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Abstract

The motivation of this thesis is to explore the generation of arbitrary microwave

waveforms through photonic means, showing the advantages they may offer. Some

techniques will be presented for this purpose, as well as their applications.

Firstly, the technique known as Direct Space To Time Mapping (DST) will be presen-

ted, which as the name properly says, turns the spatial profile into the time profile

of the beam.

Then, we will present the main technique of the thesis, which shows a great analogy

with the DST. This technique is known as Frequency to Time Mapping (FTM) or

Direct Fourier Transformation (DFT). In order to derive the expressions needed for

the understanding of the DFT, dispersion theory in media will be explained starting

from the macroscopic Maxwell equations derived in the appendix.

It will be seen how combining spectrum shaping techniques along with the DFT we

are able to generate an arbitrary radio-frequency waveform. After being mathem-

atically derived, simulations will be performed to put numbers and further prove of

the theory. The achievable time bandwidth product (TBWP) will also be derived

and later compared to the one obtained by Matlab simulation.

Furthermore, the DFT will then be applied for time reversal by photonic means. A

microwave signal up to 10 nanoseconds long can be time-reversed using fibers, as it

will be proved in theory and simulation.

Applications related to these microwave generation techniques will also be explored,

showing the research interest of this cutting-edge discipline.
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Chapter 1

Introduction

Microwave Photonics (Capmany and Novak, 2007) (Jäger and Stöhr, 2005) is cur-

rently a very active research field, combining the potential of photonics techniques

and technologies for the processing of microwave (MW) signals, involving either the

generation, manipulation, transport or measurement of radio frequency (RF) signals.

The scope of this thesis is to show and explain pulse shaping techniques which allow

the generation of arbitrary microwave signals, as well as the applications they may

have, pointing out the benefits with respect to other electronic technologies present

in the industry nowadays. Needless to say, RF signals are currently one of the most

important means of communication and of vast applications in many other fields,

and hence, the possibility of modeling them with precision is of very high interest.

Recent works have also expanded the range of the generated waves to the THz regime

(Veli et al., 2021).

The presented techniques can provide signals with very high values of time-bandwidth

product (TBWP) (C. Wang, 2014) useful for many current applications such as

ultrawide-band and multiple-access communications systems (R. Qiu, Liu and Shen,

2005), electronic countermeasures, high-penetration and high-precision radars (Pan

and Y. Zhang, 2020), medical imaging and modern instrumentation systems (Hämäläinen

et al., 2021), which cannot be achieved by electronic means (C. Wang, Hao Chi and

Jianping Yao, 2008) (Jianping Yao, 2011) as digital electronics are limited to lower

frequencies and bandwidth. Photonic tecniques are better suited to perform real
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time high-speed processing and measurements. As a counterpart, photonic systems

may be costly and harder to implement.

A set of photonic techniques for microwave generation (MWG) are hence presen-

ted, proved and discussed in this thesis aiming to advance in understanding and

development of such cutting-edge techniques.

The first technique to be presented is Direct Space To Time Mapping (DST), which

turns the spatial profile of the outgoing laser into the time profile of the signal. This

technique makes use of lenses and gratings. Compared to the following techniques,

this one presents the problem of propagation in free-space, which makes the system

bulky and costly, as well as hard to calibrate.

The Direct Fourier Transformation (DFT) or Frequency to Time Mapping (FTM)

is then presented, which combined with spectrum shaping can generate arbitrary

radio-frequency waveforms, showing a TBWP not reachable by other means. Recent

works have shown that through little add-ups to this technique (Rashidinejad and

A. M. Weiner, 2014) a TBWP equal to the upper bound given by the number of pulse

shaper control elements can be obtained, which is ultimately given by the resolution

and range of the waveshaper.

The achievable TBWP by the latter will also be derived and later compared to the

one obtained by Matlab simulation.

Making use of the DFT, a method for time reversal of a RF signal through photonics

will be performed. Time reversal (TR) has been proved to have many applications,

specially in transmission of ultrawide-band signals (which can be reached through

the explained methods) in wireless communication for rich multipath environments

(R. Qiu, Liu and Shen, 2005) (Alexandropoulos et al., 2019).

Other applications related to these microwave generation techniques will as well be

explored.
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Chapter 2

Theoretical basis

In this chapter we present the dispersion theory needed for the purpose of reaching

the goals of the thesis. First of all, for clarification and unification in criteria we shall

define Fourier transforms for time and space, which are needed for the subsequent

explanations. Then, starting from the Maxwell macroscopic equations, presented in

the Appendix A, the transfer function in dispersive media is derived, in the frequency

and in the time domain. Finally, the TBWP is both defined and explained.

2.1 Fourier Transform Criterion

Here we present the Fourier transform criterion we have chosen to be used during

the thesis. The first two expressions correspond to time to frequency and frequency

to time transformations while the last two relate space to spatial frequency and vice

versa.

F (w) = F{f(t)}(w) =
∫ ∞
−∞

f(t)e−jwtdt. (2.1)

f(t) = F−1{F (w)}(t) = 1
2π

∫ ∞
−∞

F (w)ejwtdw. (2.2)

S(k) = F{s(x)}(k) =
∫ ∞
−∞

s(x)ejkxdx. (2.3)

s(x) = F−1{S(k)}(x) = 1
2π

∫ ∞
−∞

S(k)e−jkxdk. (2.4)
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2.1.1 Dispersion in media

Starting from the standard macroscopic Maxwell equations derived in the appendix,

we can obtain for the electric (E) and magnetic fields (H) the following relation:

∇× (∇× E) = −∇× ∂B
∂t
. (2.5)

Substituting B by its correspondence with the fields H and M (A.10) we arrive to:

∇× (∇× E) = −∇× µ0
∂(H + M)

∂t
. (2.6)

Doing the proper for H and its relation with D and Jfree (A.12),

∇× (∇× E) = −µ0
∂2D
∂t2
− µo

∂Jfree
∂t

−∇× µ0
∂M
∂t

. (2.7)

Now we assume an isotropic, sourceless, homogeneous, non magnetic and non con-

ductive medium. Therefore, the equation can be simplified:

∇2E = µ0ε0
∂2E
∂t2

+ µ0
∂2P
∂t2

, (2.8)

where we have been able to perform such simplifications taking into account that

the medium meets all the requirements previously mentioned. Expressing the latter

in Cartesian coordinates reads:(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 −
1
c2
∂2

∂t2

)
E = −µ0

∂2P
∂t2

, (2.9)

taking into account that c = 1√
ε0µ0

, where c is the speed of light in vacuum.

The response of the medium is hence given by the polarization P. Usually this

polarization is decomposed into two terms, the linear term and the non-linear one,

P = PL + PNL. We will only consider the linear effects here, as we are staying in

the frame of linear optics.

As known from classical electrodynamics (Jackson, 1975) when the linear polarization

is parallel to the electric field the medium is said to be isotropic, the proportionality
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coefficient will not depend on the direction, but it may depend on the frequency. In

the frequency domain we have:

P̃L(w, z) = ε0χ(w)Ẽ(w, z), (2.10)

where χ(w) is the frequency-dependent term called electric susceptibility. The tilde

shows the complex nature of the electric field in the frequency domain. The dielectric

constant is expressed as a function of the previous as:

ε(w) =
(
1 + χ(w)

)
ε0. (2.11)

As a function of time, using the convolution theorem:

PL(t, z) =
∫ t

−∞
ε0χ(t′)E(t− t′, z)dt′, (2.12)

where the upper limit is t, expressing the causal response of the medium.

Going back to equation (2.9) some simplifications are made to allow the equation

to be resolved. First of all we suppose that the wave propagates in the z direction.

Hence, it can be assumed that the variations in the x and y directions are negligible

in comparison to the ones in the z direction (paraxial regime).

Thus, the equation is reduced to:(
∂2

∂z2 −
1
c2
∂2

∂t2

)
E(t, z) = −µ0

∂2P(t, z)
∂t2

, (2.13)

obviating the dependence on x and y.

