controller gains that should be
synthesized (Rizvi, Abbasi, & Velni, 2018). For instance, for the most popular poly-
topic modelling technique, which is the bounding box (Sun & Postlethwaite, 1998), the
number of vertices nv and the number of scheduling variables np are related as follows

nv = 2np . (1)

This issue, which may cause the implementation of an LPV controller into a micro-
controller to become computationally infeasible, does not affect only large-scale sys-
tems, but also small-scale laboratory setups. For instance, in (Rotondo, Nejjari, &
Puig, 2013) LPV techniques were applied to a twin rotor multiple-input multiple-
output system (TRMS), showing that the highly nonlinear coupled model could be
described by an LPV model with 11 scheduling parameters, which correspond to 2048
vertex controller gains.

There is a twofold drawback which is inherent in a high vertex number. First of all, it
increases the amount of memory that must be allocated in the micro-controller to store
the controller gains (and, possibly, the observer gains, if an estimate-feedback control
law is considered due to the inaccessibility of some states for measurement). Secondly,
a high vertex number leads to a longer time required to compute the instantaneous
gain as a weighted combination of vertex gains. This issue may lead to undesired
delays, thus hindering the real-time implementation, especially in cases where the
main dynamics of the plant to be controlled are particularly fast.

For this reason, a line of research that has received some recent interest is the re-
duction of the LPV controller complexity, which can be achieved through five different
approaches:

(i) Principal component analysis (PCA), by detecting and neglecting the less signif-
icant directions in the parameter space without losing much information regard-
ing the plant, thus allowing the attainment of a tighter parameter set (Jabali

2

& Kazemi, 2017; Kwiatkowski & Werner, 2008; Rizvi, Mohammadpour, Tóth,
& Meskin, 2016). Notably, some recent advances in this domain have led to the
application of autoencoder neural networks, which achieve reduction of the vary-
ing parameters without being restricted to behave as linear maps (Rizvi et al.,
2018).

(ii) Gap metric (GM) techniques, by quantifying the distance between two mod-
els (El-Sakkary, 1985), and providing an indication of how much perfor-
mance/robustness is lost when a controller designed for one local model is used
for another one (Ahmadi & Haeri, 2018; Vizer & Mercere, 2014; Zribi, Chtourou,
& Djemal, 2016).

(iii) Model order reduction, by reducing the dimension of the state vector while
keeping a similar input-output behaviour to the non-reduced system (Abbas
& Werner, 2010; Gőzse, Luspay, Péni, Szabó, & Vanek, 2016; Matz, Mourllion,
& Birouche, 2018; Poussot-Vassal & Roos, 2012).

(iv) Polytope size reduction, by discarding infeasible combinations of time-varying
parameters based on their interdependency (Robert, Sename, & Simon, 2009).

(v) LMI-based reduction, by designing a common controller gain for a set of vertices
based on analysing how much the LMIs, which represent a set of specifications,
are modified by this common controller (Sanjuan et al., 2019).

This last category of approaches is still premature, since the recent (and sole avail-
able) work (Sanjuan et al., 2019) only set the basis for its development towards a more
mature stage. More specifically, (Sanjuan et al., 2019) provided a heuristic methodol-
ogy to combine two vertices of an LPV polytopic model. Hence, the number of vertex
controllers could be reduced from nv to nv−1, which was deemed to be a first necessary
step to develop an iterative algorithm for achieving a bigger reduction. The heuristic
algorithm proposed in (Sanjuan et al., 2019) was based on the use of Gershgorin circles
to analyse the perturbation of LMIs when two vertices are combined together, in the
sense of a common controller gain being used for both.

The main goal of the present work is to develop an algorithm that allows considering
generic tuples of vertices, for which a common controller gain is used, in order to
achieve an overall reduction from nv vertices to a much smaller number nc. This
is attained by starting with the algorithm in (Sanjuan et al., 2019), but with two
important modifications, that are the main contributions of this paper:

(i) the basic algorithm to combine two vertices is improved by introducing two inno-
vations. First of all, it is shown that the use of the Frobenius norm (Quarteroni,
Sacco, & Saleri, 2010), instead of Gershgorin circles, leads to less conservative-
ness. Secondly, the role of the input matrix in the LMIs, originally neglected
by (Sanjuan et al., 2019), is taken into account by means of an appropriate
redefinition of the perturbation matrix, thus achieving a further decrease of con-
servativeness;

(ii) a complete algorithm that achieves a reduction from nv to nc vertices is de-
veloped by extending the combinability metric such that it can be applied to
an arbitrary partition of the set of vertices; then, a recursive algorithm finds a
lesser-fragmented combinable partition at each iteration by combining together
two elements of a partition.

By applying the developed algorithms, a more compact controller that preserves the

3

original performance specifications will be obtained. This reduction will certainly lead
to an increase of the availability of the processor, so that the resulting controller be-
comes implementable in micro-controllers or small-scale laboratory setups with limited
computational power or available resources.

Throughout the paper, several examples are used to show the application of the
algorithm and validate its effectiveness: numerical systems, a TRMS, and a two-link
robotic manipulator.

The remaining of the paper is structured as follows. In Section 2, the problem
under consideration is introduced and formulated, while a review of the combinability
ranking design as well as some improvements to increase the likelihood of selecting
a combinable vertex pair are provided in Section 3. Section 4 presents the complete
algorithm to reduce the number of vertices of a polytopic system and some examples
that show the efficiency of the algorithm are analysed in Section 5. Finally, Section 6
outlines the main conclusions.

2. Problem formulation

Let us consider the following LPV system

σx(t) = A(θ(t))x(t) + B(θ(t))u(t), (2)

where σx(t) denotes ẋ(t) in the continuous-time case and x(t+ 1) in the discrete-time
case, x(t) ∈ Rnx and u(t) ∈ Rnu are the state and the input vector, respectively, and
A(θ(t)) ∈ Rnx×nx and B(θ(t)) ∈ Rnx×nu are parameter-dependent matrices, which
depend on the vector of time-varying parameters θ(t) ∈ Θ ⊂ Rnp .

