Pest Management Science

Relative efficiencies of experimental and conventional foliar sprayers and assessment of optimal LWA spray volumes in trellised wine grapes

Journal:	Pest Management Science
Manuscript ID	PM-20-1302.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Gil, Emilio; Universitat Politecnica de Catalunya, Agri Food Engineering and Biotehcnology Salcedo-Cidoncha, Ramon; Ohio State University Foundation, Department of Food, Agricultural and Biological Engineering Soler, Agusti; BayerCropScience SA-NV, Field Solutions Ortega, Paula; Universitat Politecnica de Catalunya, Agri Food Engineering and Biotehcnology Llop, Jordi; Universitat Politecnica de Catalunya, Agri Food Engineering and Biotehcnology Campos, Javier; Universitat Politecnica de Catalunya, Agri Food Engineering and Biotehcnology Oliva, Jordi; BayerCropScience SA-NV, Field Solutions
Key Words:	Plant protection, dose expression, LWA, foliar spray volume, wine grapes, leaf deposit

SCHOLARONE[™] Manuscripts Page 1 of 49

2		
3 4	1	Relative efficiencies of experimental and conventional foliar sprayers and
5	-	
6 7 8	2	assessment of optimal LWA spray volumes in trellised wine grapes
9 10 11	3	Short title: Evaluation of spraying technologies in vineyards
12 13 14	4	Emilio Gil ^{a, 1} , Ramón Salcedo ^{b, c} , Agustí Soler ^d , Paula Ortega ^a , Jordi Llop ^a ,
15 16 17	5	Javier Campos ^a and Jordi Oliva ^e
18 19 20	6	^a Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de
21 22	7	Catalunya, Esteve Terradas 8, Campus del Baix Llobregat D4, 08860 Castelldefels, Barcelona
23 24 25	8	(Spain).
26 27 28	9	^b Department of Food, Agricultural and Biological Engineering, Ohio State University,
29 30 31	10	Agricultural Engineering Building 590 Woody Hayes Drive, Columbus, OH 43210 (USA).
32 33 34	11	^c Application Technology Research Unit (ATRU), Agricultural Research Service of the
35 36 37	12	United States Department of Agriculture (USDA-ARS), 1680 Madison Avenue, Wooster,
38 39 40	13	ОН 44691 (USA).
41 42	14	^d Market Development EMEA, Bayer CropScience, S.L., Avinguda Baix LLobregat 3-5,
43 44 45 46	15	08970 Sant Joan Despí, Barcelona (Spain).
47 48	16	^e Field Solutions, Bayer CropScience, S.L., Avinguda Baix LLobregat 3-5, 08970 Sant Joan
49 50 51 52	17	Despí, Barcelona (Spain).
52 53 54	18	
55 56 57 58	19	¹ Corresponding author: Emilio Gil (<u>Emilio.gil@upc.edu</u>) 1
59 60		http://mc.manuscriptcentral.com/pm-wiley

20	
20 21	Authorship: Ramón Salcedo (RS) (<u>salcedocidoncha.1@osu.edu</u>), Paula Ortega (PO)
22	(paula.ortega@upc.edu), Jordi Llop (JL) (jordi.llop-casamada@upc.edu), Javier Campos (JC)
23	(javier.campos@upc.edu), Agustí Soler (AS) (agusti.soler@bayer.com), Jordi Oliva
24	(jordi.oliva@bayer.com) and Emilio Gil (EG) (emilio.gil@upc.edu).
25	
26	Author's contribution: Conceived and designed the experiments: RS, JL, AS and EG.
27	Performed the experiments: RS, JC, JO, PO and JL. Analysis and interpretation of data: PO
28	and EG. Wrote the paper: EG, RS and AS.
29	
30	Location: Work was done at the Laboratory of Agricultural Mechanization belonging to the
31	facilities of Agropolis Research Campus of the Universitat Politècnica de Catalunya in
32	Viladecans (Barcelona, Spain) (41°17′18.44″N/2°2′43.39″W).
33	
34	Corresponding Author
35	Emilio Gil, DEAB, Universitat Politècnica de Catalunya, Esteve Terradas 8, Campus del Baix
36	Llobregat D4, 08860 Castelldefels, (Barcelona, Spain).
37	Tel: +34 93 552 10 99
38	E-mail: <u>emilio.gil@upc.edu</u>
39	Website: <u>https://uma.deab.upc.edu/en</u> .
40	
	2

ABSTRACT

Background: Leaf wall area (LWA) has been proposed as an appropriate dose expression for field testing of plant protection products (PPPs) applied via foliar spray in trellised grapes. But its efficiency could change depending on the characteristics of the crop or the pesticide application equipment (PAE). Herein, three spray technologies were evaluated. A traditional air-assisted tractor-mounted sprayer was compared with two portable knapsack sprayers: a backpack mistblower and a backpack hydraulic sprayer. Trials were conducted in trellised wine grapes at three selected crop stages (BBCH 55, 65, 75) covering the main period of canopy development. In each canopy stage, leaf deposition and coverage were sampled for each technology. The tractor-mounted sprayer was working at 200 L ha⁻¹ of LWA spray volume for the earliest stage and 370 L ha⁻¹ for the other two. Three higher volume rates were used for backpack sprayers up to 800 and 1250 L ha⁻¹ for the mistblower and the ELIR. hydraulic system, respectively.

Results: Optimal LWA spray volumes differed among application devices in terms of efficiency and uniformity of deposition on the canopy,. The efficiency of each spray application was not only conditioned by the spray volume but also by the presence of gaps in the canopy or the air assistance.

Conclusion: LWA is useful for defining optimal spray volumes in trellised grapes. However, both canopy density and spray technology should be considered to assist this process. Field testing of PPPs and subsequent label recommendations should take into account the relative efficiencies of corresponding experimental and conventional spray technologies.

Keywords: Plant protection, dose expression; LWA; foliar spray volume; wine grapes; leaf
deposit.

1. INTRODUCTION

Dose expression for plant protection products (PPPs) applied via foliar spray on orchards, vineyards and other high growing crops (often referred to as three-dimensional or 3D crops) has generated extensive and controversial discussions. ¹⁻¹⁰ Given the obvious structural differences between 3D crops and field (row) crops, ^{11, 12} there is ample consensus in recognizing that kg (or L) ha⁻¹, a dose expression well suited for field crops, is not appropriate for 3D crops and that Leaf Wall Area (LWA) is an appropriate dose expression for plant protection products applied via foliar spray on pome fruit, grapes, and high-growing vegetables. ⁷ Traditionally, use recommendations for PPPs in 3D crops have been mostly based on product concentration in the spray water (g or cm³ hL⁻¹). This approach generates a direct relationship between PPP dose rate and spray volume and thus requires thorough scrutiny of water rates and spray quality, in order to limit human and environmental risks. ¹³ Improving spray efficiency allows limiting unintended risks by diminishing losses to non-target compartments and consequently reducing the absolute amounts of PPPs applied per ground area. ¹⁴⁻¹⁶ In turn, investigating and subsequently communicating the appropriate amount to be applied in a given 3D crop scenario, i.e. clearly stating the amount of PPP per unit canopy in corresponding labels, requires the use of an unambiguous and practicable dose expression. ^{3, 8} Different dose expressions have been proposed for development of PPPs in 3D crops and for their eventual insertion in

Page 5 of 49

corresponding labels. These methods make various claims regarding improved efficiency of
PPP use, linked to the consideration of one or several canopy characteristics. ^{1, 17-22}
Attempts to identify appropriate dose expressions have included recommendations based
on either two- or three-dimensional factors related to the canopy structure. ²²⁻²⁵ However,
the lack of a harmonized approach in Europe has resulted in remarkable differences in dose
expressions, as reveals the comparison of label instructions for PPPs authorized in different
European countries. ²¹

The process of harmonization of the information contained in European labels, especially for uses in three-dimensional (3D) crops, is still in progress. ^{10, 26} Concerning the southern regulatory zone (including Bulgaria, Cyprus, France, Greece, Italy, Malta, Portugal, and Spain), in most cases label recommendations are based on PPP concentration in the sprayed volume (%; rate hL⁻¹), accompanied by the maximum amount of product per unit of ground surface, and a range of recommended water volumes. ^{13, 27, 28} It is widely accepted that both the amount of PPP and the spray volume should be adapted to canopy structure and dimension.^{9, 29-33} Therefore, several research groups have developed models for adequately adjusting the spray volumes to the canopy characteristics ^{13, 23}. In practice, these models allow converting the traditional dosing system, based on PPP concentration, into an appropriate dosing system for 3D crops, via adjustment of the spray volume to the treated canopy. This is because provided the optimum amounts of both PPP and spray water refer to the same *canopy unit*, a constant concentration will invariably arise.²¹

105 The practical information available in many PPP labels in southern Europe, in particular that
 106 concerning uses in grapes, has traditionally referred to a standard spray volume of 1000 L

ha⁻¹. This should be considered a remnant from past times, when high spray volumes were required at full vegetation, to compensate for the low efficiencies achieved at that time by field sprayers. After years of continuous improvement of application technologies, at present growers of wine grapes in southern Europe seldom apply such a high water-volume, except when dealing with very large and dense canopies. In recent years, the value of significantly reduced spray volumes, in terms of quality of distribution and reduction of losses, has been widely demonstrated. ³⁴⁻³⁷ Nevertheless, the extent to which such reductions in spray volumes can be attained, without compromising spray efficiency, is clearly linked to spray technology. 38 The current regulatory frame for authorization of PPPs in Europe requires the previous conduct of numerous and diverse field trials which, for practical reasons, are executed using portable experimental spraying equipment. Small-plot field trials involving several replicated treatments, as required by corresponding European guidelines, can't be conducted using conventional tractor-mounted sprayers. Therefore, backpack spraying devices (typically, motorized hand-held mistblower and hydraulic sprayers) are commonly accepted as surrogate spraying devices in field experimentation. In order to appropriately reproduce commercial-scale, conventional spraying of PPPs, the use of hand-held devices in field trials should result in deposition rates reasonably comparable to that provided by conventional field sprayers. 39, 40 The objective of this research was to define the optimal spray volumes in trellised grapes, based on the leaf wall area (LWA) dose expression, for conventional and experimental