Furthermore, the Fourier transform of the latter along with expressions (2.10) and

(2.11) gives place to:(
∂2

∂z2 + 1
c2w

2
)
Ẽ(w, z) = −µ0ε0w

2χ(w)Ẽ(w, z) (2.14)(
∂2

∂z2 + w2µ0ε(w)
)
Ẽ(w, z) = 0, (2.15)

Theoretical basis 5



getting to the final wave equation. The general solution for the latter is:

Ẽ(w, z) = K1e
−jk(w)z +K2e

jk(w)z (2.16)

K1 +K2 = Ẽ(w, 0). (2.17)

Taking the solution propagating in the positive direction:

Ẽ(w, z) = Ẽ(w, 0)e−jk(w)z, (2.18)

where k is defined by the dispersion relation:

k2(w) = w2µ0ε(w) = w2

c2

(
1 + χ(w)

)
= w2

c2 n
2(w), (2.19)

where n(w) is the refractive index of the material. The bandwidth w̃ = w − w0 is

much smaller than the carrier frequency w0. So we can expand k(w) around the

carrier frequency w0:

k(w) = k(w0) + dk

dw

∣∣∣∣
w0

(w − w0) + d2k

dw2

∣∣∣∣
w0

(w − w0)2 +O(w3). (2.20)

We can neglect higher order terms and equation (2.18) can be rewritten as:

Ẽ(w, z) = Ẽ(w, z)e−jk0ze−jδkz (2.21)

Where k0 is k(w0) and δk = k(w)−k0. The free-space wavenumber k0 has to be much

higher than δk, so the field variations over distances of the order of the wavelength

are much smaller than the value of the envelope itself (Slowly Varying Envelope

Approximation, SVEA, in space). Then it makes sense to represent the envelope of

the previous pulse as centered at w0:

Ẽ(w, z) = Ẽ(w + w0, t)e−jδkz (2.22)

This is a pure mathematical expression and all waves can be represented like this,

however it does not make sense for all waves to be represented by an envelope and

a carrier frequency if the following equation for the SVEA is not satisfied:
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∣∣∣∣ ∂∂z Ẽ(w, z)
∣∣∣∣� k0|Ẽ(w, z)| (2.23)

Leading to: ∣∣∣δk
k0

∣∣∣� 1 (2.24)

Meaning that the envelope does not change significantly after traveling a distance of

the order of the carrier wavelength λ0 = 2π
w0
.

Performing the Fourier transform on (2.21):

Ẽ(t, z) =
[ 1
2π

∫ ∞
∞

dwẼ(w, z)e−jδkzej(w−w0)t
]
ej(w0t−k0z) (2.25)

Which can be expressed as:

Ẽ(t, z) = Ẽ(t, z)ej(w0t−k0z) (2.26)

Where Ẽ(t, z) is now the time envelope of the pulse, corresponding to the integral

inside the brackets. For simplification of nomenclature, from now on, we will obviate

the tilde that represents the complex nature of the field/envelope.

Further simplification of the wave equation requires the use of some envelope prop-

erties. First of all, we expand ε(w) around w0, taking into account equations (2.10)

and (2.11), it leads to the following expression for the linear polarization:

PL(w, z) =
(
ε(w0)− ε0 +

∞∑
n=1

dnε

dwn

∣∣∣∣
w0

(w − w0)n)
)
E(w, z). (2.27)

Expressing it in terms of the time pulse envelope:

PL(t, z) =
[(
ε(w0)− ε0

)
E(t, z) +

∞∑
n=1

(−j)n d
nε

dwn

∣∣∣∣
w0

∂n

∂tn
E(t, z)

]
ej(w0t−k0z), (2.28)

where the term inside the brackets describes the slowly time varying envelope of the

polarization vector.

The next step is to change the coordinate system, adopting the retarded frame of
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reference, moving with the group velocity vg =
(
dk
dw

∣∣∣∣
w0

)−1
. Therefore, the following

transformations are performed:

ζ = z, ϑ = t− z

vg
, (2.29)

and according to the chain rule:
∂

∂z
= ∂

∂ζ
− 1
vg

∂

∂ϑ
,

∂

∂t
= ∂

∂ϑ
. (2.30)

When performing calculations on (2.13) using (2.25) and (2.28) in the new coordinate

system we obtain (Diels and Rudolph, 2006):

∂

∂ζ
E(ϑ, ζ)− j

2k
′′
0
∂2

∂ϑ2E(ϑ, ζ) +Θ = −j2k0

∂

∂ζ

(
∂

∂ζ
− 2
vg

∂

∂ϑ

)
E(ϑ, ζ), (2.31)

where Θ represents the higher order terms.

It can also be observed that the second derivative of k centered at w0 comes out in

the equation. By strict derivation this factor is expressed as:

k′′0 = d2k

dw2

∣∣∣∣
w0

= − 1
v2
g

dvg
dw

∣∣∣∣
w0

= GVD. (2.32)

This second derivative is mostly known as the group velocity dispersion (GVD)

parameter. In order to simplify the wave equation we have to take into account

some of the properties previously described for these pulses and their envelopes.

We first present the SVEA in the time domain, which is quite similar to the one in

space, i.e.: ∣∣∣∣ ∂∂tE(t, z)
∣∣∣∣� w0|E(t, z)|. (2.33)

The right hand side term in (2.31) can be neglected according to (2.23) (Sazonov,

2017) along with the SVEA in time (2.33), as seen below, where the dependency of

the coordinates for the envelope has been omitted:
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−j
2k0

∂

∂ζ

(
∂

∂ζ
− 2
vg

∂

∂ϑ

)
E = −j2k0

∂

∂ζ

(
∂

∂z
− 1
vg

∂

∂t

)
E , (2.34)∣∣∣∣−j2k0

(
∂

∂z
− 1
vg

∂

∂t

)
E
∣∣∣∣� ∣∣∣∣E ∣∣∣∣. (2.35)

Thus: ∣∣∣∣−j2k0

∂

∂ζ

(
∂

∂ζ
− 2
vg

∂

∂ϑ

)
E
∣∣∣∣� ∣∣∣∣ ∂∂ζ E

∣∣∣∣. (2.36)

Having proved the latter, we can now neglect the right hand side term of equation

(2.31). For even further simplifications, the higher order polarization terms can also

be omitted, therefore Θ = 0, this is the case of a dielectric constant changing slowly

over frequencies within the pulse spectrum. If so, equation (2.31) reduces to:
∂

∂ζ
E(ϑ, ζ)− j

2k
′′
0
∂2

∂ϑ2E(ϑ, ζ) ' 0. (2.37)

Assuming the new frame of reference moving with the group velocity, from now on,

the ϑ will be substituted by t and the ζ by z. Equation (2.37) may be solved in the

frequency domain. Therefore we express the field envelope in the time domain as the

inverse Fourier transform of the electric field envelope as a function of the frequency:

E(z, t) = 1
2π

∫ ∞
−∞
E(w, z)ejwtdw, (2.38)

then, we substitute the subsequent expression in equation (2.37), giving place to:
1

2π

∫ ∞
−∞

[
∂E
∂z

+ j
k′′0w

2

2 E
]
ejwtdw = 0, (2.39)

which is fulfilled when:
∂E
∂z

+ j
k′′0w

2

2 E = 0, (2.40)

with solution:

E(w, z) = E(w, 0)e−j
w2k′′0

2 z, (2.41)
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clearly seeing the effect of the dispersion and identifying it with the following transfer

function:

H(w, z) = e−j
w2k′′0

2 z. (2.42)

Hence, according to the theory for linear time invariant systems, in the time domain

the effect of the dispersion is expressed as the convolution between the pulse and the

impulse response function:

E(t, z) = h(t, z) ∗ E(t, 0) =
∫ ∞
−∞

h(t− t′, z)E(t′, 0)dt′. (2.43)

In order to find the expression for the impulse response function, it is only needed

to perform the inverse Fourier transform to the transfer function:

h(t, z) = 1
2π

∫ ∞
−∞

H(w, z)ejwtdw, (2.44)

h(t, z) = e
j

2k′′0 z
t2√

j2πk′′0z
. (2.45)

From now on the factor k′′z will be substituted by the letter Θ as these two paramet-

ers come always multiplying and hence, expressions become clearer. This parameter

is commonly known as group delay dispersion (GDD).