An equivalent representation of the LPV system (2) is obtained by considering that
the matrices A and B are described as a convex combination of constant matrices
which are functions of θ(t), i.e., they depend on θ(t) in a polytopic way

σx(t) =

nv∑
v=1

αv(θ(t))(Avx(t) + Bvu(t)), (3)

where Av and Bv, v = 1, . . . , nv, define the so-called vertex systems (in the following,
with a slight abuse of language, they will be referred to as vertices), nv is the number
of vertices and αv are the coefficients of the polytopic decomposition, such that

nv∑
v=1

αv(θ(t)) = 1

αv(θ(t)) ≥ 0 ∀v = 1, ..., nv, ∀θ(t) ∈ Θ
. (4)

Hereafter, an LPV state-feedback controller will be designed, so that the system (3)
achieves the desired closed-loop performance, as follows

u(t) = K(θ(t))x(t), (5)

where K(θ(t)) ∈ Rnu×nx is the controller gain, which depends on θ(t). In recent years,

4

the description of the specifications through LMIs has become popular because they
are a versatile tool which allows to handle different types of performance conditions,
e.g. stability, pole placement or guaranteed H∞ performance. The LMIs are a set of
parameterized inequalities with unknown variables X � 0 (Lyapunov matrix) and
Γ(θ(t)) = K(θ(t))X (Apkarian & Tuan, 2000) such that

F (A(θ(t)),B(θ(t)),X,Γ(θ(t))) ≺ 0 ∀θ ∈ Θ. (6)

However, (6) is computationally intractable because it corresponds to an infinite num-
ber of LMIs. For this reason, a polytopic representation of the LPV controller is chosen
to reduce the number of constraints involved in the design. Consequently, (5) becomes

u(t) =

nv∑
v=1

αv(θ(t))Kvx(t), (7)

where Kv ∈ Rnu×nx are the vertex controller gains. Rewriting (6) at the vertices,
taking into account the previous assumption, as

F (Av,Bv,X,Γv) ≺ 0 ∀v = 1, . . . , nv, (8)

and solving (8), the vertex controller gains can be obtained as follows

Kv = ΓvX
−1. (9)

As stated in the introduction, we are interested in decreasing the number of con-
troller gains from nv to nc, where nc < nv. This objective is achieved by considering
the same controller gain for a combinable set of vertices, of which we give a formal
definition hereafter.

Definition 2.1 (Combinable partition). A partition S of the set of vertices V =
{1, ..., nv} is said to be combinable for the set of LMIs (8), if there exist a matrix
X � 0 and matrices Γs ∈ Rnu×nx , such that

F (Av,Bv,X,Γs) ≺ 0 ∀v ∈ s ∈ S. (10)

Definition 2.2 (Combinable set). A combinable set s is an element of a combinable
partition S

s ∈ S. (11)

The LPV state-feedback controller (7) of a combinable partition S will be given by

u(t) =

|S|∑
i=1

αsiKix(t), (12)

with

αsi =
∑
v∈si

αv(θ(t)), (13)

5

where |S| is the cardinality of the partition S and si is an element of S.

The problem of interest in this paper is to find an algorithm that searches for
combinable partitions with minimal (or at least close to the minimal) cardinality in
fewer attempts, with the goal of reducing the number of controller gains.

The paper will focus on the design of a polytopic controller, even though the pro-
posed methodology can be extended to any other problem related to gain-scheduled
design, e.g. observer or fault estimator design.

3. Improvements in the combinability ranking generation

3.1. Background

The paper (Sanjuan et al., 2019) developed a heuristic methodology based on Gersh-
gorin circles that searched for two combinable vertices in a polytopic LPV model. The
main ideas of this work are summarised hereafter.

Let us consider a system with combinable vertices i and j, such that a common
controller gain Ki = Kj can be designed, which means that Γi = Γj = Γ{i,j}. For
these vertices, (8) will be stated as{

F
(
Ai,Bi,X,Γ

{i,j}) ≺ 0

F
(
Aj ,Bj ,X,Γ

{i,j}) ≺ 0
. (14)

By considering that the vertex i can be perceived as a perturbation with respect to
the vertex j and vice versa, the LMIs (14) can be rewritten as{

F
(
Ai,Bi,X,Γ

{i,j}) ≺ 0

F
(
Ai,Bi,X,Γ

{i,j})+ ∆F (∗){i,j} ≺ 0
⇔

{
F
(
Aj ,Bj ,X,Γ

{i,j})−∆F (∗){i,j} ≺ 0

F
(
Aj ,Bj ,X,Γ

{i,j}) ≺ 0
,

(15)

with

∆F (∗){i,j} = F
(
Aj ,Bj ,X,Γ

{i,j}
)
− F

(
Ai,Bi,X,Γ

{i,j}
)
, (16)

where ∆F (∗){i,j} is the perturbation matrix that represents the interaction between
vertices i and j.

By analysing how much ∆F (∗) (15) affects the LMIs, it is possible to determine
which vertices are more susceptible of being combinable. (Sanjuan et al., 2019) pre-
sented an algorithm to search for a combinable vertex pair, which was based on cal-
culating a combinability ranking, using the steps detailed in Algorithm 1.

The algorithm as presented in (Sanjuan et al., 2019) has two issues. First of all, a

combinability metric based on Gershgorin circles, referred in the following as r
{i,j}
GC , is

applied to ∆F (∗), which is equivalent to using an L∞-norm. This introduces conser-
vativeness due to the fact that the worst case-scenario for ∆F (∗) is considered.

6

Algorithm 1 : Vertex reduction (nv → nv − 1)

1: Solve the LMIs (8) and obtain matrices X and Γv. Note that a controller gain is
designed for each vertex in this step

2: Determine ∆F(∗){i,j} (16) for each vertex pair

3: Compute a combinability metric r
{i,j}
∗ for each ∆F(∗){i,j}

4: Generate the combinability ranking by sorting r
{i,j}
∗ in ascending order

5: Combine the vertices following the combinability ranking until a feasible solution
is found or nk attempts have been made

Secondly, the perturbation matrix ∆F(∗) is built by considering only the terms in
the LMIs (15) which depend directly on the Lyapunov matrix X, somehow neglecting
the role of the input matrix B and the controller gains Γ{i,j} (transformed through
X, see Eq.(9)).

In the following, these two issues will be attenuated by using a new metric to
generate the combinability ranking (Section 3.2) and by redefining the perturbation
matrix (Section 3.3). The decrease of conservativeness brought by these innovations
will be later illustrated by means of an example (Section 3.4).

3.2. Metric definition

In Algorithm 1, a combinability metric is applied to the perturbation matrix ∆F(∗)
in order to determine which vertices are more combinable. In (Sanjuan et al., 2019),

the chosen metric r
{i,j}
∗ was based on Gershgorin circles, as follows

r
{i,j}
GC = ||∆F(∗){i,j}||∞ = max

k

|∆f{i,j}kk |+
n∑

l=1
l 6=k

|∆f{i,j}kl |

 , (17)

where ∆f
{i,j}
kl is the element of matrix ∆F(∗){i,j} located at row k and column l. As

stated previously, although quite intuitive, this combinability metric is conservative
because it considers the ”worst case scenario”.

In this paper, we propose to use the Frobenius norm (Quarteroni et al., 2010) in
order to improve the combinability ranking. More specifically, the Frobenius-based
combinability metric is defined as

r
{i,j}
F = ||∆F(∗){i,j}||F =

√√√√ n∑
k=1

n∑
l=1

|∆f{i,j}kl |2 =

√√√√ n∑
l=1

σ2
l (∆F(∗){i,j}), (18)

where σl(∆F(∗){i,j}) denotes the singular values of ∆F(∗){i,j}.
The Frobenius-based combinability metric (18) quantifies the perturbation matrix

as the Euclidean norm of its singular values. The main difference between r
{i,j}
GC and

r
{i,j}
F is that the former considers the worst possible location where the maximum real

7

value of the eigenvalues of the LMI can be, whereas the latter takes into account all
singular values of the perturbation matrix.

