
Hybrid filter-wrapper approaches
for feature selection

Bachelor’s Degree in Computer Engineering
Computation specialization

David Gili Fernández de Romarategui

Director: Lluís Antonio Belanche Muñoz

GEP Tutor: Marcos Eguiguren Huerta

Defense: 28th October 2021

Acknowledgements

First and foremost, I would like to thank the director of this thesis Lluís Antonio
Belanche Muñoz, without whom this project could not have been successfully
completed. Despite difficult circumstances and amidst a global pandemic, his
guidance, support and flexibility have been of utmost importance for the development
of this thesis.

I would like to thank my friends and especially my university peers. Although this
marks the end of this period, having them aside has made the journey much more
enjoyable.

Finally, I can not express in words how thankful I am to my brother and mother.
This has been a nerve-wracking year for me, and I am sure none of this would be
possible without their unconditional support.

1

Abstract

Over the last couple of decades, more business sectors than ever have embraced
digital technologies, storing all the information they generate in databases. Moreover,
with the rise of machine learning and data science, it has become economically
profitable to use this data to solve real-world problems. However, as datasets grow
larger, it has become increasingly difficult to determine exactly which variables are
valuable to solve a given problem.

This project studies the problem of feature selection, which tries to select a subset of
relevant variables for a specific prediction task from the complete set of attributes. In
particular, we have mostly focused on hybrid filter-wrapper algorithms, a relatively
new branch of study, that has seen great success in high-dimensional datasets because
they offer a good trade-off between speed and accuracy.

The project starts by explaining several important filter and wrapper methods and
moves on to illustrate how several authors have combined them to form new hybrid
algorithms. Moreover, we also introduce a new algorithm called BWRR, which uses
the popular ReliefF filter to guide a backward wrapper search. The key novelty we
propose is to recompute the ReliefF rankings at several points to better guide the
search. In addition, we also introduce several variations of this algorithm.

We have also performed extensive experimentation to test this algorithm. In the first
phase, we experimented with synthetic datasets to see which factors affected the
performance. After that, we compared the new algorithm against the state-of-the-art
in real-world datasets.

Keywords: feature selection, hybrid filter-wrapper, Relief based algorithm, high-
dimensional datasets.

2

Resum

Durant les darreres dècades, molts sectors empresarials han adoptat les tecnologies
digitals, emmagatzemant tota la informació que generen en bases de dades. A
més, amb l’auge de l’aprenentatge automàtic i la ciència de les dades, s’ha tornat
econòmicament rendible utilitzar aquestes dades per resoldre problemes del món real.
No obstant això, a mesura que els conjunts de dades creixen en mida, cada vegada
és més difícil determinar exactament quines variables són valuoses per resoldre un
problema específic.

Aquest projecte estudia el problema de la selecció de variables, que intenta seleccionar
el subconjunt de variables rellevants per a una determinada tasca predictiva. En
particular, ens centrarem en els algoritmes híbrids que combinen mètodes filtre i
embolcall. Aquesta és una àrea d’estudi relativament nova, que ha obtingut bons
resultats en conjunts de dades amb grans dimensions perquè ofereixen un bon
compromís entre velocitat i precisió.

El projecte començarà explicant diversos mètodes filtre i embolcall i seguidament
ensenyarà com diversos autors els han combinat per obtenir nous algoritmes híbrids.
També introduirem un nou algoritme al qual anomenarem BWRR, que utilitza
el popular filtre ReliefF per guiar una cerca cap enrere. La principal novetat
que proposem és recomputar ReliefF en certs punts per guiar millor la cerca.
Addicionalment, introduirem diverses variacions de l’algoritme.

També hem realitzat una extensa experimentació per a provar el nou algoritme.
Primerament, hem treballat amb conjunts de dades sintètiques per esbrinar quins
factors afectaven el rendiment. Seguidament, l’hem comparat amb l’estat de l’art en
diversos conjunts de dades reals.

Paraules clau: selecció de variables, algoritmes híbrids filtre-embolcall, algoritmes
basats en Relief, conjunts de variables de grans dimensions.

3

Resumen

Durante las últimas décadas, muchos sectores empresariales han adoptado las
tecnologías digitales, almacenando toda la información que generan en bases de
datos. Además, con el auge del aprendizaje automático y la ciencia de datos, se
ha vuelto económicamente rentable utilizar estos datos para resolver problemas del
mundo real. Sin embargo, a medida que los conjuntos de datos aumentan de tamaño,
cada vez se vuelve más difícil determinar exactamente qué variables son valiosas para
resolver un problema específico.

Este proyecto estudia el problema de la selección de variables, que intenta seleccionar
el subconjunto de variables relevantes dada una determinada tarea predictiva. En
particular, nos centraremos en los algoritmos híbridos que combinan los métodos
filtro y envoltura. Esta es una área de investigación relativamente reciente, que ha
obtenido buenos resultados en conjuntos de datos de grandes dimensiones porque
ofrecen un buen compromiso entre velocidad y precisión.

El proyecto empezara explicando los métodos filtro y envoltura y, seguidamente,
enseñara como diversos autores los han combinado para formar nuevos algoritmos
híbridos. También introduciremos un nuevo algoritmo al que llamamos BWRR, que
utiliza el popular filtro ReliefF para guiar una búsqueda hacia atrás. La principal
novedad es que se recomputa ReliefF en ciertos puntos para así guiar mejor la
búsqueda. Adicionalmente, introduciremos diversas variaciones del algoritmo.

También hemos realizado una extensa experimentación para probar el nuevo algoritmo.
Primeramente, trabajaremos con conjuntos de datos sintéticos para descubrir que
factores afectan el rendimiento. Seguidamente, lo compararemos con el estado del
arte en diversos conjuntos de datos reales.

Palabras clave: selección de variables, algoritmos híbridos filtro-envoltura, algoritmos
basados en Relief, conjuntos de variables de grandes dimensiones.

4

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Goals . 11
1.3 Document structure . 12

2 Concepts 13
2.1 Feature selection . 13
2.2 Relevance and redundancy . 14
2.3 Families of solutions . 15
2.4 Previous work . 17

3 Filter algorithms 18
3.1 Information-based . 18

3.1.1 Mutual information . 18
3.1.2 Symmetrical Uncertainty . 19
3.1.3 Joint Mutual Information . 19

3.2 Relief-based algorithms . 20
3.2.1 Relief . 20
3.2.2 ReliefF . 21
3.2.3 RReliefF . 22
3.2.4 Iterative RBAs . 23

3.2.4.1 Tuned ReliefF (TuRF) 23
3.2.5 Analysis of Relief mesures . 24

3.2.5.1 Interpretation of Relief metric 24
3.2.5.2 Why is Relief able to detect interactions? 24
3.2.5.3 Do irrelevant features affect the Relief metric 25
3.2.5.4 Selecting a cut-off 26

4 Wrapper algorithms 27
4.1 Sequential wrappers . 27

5 Hybrid algorithms 29
5.1 Two stage approach . 29

5.1.1 iSFSM . 30
5.1.2 MFMW . 30

5.2 Wrapper guided by filter approach 31
5.2.1 BIRS . 32
5.2.2 IWSS . 33

6 Proposed algorithms 34
6.1 BWRR . 34

6.1.1 Theoretical base . 35
6.1.2 Evaluation measure . 36

6.2 BWRRv2 . 37

5

6.3 BWRRv3 . 38
6.4 BWRRv4 . 39
6.5 Complexity . 40

7 Experimental set-up 42
7.1 Experimental phases . 42
7.2 Algorithms . 42
7.3 Real-world experimentation setup . 43

7.3.1 Datasets . 43
7.3.2 Evaluation measure . 44

7.4 Synthetic experimentation setup . 45
7.4.1 Datasets . 45
7.4.2 Dataset factors . 46
7.4.3 Dataset generation . 47
7.4.4 Evaluation measure . 48

8 Experiments discussion 50
8.1 Synthetic experiment . 50
8.2 Real world experiment . 54

8.2.1 Experiments on regular datasets 54
8.2.2 Experiments on high dimensional datasets 56

9 Conclusion 59
9.1 Future work . 60

10 Project Management 61
10.1 Task definition . 61
10.2 Summary of tasks . 63
10.3 Gantt chart . 64
10.4 Risk contingency plan . 65
10.5 Resources . 67
10.6 Methodology and validation . 68
10.7 Budget . 69

10.7.1 Staff costs . 69
10.7.2 Generic costs . 72
10.7.3 Risk control budget . 73
10.7.4 Total budget . 73

10.8 Deviations . 74
10.8.1 Tasks . 74
10.8.2 Budget . 76
10.8.3 Methodology . 76

10.9 Sustainability . 77
10.9.1 Self-assessments . 77
10.9.2 Environmental impact . 78
10.9.3 Economic impact . 78
10.9.4 Social impact . 79

6

11 Technical competences 80

12 Experiment results 82
12.1 Interaction plots . 82
12.2 ANOVA analisys . 87
12.3 Real world experimentation tables . 90
12.4 Real world experimentation boxplots 92

References 95

7

List of Tables
1 Medium-size datasets . 43
2 High-dimensional datasets . 44
3 Statistical comparison using two-tailed Student t-test of BWRRv1

against other state of the art algorithms in regular datasets 54
4 Statistical comparison using two-tailed Student t-test of BWRRv2

against other state of the art algorithms regular datasets 54
5 Accuracy on regular datasets. 55
6 Time on regular datasets. 55
7 Statistical comparison using two-tailed Student t-test of BWRRv2

against other state of the art algorithms in high-dimensional datasets 56
8 Statistical comparison using two-tailed Student t-test of BWRRv3

against other state of the art algorithms high-dimensional datasets . . 56
9 Statistical comparison using two-tailed Student t-test of BWRRv4

against other state of the art algorithms high-dimensional datasets . . 57
10 Accuracy on high-dimensional datasets. 58
11 Times on high-dimensional datasets. 58
12 Tasks summary . 63
13 Salaries summary . 69
14 Tasks distribution summary . 70
15 Staff costs . 71
16 Budget per task . 71
17 Amortization costs . 72
18 Incidental costs . 73
19 Contingency costs . 73
20 Final tasks summary . 74
21 Extra budget summary . 76
22 ANOVA analysis of factors with accuracy as predictor 87
23 ANOVA analysis of factors with score as predictor. 88
24 ANOVA analysis of factors with time as predictor 89
25 Accuracy on high-dimensional datasets. 90
26 Times on high-dimensional datasets. 90
27 Feature subset size on high-dimensional datasets. 91
28 Wrapper evaluations on high-dimensional datasets. 91

8

List of Figures
1 Representation of different types of FS 16
2 Venn diagram of information measures for two variables 18
3 Separability and usability of ReliefF rankings depending on number

of neighbours . 25
4 Separability and usability of ReliefF rankings depending on number

of irrelevant features . 26
5 Representation of two stage hybrid FS 29
6 Multiple-Filter-Multiple-Wrapper diagram 31
7 Iterations where DWSS found relevant features out of 100 different runs 38
8 Relevance and accuracy interaction plot 51
9 Irrelevance and accuracy interaction plot 51
10 Instances and score interaction plot 52
11 Relevance and score interaction plot 52
12 Irrelevance and score interaction plot 52
13 Irrelevance and time interaction plot 53
14 Irrelevance and wrapper count interaction plot 53
15 Gantt chart . 64
16 Final Gantt chart . 75
17 Instances and accuracy interaction plot. 82
18 Relevance and accuracy interaction plot. 82
19 Irrelevance and accuracy interaction plot. 82
20 Redundancy and accuracy interaction plot. 83
21 Noise and accuracy interaction plot. 83
22 Instances and score interaction plot. 83
23 Relevance and score interaction plot. 83
24 Irrelevance and score interaction plot. 84
25 Redundancy and score interaction plot. 84
26 Noise and score interaction plot. 84
27 Instances and time interaction plot. 84
28 Relevance and time interaction plot. 85
29 Irrelevance and time interaction plot. 85
30 Redundancy and time interaction plot. 85
31 Noise and time interaction plot. 85
32 Instances and wrapper count interaction plot. 86
33 Relevance and wrapper count interaction plot. 86
34 Irrelevance and wrapper count interaction plot. 86
35 Redundancy and wrapper count interaction plot. 86
36 Accuracy boxplot on arcene dataset. 92
37 Accuracy boxplot on colon dataset. 92
38 Accuracy boxplot on gisette dataset. 92
39 Accuracy boxplot on glioma dataset. 93
40 Accuracy boxplot on isolet dataset. 93
41 Accuracy boxplot on leukemia dataset. 93
42 Accuracy boxplot on lung discrete dataset. 93

9

43 Accuracy boxplot on madelon dataset. 94
44 Accuracy boxplot on prostate dataset. 94
45 Accuracy boxplot on TOX dataset. 94

10

1 Introduction

1.1 Motivation

For many years, datasets were small enough that feature selection could be seen as
an optional preprocessing step. However, since the recent Big Data explosion, it has
become a must in order to deal with high-dimensional datasets. As stated by Yvan
Saeys, Iñaki Inza and Pedro Larrañaga [1], ”During the last decade, the motivation
for applying feature selection (FS) techniques in bioinformatics has shifted from
being an illustrative example to becoming a real prerequisite for model building”.

The large majority of research done in the field of feature selection has targeted
either filter or wrapper methods individually. However, the investigation into hybrid
filter-wrapper algorithms did not become a prominent area of research until this
last decade. Therefore, we think that there is still potential to explore new ways of
combining both methods.

Of all possible branches of feature selection, we decided to focus our research on hybrid
filter-wrapper algorithms because they offer a good trade-off between computational
speed and performance. They serve as a middle ground between the filter and
wrapper approaches, being faster than wrappers while selecting better subsets than
filters. These characteristics have made hybrid algorithms outperform traditional
feature selection approaches in problems with large feature spaces. For example, as
shown by Nada Almugren and Hala Alshamlan [2], several hybrid algorithms have
become state of the art in different prominent cancer classification problems.

A big focus of this project will be put on the ReliefF filter, this is because it will be
our filter of choice used in our hybrid algorithm. Relief-based algorithms (RBA) are
a family of algorithms that perform well in many different feature selection problems.
However, after studying the published literature, we found that there is a lack of
hybrid algorithms that combine RBAs with sequential wrappers.

1.2 Goals

• Study relevant feature selection literature: Study filter, wrapper and
hybrid filter-wrapper feature selection approaches.

• Implement a new hybrid algorithm: Design a hybrid feature selection
algorithm using an algorithmic combination of both filter and wrapper techniques.

• Analyse the algorithm theoretically: Perform a computational analysis
explaining the time and space complexities.

11

• Design a synthetic benchmark: This will allow us to better control key
variables such as the number of instances, noise or the number of irrelevant
and relevant variables. Moreover, we will be able to determine how each factor
is affecting the performance.

• Synthetic experimentation: Compare the proposed algorithm with the
pure filter and wrapper approaches using synthetic datasets. For the project
to be a success the new algorithm should be faster than wrappers and have
better final subsets than filters.

• Real-world experimentation: Compare the proposed algorithm with several
selected hybrid state-of-the-art algorithms using real-world datasets. These real-
world datasets will mostly include high-dimensional datasets such as microarray
gene data.

• Results analysis: Analyse the results obtained in the experimentation and
discuss whether or not the proposed algorithm improves on the state-of-the-art
algorithms in any aspect.

1.3 Document structure

We will briefly explain how the document is organized:

• Section 2: Introduces the reader to the feature selection problem and explains
the different families of solutions.

• Section 3: Explains more in depth the filter paradigm, with a special focus
on Relief based algorithms.

• Section 4: Briefly describes sequential wrapper methods.

• Section 5: Illustrates different state-of-the-art hybrid algorithms.

• Section 6: We propose a new hybrid algorithm, as well as several different
variations of it.

• Section 7: Detailed description of the experimentation setup. It explains how
the synthetic datasets were made, which factors were considered important
and which evaluation measure is used.

• Section 8: Discussion of the results obtained in the experimentation phase.

• Section 9: Overall project conclusions.

• Section 10: Section dedicated to project management. It includes tasks,
temporal planning, an estimated budget and the sustainability report.

• Section 11: Technical competences of the bachelor’s thesis.

• Section 12: Complete list of tables and figures generated in the experimentation
phase.

12

2 Concepts

This section introduces the reader to the problem of feature selection and explains
the different families of solutions and the current state-of-the-art.

2.1 Feature selection

In machine learning, feature selection (FS) is a process that tries to find a minimum
size subset of features without losing valuable information about the target class. It
does so, in general, by trying to identify and remove redundant or irrelevant features.
Some of the benefits of applying feature selection are the following:

• Removing irrelevant o nearly irrelevant features allows for a better and clearer
understanding of the data. It also helps point out underlying data relations
that may not be obvious at the start.

• Reduces drastically the computational cost of some learning algorithms.

• Improves overall accuracy results. Not always having more information results
in a better overall score. In fact, the removal of irrelevant features has proven
to improve the performance of several classifiers.

• Improves generalization and reduces overfitting.

• Avoid the curse of dimensionality. This term refers to problems that appear
when the dimensionality increases and the data becomes sparse. This sparsity
can be a problem for any algorithm that uses statistical significance. In these
conditions, to obtain reliable results the amount of data needs to increase
exponentially with the dimensionality.

The feature selection problem can also be formally expressed. Having a complete set
F with class label C, Lei Yu and Huan Liu defined the problem as trying to find
the minimum size subset S, S ⊆ F , such that P (C | S) is as close as possible to
P (C | F) [3]. Although it may seem simple at first, it is in fact NP-hard.

Many algorithms, specially filters, do not perform direct feature selection. Instead,
they choose to solve a similar problem called feature weighting. This is considered
a more general problem that tries to determine weight values that approximate the
degree of relevance of each individual feature.

The main difference between both approaches is that feature selection outputs a
subset of features, while feature weighting outputs an array of weights. Despite this
many feature weighting algorithms are used in feature selection problems because
given an array of weights w : [w0, w1, . . . wf] and a cutoff p, we can obtain a feature
subset S by just selecting features that have wi >= p. Alternatively, one can also
obtain a feature subset by sorting the weight vector decreasingly and selecting the k
best features.

13

2.2 Relevance and redundancy

To determine the quality of the final subset it important to define the concept of
relevance. John, Kohavi, and Pfleger distinguished three disjoint categories: strongly
relevant, weakly relevant, and irrelevant [4]. Let F be a full set of features, fi a
feature, C the class attribute and Si = F−{fi}. These categories are defined as
follows:

• Strongly relevant: A feature fi is strongly relevant iff

P (C | fi, Si) 6= P (C | Si)

• Weakly relevant: A feature fi is weakly relevant iff

P (C | fi, Si) = P (C | Si) and

∃ S ′
i ⊆ S such that P (C | fi, S ′

i) 6= P (C | S ′
i)

• Irrelevant: A feature fi is irrelevant iff

∀ S ′
i ⊆ S, P (C | fi, S ′

i) = P (C | S ′
i)

If we want to obtain the optimal subset of features, we should select all strongly
relevant features, some weakly relevant and none of the irrelevant.

The concept of redundancy is harder to define. In its most simple form, two features
are considered redundant if all their values are completely correlated. However, it is
harder to know whether a feature fi is redundant with a set of features S. Lei Yu
and Huan Liu formalized the concept of redundancy using Markov blankets [3].

