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Abstract  

 
In the last decades, the interest in predicting tropospheric ozone levels (O₃) has increased due 

to its detrimental effect on population health and vegetation. Although certain factors such as 

solar radiation are well known to have an influence on ozone levels, the effect of other variables 

is less clear. In this study, several regression models based on the Random Forest (RF) 

algorithm are generated to predict the daily maximum hourly ozone concentration level (1hO₃) 

and the daily maximum 8-hours average ozone concentration level (8hO₃) one day ahead in 

Barcelona, using air quality data, meteorological data and time variables as inputs. Two 

versions of the model are considered: taking information from the whole year and focusing only 

on summer months (May to September). In addition, classification models are created, based 

on thresholds inspired by current regulations for both outputs. RF regression models capture 

the time variation of tropospheric ozone through the year and they generate accurate estimations 

with acceptable deviation between the observations and predictions. In general, the categorical 

models of 1hO₃ show suitable and lower error rates than 8hO₃. However, the categories, which 

gather the most of the tropospheric ozone values have high accuracy and the categories with 

few values inside them have low accuracy. Consequently, these categorical models are not 

useful as a tool to alert the population about a specific ozone event. The analysis of RF models 

shows that the tropospheric ozone level (1hO₃ or 8hO₃ according to the model) of the previous 

day to the prediction has the strongest association to the output. The importance of other inputs 

varies between the models considered; while solar radiation and day of the year are the main 

variables after O₃ for the whole year models, relative humidity, average dew-point deficit and 

weekday are also relevant in the summer models. 
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Prediction of tropospheric ozone concentration at urban 

locations using machine learning algorithms. Application 

to Barcelona, Spain  

1 Introduction and objectives  
 

The stratospheric ozone layer covers and protects the earth from ultraviolet radiation. However, 

in the tropospheric layer (Figure 1), ozone (O₃) is one of the main pollutants, which is dangerous 

for human health (Aljanabi et al., 2020). At this layer, ozone is called ground-level ozone or 

tropospheric ozone. Important institutions such as The World Health Organization (WHO), The 

European Union (EU), and the Environmental Protection Agency (EPA) have established 

different admissible thresholds to protect human health and the vegetation involving two 

important ozone measurements: the daily maximum hourly ozone concentration level (1hO₃), 

and the daily maximum 8-hours average ozone concentration level (8hO₃) (Krzyzanowski & 

Cohen, 2008; The European Parliament and the Council of the European Union, 2008; Pernak 

et al., 2019) in the sense that the maximum values for this measurements should not be 

exceeded. Hence, the prediction of these two parameters is essential to fulfil the current limits 

and regulations especially in urban areas where ozone concentration is mainly generated and 

population density is high (Malinović-Milićević et al., 2021). 

 

 
Figure 1 Atmosphere layers (UCAR Centre for Science Education, 2021) 

 

Concerned about future tropospheric ozone levels, the government of Catalonia (Generalitat de 

Catalunya) along with CIMNE (International Centre for Numerical Methods in Engineering) 

have been working on a future model that will predict tropospheric ozone levels in Catalonia 
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(https://plates.cimne.com/Reptes/OzoTroposferic). This model is part of a large project called 

"𝜋 − 𝑃𝑙𝑎𝑡𝑒𝑠", which involves other models in the entire region such as the evolution of the 

coast lines, seismic risk areas, and flood risk areas among other. Therefore, this master’s thesis 

is also part of the project where the prediction of tropospheric ozone is focussed on Barcelona, 

using air quality data and meteorological data of stations located in the city. 

 

Machine learning (ML) is among the techniques used in the last years to predict tropospheric 

ozone levels (Alves et al., 2019; Feng et al., 2019), which has proved to produce models with 

suitable performances in several locations around the world. This has been possible due to the 

high-computational capacity available nowadays. Ozone generation at the tropospheric level 

involves photochemical processes and meteorological conditions (Wilson et al., 2012), which 

complicates the prediction. That is why ML algorithms are presented as a suitable option to 

build a model using diverse information. Random Forest (RF) is the ML algorithm chosen for 

this study because of its versatility to handle several variables with a low computational cost 

(Breiman, 2001) and the acceptable results produced in past research (Pernak et al., 2019; 

Meng, 2019).  

 

This study is comprised of six chapters. In the current one, we expose the main objectives and 

the general steps to reach them. The second chapter involves a literature review of the main 

concepts and topics that we need to understand the models that we will build as well as a state-

of-the-art on the use of ML algorithms to predict tropospheric ozone. In the third chapter, we 

introduce a description of the study area, the available data in the stations, the source of the 

information, and the procedure to select the time window for our study.   

 

In the fourth chapter, every step of the methodology that we followed to build the RF models. 

The fifth chapter presents and explains all the results produced by the models for every period 

and the selected stations. The last chapter shows all the conclusions based on the results of the 

models and analysis of the previous chapters. 

 

1.1 Aim 

 

The first aim of this study is to produce machine learning (ML) models to predict the daily 

maximum hourly ozone concentration (1hO₃) and the daily maximum 8-hours average ozone 

concentration level (8hO₃) one day ahead in Barcelona, taking meteorological, air quality and 

time variables as inputs. It is expected that this study will help to develop an ozone prediction 

model for all Catalonia.  

 

Alternatively, classification ML models will be generated also for predicting tropospheric 

ozone, but in the form of categorical values of 1hO₃ and 8hO₃ according to established 

thresholds. In other words, to predict if the values of 1hO₃ and 8hO₃ are within specific limits 

or categories. Finally, the photo-chemical phenomenon of tropospheric ozone generation will 

be analysed by interpreting the ML models and the effect of the input variables on the O3 levels.  
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1.2 Overview of the methodology 

 

The following steps were followed: 

 

• Collect all the required data from air quality and meteorological stations. 

 

• Pre-process the information to obtain the needed inputs and generate new features for 

our models. 

 

• Divide the whole dataset into training and testing datasets, and develop the prequential 

evaluation analysis over the training set of values to avoid overfitting issues. 

 

• Select the most suitable parameters for every ML model based on the error given after 

prequential evaluation.  

 

• Train the ML models with the selected parameters over the whole training dataset.  

 

• Predict the values of 1hO₃ and 8hO₃ using the testing data set and the trained model.  

 

• Evaluate the results using several error metrics.  

 

• Determine a categorical output variable of ground-level ozone concentration for 1hO₃ 

and 8hO₃ based on established thresholds.  

 

• Train a ML model for the categorical output following the same steps employed for the 

previous numerical outputs (1hO₃ and 8hO₃).  

 

• Evaluate the ML categorical models based on the errors given by the confusion matrix.  

 

• Compute and analyse the importance of input variables on the O₃ levels. 
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2 Literature Review  
 

In this section, we will develop the fundamental theoretical background to understand the 

needed data and how machine learning algorithms work, especially focused on Random Forest.  

 

2.1 Ground-level ozone 

 

Also known as ‘bad ozone’, the ground-level ozone (tropospheric ozone) is the main pollutant 

of atmospheric smog (World Bank Group, 1998) and it has a significant harmful impact on 

animals and plants. Tropospheric ozone is created by photochemical reactions in the presence 

of sunlight between carbon monoxide (CO), nitrogen oxides (NOx) and volatile organic 

compounds (VOCs) (Chameides et al., 1992). There are two sources of ground-level ozone, a 

flux from the stratosphere and it is also generated in the troposphere (Akimoto et al., 2006). In 

the troposphere, there are natural sources and human activities, which can cause an increase in 

ozone levels. Naturally, plants can emit VOCs and volcanic activity, NOx. Gases from 

combustion in motor vehicles are the main source of tropospheric ozone, but also petroleum 

industries can produce a harmful quantity of emissions as well as energy plants or heaters at 

home (World Bank Group, 1998). 

 

Ozone has a considerable impact on human health because it goes deep in the lungs causing 

several problems in cells of the alveoli and the most common symptoms are throat pain, 

coughing and irritation of the mucous (Akimoto et al., 2006). It is also known that high levels 

of tropospheric ozone cause several damages in plants.  

 

It is difficult to understand the phenomenon of ozone in urban areas, since several factors are 

involved to that. First, ozone is generated in presence of sunlight; therefore, it is also related to 

temperature and usually we will not have high levels of ozone during the night (Sillman, 1993). 

We can conclude the direct relation between Summer and high ozone levels, considering this 

condition. We can also understand that cities with high emissions but with not a lot of sunlight 

or high temperatures over the year will not have high ozone level episodes often. Second, it is 

something common that the highest ozone levels are registered not in the city center itself, but 

in places a bit far from it, which can be also related with the wind and its direction. Hence, high 

ozone levels can be found downwind of the city center in several urban areas (Sillman, 1993). 

 

The Directive 2008/50/CE of European Union (The European Parliament and the Council of 

the European Union, 2008) establishes specific long and short term thresholds: Maximum daily 

8 hour average ozone concentration of 120 μg/m³, maximum hourly ozone concentration of 180 

μg/m³ for information alert and 240 μg/m³ alarm alert. These thresholds are thought to preserve 

human health and vegetation.  

 

2.2 Characteristics of the ozone and meteorological stations  

 

In order to have a wider perspective of the instruments used for these measurements, we will 

talk briefly about air quality and meteorological automatic stations.  
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2.2.1 Ozone measurements  

 

The automatic analysers of O₃ are based on Ultra Violet (UV) absorption. O₃ is obtained due 

the absorption of UV rays of light at 254 nm wavelength (Haq & Schwela, 2008). Typically, 

the precision of these equipment is ±4μg/m³.  

 

2.2.2 Automatic meteorological stations   

 

In this research, we have used data from automatic weather stations (AWS) in Barcelona. In 

these stations, measurements of a meteorological variables are made and transmitted 

automatically, this can be done from few variables to many of them where the information is 

needed (Ioannou et al., 2021). In our case, we considered stations with six measurements: 

temperature, precipitation, solar radiation, relative humidity, wind speed, and wind direction.  

 

There are three main parts in these stations: first, all the sensing instruments that measure the 

weather variables; second, the local modem, which connects the automatic station to the 

telecommunication system; third, a central processing system, which receives information from 

all the stations and it is connected to a storage system. In this way it is possible to have 

measurements in real time of every variable and the historical data too. 

  

2.3 Machine learning (ML) 

 

Since the conception of the humanity, we are surrounded by a vast amount of information. Let’s 

take for example just the meteorological data that we discussed above, there is information 

about the temperature, solar radiation, wind spend, precipitation, etc. All of them are happening 

in this precise moment, in the past and will happen in future, and it always happened. The main 

difference is that now we measure these variables and can store this information; hence, we 

have created a huge amount of information, the most of which is available thanks to the 

computational capacity that nowadays exists. Machine learning (ML) is a study field, which 

develops computer techniques and algorithms to transform vast amount of information into 

suitable predicted actions and results (Lantz, 2019). Every machine learning algorithm follows 

five steps (Figure 2) to work properly. 

 

We can understand that while the amount of information to analyse increases, the necessity of 

a higher computational capacity is bigger, and this encourages more advanced statistical 

methods to analyse all this information, which at the same time creates more information. This 

cycle allowed machine learning techniques to develop.  

 

The information needed for the learning process (input and output data) can be shown as 

numerical or categorical. If it is numerical, it refers to some measurement, although if it is 

categorical, it refers to a specific characteristic that this information has, for example, if this 

data exceeds or not an established threshold.  
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Figure 2 ML models workflow 

 

2.4 State-of-the-art on the use of ML for predicting O₃ levels 

 

Over recent years, machine learning (ML) algorithms have been used to predict ground-level 

ozone in urban areas (Pernak et al., 2019; Feng et al., 2019). Different inputs and outputs have 

been taken into account in the models as well as a different time windows and algorithms.  

 

Abdul-Wahab & Al-Alawi (2002) developed an Artificial Neural Network (ANN) model to 

predict tropospheric ozone in Kuwait. Their approach was based on data from summer days 

and the inputs to build the model were CH₄ (methane), NMHC (non-methane hydrocarbons), 

CO (carbon monoxide), CO₂ (carbon dioxide), NO (nitrogen oxide), NO₂ (nitrogen dioxide), 

SO₂ (sulphur dioxide), temperature, wind speed, wind direction, relative humidity, solar 

radiation, suspended dust and tropospheric ozone from a previous measure (O₃). In this study, 

the output was the measure of O₃ five minutes ahead due to the lack of information of more air 

quality stations. In this case, the model achieved a suitable approximation to the observed values 

showing that relative humidity and NO as the most important variables to describe tropospheric 

ozone in that place.  

 

Zabkar et al., (2004) created a model using regression trees to predict the daily maximum 

concentration of ozone in Ljubljana-Slovenia. The particularity is that they included not only 

meteorological and air quality data measurement, but also data calculated by a meteorological 

model. Another characteristic of this study is the addition of the cosine of the day of the year 

as another input due to a possible approximation to the variation of ozone in the year. They did 

not fill missing values, but discard them and the available data was from 2002 to 2003. This 

researched had an acceptable approximation to the target, showing that the regression trees 

Data collection 

Pre-processing data  

Training   

Testing    

Improvement   

Collecting all the material that allows the learning 

process. 

Process to improve the quality of the data and adapt 

it to the learning techniques requirements. 

 A part of the whole dataset will be used for training. 

The machine learning algorithm will represent this data 

as a model where all the parameters needed to calibrate 

the model will be established based on this data. 