3.3. Perturbation matrix definition

The perturbation matrix ∆F(∗){i,j} plays an important role in Algorithm 1 because
it quantifies how much the negative definiteness of the matrix on the left-hand side of
the LMIs (15) can be affected by the use of a common controller gain for the vertex
pair {i, j}. It must be highlighted that an appropriate definition of this matrix might
improve the performance of the combinability ranking, in the sense of placing the
combinable vertex pairs in the top positions.

In this paper, we propose to analyse the effect of using a common controller for
vertices i and j, generating two different perturbation matrices on the LMIs.

The perturbation matrix ∆F1 is built by considering that the solver generates a
common controller gain Γl for vertices i and j{

F (Ai,Bi,X,Γl) ≺ 0

F (Aj ,Bj ,X,Γl) ≺ 0
⇔

{
F (Ai,Bi,X,Γl) ≺ 0

F (Ai,Bi,X,Γl) + ∆F1{i,j} ≺ 0
, (19)

whereas the second perturbation matrix ∆F2 is obtained by assuming that the solver
provides a feasible solution when the controller gain Γj is used for vertices i and j{

F (Ai,Bi,X,Γj) ≺ 0

F (Aj ,Bj ,X,Γj) ≺ 0
⇔

{
F (Ai,Bi,X,Γi)−∆F2{i,j} ≺ 0

F (Aj ,Bj ,X,Γj) ≺ 0
. (20)

Thus, the perturbation matrices, taking into account (19) and (20), are

∆F1{i,j} = F (Aj ,Bj ,X,Γl)− F (Ai,Bi,X,Γl) , (21)

∆F2{i,j} = − (F (Ai,Bi,X,Γj) −F (Ai,Bi,X,Γi)) . (22)

It must be highlighted that, from the set of LMIs generated by applying the spec-
ifications defined by the designer, the LMI in which only a single vertex is involved
in its definition is the one considered to formulate the perturbation matrices (21) and
(22).

When input matrix B is constant, the perturbation matrix (21) corresponds to the

one presented in (Sanjuan et al., 2019). From the point of view of vertex i, ∆F1{i,j}in

(21) and ∆F2{i,j}in (22) can be interpreted as perturbations due to the system and
to the controller, respectively.

In this paper, the combinability metric that has been considered in Algorithm 1 to
evaluate ∆F1{i,j} and ∆F2{i,j} is as follows

r
{i,j}
∗̄ = δ1 · r{i,j}∗

(
∆F1{i,j}

)
+ δ2 · r{i,j}∗

(
∆F2{i,j}

)
, (23)

8

where δ1 and δ2 are the perturbation matrix weights. In the remaining of the paper,
the weighting factors will be considered as δ = δ1 = δ2 = 0.5 for the sake of simplicity.
A detailed study of the optimal choice of these parameters as well as alternative
expressions for the combinability metric falls out of the scope of this paper.

The structure of the perturbation matrices (21) and (22) will depend on the perfor-
mance conditions imposed by the designer. For example, when a quadratic D−stability
specification, with a circular region with center (−q, 0) and radius r, is considered and
the matrix B is common for each vertex, the LMI is given by (Chilali & Gahinet,
1996)

Drv =

(
−rX qX + Gv

qX + GT
v −rX

)
≺ 0, (24)

where

Gv = AvX + BΓv. (25)

Then, the perturbation matrices are the following

∆F1{i,j} =

(
0 (Aj −Ai)X

X(Aj −Ai)
T 0

)
, (26)

∆F2{i,j} = −
(

0 B(Γj − Γi)
(Γj − Γi)

TBT 0

)
. (27)

For the interested reader, Appendix A reports the perturbation matrices in the case
where a guaranteed H∞ bound were considered as performance specification.

Algorithm 2 is based on Algorithm 1 and incorporates the improvements described
in Sections 3.2 and 3.3.

Algorithm 2 : Improved vertex reduction (nv → nv − 1)

1: Solve the LMIs (8) and obtain matrices X and Γv (non-combined vertices)

2: Determine ∆F1{i,j} and ∆F2{i,j} using (21)-(22) for each vertex pair

3: Compute r
{i,j}
F̄

as in (23)

4: Generate the combinability ranking by sorting r
{i,j}
F̄

in ascending order
5: Combine the vertices following the combinability ranking until a feasible solution

is found or nk attempts have been made

3.4. Illustrative example

The benefits of Algorithm 2 in contrast to Algorithm 1 are assessed by means of one
among the sets of academic systems previously considered in (Sanjuan et al., 2019).
This set consists of 250 academic systems with three states, three inputs and five
vertices. The objective is to design nv−1 controller gains for each system, considering
that each of them has a maximum number of combinable vertex pairs equal to 2.

9

Fig. 1 presents the results obtained using Algorithms 1 and 2 in order to find
a combinable vertex pair in fewer attempts. As summarized in Table 1, the results
denoted as L1 correspond to the application of the method proposed in (Sanjuan et
al., 2019) which uses the combinability metric rGC and only the perturbation matrix
∆F1. On the other hand, the results denoted as L2, L3 and L4 show the improvements
brought by the innovations proposed in the previous sections.

1 2 3 4 5 6 7 8 9 10

Required iterations

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty
 [
0
,1

]

L1

L2

L3

L4

Figure 1.: Vertex reduction from nv to nv − 1. Comparison between different
approaches.

Label Metric ∆F1 Metric ∆F2

L1 r
{i,j}
GC

(
∆F1{i,j}

)
0

L2 r
{i,j}
F

(
∆F1{i,j}

)
0

L3 r
{i,j}
GC

(
∆F1{i,j}

)
r
{i,j}
GC

(
∆F2{i,j}

)
L4 r

{i,j}
F

(
∆F1{i,j}

)
r
{i,j}
F

(
∆F2{i,j}

)
Table 1.: Description of the labels L1, L2, L3 and L4

L2 uses the same perturbation matrix as L1, but the combinability ranking is ob-
tained using rF. It can be seen that L2 outperforms L1. For instance, a combinable
vertex pair was found at the first attempt in about 55% of the 250 systems when L2
was used, whereas only in about 49% of the systems when L1 was considered.

On the other hand, the results denoted by L3 have been obtained using both pertur-

bation matrices ∆F1 and ∆F2, keeping the same combinability metric as L1, i.e. r
{i,j}
GC

(23), which provides an even bigger improvement. Indeed, L3 improves the probability
of finding a combinable vertex pair in the first iteration of about 11%.

10

Finally, the best results have been obtained when both innovations are applied
(results denoted as L4). In this case, which corresponds to Algorithm 2, a combinable
vertex pair was found in about 64% of the systems during the first iteration, and in
more than 80% in the second iteration.