Markov blanket: Given a feature fi ∈ F , a class C, a subset S ⊂ F, fi /∈ S is a
Markov blanket for fi iff:

P (F−S− {fi}, C | fi, S) = P (F−S− {fi}, C | S)

In simpler terms, fi and S are a Markov blanket if, given S, fi is conditionally
independent of F−S− {fi} and C. This means that S, contains all information that
fi provides about C and all the other features in F .

Redundancy: Given a selected set of features F , a feature fi is redundant from F
iff it is weakly relevant and has a Markov blanket within F .

Moreover, it can be proven theoretically that if we find a Markov blanket of feature
fi in F , we can safely remove fi.

14

2.3 Families of solutions

The traditional way to classify feature selection algorithms is to divide them into
3 subgroups: filter, wrapper and embedded. Additionally, we can also find hybrid
algorithms that algorithmically combine several approaches.

Filter

Filter methods are those that use intrinsic statistical measures of the data to evaluate
features. The main characteristic of filter approaches is that they do not require the
use of a specific learning algorithm and therefore are considered classifier agnostic.
Most filter methods do not perform feature selection, instead, they most often do
feature weighting.

Filter algorithms can also be further subdivided by which type of measure they
use to assess feature relevance [5]. Being the most important ones: information,
distance, consistency, similarity and statistical measures. Another way to classify
filter methods is to consider whether or not they analyze features separately or
not. Univariate algorithms will rank features individually, ignoring possible feature
dependencies, whereas multivariate methods rank multiple features trying to taking
into account feature interactions. The univariate methods are generally much faster,
but they can not identify redundant features or consider feature interactions.

Some of the advantages of filter feature selection, as stated by Sánchez-Maroño N.,
Alonso-Betanzos A. and Tombilla-Sanromán M, are that they are less computationally
expensive, independent of the induction algorithm and normally result in a better
generalization [6]. However, the final subset of features often ends up being large
and the final prediction score tends to be worse.

Wrapper

Wrapper methods use a classifier to assess the quality of feature subsets and try
to find the subset that maximizes the classifier accuracy with the least amount of
features. There are 2n possible subsets, so a brute force wrapper solution involves
checking which of the possibilities yields the best scores. However, this brute force
approach is too computationally taxing for most datasets. Therefore, it is standard
to use metaheuristics algorithms that try to find a good enough subset, although
they do not guaranty an optimal solution.

The major advantage of wrapper methods is that it has been empirically proven that
because subsets are evaluated using a real modeling algorithm, a better accuracy and
a smaller final subset size can be obtained. On the contrary, their major flaw is that
they are computationally expensive and thus see limited use in high-dimensional
datasets. Another thing to keep in mind is that wrapper methods are prone to larger
generalization errors.

15

Embedded

Embedded algorithms aim to combine the feature selection process with the modeling
algorithm’s execution. They do so normally by optimizing two-part objective
functions where a penalty for large feature sets is set in place. Some embedded
algorithms include Lasso, Elastic Net and Random Forests.

Embedded algorithms have better computational complexity than wrapper methods
while still utilizing a classifier. They are also regarded as being more complex than
filter methods.

Figure 1: Representation of different types of FS.

Hybrid algorithms

Hybrid algorithms try to algorithmically combine filter, wrapper and embedded
approaches to obtain better feature selection algorithms. In this project, we will only
discuss filter-wrapper hybrid algorithms, which are those that are a combination of
filter and wrapper approaches. Normally this combination is done in a way that
the new algorithms will combine the best characteristics of both approaches. For
example, some hybrid algorithms employ the two-stage approach where a filter
algorithm is executed on the original feature space to remove some features. The
much more computationally expensive wrapper can now be executed on the reduced
set to better select the final features. This approach is fast because it uses the fast
filter as preliminary screening, while still maintaining good final scores thanks to the
refinement wrapper phase.

Although there is not a formal sub-classification for hybrid algorithms we will
distinguish between two types:

• Two-stage algorithms: They first execute the filter to perform an initial pruning.
Thereafter, the smaller feature space is then fed to the wrapper feature selection
algorithm that gives the final subset.

16

• Filter guided wrappers: They use the ranking produced by the filter to guide
the wrapper search.

Hybrid algorithms have been a way to incorporate wrappers into high-dimensional
datasets. In large feature spaces, the pure wrapper approach becomes computationally
intractable because the number of classifier evaluations at best scales quadratically
with the number of features.

2.4 Previous work

The problem of feature selection has been an open area of research for many years.

Regarding the filter approach, some of the most notable algorithms include: distance-
based such as Relief, ReliefF; information-based such as Information Gain (IG) and
statistical-based like Fisher score (FS). [5]

Research on wrappers has mostly focused on analyzing how different metaheuristics
behave when applied to feature selection. Some of them are Simulated Annealing
(SA), Tabu Search (TS), Particle Swarm Optimization (PSO). There are also some
evolutionary-based algorithms such as Genetic Algorithm (GA) and other nature-
inspired algorithms such as Ant Colony Optimization (ACO). [7]

However, it has not been until the last decade that hybrid filter-wrapper approaches
started to gain traction. A proven way to combine both involves performing the
filter method as a preprocessing step to do an initial reduction of the feature space.
After that, a wrapper method is executed to obtain the final subset. This has proven
to avoid high computational costs while still maintaining good final scores. [2].

An example of this methodology was proposed by Lin Sun et al. They used a hybrid
combination of the distance-based filter ReliefF and an Ant Colony Optimization
(ACO) wrapper approach [8]. The proposed algorithm was named RFACO-GS and
proved to be competitive in Tumor Classification problems.

Several researchers have also focused on algorithms that use the ranking provided by
the filter to better guide the wrapper search. This approach is based on the concept
of incremental ranked usefulness and the first algorithm of its kind was presented by
Ruiz, Riquelme and Aguilar-Ruiz [9]. This is an active area of research and several
algorithms have been proposed based on this approach [10][11].

Another recent line of research involves combining multiple filter or wrapper algorithms
to perform feature selection. Yukyee Leung and Yeungsam Hung introduced the
Multiple-filter-Multiple-Wrapper (MFMW) model [12]. This new approach combined
the results of multiple filters, using the union of ranking lists, and after performing
voting with multiple classifiers in the wrapper phase. With this approach, they
managed to improve the accuracy and robustness of the classification.

17

3 Filter algorithms

This section explains the filter algorithms that are later used in the project. It first
describes information-based filters which are used the most in hybrid algorithms.
Later on, we focus on the ReliefF family which are used in our proposed algorithms.

3.1 Information-based

Information-based algorithms are a particular branch of filters that integrate information
theory in their evaluation method [13]. The base measure of information theory is
the entropy, which is a measurement of the uncertainty of a random variable. For
discrete variable x with mass probability p(x) is defined as:

H(X) = −
n∑

i=1

p(xi) log2(p(xi)) (1)

Similarly the joint entropy of two variables x and y can be expressed as:

H(X,Y) = −
n∑

i=1

n∑
j=1

p(xi, yj) log2(p(xi, yj)) (2)

It is also important to define the conditional entropy between two variables:
H(X | Y) = H(Y)−H(X,Y) (3)

3.1.1 Mutual information

The mutual information (MI) measures how much information of a random variable
is contained by another variable [14]. It is formally defined as:

I(X;Y) = H(X)–H(X |Y) (4)
In feature selection this measurement is normally used to quantify how much
information about the target each feature gives us. After that, the features are
ranked and the k best selected.

Figure 2: Venn diagram of information measures for two variables

18

3.1.2 Symmetrical Uncertainty

The symmetrical uncertainty (SU) is a nonlinear information-based measure [15]. It
can be interpreted as a mutual information normalized to the interval [0, 1]. It is
defined as follows:

SU(X,Y) =
2 · I(X;Y)

H(Y) +H(X)
(5)

This normalization compensates for mutual information’s bias towards features
having a large number of different values.

3.1.3 Joint Mutual Information

The metrics previously introduced all rank features according to how much information
about the target they contain. However, if we were to select the k first features, we
may find that many of the selected features are redundant with others.

Joint mutual information (JMI) was one of the first filter schemes that tried to
balance the relevance-redundancy trade-off [16]. The JMI score of a variable Xk and
target Y considering an already selected subset S is defined by:

JMI(Xk) =
∑
Xj∈S

I(XkXj;Y) =
∑
Xj∈S

[I(Xk;Y |Xj)]

= I(Xk;Y)− 1

|S|
∑
Xj∈S

[I(Xk;Xj)−I(Xk;Xj|Y)]
(6)

Where I(XkXj;Y) is the mutual information between the target and a joined random
variable XkXj and where I(Xk;Y |Xj) is the conditional mutual information (CMI)
which is the mutual information between Xk and Y conditioned to the knowledge of
Xj.

The JMI score of variable Xj can be seen as the sum of MI obtained when pairing
it with each feature already selected. The idea behind this approach is to accept
features that are complementary to the selected subset.

A feature selection framework where the JMI metric is employed is the Joint Mutual
Information Maximisation (JMIM) [17], which is a filter algorithm that uses JMI
combined with a forward greedy approach to select features. In the first iteration
the feature with the highest MI score is added to the selected subset S. After that,
at iteration the features are selected according to this criterion:

JMIM = arg maxXi∈F−S(minXj∈S(I(Xi, Xj;C))) (7)

19

3.2 Relief-based algorithms

Relief-based algorithms (RBA) are instance-based algorithms. They try to estimate
the relevance of attributes according to how well their values distinguish between
the instances that are near each other. In general, the weights are calculated by a
negative update in which the attributes that are different for near instances of the
same class (hits) are penalized, and a positive update that rewards attributes that
can separate near instances from different classes (misses). All algorithms of this
family share these common traits:

• Selecting the near neighbours: All RBAs find near instances from the
randomly selected instance Ri. Some algorithms just select the first k near
instances, while others consider all instances that lay in a determined radius.

• Able to detect feature interactions: All RBAs have shown the capacity
to detect 2-way interactions between features.

• Computational cost: All non-iterative RBAs support an asymptotic complexity
of O(n2 · a). This comes mostly from the computation of the distance matrix.

• Anytime algorithms: They estimate the feature weights by averaging the
results obtained over multiple iterations. However, one can obtain valid results
by stopping it at any time.

3.2.1 Relief

Relief was proposed by Kira in 1992 [18]. It introduced the idea of trying to estimate
the quality of attributes depending on how well their values distinguish between
instances that are near. The original Relief could only be used in binary classification
problems and it had problems in noisy datasets.

Algorithm 1 Relief
Input: N instances; A features; T number of iterations;
Output: weighted array of features

1: W = [0.0] ∗ A
2: for i = 1 to T do
3: randomly select instance Ri

4: find nearest hit H and miss M
5: for a = 1 to A do
6: W [a] = W [a]− diff(a,Ri, H)/T + diff(a,Ri,M)/T
7: end for
8: end for

The core algorithm worked as follows: first, an instance is randomly selected (line 3).
Then the nearest hit (H) which is the closest instance with the same target and the

20

nearest miss (M) which is the closest instance of different class would be selected.
(line 4). Finally, the estimates would be updated (line 6). This process is repeated T
times, in each iteration a new random instance is selected as a pivot.

The diff(A, I1, I2) function is used to calculate the distance between two instances I1,
I2. It is computed differently depending on the type of feature. For nominal features,
it is defined as:

diff(A, I1, I2) =

{
0 value(A, I1) 6= value(A, I2)

1 otherwise
(8)

If the attribute is numerical, a normalized Euclidean distance is used:

diff(A, I1, I2) =
|value(A, I1)− value(A, I2)|

max(A)−min(A)
(9)

It is worth noting that depending on the choice of T , Relief has some randomness
and different executions could yield different results. This randomness comes from
the fact that if T < n, not all instances will be chosen as pivot Ri (line 3). It is
possible to obtain stable results just by making T = M . This variation is often
referred to as Relieved and eliminates the randomness by selecting all instances as
pivot. This makes the asymptotic complexity raise from O(T · n · a) to O(n2 · a).
The T = n assumption is often made in literature when analysing RBA complexity.
Therefore, we will follow the same convention in this document.

3.2.2 ReliefF

Kononenko analysed the base Relief algorithm and proposed several new versions
of the algorithm that introduced several improvements [19]. They also proposed a
general version named ReliefF, which combined the best characteristics of the rest.

ReliefF improved its predecessor in several different ways:

• More robust to noise: Taking the k nearest hits and misses and averaging
the results instead of just taking the nearest, makes ReliefF much more robust
to noise.

• Extension to multiclass problems: The key to extending Relief to multi-
class problems is selecting the k nearest misses from each class (line 6) and
slightly adapting the metric (line 10). To compute the new metric, each near
miss positive update is weighted by the prior probability of its class.

• Extension to missing data: The diff function was extended to cases where
one or both instances contained missing values (Eq 10):

21

diff(A, I1, I2) =

{
1− P (values(A, I2 | class(I1)) I1 unknown
1−

∑#values(A)
V P (V | class(I1)) ∗ P (V | class(I2)) I1, I2 unknown

(10)

Algorithm 2 ReliefF
Input: N instances; A features; K selected neighbours; T number of instances;
Output: weighted array of features

1: W = [0.0] ∗ A
2: for i = 1 to T do
3: randomly select instance Ri

4: find K nearest hits Hj

5: for all class C 6= class(Ri) do
6: select K nearest misses from class C, Mj(C)
7: end for
8: for a = 1 to A do
9: W [a] = W [a]−

∑k
j=1 diff(a,Ri, Hj)/T ∗ k

10: +
∑

C 6=class(Ri
[P (C)
1−P (class(Ri))

∑k
j=1 diff(a,Ri,Mj(C))/T ∗ k

11: end for
12: end for

Ever since ReliefF’s conception, it has been the most used RBA algorithm, making
the original algorithm obsolete. This is mostly because ReliefF is a much more
general algorithm that can be used in more problems than the original, namely with
datasets with noise, missing values or multi-class targets.

3.2.3 RReliefF

One of the major limitations of Relief and ReliefF was their inability to deal with
regression problems. This was in part because prior algorithms used the selection of
near hits (with same class) and misses (with different class). However, the concept
of near misses and hits can not be used when the target is continuous.

Robnik-Ŝikonja, Kononenko propesed Regression ReliefF (RReliefF) [20]. The key
difference is that instead of determining if two instances are a hit or miss, RReliefF
determines if two instances’ target values are different using probabilities.

W [A] =
PdiffC|diffAPdiffA

PdiffC

∗
(1− PdiffC|diffA)PdiffA

1− PdiffC

(11)

In each iteration, the algorithm re-estimates the probabilities PdiffC (line 8), PdiffA

(line 6) and PdiffC|diffA (line 9). After finishing the main loop, the weights are
calculated according to eq. (11). Another novelty introduced by RReliefF is the
function d(i, j) which exponentially decreases the influence of an instance the further
it is.

22

Algorithm 3 RReliefF
Input: N instances; A features; K selected neighbours; T number of iterations;
Output: weighted array of features

1: set all NdC , NdA[A], NdC&dA[A],W [A] to 0;
2: for i = 1 to T do
3: randomly select instance Ri

4: find K nearest instances Ij
5: for j = 1 to K do
6: NdC += diff(τ(·), Ri, Ij) ∗ d(i, j);
7: for a = 1 to A do
8: NdA[a] += diff(a,Ri, Ij) ∗ d(i, j);
9: NdC&dA[a] += diff(τ(·), Ri, Ij) ∗ diff(a,Ri, Ij) ∗ d(i, j)

10: end for
11: end for
12: end for
13: for a = 1 to A do
14: W [a] = (NdC&dA[a]/NdC)− ((NdA[a]−NdC&dA[a])/(T −NdC))
15: end for

3.2.4 Iterative RBAs

The estimates produced by ReliefF are able to detect feature interactions because the
nearest neighbours are computed using the entire vector of features. However, the
ReliefF estimates are known to deteriorate in presence of many irrelevant attributes
because near instances may be in fact far apart after removing these noisy features.

Several approaches have been tried to improve ReliefF estimates in highly irrelevant
feature spaces. The most successful solutions are iterative RBAs which involve
repetitive calls to the baseline ReliefF algorithm.

3.2.4.1 Tuned ReliefF (TuRF)

Moore, Jason H proposed Tuned ReliefF (TuRF) [21], an iterative method that
was able to improve ReliefF estimates in presence of irrelevant attributes. In each
iteration, the ReliefF estimates are computed and the lowest scoring features are
eliminated. In the next iteration, the ReliefF weights are re-estimated with the
reduced subset. After each iteration, the resulting weights are more accurate because
nearest neighbour calculations include less noisy and irrelevant features.

In the original paper, TuRF is only combined with the ReliefF algorithm. However.
it is worth noting that TuRF is just a recursive feature elimination framework that
can be wrapped around other Relief-based algorithm.

23

Algorithm 4 TurF
Input: N learning instances described by A features; T iterations;
Output: weighted array of the remaining features

1: for i = 1 to T do
2: compute ReliefF
3: sort values decreasingly
4: remove worst T/A attributes
5: end for
6: return last ReliefF ranking for each remaining attribute

3.2.5 Analysis of Relief mesures

3.2.5.1 Interpretation of Relief metric

ReliefF by iteratively doing positive and negative updates is, in fact, calculating an
approximation of the following probability:

W [A] = P (diff. value of A | nearest inst. from diff. class)
− P (diff. value of A | nearest inst. from same class)

(12)

When using RReliefF, because the class values continuous, hits and misses can no
longer be defined. Instead, the algorithm tries to estimate eq. (11).

3.2.5.2 Why is Relief able to detect interactions?

Perhaps the defining characteristic of Relief-based algorithms is that they can detect
interactions between features. This ability is in fact due to the nearest condition
in the hits and misses selection. It has been observed experimentally, that when
the number of selected nearest neighbours approaches the number of instances, the
algorithm becomes unable to detect interactions. Kononenko also analysed the
Relief measure without the nearest condition, which by convention is named myopic
Relief, and concluded that it is closely related with the Gini index, a myopic impurity
function that is unable to detect feature interactions [22]. If we eliminate the near
condition in eq. (12), the probability being estimated becomes:

W [A] = P (diff. value of A | different class)
− P (diff. value of A | same class)

(13)

Kononenko showed that by applying several transformations, it is possible to express
the myopic Relief’s probability estimate in terms of the Gini gain.

W ′[A] =
Pequal ∗ Gini Gain

Psamecl ∗ (1− Psamecl)
(14)

24

This direct relation between the myopic Relief weights and the Gini Index allows us
to compare both estimates. The Gini Index is an impurity function that assumes
conditional independence between the attributes. This assumption makes it unable
to detect interactions between attributes.

This fact makes it clear that the near condition must be the key that allows Relief to
take into account feature interactions. An explanation to this is given by Kononenko
[22]. By only considering near instances Relief is estimating the average over local
estimates in smaller parts of the instance space. This allows Relief to detect feature
dependencies that are inappreciable at a global scale and can only be detected by
taking into account locality.

This effect can be easily visualized by computing the separability and usability of
ReliefF’s rankings while changing the number of neighbours. Separability refers
to the difference between the worst-ranked relevant feature and the highest-ranked
irrelevant feature (JRworst − JIbest). Usability is defined by the difference between the
highest ranked important and irrelevant features (JRbest

− JIbest).