GDD = GVD · z = d2k

dw2

∣∣∣∣
w0

· z (2.46)

Sometimes, the dispersion value is not given by the GDD. It is usual in literature and

in the industry to give the dispersion value as the delay dispersion coefficient, defined

by the derivative of the inverse of the velocity group with respect to wavelength

(rather than angular frequency).

D(λ) = ∂

∂λ

1
vg

(2.47)

Taking into account that w = 2πc
λ
, the GVD and the dispersion coefficient are related

by:

D = ∂

∂λ

1
vg

= ∂

∂λ

∂k

∂w
= ∂w

∂λ

∂

∂w

∂k

∂w
= −2πc

λ2
∂2k

∂w2 = −2πc
λ2 GVD (2.48)
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Having the GVD, the total GDD is easily found multiplying by the length of the

fiber.

2.1.2 The case of the Gaussian pulse

For the case of the Gaussian pulse dispersion, an analytical solution can be found.

The Gaussian pulse may be expressed as (Ladányi, Menkyna and Mullerova, 2013):

E(t, 0) = E0e
−( t

τ0
)2
, (2.49)

working in the frequency domain, the expression for the output is:

E(t, z) =
∫ ∞
−∞
E(w, 0)e−jΘ

2 w
2
ejwtdw, (2.50)

where E(w, 0) comes given by the Fourier transform:

E(w, 0) = 1
2π

∫ ∞
−∞

e
−( t

τ0
)2
e−jwtdt = E0

√
πτ0e

−
w2τ2

0
4 . (2.51)

Substituting the latter in (2.50):

E(t, z) = E0
√
πτ0

2π

∫ ∞
−∞

e−
w2τ2

0
4 e−j

Θ
2 w

2
ejwtdw, (2.52)

E(t, z) = E0τ0

2
1(

τ2
0
4 + jΘ

2

) 1
2
e
− t2
τ2
0 +2jΘ . (2.53)

The Gaussian pulse, although maintaining its Gaussian shape through propagation,

is broadened and acquires a phase chirp. A chirp is the temporal variation of the

phase around the carrier frequency w0. The field can be expressed as E(t) = |E0|eψ(t),

with ψ(t) = φ0 + φ(t).

The instantaneous frequency of the total pulse is given by:

winst(t) = w0 + d

dt
φ(t). (2.54)

If it is linearly time-dependent, then we say the pulse is chirped or frequently mod-

ulated:

winst(t) = w0 + αt, (2.55)
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where α is the chirp parameter. When we talk in terms of the pulse envelope,

this carrier frequency is omitted as shown in (2.26). In order to see the chirp and

broadening of the pulse we can rewrite expression (2.53) as:

E(t, z) = E0τ0

2
1(

τ2
0
4 + jΘ

2

) 1
2
e

−
(

t2

τ2
0 + 4Θ2

τ2
0

)
e
j

(
2t2

τ4
0

Θ +4Θ

)
, (2.56)

where we can clearly see the time broadening in the first exponential by a factor

M =
√

1 + 4Θ2/τ 4
0 and a chirp parameter α = 1

τ4
0

4Θ +Θ
.

2.2 Time-Bandwidth product

The time-bandwidth product (TBWP) is a parameter that describes the relation

between the time duration of the pulse and its bandwidth. Both the concepts of

time duration and bandwidth entail a certain degree of arbitrariness, as it is difficult

to precisely define where a function starts and ends, since it cannot be limited in time

and bandwidth all at once. A parameter commonly used in the literature (Papoulis,

1977) to define the time duration ∆t, specially in Gaussian pulses, is the full width

at half maximum (FWHM) of the intensity profile, related to the absolute square

value of the field |E(t)|2. Mathematically this reads as |E(∆t
2 )|2 = E2(t=0)

2 = E2
0
2 . For

the bandwidth, the same procedure is followed, taking the FWHM of the spectral

intensity |E(w)|2, now derived from |E(∆w
2 )|2 = |E(w=0)|2

2 . There are other ways of

defining the time duration and bandwidth, however this is the most common and

the one we will employ. These definitions will only have meaning if the pulse’s time

and frequency profile follow a well-defined decaying trend.

Since the time duration and the bandwidth are related by Fourier transformation,

the inequality derived from the uncertainty principle for Fourier transform pairs gives

place to:

TBWP = ∆w∆t ≥ c (2.57)

Where c is a constant that depends on the pulse shape and is of the order of 2π.
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The equality holds for what are called Transform-limited pulses, usually understood

as the pulse with the lowest time duration achievable for a given spectrum. The

condition of being at the transform limit is essentially equivalent to the condition of

a frequency-independent spectral phase, basically implying that the time–bandwidth

product is at its minimum and that there is no chirp, as it is the case of the non-

chirped Gaussian pulse.

Since we are interested in Gaussian pulses, produced by Mode-Locked Lasers (MLL),

we will analyze them, looking for the value of c and how the TBWP changes through

propagation in a dispersive media. As seen in section 2.1.2, the pulse envelope is

expressed as a function of time as:

E(t) = E0e
−( t

τ0
)2

(2.58)

and as a function of the frequency:

E(w) = E0
√
πτ0e

−
w2τ2

0
4 . (2.59)

Hence, the FWHM for time and bandwidth are:

∆t = τ0
√

2ln2, (2.60)

∆w = 2
√

2ln2
τ0

. (2.61)

Therefore the TBWP will be:

TBWP = 4 · ln2 ' 2.77, (2.62)

which suggests that the product only depends on the kind of pulse (Gaussian, Lorent-

zian, squared...) but not on parameters such as the temporal length. However, after

going through a dispersive propagation the pulse changes the TBWP, becoming big-

ger (the only possible way, as stated by (2.57)). The pulse is broadened in time, as

seen in (2.56) and mentioned in the end of section 2.1.2, while the modulus of the

spectrum remains constant (only a phase shift is introduced by dispersion).

There is another definition for the bandwidth that will often be used during the
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thesis because it offers some simplifications and it may sometimes be more visual.

Because of the properties of Fourier transformations, it is seen straightforwardly

that the bandwidth of a Gaussian pulse in Hz is inversely proportional to the time

duration (2.61) (directly related to τ0 (2.60)), so BW ∝ 1
τ0
, or in radians 2π

τ0
. When

substituting the ∆w by ∆wTot = 2π
τ0

we see that this value is the Full Width at 0.0848

Maximum, almost equivalent to the bandwidth at −10 dB, comprising most of the

spectral intensity, understanding it as a more extended estimation of the bandwidth.

As we will use the Full Width at ∼ −10 dB Maximum for the "total" bandwidth, we

might as well use it when talking about the estimated "total" time duration or the

estimated "total" beam width.

In the case of a Gaussian function e−( x
x0

)2
, the Full Width at approximately −10 dB

is:

∆x = π√
2
x0 (2.63)
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Chapter 3

Techniques

3.1 Pulse Shaping Techniques

3.1.1 Direct Space to Time Transformation

First of all we will present a technique based on diffraction without any use of

dispersion. In order to do that, the system gratings ought to be dispersion-free

(Treacy, 1969), this system is of particular interest since there is an analogy with the

system that will be presented later (DFT). The set-up used for this transformation

is shown in Figure 3.1.

Figure 3.1: Set-up used for Direct Space to Time (DST). Consisting on a Mode-
Locked Laser (MLL), a mask m(x), a diffraction grating, a lens separated from it a
distance equal to the focal length and a very small slit at the back focal plane.

We begin with an ultra-short pulse with a spatial profile s(x) and a time profile a(t).