The dataset, which has not been used in the previous 

step will be used now to evaluate the bias or errors of 

the model.  

Based on accuracy and performance of the model, 

further strategies will be defined to improve the 

algorithm technique or to use another one, if it is 

needed. 
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model is a suitable way to predict values of maximum daily ozone level. The most important 

variables identified were solar radiation, temperature, and relative humidity.  

 

Agirre et al., (2007) built an ANN model to predict ground-level ozone hourly up to eight hours 

ahead at two stations in the Community of the Basque Country – Spain. They used hourly NO₂ 

and meteorological data as inputs. They also added the cosine variation of hours of the day. As 

we saw above, the variation of time is a variable to take into account in ozone level prediction. 

They used data from 2001 to 2004. The ground-level ozone at the time of prediction was the 

most important variable.  

 

In Rio de Janeiro, Luna et al., (2014) carried out a study to create a model using ANN to predict 

ground-level ozone hourly. In this case, they use eight inputs, a combination of air quality and 

meteorological data. Moreover, they decided to go further considering other aspects to have 

their set of variables, they removed rainy days, weekends, and holidays due to a variation in 

tropospheric ozone levels during these days. If we take into account a machine learning 

algorithm such as random forest (RF), which can admit many variables without increasing 

dramatically the computational capacity, these aspects can be considered as other variables 

instead of doing a pre-process of the information. Luna et al., (2014) also got acceptable results 

predicting ground-level ozone, showing that ML algorithms are useful for this kind of task.  

 

Pernak et al., (2019) implement a model not only to predict the maximum daily 8-hours average 

ground-level ozone, but also to find categorical values according to some thresholds established 

previously, and the probability that these values of ozone exceed the thresholds. This approach 

was developed using RF model over data of five different locations in the Texas urban area. 

They included as inputs forecasting values of temperature, water vapour density, wind speed, 

and wind direction of the day where the ozone concentration is predicted as well as time 

variables such as day of the week, and day of the year; finally, maximum 8-hour average ozone 

concentration of the previous day. The results showed that the model can reach an acceptable 

prediction of ozone levels and in some specific places, a high rate of success classifying ground-

level ozone according to the mentioned thresholds. Meng, (2019) also got high accurate results 

developing a RF model for classification of ozone days and non-ozone days in Houston, 

Galveston and Brazoria, USA.   

 

Random Forest (RF) model was also used to predict hourly ozone levels and daily maximum 

8-hour average ozone concentration in Hangzhou – China employing 2017 data. Feng et al., 

(2019) calculated the variable importance of every input based on RF analysis using air quality 

and meteorological inputs. The results showed that NO₂ was the most important variable to 

predict hourly tropospheric ozone levels. However, the second most important variable was the 

dew-point deficit, which is related to the relative humidity and at the same more important 

according to this study. When they considered daily maximum 8-hour average ozone 

concentration (8hO₃) as output, the dew-point deficit is the most important variable. RF model 

showed to be suitable to predict hourly ozone and 8hO₃. As we saw, many algorithms allow 

computing a measure of importance of the inputs that is often useful to understand better the 

system under analysis and make decision. Different terms are used for this outcome, but in this 

text, we will use “variable importance”.  
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Alves et al., (2019) took into account 18 inputs (air quality and meteorological data, and time 

variables) to build an ANN model to predict hourly tropospheric ozone levels up to 24 hours 

ahead in Victoria city - Brazil. They considered a sinusoidal variation of the hour of the day, 

the day of the week, and the month of the year. In this study unlike the others, 11 years of data 

were employed in the dataset. To avoid overfitting, they used the cross-validation method 

dividing the training dataset into 5 folds. The results of this study showed that the prediction of 

ozone concentration levels for the first three hours were acceptable; however, the accuracy 

tended to go down drastically from the sixth hour to the 24th hour.  

 

Having a lot of inputs can lead to an inefficient system, with high computational cost. 

Consequently, some studies have been made developing a feature (also called inputs) selection. 

Aljanabi et al., (2020) found that three variables were enough to obtain an accurate mean daily 

ozone prediction in Amman – Jordan using multi-layer perceptron neural network (MLP) and 

feature selection. These inputs are ozone of the previous day, temperature and humidity. In the 

first stage, they considered seven inputs including the day of the year and a special input, which 

assigned one value to a weekday and another value to a weekend day or holiday. 

 

Malinović-Milićević et al., (2021) built their model using five years of meteorological data of 

the previous day and the forecasted day to predict daily maximum 1-hour ozone concentration 

(1hO₃) and daily maximum 8-hours average ozone concentration (8hO₃) in Novi Sad – Serbia, 

these outputs are the same parameters taken by The Directive 2008/50/CE of European Union 

(The European Parliament and the Council of the European Union, 2008) to describe thresholds 

for tropospheric ozone. However, in this case, they considered the measurements of the 

forecasted day, not the result of a meteorological model as we saw previously (Zabkar et al., 

2004). About air quality data, they only considered as input 1hO₃ and 8hO₃ of the previous day. 

They also took into account time variables such as the day of the year and the day of the week 

for which ozone concentration level was predicted. The most important inputs according to this 

study were ground-level ozone of the previous day, temperature, and global radiation.  

  

Several inputs have been employed in the models, meteorological data, air quality data, and 

time information. In this research, we will use all of them. Because of the large number of 

inputs, the capacity to add more variables without compromising computational capacity, and 

the acceptable results obtained previously, we have decided to build random forest (RF) models 

to predict 1hO₃ and 8hO₃ levels one day ahead in Barcelona.  

 

2.5 Decision trees and recursive partitioning 

 

Decision trees are a machine learning technique based on taking decisions making small choices 

at a time. They are called decision trees because they imitate the shape of a tree, where 

everything starts with the root, which can be the whole dataset. This dataset will be split, 

according to some criterion, ideally related to the feature with the highest predictive capability, 

the resulting partitions are also called branches. Afterwards, the partitions will be split again 

with another criterion, which can be related to another feature. The final result is reached in the 

leaves where the final criterion is fulfilled. The dataset is finally divided into a sufficient 
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homogeneous way, the tree has reached a specific size or no more partitions can be created 

(Nwanganga & Chapple, 2020). 

 

Decision trees can also be used to make numeric predictions using different regression models. 

These models are appropriate in problems with many features and data (also called examples) 

to describe an output. From that point, the idea of ensembles of trees grows, where all features 

will be considered at once or a random group of them (Lantz, 2019). The ensemble-based 

method used in this research is Random Forest (Breiman, 2001).  

 

2.6 Random forest (RF) 

 

In order to understand Random Forest (RF), it is important to describe bagging first. Bagging 

is a technique, which generates new training datasets based on the original training dataset using 

bootstrap sampling. Bootstrapping is a method of sampling that repeats some observations and 

leaves behind others (Figure 3) to create a new dataset (Chong & Choo, 2011).  

 

 
Figure 3 Scheme of Bootstrap sampling 

 

Random forest uses bagging and combines it with a random selection of the features to grow 

decision trees. This means that in order to build the decision trees, only part of the inputs and 

bootstrap sampling from them are considered for each split. Once the ensemble of trees is 

created and the regression model has been applied on the decision trees, RF uses a vote to join 

or combine the predictions of the trees (Breiman, 2001; Lantz, 2019). The main parameters that 

need to be calibrated are the number of decision trees to grow (ntree) and the number of features 

to consider for every decision tree (mtry), the features considered for every decision tree will 

be selected randomly. Both parameters will be taken into account in this research, searching the 

most suitable combination of them for every model. Considering the principles of RF, this 

model allows us to employ many inputs because it takes just a part of the inputs at a time. 
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Breiman, (2001) mentions that in order to evaluate the performance of this model, one of the 

main tools is the error out-of-bag (OOB), this error is related to the data, which was not 

considered after bagging. In other words, this error (metric) is obtained by applying the model 

to the data, which does not participate in the training at that moment or it is not part of the 

decision tree.  

 

2.7 Error metrics 

 

It is essential to evaluate the accuracy of ML models (Naser & Alavi, 2020), we have seen that 

ML algorithms in this research will predict values of ozone. Therefore, to assess the 

performance of the models, we will implement several metrics, which will give us different 

panoramas and ideas if our model can be suitable or not. We present in Table 1 all error metrics 

that we will use.  

 

Mean Error (ME) 𝑀𝐸 =
∑ 𝑂𝑖 − 𝑃𝑖

𝑛
𝑖=1

𝑛
                         (1) 

Root Mean Squared Error (RMSE) 𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1

𝑛
            (2) 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =
∑ |𝑂𝑖 − 𝑃𝑖|𝑛

𝑖=1

𝑛
                     (3) 

Mean Percentage Error (MPE) 𝑀𝑃𝐸 =
∑

𝑂𝑖 − 𝑃𝑖

𝑂𝑖

𝑛
𝑖=1

𝑛
100

                      (4) 

Mean Absolute Percentage Error (MAPE) 𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑂𝑖 − 𝑃𝑖|

|𝑂𝑖|
             (5)

𝑛

𝑖=1

 

Table 1 Metrics to assess to accuracy of the ML models 

 

 

From Table 1, we have that 𝑂𝑖refers to the observed output, 𝑃𝑖 is the predicted value calculated 

with the ML model, and 𝑛 is the total number of values in the sample. There are some 

characteristics of these metrics. ME is the simple error between observed and predicted output 

but it can be highly affected by negative results in the sum of the numerator. RMSE depends 

on the scale of the values of the output, the smaller this value is, the better will be the model. 

MAE is similar to ME but it has the advantage that it takes into account the error without being 

affected by negative differences. MPE and MAPE follow the same principle of ME and MAE 

respectively, but t in this case, they consider percentual error (Naser & Alavi, 2020). MAE will 

represent our main parameter to select the more suitable parameters after the cross-validation 

or prequential evaluation analysis that we will see in the coming chapters.  
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2.8 Overfitting  

 

 
Figure 4 Underfitting, good fit and 

overfitting (Ghojogh and Crowley, 2019) 

In section 2.3, we mentioned that the dataset 

needed for the ML analysis is divided into 

two groups, one for training and one for 

testing. The reason is that ML models are 

prone to overfitting, i.e., having a very 

accurate performance on the training set and 

a very poor or inaccurate performance on the 

testing set (Ying, 2019). 

 

We can also talk about underfitting and 

overfitting. If the model has poor information 

or little, the ML model might have not 

enough data to learn from it. Therefore, the 

unseen data (or future, in red) will not be 

predicted suitably (Figure 4a), this is called 

underfitting. 

 

 

In Figure 4c, we can appreciate an overfitting case, where the model is complex and has a high 

accuracy in the training set but a high error when this model is employed to predict the unseen 

value (testing dataset). Finally, in Figure 4b, we have a good fit, in the training set, we have an 

acceptable model with a low error, but also a low error for the unseen data or prediction 

(Ghojogh and Crowley, 2019). 

 

Consequently, the questions are, where to stop the complexity of the model and how to calibrate 

the needed parameters of it to get an acceptable approximation in the testing set. To solve these 

questions, cross validation or prequential methods among others are used.  

 

2.9 Cross validation 

 

One of the most well-known cross validation methods is called K-folds cross validation. 

Usually, this method divides randomly the dataset into K folds or partitions, one of the partitions 

is used for testing and the rest of the dataset is used for training (Ghojogh and Crowley, 2019), 

as we can see in Figure 5. 

 

10 partitions or folds are the most common, when we consider this method (Lantz, 2019). In 

Figure 5, we can see that the dataset is divided into five folds. In every case, the testing set is 

different. The error of the ML algorithm is the average error of the model applied on the testing 

set of every fold. In this way, we have a close approximation to the accuracy of the model for 

future predictions avoiding overfitting.  
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Figure 5 K-folds cross validation 

 

2.10 Prequential evaluation method 

 

Basic cross validation is not adequate for our study, because it does not respect the sequence of 

the data. Since time variables are involved, the testing set shall always be more recent than the 

training set. 

 

 

 
Figure 6 Schemes of Prequential evaluation method 

Prequential evaluation divides the dataset into blocks as is shown in Figure 6, where the training 

set is always chronologically previous to the testing set (Cerqueira et al., 2020). In this way, 

this method respects the sequential order. We can highlight two methodologies, first, fixed 

window, the training and testing sets move one block forward in every fold ignoring one block 

behind (Figure 6 (a)). This analysis was taken into account for the regression methods 

(numerical output). 

 

The second methodology is called growing window and is shown in Figure 6 (b) where the 

training set grows always considering the past blocks, in that way, the previous information is 

used; however, the proportionality between training and testing sets changes (Oliveira et al., 

2021). We used this approach in our categorical methods (categorical outputs) in this study 
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because we might not have enough outputs that belong to a specific category if we ignore past 

information in the training analysis.  

 

2.11 Categorical models and confusion matrix 

 

In classification problems, the output is categorized according to some classes or descriptions. 

Then, the model is evaluated according to its capacity to predict if the output will be inside the 

right category or not. ML models can process only numerical values; therefore, every category 

is represented by a number (Potdar et al., 2017).  

 

Confusion matrix is the main mechanism to evaluate the accuracy of classification ML models. 

The rows of the matrix represent the actual class or observed and the columns represent the 

predicted class (Xu et al., 2020). 