3 4	128	spraying devices, as well as quantifying the corresponding efficiencies of each spray	
5 6	129	application technique.	
7 8 9	130		
10 11 12 13	131	2. MATERIAL AND METHODS	
14 15	132	2.1 Spray application equipment.	
16 17 18	133	For representing devices used in field experimentation, two different hand-held sprayers	
19 20 21	134	were selected, respectively based on two key technical characteristics: height of the spray	
22 23	135	band and air assistance. These hand-held sprayers were compared with a tractor-mounted	
24 25 26	136	mistblower, representative of conventional field spray technology (Fig. 1). The main	
27 28	137	technical characteristics of the three selected sprayers were as follows:	
29 30 31	138	a) Tractor-mounted sprayer (TMS): An air-assisted sprayer fitted with a 400-L lifted	
32 33	139	tank, a centrifugal turbine fan, and 5 individual orientable spouts per side, was used	
34 35 36	140	as a reference sprayer (Hardi SPV, llemo-Hardi, S.A.U., Lleida, Spain). ³⁸	
37 38	141	b) Hydraulic backpack sprayer (HBS): A manually activated, continuous-pressure	
39 40 41	142	sprayer, with a 16-L tank (MATABI Evolu 16, Goizper group, Anzuola, Spain),	
42 43	143	connected to a vertical boom fitted with 2, 3 and 4 nozzles spaced 0.5 m. This	
44 45 46	144	experimental device was included to ascertain the influence of spray swath on spray	
40 47 48	145	efficiency.	
49 50	146	c) Pneumatic backpack sprayer (PBS): A motorized mistblower with a 12-L tank fitted	
51 52 53	147	with a centrifugal fan and a single air-assisted output (Solo Port 423, Solo	
54 55	148	Kleinmotoren GmbH, Sindelfingen, Germany), adjusted out of specification (4.0 - 4.5	
56 57 58		7	
59 60		http://mc.manuscriptcentral.com/pm-wiley	

L/min), to attain delivery of high-volume rates. This experimental device was
included to provide insights into the influence of air assistance and high-volume
rates on spray efficiency.

152 2.2 Arrangement of the field tests

Tests were performed on a vineyard parcel located at the UPC research facilities of
Agropolis Research Campus at Viladecans (Barcelona, Spain) (41°17′18.44″N/2°2′43.39″W).
The vineyard had a surface of 1500 m² (30 m × 50 m) planted with 15 rows of Cabernet
Sauvignon variety of wine grape (*Vitis vinifera* L.) with a planting scheme of 3.0 m × 1.2 m.
and trellised following a Double Royat, with two wires in each row.

Three different tests were conducted along the crop season, covering the most representative canopy stages: BBCH 55, 65, and 75 (Table 2) ⁴¹ Previous to each spray event at the chosen crop stages, a complete canopy characterization of the whole experimental area was carried out, by taking a total of 35 individual measurements of canopy height equally distributed among plots, to obtain the corresponding LWA values per each plot (m² canopy ha⁻¹).

Based on the actual LWA values measured, estimated volume rates *i-LWA* (L ha⁻¹ LWA or L 165 10000 m⁻² canopy) were calculated for each plot and timing (Table 3). Accordingly, the main working parameters (total volume rate, forward speed, pressure, and nozzles) for every 167 sprayer were defined, to convert the previously obtained *i-LWA* values into nominal volume 168 rates per ground ha V_T (L ha⁻¹). For each sprayer, the time needed for the operator to spray 169 the corresponding plot was measured, to calculate the actual forward speed and actual 170 volume rates per ground ha V_R (L ha⁻¹). For each backpack sprayer, HBS, and PBS, three

Page 9 of 49

Pest Management Science

different volume rates *i-LWA* (low, intermediate and high) were initially established. Based on previous research work on vineyard crops, ^{25, 42} for HBS the low *i-LWA* rates matched the single rate selected for the conventional sprayer TMS, i.e. 200 L ha⁻¹ LWA for the first spray timing and 370 L ha⁻¹ LWA for the second and third timings. Two higher volume rates were used, increasing 200 L ha⁻¹ LWA approximately every time until 800 L ha⁻¹ LWA. Because of the specific characteristics of the manually activated HBS, a comfortable forward speed from 3.5 to 4.5 km h⁻¹ was chosen, constantly maintaining the working pressure. Consequently, increases in volume rates were achieved by changing the spray nozzles. Conventional hollow cone and flat fan nozzles following ISO codes were utilized for TMS and HBS, respectively, ⁴³ except for the first spray timing, in which TMS was fitted with hollow cone ATR nozzles (Albuz Saint-Gobain Solcera, Evreux, France). Finally, for PBS the low volume rate was set at 750 L ha⁻¹ LWA, representing a rate commonly used in field experimentation with PPPs. This reference rate was increased stepwise in 250 L ha⁻¹, making the high-volume rate 1250 L ha⁻¹ LWA. Since PBS was powered by an engine, larger volume rates could be tested, maintaining comfortable forward speeds for the operator. The selected nozzle in this case was a conical diffuser integrated into the pneumatic sprayer.

2.3 **Experimental setup**

Individual experimental plots were distributed over the 15 rows of the parcel (Figure 2). One entire row line was assigned for each spray device. For HBS and PBS, each row was divided into three segments of identical length, corresponding to each of the three volume rates tested. Buffer areas within- and between rows were established, to avoid cross contamination between experimental plots.

2		
3 4	193	Leaf deposit d (µg cm ⁻²) was measured for each plot and spray timing, using leaves as natural
5 6 7	194	collectors, following the protocol established in previous research work. ^{38, 44, 45} To evaluate
8 9	195	the spray distribution uniformity, the canopy was divided into several sampling sections.
10 11 12	196	Treated canopy height was divided into two equal parts (bottom and top) for BBCH 55 and
12 13 14	197	65, and in three parts (bottom, central, and top) for BBCH 75. In turn, canopy width was
15 16	198	divided into three zones (external left, center, and external right). From each sampling zone,
17 18 19	199	a variable number of leaves (between 2 and 4, depending on size) were carefully collected
20 21	200	randomly after each application, placed into tagged plastic bags, and stored in a dark
22 23 24	201	recipient. For HBS and PBS, fifteen leaf samples were collected from the corresponding rows
25 26	202	at each timing, i.e. five samples per each of the three volume rates tested per sprayer. For
27 28	203	TMS, five samples were taken along the corresponding row. Yellow tartrazine (E-102 yellow)
29 30 31	204	at a concentration of 2.0 g L ⁻¹ was selected to determine deposition on leaves, due to its
32 33	205	high recovery rate, non-toxic properties, and reasonable stability. ⁴⁶
34 35 36	206	In addition, following the same division of the canopy used to determine deposition on
37 38	207	leaves, a total of six (BBCH 55 and 65) or nine (BBCH 75) water-sensitive papers (WSP) were
39 40 41	208	placed to determine the spray coverage. For HBS and PBS, nine WSP strips were placed in
42 43	209	each corresponding row, i.e. three per each volume rate. After spraying, each WPS strip was
44 45	210	collected, placed on a template sheet of paper, allowed to dry completely, and stored in a
46 47 48	211	closed plastic bag. Data on coverage (%) and average impacts cm^{-2} were obtained after
49 50	212	analyzing WSP strips using a specific macro developed ⁴⁶ for Image J free software (LOCI,
51 52 53 54	213	University of Wisconsin, USA).

214 Before and after each spray event, samples of spray liquid were collected from the 215 corresponding outputs of each spraying device, to determine the actual tracer 216 concentrations.

At each spray timing, applications were initiated with the conventional TMS, followed by HBS and finally by PBS. All applications were conducted following the recommendations for Best Management Practices to Reduce Spray Drift. ⁴⁷ This involved wind speed values below 3.0 m s⁻¹ during spraying. ⁴⁸ An automatic weather station (WatchDog Weather Station Model 2550, Spectrum Technologies, Inc., USA) was used to register wind speed during applications. The weather station was located at a 25-m distance downwind from the experimental area, at a height of 2 m, and without any obstacles in-between. Across all spray events, wind speeds ranged from 0.9 m s⁻¹ to 2.9 m s⁻¹, with directions of 65 - 134°, considering 0° when wind flows from West to East.

227 2.4 Data analysis

Tracer concentrations T_{cl} (mg L⁻¹) in the liquid samples, obtained after rinsing the leaves, were calculated based on the methodology proposed by Gil *et al.* ⁴² For dislodging the dye, a volume w of 20 mL of deionized water was poured into each plastic containing the leaf samples and, after 60 s of shaking, a liquid sample was collected and subsequently analyzed using a spectrophotometer (Thermo Scientific Genesys 20, Thermo Fisher Scientific Inc., Waltham, USA) at a wavelength of 427 nm. The individual leaf area for all leaf samples (cm²) was calculated considering the area: weight ratio determined previously, ^{42, 44,50} after measuring the weight and surface area of 50 samples collected from the bottom, middle,

elik

2				
3 4	236	6 and top parts of the vine. Leaf surface area was measured with a LI-COR LI 3100C elect		
5 6 7	237 planimeter (LI-COR Inc., Lincoln, USA). Leaf deposition per unit leaf area d (µg			
8 9	238	determined according to Equation 1:		
10 11 12	239	$d = (T_{cl} \times w) / S_{a}, \tag{1}$		
13 14	240	where <i>d</i> is the absolute deposit on leaves ($\mu g \text{ cm}^{-2}$ leaf), T_{cl} is the tracer concentration in the		
15 16 17	241	liquid sample (mg L ⁻¹), w is the volume of washing water (mL), and S_a is the sample leaf area		
18 19	242	(cm²).		
20 21 22	243	Subsequently, three different normalized indexes were calculated: normalized deposit (d_N) ,		
23 24	244	normalized deposit per amount of tracer applied per unit surface (d_G), and normalized		
25 26 27	245	deposit per 100 L water (d_{100}).		
28 29	246			
30 31	247	a) Normalized deposit (d_N)		
32 33 34	248	The normalized deposit d_N (µg cm ⁻² leaf) was calculated (Equation 2) by considering the		
35 36	249	values of tracer concentration for each timing, sprayer, and volume rate (Table 4). This		
37 38 39	250	methodology has been successfully applied in previous studies to directly compare different		
40 41	251	spray technologies and working conditions for PPP applications. ^{39, 44, 45, 50, 51} :		
42 43 44	252	$d_N = d \times f_{Tc} \times f_{VR}, \qquad (2)$		
45 46	253	where d_N is the normalized tracer deposit (µg cm ⁻² leaf), f_{Tc} is a factor that compensates for		
47 48 49	254	fluctuations in actual spray concentrations, and f_{VR} is a factor that compensates for the		
50 51	255	different spray volumes applied.		
52 53	256			
54 55 56	257	b) Normalized deposit per amount of tracer applied per unit of ground surface (d_G)		
57 58		12		
59 60		http://mc.manuscriptcentral.com/pm-wiley		

Page 13 of 49

1	
2	
3	
4	
5	
6	
6 7	
7	
8 9	
10	
11	
12	
13	
14	
15	
16	
17	
12 13 14 15 16 17 18 19 20	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	