Later on, the expressions will be particularized for a Gaussian pulse, but for now
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we will keep it general. The central frequency of the pulse will be w0, so it can be

expressed as:

Ein(x, t) = Re[Ein(x, t)ejw0t] = Re[s(x)a(t)ejw0t]. (3.1)

Then the pulse goes through a grating, which, basically, angularly disperses the

different frequency components contained within the incident pulse. We will not

go into a deep explanation of the behavior of the grating, the output expression,

assuming paraxial propagation, is shown below (‘Manipulation of Ultrashort Pulses’

2009):

E2(x, t) =
√
βaRe[

∫ dw̃

2π A(w̃)s(βax)e−jγw̃xej(w̃+w0)t] (3.2)

being:

w̃ = w − w0 βa = cos(θi)
cos(θd)

γ = 2π
w0dcos(θd)

(3.3)

where θi is the angle of a reference incident ray, θd the reference ray diffraction angle,

d is the periodicity of the grating rulings and A(w) is the Fourier transform of a(t).

We have considered here a diffraction order equal to -1.

Following this last step, the pulse now goes through a lens separated from the grating

by a distance equal to the focal length,.

According to the popular Fresnel’s equation, in the focal plane after the lens we

obtain the Fourier transform of the incoming spatial profile, converting the angular

dispersion performed by the grating into a spatial one in the back focal plane.

If we consider the effect of diffraction and the lens for a monochromatic field, in

the paraxial regime, with slow variations in space when compared to the wavelength

scale, the initial spatial profile in 1D and taking therefore into account that k = 2π/λ;

for a signal s(x) the spatial profile of the field previously described at back focal plane

is given by:
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sout(x) =
√

j

λf

∫ ∞
∞

s(x)ejkxx′/fdx′ =
√

j

λf
S(kx

f
) (3.4)

Thus, if we we apply this expression along with the equation (3.2) we obtain the

next equation for the field at the lens focal plane:

Eout(x, t) = Re
[√

jβa
λf

∫ ∞
−∞

1
2πA(w̃)ej(w0+w̃)t

( ∫ ∞
−∞

s(βax′)e−jw̃γx
′
ej

kxx′
f dx′

)
dw̃
]
,

(3.5)

following the usual notation of S(k) as the Fourier transform of s(x):

Eout(x, t) = Re
[ ∫ ∞
−∞

1
2π

√
j

λfβa
A(w̃)ej(w0+w̃)tS

(
(kx
f
− γw̃) 1

βa

)
dw̃
]
, (3.6)

which is a multiplication in the frequency domain of the Fourier transform of the

spatial profile (the frequency profile of the input pulse) and a rescaled version of

the Fourier transform of the input pulse, with different displacement depending on

the evaluated position x. This is called the Direct Space to Time transformation,

from now on DST (D.E. Leaird and A. Weiner, 2001). As it will be seen later, this

technique presents high analogy with the DFT (Dispersive Fourier Transformation).

For simplification, we will now only take into account E(x, t), directly related to the

field by expression (3.1), therefore:

E(x, t) =
∫ ∞
−∞

1
2π

√
j

λfβa
A(w̃)S

(
(kx
f
− γw̃) 1

βa

)
ejw̃tdw̃. (3.7)

If we now place a delta slit in x = 0 the time profile of the envelope will come given

by:

Eout(t) =
√

j

λfβa

1
2π

∫ ∞
−∞

A(w̃)S
(−γw̃
βa

)
ejw̃tdw̃, (3.8)
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or going back to time domain:

Eout(t) =
√
jβa
λf

a(t) ∗ s
(βat
γ

)
(3.9)

This yields an important result, meaning that the output in time will be equal to

the spatial profile in the input, scaled by a factor γ
βa
. Hence, if a(t) is short enough

to be considered a delta function when compared to s
(
βat
γ

)
, the time profile will be

given by the spatial profile of the incoming pulse, and therefore controlling it, as it

can be done by placing a mask or a spatial light modulator (SLM), we can control

the field at the output. We shall later give numbers in order for this approximation

to be valid.

Now, if the delta slit is not placed at x = 0 but at x′. Then, from equation (3.6):

E(x, t) =
∫ ∞
−∞

1
2π

√
j

λfβa
A(w̃)S

(
(kx

′

fγ
− w̃) γ

βa

)
ejw̃tdw̃ (3.10)

Which only shifts the optical frequency of the filter, changing now the central fre-

quency for the spectral response to w̃′ = kx′

fγ
. However, the shape of the outcoming

pulse will not change, as only the amplitudes will do according to the spectrum of

A(w̃) for the centered frequency modulated by the position of the slit. Once again,

and for further clarification, in the time domain the field is expressed as:

E(t)out =
√

j

λfβa
a(t) ∗ {s

(βat
γ

)
ej

kx′
fγ } (3.11)

Where it is seen that the system response does not change depending on the position

of the slit but for a frequency shift.

E.g. we suppose an input pulse with a Gaussian temporal profile and also a spatial

profile multiplied by a mask m(x). For simplification we will place the slit at x′ = 0.

I.e.:

Ein(x, t) = e
−( t

τ0
)2
e
−( x

x0
)2
m(x) (3.12)
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At the output, according to (3.11):

Eout(t) =
√

j

λfβa
e
−( t

τ0
)2
∗ {e−( βat

x0γ
)2
m
(βat
γ

)
} (3.13)

Now, we can suppose the mask to cover almost the whole beam width of the laser,

∆xtot= π√
2x0 (Full Width ∼ −10 dB , as specified in (2.63)) and to have a resolution

of δx. Therefore, we have approximately:

∆xmask = Nδx ' π√
2
x0 (3.14)

Where ∆xmask is the length of the mask and N is the total number of resolution

elements δx.

In order for the outcoming field to be a scaled version of the input spatial profile, the

duration of the input pulse e−( t
τ0

)2
, with Full Width at −10 dB given by Ttot = π√

2τ0

(2.63), ought to be much smaller than the extent of e−( βat
x0γ

)2
as well as much smaller

than the variations of m
(
βat
γ

)
, these variations being the time resolution δt, which

are derived from a rescalation of the spacial resolution δx, as seen in (3.15). This

last condition is the most restrictive of the two.

Since the smallest variations will be of length δx, we have that in time the variations

will be of the order:

δt = γδx

βa
(3.15)

δt ' γx0π

Nβa
√

2
(3.16)

The time variation due to the mask has to be much longer than the time duration

of the incoming pulse (−10 dB). This is:

δt� ∆t10dB (3.17)
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γx0π

Nβa
√

2
� π√

2
τ0 (3.18)

Simplifying:
γx0

Nβa
� τ0 (3.19)

Which we will consider the condition for the spatial profile to be directly transformed

into the time profile. We can understand this as if the time profile was a delta function

when compared to the spatial one, and hence we obtain in time what we previously

had in space but rescaled.

The maximum achievable frequency will be, by Nyquist criterion:

fmax = 1
2δt = βa

2γδx (3.20)

The key advantage of using a SLM for spectral shaping is the real-time updatability

of the SLM. This technique is specially useful for high-speed parallel-to-serial conver-

sion (Daniel Leaird, 2000) where direct mapping from parallel (space) data to serial

(time) data is often craved. The free-space optics based technique, however, has the

difficulties of complicated alignment and high coupling loss (Nahar and Rojas, 2008).

3.1.2 Dispersive Fourier Transformation

Now it is presented a pulse shaping technique called Dispersive Fourier Transform-

ation (DFT), also known as Frequency to Time Mapping (FTM). As mentioned

before, this technique presents great analogy with DST. This procedure is based on

dispersion, unlike DST, which was based on diffraction. Also, now it is the frequency

spectrum, and not the spatial profile, which is translated into the time profile. As

each frequency in a pulse travels at different velocity, each frequency has different

time delays (2.37), provoking the ultrashort pulse to be temporally spread and when

sufficiently dispersion is applied the time profile turns into a scaled replica of the

frequency spectrum.
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According to equation (2.43) and substituting in it equation (2.45) we obtain:

A(t, z) =
∫ ∞
−∞

A(t′, 0)e
j

2Θ (t−t′)2

√
j2πΘ

dt′ = ejt
2/2Θ

√
j2πΘ

∫ ∞
−∞

A(t′, 0)ejt′2/2Θe−jtt
′/Θdt′ (3.21)

It shall be remembered that we are working in the frame of reference moving with

the group velocity vg.