 
Figure 7  Scheme of the confusion matrix 

In Figure 7, we can appreciate the general scheme of the confusion matrix. We have three 

classes, A, B and C. In the principal diagonal of the matrix, we have the number of correct 

predictions for each class (R), this means that both predicted and observed match. In every other 

cell out of the principal diagonal, we have wrong predictions (W) for every class (Lantz, 2019). 

The prediction accuracy can be calculated based on (7) and the respective error rate based on 

(8), where the error rate is one minus the accuracy.  

 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑅

∑ 𝑅 ∑ 𝑊
                                                                                                            (6)   

 

 

𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  1 −
∑ 𝑅

∑ 𝑅 ∑ 𝑊
                                                                                                 (7) 
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2.12 R libraries for RF 

 

Every procedure in the methodology of this study was made using R programming language, 

and the main libraries to build the RF models as they were explained before have been 

randomForest (Liaw & Wiener, 2018) and party (Hothorn et al., 2021). randomForest library 

and its function randomForest were used to build the models with data of the all year, party 

library and its function cforest were used to build the model using data from May to September. 

We can find below the syntaxis of the main functions: 

 

 
 

 

 

randomForest(formula, data=NULL, ..., subset, na.action=na.fail) 

 

 

 

randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500, 

mtry=if (!is.null(y) && !is.factor(y)) 

max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))), 

replace=TRUE, classwt=NULL, cutoff, strata, 

sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)), 

nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1, 

maxnodes = NULL, 

importance=FALSE, localImp=FALSE, nPerm=1, 

proximity, oob.prox=proximity, 

norm.votes=TRUE, do.trace=FALSE, 

keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE, 

keep.inbag=FALSE, ...) 

 

Figure 8 Main parameters of randomForest function 

 

 

 

 

 

cforest(formula, data = list(), subset = NULL, weights = NULL, controls = 

cforest_unbiased(ntree=500, mtry=5),  xtrafo = ptrafo, ytrafo = ptrafo, scores = NULL) 

proximity(object, newdata = NULL) 

 

 

 

 

 

Figure 9 Main parameters of cforest function 

 

output=f (inputs) 

Dataframe with inputs and output Number of trees, 

500 as default 

Number of inputs 

taken in every 

iteration, for 

classification √𝑝 

and 𝑝/3 for 

regression  

output=f (inputs) 

Dataframe with inputs and output 

Number of trees, 

500 as default  

Number of inputs for 

every iteration, 5 as 

default 



 

Master’s Thesis 
Sergio López Chacón  

 

15 
 

In Figure 8, we see the main parameters that we will calibrate in the training and cross validation 

method for randomForest function, ntree and mtry, where 𝑝 represents the number of inputs or 

variables. randomForest function follows the method that we described in section 2.6. Formula 

defines the output and the inputs, which are taken from the data frame. cforest and most 

important characteristics are shown in Figure 9, we also calibrate ntree and mtry in training 

process.  
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3 Study case 
 

3.1 Study area  

 

In this study, we use two couples of stations, two meteorological stations and two air quality 

stations, all of them located in Barcelona city – Spain. This city is located on north-eastern part 

of Spain, on the Mediterranean coast (Figure 10). Barcelona has a population of 1,664,182 

inhabitants and a density of 16,420 inhab/Km² (IDESCAT, 2020). On the other hand, there have 

been some events, where pollutant substances in the air of Barcelona have exceeded the 

established healthy limit (SINDIC, 2019). Therefore, it is essential to forecast pollutant levels 

like ozone to prevent people to be exposed to health issues in this area. Another factor, which 

is also important is the temperature of this area, which can reach 38°C as well as solar radiation 

with values as high as 30 MJ/m² per day in Summer. 

 

 
Figure 10 Location of the selected stations in Barcelona 

 

Barcelona presents a mean temperature difference between Summer and Winter of 20ºC 

approximately, mean annual precipitation of 600 mm, and more than 2000 sunlight hours per 

year with around 240 hours in Summer per month (INE, 2016). Since ground-level ozone is 

created in presence of sun light (section 2.1), Barcelona tends to have the majority (or all) of 

ozone episodes (high values of ground-level ozone) during Summer.  

 



 

Master’s Thesis 
Sergio López Chacón  

 

17 
 

We mentioned in the previous section 2.1 that the main source to generate tropospheric ozone 

is the combustion in motor vehicles, Barcelona has an automobile fleet of 822.211 vehicles 

(Ajuntament de Barcelona, 2020), which means that there is a vehicle for every two people. 

This is an important factor to explain why the local government is concerned about the ground-

ozone level, and future forecasting and alert systems. Moreover, there is a local phenomenon 

induced by the wind coming from the Mediterranean Sea and the surrounding mountains that 

creates a set of several layers of pollutants over the city (Soriano et al., 2001). 

 

3.2 Stations and data available  

 

Dataset is comprised by two air quality stations and two meteorological stations (both of them 

automatic stations). In order to create a model capable to predict tropospheric ozone levels using 

not only air quality data, but also meteorological data, we put these stations together in two 

couples of stations, one of air quality data and one of meteorological data. Therefore, we have 

two couples of stations, first, Barcelona-Palau Reial (air quality station) and Barcelona-Zona 

Universitaria (meteorological station), second, Barcelona-Eixample (air quality station) and 

Barcelona-El Raval (meteorological station). These couples of stations are based on proximity 

(Figure 10), they are the closest to each other available stations. The distance between Barcelo-

Palau Reial and Barcelona-Zona Universitaria (PR_ZU) is 1232 meters and between Barcelona-

Eixample and Barcelona-El Raval (EI_RA) is 1177 meters. The data of each couple will be 

used to build a model to predict ground-level ozone. We have hourly (meteorological and air 

quality stations) and daily (meteorological) data available. 

 

Based on literature review of previous research (section 2.4) we decided to take into account 

the following meteorological and air quality data from the stations: 

 

Meteorological 

• Temperature  

• Relative humidity 

• Solar radiation 

• Wind speed (vector) 

• Wind direction (vector) 

• Precipitation  

 

Air quality  

• Carbon monoxide (CO) 

• Nitrogen oxide (NO) 

• Nitrogen dioxide (NO₂) 

• Nitrogen oxides (NOx) 

• Ozone (O₃) 

• Sulphur dioxide (SO₂) 

• Particulate Matter, 10 micrometers and smaller (PM10) 
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3.2.1 Source 

 

Both air quality and meteorological data can be obtained from websites of the official agencies. 

However, we directly obtained the meteorological data from Meteocat (Meteorological Service 

of Catalonia). In case of the air quality data (hourly), we downloaded the information from 

dades obertes of Environment (Medioambient) portal of Generalitat de Catalunya 

(https://analisi.transparenciacatalunya.cat/Medi-Ambient/Qualitat-de-l-aire-als-punts-de-

mesurament-autom-t/tasf-thgu).  

 

3.2.2 Time window for Barcelona-Palau Reial and Barcelona-Zona Universitaria 

(PR_ZU) 

 

Once we picked the stations, it is necessary the select a proper time window, where we can have 

data of both stations (air quality and meteorological). The time series of the available data for 

this couple of stations is shown in Figure 11 and Figure 12. They help us to see where we have 

missing values, and the period where we have data for both, the air quality station and the 

meteorological station. Both figures show hourly data. 

 

 
Figure 11 Time series of air quality variables data available of Barcelona-Palau Reial station 

 

Barcelona-Palau Reial has available data from March 17th, 2011 to the present moment and 

Barcelona-Zona Universitaria from April 17th, 2008 to the present moment. As we can see in 

Figure 11, PM10 has many missing years, that is why this input was not taken under 

consideration in the models in this case. In order to have data of both stations in the same period 

https://analisi.transparenciacatalunya.cat/Medi-Ambient/Qualitat-de-l-aire-als-punts-de-mesurament-autom-t/tasf-thgu).
https://analisi.transparenciacatalunya.cat/Medi-Ambient/Qualitat-de-l-aire-als-punts-de-mesurament-autom-t/tasf-thgu).
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of time and considering that 2020 has been atypical year (COVID-19 pandemic), we picked a 

time window for this couple of stations from April 1st, 2011 to December 31st, 2019.  

 
Figure 12 Time series of meteorological variables data available of Barcelona-Zona 

Universitaria station 

3.2.3 Time window for Barcelona-Eixample and Barcelona-El Raval (EI_RA) 

 

Hourly time series of Barcelona-Eixample and Barcelona-El Raval (EI_RA) is shown in Figure 

13 and Figure 14. Barcelona-Eixample has available data of ozone levels from May 8th, 1996 

to the present moment and Barcelona-El Raval from October 11th, 2006 to the present moment 

(Figure 14). We can appreciate in Figure 13 that there is a considerable time window with 

missing values from June 6th, 2009 to December 31st, 2010. Considering that situation and the 

necessity to have data of both stations in the same period, we selected a time window for this 

couple of stations from January 1st, 2011 to December 31st, 2019.  

 

Barcelona-Eixample is catalogued as a “traffic” station, which means that it is mostly 

influenced by the traffic on the surrounded roads and Barcelona – Palau Reial is considered as 

“background” according to the source of the data (section 3.2.1), which means that it is located 

within an area exposed to general pollution, neither industrial nor traffic, this classification is 

given by the Decision 2011/850/EU (European Commission, 2013). 
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Figure 13 Time series of air quality variables data available of Barcelona-Eixample station 

 

  
Figure 14 Time series of meteorological variables data available of Barcelona-El Raval 

station 
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4 Methodology 
 

Figure 15 shows us the steps that we followed to develop the ML models of this research. The 

first step, Data Collection was explained in the previous section 3.2. 

 

 

 

 

 

 

 

 

Figure 15 Steps of the methodology  

4.1 Pre-processing  

 

4.1.1 Missing values and Imputing data 

There is a considerable number of missing values in the air quality data (around 14%), this 

situation does not occur in the meteorological data (original data); although, there are missing 

data, these are few (Barcelona-Zona Universitaria has four days of missing data and Barcelona-

El Raval has practically no missing values). Consequently, we tried to fill missing values mainly 

of ozone (O₃) using k-nearest neighbours (k-NN) method (Lantz, 2019).  

 

 
Figure 16 Observed and synthetic values, k-NN imputation method for ozone values from 

May 5th, 2012 to May 10th, 2012 in Barcelona-Paulu Reial (k=5, variables considered are 

NO, NO₂, temperature, hour of the day and solar radiation) 

Data collection Pre-processing Exploration 

Training the model Testing the model 
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In Figure 16, we can appreciate an example of several attempts that we made to fill missing 

values using this method. In order to do build the graph shown in Figure 16, we deleted ozone 

data in a time window and we filled missing values using this method; finally, we compared 

them with the observed values. As we can see, the method can capture the tendency of ozone 

levels through time. However, the accuracy of the synthetic data is not high. This situation can 

be seen in the different attempts with different parameters and error metrics that we got in Table 

2.  

 

In this case, We have several simulations with different values of k and variables, which are 

part of the model to fill missing values of ozone, we appreciate that the Mean Absolute 

Percentage Error (MAPE, %) in the best simulation reaches 23.08% (k = 7; variables: NO, NO₂, 

NOx, Temperature, Hours of the day and Solar radiation), which represents a considerable error 

and if we inserted these values to the model, we could have some inaccurate results, which will 

not be according to the reality. Hence, we decided to delete missing values to run our 

different models. Moreover, we consider that the number of values after deleting missing 

values is suitable to run the ML models (83% of the available dataset approximately).  

 

 

 
Table 2 Error metrics for different values of k and variables to fill ozone levels (O₃) from 

May 5th, 2012 to May 10th, 2012 

 

4.1.2 Outputs 

 

We decided to take into account two numerical outputs, the daily maximum hourly ozone 

concentration level (1hO₃) and the daily maximum 8-hours average ozone concentration level 

(8hO₃) one day ahead. This decision was made based on literature review (Malinović-Milićević 

Dates 

k /Errors ME RMSE MAE MPE MAPE

2 18.09 27.6 21.89 20.75 39.55

5 17.92 25.64 20.51 25.47 36.08

7 17.79 25.27 20.5 24.15 36.08

k /Errors ME RMSE MAE MPE MAPE

2 14.53 25.5 19.96 13.36 37.57

5 15.11 24.69 20.25 15.1 36.38

7 14.41 23.4 18.92 14.75 33.86

Variables: NO₂, Temperature

Variables: NO, NO₂, Temperature

05/05/2012 10/05/2012

k /Errors ME RMSE MAE MPE MAPE

2 13.22 25.24 20.75 7.9 39.63

5 12.5 23.29 18.63 9.92 34.97

7 12.67 23.17 18.66 9.46 35.43

k /Errors ME RMSE MAE MPE MAPE

2 10.52 18.36 14.07 14.65 25.63

5 10.31 16.79 13.05 13.21 24.71

7 10.09 16.02 12.46 13.67 23.08

Variables: NO, NO₂, Temperature, Hour, Solar Radiation

Variables: NO, NO₂, NOx, Temperature, CO



 

Master’s Thesis 
Sergio López Chacón  

 

23 
 

et al., 2021; Feng et al., 2019) and the health parameters given by WHO (Krzyzanowski & 

Cohen, 2008) and The Directive 2008/50/CE of European Union (The European Parliament 

and the Council of the European Union, 2008).  

 

We also have categorical outputs for 1hO₃ and 8hO₃, which are explained in Table 3 and Table 

4.  We have two categories for 1hO₃, which are based on “unhealthy” limit given by EPA (Texas 

Commission on Environmental Quality, 2018); even tough, this limit is referred to 8hO₃, it 

allows us to have an acceptable number of values in both categories to train the model. 