60

258 An additional normalization process was performed to obtain the normalized deposit per kg of tracer applied per hectare (μ g cm⁻²/kg tracer ha⁻¹). This new parameter d_G represents 259 260 the relative deposition on leaves considering the same amount of tracer per unit of ground 261 area, and was determined using Equation 3: 262 263 $d_G = (d_N \times 10^6) / (T_{CS} \times V_R),$ (3) 264 where d_G is the deposit per unit of tracer applied per hectare (µg cm⁻²/kg tracer ha⁻¹), d_N is the normalized tracer deposit (μg cm⁻²), T_{cs} is the actual tracer concentration in the tank 265 266 (mg L⁻¹), and V_R is the actual volume rate (L ha⁻¹) calculated after each treatment using the 267 actual forward speed. 268 c) Normalized deposit per 100 L of water 269 This normalization process was adapted to consider the effect of the volume rate on the 270 results. Following previous research, ⁵² it was determined using equation 4: 271 272 $d_{100} = (d_N \times 100)/V_R$ (4) where d_{100} is the deposit per 100 L applied per hectare (µg cm⁻²/100 L ha⁻¹), d_N is the 273 normalized tracer deposit (μ g cm⁻² leaf), and V_R is the actual volume rate (L ha⁻¹). 274 275 276 Additionally, the deposit efficiency factor F (dimensionless) was defined with the purpose of quantifying the efficiency of each spray event ⁵³. *F* compares the actual deposition value 277 278 with that expected based on the adjusted *i-LWA* rate, considering the leaf density, i.e. gaps 279 in the canopy wall. Leaf density is not considered in the LWA dose expression, despite it can

1		
2 3 4	280	certainly influence the catchment efficiency (foliar interception) of the canopy wall. F
5 6	281	establishes the relationship between the actual deposits on leaves and those expected
7 8 9	282	theoretically. F was compared with values obtained assuming no gaps in the canopy wall
10 11	283	$(L_{fd} = 1)$ (F_1). The F values were calculated according to Equation 5:
12 13 14	284	$F = (d_N \times L_{fd} \times 10^5) / (i-LWA \times T_{cs}), \qquad (5)$
14 15 16	285	where F is the efficiency value (dimensionless), d_N is the normalized tracer deposit (µg cm ⁻
17 18	286	² leaf), Lf_d is the ratio of canopy gaps (m ² leaf m ⁻² canopy wall), <i>i-LWA</i> is the volume rate (L
19 20 21	287	10 ⁴ m ⁻² canopy), and T_{cs} is the actual tracer concentration in the tank (mg L ⁻¹).
22 23	288	
24 25 26	289	Statistical analyses were performed using R software (R Development Core Team, Vienna,
27 28	290	Austria, 2012). Differences between spray technology and volume rates were analyzed
29 30 31	291	using an ANOVA (P \leq 0.05) test and a Student–Neuman–Keuls Test post-hoc test. Before
32 33	292	statistical analysis, the data were transformed to follow a normal distribution. The
34 35 36	293	normalized deposit d_N was adjusted to a square root transformation following the same
37 38	294	procedure as that used in previous works. 42, 44
39 40 41	295	
41 42 43		
44 45	296	3. RESULTS AND DISCUSSION
46 47 48	297	3.1 Overview of general deposits on leaves and coverage
49 50	298	3.1.1 Comparison between coverage and leaf deposit
51 52 53		
54 55	299	Figure 3A presents the relationship between the average coverage measured in WSP and
56 57	300	the average values of normalized deposits on leaves d_N . Even if the regression is not very
58 59 60		14 http://mc.manuscriptcentral.com/pm-wiley

high ($R^2 = 0.59$), these results are aligned with previous studies in vineyards comparing water sensitive paper, filter paper, and real leaves as collectors. ²⁵ In general, we observed that the greater the deposition of the product on the leaves, the greater the coverage. For d_N values higher than 3.5 µg cm⁻² leaf, the coverage on the WSP samples presented values above 40%, which is considered to exceed the optimal coverage value for pest and disease control. ^{54,55} Therefore, this could suggest that in some cases leaves were over sprayed, resulting in a loss of efficiency. 3.1.2 Relationship between deposition and volume rate

Figure 3B indicates the relationship between the average d_N and *i*-LWA volume rates for all the sprayers tested. Results revealed a positive effect in terms of leaf deposition with increasing values of *i-LWA*. For volume rates greater than 750 L ha⁻¹, d_N exceeded 3.5 µg cm⁻² leaf, suggesting that this could be the highest volume rate, above which a loss of efficiency becomes evident. Detailed analysis suggested a power trend between parameters for *i-LWA* values ranging from 400 to 800. This relationship, thus, became unpredictable for lowest and highest *i-LWA* values.

3.1.3 Analysis of uniformity of distribution

Absolute values of deposition on leaves are useful to assess distribution over the canopy. To evaluate the uniformity of distribution, Figure 3C presents the relationship between the average deposit and the standard deviation measured at the nine sampling points distributed over the canopy in each experimental plot. Interestingly, for higher deposition values standard deviation tends to increase, with a concomitant reduction of deposition

Pest Management Science

2	
3	
4	
5	
7	
3 4 5 7 8 9 10	
9	
10 11	
11 12	
13	
14	
15	
10	
18	
19	
20	
21	
23	
24	
25	
26 27	
28	
29	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
31 32	
33	
34	
35	
36	
38	
39	
40	
41 42	
42 43	
44	
45	
46 47	
47 48	
49	
50	
51 52	
52 53	
55 54	
55	
56 57	
57 58	
59	
60	

1

uniformity. This tendency could be explained by the increased heterogeneity of spray deposition observed at large volume rates, where very high deposition values were observed in the external canopy zones, while the lowest values were obtained in the internal part of the canopy.

A detailed analysis of the heterogeneity of deposits and its relationship with volume rates can be observed in Figure 4, which presents the normalized depositions in each of the three growth stages evaluated (Table 1). Specifically, at the first crop stage, for all tested spray technologies (PB and HB) the largest heterogeneity was obtained with the largest applied volume. For the other two crop stages, this tendency has not been observed.

At the early canopy stage (BBCH 55; Fig. 4A), the optimum results in terms of uniformity were achieved with the lowest volume rates, 200 L ha⁻¹ LWA with the reference sprayer TMS and with HBS. Conversely, the largest heterogeneity was obtained with the largest volume rate, either with HBS or with PBS.

At the intermediate stage of canopy development (BBCH 65; Fig. 4B), the heterogenicity of spray deposition tended to increase for TMS and PBS. On the contrary, the uniformity provided by HBS, fitted with a vertical boom adapted to the canopy height, was greater than that obtained with either TMS or with PBS. Furthermore, for HBS normalized deposition was significantly uniform across the three volume rates.

Finally, at the full vegetation stage (BBCH 75; Fig. 4C), the use of PBS resulted in highly heterogeneous deposits at all volume rates tested. Furthermore, for PBS average values around the optimum could be roughly attained only with the 1000 l ha⁻¹ volume rate. On the other hand, TMS and HBS showed comparable variabilities in spray deposits. The spray

1 2		
2 3 4	344	distribution obtained with the HBS at 800 L ha ⁻¹ LWA was the least heterogeneous, followed
5 6	345	by the 370 L ha ⁻¹ LWA volume rate with both HBS and TMS.
7 8 9	346	
10 11 12	347	3.2 Detailed analysis of results at the three different canopy growth stages
13 14 15 16	348	3.2.1 BBCH 55 - Inflorescences swelling, flowers closely pressed together
17 18	349	An evaluation of normalized deposit on leaves (d_N) at BBCH 55 (Fig. 4A) revealed significant
19 20 21	350	differences among all the spraying technologies and volume rates, with the following three
22 23	351	groups: a) the highest deposition group, obtained with HBS at 600 L ha ⁻¹ LWA and with PBS
24 25 26	352	at 1250 L ha ⁻¹ LWA; b) an intermediate group, with no significant differences between HBS
27 28	353	and PBS, for corresponding intermediate volume rates; and c) the lowest deposition was
29 30	354	observed for TMS at the lowest volume rate (200 L ha ⁻¹ LWA). In terms of optimum average
31 32 33	355	deposition, i.e. around 3.5 μg cm $^{\text{-}2}$, these were attained with HBS at 200 and 400 L ha $^{\text{-}1}$ and
34 35	356	with PBS at 750 and 1000 L ha ⁻¹ .
36 37 38	357	Figure 5 presents the percentage of coverage obtained after the analysis of WSP strips. In
39 40	358	this case, two main groups were identified. The first group includes excess coverage values
41 42 43	359	(even over 50-60%) obtained with high volume rates (600 L ha ⁻¹ LWA with HBS and 1000-
43 44 45	360	1250 L ha ⁻¹ with PBS). The second group corresponds to tractor mounted sprayer (TMS) and
46 47	361	both portable devices (HBS and PBS) with low and intermediate volume rates, with average
48 49 50	362	values of coverage around what should be considered the optimum, i.e. of 30-40%. ^{54, 55}
51 52	363	Figure 6A depicts corresponding coverages at BBCH 55 and their distribution across the
53 54 55 56	364	canopy. The image of the six samples of WSP allocated to the selected zones of the canopy
50 57 58		17