If the pulse envelope is comprised in a sufficiently limited time width ∆t0 (FWHM)

and the GDD is large enough, fulfilling the following condition (Solli, Chou and

Bahram Jalali, 2007): ∣∣∣∣ ∆t20
2πΘ

∣∣∣∣� 1. (3.22)

Then the phase factor −jt′22Θ becomes negligible as:∣∣∣∣jt′22Θ

∣∣∣∣ ≤ ∣∣∣∣∆t202Θ

∣∣∣∣. (3.23)

And therefore expression (3.21) becomes:

E(t, z) = ejt
2/2Θ

√
j2πΘ

∫ ∞
−∞

A(t′, 0)e−jtt′/Θdt′. (3.24)

Expressing it as a function of the Fourier transform:

E(t, z) = 1√
j2πΘ

ejt
2/2ΘF{A(t, 0)}(w)

∣∣∣∣
w= t

Θ

(3.25)

This means that the output signal’s envelope is the inverse Fourier transform of

the incoming input one evaluated at frequency corresponding to w = t
Θ , multiplied

by a phase factor t2

2Θ and a constant. When photo-detecting, because the electric

signal is proportional to the square module of the signal (proportional to the electric

power) this phase dependency, as well as the the term corresponding to the optical

carrier disappear, and a temporal signal corresponding to the frequency spectrum is

observed.

Thus, we are reproducing the frequency spectrum of the incoming pulse in the time

domain, hence the name Frequency to Time Mapping.
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In 2011, a less restrictive than (3.26) requirement was proposed (Torres-Company,

D. E. Leaird and A. M. Weiner, 2011) based on the “antenna designer’s formula”,

the criterion being:

∣∣∣∣∆t20πΘ

∣∣∣∣ < 1 (3.26)

This means introducing a phase error of π
8 , equivalent to Fraunhoffer or far field

approximation in space.

The applications of this technique are numerous. It can be used for real-time spec-

troscopy (Solli, Chou and Bahram Jalali, 2007). This is the most obvious one, since

after dispersion and photodetection a rescaled version of the spectrum is obtained.

In contrast to common electronic techniques, which require signal processing and are

sometimes delimited by a narrow bandwidth, DFT spectroscopy offers real-time per-

formance and is able through the wavelength-to-time rescalation operation to give

place to waves belonging to the microwave frequency band, which can be captured by

the photodetector (PD) and the real-time digitizer, to be analyzed in digital domain.

The resolution will thus be determined by the bandwidth of the photodetector, the

digitizer and also by the dispersion of the fiber (a bigger dispersion will increment

the system’s resolution).

Another application is Microwave Spectrum Sensing (C. Wang and Jianping Yao,

2012), frequently used in wireless-communications, radars, etc. Photonically assisted

techniques have been proved to be superior to the electronic ones (C. Wang, 2014).

Modification of RF signals can also be achieved using DFT. One example is time

reversal, later to be explained, signal compression and broadening are examples of

this too. One of the applications of time reversal is found in wireless communications.

Signal broadening is usually used for Analog to Digital Conversion (Solli, Chou

and Bahram Jalali, 2007) as it increments the resolution of the ADC, enhancing

the sampling rate by "slowing" down the analog MW signal. In contrast, signal

compression (Jiejun Zhang and Jianping Yao, 2016) is often used for the purpose
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of generating ultra-fast optic waveforms. Another application based on the same

technique consists on performing the Fourier transformation of the input RF signal

(H. Chi and J. Yao, 2007). All these time pulse shaping techniques are based in the

same principle and set-up (Figure 3.2), with the only difference being the amount

of dispersion of the second fiber (DF2 in Figure 3.2). In this thesis, time reversal

will be the one to be deeply explained for its special utility in the field of wireless

communications, very relevant nowadays.

Figure 3.2: Set-up for temporal pulse shaping of Microwave signals. Composed of a
Mode Locked Laser (MLL), a Dispersive Fiber (DF1), a March-Zender Modulator,
another dispersive fiber (DF2) and a Photodetector (PD)

Arbitrary Waveform Generation (AWG) is one of its most important applications.

The most common and simple technique for doing so consists on modulating the

pulse spectrum coming out of the MLL. Then, the pulse goes through the dispersive

fiber, becoming optically chirped and performing the wavelength-to-time mapping.

At last, the optical pulse is photo-detected, in order to obtain the electrical signal,

which is the envelope of the optical pulse. The set-up can be seen in Figure 3.3.
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Figure 3.3: Set-up for AWG through DFT. Composed of a Mode Locked Laser
(MLL), a Wave Shaper (WS), a Dispersive Fiber (DF) or alternately a Linearly
Chirped Fiber Bragg Grating (LCFBG) and a Photodetector (PD)

The advantage of this method, in contrast with electronic ones (Lin, McKinney and

A. Weiner, 2005), is the possibility of reaching ultrawideband signals, very demanded

for radar and telecommunication applications.

3.1.2.1 The effect of propagation. TBWP of the AWG

As previously mentioned the non-chirped Gaussian pulse is transform limited. How-

ever, the introduction of a quadratic temporal phase, meaning a chirp of the pulse,

broadens the time duration of the pulse. According to the expression (3.25), the

signal obtained after the minimum required dispersion is proportional to the Fourier

transform (frequency spectrum) of the pulse before dispersion, rescaled by a factor

|Θ|. The new time duration is then given by:

∆t = ∆w|Θ| (3.27)

This happens without changing the modulus frequency spectrum profile, as the

transfer function only introduces a phase variation. Hence, the bandwidth does

not change. We can also see that this is the time duration looking at the broad-

ening factor that we obtained for the initially non-chirped Gaussian pulse M =√
1 + 4Θ2/τ 4

0 , when the condition (3.26) holds M can be approximated by:

M ' 2 Θ
τ 2

0
(3.28)
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Multiplying by the initial time duration:

∆t = 2Θ
τ0
·
√

2 · ln2 (3.29)

And substituting ∆w = 2
√

2ln2
τ0

(2.61) in equation (3.27) yields the same result for

the FWHM time duration.

To generate an arbitrary waveform, the pulse has to be spectrally shaped. Thus,

the TBWP of the generated microwave signal is limited, as it will be derived, by

the spectral resolution of the pulse shaper. Since the signal will not any longer have

a Gaussian profile (in time nor in spectrum), it is hard to say, a priori, what the

duration and bandwidth of the pulse are. We will continue taking ∆w as the FWHM.

The set-up employed for AWG is shown in figure 3.3. We will assume that the ML

laser covers the full bandwidth of the spectral shaper (B). Thus, the bandwidth of

the optical pulse after the shaper comes given by ∆wopt = k1B = k1Nδw, where

N is the number of spectrally resolved pulse shaper control elements (“resolution

elements” in the following) and δw is the spectral resolution. The constant k1 is

because, ∆wopt is the FWHM and B is just the total bandwidth of the spectrum,

k1 is the factor that relates them and it will come given by the pulse’s shape after

the WS. As seen in (3.27), the pulse time duration widened after dispersion is the

bandwidth multiplied by the GVD:

∆t = k1Nδw|Θ| (3.30)

Now, to calculate the electrical bandwidth we take into account that the maximum

achievable frequency fmax in Hz is (Rashidinejad and A. M. Weiner, 2014):

fmax = 1
2δt (3.31)

Where δt = δwΘ is the highest time resolution achievable.

fmax = 1
2δw|Θ| (3.32)
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Or in rad/s:

wmax = π

δw|Θ| (3.33)

With a factor 2 dividing due to the need of at least two resolution elements in order

to create one sinusoidal cycle (one for the positive half-cycle and one for the negative

half-cycle).

As done previously, in order to keep the derivation general, we introduce a constant

k2, which will depend on the specific pulse shape, therefore:

∆wRF = k2wmax = k2
π

δw|Θ| (3.34)

Finally, the TBWP is:

TBWP = k1k2Nπ = KNπ (3.35)

Where K = k1k2 and it depends on the shape of the generated waveform.

As an example to give values to this K, we will analyze the case of a an electrically

chirped waveform with a Gaussian envelope. These MW are specially interesting

because of their high bandwidth. We will suppose here that the bandwidth of the

pulse shaper covers almost the whole laser spectrum. According to expression (2.61)

and (3.27) the maximum possible time duration of the signal, with the FWHM

criterion, is :

∆t ' ∆wini|Θ| =
2
√

2ln2
τ0

|Θ| (3.36)

The bandwidth of the chirped signal is estimated as half of the chirp tuning range,

with its value being half of the maximum instantaneous frequency achieved fmax.