Consequently, these categories were given to measure the capacity of the model to predict 

categorical values. 

 

It was not possible to use the limits of the Directive 2008/50/CE because the corresponding 

thresholds of information (180μg/m³) and alert (240μg/m³) do not allow to have many values 

inside these limits (one in Palau Reial and two in Eixample as we can see in Figure 11 and 

Figure 13). Therefore, it is not possible to train the model. In Table 4, the categories were taken 

from the Environmental Protection Agency of USA (EPA), which are related to a healthy 

exposure to ground-level ozone.  

 

 
Table 3 1hO₃ categories 

 

 

 
Table 4 8hO₃ Categories. These categories are defined by EPA (Environmental Protection 

Agency) to define the Air Quality Index (AQI) in USA. (Texas Commission on 

Environmental Quality, 2018) 

 

4.1.3 Inputs  

 

We are taking inputs of air quality and meteorological data from the present day to predict 

ozone outputs one day ahead in every model: 

 

✓ Air quality 

1. CO (daily maximum) [mg/m³] 

2. NO (daily maximum) [μg/m³] 

3. NO₂ (daily maximum) [μg/m³] 

4. NOx (daily maximum) [μg/m³] 

5. O₃ (daily maximum or daily maximum 8-h moving average depending on the output) 

[μg/m³] 

Categories 1hO₃ Range [μg/m³]

Normal 1hO₃ < 86

Alert 1hO₃ ≥ 86

8hO₃ Range [μg/m³] 

0≤8hO₃<55

55≤8hO₃<71

71≤8hO₃<86

8hO₃≥86

Unhealthy for Sensitive Groups

Moderate

Good

Unhealthy

Categories
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6. SO₂ (daily maximum) [μg/m³] 

7. PM10 (only in Barcelona-Eixample and Barcelona-El Raval) [μg/m³] 

8. Moving average of NOx for 3 days (NOx_3) [μg/m³] 

9. Moving average of NOx for 7 days (NOx_7) [μg/m³] 

10. Moving average of NO for 3 days (NO_3) [μg/m³] 

11. Moving average of NO for 7 days (NO_7) [μg/m³] 

12. Moving average of NO₂ for 3 days (NO₂_3) [μg/m³] 

13. Moving average of NO₂ for 7 days (NO₂_7) [μg/m³] 

 

✓ Meteorological  

14. Daily mean temperature (Temp) [ºC] 

15. Maximum daily temperature (Max Temp) [ºC] 

16. Daily Mean Relative Humidity (Rel Hum) [%] 

17. Daily Solar Radiation (Solar Rad) [MJ/m²] 

18. Daily mean wind speed, vector (Wind Speed) [m/s] 

19. Daily mean wind direction, vector (Wind Direct) [º] 

20. Daily precipitation (Precip) [mm] 

21. Maximum daily dew-point deficit (Max DPD) [ºC] 

22. Daily average dew-point deficit (Av DPD) [ºC] 

23. Moving average of temperature for 7 days (Temp7) [ºC] 

24. Moving average of temperature for 30 days (Temp30) [ºC] 

25. J&C synoptic classification (only in the model from May to September) 

 

✓ Time variables of the predicted day 

26. Day of the year  

27. Month  

28. Year  

29. Weekday 

30. Number of the day of the whole dataset (Num Data)  

 

We have the same set of inputs in both prediction tasks: numerical and categorical. Two 

approaches were considered as for the period of analysis: first we took into account the whole 

year and after that, we considered a time window from May to September (adding J&C synoptic 

classification to the inputs) because tropospheric ozone tends to be higher in summer (Akimoto 

et al., 2006; World Bank Group, 1998). Moreover, the government of Catalonia pays a lot of 

attention to ozone levels during this period (Inicio de la campaña de vigilancia de ozono 

troposférico, 2021). 

 

4.1.4 Procedure to obtain output and inputs  

 

We have a dataset comprised of hourly (air quality and meteorological stations) and daily 

(meteorological stations) data to obtain the needed outputs and inputs. Many of the inputs were 

taken directly from the provided information (section 3.2.1) such as daily mean temperature, 

maximum daily temperature, daily mean relative humidity, daily solar radiation, daily mean 

wind speed, daily mean wind direction, and daily precipitation. However, there are some inputs 
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that need a pre-process. Consequently, we developed different procedures according to the 

variable that we wanted to obtain. 

 

4.1.4.1 Maximum daily value for air quality data  

 

Taking into account that we have several missing values in this data, we considered a limit of 

25% of missing values (Malinović-Milićević et al., 2021) for every day (maximum six hours) 

to take the data of the day as valid, otherwise the value of the day is discarded. Every daily 

value fulfils this criterion. A daily value is taken into account from 0:00 to 23:59 of the specific 

date.  

 

4.1.4.2 Daily maximum 8-hours average ozone concentration 

 

To compute 8hO₃, we consider the preceding hours to the hour that we want to get this value 

(seven hours before in this case) and we also take into account 25% of missing values; therefore, 

a maximum of two hours for missing values, if this condition is not fulfilled, the value is 

removed. The daily value of the maximum average will be considered if no more than six hours 

in the day are missing, this is the same principle that we have described above.  

 

4.1.4.3 Dew point deficit  

 

If temperature goes down enough to produce dew or fog and we have saturation in the hair, we 

reach the dew point (Sensirion, 2006). Dew point can be calculated using the Magnus formula 

based on temperature and relative humidity: 

 

𝐷𝑝 =
𝜆 (𝑙𝑛 (

𝑅𝐻
100) +

𝛽. 𝑇
𝜆 + 𝑇

)

𝛽 − (𝑙𝑛 (
𝑅𝐻
100) +

𝛽. 𝑇
𝜆 + 𝑇

)
 

 

(8) 

From -45ºC to 60ºC:  

𝜆 = 243.12℃  

𝛽 = 17.62 

𝛼 = 6.112 ℎ𝑃𝑎 

𝑅𝐻 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 (%)  

𝑇 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 

 

Dew point deficit is the result of the difference between air temperature and dew point. 

Consequently, we calculated a deficit dew point (DPD) for every hourly temperature of the 

original data of the meteorological stations and from there, we obtained an average dew point 

deficit (Av DPD) and a maximum dew point deficit (Max DPD). 

 



 

Master’s Thesis 
Sergio López Chacón  

 

26 
 

4.1.4.4 Jenkinson and Collison synoptic classification for Catalonia (SC) 

 
Figure 17 16 points used to calculate Jenkinson and Collison classification (meteorological 

team of Javier Martín-Vide, "𝜋 − 𝑃𝑙𝑎𝑡𝑒𝑠" project) 

 

 
Figure 18 27 types of J&C synoptic classification over Spain (Martín-Vide et al., 2016) 

Advection with 

anticyclonic 

characteristics 

Advection with cyclonic 

characteristics 

A: Anticyclone C: Cyclone 

U: Undefined field of 

pressure

Pure advection in the 

shown directions, 

establishing the 

directions of the wind 
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A synoptic classification characterizes atmospheric circulation. Jenkinson and Collison (J&C) 

classification describes atmospheric circulation into 27 types obtained from 7 variables based 

on atmospheric pressure (Martín-Vide et al., 2016). For Spain territory, and specifically in 

Catalonia for our study, the classification was obtained based on data of 16 different points 

shown in Figure 17. The schematic description of the atmospheric circulation for every type of 

the classification is shown in Figure 18. 

 

The data of the J&C classification for Catalonia of every day from May to September in the 

period of study of both couples of stations was gotten from Javier Martín-Vide (meteorological 

researcher of Barcelona University) under the project "𝜋 − 𝑃𝑙𝑎𝑡𝑒𝑠" by Generalitat de 

Catalunya and CIMNE.  

 

4.1.4.5 Moving average  

 

The information of a single day is valid taking into account the criterion in 4.1.4.1. In air quality 

and meteorological inputs, we have moving averages of different data. In the case of moving 

average of 3 days (NOx, NO and NO₂), we computed these values only if none of the days are 

missing. In the case of 7 days (NOx, NO, NO₂ and temperature), a maximum of one day can be 

missing. Finally, in the case of 30 days (Temperature), a maximum of 7 missing are accepted 

to consider the moving average as valid.   

 

4.2 Exploration 

 

4.2.1 Outputs  

 

Exploring the dataset, obtaining correlations between variables and describing them are very 

important steps to understand and get acceptable results when we run the ML models. In Table 

5, we have the main characteristics of the outputs of the models according to the air quality 

stations. Ground-level ozone is higher in Barcelona – Palau Reial, this might be related to what 

we talked about in section 2.1 and wind has an important role to make this area more polluted 

in terms of ozone. We can see that the means of the values are not close to the limits given by 

the Directive 2008/50/CE. 
 

 
Table 5 Summary of characteristics of 1hO₃ and 8hO₃ 

 

In Figure 19 and Figure 20, we can also appreciate that the ground-level ozone values of 

Barcelona – Palau Reial are higher than Barcelona - Eixample, and they are mainly grouped 

Minimum Median Mean Maximum Range

1hO₃ [μg/m³] 7.00 84.00 83.30 229.00 222.00

8hO₃ [μg/m³] 5.00 75.62 73.54 169.75 164.75

Minimum Median Mean Maximum Range

1hO₃ [μg/m³] 3.00 64.00 63.17 211.00 208.00

8hO₃ [μg/m³] 1.75 54.12 52.24 143.50 141.75

Barcelona-Palau Reial 

Barcelona-Eixample 
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between 25 and 125 [μg/m³] approximately. On the other hand, 1hO₃ and 8hO₃ for Barcelona – 

Eixample are mostly between 12 and 100 [μg/m³].   

 

 
Figure 19 Density plot of 1hO₃ 

 

 
Figure 20 Density plot of 8hO₃ 

 

The values of 1hO₃ and 8hO₃ in both air quality stations vary in different ranges as we can see 

in Table 6 and Table 7. In Barcelona – Palau Reial, we have a similar distribution of the values 
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according to the categories given in section 4.1.2. However, this is not the case in Barcelona – 

Eixample. This can represent an issue because we will not have enough values in every category 

to train the categorical models in this couple of stations (Barcelona – Eixample and Barcelona- 

El Raval). Consequently, we might not have suitable results in this case (the number of 1hO₃ 

and 8hO₃ has been computed taking into account the dataset with no missing values).  

 

We can infer that there is a considerable spatial variation of tropospheric ozone levels in the 

area and categorical models might not work well in every case. We did not consider quality 

control analysis (finding outliers and further filling of them) because it is not inside the scope 

of this study.  

 

 
Table 6 Number of ground-level ozone values of Barcelona – Palau Reial according to 

categories 

 

 
Table 7 Number of ground-level ozone values of Barcelona – Eixample according to 

categories 

 

 

 

 

 

 

 

 

 

 

 

2011 2012 2013 2014 2015 2016 2017 2018 2019 Total

< 86 98 142 170 183 145 157 142 147 149 1333

≥ 86 80 160 175 147 143 158 137 101 144 1245

< 55 39 70 60 75 81 61 54 73 48 561

≥ 55 & < 71 42 56 77 67 43 71 57 51 72 536

≥ 71 & < 86 48 64 76 98 60 56 87 55 69 613

≥ 86 48 112 132 90 104 127 80 65 104 862

Number of 1hO₃

Number of 8hO₃

2011 2012 2013 2014 2015 2016 2017 2018 2019 Total

< 86 216 256 287 296 271 260 291 288 244 2409

≥ 86 29 36 40 43 34 51 49 56 46 384

< 55 166 179 160 174 162 138 176 172 146 1473

≥ 55 & < 71 50 77 109 106 95 112 99 99 86 833

≥ 71 & < 86 24 30 45 48 41 44 53 51 37 373

≥ 86 5 5 13 11 7 17 11 22 21 112

Number of 1hO₃

Number of 8hO₃
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4.2.2 Trends and linear correlations between outputs and inputs  

 

In order to show the existing trends and correlations between inputs and outputs of the model, 

we took 1hO₃ and all the inputs (variables) related to the prediction of it (section 4.1.3) as an 

example. They can be seen from Figure 21 to Figure 24. 

 

We previously mentioned that ozone concentration levels vary seasonally, as can be seen in 

Figure 21 from (a) to (c), where the highest values are in summer, giving a sinusoidal variation 

trend to ground-level ozone through the years. The highest value of 1hO₃ took place in June. 

There is no considerable variation of median, minimum and maximum 1hO₃ levels over the 

years (Figure 21 (d)); although, there are two outstanding high levels in 2019, which are 

registered in both stations in the same date (29/06/2019, Saturday). Regarding weekdays, we 

expected to have the highest values on working days; however, higher values are registered on 

the weekends (Figure 21 (e)) with no significant variation on the entire week. In Figure 21 (e), 

the week starts on Sunday (1) and ends on Saturday (7).  

  

 
Figure 21 Variation of 1hO₃ according time variables for Barcelona – Palau Reial (PR_ZU) 

and Barcelona – Eixample (EI_RA) 
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Figure 22 Variation of NOx and solar radiation in the week 

 

We saw in section 2.1, that ground-level ozone is generated by the photochemical reaction of 

nitrogen oxides (NOx) and volatile organic compounds (VOCs) in presence of sunlight. 