suggests greater uniformity in deposition across the canopy sections for TMS and the lower
volume rates of HBS (200 and 400 L ha ⁻¹ LWA) and PBS (750 L ha ⁻¹). On the contrary, the
highest volume rates (600 L ha ⁻¹ LWA for HBS and 1000 and 1250 L ha ⁻¹ LWA for PBS)
resulted in excess, non-uniform deposits in some parts of the canopy.
Results on the relative deposition, based on the amount of tracer applied per hectare d_G at
BBCH 55 (Figure 7A), reveal the higher efficiency of HBS, at all volume rates. Both PBS at
750 L ha ⁻¹ and TMS achieved an intermediate level of relative efficiency. Finally, PBS at 1000
and 1250 L ha ⁻¹ showed the least efficiency relative to the amount of tracer applied per
hectare.
As shown in Figure 8A, HBS at all volume rates tested showed as well the highest efficiencies
in the deposition, relative to the amount applied per 100 L of spray water (d_G). The average
relative efficiencies d_G of PBS and TMS were 50% lower than those provided by HBS.
relative efficiencies d_G of PBS and TMS were 50% lower than those provided by HBS.
relative efficiencies d_G of PBS and TMS were 50% lower than those provided by HBS. 3.2.2 BBCH 65 – Full flowering
3.2.2 BBCH 65 – Full flowering
3.2.2 BBCH 65 – Full flowering
<i>3.2.2 BBCH 65 – Full flowering</i> The data on absolute normalized deposition d_N obtained at BBCH 65, as shown in Figure 4B,
<i>3.2.2 BBCH 65 – Full flowering</i> The data on absolute normalized deposition d_N obtained at BBCH 65, as shown in Figure 4B, suggests that TMS at 370 L ha ⁻¹ LWA, HBS at 370 and 600 L ha ⁻¹ LWA, and PBS at 750 L ha ⁻¹
<i>3.2.2 BBCH 65 – Full flowering</i> The data on absolute normalized deposition <i>d</i> _N obtained at BBCH 65, as shown in Figure 4B, suggests that TMS at 370 L ha ⁻¹ LWA, HBS at 370 and 600 L ha ⁻¹ LWA, and PBS at 750 L ha ⁻¹ LWA, all achieved the theoretical optimal deposition on leaves (3.1-3.5 µg cm ⁻² leaf). On the
<i>3.2.2 BBCH 65 – Full flowering</i> The data on absolute normalized deposition <i>d</i> _N obtained at BBCH 65, as shown in Figure 4B, suggests that TMS at 370 L ha ⁻¹ LWA, HBS at 370 and 600 L ha ⁻¹ LWA, and PBS at 750 L ha ⁻¹ LWA, all achieved the theoretical optimal deposition on leaves (3.1-3.5 μg cm ⁻² leaf). On the contrary, HBS at 800 L ha ⁻¹ LWA and PBS at 1000-1250 L ha ⁻¹ LWA provided either too low
<i>3.2.2 BBCH 65 – Full flowering</i> The data on absolute normalized deposition <i>d</i> _N obtained at BBCH 65, as shown in Figure 4B, suggests that TMS at 370 L ha ⁻¹ LWA, HBS at 370 and 600 L ha ⁻¹ LWA, and PBS at 750 L ha ⁻¹ LWA, all achieved the theoretical optimal deposition on leaves (3.1-3.5 μg cm ⁻² leaf). On the contrary, HBS at 800 L ha ⁻¹ LWA and PBS at 1000-1250 L ha ⁻¹ LWA provided either too low or too high deposition rates, respectively.
 3.2.2 BBCH 65 – Full flowering The data on absolute normalized deposition d_N obtained at BBCH 65, as shown in Figure 4B, suggests that TMS at 370 L ha⁻¹ LWA, HBS at 370 and 600 L ha⁻¹ LWA, and PBS at 750 L ha⁻¹ LWA, all achieved the theoretical optimal deposition on leaves (3.1-3.5 μg cm⁻² leaf). On the contrary, HBS at 800 L ha⁻¹ LWA and PBS at 1000-1250 L ha⁻¹ LWA provided either too low or too high deposition rates, respectively. At BBCH 65 the influence of a wider canopy, as compared to the previous stage, becomes
 3.2.2 BBCH 65 – Full flowering The data on absolute normalized deposition d_N obtained at BBCH 65, as shown in Figure 4B, suggests that TMS at 370 L ha⁻¹ LWA, HBS at 370 and 600 L ha⁻¹ LWA, and PBS at 750 L ha⁻¹ LWA, all achieved the theoretical optimal deposition on leaves (3.1-3.5 µg cm⁻² leaf). On the contrary, HBS at 800 L ha⁻¹ LWA and PBS at 1000-1250 L ha⁻¹ LWA provided either too low or too high deposition rates, respectively. At BBCH 65 the influence of a wider canopy, as compared to the previous stage, becomes evident when observing the corresponding WSP strips (Fig. 6B), which reveal reduced

probably owing to the lack of air assistance). In contrast, PBS showed good penetration
inside the canopy, although combined with excess coverage, thus increasing the risk of runoff.

Analysis of data on average coverage at BBCH 65 (Fig. 5B) revealed no statistical differences
 391 between HBS and PBS at any of the volume rates tested. On the other hand, TMS provided
 392 and average coverage significantly lower, probably due to the smaller droplet size produced
 393 when combining hollow cone nozzles with high working pressure.

Data on average normalized deposits d_G for BBCH 65 (Fig. 7B), relative to the amount of tracer applied per ground hectare, shows that the most efficient treatment corresponded to the lowest volume rate for HBS (370 L ha⁻¹ LWA), probably linked to an optimum adaptation of the vertical spray boom to the treated canopy height. Conversely, HBS at the highest volume rate (800 L ha⁻¹) provided the lowest efficiency, whereas TMS and PBS (at all volume rates tested) fell in an intermediate efficiency level.

For BBCH 65, efficiency data based on the amount of tracer per 100 L (d_{100}), is shown in Fig. 8B. The highest efficiency value was obtained with TMS and HBS (both at a volume rate of 370 L ha⁻¹ LWA), while HBS (at 400 and 800 ha⁻¹ LWA) and PBS (at 1000 and 1250 ha⁻¹ LWA) provided intermediate efficiencies. The lowest efficiencies corresponded to HBS at the highest volume rate (800 L ha⁻¹ LWA). The conventional sprayer TMS displayed variabilities notably larger than the manual devices.

3.2.3 BBCH 75 – Berries pea-sized, bunches hanging.

408 Results on normalized deposition (d_N) are displayed in Figure 4C. For all volume rates 409 tested, PBS provided excess deposition rates, whereas for HBS at all volume rates and TMS 410 normalized deposits on leaves were in the range of the optimal values.

411 A detailed view of the penetration capacity of the different sprayers is presented in figure

412 8C. Similarly to the outcome at BBCH 65, at BBCH 75 the need for air assistance became

413 conspicuous for HBS at any volume rate: the limited deposition in the central part of the

414 canopy points out to the need for air assistance for this manual device.

415 Results of coverage at BBCH 75 are shown in Figure 5C. Average values around the optimum

416 range (30-40%) could only be attained with TMS and with HBS at 370 and 800 L ha⁻¹ LWA.

²⁸ 29 417 The remaining treatments produced excess coverage, with extreme values over 80% with

31 418 PBS at 1250 L ha⁻¹ LWA.
32

Figure 6C, which shows the aspect of WSP strips at BBCH 75, indicates the excess deposition
 provided with PBS at high volume rates. On the contrary, sprays with both TMS and HBS
 resulted in good coverage and uniformity over the entire canopy.

Figure 7C presents the relative values of deposition considering the total tracer applied per unit area d_G obtained at BBCH 75. The highest relative values of deposition were attained with TMS and with HBS and PBS at low volume rates (370 and 750 L ha⁻¹ LWA, respectively). Therefore, even at the full vegetation stage, low volume rates resulted in the highest relative efficiencies. This trend was corroborated by the results of the normalized deposit relative to the volume applied d_{100} (Fig. 8C): the highest efficiencies were attained with TMS and with HBS and PBS at low volume rates (370 and 750 L ha⁻¹ LWA, respectively).

1

1 2	
3	
4	
5	
6 7	
7 8	
9	
10	
11	
12	
13 14	
15	
16	
18 19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29 30	
31	
32	
33	
34 35	
36	
36 37	
38	
39 40	
41	
42	
43	
44 45	
46	
47	
48	
49 50	
51	
52	
53	
54 55	
56	
57	
58	
59 60	
00	

430 **3.3** Estimation of efficiency and difficulties of the LWA method

431 The LWA method is based on the total wall area, and the amount of spray liquid is 432 determined considering the canopy height as a basic measurement ⁵⁶. However, the canopy 433 density (i.e. percentage of gaps in the canopy wall) can have an important influence on the 434 efficiency of spray deposition on leaves. Assuming L_{fd} as the relative value of wall canopy 435 uniformity (considering the presence of canopy gaps) ranging from 0.3 at BBCH 55, 0.6 at BBCH 65, and 1.0 m² leaf m⁻² canopy wall at BBCH 75 ⁵⁷, an estimation of the leaf deposit 436 efficiency (F and F_1) was calculated (Fig. 9). The obtained F values were compared to the 437 theoretical efficiency achieved assuming the canopy wall as a uniform area (F_1) (L_{fd} = 1.0 m² 438 leaf m⁻² canopy wall), as proposed by the LWA method. As shown in Fig. 9, efficiency values 439 decreased when canopy density was considered. The presence of gaps in the canopy wall 440 441 has an important effect on spray efficiency and, consequently, on the determination of the 442 optimal volume rate. This parameter has already been included in the recently developed 443 Dosaviña DSS to adjust the volume rate for spraying PPPs in vineyards. ⁵⁷

444

445 **3.4** Effect of sprayer type and canopy development on efficiency

Efficiency factors (F and F_1) were used to evaluate the influence of the type of sprayer and canopy development. Figure 10 illustrates the average values obtained for each sprayer and crop stage, either considering the percentage of gaps in the canopy or assuming the canopy wall as a uniform area. For the experimental devices HBS and PBS, the highest efficiency

values were obtained when using low volume rates (370-600 and 750 L ha⁻¹ LWA,
respectively). These efficiency levels were reasonably comparable to those achieved with
TMS, across the three growth stages evaluated.

Concerning the effect of spray technology on efficiency, two key factors should be considered: spray swath and air assistance. HBS provided high F values in early growth stages, with limited canopy development, owing to an optimum distribution along with the treated canopy height. This fact could be explained by the use of a vertical boom with multiple nozzles. Efficiency results for HBS changed abruptly at full vegetation, when the absence of air assistance results in heterogeneous deposits, with conspicuous differences between inner and outer portions of the canopy. The number of active nozzles could also be considered an important factor affecting the efficiency values obtained with PBS. In this case, using a single output limits the achievement of a uniform spray deposit, and adoption large volume rates doesn't improve its performance. As shown in Fig. 10, distinct LWA volume rates should be chosen for each sprayer type, to attain spray efficiencies comparable to those provided by conventional orchard sprayers. Nevertheless, despite the limitations shown by the experimental equipment used in this research, namely lack of air assistance for HBS and reduced spray swath for PBS, we could identify LWA volume rates providing spray efficiencies close to those determined for TMS.