In fig 3, we can see how increasing the number of neighbours does in fact decrease the
quality of estimates. This explains why it is often recommended to set the number
of neighbours to 5.

Figure 3: Separability and usability of ReliefF rankings depending on number of
neighbours.

3.2.5.3 Do irrelevant features affect the Relief metric

It is also worth considering whether or not irrelevant and noisy features degrade the
Relief weights. As mentioned before the elimination of the near condition makes

25

Relief unable to detect interactions. A similar thing happens when there is a large
amount of noisy and irrelevant features. In such feature spaces, the selection of
the nearest hits and misses becomes increasingly random. This is because, some
instances may seem close when taking into account all features, but in reality, if we
calculate the distances with only the relevant features, they may be far apart.

To better visualize this effect we performed a small test where the separability
and usability of ReliefF’s rankings were calculated while increasing the number of
irrelevant features. In fig 4, we can clearly see that ReliefF estimates degrade as the
number of irrelevant features increases.

Figure 4: Separability and usability of ReliefF rankings depending on number of
irrelevant features.

3.2.5.4 Selecting a cut-off

For each attribute Relief estimates a relevance score 1 ≥ δ ≥ −1, the greater this
value is the more relevant the algorithm considers it. Nevertheless it is not easy
to select a threshold that can separate relevant from irrelevant features. This is a
common problem for filter algorithms.

Kira, studied possible thresholds τ to cut-off the features [18]. He also proposed
bounds for this threshold, 0 < τ ≤ 1√

αm
where m is the number of iterations and α

the probability of accepting into the final subset an irrelevant feature.

In practice, we normally do not know the probability α for real world datasets. That
is why the upper bound is generally impossible to know. When dealing with real
world datasets, it is more common to select the final subset using an ad-hoc cutoff
based on the computational power available or previous knowledge of the data.

26

4 Wrapper algorithms

In this section, we will briefly explain the wrapper approach. Additionally, we will
focus on sequential wrappers because they will be used later in the project.

Wrapper methods essentially use a learning algorithm as a black box to score
different feature subsets. This score will be obtained using holdout or cross-validation.
Different wrapper algorithms are normally defined by their strategy to generate the
different feature subsets that will be evaluated.

If we have a complete set of n features, optimal feature selection algorithms
often require checking each potential feature subset, resulting in O(2n) number
of evaluations. This is often too great of a limitation and sequential or meta-heuristic
methods are more often used because they require fewer wrapper evaluations. Among
all the different types, we will only go into detail about the sequential wrappers
because they will be used later in this project.

4.1 Sequential wrappers

Sequential algorithms are greedy algorithms that select or remove the feature that
maximizes the classification score at each iteration. Depending on the search strategy
we differentiate between forward and backward algorithms.

In sequential forward selection (SFS) we start with the empty set (S = {∅}). Each
iteration, the feature that maximizes the score when added to the already selected
subset will be permanently selected. (xsel = arg maxx/∈S J(S ∪ x)).

On the other hand in a sequential backward selection (SBS) we will start with the
complete set (S = {X1 . . . XN}). Each iteration we will remove the feature that
when doing so maximizes the score. (xsel = arg maxx∈S J(S \ x)).

The main benefit of the backward approach is that as it starts with the complete set,
the learning algorithm can consider feature interactions. However, this also means
that on average it will be trained with more features, adding extra computational
time. One advantage of the forward direction is that it is much easier to implement
early stopping, this is because at iteration I in SFS the best I features have been
selected while in SBS the I worst have been removed.

In the first iteration, we will need to run n evaluations, in the next n− 1 and so on.
It is easy to check that this results in O(n2) number of wrapper evaluations:

Eval = n+ (n− 1) + · · ·+ 1 =
n∑

k=1

k =
n(n+ 1)

2
= O(n2)

27

Algorithm 5 SFS
Input: N learning instances described by A features; K features to select;
Output: final feature subset

1: S = {∅}
2: for i = 1 to K do
3: for all Xj /∈ S do
4: Jj = J(S ∪Xj)
5: end for
6: Jsel = arg max(Jj)
7: S = S ∪XJsel

8: end for

The main problem of sequential wrapper algorithms is that feature that are selected
into the subset can not be removed later on. This often implies that the algorithm
will often get stuck in a local optimum. To solve this problem we can use the floating
variants of the sequential algorithms. This solution combines forward and backward
approaches.

In sequential floating forward selection (SFFS) after each forward iteration, backward
steps will be used to delete features from the selected subset as long as the objective
function increases. Similarly in sequential floating backward selection (SFBS) after
each backward step, a sequence of forward steps is executed.

The floating solutions often improve the quality of the selected feature set. The main
downfall is the increase in the number of wrapper evaluations to O(n3).

28

5 Hybrid algorithms

In this section we explain some relevant hybrid algorithms that will be later used in
the experimentation. We will distinguish between the two stage approach and the
wrapper guided by filter approach.

5.1 Two stage approach

The most explored way to combine filter and wrapper approaches is to sequentially
execute them one after the other in two different stages. In the first stage, the much
faster filter algorithm is executed with the complete set. After that, a pruning of the
worst weighted features leaves a smaller feature set. In the second stage, the wrapper
algorithm is executed in the reduced search space. This combination is specially
useful in high-dimensional datasets where executing a complete wrapper search is
computationally unfeasible.

The biggest flaw of this approach is that if our filter is not ranking appropriately,
some relevant features might be discarded before reaching the wrapper stage.

Another thing to consider is where to cutoff the filter ranking. It is common to just
select a number of features that will be computationally tractable in the wrapper
stage.

Figure 5: Representation of two stage hybrid FS.

29

Examples of the two stage approach include a PMI-based filter followed by a heuristic
Firefly Algorithm search [23]. Another combination was proposed by Ding et al, who
used Information Gain followed by a SFFS wrapper [24].

5.1.1 iSFSM

iSFSM is a more complex two-stage hybrid algorithm proposed by Hui-Huang Hsu
et al [25]. In the first stage, candidate features are selected from the original feature
set using the F-Score and Information Gain filters. These are both computationally
efficient filters that excel at detecting redundant and irrelevant features respectively.

The main novelty of iSFSM is the way it selects the candidate set. After executing
both filters, the top k best features from each ranking will be kept. We will name
them Xfs and Xig. After that each feature each separated into one of these sets:

• Xfs ∩Xig: Features that are in the k best for both filters. This set contains
the most promising features.

• Xfs ⊕Xig: Features that appear in the k best for only one filter.

• ¬Xfs∩¬Xig: Features that are not in the best k for both filters. These features
will be discarded.

The filter step reduces the search region from the whole feature set to the union set
of the two filters. Moreover, instead of starting the search from the empty set, it
preselects all features in the intersection set. These reductions in the potential search
space, result in much faster execution times when compared with the traditional
wrappers. After, we move on to wrapper stage to fine tune the result. In this step,
SBS is executed on Xfs ∩Xig to remove features that are not necessary. After that,
it runs a SFS that adds features from Xfs ⊕Xig if they improve the result. This
step is repeated iteratively until the test accuracy is not improved anymore.

5.1.2 MFMW

The main downfall of two-stage algorithms comes from the fact that some relevant
features never reach the wrapper stage. Moreover, depending on the wrapper used
different final subsets will be selected. To deal with this problem Yukyee Leung
and Yeungsam Hung introduced the Multiple-Filter-Multiple-Wrapper (MFMW)
approach [12].

Different filters use vastly different measures to assess feature relevance. This means
that if we use a single filter model, it is possible for a relevant feature to be deemed
irrelevant because our filter measurement does not capture its value properly. To
minimize this, in the first stage, multiple filters are used to ensure no relevant feature

30

is not selected. For each filter, the first k features are selected, then the union of
feature sets moves on to the wrapper stage.

Figure 6: Multiple-Filter-Multiple-Wrapper diagram. [12]

Similarly, in the wrapper stage, multiple classifiers are used. It is not uncommon for
different classifiers to predict different class labels for a given sample. In those cases,
there is a need to implement a voting scheme to resolve conflict. In the original
paper, majority voting was used.

5.2 Wrapper guided by filter approach

Wrapper search methods often require a quadratic number of evaluations, this is
often too computationally expensive for larger datasets. A way to circumvent this
problem is to use the rankings of a filter algorithm to guide the wrapper search.
In such approaches, the much faster filter is executed first, after that, features are
traversed by the wrapper algorithm from the best ranked feature to the worst. In
each iteration, we use the concept of incremental usefulness to determine if the new
feature is useful.

Definition of incremental usefulness: Given a dataset with X features and a
learning algorithm L. A new feature xi is said to be incrementally useful if scores
obtain by L on the set X ∪Xi are significantly better than those obtained on X.

Hybrid algorithms that follow this approach have the following common traits:

• O(n) number of evaluations: By traversing the features using the ranking,
we only pass through each feature once, thus reducing the complexity from
quadratic to linear.

• Significant improvement testing: To evaluate each subset k-fold cross-
validation is performed. To determine if a subset is better than another several
approaches can be followed. We could simply check if the mean of folds is
better or we could perform some form of statistical testing.

• Use of a filter that ranks features: To guide the wrapper search we need
a filter that ranks features.

31

5.2.1 BIRS

Ruiz et al. introduced the best incremental ranked subset (BIRS) [9]. This paper is
the first to introduce the concept of a hybrid algorithm where the filter ranking is
used to guide the wrapper search.

The algorithm starts by ranking all features using the symmetrical uncertainty (SU)
filter (line 3). After that, the weights are ordered decreasingly. Then, the best score is
set to zero and the selected set S initialized with the empty set. After, the algorithm
loops through all features following the filter ranking. Each iteration, a feature is
temporally added to the selected subset (line 9) and the classification score of the
newly generated subset is obtained (line 10. If the new subset is significantly better
than the current, the feature is permanently added and the best score is updated.
This process is repeated for each feature until it reaches the last ranked one.

Another crucial aspect to consider is how to determine whether or not the subset
with the newly added feature significantly improves the last subset (line 11). To
determine this, a five-fold cross-validation is performed to estimate the classification
accuracy for a given set of features. After that, a Student’s paired two-tailed t-test
is used to determine if the improvements are statistically significant. If the resultant
p-value is under 0.1 the feature is accepted.

Algorithm 6 BIRS
Input: N instances; A features; class C; Jf filter scorer; Jw wrapper scorer
Output: final feature subset

1: W = [0.0] ∗ A
2: for i = 1 to A do
3: W [i] = Jf (Ai, C)
4: end for
5: order W decreasingly
6: bestScore = 0
7: S = ∅
8: for i = 1 to A do
9: Saux = S ∪ {AWi

}
10: score = Jw(C, Saux)
11: if score . bestScore then
12: bestScore = score
13: S = Saux

14: end if
15: end for

* We will only include BIRS pseudocode because it constitutes the baseline hybrid
wrapper guided by filter algorithm. We will also examine other similar algorithms,
for them, we will just discuss the key changes they introduced.

32

5.2.2 IWSS

Bermejo et al. [10] experimentally analysed different relevance criteria for Incremental-
wrapper FSS, including the paired t-test proposed in the BIRS algorithm. The results
obtained suggested that the statistical measure used in BIRS was prone to overfitting.
They also suggested an alternative relevance criteria named MinFoldBetter, which
considers a subset better if its mean accuracy over a 5-fold cross-validation is better
and improves in at least k out of the 5 folds. This k is a parameter of the algorithm
and is normally set to 2 or 3.

With this new relevance criteria, they later proposed the Incremental Wrapper Subset
Selection (IWSS), which follows the wrapper guided by filter search pattern but with
the new improved relevance criteria.

Bermejo et al. also proposed some further improvements to the baseline IWSS
algorithm. To reduce the number of wrapper evaluations they used early stopping.
The termination condition is dictated by a new threshold parameter τ ∈ (0, 1].
Initially, they suggested exploring only the first N ∗ τ features before stopping.
However, they later proposed to change to a dynamic stopping point. In this second
approach, which was named IWSSs, each time a new feature is accepted into the
selected subset, the stopping point is moved further away.

Another novelty introduced in the paper is IWSS with replacement (IWSSr). This
approach, in similar fashion to the sequential floating algorithms allows to remove
features that had already been added to the selected subset. To do so, at each
iteration, the algorithm not only is allowed to accept a feature, but also to swap it by
any other feature in the selected subset. The aim of this approach is to obtain more
compact subsets. However, the introduced operation raises the number of wrapper
evaluations to quadratic.

33

6 Proposed algorithms

In this section, we will propose several algorithms that are inspired by iterative RBAs
and hybrid algorithms that use the filter ranking to guide the wrapper.

The main weakness of RBAs is that their estimates worsen in feature spaces with
many irrelevant features. Iterative based RBAs, like TuRF, partially solve this
problem. However, they still use a still not reliable ReliefF ranking to remove
features in early iterations.

Most hybrid algorithms we find in the literature start from the empty set and perform
a forward search. A weakness of this approach is that in early iterations, most features
are found relevant, being the most obvious case the first iteration, where the best
ranked feature is automatically accepted. Another downfall of the forward approach
is that the learning algorithm is trained with small subsets, thus feature interaction
is not being taken into account when testing if a feature is relevant.

Our proposed new algorithm, will try to solve both problems discussed above.

6.1 BWRR

We propose Backward Wrapper guided by ReliefF with Rerank (BWRR), a novel
wrapper guided by filter hybrid algorithm. These are its defining characteristics:

• Backward search: Instead of the traditional forward search, we will perform
a backward search starting from the complete set of features.

• RBA filter: We will use ReliefF instead of the traditionally used information-
based filters to guide the search. RBAs have proven to be complete algorithms
that perform well even in high-dimensions, however, we have seen a lack of use
in combination with sequential wrappers.

• Re-ranking: Each time the learning algorithms deletes a feature from the
selected set we will perform a re-rank. By deleting features that the learning
algorithm considers irrelevant and recomputing ReliefF in a less noisy feature
space, its estimates should improve, better guiding the wrapper search in the
next iteration.

BWRR starts by computing the RBA estimates of the complete feature space and
ordering the attributes increasingly. (line 1). After that, the wrapper score of the
complete dataset is computed (line 4). Following that we start the iterative process.
In each iteration, the feature with the worst filter score is temporally deleted from
the subset (line 12) and the new subset is evaluated (line 13). If the new score has
decreased significantly, the feature we eliminated was in fact useful, otherwise, we
can permanently delete it from the subset. In this case, we recompute ReliefF with
the reduced feature space to better guide the wrapper search in the next iteration
(line 19).

34

Algorithm 7 BWRRv1
Input: N instances; A features; Jw wrapper subset evaluator
Output: final feature subset

1: W = RBA()
2: order W increasingly
3: S = {A1, A2, . . . , AN}
4: bestScore = Jw(S)
5: for i = 1 to A do
6: Saux = S \ {Awi

}
7: score = Jw(Saux)
8: if not score / bestScore then
9: bestScore = score

10: S = Saux

11: W = RBA()
12: end if
13: end for

6.1.1 Theoretical base

The algorithm is based on the concept of incremental ranked usefulness, in which
a feature is added to the selected subset if L(X ∪ xi) . L(X). This same concept
can be slightly modified to better suit a backward search approach. In this case a
feature xi is considered relevant when L(X \ xi) / L(X).

We can distinguish several situations depending on the relevance of the deleted
feature at each iteration:

• xi is relevant: When removing a relevant xi from X. The overall score of the
new subset X \ xi should be lower than the one of set X. This is because xi is
relevant and therefore the subset X should contain more information about
the class than X \ xi.

• xi irrelevant: If the removed feature xi is completely irrelevant, then set X \ xi

has the same meaningful information as X. Moreover there are several learning
algorithms, like k nearest neighbours, that degrade its results in presence of
irrelevant features. This means that when removing an irrelevant feature, it is
not strange for the score to actually improve.

• xi is redundant: Similarly, if we remove a redundant feature xi, as xi contains
information already present in X \xi, the overall score of the new subset should
be more or less the same as that of X.

Benefits

Our proposed elimination mechanism is a much safer option than regular iterative
RBAs because it is a learning algorithm that has the final say in whether a feature
is useful to solve the problem.

35

Another important advantage is that by following a backward search, the learning
algorithm will be able to take into account all possible feature interactions. A known
problem of the forward approach is that as we start with the empty subset, the
interactions between features are mostly not taken into account. This is specially
true in early iterations where the selected subset still has a small number of features.

Disadvantages:

The main disadvantage of following a backward sequential approach is the increased
computation time. Although in both hybrid search directions the number of subset
evaluations is the same, in practice, because the backward approach starts with the
full set, the subsets to be evaluated in each iteration tend to be larger than those
of the forward approach. This limitation makes the execution times a bit worse,
specially if the wrapper evaluation is performed with a learning algorithm that does
not scale well with the number of features.

Another thing that impacts the performance negatively is the impossibility to adopt
effective early stopping mechanisms. This is because it starts by looking at the worst
ranked features first, most of these attributes will be eliminated and the relevant
features will usually not be explored until the lasts iterations.

6.1.2 Evaluation measure

It is also important to define how we will determine if a subset is significantly worse
than another. In this version a five-fold cross-validation will be performed to estimate
the classification accuracy for a given set of features. However, finding that the
mean of the five-fold cv has lowered does not automatically mean that the feature
is relevant. To obtain reliable results, we need to perform some form significance
analysis to determine if the result is significantly worse. To do so we have considered
several options:

• Using an approach similar to BIRS in which a Student’s paired two-tailed
t-test is used.

• Using an approach similar to IWSS in which the means of 5 fold-cross validation
are used with the added condition of needing k subsets being better. In our
case this last condition is changed to k subsets being worse. Following the
work done in IWSS, a k of 3 will be used.

• Using the means of the 5 fold-cross validation paired with the condition that
the new subset has to be k% worse to be considered significantly worse. In
this case a k of 1% will be used.

After performing several tests and following the the studies conducted by Ruiz, R.,
Riquelme, J., and Aguilar-Ruiz, J. [10], we conclude that the second works best for
our algorithm. A subset will be considered significantly worse if the mean of 5-fold
cv is lower and at least 3 folds have lower results.

36

6.2 BWRRv2

We also present a second version, which we will name BWRRv2, that has a slight
modification that will help speed up computational times in datasets with a large
number of irrelevant attributes. The main computational burden in such datasets
comes from the fact that BWRR recomputes ReliefF each time it finds a feature to
be irrelevant. Although as shown in section 6.5, the time complexity is dominated
by the wrapper, performing up to a ReliefF evaluations of cost O(n2 · a) is still quite
penalising.

Moreover, in large features spaces, removing an irrelevant attribute will not have
a large effect on the distribution of the nearest neighbours. This means that after
deleting an irrelevant feature in one iteration, the ReliefF estimates will most likely
remain quite close to the ones we already had. Therefore, we can afford to spend
several iterations without recomputing without the wrapper search being significantly
affected.

To ease this computational burden and extend the algorithm to datasets with a large
number of irrelevant features we decided to change the re-ranking condition. In the
new BWRRv2 algorithm, we will only recalculate ReliefF estimates when the wrapper
search finds a relevant feature. We only recompute in this case because finding a
relevant feature might be an indication that the ReliefF ranking has degraded.