Consequently, in order to search for some explanation to the variation of tropospheric ozone 

levels during weekdays, we also explored the variation of NO, NO₂ and NOx in weekdays along 

with solar radiation.  

 

In Figure 22, we can appreciate that NO, NO₂ and NOx are higher on working days of the week 

than on the weekend. This is related to the gasses produced by cars and high traffic these days. 

Wang et al., (2019) and McKeen et al., (1991) showed that ground-level ozone is sensitive to 

changes in VOCs and NOx and the diminution of NOx might cause that O₃ levels increase. 

Therefore, a possible explanation for the variation of O₃ on weekdays might be related to the 

variation of NOx and similar components.  

 

In Figure 23, we explore the linear correlations between all meteorological inputs and 1hO₃, we 

took the case of Barcelona-Palau Reial and Barcelona – Zona Universitaria as an example to 

see the behaviour of the variables related to the outputs. In general, we have low linear 

correlation coefficients (R) in every case. However, solar radiation has the highest R equal to 

0.68 (Figure 23 (d)) followed by the temperature and related variables such as maximum 
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temperature and moving averages of this variable (Temp 7 and Temp 30), where we can see 

that the correlation is lower while the number of days of the moving average increases. The 

lowest correlation is obtained with precipitation (Precip).  

 

As for the synoptic classification, we can see in Figure 23 (l) that U (undefined field of pressure) 

is the most common classification followed by A (anticyclone). However, a clear trend between 

high or low values of ground-level ozone and specific types of J&C synoptic classification (SC) 

cannot be appreciated. 

 

Correlation between NO, NO₂, and NOx with 1hO₃ (Figure 24) grows (inversely) while we 

consider more days for the moving average. From -0.27 to -0.45 for NO (Figure 24 (b) and (k)) 

Although, the correlations are small. In Figure 24 (e), we see that the daily maximum hourly 

ozone concentration level of the preceding day (O3) has a high correlation with 1hO₃ (R=0.80). 

In other words, the ground-level ozone of today is highly related to the ozone concentration of 

tomorrow. In fact, it is the variable with the highest correlation among all inputs. The correlation 

between the other air quality variables and the output is low in every case.  

 

Either daily maximum hourly or daily maximum 8-hours average ozone concentration level 

(O3) of the previous date to the predicted output have the highest correlation coefficients for 

both couples of stations as we can see in Table 8, where we have a summary of correlation 

coefficients for every meteorological and air quality input. Solar radiation has the second 

highest followed by temperature; this is consistent with the definition of the creation of 

tropospheric ozone that we discussed previously. The same behaviour that we saw in Figure 23 

and Figure 24 is repeated for all outputs and inputs, PM10 is a variable only available for 

Barcelona-Eixample and Barcelona-El Raval (section 3.2.2); however, it shows a very low R 

with every output. It also important to highlight that the exploration has been made taking into 

account values of the whole year.  
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Figure 23 Scatter plot of every meteorological variable vs 1hO₃ for Barcelona-Palau Reial 

and Barcelona-Zona Universitaria 
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Figure 24 Scatter plot of every air quality variable vs 1hO₃ for Barcelona-Palau Reial and 

Barcelona-Zona Universitaria 
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Table 8 Correlation coefficients between outputs and every meteorological and air quality 

input for both couples of stations 

 

4.3 Training  

 

All available dataset has been divided into two parts, training and testing sets. Training set 

corresponds to the first 70% (chronologically) of all dataset and the remaining 30% for testing. 

In order to train the model, we applied the prequential evaluation analysis to get a suitable 

estimation of the accuracy of the model. We applied this analysis over the training dataset 

dividing this into training and testing as well.  

 

We mentioned previously that we first, considered data of all year and second, from May to 

September to include J&C classification as an input. In the first case (data of all year), we took 

into account 5 folds for both couples of stations as is shown in Figure 25 and Figure 26. 

 

 
Figure 25 Prequential scheme for training in Barcelona-Palau Reial and Barcelona-Zona 

Universitaria (entire year) 

  

The training set (1805 and 1956 days for PR_ZU and EI_RA respectively) is divided 

chronologically taking 720 days for training and 360 days for testing (the combination of both 

is called window). The regression model uses a fixed window and the categorical a growing 

one. The window moves or grows considering a block of 180 or 210 days (PR_ZU and EI_RA 

respectively) 

C
O

N
O

N
O

2

N
O

X

O
3

S
O

2

T
e

m
p

M
a

x
 T

e
m

p

R
e

l 
H

u
m

S
o

la
r 

R
a

d

W
in

d
 s

p
e

e
d

W
in

d
 d

ir
e

c
t

P
re

c
ip

M
a

x
 D

P
D

A
v

 D
P

D

T
e

m
p

 7

T
e

m
p

 3
0

N
O

x
_

3

N
O

_
3

N
O

2
_

3

N
O

x
_

7

N
O

_
7

N
O

2
_

7

-0.24 -0.27 -0.05 -0.24 0.80 0.25 0.56 0.56 -0.20 0.68 -0.11 -0.30 -0.03 0.28 0.26 0.54 0.43 -0.29 -0.39 -0.11 -0.34 -0.45 -0.16

-0.30 -0.33 -0.13 -0.30 0.83 0.20 0.56 0.55 -0.21 0.69 -0.04 -0.30 -0.03 0.27 0.26 0.54 0.43 -0.34 -0.43 -0.18 -0.40 -0.50 -0.23

C
O

N
O

N
O

2

N
O

X

O
3

S
O

2

P
M

1
0

T
e

m
p

M
a

x
 T

e
m

p

R
e

l 
H

u
m

S
o

la
r 

R
a

d

W
in

d
 s

p
e

e
d

W
in

d
 d

ir
e

c
t

P
re

c
ip

M
a

x
 D

P
D

A
v

 D
P

D

T
e

m
p

 7

T
e

m
p

 3
0

N
o

x
_

3

N
O

_
3

N
O

2
_

3

N
O

x
_

7

N
O

_
7

N
O

2
_

7

1hO₃ -0.33 -0.33 -0.09 -0.31 0.74 0.10 0.07 0.45 0.45 -0.04 0.61 0.15 -0.24 -0.03 0.14 0.09 0.42 0.31 -0.33 -0.39 -0.08 -0.42 -0.48 -0.15

8hO₃ -0.38 -0.38 -0.15 -0.36 0.79 0.07 0.06 0.48 0.47 -0.04 0.63 0.19 -0.24 -0.03 0.13 0.09 0.45 0.34 -0.37 -0.43 -0.13 -0.46 -0.52 -0.20

1hO₃ 

8hO₃

Barcelona-Palau Reial and Barcelona-Zona Universitaria

Barcelona-Eixample and Barcelona-El Raval 

180

1st fold

2nd fold

3rd fold

4th fold

5th fold

180

Whole 

dataset

1805 days 774 days

720 days 360 days

Scheme for regression model

Training Testing

Scheme for categorical model

720 days 360 days



 

Master’s Thesis 
Sergio López Chacón  

 

36 
 

 
Figure 26 Prequential scheme for training in Barcelona-Eixample and Barcelona-El Raval 

(entire year) 

 

For the models from May to September, we considered 3 folds based on the same prequential 

evaluation analysis developed previously (Figure 27 and Figure 28). Starting from 360 days for 

training (turquoise) and 180 days for testing (orange), the window moves or grows with a block 

of 110 and 120 days for PR_ZU and EI_RA respectively. We took fewer folds for this model 

compared to models of the entire year because we have less data available, only 773 and 783 

days for training in both couples of stations respectively.  

 

In every model, the ML algorithm is applied in the training set varying the respective 

parameters. In this study, we use Random Forest (RF) and for it, we calibrate the number of 

decision trees (ntree) and number of features (mtry) trying several combinations, and searching 

for the most accurate, a summary of the combination of parameters can be seen in Table 9. In 

total, we considered 35 combinations of parameters. The R packages that we will use to create 

the RF models are randomForest for data of the whole year and party for data from May to 

September.     

 

 
Figure 27 Prequential scheme for training in Barcelona-Palau Reial and Barcelona-Zona 

Universitaria (days from May to September) 
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Figure 28 Prequential scheme for training in Barcelona-Eixample and Barcelona-El Raval 

(days from May to September) 

 

Once the model is obtained based on the data of the training set for every combination of 

parameters, this model uses the inputs (features) of the testing set to predict the output, which 

is compared with the observed output of the testing set to calculate the mean absolute error 

(MAE), the average MAE computed with the result of every fold is taken as an accuracy 

measurement of the model with the respective parameters. The combination of parameters with 

the lowest MAE is taken to be applied to the whole training part of the entire dataset to obtain 

a new model. In the case of the categorical model, the average error rate is taken as an accuracy 

measurement instead of MAE.  

 

 
Table 9 Combination of number of ntree and mtry taken in RF model for training 

 

4.4 Testing  

 

The parameters, which gave the most accurate results (lowest MAE) in the prequential 

evaluation analysis are going to be used to create another model based on the data of whole 

training set (70% of the dataset) and the resulting model will be applied to predict ground-level 

ozone values based on the inputs of the testing set. Then, the predicted values will be compared 

with the observations of the testing set using different error metrics developed in section 2.7.  

 

Variable importance analysis will be also developed for every RF model. The Variable 

importance will be computed based on mean decrease impurity (MDI) and mean decrease 

accuracy (MDA). Impurity is measured by residual sum of squares for regression models and 

by Gini index for classification models (models with categories as outputs). MDA is computed 

Whole 

dataset

Training Testing

783 days 336 days

3rd fold

2nd fold

1st fold

Scheme for regression method Scheme for categorical method

360 days 180 days 360 days 180 days 120

120

ntree 200 200 200 200 200 300 300 300 300 300

mtry 8 9 10 12 14 8 9 10 12 14

ntree 400 400 400 400 400 500 500 500 500 500

mtry 8 9 10 12 14 8 9 10 12 14

ntree 600 600 600 600 600 700 700 700 700 700

mtry 8 9 10 12 14 8 9 10 12 14

ntree 800 800 800 800 800

mtry 8 9 10 12 14
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for every variable based on the difference between the mean squared error (MSE) of OOB 

values and the MSE after a specific variable (the one the we want to know the MDA) is 

permuted. We compute the average of this difference for every tree (Liaw & Wiener, 2018). 

 

To compute these measurements of importance, both randomForest and cforest packages have 

inner functions to do it. The partial importance of some specific chosen inputs will be computed 

as well to see how tropospheric ozone concentration varies due to these variables. The specific 

inputs will be considered according to their measurement of the general importance computed 

previously. 
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5 Results  
 

Results are presented in two parts: First, all models related to the data of the whole year are 

exposed, second, the results of days from May to September will be taken into account.  

 

5.1 Models of the whole year  

 

5.1.1 Regression models  

 

5.1.1.1 Prediction accuracy 

We applied the training process described in 4.3 to calibrate the model parameters. The outputs 

of the models are 1hO₃ and 8hO₃. In Table 10 and Figure 29, we appreciate the results of the 

prequential evaluation analysis for 1hO₃ after we applied the RF model to every fold for every 

combination of parameters.  

 

 
Table 10  MAE of every testing set in the five folds of the prequential evaluation analysis for 

1hO3 in Barcelona-Palau Reial and Barcelona-Zona Universitaria 

ntree mtry Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

200 8 9.513 9.230 10.529 9.784 10.304 9.872

300 8 9.508 9.257 10.561 9.807 10.333 9.893

400 8 9.599 9.229 10.518 9.871 10.307 9.905

500 8 9.528 9.206 10.496 9.868 10.293 9.878

600 8 9.552 9.195 10.475 9.871 10.283 9.875

700 8 9.563 9.172 10.483 9.845 10.284 9.869

800 8 9.533 9.171 10.462 9.838 10.286 9.858

200 9 9.689 9.117 10.441 9.750 10.158 9.831

300 9 9.492 9.144 10.450 9.758 10.153 9.799

400 9 9.521 9.124 10.372 9.771 10.184 9.794

500 9 9.549 9.122 10.371 9.749 10.185 9.795

600 9 9.571 9.115 10.382 9.753 10.195 9.803

700 9 9.577 9.108 10.365 9.760 10.183 9.798

800 9 9.595 9.122 10.393 9.746 10.175 9.806

200 10 9.679 9.151 10.370 9.741 10.303 9.849

300 10 9.615 9.128 10.427 9.736 10.334 9.848

400 10 9.615 9.147 10.380 9.766 10.299 9.841

500 10 9.610 9.116 10.387 9.784 10.242 9.828

600 10 9.653 9.117 10.347 9.781 10.252 9.830

700 10 9.660 9.127 10.337 9.785 10.270 9.836

800 10 9.596 9.095 10.337 9.773 10.279 9.816

200 12 9.731 9.093 10.315 9.741 10.321 9.840

300 12 9.692 9.111 10.288 9.686 10.264 9.808

400 12 9.646 9.092 10.285 9.698 10.225 9.789

500 12 9.645 9.108 10.250 9.687 10.203 9.779

600 12 9.600 9.104 10.236 9.687 10.182 9.762

700 12 9.651 9.117 10.277 9.678 10.194 9.783

800 12 9.637 9.112 10.264 9.695 10.187 9.779

200 14 9.848 9.099 10.296 9.794 10.342 9.876

300 14 9.765 9.074 10.222 9.832 10.332 9.845

400 14 9.702 9.061 10.177 9.829 10.339 9.821

500 14 9.766 9.068 10.210 9.819 10.304 9.833

600 14 9.721 9.050 10.213 9.797 10.312 9.819

700 14 9.708 9.035 10.213 9.795 10.326 9.815

800 14 9.694 9.029 10.200 9.804 10.319 9.809
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Figure 29 Average MAE of the prequential evaluation analysis for 1hO3 in PR_ZU with data 

of the whole year using several combinations of ntree and mtry 

 

The combination of parameters with the lowest mean absolute error (MAE) for RF model with 

1hO₃ as output is ntree = 600 and mtry = 12 (MAE = 9.762). The same combination of 

parameters is applied to the whole training set (70% of the dataset) to obtain the RF model, 

which will be used to predict 1hO₃ values taking into account the inputs of the testing set.  