468 Considering conventional tractor mounted orchard sprayers as the reference technology 469 for spraying PPPs, the relative efficiency parameter (*RF*) has been defined according to 470 equation 6:

 $RF = F_{Spraver x} / F_{TMS}$

http://mc.manuscriptcentral.com/pm-wiley

(6)

Pest Management Science

2	
3	
4	
4 5	
6	
7	
/ 0	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
20	
31	
32 33	
33	
34	
34 35	
36 37 38	
37	
38	
39	
40	
41	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	

472 Where RF is the relative efficiency (dimensionless); F Sprayer x is the efficiency value obtained for the spray "x"; and F_{TMS} the efficiency obtained with the tractor mounted sprayer. 473

474

The purpose of this relative efficiency factor (RF) is to compare the efficiency values (F) 475 476 obtained with alternative technologies, with those obtained with the conventional orchard 477 sprayer, assuming that the selected i-LWA value for the conventional sprayer has been demonstrated as the optimal value for vineyard spray applications. ^{23,24,38,42} 478

479 Results of relative comparisons among the technologies evaluated in this research are 480 presented in Fig. 11. Assigning a constant value of 1 (RF = 1) to conventional orchard sprayer 481 TMS, RF values for both HBS and PBS show a negative trend with increasing volume rates. 482 Across BBCH stages, the line intersections of HBS and PBS with the reference efficiency level point to optimum volume rates between 400 and 600 L ha⁻¹ LWA. In light of these results 483 and considering the overall performance of each device as summarized in Table 5, for the 484 485 future development of experimental devices aimed at closely reproducing the spray characteristics of conventional field sprayers, we suggest combining adaptable spray swath 486 487 with air assistance.

59

60

488

Conclusions 489 4.

For vineyards conducted as a uniform vertical wall, canopy characterization based 490 • 491 on LWA expression provided a good basis for adjustment of water volumes. 492 However, the important effect of canopy density (percentage of gaps in the canopy

Pest Management Science

Page 24 of 49

2		
2 3 4	493	
5 6	494	
7 8 9	495	•
10 11	496	
12 13 14	497	
15 16	498	
17 18	499	
19 20 21	500	•
22 23	501	
24 25 26	502	
27 28	503	
29 30 31	504	
32 33	505	•
34 35	506	
36 37 38	507	
39 40	508	
41 42 43	509	
44 45	510	
46 47 48	511	•
49 50	512	
51 52	513	
53 54 55		
56 57		
58 59		
60		

1

wall) shouldn't be neglected for the determination of the most efficient spray volume rates.

The spray efficiencies of two manual devices, suited for field experimentation with
 PPPs, were compared with those provided by a conventional orchard sprayer in a
 trellised vineyard. Spray technology had a decisive effect on the efficiency and
 uniformity of deposition, which were in turn dependent on canopy development
 and corresponding LWA volume rates.

HBS, a hydraulic backpack sprayer fitted with a vertical spray boom with 3-4 nozzles,
 attained high efficiency values and uniformity of distribution at early growth stages
 when using volume rates between 200 and 600 L ha⁻¹ LWA. Nevertheless, at full
 vegetation HBS achieved limited penetration into the canopy, pointing to the need
 of air assistance when confronted with dense canopies.

PBS, a motorized pneumatic backpack sprayer with a single nozzle, and adapted out
 of specification to achieve high-volume rates, achieved good penetration into the
 canopy at all growth stages, owing to the air assistance. For PBS, the best results in
 terms of spray efficiency and uniformity of deposits were obtained at the lowest
 volume rate tested of 750 L h⁻¹ LWA, indicating that spray quality could be improved
 when using even lower volume rates.

To achieve spray efficiency values close to those provided by TMS, the tested
 experimental sprayers HBS and PBS should have used volume rates between 400
 and 600 L ha⁻¹ LWA.

1		
2 3 4	514	Reliability of field trials conducted to ascertain optimal PPP doses and spray volume
5 6	515	rates could be improved with the adoption of portable spray technologies resulting
7 8 9	516	in efficiencies closer to those provided by conventional field sprayers. In order to
10 11	517	closely reproduce the spray efficiencies provided by conventional field sprayers,
12 13 14	518	devices used in experimentation should combine adaptable spray swath with air
15 16	519	assistance.
17 18 19	520	
20 21	521	5. ACKNOWLEDGEMENTS
22 23		
24 25	522	This research has been partially funded by EU LIFE PERFECT Project - Pesticide Reduction
26 27 28	523	using Friendly and Environmentally Controlled Technologies (LIFE 17 ENV/ES/000205).
29 30	524	Bayer CropScience S.L. provided financial and technical support for the conduct of this
31 32	525	research.
33	526	
34 35	520	
36	507	
37 38	527	6. REFERENCES
39		
40 41	528	1. Walklate PJ, Cross JV, Richardson B, Baker DE and Murray RA, A generic method of
42	529	pesticide dose expression: Application to broadcast spraying of apple trees. Ann
43	530	<i>Appl Biol</i> 143 : 11–23 (2003).
44	531	2. Triloff P, An extended tree row volume dosing model: adjusting pesticide dose rate,
45 46	532	water volume rate and air volume rate by forward speed. Ann Rev Agr Eng 4: 69-80
47	533	(2005).
48	534 535	3. EPPO, Dose expression for plant protection products. <i>EPPO Bulletin</i> 42 : 409–415 (2012).
49 50	535 536	
51	530 537	 Walklate PJ and Cross JV, An examination of LWA dose expression. Crop Prot 35: 132–134 (2013).
52	538	5. Dubuis PH, Viret O, Bloesch B, Fabre AL, Le dosage adapté: facile, économique et
53 54	539	bon pour l'environnement. <i>Revue Suisse Viticulture, Arboriculture, Horticulture</i> 47 :
54 55	540	67–69 (2015).
56		
57 58		25
50		25
59		http://mc.manuccriptcontrol.com/pm.wilov

3 4 5 6	541 542 543	6. Garcerá C, Doruchowski G and Chueca P, Harmonization of plant protection products dose expression and dose adjustment for high growing 3D crops: A review. <i>Crop Prot</i> 140 : 105417 (2020).
7	544	7. EPPO, Conclusions and recommendations. Workshop on harmonized dose
8	545	expression for the zonal evaluation of plant protection products in high growing
9	546	<i>crops</i> , Vienna, Austria (2016). [Online]. Available:
10		
11	547	https://www.eppo.int/media/uploaded_images/MEETINGS/Conferences_2016/do
12	548	se expression/Conclusions and recommendations.pdf [1 June 2019].
13	549	8. Doruchowski G, Harmonization of dose expression is the key to dose adjustment.
14 15	550	Association of Applied Biologist - Dose Expression Workshop, Barcelona, Spain
16	551	(2018).
17	552	9. EPPO. Standard measurement procedure in high growing crop trials (2018). [Online].
18	553	Available:
19	554	https://www.eppo.int/media/uploaded_images/ACTIVITIES/plant_protect_produc
20	555	ts/Dose exp measure procedure.pdf [1 June 2019].
21	556	10. Balsari P and Gil E, The dose expression dilemma. State of the art in Europe.
22 23	557	Association of Applied Biologist - Dose Expression Workshop, Barcelona, Spain
23 24	558	(2018).
25	559	11. Rosell JR and Sanz R, A review of methods and applications of the geometric
26	560	characterization of tree crops in agricultural activities. <i>Comput Electron Agric</i> 81:
27		
28	561	124-141 (2012).
29	562	12. Van de Zande J, Importance and methods for an accurate canopy characterization.
30	563	Association of Applied Biologist - Dose Expression Workshop, Barcelona, Spain
31 32	564	(2018).
33	565	13. Garcerá C, Fonte A, Moltó E and Chueca P, Sustainable use of pesticide applications
34	566	in citrus: A support tool for volume rate adjustment. Int J Environ Res Public Health
35	567	14 : 715 (2017).
36	568	14. Oerke EC, Crop losses to pests. J Agric Sci 144 : 31-43 (2006).
37	569	15. Giles DK, Akesson NB and Yates WE, Pesticide application technology: research and
38 39	570	development and the growth of the industry. <i>Trans ASABE</i> 51 : 397-403 (2008).
39 40	571	16. Hilz E and Vermeer AW, Spray drift review: The extent to which a formulation can
41	572	contribute to spray drift reduction. <i>Crop Prot</i> 44 : 75-83 (2013).
42	573	17. Toews R B, Huby J P, Pollmann B, Teichmann M, Schlotter P and Meier-Runge F. Dose
43	574	rate expression in vertical growing crops – Need for harmonization from the
44		
45	575	perspective of the Plant Protection Product Industry. Workshop on harmonized dose
46	576	expression for the zonal evaluation of plant protection products in high growing
47 48	577	crops, Vienna, Austria (2016).
49	578	18. Langer I, Encountered problems for dose expression harmonisation. Association of
50	579	Applied Biologist - Dose Expression Workshop, Barcelona, Spain (2018).
51	580	19. Koch H, Weisser P and Knewitz H, Sprayer adjustment in orchards – from dose to
52	581	deposit. Proc 6th Workshop on Spray Application Techniques in Fruit Growing,
53	582	Leuven, Belgium, pp. 28 (2001).
54 55		
55 56		
57		
58		26
59		

1		
2 3	F 0 2	20 Mallate DL Green IV, Disbardson CM and Dalar DE, Ontincising the adjustment of
4	583 584	20. Walklate PJ, Cross JV, Richardson GM and Baker DE, Optimising the adjustment of
5	585	label recommended dose rate for orchard spraying. <i>Crop Prot</i> 25 : 1080-1086 (2006 Oct).
6	585 586	
7 8		21. Koch H, How to achieve conformity with the dose expression and sprayer function
9	587	in high crops. <i>Bayer Crop Sci. J.</i> 60 : 71-84 (2007).
10	588	22. Walklate PJ, Cross JV and Pergher G, Support system for efficient dosage of orchard
11	589	and vineyard spraying products. <i>Comput Electron Agric</i> 75 : 355-362 (2011).
12	590	23. Gil E, Llorens J, Landers A, Llop J and Giralt L, Field validation of DOSAVIÑA, a decision
13 14	591	support system to determine the optimal volume rate for pesticide application in
15	592	vineyards. <i>Eur J Agron</i> 35 : 33-46 (2011).
16	593	24. Escolà A, Rosell-Polo JR, Planas S, Gil E, Pomar J, Camp F, Llorens J and Solanelles F,
17	594	Variable rate sprayer. Part $1 - Orchard prototype: Design, implementation and$
18	595	validation. Comput Electron Agric 95 : 122-135 (2013).
19 20	596	25. Gil E, Gallart M, Llorens J, Llop J, Bayer T and Carvalho C, Spray adjustments based
20	597	on LWA concept in vineyard. Relationship between canopy and coverage for
22	598	different application settings. Asp Appl Biol 122 : 25-32 (2014).
23	599	26. Garcerá C, Fonte A, Salcedo R, Soler A and Chueca P, Dose expression for pesticide
24	600	application in citrus: influence of canopy size and sprayer. Agronomy 10 : 1887
25 26	601	(2020).
20	602	27. European Parliament, Council of the European Union. Regulation (EC) No 1107/2009
28	603	of the European Parliament and of the Council of 21 October 2009 concerning the
29	604	placing of plant protection products on the market and repealing council directives
30	605	79/117/EEC and 91/414/EEC, Off. J. Eur. Union: Luxembourg City, Luxembourg, 1–
31 32	606	50 (2009).
33	607	28. Mironet V, Compilation Questionnaires "Dose expression" Southern zone: France,
34	608	Spain, Portugal, Greece, Italy and Croatia. Workshop on harmonized dose expression
35	609	for the zonal evaluation of plant protection products in high growing crops, Vienna,
36	610	Austria (2016).
37 38	611	29. Furness GO, Distance calibration and a new pesticide label format for fruit trees and
39	612	grapevines in Australia. Proc 7th Workshop on Spray Application Techniques in Fruit
40	613	<i>Growing,</i> Cuneo, Italy, pp. 293-303 (2003).
41	614	30. Viret O, Siegfried W, Bloesch B, Taillens J and Mittaz C, Dosage des fongicides
42	615	adaptés à la surface foliaire: Résultats en 2006. Revue Suisse De Vitic. Arboric. Hortic.
43 44	616	39 : 65-68 (2007).
45	617	31. Pergher G and Petris R, Pesticide dose adjustment in vineyard spraying and potential
46	618	for dose reduction. Agric. Eng. Int.: The CIGR Ejournal X (2008).
47	619	32. Codis S and Douzals JP, Comparaison des systèmes d'expression des doses de
48	620	produits de protection de la vigne dans 5 pays européens et les besoins d'une
49 50	621	harmonisation. AFPP - CIETAP - Conference sur les techniques d'application de
51	622	produits de protection des plantes, Lyon, France, pp. 10 (2012).
52	623	33. Manktelow DWL, Gurnsey SJ and MacGregor AM, Deposit variability and prediction
53	624	in fruit crops: what use are label rates anyway? Asp Appl Biol 71: 269-278 (2004).
54		
55 56		
57		
58		27
59		http://mamapurarintaantral.com/pm.wilov
60		http://mc.manuscriptcentral.com/pm-wiley