Algorithm 8 BWRRv2
Input: N instances; A features; Jw wrapper subset evaluator
Output: final feature subset

1: W = RBA()
2: order W increasingly
3: S = {A1, A2, . . . , AN}
4: bestScore = Jw(S)
5: for i = 1 to A do
6: Saux = S \ {Awi

}
7: score = Jw(Saux)
8: if score / bestScore then
9: W = RBA()

10: else
11: bestScore = score
12: S = Saux

13: end if
14: end for

The main benefit of this new version is that it will reduce the execution times without
severely impacting the quality of the resulting set.

37

6.3 BWRRv3

We also present two variations that will cater towards high-dimensional datasets.
In such problems, the biggest performance bottleneck comes from the fact that we
are performing a backward search. As we start with a complete set of attributes,
in the first wrapper iterations the learning algorithm is being trained with a very
large number of features. This process takes time because the computational time of
training most learning algorithms scales with the number of attributes.

The key to improving efficiency can be found when analysing in which iterations the
regular BWRRv1 is most likely to find relevant attributes. We tested with several
synthetic problems and we found that it mostly finds the relevant features in the last
iterations. This is because as we recompute ReliefF, the new estimates keep being
improved, which better guides the search and leaves the relevant attributes the last.

Figure 7: Iterations where the algorithm found relevant features out of 100 different
runs. [Compiled by the author]

As the algorithm is not likely to find relevant features in the first iterations, it is
reasonable to do an early pruning of features instead of running time consuming
iterations that are not likely to find relevant features.

We propose BWRRv3, an algorithm with two stages. In the first stage, a fast filter
like the mutual information will be performed, after which the k best features will
be selected. In the second stage, we will perform BWRRv2 with the pruned subset.
The main benefit of removing some features in the early stage is that now in the first
iterations of the BWRRv2 wrapper, the learning algorithms will be trained with fewer
features, thus performing much faster. This new algorithm combines the two types
of hybrid algorithm. It is a two stage approach in which in the second stage instead
of running a regular wrapper we run a hybrid wrapper guided by filter algorithm.

38

6.4 BWRRv4

Our last variation, which we will name BWRRv4, will also be focused on high-
dimensional datasets. The main novelty introduced in this version is that we will
be treating features in blocks of size b. Each iteration, the worse b features will be
temporally deleted, thereafter, we will test the accuracy of the new subset. Next, we
will perform significance testing which can lead to two cases:

• The new subset has not significantly lower results: In this case, we will
just remove all b features permanently.

• The new subset has significantly lower results: In this case, we can
assume that at least one of the b features had to be relevant for the problem.
To detect which features are relevant, we will return to the previously used
approach of deleting features one by one. By doing so, we will be able to detect
which of the b features are valuable and keep them, and which of them were
irrelevant and permanently delete them.

Algorithm 9 BWRRv4
Input: N instances; A features; Jw wrapper subset evaluator
Output: final feature subset

1: W = RBA()
2: order W increasingly
3: S = {A1, A2, . . . , AN}
4: bestScore = Jw(S)
5: for i = 1 to A do
6: B = {worst b ranked features}
7: Saux = S −B
8: score = Jw(Saux)
9: if score / bestScore then

10: # Some feature was relevant
11: for fb in B do
12: Sinner = S − \{fb}
13: scoreInner = Jw(Sinner)
14: if not score / bestScore then
15: bestScore = scoreInner
16: S = Sinner

17: end if
18: end for
19: W = RBA()
20: else
21: # All features were irrelevant
22: bestScore = score
23: S = Saux

24: end if
25: end for

39

This approach reduces computational time because as seen in fig. 7, early iterations
are very likely to not contain relevant features. This means that we can assess if a
group of iterations contains only irrelevant features by performing one evaluation
instead of b.

6.5 Complexity

In this section we will discuss the complexity of the proposed algorithm, both time
and space complexities will be analysed. Before starting, it is important to understand
that as all hybrid methods it is composed by a filter and wrapper. We will refer
to the complexity of the filter as F and the complexity of the wrapper as W . As
nomenclature we will use n as the number rows and a as the number of features.

In our case, the filter is ReliefF which is a RBA with complexity O(n2 · a). However,
we will not define a fixed wrapper learning algorithm. This is common practice in
both wrapper and hybrid approaches where the learning algorithm is seen as a black
box and its choice is left to the user.

BWRRv1

The main advantage of the proposed hybrid approach is that it performs a linear
number of wrapper evaluations with respect to the number of attributes (O(a ·W)).
The number of filter evaluations will depend on the number of selected features.
In the worst case, at each iteration, the deleted feature will not be useful and
therefore we will perform up to a re-evaluations (O(a · (n2 · a))). After each re-
evaluation it is also necessary to order the resulting attribute weights, this can
be done in O(a log a). In total the time complexity related to filter evaluations is
O(a · ((n2 · a) + a log a)) = O(a · (n2 · a)).

Taking all of this into account we reach the final time complexity of the algorithm:

O(a · (W + F)) = O(a · (W + n2 · a)) = O(a ·max(W, n2 · a))

Although this is the worst case complexity, for most databases the number of filter
reranks will smaller. In fact, as we only rerank when we find an irrelevant feature,
the actual number of filter evaluations should be close to the number of irrelevant
attributes I.

O(a ·W + I · F) = O(max(a ·W, I · n2 · a)

It is also worth noting that for most complex complex learning algorithmsW >> n2·a.
This means that in most cases the real time complexity of the algorithm will be
O(aW).

The space complexity is mostly defined by the computation of nearest neighbours
inside ReliefF. This computation has a spacial cost of O(n · a).

40

BWRRv2

The only meaningful difference that BWRRv2 introduces is performing filter reranks
only when we find a relevant feature. In this case, although the worst case complexity
remains the same, the number of filter evaluations should be closer to the number of
relevant attributes R.

O(a ·W +R · F) = O(max(a ·W, R · n2 · a)

BWRRv3

BWRRv3 is a two stage algorithm, therefore to analyse the complexity we will analyse
stage 1 (S1) and stage 2 (S2) separately.

In the first stage, we will execute the mutual information filter. If we have a
continuous variable, the mass probability can not be defined, and therefore the
mutual information weights are computed using several estimators [26].

• 3KL-Estimation: The computational complexity is O(n · logn).

• KSG-Estimation: The computational complexity is O(n · logn).

Only the first k ranked features will move on to the wrapper space. After that, we
just execute BWRRv2, leaving us with a complexity S2 of:

O(k · (W + F)) = O(k · (W + n2 · a)) = O(k ·max(W, n2 · a))

The final complexity of the algorithm is just O(S1 + S2)

BWRRv4

In BWRRv4 we test subsets by removing groups of b features at a time. If the new
subset decreases the scores significantly we return to removing one feature at a time
to determine which features were in fact useful.

In the worst case, where after removing a group of b features the new subset decreases,
the number of wrapper evaluations can increase slightly. The new complexity moves
to:

O((a+ a/b) ·W + a · F) = O(max((a+ a/b) ·W, n2 · a2)

However, we argue that on average the number of wrapper evaluations should decrease
because we can assess if a group of iterations contains only irrelevant features by
performing one evaluation instead of b.

41

7 Experimental set-up

In this section we will explain the experimentation set-up. We will describe the
selected datasets, the evaluation measures and the relevant factors.

7.1 Experimental phases

The experimentation part will be divided into 2 stages:

Phase 1: Testing on synthetic datasets

First of all to get a grasp of how the proposed algorithms are performing we will
test them in synthetic datasets. In these, we will be able to control key factors that
will help us understand how the algorithm is working. Each dataset will be used to
analyse the performance of the algorithm at solving different types of problems.

This phase will be used to test the different variations of the proposed algorithm.
However, we will not be doing direct comparisons with other state-of-the-art hybrid
algorithms. Instead, we will be comparing the performance of our algorithm against
a pure filter and a pure wrapper approach.

Phase 2: Testing on real world data

In the second phase we will be testing the algorithm on real-world datasets. This step
is necessary because it is always important to see how the algorithm fares against
other state-of-the-art algorithms in a real-world environment.

This phase can also be subdivided depending on the type of dataset we will use.
We will be working on regular datasets and high dimensional datasets. In the
experimentation phase, we will mostly focus on high-dimensional datasets because it
is where hybrid solutions are most effective.

7.2 Algorithms

In the experimentation part, we will use the package ReBATE [27], which implements
many RBA algorithms. We will also be using some base utilities from the scikit
package [28]. I have implemented the majority of algorithms in Python based on the
pseudo-codes presented in the original papers. They have also been adapted to scikit,
allowing users to execute regular scikit feature selection pipelines in combination
with the implemented algorithms.

The majority of algorithms are parameter-free. We will fix ReliefF number of
estimates to 5 as recommended by Kononenko and we will use the Relieved version.

42

The only exception will be the iSFSM algorithm in which for computational reasons
I will fix the SubsetSize parameter to 100.

The two initial versions of our algorithm are parameter-free. For BWRRv3 we will
be setting the cuttof parameter to 500, this means that at most 500 features will
move to the second stage. For BWRRv4 we will also fix the blockSize to 50.

7.3 Real-world experimentation setup

7.3.1 Datasets

To perform experimentation we will need some data to execute the feature selection
methods. We will select our datasets regardless if it is a regression or classification
tasks as the proposed algorithm can deal with both. However, we will impose the
following characteristics to our datasets:

• Number of features: There need to be enough features to perform feature
selection. We will be using medium sized datasets between 10− 100 features
and larger datasets with 500+ features.

• No missing data: Although RBAs can work with missing data the learning
algorithms we will use can’t. To avoid having to do data imputation and
adding extra uncertainty to our dataset we will only select complete datasets.

We obtained datasets from UC Irvine Machine Learning Repository [29] and Arizona
State University feature selection datasets [30].

Regular datasets

For each dataset, we will show the instances, features, classes, types and topics.
Moreover, we will also include the source where we found it.

Dataset Instances Features Classes Type Topic Source

breast-cancer 569 32 2 Continuous,
binary Biological 1

ionosphere 351 34 2 Continuous,
binary Physical 1

sonar 208 60 2 Continuous,
binary Physical 1

parkinsons 197 23 2 Continuous,
binary Biological 1

wine 178 13 3 Continuous,
multi-class Physical 1

Table 1: Medium-size datasets datasets.

43

High-dimensional

In the last phase, we will need high-dimensional datasets to compare the hybrid
feature selection algorithms. There are several areas of research that produce datasets
with such large feature spaces. The main candidates are text datasets, image datasets
and microarray datasets. We finally decided to use the latter because they are the
most used in the relevant hybrid FS literature.

We will not go deeper into explaining each dataset separately. In summary, all of
them are microarray datasets in which each feature represents a determined gene,
each instance is then a set of genomics information of a patient. Feature selection
is specially useful in this type of datasets because it tries to find which genes are
responsible for the development of certain illnesses.

On a more technical note, these problems are hard because the data is sparse, being
the relevant subset orders of magnitude smaller than the irrelevant. Moreover, the
number of instances is also much smaller than the number of features. This can be a
problem because it is easy to overfit.

Dataset Instances Features Classes Type Topic Source

colon 62 2000 2 Discrete,
binary Biological 2

GLIOMA 50 4434 4 Continuous,
multi-class Biological 2

leukemia 72 7070 2 Discrete,
binary Biological 2

lung_discrete 73 325 7 Discrete,
multi-class Biological 2

Prostate_GE 102 5966 2 Continuous,
Binary Biological 2

TOX_171 171 5748 4 Continuous,
multi-class Biological 2

Table 2: High-dimensional datasets.

Additionally we will run the algorithms on NIPS 2003 Feature Selection Challenge
datasets [31]. These are synthetic datasets that were specially designed and are
normally used as feature selection benchmarks.

7.3.2 Evaluation measure

In real-world datasets, we do not know for a fact which features are relevant and
irrelevant. Therefore, to evaluate the selected subset we will use the accuracy if it is

44

a classification problem or the mean squared error otherwise.

Accuracy =
TP + TN

TP + TN + FP + FN
MSE =

1

N

N∑
i=1

(yi − ŷi)
2 (15)

It is worth noting that several other measurements like AUC, precision or f1-score
could be used. We opted for the traditional accuracy metric because is by far the
most used in the literature.

We will also consider important the size of the selected subset. In cases where two
FS algorithms end up with similar scores, the one that resulted in the smaller set is
normally preferred.

7.4 Synthetic experimentation setup

7.4.1 Datasets

Dataset 1 - Parity

The first synthetic problem that we will analyse is the classic parity problem. All
the variables of this dataset, including the target, will be binary {0, 1}. The target
value is a function of whether or not the number of variables that contain a 1 is even.
More formally we can describe it has:

target(X) =

{
0 if

∑
xi∈X xi even

1 if
∑

xi∈X xi odd
(16)

Dataset 2 - Majority

Majority is a synthetic dataset that contains only binary variables {0, 1}. If there is
a majority of ones among the relevant variables, the class will be a 1. Otherwise, it
will be a 0. More formally we can describe it has:

target(X) =

{
0 if majority of zeros
1 if majority of ones

(17)

In general this classification task is a bit easier than the Parity problem.

Dataset 3 - Linear regression

In this particular setting, we want to analyse how the algorithm works in a linear
regression problem. The dataset is comprised of features with continuous values

45

between 0 and 1. [0, 1]. The target value is assigned by assigning a coefficient ωi to
each variable and adding all their values.

target(X) =
∑
xi∈X

ωi · xi

All left to do is define the coefficients ωi of each feature. Note that the larger abs(ωi)
is the more the feature will impact the target value. Therefore those features with
higher abs(ω) will be considered more relevant.

All that it is left to do is to decide how we will assign the values of these coefficients.
There are several linear solutions available, we will choose ω = [1,−1, 2,−2 . . .].
Expressing the target in a more formally way we get the following formula:

target(X) =

|X|∑
i=1

⌈
i

2

⌉
· (−1)i+1 · xi (18)

7.4.2 Dataset factors

One of the advantages of synthetic datasets is that we can modify some key parameters
to see how the algorithms perform in several controlled situations.

• Number of relevant (r): This is the number of variables that are relevant
for the target. For each dataset we will try with values: [4, 12, 32]

• Number of irrelevant: (i) This is the number of variables that were not used
to compute the target. For each dataset, we will try with values: [0.5, 2.0, 4.0]∗r.
In case the resulting number is is decimal we will take the ceiling of it.

• Number of redundant: (r′) Variables that are in the same equivalence
class as one of the relevant variables. Therefore, they do not give us extra
information. For each dataset, we will try with values: [0.0, 0.25, 0.5] ∗ r.

• Number of instances: We will consider several different values for the
number of instances of the training dataset: [500, 1000, 5000].

• Noise: We will only study the effects of adding noise in the two regression
datasets. We will be adding [0%, 2.5%, 5.0%] of noise.

• Number of features: The number of features is not really a parameter of
the dataset, just the sum of r, i and r′.

For all the relevant factors we decided to only choose 3 levels because is the maximum
we can afford with our current computation capabilities. To design the experiments
we chose a full factorial design. For the parity and majority datasets, we will have a
34 full factorial and for the regression problems a 35 design. For each combination, we
will be executing 4 feature selection algorithms. In total we will need 4 ∗ (2 ∗ 34+35)
different executions.

46

7.4.3 Dataset generation

To generate each of the datasets we will implement a function of the form
f(instances, r, i, r′, noise)− > dataset. This function will take as input the instances,
noise and number of relevant, irrelevant and redundant features and output a dataset
ready to be used as a benchmark. This function will also contain other subroutines
that will be needed to prepare the final dataset:

• Value generator: This will be a function that takes either a set of values or
a maximum and minimum in case of continuous values.

• Target calculator: To compute the target we will use eq 16 for Parity, eq 17
for Majority and eq 18 for Linear. After that, we will add noise to it if needed.

• Redundant feature generator: To add redundant features we first need
to know which are the relevant ones. After that, we will generate redundant
features out of the relevant ones.

• Label generator: To be able to compute the score it is a must to be able to
identify with features are relevant, irrelevant and redundant. Moreover there is
also the need to know how to relate redundant variables to their correspondent
relevant variables. This will be needed to establish equivalence classes. To
correctly identify the features we will use the following nomenclature.

– ith relevant feature: We will name it rel-i
– ith irrelevant feature: We will name it irr-i
– ith redundant feature: We will name it red-i_j being j a sort of foreign

key that links red-i with rel-j.

• Feature shuffler: For extra safety, we will shuffle the columns of the dataset.

Combining this together we can establish a baseline for the implementation of dataset
generators. Following all these steps we implement this pseudocode:

Algorithm 10 Synthetic dataset generator
Input: r relevant, i irrelevant, r′ redundant, I instances, n noise
Output: final synthetic dataset D

1: for i = 1 to I do
2: for k to r + i do
3: D[i][k] = Generate random value.
4: end for
5: end for
6: Compute y by using the relevant variables.
7: Add noise to y
8: Generate r′ redundant features from the relevant variables.
9: D = Feature shuffle(D)

10: return D

47

Note that of all these steps the only ones that are dataset specific are the value
generation (line 3) and the target calculations (line 8). This means that to generate
each dataset we will only need to provide a value generator that will depend on the
possible set of values for each problem and a way to calculate the target. All the
other steps are the same for all datasets and thus can be left unchanged.

7.4.4 Evaluation measure

The biggest advantage of analysing feature selection algorithms in synthetic datasets
is that we know which features are relevant XR, irrelevant XI and redundant
XR′ . This means that from the total set of features X, we can partition it into
X = XR ∪ XI ∪ XR′ . This extra knowledge allows us to better measure the quality
of a resulting subset S. In synthetic datasets we will use as a metric the score
mentioned by L. C. Molina, L. Belanche and A. Nebot [32]. The informal ideal
behind the construction of this metric is to penalize the following cases:

1. There are relevant features lacking in A (the solution is incomplete).

2. There are more than enough relevant features in A (the solution is redundant).

3. There are some irrelevant features in A (the solution is incorrect).

Moreover using α = [αR, αI , αR′]; αT ≥ 0,
∑

αT = 1; we can choose how much each
situation is penalized.

To formally define the score it separates features into equivalence classes, where in
each class all elements are redundant to each other. Then it defines the equivalence
relation between features xi ∼ xj ⇐⇒ xi and xj represent the same information. A∼

is then defined as the quotient set defined by ∼.

I = 1− |AI |
|XI |

(19)

R =
|A∼

R|
|XR|

, where A∼
R = (AR ∪XR)

∼ (20)

The redundancy term is more complex. We introduce the following notation: A∼
R]

X∼
R = {[xi] ∈ X∼

R |∃[xj] ∈ A∼
R : [xj] ⊇ [xi]}. And also a function that receives as

input a quotient set F (Q) =
∑

|x|∈Q(|x| − 1)

R′ =

{
0 F (A∼

R]X∼
R)

1
|XR′ |

(
1− F (A∼

R)

F (A∼
R]X∼

R)

)
otherwise

(21)

Finally the final score of a selected subset A can be defined by the relevance,
irrelevance and redundancy terms multiplied by their respective weights.