 

A summary of the most accurate combinations of parameters for every RF regression model of 

the whole year with their respective outputs is given in Table 11. We can notice that MAE 

results are close for every model, even considering that we have different output. We applied 

these parameters to the whole training set in the respective models. 

 

 
Table 11 Summary of the results of the prequential evaluation for the most accurate 

combination of parameters for every regression model of the year 

 

Output Stations ntree mtry MAE

1hO₃ PR_ZU 600 12 9.762

8hO₃ PR_ZU 400 9 9.571

1hO₃ EI_RA 500 12 9.718

8hO₃ EI_RA 700 12 9.382
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After we train the model using the parameters with the most accurate approximations to the 

outputs and the whole training set, we get the error metrics related to the training set and the 

testing set. In the first one, all error metrics are low when we compare the predicted output and 

the observed one because this part of the dataset was employed to build the model itself (or 

train). However, when we apply the inputs that belong to the testing set, the error metrics 

increase as it is shown in Table 12 where we have a summary of the error metrics for every 

model considering both training and testing sets. 

 

 
Table 12 Error metrics of the RF models of the whole year for every output in PR_ZU and 

EI_RA  

 

 

 
Figure 30 Out-of-bag error (RMSE.OOB) as a function of number trees for the training 

process of 1hO₃ model of PR_ZU 

ME RMSE MAE MPE MAPE

Training set 0.003 4.787 3.615 -1.278 5.100

Testing set -3.248 13.423 9.970 -7.195 13.725

Training set 0.006 4.622 3.554 -1.932 6.272

Testing set -2.925 12.122 9.441 -8.486 15.816

Training set 0.033 4.782 3.683 -2.938 7.983

Testing set -1.434 12.467 9.619 -7.553 18.076

Training set 0.002 4.396 3.447 -4.423 10.095

Testing set -1.420 11.194 8.776 -11.777 23.012

1hO₃

8hO₃

1hO₃

8hO₃

PR_ZU

EI_RA
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Table 13 Out-of-bag MSE and RMSE for 1hO₃ and 8hO₃ with data of the whole year 

 

RMSE and MAE of the predicted and observed values are close in every testing set for each 

model. These results can be also compared with the RMSE of the out-of-bag (OOB) values 

obtained in the training process. In Figure 30, we can appreciate how the mean squared error 

(MSE) for OOB values varies according to the number of trees. The error given in the OOB 

analysis can be also taken into account as a suitable approximation of the accuracy of the model. 

Table 13 shows the MSE and RMSE of the OOB analysis (these values are related to the number 

of trees taken into account in every model). RMSE obtained in the analysis of the testing set 

and OOB values are quite similar. There is a considerable variation in the mean absolute 

percentage error (MAPE), from 13.7% to 23% (Table 12). MAPE indicates the average 

percentage difference between observed and predicted value. If the observation is equal to 1 

and prediction is equal to 2, MAPE will be 100%. 

 

There is some dispersion in the scattered plot of the observed vs. predicted of 1hO₃ and 8hO₃; 

however, the tendency is close to the ideal case (blue line) for both stations and both output 

(Figure 31 and Figure 32), there are few points separated from the general trend, which are 

related with events with an extraordinary high tropospheric ozone concentration. 8hO₃ model 

for EI_RA shows the highest dispersion among the graphs, this can also be seen in MAPE value 

that we mentioned before. The scattered plots were made using only the outputs after testing 

process. 

 

  
Figure 31 Scattered plot Observed vs Predicted (1hO₃ and 8hO₃) of the whole year for 

Barcelona – Palau Reial and Barcelona–Zona Universitaria with the testing set  

 

 

 

MSE.OOB RMSE.OOB

1hO₃ 138.040 11.749

8hO₃ 128.3307 11.328

1hO₃ 137.7015 11.735

8hO₃ 116.6584 10.801

PR_ZU

EI_RA
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Figure 32 Scattered plot Observed vs Predicted (1hO₃ and 8hO₃) of the whole year for 

Barcelona–Eixample and Barcelona–El Raval with the testing set 

 

 
 

 
Figure 33 Time series of 1hO₃ and 8hO₃ for the whole year in PR_ZU with the testing set 
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The predicted outputs, both 1hO₃ and 8hO₃ capture the temporal variation of the ground-level 

ozone as we can see in Figure 33 and Figure 34, where only the testing period is considered. 

The models have difficulties to interpret the extraordinarily high or low values.  

 

 

 
Figure 34 Time series of 1hO₃ and 8hO₃ for the whole year in EI_RA with the testing set 

 

5.1.1.2 Model interpretation  

 

It was explained previously that one of the inputs of the models is the daily maximum hourly 

ozone concentration level or the daily maximum 8-hours average ozone concentration level of 

the day before the prediction (O₃). In other words, 1hO₃ or 8hO₃ of the previous day are been 

used if we are predicting 1hO₃ or 8hO₃ respectively. This variable is the most important one in 

every regression model considering data of the whole year as we can see in Figure 35 and Figure 

36. In order to measure the Variable importance, we have used one of the options included in 

randomForest package, mean decrease impurity (MDI). In the case of regression models, MDI 

is measured based on the decrease of residual sum of squares (RSS).  
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The higher the MDI, the higher the importance is. Solar radiation (Solar Rad) and the day of 

the year (Day_year) complete the podium in the second and third place in importance 

respectively. Months and the moving average on NO in seven days (NO_7) are also present in 

the four models as the most important ones. NO acquires higher importance while the period of 

the moving average is higher.  

 

  
Figure 35 Variable importance for 1hO₃ and 8hO₃ in RF regression models of the whole year 

in PR_ZU 

 

 

  
Figure 36 Variable importance for 1hO₃ and 8hO₃ in RF regression models of the whole year 

in EI_RA 

 

We took the case of 1hO₃ for PR_ZU as an example to see the behaviour of the main variables 

(Figure 37). Tropospheric ozone of the day before the prediction, solar radiation, and maximum 

temperature have a positive relationship with the output. The inverse relationship between 

NO_7 and 1hO₃ might be related to what we studied previously in the exploration step (section 

4.2.2). Finally, the model correctly captures the seasonal behaviour as we can see in the 

variation of 1hO₃ respect to months and days of the years with the highest values in summer. 
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The highest variation of 1hO₃ takes place with O₃ as a variable because this is the most 

important one.  

 
Figure 37 Partial importance of the main variables for 1hO₃ output of whole year in PR_ZU 

 

The generation of ground-level ozone is linked to the presence of NOx and similar components 

as we saw previously. Consequently, how 1hO₃ varies with respect to these variables in the 

model is something important to analyse. In Figure 38, we can see partial importance plots of 

NO, NO₂, NOx and their moving averages for PR_ZU. We appreciate a negative correlation 

between NO and 1hO₃, a positive one between NO₂ and 1hO₃, and no specific correlation 

between NOx and 1hO₃. We must understand that NOx refers to the nitrogen oxides present in 

the air in a generic form, and its measurement is mainly the combination of NO and NO₂ 

(Akimoto et al., 2006). The increase in tropospheric ozone concentrations during weekends 

might be related specifically to NO and its reduction during these days, and even being a 

reaction produced in presence of sunlight and during several hour of the day (Akimoto et al., 

2006), the daily moving averages of NO acquire a higher importance in every model than the 

maximum value of NO during the day. 
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Figure 38 Partial importance of NO, NO₂, NOx and their moving averages for 1hO₃ output of 

whole year in PR_ZU 

 

We could see until this point that RF models of the whole year for both outputs have similar 

behaviour and similar error metrics. Therefore, in order to make some further analysis, we 

decided to study the behaviour of the models when we remove O₃ as a variable (1hO₃ or 8hO₃ 

of the previous day) because this is the most important variable by far in every model, and this 

aspect could mask the potential of the other variables or maybe modify the order of importance. 

Thus, we took again the model of 1hO₃ for PR_ZU to make this analysis as an example.   

 

 

 
Table 14 Error metrics for 1hO₃ model with and without O₃ as variable considering the 

testing set for the whole year in PR_ZU 

 

ME RMSE MAE MPE MAPE

All variables -3.248 13.423 9.970 -7.195 13.725

Without O₃ -5.077 15.512 11.812 -10.049 16.409

%Variation 56.30% 15.56% 18.48% 39.66% 19.56%
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Figure 39 Variable importance for 1hO₃ in RF model 

of the whole year without O₃ in PR_ZU 

Solar radiation and the day of the 

year are still the two main variables 

(if we remove ozone level from the 

previous day) as we can see in 

Figure 39. However, some variables 

increase their importance such as 

months or Temp7. In general terms, 

the results about importance without 

O₃ are similar to those obtained with 

all the variables included. Although, 

the error metrics after removing O₃ 

increase considerably as Table 14 

shows. This confirms the O₃ 

importance and showing that it does 

not influence over the importance of 

other variables. 

 

In order to show graphically the variation of 1hO₃ with respect to the main two variables, we 

took the case of PR_ZU as an example, Figure 40 shows that while O₃ and Solar Rad grow, 

1hO₃ also grows. The combination of both variables can deliver a wide 1hO₃ variation. 

 

 
Figure 40 1hO₃ variation with respect to Solar Rad and O₃ for PR_ZU using data of the whole 

year 
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5.1.2 Categorical model  

 

In section 2.11, we saw that the way to evaluate the accuracy of a categorical model (a model 

with a categorical output) is calculating the confusion matrix and trough it, the error rate of the 

model. The results of the average error rate from the application of the model (with different 

parameters) over the testing set of the folds in the prequential evaluation analysis for 1hO₃ in 

PR_ZU is shown in Figure 41. This is an example of the procedure to select the parameters, 

which produce the highest accuracy. We can see that 800 trees (ntrees) and 14 features or 

variables (mtry) are the most accurate combination with an error rate of 0.1356. The procedure 

is repeated for the categorical outputs of 1hO₃ and 8hO₃ in both couples of stations and the 

parameters with the lowest error rate are summarized in Table 15.  

 

 
Figure 41 Mean error rate of the prequential evaluation analysis for categorical model of 

1hO3 in PR_ZU with data of the whole year using several combinations of ntree and mtry 

 

 

 
Table 15  Summary of the results of the prequential evaluation for the most accurate 

combination of parameters for every categorical model of the year 

 

Output Station ntree mtry Error rate

1hO₃ PR_ZU 800 9 0.1356

8hO₃ PR_ZU 400 8 0.3906

1hO₃ EI_RA 200 14 0.1267

8hO₃ EI_RA 300 8 0.3478
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Once we determined the best parameters for the models, we trained a new model using the 

whole training set, and the resulting model was applied to predict the categories of 1hO₃ and 

8hO₃ using the variables of the testing set. As a result of this procedure, we got the out-of-bag 

(OOB) and testing error rates. We saw in section 2.6, that OOB analysis is also a good accuracy 

measure for the model.  

 

 
Table 16 Error rate of out-of-bag samples and testing set for categorical 1hO₃ in PR_ZU and 

EI_RA for the model of the whole year 

 

Confusion matrix of the OOB analysis and testing set along with the error rate for the whole 

model and each category are shown in Table 16and Table 17. In every case the OOB error rate 

is closer to the one obtained in the prequential evaluation analysis than the error rate gotten with 

the testing set. However, their magnitude is similar. The error rate of the whole categorical 

model of 1hO₃ is relatively low in both couples of stations. Nonetheless, the error is 

considerable in the categorical models of 8hO₃. 

 

In PR_ZU, both categories for 1hO₃ show a low error. However, this is not the case in EI_RA, 

as we saw when we explored the data, there are few values inside the second category selected 

(≥86 μg/m³); therefore, it is difficult to train the model and obtain lower error rates. The same, 

principle is applied to the 3rd and 4th categories of 8hO₃ for EI_RA where the error rate is high 

(0.73 and 0.65 for the 3rd, and 0.95 and 0.89 for the 4th). The first category for both 1hO₃ and 

8hO₃ (1hO₃<86 μg/m³ and 0≤8hO₃<55 respectively) generally presents an error rate lower than 

0.25, except for the one in the testing set for 8hO₃ in PR_ZU where the error is considerably 

high. 
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The results show the importance to have a uniform distribution for the categories. Nevertheless, 

this is very complex because we should have a different category scale for every station 

according to the values of 1hO₃ and 8hO₃, defining what is good or what is an unhealthy level 

in every case. Therefore, although there can be a low overall error rate of the model, the model 

might have a low accuracy predicting values of specific categories.  