59

1 2		
2	625	34. Landers A. Effective Vineyard Spraying: A Practical Guide for Growers 2nd edition
4	626	(2016). ISBN-10: 1495188450; ISBN-13: 978-1495188459. Edited by
5	627	https://effectivespraying.com
6	628	35. Nansen, C., Ferguson, J.C., Moore, J. et al. Optimizing pesticide spray coverage using
7 8		
8 9	629	a novel web and smartphone tool, SnapCard. Agron. Sustain. Dev. 35: 1075-1085
10	630	(2015). <u>https://doi.org/10.1007/s13593-015-0309-y</u>
11	631	36. Shen Y, Zhu H, Liu H, Chen Y, Ozkan HE. Development of a Laser-Guided, Embedded-
12	632	Computer-Controlled, Air assisted precision sprayer. Transactions of the ASABE.
13	633	60 (6): 1827-1838 (2017).
14 15	634	37. Ahmad H, Mohamed H and Sherif A G, Effect of spray application techniques on
15 16	635	spray deposits and residues of bifenthrin in peas under field conditions. Journal of
17	636	Pesticide Science 41: 49-54 (2016). https://doi.org/10.1584/jpestics.D15-071
18	637	38. Gil E. Tratamientos en viña: Equipos y técnicas de aplicación. (2003). Edicions UPC,
19	638	Barcelona, 148pp. URI: <u>http://hdl.handle.net/2099.3/36721</u> ; ISBN: 9788498803228
20	639	39. Michael C, Gil E, Gallart M, Kanetis L and Stavrinides MC, Evaluating the
21	640	effectiveness of low volume spray application using air-assisted knapsack sprayers
22 23	641	in wine vineyards. Int J Pest Manage 1-10 (2020)
23 24	642	40. Michael C, Gil E, Gallart M and Stavrinides MC, Influence of spray technology and
25	643	application rate on leaf deposit and ground losses in mountain viticulture. Agric 10 :
26		
27	644	
28	645	41. Meier U. BBCH-Monograph. Growth stages of plants - Entwicklungsstadien vo
29	646	Pflanze - Estadios de las plantas - Développement des Plantes.
30	647	BlackwelWissenschaftsverlag, Berlin und Wien. 622 (1997).
31 32	648	42. Gil E, Escolà A, Rosell JR, Planas S and Val L, Variable rate application of plant
33	649	protection products in vineyard using ultrasonic sensors. Crop Prot 26: 1287-1297
34	650	(2007).
35	651	43. ISO 10625. Equipment for Crop Protection. Sprayer Nozzles. Colour coding for
36	652	identification. International Standardization Organization (2018).
37	653	44. Llorens J, Gil E, Llop J and Escolà A, Variable rate dosing in precision viticulture: Use
38 39	654	of electronic devices to improve application efficiency. Crop Prot 29: 239-248 (2010).
40	655	45. Salcedo R, Llop J, Campos J, Costas M, Gallart M, Ortega P and Gil E, Evaluation of
41	656	leaf deposit quality between electrostatic and conventional multi-row sprayers in a
42	657	trellised vineyard. Crop Prot 127 : 104964 (2019).
43	658	46. Pergher G, Recovery rate of tracer dyes used for spray deposit assessment. Trans
44	659	ASAE 44: 787-794 (2001).
45 46	660	47. TOPPS-Prowadis Project, Best Management Practices to Reduce Spray Drift. (2014).
40 47	661	[Online]. Available: http://www.topps-life.org/ [15 October 2019].
48		
49	662	48. BOE (Boletín Oficial del Estado). Real Decreto 1311/2012, de 14 de septiembre, por
50	663	el que se establece el marco de actuación para conseguir un uso sostenible de los
51	664	productos fitosanitarios. BOE N 223 de 15 de septiembre de 2012, 65127-65171.
52	665	49. Rueden, C. T.; Schindelin, J. & Hiner, M. C. et al. (2017), "ImageJ2: ImageJ for the
53 54	666	next generation of scientific image data", BMC Bioinformatics 18:529, PMID
54 55	667	29187165, doi:10.1186/s12859-017-1934-z (on Google Scholar).
56		
57		
58		28
50		

1		
2 3	660	50 Crees IV/ Mollidate DL Murray DA and Dishandage CM. Course day asite and lacess in
4	668	50. Cross JV, Walklate PJ, Murray RA and Richardson GM, Spray deposits and losses in
5	669	different sized apple trees from an axial fan orchard sprayer: 1. Effects of spray liquid
6	670	flow rate. Crop Prot 20: 13-30 (2001).
7	671	51. Pergher G, Gubiani R and Tonetto G, Foliar deposition and pesticide losses from
8	672	three air-assisted sprayers in a hedgerow vineyard. Crop Prot 16: 25-33 (1997).
9 10	673	52. Codis S, Carra M, Delpuech X, Montegano P, Nicot H, Ruelle B, Ribeyrolles X, Savajols
11	674	B, Vergès A and Naud O, Dataset of spray deposit distribution in vine canopy for two
12	675	contrasted performance sprayers during a vegetative cycle associated with crop
13	676	indicators (LWA and TRV). (2018). Data in Brief Volume 18, June 2018, Pages 415-
14	677	421. https://doi.org/10.1016/j.dib.2018.02.012
15	678	53. Gil E. Crop adapted spraying in vineyard. Leaf area distribution (crop profile) and
16 17	679	uniformity of deposition (CV) as a tool to evaluate the quality of applications. (2002).
18	680	In: International Conference on Agricultural Engineering, AgEng'02. Budapest
19	681	(Hungary).
20	682	54. Holownicki R, Doruchowski G, Godyn A and Swiechowski W, PA – Precision
21	683	agriculture: variation of spray deposit and loss with air-jet directions applied in
22 23	684	orchards. J Agric Eng Res 77: 129-136 (2000)
25 24	685	55. Chen Y, Ozkan HE, Zhu H, Derksen RC and Krause CR, Spray deposition inside tree
25	686	canopies from a newly developed variable-rate air-assisted sprayer. Trans ASABE 56:
26	687	1263-1272 (2013).
27	688	56. Campos J, Llop J, Gallart M, García-Ruíz F, Gras A, Salcedo R, and Gil E, Development
28 29	689	of canopy vigor maps using UAV for site-specific management during vineyard
29 30	690	spraying process. <i>Precision Aqric.</i> 20 : 1136-1156 (2019).
31	691	https://doi.org/10.1007/s11119-019-09643-z
32	691 692	
33	693	57. Gil E, Campos J, Ortega P, Llop J, Gras A, Armengol E, Salcedo R and Gallart M, DOSAVIÑA: Tool to calculate the optimal volume rate and pesticide amount in
34 25	693 694	vineyard spray applications based on a modified leaf wall area method. <i>Comput</i>
35 36	694 695	
37	695 696	<i>Electron Agric</i> 160 : 117-130 (2019). <u>https://doi.org/10.1016/j.compag.2019.03.018</u>
38		
39	697	
40	698	
41 42	699	
43		
44		
45		
46		
47 48		
40 49		
50		
51		
52		
53 54		
54 55		
56		
57		
58		29
59 60		http://mc.manuscriptcentral.com/pm-wiley
00		

7. **TABLES**

Table 1. Main factors and definitions

Symbol	Concept
i-LWA _A	Actual volume rate (L ha ⁻¹ canopy)
V _R	Actual volume rate (L ha ⁻¹)
W	Amount of deionized water (ml)
T _A	Amount of tracer per hectare
La	Area of sample leaf (cm ²)
Lf _d	Canopy wall gaps ratio (m ² _{leaf} m ⁻² _{canopy wall})
f _{VR}	Correction factor for spray volume
f _{TC}	Correction factor for tracer concentration
С	Coverage (%)
ВВСН	Crop stage
d	Deposit per unit leaf area (µg·cm ⁻²)
F	Efficiency considering canopy gaps
<i>F</i> ₁	Efficiency not considering canopy gaps
i-LWA _E	Estimated volume rate (L ha ⁻¹ canopy)
V _T	Intended volume rate (L ha ⁻¹)
Sa	Leaf sample area (cm ²)
d _N	Normalized leaf deposit (µg cm ⁻² leaf)
d _G	Normalized leaf deposit per unit of applied tracer (µg cm ⁻² /kg tracer ha ⁻¹)
<i>d</i> ₁₀₀	Normalized leaf deposit per 100 L applied (µg cm ⁻² /100 L ha ⁻¹)
RF	Relative efficiency (S _{prayer X} / F _{TMS})
T _{cl}	Tracer concentration in washing solution (µg·L ⁻¹)
Т	Tracer concentration in the sprayer's tank (mg L ⁻¹)
WSP	Water Sensitive Paper