S(A) = αRR + αII + αR′R′ (22)

48

The last thing to consider are the values of the weights α. This is important because
they determine the importance of the relevance, irrelevance and redundancy terms.
The simplest way to set the values would be to give each term the same relevance.
However, this is often not very practical because in practice we tend to value some
more than others. For example:

• It is considered better to add an irrelevant variable than to miss a relevant one.
αR

|XR|
>

αI

|XI |

• We prefer selecting a redundant variable over an irrelevant one.

αI

|XI |
>

αR′

|XR′|

It is then advisable to choose values of α that reflect what conditions we value more
in the final subset. The original paper analyses some of these conditions and reaches
an equation that the weights should follow:

βRαR = αI βIαI = β′
R

Finally, they also propose values for βR, βI which we will be adopting in this project:
βR = ε/2, βI = 2ε/3. We are now left with only one parameter ε, during the
experimentation we will be using ε = 1 which means that αR will be counting twice
as much as αI

49

8 Experiments discussion

8.1 Synthetic experiment

As discussed in the previous section in the synthetic experimentation we will be
interested in determining how our algorithm behaves when we vary different relevant
factors. To do so, we have run a 3 level full factorial design with all synthetic
datasets.

To study how each factor affects the score, accuracy and time outputs we decided
to perform ANOVA. Analysis of variance (ANOVA) is a statistical test used to
determine whether two or more population means are the same. It is based on the
law of total variance, which tries to partition the variance in a particular variable into
different sources of variation. It is particularly powerful in factorial designs because
for example with 3 factors x, y, z it is capable of modeling main effects (x, y, z) and
interactions (xy, xz, yz, xyz). We will now present the most relevant findings of the
ANOVA analysis. Nevertheless, the complete tables can be seen in section 12.2.

Accuracy

• The number of instances and the irrelevant features are significant factors with
regards to the prediction score in the Majority and Linear problems.

• The number of relevant features seems to be the most relevant factor, being a
key factor in all synthetic datasets studied for all algorithms tested. This is
specially true for the Parity problem, whose difficulty seems to be only gated
by the number of relevant factors.

• The number of redundant variables and the amount of noise do not appear to
be statistically significant in any of the problems studied.

• All factors seem to be affecting the different algorithms in a similar manner. We
have not yet found a factor that is only significant for a subset of algorithms.

Score metric

• With regards to score, the number of relevant features again is the most
significant factor, followed by the number of instances which is important in 2
of the datasets studied.

• The number of redundant variables does not appear to be a relevant factor in
any of the problems studied.

• An interesting fact is that now irrelevance is only considered a significant factor
for the BWRRv1 and BWRRv2 algorithms. This means, that the number of
irrelevant features must affect the quality of subsets in some way.

50

• The biggest difference is that noise seems to be quite significant to predict
the score metric. This indicates that although the noise is not decreasing the
performance in a significant way, the quality of subsets estimated with the
score metric is in fact getting worse.

We will also present the interaction plots that better show the effects that each
factor have on the algorithms. The complete set of interaction plots can be seen in
section 12.1.

Accuracy

Figure 8 and figure 9 show how both the number of relevant and irrelevant features
affect the prediction results. In general, our algorithms BWRRv1 and BWRRv2
perform slightly worse than the regular wrapper, but better than the pure filter.
In the parity dataset both SBS, BWRRv1 and BWRRv2 obtain similar results,
outperforming the baseline score and ReliefF filter. In the other problems, the pure
wrapper approach seems to be the most effective, BWRRv1 and BWRRv2 provide a
middle ground and ReliefF performs slightly worse than our hybrid algorithms.

Figure 8: Relevance and accuracy interaction plot

Figure 9: Irrelevance and accuracy interaction plot

51

Score

Figure 11 and figure 12 show how both the number of instances, relevant and
irrelevant features affect the score metric. It is quite clear that SBS performs the
best, followed by BWRRv1 and BWRRv2 and finally ReliefF. An interesting fact is
that for all algorithms scores improve when the number of training instances increases.
The opposite tends to happen for the number of relevant and irrelevant features, as
they increase the score metric goes down. This is specially true for BWRRv1 and
BWRRv2 in the majority problem, in this dataset, it appears that our algorithm’s
final subsets degrade in quality when the number of irrelevant features increases.

Figure 10: Instances and score interaction plot

Figure 11: Relevance and score interaction plot

Figure 12: Irrelevance and score interaction plot

52

Time and wrapper evaluations

Figures 13 and figure 14 exemplify how many computational resources are needed to
execute each algorithm as the number of features increases. As expected, the pure
wrapper approach performs quite poorly, needing more time and wrapper evaluations
than others. ReliefF is by far the fastest, as it requires zero wrapper evaluations.
BWRRv1 and BWRRv2 provide a middle ground, being a bit more expensive than the
pure filter approach. It is also worth noting that BWRRv2 is faster than BWRRv1,
specially as the number of irrelevant features increases. This improvement is likely
caused by a reduction in the number of ReliefF reranks inside BWRRv2.

Figure 13: Irrelevance and time interaction plot

Figure 14: Irrelevance and wrapper count interaction plot

53

8.2 Real world experiment

8.2.1 Experiments on regular datasets

In this section we present the results obtained by performing a 10x5 cross validation
on regular datasets. Table 5 shows the accuracy obtained and table 6 the execution
times.

To test the statistical significance, we compared each result against BWRRv1 using
a two-tailed Student t-test with α = 0.05. These comparisons are shown in the
following tables, where a (+) represents that the algorithm performs better than the
competition, a (-) signifies a worse performance and (=) is used to show that the
results are statistically similar.

datasets Algorithm

Relief BIRS IWSS IWSSs iSFSM IGIS BWRRv1 BWRRv2

breast-cancer + = = = = + = =
ionosphere = = = - = = = =
iris = + = = = = = +
parkinsons - = - = - = = =
sonar - + = + - + = -
wine + = + + = + = +

Table 3: Statistical comparison using two-tailed Student t-test of BWRRv1 against
other state of the art algorithms in regular datasets

We do the same but this time comparing BWRRv2 versus the rest.

datasets Algorithm

Relief BIRS IWSS IWSSs iSFSM IGIS BWRRv1 BWRRv2

breast-cancer + = = = - + = =
ionosphere = = - - = - = =
iris - = - - - - - =
parkinsons - - - - - = = =
sonar - + + + - + + =
wine = - - - - - - =

Table 4: Statistical comparison using two-tailed Student t-test of BWRRv2 against
other state of the art algorithms regular datasets

54

datasets Accuracy

BIRS IWSS IWSSs iSFSM IGIS BWRRv1 BWRRv2

breast-cancer 0.917± 0.048 0.916± 0.038 0.912± 0.044 0.918 ± 0.037 0.882± 0.044 0.911± 0.043 0.903± 0.04
ionosphere 0.863± 0.062 0.884± 0.047 0.885 ± 0.044 0.874± 0.053 0.885 ± 0.053 0.868± 0.052 0.854± 0.067
iris 0.9± 0.095 0.947± 0.057 0.951± 0.053 0.947± 0.063 0.96 ± 0.055 0.955± 0.052 0.905± 0.061
parkinsons 0.808± 0.084 0.833± 0.086 0.812± 0.091 0.85 ± 0.083 0.786± 0.084 0.799± 0.096 0.773± 0.112
sonar 0.621± 0.103 0.71± 0.108 0.68± 0.114 0.847 ± 0.076 0.64± 0.089 0.732± 0.116 0.78± 0.115
wine 0.931 ± 0.069 0.831± 0.13 0.831± 0.125 0.91± 0.071 0.788± 0.138 0.92± 0.075 0.744± 0.111

Table 5: Accuracy on regular datasets.

datasets Accuracy

BIRS IWSS IWSSs iSFSM IGIS BWRRv1 BWRRv2

breast-cancer 0.449 0.443 0.405 6.248 0.691 8.437 1.882
ionosphere 0.447 0.425 0.26 3.1 1.321 5.707 2.548
iris 0.044 0.042 0.037 0.083 0.097 0.244 0.179
parkinsons 0.231 0.242 0.136 2.015 0.229 2.266 0.387
sonar 0.602 0.585 0.389 5.603 0.761 5.053 1.719
wine 0.14 0.129 0.09 0.65 0.19 1.424 0.44

Table 6: Time on regular datasets.

55

8.2.2 Experiments on high dimensional datasets

Finally, we will analyse the performance of several hybrid algorithms in several
high-dimensional datasets. This is the most important part of the experimentation
because it is on these types of datasets where hybrid algorithms are used the most.
The following results were obtained by performing a 10-fold cross validation.

To test the statistical significance, we now compared each result against BWRRv2
using a two-tailed Student t-test with α = 0.05.

datasets Algorithm

BIRS IWSS IWSSs iSFSM BWRRv2 BWRRv3 BWRRv4

colon = = = = = = =
GLIOMA + + = + = = =
leukemia = = = - = = =
lung_discrete = + = = = = =
Prostate_GE = = = = = = =
TOX + = = + = = =
madelon = - - - = = +
arcene = = = = = = -
gisette - - - = = - -
Isolet = - - - = = =

Table 7: Statistical comparison using two-tailed Student t-test of BWRRv2 against
other state of the art algorithms in high-dimensional datasets

We do the same but this time comparing BWRRv3 versus the rest.

datasets Algorithm

BIRS IWSS IWSSs iSFSM BWRRv2 BWRRv3 BWRRv4

colon = + + = = = =
GLIOMA = = = + = = =
leukemia = = = - = = =
lung_discrete + + + = = = =
Prostate_GE = = = = = = =
TOX + = = + = = =
madelon = - - - = = +
arcene = = = = = = =
gisette - - - + + = -
Isolet = - - - = = =

Table 8: Statistical comparison using two-tailed Student t-test of BWRRv3 against
other state of the art algorithms high-dimensional datasets

56

Finally, we compare BWRRv4 to the rest:

datasets Algorithm

BIRS IWSS IWSSs iSFSM BWRRv2 BWRRv3 BWRRv4

colon = = = = = = =
GLIOMA + + = + = = =
leukemia = = = = = = =
lung_discrete = = = = = = =
Prostate_GE = = = = = = =
TOX + = = + = = =
madelon - - - - - - =
arcene + + + + + = =
gisette + = - + + + =
Isolet = - - - = = =

Table 9: Statistical comparison using two-tailed Student t-test of BWRRv4 against
other state of the art algorithms high-dimensional datasets

The results of the real-world experimentation in high dimensional data suggest that
our algorithms can compete against other relevant hybrid algorithms. In fact, in
several datasets like GLIOMA, TOX or lung_discrete they tend to outperform
competition. Amongst our proposed algorithms BWRRv4 seems to perform slighly
better, having better results in bigger datasets like gisette or arcene. In general,
IWSSs seems to be the best performing algorithm, followed closely by BWRRv4.
Overall, although some algorithms perform better on average, all of them still have
some dataset where they perform the best.

If we compare the execution times shown in table 6 we can see that in general our
proposed algorithms are a slower than the rest. This is probably caused by the more
complex filter used and the backward search. BWRRv2 is in average much slower
than others. The improvements introduced in BWRRv3 and BWRRv4 seem to be
effective. BWRRv3 is in average as fast as others while the strategy proposed in
BWRRv4 seems to be hit or miss, in some datasets it is the fastest while in others
its times resemble that of BWRRv2.

57

datasets Accuracy

BIRS IWSS IWSSs iSFSM BWRRv2 BWRRv3 BWRRv4

colon 0.743± 0.13 0.726± 0.072 0.726± 0.072 0.743± 0.124 0.774± 0.109 0.826 ± 0.105 0.721± 0.197
GLIOMA 0.6± 0.179 0.62± 0.108 0.7± 0.257 0.56± 0.233 0.78 ± 0.209 0.72± 0.183 0.78 ± 0.189
leukemia 0.93± 0.095 0.957± 0.091 0.957± 0.091 0.971 ± 0.057 0.902± 0.091 0.848± 0.205 0.902± 0.128
lung_discrete 0.698± 0.123 0.695± 0.108 0.695± 0.122 0.716± 0.133 0.793± 0.129 0.821±0.139 0.779± 0.112
Prostate_GE 0.872± 0.158 0.894 ± 0.12 0.894 ± 0.12 0.873± 0.129 0.875± 0.102 0.834± 0.108 0.851± 0.136
TOX 0.544± 0.063 0.725± 0.09 0.72± 0.093 0.631± 0.118 0.748± 0.119 0.773± 0.139 0.742± 0.093
madelon 0.828± 0.112 0.87 ± 0.022 0.846± 0.043 0.867± 0.02 0.799± 0.045 0.786± 0.025 0.756± 0.039
arcene 0.77± 0.078 0.805± 0.085 0.795± 0.072 0.75± 0.095 0.78± 0.103 0.815± 0.112 0.875±0.056
gisette 0.95± 0.007 0.966± 0.005 0.967 ± 0.005 0.923± 0.005 0.906± 0.035 0.935± 0.02 0.962± 0.006
Isolet 0.613± 0.075 0.925 ± 0.013 0.922± 0.014 0.774± 0.034 0.615± 0.111 0.625± 0.115 0.574± 0.085

Table 10: Accuracy on high-dimensional datasets.

datasets Accuracy

BIRS IWSS IWSSs iSFSM BWRRv2 BWRRv3 BWRRv4

colon 15.558 15.298 7.907 5.866 17.553 13.306 3.083
GLIOMA 46.05 41.632 18.573 12.98 361.662 33.335 52.407
leukemia 64.216 59.542 19.803 17.375 97.448 18.81 17.476
lung_discrete 3.327 3.153 2.078 4.163 18.185 21.911 3.964
Prostate_GE 68.827 51.362 26.666 48.108 1228.576 31.509 242.622
TOX 123.686 124.028 56.995 43.009 4904.076 74.748 948.831
madelon 26.465 31.948 27.449 41.111 206.85 211.505 60.051
arcene 96.973 89.781 44.156 23.583 1359.733 31.947 807.115
gisette 1899.88 3223.75 578.598 330.56 19092.705 598.262 16041.196
Isolet 34.099 83.797 53.524 50.087 1943.175 295.498 18.798

Table 11: Times on high-dimensional datasets.

58

9 Conclusion

This section will work as a compilation of conclusions obtained in the different
experiments. Moreover, we will derive general conclusions that can only be obtained
when looking at all the experiments together.

In the synthetic experimentation, we tried to understand how the pure filter, wrapper
and hybrid approaches performed under varying factors. The conclusions we obtained
were that relevance and number of instances greatly affected the outcome of accuracy
and score metric. Additionally, in the interaction plots, we could appreciate tendencies
as each factor varied. The scores increased as the number of instances or redundancy
increased, on the other hand as the number of relevant and irrelevant features
increases the results degrade. In general, the noise was statistically insignificant.

The minimum goal to consider the project a success was to introduce new hybrid
algorithms that provided a trade-off between speed and predictive scores. In the
synthetic phase, we tested two of our algorithms against the pure filter and pure
wrapper approaches. Results show that we accomplished our goal, BWRRv1 and
BWRRv2 were both faster than wrapper and resulted in better scores than the filter.
The goal of BWRRv2 was to improve performance in datasets with high number of
irrelevant attributes while maintaining good results when compared to BWRRv1.
In general, we succeeded, as BWRRv2 was faster when the number of irrelevancy
increased while maintaining comparable results.

In the real-world experiments, we explored how different versions of our algorithm
compared against other state-of-the-art hybrid approaches. We will mostly focus on
the results obtained in the high-dimensional settings as it is were such algorithms see
more use. The results show that our algorithms outperform others in some datasets
such as colon, TOX or GLIOMA while being worse in others. Moreover, we tested
the statistical significance of these results and showed that the proposed algorithms
do in fact improve significantly in several datasets.

When comparing BWRRv2, BWRRv3, BWRRv4 against each other we can see that
BWRRv2 is not suited for these high dimensional datasets, being its execution time
is orders of magnitude larger than the other algorithms. BWRRv3 and BWRRv4
performed up to par or better than BWRRv2 in most high dimensional problems
while reducing drastically the execution time and number of wrapper evaluations.
We would recommend using BWRRv3 and BWRRv4 to perform feature selection in
high dimensional datasets, their execution times are only slightly higher than the
other hybrid algorithms. However, the backward approach combined with the use of
a more complex filter like ReliefF has proven to produce improvement in several of
the datasets tested.

59

9.1 Future work

We achieved all goals we were set out to accomplish with this bachelor’s thesis.
Nevertheless, during the course of the project, we encountered several interesting
ideas worth researching. Due to time limitations we could not continuously expand
our project, that is why we left the ideas that deviated more from the original plan
as potential future work.

• Additional versions of the algorithm: Several interesting ideas for new
versions had to be left out. The most remarkable one was a version that was a
three stage algorithm. We did not implement this algorithm because it required
the use of a fixed learning algorithm. The problem is that this would then
made it hard for us to compare against other hybrid approaches.

• Extend the algorithm to missing data: The algorithm we proposed does
not work when there is missing data. As we used ReliefF which can work with
missings, this limitation only comes from the wrapper algorithm we used.

• Experiment with different learning algorithms: For our hybrid and
wrapper algorithms we only used a k nearest neighbour as our black box subset
evaluator. It would be interesting to see how the performance changes when
using other learning algorithms.

• Experiment with different RBAs: In our hybrid algorithm, we used ReliefF
in classification problems and RReliefF in regression ones. However, the RBA
family is much larger and many other choices could be possible. An interesting
extension could focus on how a more complex RBA like Simba changes the
results.

• Explore other hybrid algorithms: We mostly focused on algorithms that
used a sequential wrapper search. Nevertheless, there are many hybrid
algorithms that use other heuristics to guide the wrapper.

• Improve performance: We programmed the algorithms in an efficient
manner. However, recent studies showed that hybrid algorithms could be
accelerated by embedding wrappers like k nearest neighbour [33]. We leave
the possible inclusion of this optimization plus some possible parallelization as
future work.

60

10 Project Management

The project was planned to last 510 hours. The starting date is on February 15th
and the delivery date is on June 28th. This gives us 134 days to distribute 520 hours
of works. I plan to invest 4 hours per day during this period of time, which a priory
seems enough to successfully complete the project. However the project finally had
to be extended until October 25th for reasons that will be later explained.

10.1 Task definition

It is a common practice to subdivide projects into smaller units of work named tasks.
This subdivision makes organizing the work between different members much easier.
But even in a thesis where most of the work will be carried out by one member
diving the work into tasks makes it easier to organize the project and estimate the
amount of time required to complete it.

Project planning

This part is considered the initial phase of the thesis. The tasks included will not
try to achieve an overall objective or sub-objective. Rather their work will serve as a
stable foundation upon which the project will be built.

• Context and scope: Introduction and contextualization of the problem.
Define the problem to be solved and the objectives and sub-objectives to be
achieved. Establish a methodology and validation plan for the thesis.

• Temporal planning: Divide the project into different tasks. Establish a
temporal plan to ensure that the project will be finished in time. Define a risk
contingency plan to undermine the effects of possible unexpected events.

• Budget and sustainability: Estimate the total monetary cost of the project.
Analyse the potential environmental impact that this project could have.

• Final project integration: Modify or correct all the parts according to the
feedback received. Integrate all the corrected texts into a final document that
will be evaluated.