It can be concluded that the innovations discussed in this section improve the per-
formance of the combinability ranking, and are worth of being considered in the de-
velopment of a complete algorithm that achieves further reduction of vertices from nv
to nc, which will be done in the following section.

4. Searching for a minimal combinable partition

The goal of this section is to describe an algorithm that allows to find a combinable par-
tition with the minimal (or close to the minimal) number of elements that preserves
the original performance specifications. This combinatorial optimization problem is
modelled as an ordered tree, where every node represents a partition of the set of
vertices of the LPV system. The root node corresponds to the partition whose ele-
ments are all singletons. The child nodes of a given node are ordered according to the
combinability metric of their corresponding partition.

4.1. Combinability metric for a partition

The combinability metric described in Section 3.2 considered the case in which two
vertices were to be combined. Hereafter, a metric for evaluating the combinability of
a partition P is proposed, as follows

rP� = max
p∈P

rp�, (28)

where rp� denotes the combinability metric for the set p, defined as

rp� =

 max
i,j∈p; i<j

r
{i,j}
� |p| > 1

0 |p| = 1
, (29)

and taking into account that p is an element of the partition P, |p| is the cardinality of

the set p, i and j are vertices of the set p and r
{i,j}
� is a two vertex combinability metric,

e.g. the Frobenius-based metric (23), which will be used throughout the remaining of
this paper.

The combinability metric of a partition (29) is induced from the fact that a single
non-combinable vertex pair in a vertex set p of the partition P (p ∈ P) determines
that this distribution is not combinable.

11

4.2. Recursive vertex reduction

A solution to the combinatorial optimization problem will be provided by the heuristic
depth-first search algorithm denoted as Algorithm 3. This algorithm, which is based
on Algorithm 2, tries to find a lesser-fragmented combinable partition at each recursive
call. Vertex reduction is achieved by combining two elements of a combinable partition
in order to decrease its cardinality. The result of this procedure will be denoted by
level.

Definition 4.1 (Candidate partition). ς is a candidate partition extracted from the
combinable partition S, if ς is obtained from S by replacing two of its elements with
their union, as follows

ς = (S\{sm, sn}) ∪ (sm ∪ sn) sm, sn ∈ S. (30)

Definition 4.2 (Level candidates set). Σ is a level candidates set for the combinable
partition S, if Σ contains all candidate partitions extracted from S:

Σ = {ς1, ς2, ..., ςncp
}, (31)

where ςi is a candidate partition and ncp is the number of partitions that can be
generated by combining two elements of S.

Algorithm 3 requires the following inputs to proceed with the reduction:

• the structure node, which refers to the corresponding combinable partition
node.S and the set of assessed partitions node.setAssdPart which records the
partitions that have been already assessed during the search until reaching this
node;
• S∗, which represents the current solution (i.e., the partition with the minimal

number of elements);
• SysData, which contains all the information required to compute the LMIs;
• the structure param, which stores three parameters sLVLmax, nk, and nLMImax,

which constrain the search;

whereas the output of the function is the updated solution S∗.
The search starts by generating the level candidates set Σ (step 1), combining all

the possible combinations of two elements of node.S, and evaluating them using a
combinability metric (step 2). The LMIs that correspond to a candidate partition are
evaluated (at step 14 by function isCombinablePartition) following the level candidates
ranking (i.e. sorting the level candidate set in increasing combinability metric order),
as long as the corresponding partition has not been considered previously. The function
isNewPartition (step 10) determines whether a certain candidate partition has been
analysed already or was discarded during this search. This information is determined
taking into account the trace of candidate partitions corresponding to already assessed
nodes (stored in childNode.setAssdPart).

If the LMIs provide a feasible solution, which means that a combinable partition
childNode.S has been found, S∗ is updated as long as this child node partition has
fewer elements than the current best solution (step 18). Then, a new level is created

12

(step 20). Indeed, if a candidate partition of a given node is not combinable, neither
will be the partitions that correspond to its descendants. When a level is fully analysed,
the search algorithm backtracks to the previous level, by returning S∗ (step 24).

In order to reduce the computational burden of the depth-first search, three pa-
rameters (sLVLmax, nk, and nLMImax) are used to constrain the search at step 7. At
most, nk candidate partitions per level will be assessed, from which sLVLmax levels
will be created at most. The remaining candidate partitions of the current level, and
those corresponding to their descendants, are discarded. The parameter nLMImax sets
an upper bound on the total number of LMIs to be solved during the search, which
is accounted for by the global variable nLMI. The search terminates if this bound is
reached or the best reduction is achieved (condition |S∗| = 1), which means that all
vertices will use the same controller gain (i.e., a robust controller gain exists for the
considered system and design specifications).

To prune the search properly, a suitable choice of parameters nk and sLVLmax is
required. On the one hand, the set of candidate partitions to be assessed per level
is constrained to the nk partitions with a higher combinability metric. Thus, this
parameter should be set according to the expected probability of success in finding a
combinable partition, which depends on the metric performance (see Fig. 1). Choosing
a lower value for nk is recommended for those cases where finding combinable partitions
among the first positions of the level candidates ranking is very likely.

On the other hand, the set of combinable partitions per level for which a new level
will be created is constrained to the sLVLmax partitions with a higher combinability
metric. Thus, this parameter allows to further constrain the size of the search tree.
Additionally, note that sLVLmax ≤ nk should hold.

Finally, the search parameter nLMImax has an important role in complex systems.
The size of the search tree increases exponentially with the number of vertices of
the LPV system, as long as sLVLmax is bigger than one. Hence, nLMImax limits the
computational burden of the search.

In the worst case, Algorithm 3 will have to explore all possible partitions, which
corresponds to the Bell number. Therefore, the algorithm has worst-case exponential
time complexity. However, the fact that even the partitions that correspond to the
node descendants of a non-combinable partition are not combinable makes Algorithm
3 have a much better average-case performance than a brute-force search.

The parameters defined in Algorithm 3 reduce the worst-case time complexity of
the search at the expense of optimality. Parameter nLMImax provides constant time
complexity, whereas nk and sLVLmax, subexponential complexity. Fig. 2 shows the
worst-case complexity dependence of Algorithm 3 on nk for a particular number of
vertices, nv = 8, sLVLmax = nk and nLMImax = 4500.

The range of possible values for nk goes from 1 to the number of candidate partitions
at level nv − 1, which is nv(nv − 1)/2. In general, a low value for nk must be chosen in
order to achieve a notable reduction of the execution time of Algorithm 3. For instance,
in this particular example, to get a 50% reduction on the worst-case running time of
the algorithm, nk should be set to 6.