Hence the BW of the RF signal is approximately, (Mei, Y. Xu et al., 2015):

∆wRF '
1
2wmax = π

2δw|Θ| (3.37)

Hence, multiplying the latter with the time duration, we obtain:
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TBWP ' π
√

2ln2
τ0δw

(3.38)

From the latter, it may seen that the TBWP depends on the initial pulse. However,

the spectral resolution and the initial time duration are directly related. Since the

spectral filter covers almost the whole pulse bandwidth, then B can be taken as

B ' 2π/τ0, covering most of the pulse intensity (B is the full width at −10dB

maximum) and also remembering that B = Nδw. Then (3.38) is simplified to:

TBWP ' N
√

2ln2
2 (3.39)

Hence, K in equation (3.35) is for this case:

K ' 0.187 (3.40)

The main conclusion given by these expressions is that the TBWP does only depend

on the number of resolution elements and the shape of the outgoing pulse (when

calculating it for the FWHM), showing that increasing the resolution elements of

the spectral shaper allows to augment the TBWP of the generated MW signal.

Increasing the dispersion allows longer duration of the RF wave, but it also reduces

the maximum achievable frequency and hence the bandwidth of the signal.

Although the achievable bandwidth is really high and not allowed by electronic

techniques, Weiner et al. proposed an improved set-up that could achieve twice the

bandwidth of the one we have presented (Rashidinejad and A. M. Weiner, 2014).

This can be explained because the generated waveforms with the set-up shown in

figure 3.3 are baseband, and therefore the maximum bandwidth is achieved only by

amplitude spectral shaping, and therefore to generate the fastest sinusoidal cycle

at least two resolution elements are needed, while the one presented by Weiner et

al. has a programmable passband component that doubles the achievable TBWP

(Rashidinejad and A. M. Weiner, 2014), reaching the upper bound limit given by

fmax = 1
δw|Θ| and its corresponding bandwidth.
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3.2 Time-reversal

The development of these generation techniques for ultrawideband microwave signals

has induced to develop systems for their transmission and detection (R. Qiu, J.Q.

Zhang and Guo, 2006), specially in rich multipath wireless communications, that

reduce the cost and energy of the whole communicating system. Time reversal (TR)

has been presented as a new paradigm, offering good data transmission rate, stability

(R. C. Qiu et al., 2006) and simplicity. Systems employing this technique are based

on precoding the transmitted symbols from one or several antennas with the time

reversed version of their respective channel impulse response, allowing to focus the

signal in space, power and time at the receiver (Oestges, 2004).

Several ways to reverse a signal are employed nowadays, being digital processing

among the most used. Nevertheless, photonic time reversal of radiofrequency waves

has been recently developed, offering the advantages of good real-time performance,

high time-bandwidth product and high accuracy (Z. Wang et al., 2019), which is of

high interest when treating with ultra-wide bandwidth signals.

Here, we shall propose a scheme for TR by photonic means. For this end we will

make use of the previously explained DFT technique.

The scheme, shown in Figure 3.4, consists on a mode-locked laser (MLL) to generate

an ultrashort Gaussian pulse, a linear dispersive element with GVD Θ1 , a March-

Zender modulator, another dispersive element with GVD Θ2 = −2Θ1, which can

be achieved with two dispersive elements with a GVD equal to −Θ1, and a photo-

detector. An optical filter with a bandwidth centered at the MLL carrier frequency

can also be added after the MLL, in order to achieve a flatter spectrum.

The set-up is the one presented in Figure 3.4. The second dispersve fiber can consist

in one with the double and opposite dispersion of the first or 2 dispersion fibers with

opposite sign to the first one, which may be easier to obtain.
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Figure 3.4: Set-up for Time Reversal through DFT. Composed of a Mode Locked
Laser (MLL), a Dispersive Fiber (DF), a March-Zender Modulator, another dis-
persive fiber (with a dispersion value twice the first one and opposite sign) and a
Photodetector (PD). What we will obtain in the output is not exactly the reversed
signal, but the electrical current proportional to the reversed signal.

Mathematically, this writes as follows (Jiejun Zhang and Jianping Yao, 2015). The

pulse coming from the MLL, with bandwidth BWopt, goes through the first dispersive

element:

g(t) ∝ p(t) ∗ e
jt2
2Θ1 , (3.41)

where the constant of the transfer function has been omitted for simplification and

p(t) is the Gaussian pulse coming out the MLL (or of the optical filter if we put one).

The broadened pulse is then multiplied in the MZM by the microwave signal m(t)

we want to reverse.

s(t) = g(t)×m(t). (3.42)

Afterwards, the signal goes through another dispersive element, with a dispersion

coefficient opposite to the first fiber.

b(t) ∝ s(t) ∗ e
jt2
−2Θ1 . (3.43)

Omitting once again the proportionality constant. Substituting (3.41) and (3.42) in

(3.43):

b(t) ∝ p(t) ∗ e
jt2
2Θ1 ×m(t) ∗ e

jt2
−2Θ1 , (3.44)

b(t) ∝ p(t) ∗M(w)|w= −tΘ1
, (3.45)
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where to go from the first to the second equation we have used the results obtained

in the DFT section 3.1.2.1, withM(w) being the Fourier transform of the microwave

signal m(t), M(w) = F{m(t)}(w).

Then the signal goes through the last fiber, with GVD = −Θ1:

f(t) ∝ b(t) ∗ e
jt2
−2Θ1 , (3.46)

Expressing it as a function of the frequency spectrum, by (3.25):

f(t) ∝ e
jt2
−2Θ1B(w)|w= −tΘ1

, (3.47)

using the result in (3.45):

f(t) ∝ e
jt2
−2Θ1

[
F{p(t) ∗M(w)|w= −tΘ1

}(w)
]
w= −tΘ1

, (3.48)

the above may be rewritten as:

f(t) ∝ −e
jt2
−2Θ1 Θ1

[
P (w)×m(Θ1w)

]
w= −tΘ1

(3.49)

and finally we arrive to:

f(t) ∝ −e
jt2
−2Θ1 Θ1P (w)|w= −tΘ1

×m(−t). (3.50)

In the detector the phase-term is removed as i(t) = R|f(t)|2, where R is the re-

sponsivity of the photodiode, and hence the expression for the electrical current

is:

i(t) ∝ |P (w)|w= −tΘ1
|2 × |m(−t)|2 (3.51)

The obtained waveform is the reversed electrical signal multiplied by constants and

by |P (w)|w= −tΘ1
|2. For a given time duration, later to be specified, and a time short

enough pulse, the latter can be considered to be constant, since the spectrum of a

sufficiently short p(t) can be considered ideally to be flat. Therefore, obtaining a

waveform directly related to the reversed RF signal.

The maximum time duration of the microwave signal to be reversed is given by the
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range in which this P (w)|w= −tΘ1
is non-zero and approximately with the same value

all over time. If we suppose we put (after the MLL) a band-pass filter with an

approximately flat response with a bandwidth BWOF , the time duration of the pulse

p(t) after being stretched, according to (3.27), is :

τ = BWOF × |Θ1| (3.52)

Hence, this will also be the maximum duration for the RF signal. If there is not such

filter, the τ at FWHM will be τ = BWopt × |Θ1|.

3.2.1 Bandwidth limitation

In the latter we have seen that the total time duration of the MW signal to be

reversed is τ = BWopt · |Θ1|. When not applying an optical filter, and the pulse is

stretched directly after the MLL, therefore with a Gaussian envelope, we can define

the time duration for the FWHM as we did in (3.36), often named as τ3dB (Z. Wang

et al., 2019) since the FWHM corresponds to a 3dB lost in power. It comes given

by:

τ3dB = 2
√

2ln2
τ0

Θ1 (3.53)

The bandwidth is also limited. Among the possible bandwidth limitations, those

concerning the electronic devices, such as the PD or the MZM can nowadays be

neglected, since they can reach up to 100 GHz (Jiejun Zhang and Jianping Yao,

2015). The other components that might cause a limitation in the bandwidth are

the optical ones, the initial pulse bandwidth is limited at FWHM by (2.61), so the

Gaussian limited pulse coming out of the laser has a ∆w3dB = 2
√

2ln2
τ0

, but this is too

large to cause any bandwidth limitations compared with other factors.