• Meetings: Schedule biweekly virtual meetings with the director of the thesis
to ensure the project is progressing successfully. Extraordinary sessions can
also be arranged when needed.

Theoretical part

• Read research papers related to the subject area: Familiarize with
different feature selection techniques. Get to know the state-of-the-art and
commonly used in literature algorithms.

61

• Conceptual design of the new proposed algorithm: Define a new hybrid
algorithm from a theoretical standpoint. This process can be subdivided into
these smaller subtasks:

– Write the pseudocode of the algorithm
– Design the graph of the execution
– Analyse the time and space complexity.

• Design of experiments: Study different experimental design techniques an
assess which one to use in the project.

Practical part

• Implement proposed algorithm: Implement the proposed algorithm and
its possible different versions in a programming language.

• Implement other FS algorithms: Implement other hybrid feature selection
algorithms that will be used in the experimentation.

• Test: To ensure the correctness of the code written, some time will be dedicated
to testing.

Experimentation and analysis

• Select datasets: Gather a list of real-world datasets from public repositories.

• Synthetic dataset generation: Implement a function that receives several
relevant parameters as input and is able to quickly generate synthetic datasets
matching the required characteristics.

• Design of experiments: Design the experimental set-up that will be used
in both the synthetic and real-world benchmarks. Choose metrics to be used
to compare the algorithms.

• Experimentation: Execute the algorithm in the selected datasets and store
the performance data. This is by far the task that will be more computationally
complex.

• Analysis and conclusion: Analyse the results obtained in the experimental
part. Compare the results obtained with those of other well-known feature
selection papers. Reach final conclusions.

Documentation

The documentation of the project will be carried out simultaneously with some of
the other tasks. In fact, documentation will mostly be done near the end of each
major group of tasks. Despite this, a final documentation task will also be included
to correct spelling errors and possible past mistakes.

62

10.2 Summary of tasks

The following table contains a list of all tasks. Each task will be defined by the
description of the work that involves, the number of hours required and some
dependencies or tasks that need to be finished before it.

Task ID Description Time(h) Dependencies
T1 Project management 75
T1.1 Context and scope 30
T1.2 Temporal planning 15
T1.3 Budget and sustainability 15
T1.4 Final document integration 15* T1.1, T1.2, T1.3
T2 Theoretical part 130
T2.1 Research 75
T2.2 Conceptual design of the new algorithm 40
T2.3 Write pseudocode 5 T2.2
T2.4 Execution graph 5 T2.2
T2.5 Complexity analysis 5 T2.2, T2.3
T3 Practical part 55
T3.1 Implement the proposed algorithm 35 T2
T3.2 Testing 20 T3.1
T4 Experimentation 130
T4.1 Make synthetic datasets 10
T4.2 Select real world datasets 10
T4.3 Experiments 60
T4.4 Analysis and conclusions 50 T4.3
T5 Meetings 20
T6 Documentation 75
T7 Defense preparation 25 T6

Total 510

Table 12: Tasks summary. [Compiled by the author]
* The duration of this task greatly depends on the feedback received by the GEP

tutor.

63

10.3 Gantt chart

Figure 15: Gantt chart. [Compiled by the author]

64

10.4 Risk contingency plan

It would be naïve to expect that everything will carry out as defined in the original
planning. Some obstacles are likely to appear during the development of the project
that could jeopardize its progress. Some of these threads are very difficult to predict
in the initial phases, nevertheless, some of them can be identified at the start of the
project. The following contingency plan will help limit the impact of some of the
potential risks we already identified. For each of them, the problem will be presented,
along with a risk evaluation and a proposed solution. We will also include the final
outcome explaining whether or not these potential risks played a major role in the
project.

Tight schedule

• Problem: There is a fixed deadline marked by the university on which the
thesis needs to be presented. Although a temporal plan has been established
to reach this deadline comfortably, it is possible that some tasks end up taking
longer than expected.

• Risk: High risk

• Proposed solution: In case we deviate from the original planning, the number
of hours per day dedicated to the project will be increased until we catch up
with the initial plan. If the deviation is considerable, some time will be spent
adapting the plan to the new situation. To account for all this possible time
loss, an extra 30 hour task dedicated to delay contingency and rescheduling is
planned.
In an extreme case, where the delay is so severe that it may put at risk the
completion of the project, some shortcomings may need to be accepted in order
to finish in time.

• Outcome: Due to some problems that came up in the later stages of development,
I was faced with two possible solutions: accept some shortcomings to finish in
time or delay the presentation of the project until the extraordinary semester.
After discussing both options with the director of the thesis we decided to opt
for the later.

Computational power:

• Problem: Some feature selection algorithms, especially when used in high-
dimensional datasets, may take more computational power than I have at my
disposal.

• Risk: Medium risk

65

• Proposed solution: This problem can be solved by using additional software
resources like Google Colab. This one, in particular, allows for the execution of
code in external GPUs, which would help speed up the necessary computations.
Nevertheless, this can still take an extra 10 hours of work.

• Outcome: Thanks to a careful design of experiments we were able to reduce
the workload significantly. That meant that no extra computational resources
were needed.

Inexperience with the programming language:

• Problem: As the programming language that will be used has not been
decided yet, I may lack the experience required to start implementing the
algorithms.

• Risk: Low risk

• Proposed solution: Add a 20 hour task to get used to the programming
language. The dependency table will also need to be updated because this new
task will have to be completed before the implementation part. To help speed
up the learning process, extra resources like books or software courses may be
used.

• Outcome: Choosing the programming language was a big decision for the
project. The two possible choices were Python and R. After doing an early
scouting for feature selection packages implemented in both languages i decided
to choose Python because it had a recently implemented RBA package. In
hindsight, the best decision would have probably been doing the implementation
with R. This is because the lack of some basic utilities that were not implemented
with Python made me waste more time than initially planned.

Implementation errors and bugs:

• Problem: Bugs may pass unnoticed for a long time. If this were to happen
tasks completed thereafter may be impacted negatively and need to be redone.

• Risk: Low risk

• Proposed solution: A testing task has been added to the implementation
part to catch these bugs as soon as possible. In the case a bug is detected after
the experimentation, a new task will be added to remake the affected parts.
The duration of this task will depend on the impact of the bug and how late it
is caught. It is hard to estimate the exact duration of this task, however as we
will be doing tests regularly, 10 extra hours of work should be enough.

• Outcome: All bugs have been caught in a reasonable time. No major bugs
have gone unnoticed severely impacting the project.

66

Coronavirus

• Problem: If another lockdown were to happen, it would be impossible to
make physical meetings with the tutor. Moreover, the thesis defense may also
be presented online.

• Risk: Low risk

• Proposed solution: Arrange virtual meetings with my tutor using free
software available like Meet. If the thesis were to be presented online, I would
have to buy a new microphone and webcam. This risk does not require extra
hours of work, rather it will have a monetary impact and therefore needs to be
accounted for in the budget.

• Outcome: All meetings have been held online without a problem.

10.5 Resources

After having defined the tasks that compose the project, it is also necessary to
analyse the resources needed to carry them out. Each resource will be classified into
software, hardware, human or material.

Human resources

There will be three people involved directly with the project. The main human
resource is the researcher who will be carrying out most of the work. The director
will be responsible for guiding the researcher and ensuring the work done meets
certain standards. Finally, the GEP tutor will be involved during the initial phase of
the projects and his main responsibility will be to provide feedback on the scope,
organization plan and economic dimension of the project.

Material resources

As this project is built upon previous research works, it is necessary to include some
material resources such as books or scientific papers.

Hardware resources

Nearly every task involves the use of a computer in one way or another. This project
will be done with a desktop computer with 16GB of RAM and Intel(R) Core(TM)
i5-7600 CPU @ 3.50GHz.

Software resources

During the project there will be a need for several software resources, each with its
own distinct functionality. To document the project we will mainly use Overleaf,

67

which is a well-known Latex editor. However extra software may be used sporadically,
such as Ganttproject to design the Gantt charts or BibTex to make the bibliography.
In the practical part, some programming languages will be used to implement the
algorithms. In order to make the implementation phase easier, an IDE such as Visual
Studio Code will be employed. Other software resources that will be used are Github
as a version manager, Trello to visually organize the tasks and Google Meet to do
virtual meetings with the thesis director. In order to communicate with the director
and the GEP tutor, an email service or Atenea will be used.

10.6 Methodology and validation

To maximize the usefulness of the meetings with the tutor, we will work following a
combination of the agile and Kanban methodologies.

The major advantage of following an agile approach is that we will be able to
subdivide the work into two-week sprints. At the end of each sprint, a meeting with
the tutor will be held. This meeting will work as a feedback loop. Depending on
the assessments of the tutor, future sprints may be modified to for example correct
something that was pointed out to be wrong.

Each sprint will be internally organized using the Kanban approach. For each sprint,
we will use Trello to set up a Kanban board with all the work that needs to be done.
The main reason to choose this technique for project management is that it is a
visual tool that helps to easily identify what needs to be done and what is already
finished. We will set up the cards in the following way:

• To Do: This group will include all the tasks that have not been started.

• Doing: This group will include all the tasks that are in progress of being
made.

• Testing: This group will include all the tasks that are finished but are not
yet tested. Tasks in the testing group will mostly be software-related.

• Done: This group will include all the tasks that are finished and tested.

In this project, we will use Github as our tool of version control. Having a version
control will also help us recover past versions in case of a fatal mistake and pinpoint
when some bug was introduced to the codebase. As for the majority of projects, a
master branch will contain all the tested code and a development branch will be
used as a testing environment.

Depending on the availability of the tutor, virtual weekly or biweekly meetings will be
arranged. These meetings will be used both to maintain a constant communication
channel where we can discuss the progress of the project and to validate that the
work done up to that point is correct.

68

10.7 Budget

This section will try to estimate all the potential costs involved in the project. From
personnel payments to other direct and indirect costs.

10.7.1 Staff costs

Personnel payments will take up the vast majority of the budget. The project involves
different types of workers with different levels of experience and salaries. The team
will be formed by a junior project manager who will plan the project, a junior
developer and a tester that will implement the algorithms and test their correct
functionality. There is also a need for a junior researcher who will be in charge of
the theoretical part of the work. All the aforementioned roles will be carried out by
the student that is doing the thesis.

Additionally, two senior project managers will also be included, they will be in charge
of guiding and managing the project. These two figures correspond to the director of
the thesis and the GEP tutor.

Each member of the group will be assigned different tasks. Therefore, the hours spent
working on the project will differ greatly between members. For this reason, cost per
hour is the most informative metric to estimate the final personnel costs. However,
this metric is rather difficult to find. To estimate it we first gather the annual salaries
for each position, multiply them by 1.35 to approximate social security payments and
finally divide them by the number of hours worked in a year (1750 hours). Another
factor that can influence the costs is the location. As all the members of the project
are located in Barcelona, salaries from only this area will be gathered.

Position Annual salary (€) Price per hour (€/h)

Senior project manager* 44800 34.56
Junior project manager* 27800 21.33
Junior developer 21000 16.2
Junior researcher 18700 14.31
Tester 17500 13.5

Table 13: Salaries summary. [Compiled by the author]

* To estimate the salary of the project managers. A high percentile salary has
been selected for the senior manager and a low percentile salary for the junior
manager.

To obtain the final staff costs it is necessary to determine which member will carry
out each task.

69

Task ID Description Time(h) Senior manager Junior manager Researcher Developer Tester
T1 Project management 75 15 75 0 0 0
T1.1 Context and scope 30 3 30 0 0 0
T1.2 Temporal planning 15 3 15 0 0 0
T1.3 Budget and sustainability 15 3 15 0 0 0
T1.4 Final document integration 15 6 15 0 0 0
T2 Theoretical part 130 5 0 130 0 0
T2.1 Research 75 5 0 75 0 0
T2.2 Conceptual design 40 0 0 40 0 0
T2.3 Write pseudocode 5 0 0 5 0 0
T2.4 Execution graph 5 0 0 5 0 0
T2.5 Complexity analysis 5 0 0 5 0 0
T3 Practical part 55 0 0 0 35 20
T3.1 Implementation 35 0 0 0 35 0
T3.2 Testing 20 0 0 0 0 20
T4 Experimentation 130 0 0 130 0 10
T4.1 Make synthetic datasets 10 0 0 10 0 0
T4.2 Select real world datasets 10 0 0 10 0 0
T4.3 Experiments 60 0 0 60 0 10
T4.4 Analysis and conclusions 50 0 0 50 0 0
T5 Meetings 20 20 20 20 20 20
T6 Documentation 75 0 0 75 0 0
T7 Defense preparation 25 0 25 0 0 0
Total 510 40 120 355 55 50

Table 14: Tasks distribution summary. [Compiled by the author]

70

Multiplying the average costs per hour shown in 13 by the number of hours computed
in 14 we can obtain the final personnel budget.

Position Hours Cost (€)
Senior project manager 40 1382.4
Junior project manager 120 2559.6
Junior developer 55 891
Junior researcher 355 5080
Tester 50 675

Total 10588

Table 15: Staff costs. [Compiled by the author]

The final budget shown in 15 can also be subdivided further into several individual
task budgets. This will allow us to detect budget deviations much earlier.

Task ID Description Time(h) Budget (€)
T1 Project management 75 2118.15
T1.1 Context and scope 30 743.58
T1.2 Temporal planning 15 423.63
T1.3 Budget and sustainability 15 423.63
T1.4 Final document integration 15 527.31
T2 Theoretical part 130 2033.05
T2.1 Research 75 1246
T2.2 Conceptual design of the new algorithm 40 572.4
T2.3 Write pseudocode 5 71.55
T2.4 Execution graph 5 71.55
T2.5 Complexity analysis 5 71.55
T3 Practical part 55 837
T3.1 Implement the proposed algorithm 35 567
T3.2 Testing 20 270
T4 Experimentation 130 1995.3
T4.1 Make synthetic datasets 10 143.1
T4.2 Select real world datasets 10 143.1
T4.3 Experiments 60 993.6
T4.4 Analysis and conclusions 50 715.5
T5 Meetings 20 1998
T6 Documentation 75 1073.25
T7 Defense preparation 25 533.25
Total 510 10588.05

Table 16: Budget per task. [Compiled by the author]

71

10.7.2 Generic costs

Amortization

Another aspect to take into account is the amortization of the resources that will
be utilized in the project. Software resources will be open-source and free to use.
Therefore, this section will mostly focus on the amortization of office equipment and
different hardware devices such as a desktop computer and several peripherals. To
compute the amortization the following formula is applied:

Amortization =
purchase price

life expectancy ∗ working days ∗ hours per day
∗ total hours

Where the working days are 220 and the total hours of the project 510.

Resource Price (€) Life expectancy (Years) Amortization (€)
Desktop computer 1200 5 139.1
Asus monitor 150 5 17.38
Razer keyboard 80 3 15.45
Razer mouse 50 3 9.65
Desktop chair 200 5 23.18

Total 204.76

Table 17: Amortization costs. [Compiled by the author]

Indirect costs

In order to obtain a more realistic budget, indirect costs related to work also need
to be considered. These costs may seem negligible at first, but start to take up a
noticeable percentage of the budget when all of them are added up.

• Internet cost: Currently I am paying a fixed monthly fee of 75 euros per
month for the internet service. Considering that the project lasts 5 months
the total cost adds up to 75€/month * 5 months * 4h/24h = 62.5€.

• Electricity cost: My electricity provider has an average cost of 0.127 €/kWh.
The power use of a desktop computer can vary depending on the activity
it is performing. Nevertheless, it is reasonable to simplify the problem and
consider an average power use of 200 W. The final electricity cost can be easily
computed: 0.127 €/kWh * 0.2 kW * 4 hour/day * 134 days = 13.61 €.

• Travel cost: Due to the pandemic travel costs will largely be avoided. As of
today, only the final defense of the thesis will be done face-to-face. To travel
from my home to the university I will use the Barcelona Metro as transport.
The price of a T-casual (10 trips) is 11.35 €. Thus, the final cost of transport
will be: 2 trips * 11.35 €/10 trips = 2.27 €.

72

10.7.3 Risk control budget

Incidentals

In section 10.4, a complete risk contingency plan was developed to minimize the
effect of possible foreseen threads. This section will try to estimate the possible
budget deviations that may occur in case these events were to happen.

Risk Solution Estimated
cost (€) Risk (%) Cost (€)

Thesis defense is online Buy new webcam
and microphone 150 70 105

Inexperience with
the programming language Add 25h work 405 20 82

Project deadline Add 30h of work 429.3 50 214.65
Lack of computational power Add 10h work 143.1 50 57.24
Bugs Add 10h work 135 10 13.5

Total 472.39

Table 18: Incidental costs. [Compiled by the author]

Contingency budget

In this particular project, the indirect costs are not likely to vary, therefore, a 5%
contingency margin is enough. On the other hand, staff expenses are more likely to
change. This will normally occur due to delays or underestimation of the number of
hours in the original planning. Therefore, a contingency fund corresponding to 20%
of personnel costs is needed.

Type Budget Margin (%) Contingency fund (€)
Staff costs 10588 20 2117.6
Generic costs 204.76 5 10.23

Total 2127.83

Table 19: Contingency costs. [Compiled by the author]

10.7.4 Total budget

The total budget of the project is just the sum of the costs obtained in the previous
sections. In total we will have at our disposal 13392.98€ to spend.

73

10.8 Deviations

This chapter will try to explain the differences in planning and budget between what
was initially stated to what ended up happening. The main deviation from the
original planning has been the need to extend the project until October. The project
was following the temporal planning shown in figure 15 up until week 20. However
after a meeting with the director we decided to add another version of the algorithm
and opted for a more complex design of experiments. If this were to happen, the
solution proposed in the risk contingency plan was to add a 30 hour task. Despite
this due to my inability to dedicate more hours per day during working days and the
closeness to the final exams of other subjects, we considered that the best decision
to avoid shortcomings would be to extend the project.

10.8.1 Tasks

First we will present the updated table of tasks detailing the real time each one took
to complete as well as some new tasks that were not considered in the original plan.

Task ID Description Final Time Expected time
T1 Project management 65 75
T1.1 Context and scope 30 30
T1.2 Temporal planning 15 15
T1.3 Budget and sustainability 15 15
T1.4 Final document integration 5 15
T2 Theoretical part 130 130
T2.1 Research 80 75
T2.2 Conceptual design of the new algorithm 30 55
T2.3 Study design of experiments 20 0
T3 Practical part 90 55
T3.1 Implement the proposed algorithm 30 35
T3.2 Implement other FS algorithms 40 0
T3.3 Testing 20 20
T4 Experimentation 165 130
T4.1 Make synthetic datasets 20 10
T4.2 Select real world datasets 5 10
T4.3 Experiments 90 60
T4.4 Analysis and conclusions 50 50
T5 Meetings 20 20
T6 Documentation 70 75
T7 Defense preparation 25 25
Total 565 (h) 510 (h)

Table 20: Tasks summary. [Compiled by the author]

74

Figure 16: Final Gantt chart. [Compiled by the author]

75

Although some tasks had small deviations from the original temporal planning, in
general these tended to balance out, making the total hours dedicated to each major
task group in line with expectations. The only main discrepancies were the following:

• Implementation: We decided to program more versions of the proposed
algorithm and more hybrid algorithms to compare to. This added a time cost
of 35 additional hours.