13

Algorithm 3 : S∗ := SearchMinimalPartition(node, S∗, SysData, param)

nLMI is a global variable initialized to 0
1: Generate the level candidates set Σ that corresponds to node.S
2: Compute the combinability metric r

{ςi}
F̄

(28) for each ςi ∈ Σ
3: numCombPart:=0
4: numCheckedPart:=0
5: childNode.setAssdPart:=node.setAssdPart
6: for all ς ∈ Σ in increasing combinability metric order do
7: if |S∗| = 1 or nLMI=param.nLMImax or

(numCombPart=param.sLVLmax or numCheckedPart=param.nk) then
8: return S∗

9: end if
10: if isNewPartition(ς,childNode.setAssdPart) then
11: numCheckedPart:=numCheckedPart+1
12: childNode.setAssdPart:=childNode.setAssdPart ∪{ς}
13: nLMI:=nLMI+1
14: if isCombinablePartition(ς,SysData) then
15: numCombPart:=numCombPart+1
16: childNode.S:=ς
17: if |childNode.S| < |S∗| then
18: S∗:= childNode.S
19: end if
20: S∗ := SearchMinimalPartition(childNode, S∗, SysData, param)
21: end if
22: end if
23: end for
24: return S∗

14

1 4 7 10 13 16 19 22 25 28

n
k

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u

m
b

e
r

o
f

s
o

lv
e

d
 L

M
Is

Figure 2.: Worst-case complexity dependence on nk for nv = 8

5. Illustrative examples

Three examples are considered in this section in order to assess the efficiency of Algo-
rithm 3. First, a numerical example is used to describe in detail each step of Algorithm
3 for illustrative purposes. Second, it is shown that the number of controller gains for
the TRMS, which is a complex system with 256 vertices, can be reduced by applying
the proposed algorithm. Finally, a two-link robotic manipulator is used to demonstrate
the applicability of the proposed approach to cases where the LPV system contains a
parameter-varying input matrix.

5.1. Academic example

Consider a system that has 3 states, 2 inputs and 5 vertices with vertex state matrices
Av and input matrix B as follows

A1 =

 6.63 −2.01 3.14
6.07 0.54 2.56
−8.80 −1.66 −4.16

 A2 =

−1.37 −6.66 −6.04
−9.69 −7.88 −0.21

9.68 −2.55 −3.21

A3 =

 9.03 4.75 0.96
8.41 −4.62 8.85
−8.95 −1.54 −1.65

 A4 =

 9.66 3.33 3.33
−3.97 0.78 −6.44

4.02 3.96 −7.44

A5 =

 9.98 1.22 −6.19
−6.58 7.64 −2.62
−9.35 3.38 −0.79

 B =

 0.96 0.29
−0.69 −0.25

0.71 −0.62

 .

15

The chosen performance specification is quadratic D−stability of the closed-loop
system with an LMI region D(α, γ, r) composed by an α-stability region, a conic
sector with angle γ and a disk of radius r and centre (−q, 0) (Sanjuan et al., 2019).
YALMIP (Lofberg, 2004) and SeDuMi (Sturm, 1999) have been used to model and
solve the LMIs, respectively. For the remaining of the example, let us consider the case
where the LMI region of interest is D(1, 0.6, 44.4), for which the matrices X and Γv,
returned in the non-combined vertices case, are the following

X =

 2.46 −2.95 −3.27
−2.95 3.68 4.13
−3.27 4.13 5.36

 · 10−2,

Γ1 =

[
−0.25 0.25 0.16
−1.02 1.01 1.16

]
Γ2 =

[
−0.59 0.70 0.74
−1.10 1.27 1.89

]
Γ3 =

[
−0.18 0.15 0.02
−0.94 0.90 0.88

]
Γ4 =

[
−0.23 0.22 0.15
−0.50 0.43 0.79

]
Γ5 =

[
−0.30 0.33 0.30
−1.22 1.35 2.11

]
.

Brute-force search has been used to evaluate for which partitions the LMIs are satis-
fied, determining that the ones with the lowest number of elements are: {{1, 3, 4, 5},
{2}} and {{1, 3, 5}, {2, 4}}. It must be highlighted that the vertices are highly com-
binable in the selected region (Fig. 3), since 9 out of 10 level 4 candidate partitions are
combinable. Note that the levels are numbered according to the cardinality of the cor-
responding candidate partitions, where each level corresponds to a call to Algorithm
3.

The behaviour of Algorithm 3 is detailed below when the following search parame-
ters are set: sLVLmax = 1, nk = 2, and nLMImax = 20. The initial solution corresponds
to the partition of the root node: S∗ = {{1}, {2}, {3}, {4}, {5}}. The nodes connected
by a blue line in Fig. 3 correspond to the search sequence generated by these param-
eters.

The algorithm starts by evaluating the combinability metric of each vertex pair
(steps 1 and 2) to determine the level 4 candidates ranking. Note that the combinability
metrics are shown in the figure as a number located above the arrows. Thereafter, the
algorithm selects the first candidate partition {{1, 3}, {2}, {4}, {5}} (first iteration of
the for loop, step 6, at level 4), for which the best combinability metric has been
obtained (1.70), and computes the LMIs taking into account that vertices 1 and 3 use
the same controller gain (step 14). In this case, the solver provides a feasible solution
(denoted by a green background in Fig. 3), which means that a combinable partition
has been found and the new level 3.A is created (step 20 - new call to Algorithm 3).
Additionally, the current solution S∗ is updated (step 18) since a combinable partition
with fewer elements has been found.

After determining the level 3.A candidates ranking, the algorithm verifies that the
LMIs for the first candidate partition {{1, 3, 4}, {2}, {5}} provides a feasible solution
(first iteration of the for loop, step 6, at level 3.A). Consequently, the solution is
updated and level 2.A.A candidates set is generated. The algorithm determines that
the first two partitions of level 2.A.A are not combinable partitions and backtracks
to level 3.A (step 7), since nk = 2. Moreover, taking into account that sLVLmax = 1,
the algorithm further backtracks to level 4 and to the root node, since a combinable

16

partition has already been found at those levels (step 7). As a result, the search
terminates, providing the current best solution: S∗ = {{1, 3, 4}, {2}, {5}}.

By setting sLVLmax = 2, a deeper search will be accomplished. The algorithm fol-
lows the search sequence indicated by the blue and orange lines in Fig.3. In this case,
a second branch is explored after backtracking to level 3.A, updating the current so-
lution to {{1, 3, 5}, {2, 4}}. Note that, the partition {{1, 2, 4, 3, 5}} is not analysed,
since level 1 was discarded when level 2.A.A partitions provided an infeasible solution
(step 10). Later, when backtracking to level 4, a second branch is also explored, but
no better solution is found. It must be highlighted that the first partition of level
3.B {{1, 3, 4}, {2}, {5}} is discarded from the search (step 10), since it had been pre-
viously analysed in level 3.A. Finally, the search terminates, providing the solution:
S∗ = {{1, 3, 5}, {2, 4}}. Thus, by changing a search parameter (sLVLmax, in this case)
a better solution has been found, although at the cost of increasing the overall com-
putational load. Note that this solution corresponds to one of the partitions with the
minimal number of elements (optimal solution).