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\33\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\44\\5\\6\\47\\48\\49\\50\\51\\52\\53\end{array}$	<page-header></page-header>
49 50 51	http://mc.manuscriptcentral.com/pm-wiley

Table 2. Arrangement of every field tests at the three different crop stages

Trial	Date		BBCH-scale	Row	Mean	Mean LWA
		Code	Growth stage	distance (m)	canopy height (m)	(m² canopy ha ⁻¹)
1	May 18 th	55	Inflorescences swelling, flowers closely pressed together	3.0	0.59	4143
2	June 1 st	65	Full flowering: 50% of flower hoods fallen	3.0	0.86	5731
3	June 22 nd	75	Berries pea-sized, bunches hang	3.0	1.14	7613

Table 3. Estimated application parameters (i-LWA_E and V_T) and values selected or spray process

BBCH scale	LWA (m² canopy ha ⁻¹)	Sprayer	<i>i-LWA_E</i> (L ha⁻¹LWA)	V _T (L ha¹)	Pressure (MPa)	# nozzles	Nozzle type	Nozzle manufactur er	Spray pattern ^a	Spray quality ^b	Forward speed (km h ⁻¹)
	4133	TMS	200	83	1.00	4	ATR Brown	Albuz	HC	VF	6.5
	3800	HBS	200	76	0.15	2	ISO 110 015	Teejet	FF	F	4.4
	3933	HBS	400	157	0.15	2	ISO 110 03	Teejet	FF	М	4.3
55	4600	HBS	600	276	0.15	2	ISO 110 04	Teejet	FF	М	3.3
	4067	PBS	750	305		1	Diffusor	Solo	HC	-	5.8
	4000	PBS	1000	400	-	1	Diffusor	Solo	HC	-	4.4
	4467	PBS	1250	558	-	1	Diffusor	Solo	HC	-	3.8
	6440	TMS	370	246	0.80	6	ISO 80 015	Lechler	HC	VF	4.8
	4907	HBS	370	182	0.15	3	ISO 110 025	Teejet	FF	М	4.7
65	5013	HBS	600	301	0.15	3	ISO 110 04	Teejet	FF	М	4.5
65	5693	HBS	800	455	0.15	3	ISO 110 06	Teejet	FF	С	4.5
	6227	PBS	750	467	-	1	Diffusor	Solo	HC	-	4.2
	6373	PBS	1000	637	-	1	Diffusor	Solo	HC	-	3.1
	5467	PBS	1250	683	-	1	Diffusor	Solo	HC	-	2.5
	7360	TMS	370	272	0.80	8	ISO 80 015	Lechler	HC	VF	5.7
75	8213	HBS	370	303	0.15	4	ISO 110 025	Teejet	FF	М	3.8
	8333	HBS	600	500	0.15	4	ISO 110 04	Teejet	FF	М	3.6
	7120	HBS	800	609	0.15	4	ISO 110 06	Teejet	FF	C	4.5

6	893 PI	BS 7	50	517	-	1	Diffu	sor	Solo	H	С	-
7	133 PI	BS 10	000	713	-	1	Diffu	sor	Solo	H	С	-
8	240 PI	BS 12	250	1030	-	1	Diffu	sor	Solo	H	C	-
Table	• 4 . Actual app	lication val	ues (i-1 V	VA. and	V ₂) and	main reg	sults obta	ined with	the diff	erent sr	oray tech	nologies
BBCH	Sprayer & <i>i-LWA</i>	i-LWA _A 1	V_R^2	T_A^3	fvr ⁴	f _{TC} ⁵	d _N ⁶	d _G ⁷	d ₁₀₀ ⁸	F ⁹	F ₁ ¹⁰	C 11
	TMS 200	200	99	0.16	1.54	1.21	1.18	7.19	1.19	0.12	0.30	20.72
	HBS 200	200	81	0.15	1.73	1.10	2.22	15.42	2.78	0.23	0.58	28.54
	HBS 400	400	158	0.30	1.48	1.04	3.85	12.69	2.43	0.20	0.50	29.12
55	HBS 600	600	220	0.50	1.68	0.88	5.87	11.84	2.66	0.22	0.55	49.34
55	PBS 750	750	305	0.60	1.00	1.03	3.83	6.49	1.25	0.11	0.26	40.77
	PBS 1000	1000	396	0.80	1.00	0.98	3.36	4.16	0.85	0.07	0.16	59.61
	PBS 1250	1250	554	1.12	1.00	0.98	5.24	4.64	0.94	0.08	0.21	49.22
	TMS 370	332	214	0.14	1.11	4.03	2.84	6.70	1.33	0.30	0.43	32.40
	HBS 370	423	208	0.38	0.85	1.97	2.91	7.52	1.40	0.25	0.36	55.90
	HBS 600	685	347	0.66	0.87	1.04	3.74	5.63	1.08	0.20	0.29	49.04
65	HBS 800	858	485	0.93	0.93	1.03	2.31	2.47	0.48	0.10	0.14	55.12
	PBS 750	768	478	1.03	0.97	1.03	4.02	4.34	0.84	0.19	0.27	70.97
	PBS 1000	979	632	1.01	1.02	1.02	5.44	4.35	0.86	0.20	0.28	70.18
	PBS 1250	1253	688	1.35	0.99	1.01	6.68	4.92	0.97	0.19	0.27	67.59
			205		0.95	1.05	3.57	6.62	1.25	0.34	0.49	42.90
75	TMS 370	387	285	0.54	0.95	1.05	5.57	0.02	1.25	0.34	0.49	42.90

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

HBS 600	542	440	0.76	1.10	1.16	2.98	3.92	0.67	0.22	0.32	51.58
HBS 800	955	647	1.11	0.83	1.16	3.29	2.95	0.51	0.14	0.20	35.02
PBS 750	711	524	1.11	1.05	0.94	7.91	6.33	1.34	0.33	0.47	78.87
PBS 1000	1066	723	1.82	0.93	0.79	4.92	2.71	0.68	0.13	0.18	53.45
PBS 1250	1088	1054	2.67	1.14	0.79	6.85	2.57	0.65	0.17	0.25	83.35

716 ¹ i-LWA_A (L ha⁻¹ LWA); ² V_R (L ha⁻¹); ³ T_{A_l} (Kg ha⁻¹); ⁴ f_{VR} (dimensionless); ⁵ f_{TC} (dimensionless); ⁶ d_N (µg cm⁻²); ⁷ d_G (µg cm⁻²/kg tracer ha⁻¹); ⁸ d_{100} (µg cm⁻²/100 L ha⁻¹); ⁹ F (dimensionless); ¹⁰ F_1 (dimensionless); ¹⁰ F_1 (dimensionless); ¹¹ C (%)

for per perieu

			1	1	1		1
	i-LWA	d_N	d _G	d ₁₀₀	C (%)	F	F 1
HBS	L	-	+++	+++	+++	++	+++
	М	+	++	+++	+++	++	++
	Н	++	++	++	++	+	++
PBS	L	+	+	+	+	+	+
	М	++	-	-	-	-	-
	Н	+++	-	-	-	-	-
TMS		++	+	++	++	++	+++

719 Table 5. Global evaluation of tested technologies based on the obtained results

2	
3	
4 5	
5	
6 7 8	
7	
8	
9	
9 10	
11	
12	
13	
14	
15	
16	
10	
12 13 14 15 16 17 18	
18	
19	
20 21	
21	
22	
23	
24	
22 23 24 25	
26	
26 27	
28	
20	
29	
30	
31 32 33	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

721 FIGURE CAPTIONS

- 722 Figure 1. Spraying equipment tested: a) tractor-mounted air-assisted sprayer (TMS); b)
- 723 Hydraulic backpack sprayer (HBS); and c) Pneumatic backpack sprayer (PBS).
- 724 **Figure 2.** Layout scheme and distribution of trials in the parcel
- Figure 3. A) Relationship between normalized deposit on leaves d_N and coverage measured
- via using water-sensitive paper; B) Relationship between normalized deposit on leaves d_N and
- 727 volume rate i-LWA; C) Relationship between normalized deposit on leaves and uniformity
- 728 of deposition on the entire canopy, measured by the standard deviation.
- Figure 4. Average normalized deposit (dN) and dispersion of measurements for all
 combinations of the sprayer-volume rate tested. A) Results for BBCH 55; B) results for BBCH
- 731 65; C) results for BBCH 75.
- Figure 5. Average values of coverage and dispersion of measurements for all combinations
 of the sprayer-volume rate tested. A) Results for BBCH 55; B) results for BBCH 65; C) results
- 7 734 for BBCH 75.
- 735 Figure 6. Evaluation of coverage on water-sensitive paper placed in the whole canopy. A)
 736 coverage for BBCH 55; B) coverage for BBCH 65; C) coverage for BBCH 75.
- 737 **Figure 7**. Average normalized deposit per amount of tracer (d_G) and dispersion of
 - 738 measurements for all combinations of sprayer-volume rate tested. A) Results for BBCH 55;
 - 739 B) results for BBCH 65; C) results for BBCH 75.

Pest Management Science

740 Figure 8. Average normalized deposit per volume rate (d_{100}) and dispersion of

- 741 measurements for all combinations of sprayer-volume rate tested. A) Results for BBCH 55;
- 742 B) results for BBCH 65; C) results for BBCH 75.
- **Figure 9**. Evolution of efficiency value (*F* and F_1) depending on the spray volume rate (L ha⁻

744 ¹ LWA).

- 745 Figure 10. Effect of spray technology on efficiency values observed
- **Figure 11**. Efficiencies of the hydraulic backpack sprayer (HBS) and the pneumatic backpack
- 747 sprayer (PBS), relative to the tractor-mounted air-assisted sprayer (TMS), at corresponding

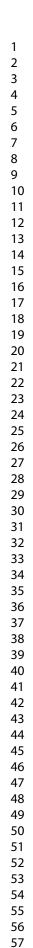

748 BBCH growth stages.

Figure 1. Spraying equipment tested: a) tractor-mounted air-assisted sprayer (TMS); b) Hydraulic backpack sprayer (HBS); and c) Pneumatic backpack sprayer (PBS).