• Experimentation: The use of high-dimensional datasets in the real-world
experimentation combined with a more complex synthetic design raised the
costs by 35 hours.

In total we needed to expend 70 extra hours to complete T2 and T3. However we
also gained 15 hours from T1.4, T6. This gives us a balance of 55 extra hours, which
is not that much of from the 30 hours mentioned in the contingency plan.

10.8.2 Budget

In this section we are going to discuss how the extra hours affected the final budget
of the project.

Task ID Description Time(h) SM JM R D T Cost
T1.4 Final integration -10 0 -10 0 0 0 -213.3
T3 Practical part +35 0 0 0 +35 0 +567
T4 Experimentation +35 0 0 +35 0 0 +500.85
T6 Documentation -5 0 0 -5 0 0 -71.55

Total +55 0 -10 +30 +35 0 +783

Table 21: Extra budget summary. [Compiled by the author]
* SM: Senior Manager, JM: Junior Manager, R: Researcher, D: Developer,
T: Tester

Considering all the extra personnel cost our budget increased by 783€. Although it
seems like a big increase, it is in fact well covered by the 2117.6€ staff contingency
fund (Section 18). This still leaves with 1334.6€ left to spend on unforeseen extra
personnel costs.

10.8.3 Methodology

The methodology proposed in the final GEP document was a combination of the
agile and Kanban methodologies. There would be a sprint every couple of weeks and
its tasks would be internally organized using the Kanban approach.

76

We followed this methodology for the first 6 weeks. In the initial stages of the project,
this way of working was great because it allowed us to organize tasks around the
biweekly meetings with the director. These meetings worked as a feedback loop in
which all doubts were resolved and new tasks would be set.

After the seventh week, we decided to slightly change the methodology. The main
difference was that we stopped working using an agile methodology. The Kanban
approach was now used to organize the overall project rather than each sprint. The
main reason for this change is that after the initial phase, most doubts were already
resolved and I had a clearer idea of what needed to be done. Because of this and
several other reasons, the time between meetings increased. As the methodology
heavily relied on biweekly sprints followed by meetings, we decided that it was best
to move to a new methodology in which the work was organized into larger tasks.

10.9 Sustainability

10.9.1 Self-assessments

In my opinion, there is a misconception about what exactly means to have a
sustainable project. Generally speaking, when one thinks about how to evaluate
whether or not a project is sustainable, the first thing that comes to mind is the
economical dimension. A possible explanation for this may be because we live in
a profit based-society where only those ideas that can be profitable end up being
developed. This comes with a general disregard for the environmental or social
impact that the project may cause, being more of a second thought rather than a
criterion to be met.

Particularly in software-related projects, it is common to ignore the environmental
sustainability because at first glance it is easy to think that they do not impact
the environment. However, after having researched information about the different
environmental indicators that are available, I reached the conclusion that they are
quite useful and informative.

Another thing that I may have oversimplified in past projects is the economic aspect.
While researching to develop the sustainability report, I have been introduced to
many metrics I did not know about. To be honest, I also did not know that risk
assessment and contingency planning were of such importance.

77

10.9.2 Environmental impact

Regarding PPP: Have you estimated the environmental impact of undertaking
the project?

As the thesis is mostly focused on research and experimentation of feature selection
algorithms there will not be any material resources needed. The only environmental
impact may be the relatively high electricity consumption of those algorithms,
especially when working with relatively large amounts of data

Regarding PPP: Have you considered how to minimise the impact, for
example by reusing resources?

As the execution of feature selection algorithms increases in computational cost with
respect to the size of the dataset, in the initial phase of experimentation, smaller
datasets will be utilized to minimize the environmental footprint.

Regarding Useful Life: How is the problem that you wish to address
resolved currently (state of the art)?

Feature selection is still an open area of research with several new techniques and
different applications appearing every year. There is no definitive state-of-the-art,
as techniques perform rather differently depending on the dataset type, size... In
general, wrapper algorithms are mostly used in smaller datasets while filter, hybrid
and embedded approaches are used when there is a higher dimensional space.

In what ways will your solution environmentally improve existing solutions?

The new proposed solution will be a hybrid filter-wrapper algorithm. In theory, it
should outperform the filter method in predictive accuracy while being faster than a
wrapper method.

10.9.3 Economic impact

Have you estimated the impact that your project will have, including
both human and material costs?

Section 10.7.1 includes a detailed breakdown of human resources, it takes into account
the cost per hour of different positions needed for the project and an estimate of the
number of hours of work. Section 10.7.2 describes the different material resources
and assigns a budget to each of them.

78

How is the problem that you wish to address resolved currently (state of
the art)? In what ways will your solution economically improve existing
solutions?

As stated before there is no definite state-of-the-art algorithm in FS. Depending
on the dataset a filter or wrapper technique may prove to be more effective. The
proposed hybrid solution should be a middle ground between those techniques. It
should result in higher accuracies than the filter method, a better performing model
will guess right more often and thus in some applications increase profit. Moreover,
it should also reduce execution time when compared with wrapper methods, hence
reducing the electricity cost significantly.

10.9.4 Social impact

What do you think undertaking the project has contributed to you personally?

Personally speaking, this project has made me realize my love for investigation and
innovation. It has also encouraged me to pursue a master and doctorate in the future
to be able to work in a research group.

How will your solution improve the quality of life (social dimension) with
respect other existing solutions?

The new solution will be another option that data analysts and computer engineers
may need to consider when having to perform feature selection. It will be particularly
used for those datasets where neither a filter nor a wrapper algorithm is a good
solution. In cases where a middle ground solution is needed, researchers will no
longer have to settle for either the filter or wrapper options.

Is there a real need for the project?

Both the tutor and the researcher agreed that this type of hybrid filter-wrapper FS
is still underresearched. Therefore, although the final proposed technique may not
become state-of-the-art, we think it is an area of research that is worth to explore.

79

11 Technical competences

In this section, we will explain the technical competences related to the project and
justify how we met the established requirements.

CCO1.1: To evaluate the computational complexity of a problem, know the algorithmic
strategies which can solve it and recommend, develop and implement the solution
which guarantees the best performance according to the established requirements. [A
little bit]

During the project we programmed most of the algorithms used in the experimentation.
For each of them, we tried to implement them as efficiently as possible. This was
crucial because as we dealt with datasets of high dimensionality, an inefficient
implementation would most likely result in a large time penalty.

Moreover, for the algorithms we proposed, we have analysed both the time and space
complexities.

CCO2.1: To demonstrate knowledge about the fundamentals, paradigms and the own
techniques of intelligent systems, and analyse, design and build computer systems,
services and applications which use these techniques in any applicable field. [Enough]

During the project, we used several different types of feature selection algorithms.
We analysed RBAs and information-based filters that performed feature weighting
and wrappers that used a learning algorithm to score subsets. We also studied several
state-of-the-art hybrid algorithms. Thanks to all this traversal knowledge of the field
of feature selection, we were able to algorithmically combine filters and wrappers
obtaining an algorithm that integrates the best characteristics from both approaches.

CCO2.2: Capacity to acquire, obtain, formalize and represent human knowledge in
a computable way to solve problems through a computer system in any applicable
field, in particular in the fields related to computation, perception and operation in
intelligent environments. [A little bit]

In the experimentation section, we have selected several real-world datasets that
met our prerequisites. These datasets come from vastly different fields, however, the
majority of them are high-dimensional microarray data.

Moreover, to complement the real-world experiments, we have also performed
synthetic experimentation. In this part, we first needed to study which factors
of the data are relevant for feature selection.

80

CCO2.4: To demonstrate knowledge and develop techniques about computational
learning; to design and implement applications and system that use them, including
these ones dedicated to the automatic extraction of information and knowledge from
large data volumes. [In depth]

This competence is the one that is the most in line with our project. We have
proposed and implemented several algorithms that use components of computational
learning. These algorithms perform feature selection, which tries to extract the
relevant information from the complete set of features.

Moreover, we have chosen hybrid feature selection because it is scalable to large
volumes of data. In fact, the last two versions of the proposed algorithm implemented
mechanisms specially designed for high-dimensional data.

81

12 Experiment results

12.1 Interaction plots

This section shows the complete set of interaction plots obtained from the synthetic
experimentation. We will subdivide them into different groups depending on the
predictor variable.

Accuracy - MSE

Figure 17: Instances and accuracy interaction plot.

Figure 18: Relevance and accuracy interaction plot.

Figure 19: Irrelevance and accuracy interaction plot.

82

Figure 20: Redundancy and accuracy interaction plot.

Figure 21: Noise and accuracy interaction plot.

Score

Figure 22: Instances and score interaction plot.

Figure 23: Relevance and score interaction plot.

83

Figure 24: Irrelevance and score interaction plot.

Figure 25: Redundancy and score interaction plot.

Figure 26: Noise and score interaction plot.

Time

Figure 27: Instances and time interaction plot.

84

Figure 28: Relevance and time interaction plot.

Figure 29: Irrelevance and time interaction plot.

Figure 30: Redundancy and time interaction plot.

Figure 31: Noise and time interaction plot.

85

Wrapper count

Figure 32: Instances and wrapper count interaction plot.

Figure 33: Relevance and wrapper count interaction plot.

Figure 34: Irrelevance and wrapper count interaction plot.

Figure 35: Redundancy and wrapper count interaction plot.

86

12.2 ANOVA analisys

In this section we display several tables of pvalues from the ANOVA analysis of synthetic datasets. We will only show up to two-level
interaction of factors because higher order interactions are rarely relevant.

Parity Majority Linear

factors ReliefF DWSSv1 DWSSv2 SBS ReliefF DWSSv1 DWSSv2 SBS ReliefF DWSSv1 DWSSv2 SBS

inst 6.70e-01 9.81e-01 1.00e+00 9.83e-01 1.56e-02 8.32e-03 1.13e-03 1.83e-04 8.01e-04 1.50e-08 4.03e-09 1.71e-13
rel 6.72e-09 6.91e-12 6.03e-12 8.31e-12 4.01e-25 1.68e-26 1.85e-28 5.50e-34 6.67e-127 5.80e-115 6.63e-114 1.92e-108
irr 2.67e-02 9.73e-01 9.58e-01 9.94e-01 2.55e-02 4.74e-03 6.71e-04 5.72e-02 1.79e-07 9.82e-08 4.86e-08 1.73e-03
red 1.26e-01 9.84e-01 9.80e-01 9.94e-01 4.30e-01 5.92e-01 3.63e-01 8.03e-01 5.33e-01 6.89e-01 6.31e-01 8.53e-01
noise - - - - - - - - 5.23e-01 6.21e-01 8.99e-01 5.46e-01
inst:rel 6.65e-01 9.98e-01 9.96e-01 9.72e-01 2.77e-01 7.03e-01 2.04e-01 3.27e-02 2.50e-05 1.55e-12 2.14e-13 1.17e-20
inst:irr 9.20e-01 9.99e-01 9.98e-01 9.86e-01 8.80e-01 8.37e-01 4.91e-01 6.11e-01 8.26e-01 9.45e-01 9.19e-01 3.43e-02
inst:red 5.34e-01 9.82e-01 9.77e-01 9.88e-01 6.35e-01 9.28e-01 9.56e-01 6.61e-01 9.26e-01 6.17e-01 9.47e-01 9.74e-01
inst:noise - - - - - - - - 9.79e-01 8.19e-01 9.10e-01 9.90e-01
rel:irr 2.51e-02 9.91e-01 9.50e-01 9.93e-01 7.18e-02 3.56e-01 1.37e-01 6.27e-02 1.59e-10 1.62e-11 5.75e-12 2.62e-05
rel:red 1.19e-01 9.86e-01 9.99e-01 9.94e-01 1.89e-01 9.84e-01 6.28e-01 9.62e-01 4.09e-01 5.76e-01 4.83e-01 8.00e-01
rel:noise - - - - - - - - 8.24e-01 7.29e-01 4.05e-01 7.87e-01
irr:red 1.16e-01 9.91e-01 9.78e-01 9.91e-01 2.09e-01 5.55e-01 6.53e-01 9.53e-01 4.89e-01 3.88e-01 7.84e-01 9.33e-01
irr:noise - - - - - - - - 9.33e-01 8.09e-01 7.95e-01 7.41e-01
red:noise - - - - - - - - 9.16e-01 9.21e-01 2.15e-01 8.88e-01

Table 22: ANOVA analysis of factors with accuracy as predictor. The table shows the resulting pvalues,
from which the ones inferior to 0.05 are bolded.

87

Parity Majority Linear

factors ReliefF DWSSv1 DWSSv2 SBS ReliefF DWSSv1 DWSSv2 SBS ReliefF DWSSv1 DWSSv2 SBS

inst 2.05e-01 9.48e-01 7.31e-01 7.73e-01 1.10e-03 2.79e-03 6.33e-06 7.50e-07 1.90e-02 4.76e-11 4.15e-09 2.69e-03
rel 6.66e-10 3.72e-11 1.29e-10 1.53e-10 7.22e-08 1.58e-21 3.52e-21 1.17e-22 1.37e-09 9.90e-42 4.90e-33 1.31e-30
irr 4.07e-01 7.94e-01 5.81e-01 7.21e-01 1.38e-01 1.32e-02 4.64e-05 8.25e-01 6.23e-01 2.16e-02 1.26e-03 6.95e-01
red 1.83e-01 4.82e-03 1.41e-03 5.89e-05 5.00e-02 1.94e-07 1.02e-07 8.15e-13 8.54e-02 3.72e-14 1.69e-16 5.85e-25
noise - - - - - - - - 1.46e-06 2.19e-03 2.88e-04 2.14e-05
inst:rel 4.58e-01 8.01e-01 5.54e-01 6.65e-01 1.24e-01 8.02e-01 6.39e-02 9.89e-03 9.28e-04 4.97e-01 4.87e-01 3.30e-01
inst:irr 2.15e-01 8.91e-01 9.35e-01 8.39e-01 7.91e-01 4.78e-01 8.50e-01 1.57e-01 9.86e-01 9.82e-01 3.43e-01 9.17e-01
inst:red 9.11e-01 7.64e-01 8.77e-01 9.05e-01 3.42e-01 8.27e-01 8.74e-01 3.53e-01 6.97e-01 5.69e-01 7.72e-01 3.31e-01
inst:noise - - - - - - - - 2.93e-01 1.93e-01 8.32e-03 3.65e-01
rel:irr 3.68e-01 8.20e-01 8.40e-01 8.54e-01 7.28e-01 3.77e-01 5.93e-01 3.99e-01 6.43e-01 1.12e-01 6.94e-01 3.73e-02
rel:red 7.00e-01 8.12e-01 6.44e-01 9.41e-01 1.58e-03 1.12e-01 2.08e-01 6.95e-02 9.34e-02 9.81e-01 4.27e-01 1.51e-01
rel:noise - - - - - - - - 2.51e-07 9.08e-06 4.42e-03 3.86e-05
irr:red 4.63e-01 9.21e-01 4.48e-01 7.58e-01 2.99e-01 8.45e-01 4.32e-01 8.92e-01 1.86e-01 3.18e-01 1.19e-02 6.23e-01
irr:noise - - - - - - - - 4.43e-01 2.67e-01 8.38e-01 9.23e-01
red:noise - - - - - - - - 6.90e-01 2.62e-01 7.45e-01 7.06e-01

Table 23: ANOVA analysis of factors with score as predictor. The table shows the resulting pvalues,
from which the ones inferior to 0.05 are bolded.

88

Parity Majority Linear

factors ReliefF DWSSv1 DWSSv2 SBS ReliefF DWSSv1 DWSSv2 SBS ReliefF DWSSv1 DWSSv2 SBS

inst 7.94e-49 8.24e-32 1.51e-33 2.35e-19 4.13e-68 6.01e-34 2.62e-39 1.10e-14 3.04e-226 4.18e-108 4.79e-40 4.21e-54
rel 8.61e-14 4.35e-28 4.00e-26 4.64e-19 5.86e-26 5.78e-29 4.99e-32 1.68e-14 1.23e-44 3.82e-95 2.80e-37 9.75e-58
irr 4.64e-08 6.21e-19 1.26e-16 7.81e-13 1.94e-14 3.89e-18 2.71e-16 1.91e-08 4.13e-09 1.28e-64 1.54e-18 1.57e-37
red 3.15e-01 1.09e-01 7.33e-02 2.45e-01 2.27e-01 6.98e-04 5.92e-03 6.29e-01 2.15e-01 1.79e-04 1.84e-01 1.55e-01
noise - - - - - - - - 9.70e-02 2.69e-01 3.35e-03 1.94e-01
inst:rel 3.68e-18 6.69e-34 5.63e-33 1.51e-23 1.29e-31 2.75e-34 4.38e-38 2.84e-18 1.80e-36 1.87e-105 6.26e-43 6.58e-65
inst:irr 2.33e-11 6.12e-24 1.81e-22 1.45e-16 1.10e-19 9.55e-22 1.41e-20 1.09e-10 1.84e-01 6.10e-73 4.91e-21 3.79e-40
inst:red 1.06e-01 4.51e-02 1.44e-02 1.54e-01 2.51e-02 6.33e-04 1.10e-03 8.12e-01 3.35e-01 1.16e-05 1.31e-01 2.41e-01
inst:noise - - - - - - - - 4.46e-02 2.57e-02 1.22e-03 6.32e-02
rel:irr 2.29e-05 1.19e-20 6.17e-17 4.86e-16 2.89e-11 2.69e-19 3.73e-17 6.51e-11 1.80e-10 2.79e-63 6.15e-23 4.40e-47
rel:red 3.22e-01 8.32e-02 2.54e-01 1.63e-01 1.76e-02 6.20e-05 7.99e-05 6.15e-01 2.92e-01 6.14e-05 1.78e-01 6.47e-02
rel:noise - - - - - - - - 5.20e-01 2.43e-01 1.33e-04 1.19e-01
irr:red 8.91e-02 3.02e-01 9.55e-01 4.82e-01 8.10e-01 4.14e-03 1.22e-01 7.16e-01 6.59e-01 1.53e-01 5.14e-01 8.59e-01
irr:noise - - - - - - - - 8.59e-02 6.57e-02 1.43e-03 7.63e-02
red:noise - - - - - - - - 6.66e-01 4.24e-01 1.40e-02 3.44e-01

Table 24: ANOVA analysis of factors with time as predictor. The table shows the resulting pvalues,
from which the ones inferior to 0.05 are bolded.