6.42

+

3.70

{1,2,3,4,5}

1.70

3.56

3.70

5.59

6.64

7.13

7.32

8.29

8.69

3.70

8.696.42

7.13

7.32

8.29

8.69

8.29

7.32

7.13

6.42

7.32

8.29

8.69

8.69

sLVLmax = 1

Non-combinable
partition

Combinable
partition

LEVEL 4 LEVEL 3.A

LEVEL 2.A.B

LEVEL 2.A.A

LEVEL 3.B LEVEL 2.B.A

LEVEL 2.B.B

LEVEL 1

Legend

Discarded
partition

8.69

8.29

7.13

8.69

8.29

7.13

8.69

8.29

7.13 Non-analysed
partition

{1,4},{2,3,5}

{1,2,4},{3,5}

{1,5},{2},{3},{4}

{1},{2},{3,4},{5}

{1,2},{3},{4},{5}

{1},{2},{3,5},{4}

{1},{2,5},{3},{4}

{1},{2,4},{3},{5}

{1},{2},{3},{4,5}

{1},{2,3},{4},{5}

{1,3,5},{2},{4}

{1,3,4},{2},{5}

{1,3},{2,5},{4}

{1,3},{2,4},{5}

{1,3},{2},{4,5}

{1,2,3},{4},{5}

{1,4},{2},{3,5}

{1,3,4},{2},{5}

{1,4},{2,5},{3}

{1,2,4},{3},{5}

{1,4,5},{2},{3}

{1,4},{2,3},{5}

{1,2,3,4},{5}

{1,3,4},{2,5}

{1,3,5},{2,4}

{1,3,4,5},{2}

{1,3,4,5},{2}

{1,2,3,5},{4}

{1,2,4},{3,5}

{1,3,4,5},{2}

{1,2,4,5},{3}

{1,2,3,4},{5}

{1,3},{2},{4},{5}

{1},{2},{3},{4},{5}

{1,4},{2},{3},{5}

sLVLmax = 2

Figure 3.: Search sequences (Algorithm 3) for an LPV system with 5 vertices.

Fig. 4 depicts the cardinality of the minimal partition |S∗bf | obtained using brute-

force search as a function of the radius r of the LMI region D(1, 0.6, r) (performance
specification). A feasible solution of the control design problem for this academic
example has been found for a radius of about 22.9. By increasing the radius, a lesser-
fragmented partition can be further attained until reaching the case where a common
controller gain can be applied to each vertex, which means that a robust controller
gain exists for this performance specification (for a value of r u 64).

Given the results in Fig. 4, it can be concluded that the combinability of the elements
of a partition is correlated with the performance specifications. Hence, when defining a
small value for the parameter nk, Algorithm 3 will carry out a lesser-exhaustive search,
determining whether a combinable partition for a given performance specifications
exists. Therefore, when assessing the combinable sets of the obtained partition, a

17

deeper search could be considered to further improve this result or if an attenuation
of the performance specifications is required in case a more compact controller ought
to be attained.

20 30 40 50 60 70

r

1

2

3

4

5

|S
b
f

*
|

Figure 4.: Cardinality of the minimal partition as a function of the region of the
performance specification D(1, 0.6, r)

5.2. Twin-rotor MIMO system (TRMS)

The TRMS is an aero-dynamical system, which consists of two rotors located at the
ends of a beam with perpendicular orientations between each other. This configuration
allows to change the orientation of the pitch and yaw angles, thus emulating the
behaviour of a helicopter.

The TRMS is a complex nonlinear system for which the direct transformation in
a quasi-LPV system using the bounding box technique would lead to 2048 vertex
systems (11 scheduling parameters) (Rotondo et al., 2013). However, as discussed in
(Rotondo et al., 2013), three scheduling parameters can be approximated by a constant
value because their variations have a relative small effect on the system, thus resulting
into 256 vertex systems obtained from 8 scheduling parameters. In this section, the
256 vertex TRMS polytopic model has been used to apply the proposed methodology
and determine a polytopic controller with a minimal number of controller gains. It is
worth remarking that, for this complex system, there are no means to determine if the
best combinable partition provided by Algorithm 3 corresponds to a possible optimal
solution, since a brute-force search is computationally prohibitive.

The considered model of the TRMS is the continuous-time representation which is
detailed in (Rotondo et al., 2013). The performance specifications for controller design
is pole clustering in the region D(α, γ, r) with α = 1, γ = 1 and r = 65.

18

A search following Algorithm 3 with sLVLmax = 1, nk = 15, and nLMImax = 300
returns a combinable partition with 3 elements, which means that the number of
controller gains to be implemented has been reduced from 256 to 3.

U
U

U

U

U

Figure 5.: Graphical representation of the last iterations of Algorithm 3 (TRMS).

During the search, 265 LMIs are solved (i,e, 265 candidates partitions are evaluated)
and 254 levels are created until the best solution is found. Fig. 5 presents the last four
updates of the current solution (step 18 of Algorithm 3), which occur at levels 6, 5, 4
and 3. A circle located in the i-th row and j-th column represents the 16(i− 1) + j-th
vertex, to which a controller gain is assigned based on the represented color. At level
6 (Fig. 5-I), the algorithm determines that black and blue vertices can be combined.
Thus, the number of controllers is reduced from six to five at Fig. 5-II. Next, in the
following iteration, the algorithm combines yellow and red vertices and so on, until
reaching level 3. At this point, the search terminates since the LMIs for the candidate
partitions at level 2 are not feasible.

In order to show how hard is to find combinable partitions for this system, we
considered 265 random partitions (corresponding to the number of LMIs that the pro-
posed algorithm has computed) with a fixed number of elements and verified whether
these random partitions were combinable. The results are presented in Fig. 6. For
instance, when the number of elements is set to 255, about 48% of the 265 candidates
correspond to combinable partitions, whereas this number reduces to only about 1% if
the number of elements is set to 250. Hence, according to Fig. 6, reducing the number
of controller gains is not an easy task for the TRMS example, and Algorithm 3 is a

19

useful tool to select efficiently which vertices can share a common controller gain.

247248249250251252253254255

Cardinality of the random partitions

0

10

20

30

40

50

P
ro

b
a
b
ili

ty
 [
%

]

Figure 6.: Probability of generating randomly a combinable partition for the TRMS
system

5.3. Two-link robotic manipulator

The two-link robotic manipulator example is used to demonstrate the efficiency of
Algorithm 3 even in cases where the input matrix is not constant. This system consists
of two rigid links, joined by one end, that can rotate around the horizontal plane. As
described in (Tseng, Chen, & Uang, 2001), the model can be represented by nine
vertex matrices.