There is also a dispersion penalty for the case of optical intensity modulation that

results from the "interference between the carrier upper sideband and carrier lower

sideband beat terms" (Yan Han and Bahram Jalali, 2003), or also known as double

side band penalty. This bandwidth limitation for the case of time reversal expressed
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in Hz as the FWHM (∆f3dB) is (Mei, B. Xu et al., 2016) (Y. Han and B. Jalali,

2003):

∆f3dB =
√

1
4π|Θ| (3.54)

Another possible cause for bandwidth limitation can be the dispersive element’s

nature. If instead of dispersion compensation fibers we used linearly chirped fiber

Bragg gratings, the bandwidth will come given by the bandwidth of the LCFBG,

which don’t allow transmission of the whole frequency spectrum.
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Chapter 4

Results and simulations

4.1 Direct Fourier Transformation

Also known as Frequency to Time mapping, this technique was presented in section

3.1.2.1. Now, we shall give numbers and present the results obtained that prove the

validity of the theory. As usual, the input pulse will consist on a Gaussian pulse,

coming out of a mode-locked laser. Usually the MLL does not give pulse with an

exact Gaussian envelope. However, using an optical filter we could reach the desired

shape. The Gaussian pulse we propose for this simulation has τ0 = 60fs, according to

expression (2.58), and hence a time-duration (FWHM (2.60)) of 70.71fs. The pulse

at z = 0 can be seen in Figure 4.1.

Figure 4.1: Incoming pulse envelope, p(t).
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The pulse goes then through a wave-shaper. This wave-shaper just models the

amplitude of each frequency contained in the wave spectrum. In our case we will

assume that the shaper multiplies the incoming signal in the frequency domain by a

cosinus function of period T1 = 1.2566 THz. The spectral mask is shown in Figure

4.3. Hence, the obtained signal in Figure 4.4 comes given by the Fourier transform

of the incoming signal 4.2 multiplied by the spectral mask, giving place to Figure

4.4. Thus, the modulus of the spectrum, will show a periodicity of half of that of

the signal T2 ' 0.6283 THz.

Mathematically the pulse after going through the wave shaper is expressed in the

frequency domain as:

G(w) = P (w) ·M(w), (4.1)

where P (w) is the Fourier transform of the input Gaussian pulse and M(w) is the

spectral mask function.

Figure 4.2: Outcoming signal in the fre-
quency domain, P (f). Figure 4.3: Mask M(f).

Since we will photodetect the square of the absolute value of the incoming field

temporal envelope, the obtained signal in the temporal profile will be a scaled replica

of the modulus of the spectrum power to the square and multiplied by some constant,

as seen mathematically from expression 3.25. Hence, it is the modulus of the signal

whose period we are interested in.
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Figure 4.4: Outcoming signal in the frequency domain, G(f)

The waveshaper only modifies the amplitude of each frequency component, not its

phase. Thus, the phase of each frequency will come given by the pulse coming out of

the MLL. With the phase, theoretically, being equal to zero. This is shown in Figure

4.5.

The oscillations in the borders are because when the amplitude is 0 the phase is not

well defined.

After the shaping of the pulse, it goes through the dispersive fiber. We propose a

dispersive coefficient at λ0=1550 nm of 17 ps
nm·km , the typical D in standard single-

mode fibers, and a length of 100 m. A GDD of −2.167 ps2

rads
is obtained. As the

transfer function of the dispersive fiber is H(w) = e−jΘw
2/2, it induces a quadratic

phase in the incoming pulse (Figure 4.6), provoking different time delays in different

frequencies, and hence inducing a chirp as it is seen in Figure 4.7.

In the frequency domain this reads:

S(w) = G(w) ·H(w). (4.2)
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Figure 4.5: Phase of the input signal, G(f)

Figure 4.6: Phase after dispersion, S(f)

Using the expression derived in (3.25) for the conditions required for dispersion and

incoming pulse duration, which are met here for the chosen values, we can express

the field envelope in the time domain as:

s(t) = Ke−jt
2/2·2.167 ps2

radsG(w)
∣∣∣∣
w= t

−2.167 ps
2

rads

(4.3)
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where K is the constant derived in (3.25), but we are only interested in the propor-

tional temporal varying terms.

Figure 4.7: Output chirped signal, s(t)

Nevertheless, it must be reminded that the phase is periodic in 2π. According to

(3.27) the time duration will be Tdur = ∆w · GDD. We take ∆w as the FWHM

(2.61), ∆w = 39.21 · 1012rads/s (6.24 THz). The time duration being then:

Tdur(FWHM) = 39.21 · | − 2.167| = 84.96ps (4.4)

The definition we have taken also for time is the FWHM of the Gaussian envelope.

To calculate the approximate time duration at −10 dB, we can take the ∆wtot =

2π/τ0 = 104.62 · 1012 rads/s, covering most of the pulse intensity, as we did for the

TBWP example.

Ttot = 226.69ps (4.5)

Figure 4.8 proves the validity of the approximations. After photodetection, the

square of the absolute values of the signal are obtained ipd(t) = |s(t)|2. The final

signal is:
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Figure 4.8: Final output RF signal

Mathematically it writes:

ipd(t) = K2
∣∣∣∣G(w)

∣∣∣
w= t

−2.167 ps
2

rads

∣∣∣∣2 (4.6)

The frequency of this RF signal can also be calculated. The period of the microwave

signal will be:

TRF ' T2 · |Θ| = 0.6283 THz · 2π rad
s
· | − 2.167| ps

2

rad
' 8.554 ps (4.7)

As the period of the modulus of the frequency spectrum T2 is broadened by |Θ| after

dispersion.

The microwave frequency will then be:

fRF = 1π
TRF

' 116.9GHz (4.8)
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4.1.1 TBWP

Now we will calculate TBWP for a generated chirped microwave with a Gaussian

envelope, according to the definitions of TFWHM and bandwidth being equal to fmax
2 .

We will take the same value we have used for the previous section of τ0 for the input

Gaussian pulse, as well as the same dispersion value. As stated by (3.40), the total

product should be TBWP'0.187Nπ, where N is the number of resolution elements

of the spectral shaper. We suppose that the spectral shaper range is equal to the

full width of the laser pulse at −10 dB. Thus, the bandwidth of the pulse and

of the spectral shaper is BWtot ' 16.6524 THz (from the previous section 3.1.2.1

∆wtot = 2π/τ0 = 104.62 ·1012 rads/s). The resolution δf is equal to half the smallest

period (in the frequency domain) of the modulus of the mask’s linearly chirped

cosinus. This will be δf = 0.6283
2 THz = 0.3141 THz, the same as the one used

previously. Then the total number N of resolution elements is:

N = BWtot

δf
= 16.6524

0.3141 ' 53 (4.9)

And the TBWP:

TBWP ' 0.187Nπ ' 31.14 (4.10)

This is the result given by theory. Checking out the result given by simulations

(considering the BW as fRF
2 ). Taking into account that the dispersion, the initial

Gaussian pulse and the spectral resolution are the same as in the previous simulation,

the Tdur and the fmax will also be the same:

TBWP = Tdur ·
fRF

2 · 2π = 84.96 · π · 0.1169 = 31.2 (4.11)

It can be seen that these two results are almost exact, proving the validity of the

derived theory and showing that an increment of the resolution of the waveshaper will

also mean an increment of the achievable TBWP. These result can also be visualized

in Figures 4.9 and 4.10.
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Figure 4.9: Output signal in the
time domain.

Figure 4.10: Output signal in the
frequency domain.