254x190mm (300 x 300 DPI)

http://mc.manuscriptcentral.com/pm-wiley

59 60 http://

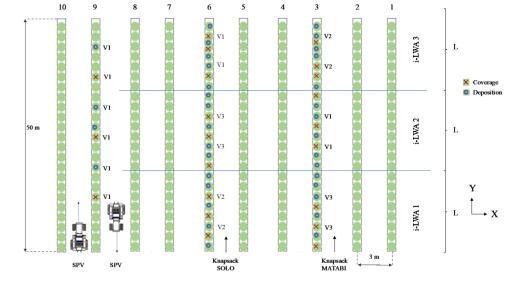


Figure 2. Layout scheme and distribution of trials in the parcel $254 \times 190 \text{ mm} (300 \times 300 \text{ DPI})$

/

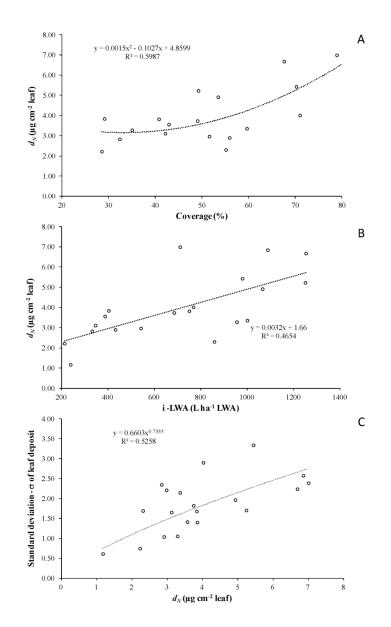
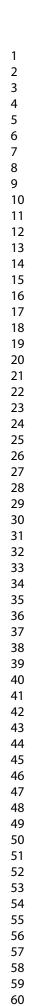



Figure 3. A) Relationship between normalized deposit on leaves dN and coverage measured using watersensitive paper; B) Relationship between normalized deposit on leaves dN and volume rate i-LWA; C) Relationship between normalized deposit on leaves and uniformity of deposition on the entire canopy, measured by the standard deviation.

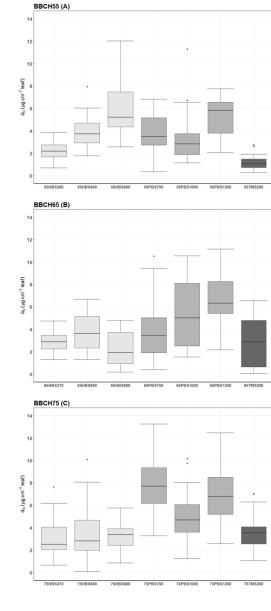
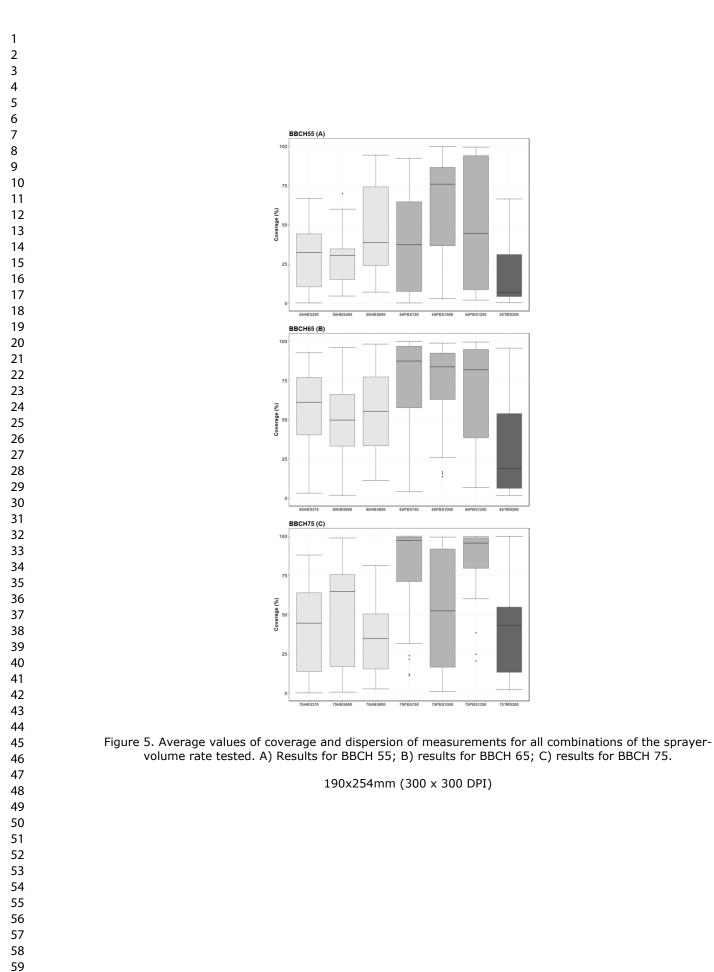
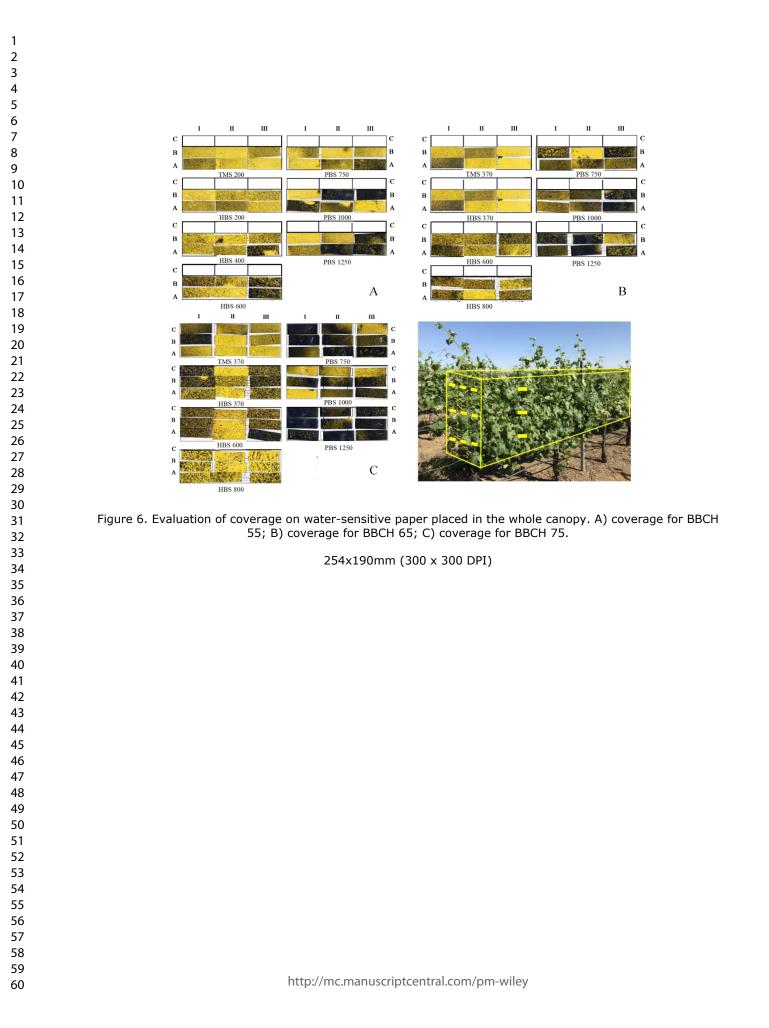




Figure 4. Average normalized deposit (dN) and dispersion of measurements for all combinations of the sprayer-volume rate tested. A) Results for BBCH 55; B) results for BBCH 65; C) results for BBCH 75.

60

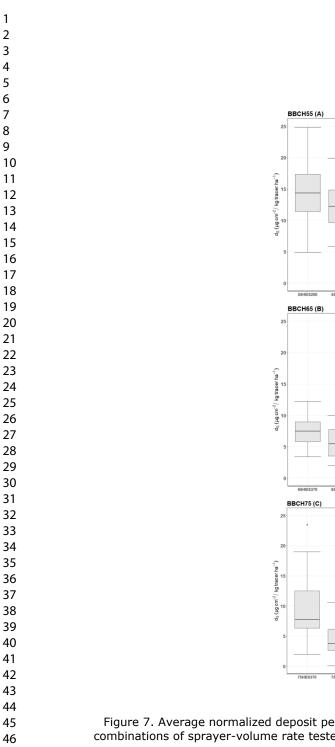
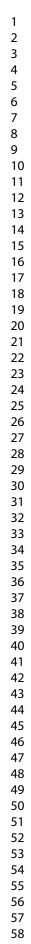



Figure 7. Average normalized deposit per amount of tracer (dG) and dispersion of measurements for all combinations of sprayer-volume rate tested. A) Results for BBCH 55; B) results for BBCH 65; C) results for BBCH 75.

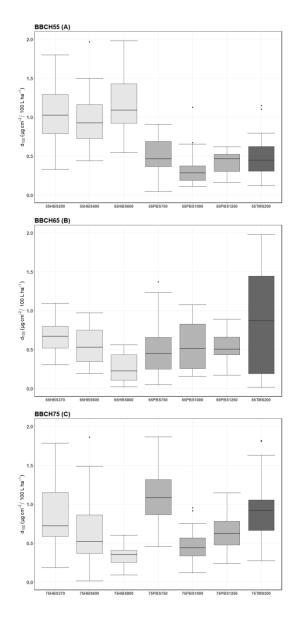


Figure 8. Average normalized deposit per volume rate (d100) and dispersion of measurements for all combinations of sprayer-volume rate tested. A) Results for BBCH 55; B) results for BBCH 65; C) results for BBCH 75.

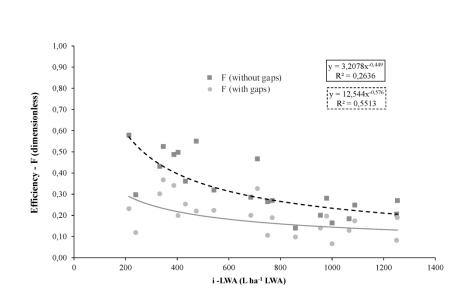


Figure 9. Evolution of efficiency value (F and F1) depending on the spray volume rate (L ha-1 LWA). 254x190mm (300 x 300 DPI)

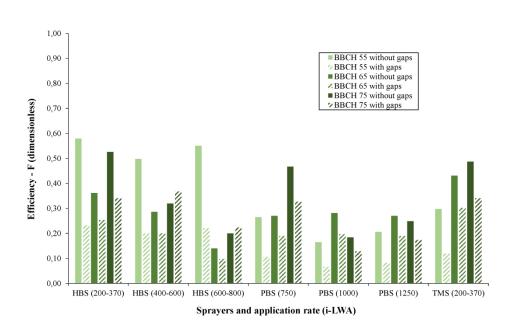


Figure 10. Effect of spray technology on efficiency values observed 254x190mm (300 x 300 DPI)

Figure 11. Efficiencies of the hydraulic backpack sprayer (HBS) and the pneumatic backpack sprayer (PBS), relative to the tractor-mounted air-assisted sprayer (TMS), at corresponding BBCH growth stages.

254x190mm (300 x 300 DPI)