89

12.3 Real world experimentation tables

datasets Accuracy

BIRS IWSS IWSSs iSFSM BWRRv2 BWRRv3 BWRRv4

colon 0.743± 0.13 0.726± 0.072 0.726± 0.072 0.743± 0.124 0.774± 0.109 0.826 ± 0.105 0.721± 0.197
GLIOMA 0.6± 0.179 0.62± 0.108 0.7± 0.257 0.56± 0.233 0.78 ± 0.209 0.72± 0.183 0.78 ± 0.189
leukemia 0.93± 0.095 0.957± 0.091 0.957± 0.091 0.971 ± 0.057 0.902± 0.091 0.848± 0.205 0.902± 0.128
lung_discrete 0.698± 0.123 0.695± 0.108 0.695± 0.122 0.716± 0.133 0.793± 0.129 0.821±0.139 0.779± 0.112
Prostate_GE 0.872± 0.158 0.894 ± 0.12 0.894 ± 0.12 0.873± 0.129 0.875± 0.102 0.834± 0.108 0.851± 0.136
TOX 0.544± 0.063 0.725± 0.09 0.72± 0.093 0.631± 0.118 0.748± 0.119 0.773± 0.139 0.742± 0.093
madelon 0.828± 0.112 0.87 ± 0.022 0.846± 0.043 0.867± 0.02 0.799± 0.045 0.786± 0.025 0.756± 0.039
arcene 0.77± 0.078 0.805± 0.085 0.795± 0.072 0.75± 0.095 0.78± 0.103 0.815± 0.112 0.875±0.056
gisette 0.95± 0.007 0.966± 0.005 0.967 ± 0.005 0.923± 0.005 0.906± 0.035 0.935± 0.02 0.962± 0.006
Isolet 0.613± 0.075 0.925 ± 0.013 0.922± 0.014 0.774± 0.034 0.615± 0.111 0.625± 0.115 0.574± 0.085

Table 25: Accuracy on high-dimensional datasets.

datasets Accuracy

BIRS IWSS IWSSs iSFSM BWRRv2 BWRRv3 BWRRv4

colon 15.558 15.298 7.907 5.866 17.553 13.306 3.083
GLIOMA 46.05 41.632 18.573 12.98 361.662 33.335 52.407
leukemia 64.216 59.542 19.803 17.375 97.448 18.81 17.476
lung_discrete 3.327 3.153 2.078 4.163 18.185 21.911 3.964
Prostate_GE 68.827 51.362 26.666 48.108 1228.576 31.509 242.622
TOX 123.686 124.028 56.995 43.009 4904.076 74.748 948.831
madelon 26.465 31.948 27.449 41.111 206.85 211.505 60.051
arcene 96.973 89.781 44.156 23.583 1359.733 31.947 807.115
gisette 1899.88 3223.75 578.598 330.56 19092.705 598.262 16041.196
Isolet 34.099 83.797 53.524 50.087 1943.175 295.498 18.798

Table 26: Times on high-dimensional datasets.

90

datasets Accuracy

BIRS IWSS IWSSs iSFSM BWRRv2 BWRRv3 BWRRv4

colon 4.0 ± 1.342 9.5± 3.008 9.3± 2.685 8.4± 2.107 22.3± 17.018 31.5± 24.647 30.0± 20.11
GLIOMA 5.3±1.1 10.7± 1.676 9.4± 3.137 8.4± 2.2 77.2± 44.678 43.9± 32.297 52.6± 20.126
leukemia 3.0 ± 0.894 4.5± 1.285 4.5± 1.285 5.3± 2.934 3.4± 1.02 4.3± 4.713 16.0± 10.412
lungdiscrete 7.3 ± 1.676 18.8± 4.915 16.5± 4.674 16.4± 3.499 49.3± 11.296 49.7± 12.067 31.8± 9.6
Prostate_GE 4.45 ± 1.117 8.4± 2.538 8.2± 2.676 10.45± 2.711 64.9± 42.034 43.0± 29.809 63.3± 28.852
TOX 8.9 ± 1.758 31.9± 7.203 28.9± 7.176 38.3± 4.88 239.8± 125.186 56.7± 37.744 176.3± 106.607
madelon 11.3 ± 3.437 32.5± 6.652 29.7± 10.593 13.0± 2.049 27.9± 8.006 25.6± 5.8 99.0± 47.527
arcene 12.3± 2.369 23.2± 4.534 21.7± 4.88 5.9±1.446 49.5± 70.418 26.5± 23.872 54.5± 20.647
gisette 49.3± 3.494 134.4± 11.137 107.4± 11.056 36.9± 5.069 124.8± 143.451 31.6 ± 22.486 139.3± 68.088
Isolet 10.9±2.385 108.2± 9.968 105.7± 9.768 37.1± 2.914 57.0± 45.732 24.6± 21.708 15.5± 6.786

Table 27: Feature subset size on high-dimensional datasets.

datasets Accuracy

BIRS IWSS IWSSs iSFSM BWRRv2 BWRRv3 BWRRv4

colon 10000.0± 0.0 10000.0± 0.0 4051.5± 1926.538 2333.5± 598.101 10005.0± 0.0 5005.0± 0.0 527.5± 356.73
GLIOMA 22170.0± 0.0 22170.0± 0.0 6222.0± 1815.84 2081.5± 694.316 22175.0± 0.0 5005.0± 0.0 3069.0± 788.396
leukemia 35350.0± 0.0 35350.0± 0.0 7160.0± 76.354 3114.0± 371.199 35355.0± 0.0 5004.5± 1.5 1404.5± 407.544
lungdiscrete 1625.0± 0.0 1625.0± 0.0 779.5± 190.571 2424.0± 876.892 1630.0± 0.0 1630.0± 0.0 602.0± 332.748
ProstateGE 29830.0± 0.0 29830.0± 0.0 7501.5± 1274.219 2207.25± 387.59 29835.0± 0.0 5005.0± 0.0 3785.0± 1210.372
TOX 28740.0± 0.0 28740.0± 0.0 9774.5± 3680.781 8044.0± 1124.355 28745.0± 0.0 2505.0± 0.0 12073.0± 5642.741
madelon 2500.0± 0.0 2500.0± 0.0 2018.0± 505.694 3743.5± 978.43 2505.0± 0.0 2505.0± 0.0 1280.0± 378.319
arcene 50000.0± 0.0 50000.0± 0.0 18265.0± 3972.179 3347.5± 761.444 50005.0± 0.0 5005.0± 0.0 15205.0± 4812.484
gisette 25000.0± 0.0 25000.0± 0.0 5000.0± 0.0 2990.0± 1034.338 25005.0± 0.0 2505.0± 0.0 16880.0± 5320.068
Isolet 3085.0± 0.0 3085.0± 0.0 2518.0± 321.179 4770.5± 1007.486 3090.0± 0.0 2505.0± 0.0 721.0± 211.433

Table 28: Wrapper evaluations on high-dimensional datasets.

91

12.4 Real world experimentation boxplots

In this section we display the results of the experimentation on high-dimensional
datasets as several different boxplots.

Figure 36: Accuracy boxplot on arcene dataset.

Figure 37: Accuracy boxplot on colon dataset.

Figure 38: Accuracy boxplot on gisette dataset.

92

Figure 39: Accuracy boxplot on glioma dataset.

Figure 40: Accuracy boxplot on isolet dataset.

Figure 41: Accuracy boxplot on leukemia dataset.

Figure 42: Accuracy boxplot on lung discrete dataset.

93

Figure 43: Accuracy boxplot on madelon dataset.

Figure 44: Accuracy boxplot on prostate dataset.

Figure 45: Accuracy boxplot on TOX dataset.

94

References

[1] Saeys, Y., Inza, I., and Larranaga, P., “A review of feature selection techniques
in bioinformatics,” Bioinformatics (Oxford, England), vol. 23, pp. 2507–17,
Nov. 2007. doi: 10.1093/bioinformatics/btm344.

[2] Almugren, N. and Alshamlan, H., “A survey on hybrid feature selection methods
in microarray gene expression data for cancer classification,” IEEE Access,
vol. 7, pp. 78 533–78 548, 2019. doi: 10.1109/ACCESS.2019.2922987.

[3] Yu, L. and Liu, H., “Eficient feature selection via analysis of relevance and
redundancy,” Journal of Machine Learning Research, vol. 5, pp. 1205–1224,
Dec. 2004.

[4] John, G. H., Kohavi, R., and Pfleger, K., “Irrelevant features and the subset
selection problem,” in Machine Learning Proceedings 1994, Cohen, W. W. and
Hirsh, H., Eds., San Francisco (CA): Morgan Kaufmann, 1994, pp. 121–129,
isbn: 978-1-55860-335-6. doi: https://doi.org/10.1016/B978-1-55860-335-
6.50023-4. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9781558603356500234.

[5] Jović, A., Brkić, K., and Bogunović, N., A review of feature selection methods
with applications, 2015. doi: 10.1109/MIPRO.2015.7160458.

[6] Sánchez-Maroño, N., Alonso-Betanzos, A., and Tombilla-Sanromán, M., Filter
methods for feature selection – a comparative study, Yin, H., Tino, P., Corchado,
E., Byrne, W., and Yao, X., Eds., Berlin, Heidelberg, 2007.

[7] El Aboudi, N. and Benhlima, L., “Review on wrapper feature selection approaches,”
in 2016 International Conference on Engineering MIS (ICEMIS), 2016, pp. 1–5.
doi: 10.1109/ICEMIS.2016.7745366.

[8] Sun, L., Kong, X., Xu, J., Xue, Z., Zhai, R., and Zhang, S., “A hybrid gene
selection method based on relieff and ant colony optimization algorithm for
tumor classification,” Scientific Reports, vol. 9, Jun. 2019. doi: 10.1038/s41598-
019-45223-x.

[9] Ruiz, R., Riquelme, J., and Aguilar-Ruiz, J., “Incremental wrapper-based gene
selection from microarray data for cancer classification,” Pattern Recognition,
vol. 39, pp. 2383–2392, Dec. 2006. doi: 10.1016/j.patcog.2005.11.001.

[10] Bermejo, P., Gámez, J., and Puerta, J., “On incremental wrapper-based
attribute selection: Experimental analysis of the relevance criteria,” Jan. 2008.

[11] Nakariyakul, S., “High-dimensional hybrid feature selection using interaction
information-guided search,” Knowledge-Based Systems, vol. 145, pp. 59–66,
2018, issn: 0950-7051. doi: https://doi.org/10.1016/j.knosys.2018.01.002.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950705118300017.

95

https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1109/ACCESS.2019.2922987
https://doi.org/https://doi.org/10.1016/B978-1-55860-335-6.50023-4
https://doi.org/https://doi.org/10.1016/B978-1-55860-335-6.50023-4
https://www.sciencedirect.com/science/article/pii/B9781558603356500234
https://www.sciencedirect.com/science/article/pii/B9781558603356500234
https://doi.org/10.1109/MIPRO.2015.7160458
https://doi.org/10.1109/ICEMIS.2016.7745366
https://doi.org/10.1038/s41598-019-45223-x
https://doi.org/10.1038/s41598-019-45223-x
https://doi.org/10.1016/j.patcog.2005.11.001
https://doi.org/https://doi.org/10.1016/j.knosys.2018.01.002
https://www.sciencedirect.com/science/article/pii/S0950705118300017
https://www.sciencedirect.com/science/article/pii/S0950705118300017

[12] Leung, Y. and Hung, Y., “A multiple-filter-multiple-wrapper approach to gene
selection and microarray data classification,” IEEE/ACM transactions on
computational biology and bioinformatics / IEEE, ACM, vol. 7, pp. 108–17,
Jan. 2010. doi: 10.1109/TCBB.2008.46.

[13] Vergara, J. R. and Estévez, P. A., “A review of feature selection methods based
on mutual information,” Neural Computing and Applications, vol. 24, no. 1,
pp. 175–186, Mar. 2013, issn: 1433-3058. doi: 10.1007/s00521-013-1368-0.
[Online]. Available: http://dx.doi.org/10.1007/s00521-013-1368-0.

[14] Shannon, C. E., “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948. doi: 10.1002/j.1538-
7305.1948.tb01338.x.

[15] Witten, I. H., Frank, E., and Hall, M. A., “Chapter 7 - data transformations,”
in Data Mining: Practical Machine Learning Tools and Techniques (Third
Edition), ser. The Morgan Kaufmann Series in Data Management Systems,
Witten, I. H., Frank, E., and Hall, M. A., Eds., Third Edition, Boston: Morgan
Kaufmann, 2011, pp. 305–349, isbn: 978-0-12-374856-0. doi: https://doi.
org / 10 . 1016 / B978 - 0 - 12 - 374856 - 0 . 00007 - 9. [Online]. Available: https :

//www.sciencedirect.com/science/article/pii/B9780123748560000079.
[16] Yang, H. H. and Moody, J., “Feature selection based on joint mutual information,”

in In Proceedings of International ICSC Symposium on Advances in Intelligent
Data Analysis, 1999, pp. 22–25.

[17] “Feature selection using joint mutual information maximisation,” Expert
Systems with Applications, vol. 42, no. 22, pp. 8520–8532, 2015, issn: 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2015.07.007.

[18] Kira, K. and Rendell, L., “The feature selection problem: Traditional methods
and a new algorithm,” in AAAI, 1992.

[19] Kononenko, I., “Estimating attributes: Analysis and extensions of relief,” in
Machine Learning: ECML-94, Bergadano, F. and De Raedt, L., Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 1994, pp. 171–182, isbn: 978-3-540-
48365-6.

[20] Robnik-Sikonja, M. and Kononenko, I., “An adaptation of relief for attribute
estimation in regression,” ICML ’97: Proceedings of the Fourteenth International
Conference on Machine Learning, Feb. 2000.

[21] Moore, J. H. and White, B. C., “Tuning relieff for genome-wide genetic
analysis,” in Evolutionary Computation,Machine Learning and Data Mining in
Bioinformatics, Marchiori, E., Moore, J. H., and Rajapakse, J. C., Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 166–175, isbn: 978-3-540-
71783-6.

[22] Robnik-Sikonja, M. and Kononenko, I., “Theoretical and empirical analysis
of relieff and rrelieff,” Machine Learning, vol. 53, pp. 23–69, Oct. 2003. doi:
10.1023/A:1025667309714.

96

https://doi.org/10.1109/TCBB.2008.46
https://doi.org/10.1007/s00521-013-1368-0
http://dx.doi.org/10.1007/s00521-013-1368-0
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/https://doi.org/10.1016/B978-0-12-374856-0.00007-9
https://doi.org/https://doi.org/10.1016/B978-0-12-374856-0.00007-9
https://www.sciencedirect.com/science/article/pii/B9780123748560000079
https://www.sciencedirect.com/science/article/pii/B9780123748560000079
https://doi.org/https://doi.org/10.1016/j.eswa.2015.07.007
https://doi.org/10.1023/A:1025667309714

[23] Hu, Z., Bao, Y., Xiong, T., and Chiong, R., “Hybrid filter-wrapper feature
selection for short-term load forecasting,” Engineering Applications of Artificial
Intelligence, vol. 40, pp. 17–27, Apr. 2015. doi: 10.1016/j.engappai.2014.12.
014.

[24] Ding, J. and Fu, L., “A hybrid feature selection algorithm based on information
gain and sequential forward floating search,” Journal of Intelligent Computing,
vol. 9, p. 93, Sep. 2018. doi: 10.6025/jic/2018/9/3/93-101.

[25] Hsu, H.-H., Hsieh, C.-W., and Lu, M.-D., “Hybrid feature selection by combining
filters and wrappers,” Expert Syst. Appl., vol. 38, pp. 8144–8150, Jul. 2011.
doi: 10.1016/j.eswa.2010.12.156.

[26] Vollmer, M., Rutter, I., and Böhm, K., “On complexity and efficiency of mutual
information estimation on static and dynamic data,” in EDBT, 2018.

[27] Urbanowicz, R. J., Olson, R. S., Schmitt, P., Meeker, M., and Moore, J. H.,
“Benchmarking relief-based feature selection methods for bioinformatics data
mining,” Journal of Biomedical Informatics, vol. 85, pp. 168–188, 2018, issn:
1532-0464. doi: https://doi.org/10.1016/j.jbi.2018.07.015. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1532046418301412.

[28] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., and Duchesnay, É., Scikit-learn: Machine learning in python, 2018. arXiv:
1201.0490 [cs.LG].

[29] Dua, D. and Graff, C., UCI machine learning repository, 2017. [Online].
Available: http://archive.ics.uci.edu/ml.

[30] Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu,
H., “Feature selection: A data perspective,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, p. 94, 2018.

[31] Guyon, I., Gunn, S., Ben-Hur, A., and Dror, G., “Result analysis of the nips
2003 feature selection challenge,” vol. 17, Jan. 2004.

[32] Molina, L., Belanche, L., and Nebot, A., “Feature selection algorithms: A
survey and experimental evaluation,” pp. 306–313, 2002. doi: 10.1109/ICDM.
2002.1183917.

[33] Wang, A., An, N., Chen, G., Li, L., and Alterovitz, G., “Accelerating wrapper-
based feature selection with k-nearest-neighbor,” Knowledge-Based Systems,
vol. 83, pp. 81–91, 2015, issn: 0950-7051. doi: https://doi.org/10.1016/j.
knosys.2015.03.009. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950705115001033.

97

https://doi.org/10.1016/j.engappai.2014.12.014
https://doi.org/10.1016/j.engappai.2014.12.014
https://doi.org/10.6025/jic/2018/9/3/93-101
https://doi.org/10.1016/j.eswa.2010.12.156
https://doi.org/https://doi.org/10.1016/j.jbi.2018.07.015
https://www.sciencedirect.com/science/article/pii/S1532046418301412
https://arxiv.org/abs/1201.0490
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/ICDM.2002.1183917
https://doi.org/10.1109/ICDM.2002.1183917
https://doi.org/https://doi.org/10.1016/j.knosys.2015.03.009
https://doi.org/https://doi.org/10.1016/j.knosys.2015.03.009
https://www.sciencedirect.com/science/article/pii/S0950705115001033
https://www.sciencedirect.com/science/article/pii/S0950705115001033

	Introduction
	Motivation
	Goals
	Document structure

	Concepts
	Feature selection
	Relevance and redundancy
	Families of solutions
	Previous work

	Filter algorithms
	Information-based
	Mutual information
	Symmetrical Uncertainty
	Joint Mutual Information

	Relief-based algorithms
	Relief
	ReliefF
	RReliefF
	Iterative RBAs
	Tuned ReliefF (TuRF)

	Analysis of Relief mesures
	Interpretation of Relief metric
	Why is Relief able to detect interactions?
	Do irrelevant features affect the Relief metric
	Selecting a cut-off

	Wrapper algorithms
	Sequential wrappers

	Hybrid algorithms
	Two stage approach
	iSFSM
	MFMW

	Wrapper guided by filter approach
	BIRS
	IWSS

	Proposed algorithms
	BWRR
	Theoretical base
	Evaluation measure

	BWRRv2
	BWRRv3
	BWRRv4
	Complexity

	Experimental set-up
	Experimental phases
	Algorithms
	Real-world experimentation setup
	Datasets
	Evaluation measure

	Synthetic experimentation setup
	Datasets
	Dataset factors
	Dataset generation
	Evaluation measure

	Experiments discussion
	Synthetic experiment
	Real world experiment
	Experiments on regular datasets
	Experiments on high dimensional datasets

	Conclusion
	Future work

	Project Management
	Task definition
	Summary of tasks
	Gantt chart
	Risk contingency plan
	Resources
	Methodology and validation
	Budget
	Staff costs
	Generic costs
	Risk control budget
	Total budget

	Deviations
	Tasks
	Budget
	Methodology

	Sustainability
	Self-assessments
	Environmental impact
	Economic impact
	Social impact

	Technical competences
	Experiment results
	Interaction plots
	ANOVA analisys
	Real world experimentation tables
	Real world experimentation boxplots

	References