The LMIs used for controller design have been obtained using the method proposed
in (Sala & Arino, 2007), that allows handling a polytopic input matrix and is based
on the application of Polya’s theorem on definite quadratic forms. The procedure to
build the LMIs is as follows:

i. Select the value of p. The parameter p ∈ N (p ≥ 2) defines a trade-off be-
tween conservativeness and computational burden. A larger value of p means
that less conservative conditions are obtained, but the computational burden
will be harder.

ii. Define the tuple of indices I+p as

I+p = {(i1, ..., ip) | iw ∈ V, iw ≤ iw+1}. (32)

iii. Build the LMIs ∑
z∈P(i)

Fz1z2 ≤ 0 ∀i ∈ I+p , (33)

where Fz1z2 := F (Az1 ,Bz1 ,X,Γz2) and P(i) is the set of permutations of i.

20

According to (33), the i-th LMI is the sum of Fz1z2 , where the z1 and z2

correspond to the first and the second position, respectively, of an element of
P(i).

Pole placement in D(1, 0.6, 9) has been selected as performance specification for
the controller design and p = 3 in (32) to build the LMIs. The vertex reduction
has been performed using Algorithm 3 with parameters sLVLmax = 1, nk = 3, and
nLMImax = 25, concluding that a polytopic controller can be designed with five gains,
corresponding to the following partition of vertices: {{1, 9}, {2, 8}, {3, 7}, {4, 6}, {5}}.

By performing a deeper search, which means increasing sLVLmax from 1 to 2, the
following combinable partition with fewer vertices is found: {{1, 9}, {2, 4, 6, 8}, {3, 7},
{5}}. Note that, using a brute-force search, it has been verified that this solution
corresponds to the partition with the minimal number of elements. It must be also
pointed out that there exists just one out of 7770 possible four element partitions
that is feasible, and Algorithm 3 finds this partition in only nine attempts (i.e. the
feasibility of the LMIs have been assessed for only nine candidate partitions before the
above solution is found).

6. Conclusions

In this paper, a heuristic algorithm (Algorithm 3) has been developed to reduce the
number of gains of a polytopic LPV state-feedback controller, whose performance
specifications are represented by a set of parametrized LMIs. The proposed algorithm
combines two elements of a partition recursively, in such a manner that at each itera-
tion a lesser-fragmented combinable partition that preserves the original performance
specifications is found. It must be highlighted that the developed algorithm can be used
for vertex reduction in any LMI-based design, e.g. the design of an observer-based fault
estimator.

The combinability metric is the core of the algorithm because it increases the chance
of selecting a combinable partition. For this reason, two innovations have been intro-
duced to decrease the conservativeness of the metric: the evaluation of the metric
using the Frobenius norm and the inclusion of the input matrix in the definition of the
LMIs perturbation matrix. The combination of both innovations, which corresponds
to Algorithm 2, improves the performance of the combinability ranking, in the sense
of placing the combinable partitions/vertex pairs in the top positions of the ranking.
It must be highlighted that the proposed vertex reduction algorithm depends strongly
on the specific value of the decision variables, so that its performance could depend on
the specific LMI solver/parser as well as on the initial seeds provided to the solvers.
In spite of this fact, it was shown that the proposed algorithm was able to perform
effectively a reduction of the total number of vertex gains.

The number of possible partitions of a set, which corresponds to the Bell number,
grows exponentially with the cardinality of the set itself. This fact prevents the de-
velopment of an optimal search algorithm due to the computational complexity of the
problem. To overcome such complexity, an algorithm (Algorithm 3) that introduces
some constraints to the search has been developed and assessed in an academic exam-
ple. As a result, this algorithm finds a combinable partition with the minimal (or close
to the minimal) number of elements much more efficiently than through a brute-force

21

search.

The efficiency of the algorithm has been analysed further with two realistic applica-
tions. First, a polytopic controller has been designed for the TRMS and, by applying
the developed algorithm, the number of gains has been reduced from 256 to 3. Second,
using a two-link robotic manipulator, it has been shown that the proposed methodol-
ogy can also be applied to systems with a parameter-varying input matrix.

Appendix A. Perturbation matrix definition: H∞ performance
specification

In this section, the perturbation matrices ∆F1 and ∆F2 will be provided for the case
when a H∞ performance specification is chosen. Consider the continuous time LPV
system ẋ(t) =

nv∑
v=1

αv(θ(t)) (Avx(t) + Evw(t)) + Bu(t)

z∞(t) = Cwx(t) + Dww(t)
, (A1)

where w(t) ∈ Rnw is an exogeneous input, Ev ∈ Rnx×nw and Dw ∈ Rnz×nw are the
disturbance distribution matrices, and z∞(t) ∈ Rnz denotes the controlled outputs.

The LMIs which allow to design an LPV controller guaranteeing quadratic H∞
performance (Apkarian et al., 1995) are described by

F(Av,B,Ev,X,Γv) =

(AvX + BΓv)T + AvX + BΓv Ev (CwX)T

ET
v −γI DT

w

CwX Dw −γI

 ≺ 0

∀ v = 1, ..., nv, (A2)

with X � 0.

In this case, the definition of ∆F1{i,j} and ∆F2{i,j} will be as follows

∆F1{i,j} = F (Aj ,B,Ej ,X,Γl)− F (Ai,B,Ei,X,Γl) , (A3)

and

∆F2{i,j} = − (F(Ai,B,Ei,X,Γj)− F(Ai,B,Ei,X,Γi)) . (A4)

Note that E has the same index as the matrix A, as it is a system matrix.

Then, the perturbation matrices for the specifications represented by the LMI (A2)
are given by

∆F1{i,j} =

((Aj −Ai)X)T + (Aj −Ai)X Ej −Ei 0
ET

j −ET
i 0 0

0 0 0

 , (A5)

22

∆F2{i,j} = −

(B(Γj − Γi))
T + B(Γj − Γi)) 0 0
0 0 0
0 0 0

 . (A6)

Acknowledgements

This work has been funded by the Spanish State Research Agency (AEI) and the Euro-
pean Regional Development Fund (ERFD) through the project SCAV (ref. MINECO
DPI2017-88403-R).

References

Abbas, H. S., & Werner, H. (2010). Frequency-weighted discrete-time LPV model reduction
using structurally balanced truncation. IEEE Transactions on Control Systems Technology ,
19 (1), 140–147.

Ahmadi, M., & Haeri, M. (2018). Multimodel control of nonlinear systems: An improved gap
metric and stability margin-based method. Journal of Dynamic Systems, Measurement,
and Control , 140 (8), 081013.

Apkarian, P., Gahinet, P., & Becker, G. (1995). Self-scheduled H∞ control of linear parameter-
varying systems: a design example. Automatica, 31 (9), 1251–1261.

Apkarian, P., & Tuan, H. D. (2000). Parameterized LMIs in control theory. SIAM journal on
control and optimization, 38 (4), 1241–1264.

Blanchini, F., & Miani, S. (2003). Stabilization of LPV systems: state feedback, state estima-
tion, and duality. SIAM journal on control and optimization, 42 (1), 76–97.