 

 
Table 17 Error rate of out-of-bag samples and testing set for categorical 8hO₃ in PR_ZU and 

EI_RA for the model of the whole year 

 

MDI in categorical models is measured based on Gini index; therefore, this can also be called 

mean decrease Gini (MDG). We obtained the Variable importance for every model based on 

MDG (Figure 42 and Figure 43). O₃, solar radiation and day of the year are the main variables 

for the categorical models (as we had previously for the regression ones) in both couples of 

stations. However, there are some differences between results, in EI_RA, weekday (Day_week) 

acquires a notorious importance along with the number of the data or sample (Num_Data). The 

moving average of NO in seven days (NO_7) is once again the most important air quality 

variable in almost all models, except for NO2_3 in EI_RA categorical 1hO₃. The year and 

precipitation have the lowest importance.  
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Figure 42 Variable importance for 1hO₃ and 8hO₃ in RF categorical models of the whole year 

in PR_ZU 

 

  
Figure 43 Variable importance for 1hO₃ and 8hO₃ in RF categorical models of the whole year 

in EI_RA 
 

Following the same analysis that we did in the previous section; we considered the same set of 

inputs without ground-level ozone (O₃) to see the performance and behaviour of the model and 

as an example we took Barcelona-Palau Reial and Barcelona-Zona Universitaria. About the 

categories of 1hO₃, there is not a considerable difference in error rates between Table 16 and 

Table 18 when we do not take into account O₃ as input, neither in the general error rate of the 

model nor in the categories; although, the highest variation is appreciated in the lowest class.  
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Table 18 Error rate of out-of-bag samples and testing set for categorical 1hO₃ in PR_ZU for 

the model of the whole year without O₃ 

 

 

In the analysis with categories of 8hO₃ (Table 17 and Table 19), the variation of OOB error rate 

is low; however, in the testing set, the error rate is higher in lower classes and in the last 

category, the error rate is lower than we saw previously (complete model).Thus, solar radiation 

(the most important variable in this case) might be crucial especially for prediction of high 

levels of tropospheric ozone. In general terms, error rate is higher when we do not take into 

account O₃, and the order of the variation is practically the same (Figure 44). 

 

 

 
Table 19 Error rate of out-of-bag samples and testing set for categorical 8hO₃ in PR_ZU for 

the model of the whole year without O₃ 

 

 

777 162

102 764

268 127

38 341

 Error rate 

0.1725 0.1177 0.1463
T

es
ti

n
g

 s
et

0.3215 0.1003 0.2132

1hO₃ < 86 1hO₃ ≥ 86

B
a

rc
el

o
n

a
-P

a
la

u
 R

ei
a

l 
a

n
d

 

B
a

rc
el

o
n

a
-Z

o
n

a
 U

n
iv

er
si

ta
ri

a

O
O

B

Confusion Matrix 
 Error rate 

of class 1

Error rate of 

class 2

316 74 16 0

109 148 72 41

28 77 131 174

1 10 85 519

72 58 22 4

19 52 46 49

1 22 56 124

0 2 20 225T
es

ti
n

g
 s

et

0.5384 0.6867 0.7241 0.0891 0.4754

Error rate of 

class 4
 Error rate 

0.2217 0.6000 0.6805 0.1561 0.3815

0≤8hO₃<55 55≤8hO₃<71 71≤8hO₃<86 8hO₃≥86

B
a

rc
el

o
n

a
-P

a
la

u
 R

ei
a

l 
a

n
d

 B
a

rc
el

o
n

a
-

Z
o

n
a

 U
n

iv
er

si
ta

ri
a

O
O

B

Confusion Matrix 
 Error rate of 

class 1

Error rate of 

class 2

Error rate of 

class 3



 

Master’s Thesis 
Sergio López Chacón  

 

54 
 

 
Figure 44 Variable importance for 1hO₃ in RF categorical model of the whole year without 

O₃ in PR_ZU  

 

5.2 Models from May to September  

 

5.2.1 Regression models 

 

5.2.1.1 Prediction accuracy 

 

The addition of the J&C synoptic classification (SC) is the main characteristic of these models 

as we saw previously. This variable is added to the models as a categorical input, the only one 

that our models have. The prequential evaluation results for 1hO₃ for PR_ZU with days from 

May to September can be seen in Figure 45. In this example, we obtained that the combination 

of parameters with the lowest MAE is ntree = 200 and mtry = 14. The results of the most 

accurate combinations of parameters for every regression model in both couples of stations are 

shown in Table 20. Average MAE varies between 8.35 and 10.12, which is consistent with the 

MAE results obtained with the regression models of the whole year (Table 11). 8hO₃ models 

have the lowest MAE, this is related with lower values compared to 1hO₃. 
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Figure 45 Average MAE of the prequential evaluation analysis for 1hO3 in PR_ZU with data 

from May to September using several combinations of ntree and mtry 

 

 
Table 20 Summary of the results of the prequential evaluation for the most accurate 

combination of parameters for every regression model for data from May to September 

 

Once we selected the parameters for our models, we applied them to build a new model using 

the whole training set. Afterward, the inputs of the testing set were introduced to the trained 

model and the predicted values were compared with the observed ones. The results of the error 

metrics can be appreciated in Table 21. MAE values are close to the ones obtained in the 

prequential evaluation. MAPE between observed and predicted varies between 12.3% and 

14.7%. These results are lower than the ones that we obtained in the models of the whole year. 

This means that on average the predicted values have a small percentage difference from the 

observed ones. In Table 22, we have RMSE after the analysis OOB in the training process. The 

results are similar to the ones obtained in the testing set.  

 

 

 

Output Station ntree mtry MAE

1hO₃ PR_ZU 200 14 9.646

8hO₃ PR_ZU 600 14 8.354

1hO₃ EI_RA 800 14 10.115

8hO₃ EI_RA 300 14 8.980
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Table 21 Error metrics of the testing set of the RF models with data from May to September 

for every output in PR_ZU and EI_RA 

 

 
Table 22 Out-of-bag RMSE for 1hO₃ and 8hO₃ with data from May to September 

 

The scattered plots of the observed and predicted values made with the testing set (Figure 46 

and Figure 47) for both couples of stations do not follow consistently the ideal tendency shown 

with blue line. This indicates that the model has difficulties capturing the temporal variation of 

ground-level ozone when we only consider days from May to September, this situation did not 

occur with a model of the whole year. EI_RA shows a higher dispersion of the values than 

PR_ZU, especially with the model of 8hO₃. 

 

 

  
Figure 46 Scattered plot of Observed vs Predicted (1hO₃ and 8hO₃) of days from May to 

September for Barcelona – Palau Reial and Barcelona–Zona Universitaria with the testing set 

ME RMSE MAE MPE MAPE

1hO₃ -3.603 15.084 10.928 -6.435 12.569

8hO₃ -2.922 12.307 9.606 -5.821 12.291

1hO₃ -1.799 13.642 10.373 -5.714 14.727

8hO₃ -0.976 10.931 8.576 -4.657 14.111

PR_ZU

EI_RA

RMSE.OOB

1hO₃ 12.493

8hO₃ 10.533

1hO₃ 12.394

8hO₃ 10.889

PR_ZU

EI_RA
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Figure 47 Scattered plot of Observed vs Predicted (1hO₃ and 8hO₃) of days from May to 

September for Barcelona – Eixample and Barcelona–El Raval with the testing set 

 

5.2.1.2 Model interpretation 

 

Special attention must be paid to the determination of variable importance in RF models with 

categorical inputs, since the implementation of RF method in randomForest package has bias 

toward categorical variables, especially if this has many categories (Strobl et al., 2007). 

Therefore, we verified such possible bias by adding two randomly generated categorical 

variables as inputs —cat1 and cat2— with 10 and 40 categories respectively, and computing 

the variable importance in randomForest and party (with cforest as main function) packages. 

We used for this verification the model of 1hO₃ in PR_ZU. 

 

We commented before that there are two ways to measure the variable importance, MDI and 

MDA. Both measurements are shown in Figure 48 when we compute variable importance with 

randomForest function adding the two variables that we mentioned before. Both cat1 and cat2 

have a high importance when we consider MDI, cat2 importance is even close to O₃, followed 

by SC. This situation is not correct because cat2 and cat1 are variables that we just made up, 

which do not have any connection with the output and cannot have this importance. This 

situation changes when we consider MDA; however, cat2 still have some importance. The 

results of this simple verification make us think that randomForest can deliver unreliable 

variable importance when we consider categorical inputs.  
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Figure 48 Variable importance for 1hO₃ in RF regression model in PR_ZU using 

randomForest function with data from May to September adding two randomly generated 

categorical variables 

 

 
Figure 49 Variable importance for 1hO₃ in RF 

regression model in PR_ZU using cforest with 

data from May to September adding two 

randomly generated categorical variables 

When we compute variable importance 

using cforest function, we have a 

different result (Figure 49). Even using 

MDA, there is a different approach 

between how randomForest and cforest 

create the random forests in the 

algorithm (Strobl et al., 2007), this is 

why the variable importance results are 

different. In the case of cforest, cat2 has 

meaningless importance and cat1 has a 

very low importance too, which is 

something that we would expect. Based 

on these results and the study of Strobl 

et al., (2007), we decided to use cforest 

when we add SC to our inputs. 

Something important to highlight is that 

the most important numerical inputs are 

the same in every analysis.  

 

We can also see in Table 23 that the accuracy of both packages is similar taking as an example 

1hO₃ in PR_ZU. Hence, the most significant variation of both packages is related with variable 

importance.  

 
Table 23 Comparison of error metrics for the testing set of 1hO₃ models with randomForest 

and cforest package for PR_ZU with data from May to September 

ME RMSE MAE MPE MAPE

randomForest -4.817 15.617 11.394 -7.893 13.269

cforest -3.603 15.084 10.928 -6.435 12.569
1hO₃
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Figure 50 Variable importance for 1hO₃ and 8hO₃ in RF regression models of days from May 

to September in PR_ZU 
 

O₃, relative humidity, Av DPD, Day of the year, NO₂, and Month are the most important 

variables in the case of PR_ZU (Figure 50), the main difference with respect to the variable 

importance of the models of the whole year is that Solar Radiation is not one of the main 

variables. However, when we took the case of EI_RA (Figure 51), Solar Rad is once again one 

of the main variables; although, not with the same intensity. This might be related to that Solar 

Rad does not have a significant variation in summer days; therefore, it provides less information 

to the model. One of the most important variables is Av DPD confirming that Rel Hum has 

considerable importance in summer days, especially in regions where contaminants such as 

NO₂ do not have a high influence (PR_ZU). However, the influence of weekdays is important 

in EI_RA, this is related to the emission of pollutants in the area as we analysed previously. SC 

has low importance in every model, especially in EI_RA. 

 

  

Figure 51 Variable importance for 1hO₃ and 8hO₃ in RF regression models of days from May 

to September in EI_RA 
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The partial importance analysis of 1hO₃ in PR_ZU for days from May to September (Figure 

52) shows again the positive relationship between O₃ and 1hO₃ as the main variable, the inverse 

relationship between relative humidity (Rel Hum) and 1hO₃, which is confirmed with Av DPD 

positively related to 1hO₃ because the higher the Rel Hum the lower DPD will be. In days of 

September, we have a reduction of tropospheric ozone levels as the relationship between 

Day_year and Month with 1hO₃ shows. Finally, NO₂ is positively related to 1hO₃, this result is 

similar to what we obtained in the model of the whole year, the positive correlation indicates 

that the increase of ozone levels during weekends might not be related to NO₂ levels in these 

days. 

 

Pure advection and advection with anticyclonic characteristics coming from the east are the 

atmospheric circulations, which are related to the highest values of tropospheric ozone as we 

can see in Figure 53, taking PR_ZU as an example. 

 

 
Figure 52 Partial importance of the main variables for 1hO₃ output with data from May to 

September in PR_ZU 
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We saw that O₃ has in every case the highest importance. Hence, we do the same analysis, 

running the models without this variable to see if it is affecting the others masking their 

potential. In Table 24, we can appreciate that removing O₃ from the variables has an impact 

increasing every error metrics with respect to the complete model with MAE and MAPE 11% 

higher.  

 
Figure 53 Partial importance of SC for 1hO₃ output with data from May to September in 

PR_ZU 

 

 
Table 24 Error metrics for 1hO₃ model with and without O₃ as variable considering the 

testing set for days from May to September in PR_ZU 

 

Without O₃, the model (1hO₃ for PR_ZU) preserves Rel Hum and Av DPD as the main variables 

(Figure 54). In general terms, the order of the variables has not been modified drastically, with 

the variables obtaining a similar importance to the one that they had in the model with O₃. The 

presence of NO₂ acquires more importance in summer days. This pollutant and its moving 

averages are part of the main variables of the model. SC maintains its position not being part of 

the main variables. 

 

ME RMSE MAE MPE MAPE

All variables -3.603 15.084 10.928 -6.435 12.569

Without O₃ -4.687 16.432 12.138 -7.857 14.003

%Variation 30.09% 8.94% 11.07% 22.10% 11.41%
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Figure 54 Variable importance for 1hO₃ in RF regression model of days from May to 

September without O₃ in PR_ZU 

 

Considering again the model with all variables, we can see the variation of 1hO₃ with respect 

to Rel Hum and O₃ in Figure 55, being both variables the most important ones for 1hO₃ model 

of days from May to September in PR_ZU. The maximum values of ozone are reached when 

Rel Hum is low but O₃ is high. A similar result is also shown individually in Figure 52. 