Bokor, J., & Balas, G. (2004). Detection filter design for LPV systems—a geometric approach.
Automatica, 40 (3), 511–518.

Chilali, M., & Gahinet, P. (1996). H∞ design with pole placement constraints: an LMI
approach. IEEE Transactions on automatic control , 41 (3), 358–367.

El-Sakkary, A. (1985). The gap metric: Robustness of stabilization of feedback systems. IEEE
Transactions on Automatic Control , 30 (3), 240–247.

Gőzse, I., Luspay, T., Péni, T., Szabó, Z., & Vanek, B. (2016). Model order reduction of LPV
systems based on parameter varying modal decomposition. In 2016 ieee 55th conference on
decision and control (cdc) (pp. 7459–7464).

Hoffmann, C., & Werner, H. (2015). A survey of linear parameter-varying control applica-
tions validated by experiments or high-fidelity simulations. IEEE Transactions on Control
Systems Technology , 23 (2), 416–433.

Ibáñez, B., Inthamoussou, F. A., & De Battista, H. (2019). Wind turbine load analysis of a
full range LPV controller. Renewable Energy .

Jabali, M. B. A., & Kazemi, M. H. (2017). A new LPV modeling approach using PCA-based
parameter set mapping to design a PSS. Journal of advanced research, 8 (1), 23–32.

Kwiatkowski, A., Boll, M.-T., & Werner, H. (2006). Automated generation and assessment of
affine LPV models. In Decision and control, 2006 45th ieee conference on (pp. 6690–6695).

Kwiatkowski, A., & Werner, H. (2008). PCA-based parameter set mappings for LPV models
with fewer parameters and less overbounding. IEEE Transactions on Control Systems
Technology , 16 (4), 781–788.

Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In
Computer aided control systems design, 2004 ieee international symposium on (pp. 284–
289).

23

López-Estrada, F. R., Ponsart, J.-C., Theilliol, D., Zhang, Y., & Astorga-Zaragoza, C.-M.
(2016). LPV model-based tracking control and robust sensor fault diagnosis for a quadrotor
UAV. Journal of Intelligent & Robotic Systems, 84 (1-4), 163–177.

Marcos, A., & Balas, G. J. (2004). Development of linear-parameter-varying models for
aircraft. Journal of Guidance, Control, and Dynamics, 27 (2), 218–228.

Matz, J., Mourllion, B., & Birouche, A. (2018). On parametric model order reduction based
on projections. In European control conference (ecc) (pp. 2977–2982).

Pfifer, H., & Seiler, P. (2015). Robustness analysis of linear parameter varying systems using
integral quadratic constraints. International Journal of Robust and Nonlinear Control ,
25 (15), 2843–2864.

Poussot-Vassal, C., & Roos, C. (2012). Generation of a reduced-order LPV/LFT model from a
set of large-scale MIMO LTI flexible aircraft models. Control Engineering Practice, 20 (9),
919–930.

Quarteroni, A., Sacco, R., & Saleri, F. (2010). Numerical mathematics (Vol. 37). Springer
Science & Business Media.

Rizvi, S. Z., Abbasi, F., & Velni, J. M. (2018). Model reduction in linear parameter-varying
models using autoencoder neural networks. In 2018 annual american control conference
(acc) (pp. 6415–6420).

Rizvi, S. Z., Mohammadpour, J., Tóth, R., & Meskin, N. (2016). A kernel-based PCA approach
to model reduction of linear parameter-varying systems. IEEE Transactions on Control
Systems Technology , 24 (5), 1883–1891.

Robert, D., Sename, O., & Simon, D. (2009). An H∞ LPV Design for Sampling Varying
Controllers: Experimentation With a T-Inverted Pendulum. IEEE Transactions on Control
Systems Technology , 18 (3), 741–749.

Rotondo, D., Cristofaro, A., Johansen, T. A., Nejjari, F., & Puig, V. (2019). Robust fault
and icing diagnosis in unmanned aerial vehicles using LPV interval observers. International
Journal of Robust and Nonlinear Control , 29 (16), 5456–5480.

Rotondo, D., Nejjari, F., & Puig, V. (2013). Quasi-LPV modeling, identification and control
of a twin rotor MIMO system. Control Engineering Practice, 21 (6), 829–846.

Rotondo, D., Nejjari, F., & Puig, V. (2014). A virtual actuator and sensor approach for fault
tolerant control of LPV systems. Journal of Process Control , 24 (3), 203–222.

Rotondo, D., Puig, V., Nejjari, F., & Romera, J. (2015). A fault-hiding approach for the
switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot.
IEEE Transactions on Industrial Electronics, 62 (6), 3932–3944.

Rotondo, D., Puig, V., Nejjari, F., & Witczak, M. (2015). Automated generation and com-
parison of Takagi–Sugeno and polytopic quasi-LPV models. Fuzzy Sets and Systems, 277 ,
44–64.

Rotondo, D., Sánchez, H. S., Nejjari, F., & Puig, V. (2019). Analysis and design of linear
parameter varying systems using LMIs. Revista Iberoamericana de Automatica e Informatica
Industrial , 16 (1), 1–14.

Sala, A., & Arino, C. (2007). Asymptotically necessary and sufficient conditions for stability
and performance in fuzzy control: Applications of Polya’s theorem. Fuzzy Sets and Systems,
158 (24), 2671–2686.

Sanjuan, A., Rotondo, D., Nejjari, F., & Sarrate, R. (2019). An LMI-based heuristic algorithm
for vertex reduction in LPV systems. International Journal of Applied Mathematics and
Computer Science, 29 (4), 725–737.

Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization methods and software, 11 (1-4), 625–653.

Sun, X.-D., & Postlethwaite, I. (1998). Affine LPV modelling and its use in gain-scheduled
helicopter control. In Ukacc international conference on control.

Tseng, C.-S., Chen, B.-S., & Uang, H.-J. (2001). Fuzzy tracking control design for nonlinear
dynamic systems via TS fuzzy model. IEEE Transactions on fuzzy systems, 9 (3), 381–392.

Vizer, D., & Mercere, G. (2014). H∞-based LPV model identification from local experiments
with a gap metric-based operating point selection. In European control conference (ecc)

24

(pp. 388–393).
Zribi, A., Chtourou, M., & Djemal, M. (2016). A systematic determination approach of model’s

base using gap metric for nonlinear systems. Journal of Dynamic Systems, Measurement,
and Control , 138 (3), 031008.

25

	Introduction
	Problem formulation
	Improvements in the combinability ranking generation
	Background
	Metric definition
	Perturbation matrix definition
	Illustrative example

	Searching for a minimal combinable partition
	Combinability metric for a partition
	Recursive vertex reduction

	Illustrative examples
	Academic example
	Twin-rotor MIMO system (TRMS)
	Two-link robotic manipulator

	Conclusions
	Perturbation matrix definition: H performance specification