  

 
Figure 55 1hO₃ variation with respect to Rel Hum and O₃ for PR_ZU using data from May to 

September 
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5.2.2 Categorical model  

 

Prequential evaluation results for the most accurate parameters in both couples of stations for 

the categorical models in days from May to September are shown in Table 25. The highest error 

rate is obtained for 8hO₃ in EI_RA, the lowest corresponds to 1hO₃ in PR_ZU. We had to 

modify the window in the prequential evaluation for 8hO₃ in PR_ZU because we did not have 

values for the first class with the window of the original methodology (section 4.3), the new 

window taken was 520 days for training, 120 for testing and 60 days for the growing block. 

 

 
Table 25 Summary of the results of the prequential evaluation for the most accurate 

combination of parameters for every categorical model of days from May to September 

 

The higher error rates are related to the categories with few values as we saw previously in 

section 5.1.2. When we took only summer days, PR_ZU concentrates a vast majority of its 1hO₃ 

observations over or equal to 86 μg/m³ (second category) generating high error rates for the 

first category in either OOB or the testing set (0.73 and 0.92 respectively), contrary to what 

occurs in EI_RA with error rates of 0.03 and 0.07 for OOB and testing set respectively for the 

first category but high error rates in the second category as we can see in Table 26. However, 

the error rates of the entire model of 1hO₃ are not high, the model can be very inaccurate 

according to the category itself. 

 
Table 26 Error rate of out-of-bag samples and testing set for categorical 1hO₃ in PR_ZU and 

EI_RA for the model of days from May to September  

Output Station ntree mtry Error rate

1hO₃ PR_ZU 300 10 0.1796

8hO₃ PR_ZU 200 12 0.2472

1hO₃ EI_RA 300 12 0.2315

8hO₃ EI_RA 300 9 0.4981
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In both couples of stations, the 8hO₃ observations for summer are mainly accumulated within 

a category, more than 86 μg/m³ for PR_ZU and between 55 and 71 μg/m³ for EI_RA (Table 

27). This obviously creates low error rates for these categories in these stations but considerable 

high error rates for other categories. It is very difficult to have low error rates for both stations 

with the same categorization because of the high spatial variation of the ground-level ozone. In 

Table 27, the general error rates of the models for both couples of stations show higher errors 

than the models of 1hO₃ reaching more than 0.48 similar to what we obtained in the prequential 

evaluation. 

 

 
Table 27 Error rate of out-of-bag samples and testing set for categorical 8hO₃ in PR_ZU and 

EI_RA for the model of days from May to September  

 

cforest delivers results about the importance analysis, which deserve to be analysed carefully 

because of the lower importance attributed to the solar radiation in the 1hO₃ model for PR_ZU 

(Figure 56). This contrasts notoriously with categorical models of the whole year and regression 

models of summer for the same output in the same couple of stations as well as with 8hO₃ for 

the same model, where Solar Rad is one of the main variables. However, Other variables such 

as day of the year, month, Av DPD, and Rel Hum preserve their importance with respect to the 

regression models (Figure 50). About pollutants, NO₂ and its moving averages are generally 

the most important ones for model of 1hO₃ and 8hO₃ (Figure 56) in PR_ZU. Although, there is 

no considerable tendency to high importance of the moving averages respect to the original 

daily observation. 

 

0 0 4 0

0 0 46 16

0 2 85 125

0 1 61 432

0 0 5 3

0 0 30 11

0 0 51 71

0 0 17 143

79 118 1 0

45 299 22 0

5 140 23 2

0 29 20 0

17 62 0 0

11 144 11 0

0 52 11 0

0 14 11 2

0.4879

T
es

ti
n

g
 s

et

0.7848 0.1325 0.8254 0.9259 0.4806

B
a
rc

el
o
n

a
-E

ix
a

m
p

le
 a

n
d

 B
a
rc

el
o
n

a
-

E
l 

R
a

v
a

l 

O
B

B

0.6010 0.1831 0.8647 1.0000

T
es

ti
n

g
 s

et

1.0000 1.0000 0.5820 0.1063 0.4139

Error rate of 

class 4
 Error rate 

1.0000 1.0000 0.5991 0.1255 0.3303

0≤8hO₃<55 55≤8hO₃<71 71≤8hO₃<86 8hO₃≥86

B
a
rc

el
o
n

a
-P

a
la

u
 R

ei
a
l 

a
n

d
 B

a
rc

el
o
n

a
-

Z
o
n

a
 U

n
iv

er
si

ta
ri

a

O
O

B

Confusion Matrix 
 Error rate 

of class 1

Error rate of 

class 2

Error rate of 

class 3



 

Master’s Thesis 
Sergio López Chacón  

 

65 
 

  
Figure 56 Variable importance for 1hO₃ and 8hO₃ in RF categorical models of days from 

May to September in PR_ZU 

 

Similar to the variable importance results that we obtained in the regression models for days 

from May to September in EI_RA, weekday is again the second main variable after O₃ (Figure 

57). However, solar radiation is not so relevant for 1hO₃ categorical model in EI_RA. On the 

other hand, there are several variables, which respective importance vary considerably from 

1hO₃ to 8hO₃ model in EI_RA, the case of the year, solar radiation, number of data, Av DPD. 

These variables have a notorious change in their importance from 1hO₃ to 8hO₃. We have not 

seen so clearly this situation in the previous models. In every model for both couples of stations, 

SC has a low variable importance. 

 

  

Figure 57 Variable importance for 1hO₃ and 8hO₃ in RF categorical models of days from 

May to September in EI_RA 

 

We run the model without O₃ in PR_ZU once again to study the possible changes. The total 

error rate has a meaningless variation with respect to the complete model as we appreciate in 

Table 26 and Table 28. From 0.1721 to 0.1746 for OOB samples and from 0.2598 to 0.2659 for 
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testing set. The error rate by categories is also close to each other for the model with all variables 

and the model without O₃. 

 
Table 28 Error rate of out-of-bag samples and testing set for categorical 1hO₃ in PR_ZU for 

the model of days from May to September without O₃ 

 

Without O₃, the categorical model of 8hO₃ from May to September in PR_ZU presents a small 

increase in general error rate (Table 29) with respect to the model with all the variables (Table 

27). However, the error rate for values of the third category (from 71 to 86 μg/m³) in the model 

without O₃ increases considerably. 

  

 
 

Table 29 Error rate of out-of-bag samples and testing set for categorical 8hO₃ in PR_ZU for 

the model of days from May to September without O₃ 

 

Solar radiation is one of the main variables again for the categorical model of 1hO₃ without O₃ 

for days from May to September for PR_ZU (Figure 58). In both models, either 1hO₃ or 8hO₃, 

we have similar variables as the main ones, i.e., day of the year, relative humidity, NO₂_7, solar 

radiation and similar variables as the less important ones. In general terms, the order of variable 

importance has not significantly changed when we remove O₃, except for solar radiation.  
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Figure 58 Variable importance for 1hO₃ and 8hO₃ in RF categorical model of days from May 

to September without O₃ in PR_ZU 
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6 Conclusions 
 

6.1 Regression models 

 

The RF regression model with data of the whole year is capable of capturing the time variation 

of the daily maximum hourly ozone concentration level (1hO₃) and the daily maximum 8-hours 

average ozone concentration level (8hO₃) for both couples of stations in Barcelona as we could 

see in the time series plots and observed vs predicted scattered plots where the point cloud of 

the testing set follows approximately the ideal tendency. This situation does not occur when we 

consider data only from May to September where the models are not able to capture consistently 

the time variation of the testing set for both outputs.  

 

Taking into account the magnitude of the values ground-level ozone where the range of 1hO₃ 

for the whole year corresponds to 222 and 208 [μg/m³] for PR_ZU and EI_RA respectively, 

and the ranges of 8hO3 are 164.75 and 141.75 [μg/m³] in the same order, the error metrics such 

as RMSE (from 11.2 to 13.4 [μg/m³]) or MAE (from 8.78 to 9.97 [μg/m³]) for both outputs 

show us that the model has an acceptable approximation to the observations. This can be also 

appreciated in the results of the mean absolute percentage error (MAPE) for the whole year 

where only the EI_RA model of 8hO₃ presents a value over 23% and the rest of the models are 

below 20%. Whole year models have an admissible accuracy. Similar error metrics are reached 

for the models from May to September achieving even lower MAPE values (<15%). However, 

summer models cannot capture temporal variation consistently. Hence, these models have low 

accuracy. The error metrics are considered from the testing set and OOB analysis in every case, 

where both are always similar for the regression models.  

 

The addition of Jenkinson and Collison synoptic classification as a categorical variable into the 

regression models does not improve the accuracy of the models notoriously. Moreover, this 

variable is not part of the main variables in the models. However, pure advection and 

anticyclonic advection coming from the east are the classifications related to high ozone 

concentration values. The characterization of the atmospheric circulation based on another 

classification even considering a smaller scale (not taking all Catalonia under a unique 

classification) might be useful. 

 

O₃ (1hO₃ or 8hO₃ of the previous day to the prediction) is the main variable in every RF 

regression model for either the whole year or only with days from May to September. This has 

a positive correlation with the predicted values. O₃ values usually vary by a small magnitude 

with respect to the next day (O₃ values have some inertia). Therefore, O₃ can be taken as an 

approximation for the values of the next day.  However, there are differences in the rest of the 

main variables between the models of the whole year and only summer days (May to 

September). 

 

In the models of the whole year, solar radiation, day of the year, the moving average of 7 days 

of NO and months are the main variables after O₃ for both stations. The model captures correctly 

the behaviour of the time variables. They have a positive correlation with the predicted values 

from January to summer months and from there to December, the correlation is negative. Solar 
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radiation has a positive correlation, which goes according to the reality considering how ozone 

is generated. NO and its daily moving averages show a negative correlation with the predicted 

values, and at the same time, NO shows a decrease during weekends where ozone concentration 

levels increase. Consequently, the negative variation of this variable might explain the high 

values of ground-level ozone during weekends. In addition, NO acquires higher importance 

while the period of the moving average is wider. 

 

Days of the week is one of the main variables for EI_RA in the whole year and with days from 

May to September indicating that the traffic reduction has a higher influence in the city centre 

than in the surrounding areas. This characteristic of the model represents correctly the reality 

in the study area. 

 

In the models with data from May to September, relative humidity and average dew-point 

deficit are part of the main variables for both outputs (more important for 1hO₃ than 8hO₃) in 

contrast to the models of the whole year. These two variables have a higher importance in the 

areas far from the city centre. NO₂ increases its importance with respect to the models of the 

whole year, this can be appreciated in areas close and far from the city centre. On the other 

hand, NO decreases its importance. The moving average of three days of NO₂ and NOx acquire 

high importance for both outputs in the city centre consolidating nitrogen oxides (NO, NO₂ and 

NOx) as the most important air quality variables in the models, this represents correctly the 

nature of the ground-level ozone. In the case of NO₂, there is a positive correlation with respect 

to ozone concentration levels. There is no clear importance superiority of the moving averages 

over daily measurements in these models. The main differences in the variable importance 

analysis between the models of the whole year and summer are related to the nature of the 

models. While summer models take mainly high ground-level ozone values, models of the 

whole year consider the full range of variation.  

 

ramdomForest package produces a considerable bias increasing the importance of the 

categorical variables, especially when the importance is measured based on MDI. cforest 

package delivers more reliable results about importance, and with a similar accuracy. Hence, it 

is recommended to use this package when we incorporate categorical variables such as SC to 

the model. 

 

6.2 Categorical models 

 

There are very few events that overcome the information and alert limits stablished by the 

Directive 2008/50/CE in both 1hO₃ and 8hO₃. Consequently, it is not possible to train a model 

based on those categories. In order to categorize the outputs of the model, we selected a category 

based on the standards given by EPA. These thresholds allow us to have several values in every 

category. However, the distribution of the values is not uniform for every category. Therefore, 

some categories gather a large number of values, and others include too few, creating high error 

rates in some categories. The same categorization for every couple of stations gives a different 

distribution of the values. Hence, there is no optimal and unique classification to obtain a 

uniform distribution of the outputs. 
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In general terms, categorical models for 1hO₃ show low error rates and for 8hO₃, error rates are 

higher. However, when we individually see the error rates for every category inside the models, 

we find that the categories with a lot of values inside them have considerable low errors but 

categories with few values have high error rates, and we have the same scenario in every model 

and in both couples of stations. Therefore, these models are not useful to alert the population 

about a specific category, which might be dangerous for human health. Further analysis with 

modified datasets, which allow us to have the same number of values in every category might 

be considered.   

 

As we had in the regression models, O₃ is the main variable for every categorical model. The 

same variables that are the most important ones for the regression models of the whole year are 

the main variables for the categorical models for the same period of time in both couples of 

stations. Temperature variables acquire high importance in PR_ZU but not in EI_RA. On the 

other hand, weekday is the second main variable in EI_RA indicating again the high importance 

of the traffic variation in the city centre.  

 

cforest shows some difficulties determining the importance of the variables in the categorical 

models of days from May to September because one of the most important variables in the rest 

of the models (solar radiation) is catalogued as the least important for the 1hO₃ model of 

PR_ZU. This is not related to the chemistry of the generation of ozone, and even when we 

remove O₃ from the dataset, this variable changes its importance considerably, which is not 

consistent. However, the most important variables in the regression models for days from May 

to September have also the main positions in the categorical models with the same differences 

between locations of the stations that we saw in the previous section.  
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