4.2 Time reversal

One application that has been discussed in the techniques section is the time reversal

of a microwave signal through photonic means. In order to do so, high dispersion is

needed, as it will be now seen, for signals up to a few nanoseconds. One problem

found in simulations is that for long periods of time (up to 10 ns) the combination

of long times and high enough spectral resolution is challenging and outranges the

available computer power. This has prevented us from being able to simulate an

approximately plane optical filter for the incoming pulse. However, the existence of

an analytical expression of the dispersion of a Gaussian pulse (2.53), has allowed us

to perform a proper and interesting simulation, with good results.

The simulation will consist then, as proposed in 3.2, in a Gaussian ultrashort pulse

going out of a MLL, then through dispersion, multiplied by a microwave signal,

dispersed again (with dispersion coefficient equal to two times the first one but

opposite sign) and finally photodetected by a PD (the OF has been removed from

simulation). The set-up is shown in Figure 3.4. We know from (3.27) that the time

duration of the pulse after going through dispersion is T = ∆w|Θ| .The signal that

we want to time-reverse and multiply by the pulse with the MZM has a duration of

approximately 10 ns. We suppose a total dispersion of D = 1450 ps
nm

(Θ=−1848 ps2

rads

for λ0=1550 nm). Hence, the approximately flat bandwidth of the incoming pulse
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has to be of 0.861 THz or bigger. The longest the FWHM bandwidth of the pulse

the better, since we want the spectrum to be as flat as possible and that will happen

if the Gaussian pulse is wide enough so that the center of the spectrum can be

considered constant. The Gaussian pulse made by the MLL will have a τ0 = 110fs

(2.58) (Figure 4.11), right within the reach of state of the art MLL.

Figure 4.11: Time profile of the incoming Gaussian pulse, p(t).

This means a BW = 3.407 THz (FWHM). We can consider the 0.861 THz in the

center of the spectrum P (w) as flat (this value is the Full Width at 0.9567 maximum,

corresponding to −0.45dB) (Figure 4.12), we will see later in results that this is good

enough. Taking less dispersion or a longer time pulse would make P (w)|w=−tΘ
in

expression (3.51) less constant for this interval, causing some decay in the borders of

the reversed microwave signal. If the time of the signal were reduced, this distortion

would once again disappear.
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Figure 4.12: Frequency profile of the input Gaussian pulse, P (w)

The pulse p(t) then disperses through the medium, performing a DFT leading to

an extended Gaussian pulse. The expression after this step is G(w)=P (w)H1(w),

where P (w) is the Fourier transform of the Gaussian pulse and H1(w) the transfer

function of the dispersive fiber. In figure 4.13, it is shown the absolute value of

the time profile of the broadened pulse, after dispersion the pulse g(t) conserves the

Gaussian envelope, but broadened, being it almost flat (very low variation) over a

time of more than 10 ns and becoming optically chirped.

Figure 4.13: Time profile of the pulse after going through dispersion (absolute value),
|g(t)|.
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This signal is multiplied by the RF signal m(t) shown in figure 4.14. This is done in

the MZM.

Figure 4.14: Time profile of the RF signal, m(t).

This will lead to a chirped signal with the RF signal’s envelope (s(t)=g(t) ·m(t)).

As it is seen in figure 4.15.

Figure 4.15: Time profile of the chirped RF signal, s(t).

Dispersion is applied once again (F (w)=S(w) ·H2(w)). This time with a value twice

the first and with opposite sign. Meaning a total dispersion of D2 = −2900 ps
nm

.

The signal at the end of the fiber will then be proportional to the microwave signal,
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but reversed (as explained in section 3.2). One thing that might have to be done

in the laboratory is amplify the signal, as its amplitude after dispersion can become

too low to be photodetected. The reversed signal in the time domain can be seen in

Figure 4.16.

Figure 4.16: Time profile of the chirped RF signal after going through the second
dispersive element, f(t).

Then the signal is photodetected, since the electrical intensity is related to the optical

power, we obtain an intensity proprtional to the square of the signal’s envelope

(Figure 4.17), ipd(t)∝ |f(t)|2.

Figure 4.17: Intensity of the electric signal obtained after photodetection
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To see the accuracy of this technique and the numbers used in this section we

will compare the intensity of the original MW signal and the reversed one flipped.

Both signals are re-normalized, as the intensity is reduced when multiplying by the

broadened photonic signal and hence the reversed one will be less intense, but this

can be easily corrected by using an amplifier.

Figure 4.18: Comparison of renormalized intensities (the reversed one being flipped)

From the figure 4.18, it becomes clear that the dispersion is high enough and the

values taken are sufficiently good, so that the two signals almost overlap. This is

confirmed by the correlation, with an R-squared (R2) equal to R2 = 0.9991768,

almost 1, which can be considered a nearly perfect correlation.

4.2.1 Bandwidth limitation

In the previous simulation, no bandwidth limitation has been observed, since these

signals do not exceed the highest bandwidth limitation frequencies. As mentioned in

subsection 3.2.1, this limitation may be caused by double sideband effects. Now, we

show how the bandwidth limitation distorts the reversed signal causing an imperfect

time-reversal. We consider a chirped signal going from lower to higher frequencies,
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formed by Gaussian pulses of different time duration (highest to lowest). This mi-

crowave signal to be reversed is shown in Figure 4.20.

Figure 4.19: Input MW signal

From equation (3.54) we know that the maximum bandwidth allowed without losing

more than half the intensity goes up to
√

1
4π|Θ| being Θ the dispersion of the first fiber.

The total Gaussian pulse envelope bandwith (fullwidth at −10dB) is approximately

BW = 1
τi

in Hz (seen in 2.2). Hence when the latter is bigger than (3.54) the pulse

will suffer a dispersion power penalty causing the signal to be badly reversed. This

will happen when:
1
τi
>

√
1

4π|Θ| (4.12)

τi <
√

4π ·Θ (4.13)

For the previous value of total dispersion D = 1450 ps
nm

(Θ = −1.8481 ps2) the limit

will be:

τlim ' 139ps (4.14)

Hence, the Gaussian pulses with τi < τlim will be distorted by dispersion. In figure

4.20 this is the case for the 4 last pulses with the narrowest width (100 ps, 80 ps,

60 ps and 40 ps respectively). When applied to the time-reversal set-up we obtain

Figure 4.20.
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Figure 4.20: Output electric signal

We observe that the last pulse to not be very distorted is the fifth in the reversed

signal τi = 150ps and the first 4 are more affected, it is also seen that the higher

the bandwidth the most distorted the pulse becomes. This is only because of the

power penalty and not because the extended pulse is not flat or long enough (it

has been checked that higher dispersion values only cause higher distortion). If we

compare once again the flipped signal and normalize both of them, we obtain figure

4.21. Clearly showing the distortion of the narrowest pulses, confirmed by an R2

of 0.9813, still quite good but much lower than the one obtained before for lower

bandwidth pulses.

Figure 4.21: Output electric signal
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Chapter 5

Conclusions

In this work, we have provided an in-depth analysis of photonic arbitrary waveform

generation (AWG) techniques based on space and frequency to time mapping, with

eyes to unveiling their potential for microwave applications.

Recent research in the field of telecommunications has proved the importance of

achieving high bandwidth signals with the maximum achievable time as well. These

ultrawide-band signals are hard to achieve through electronic means. Hence, several

photonic techniques have been proposed for such purpose.

The backgroung theory of such applications has been meticulously derived; trough

an exhaustive review of literature, the concept of TBWP has been reviewed and

clarified by the use of some examples. Dispersion theory has been deeply studied as

well in order to properly understand the employed techniques.

Among these photonic techniques, the first one to be presented has been Direct Space

to Time (DST). When the conditions derived in the thesis are met, the time profile

can be turned into a scaled replica of he spatial one, allowing us to modify it by

changing the spatial mask applied to the outgoing pulse.

Dispersive Fourier Transformation (DFT) has also been presented. This technique is

among the most used photonic techniques for AWG. In the case of DFT, also known

as Frequency to time Mapping, the time profile is turned into a scaled replica of

the incoming pulse frequency spectrum. Through waveshaping techniques, Direct

Fourier Transformation (DFT) and photodetection, the desired MW signal can be
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generated. The set-up as well as its most relevant characteristics, such as maximum

achievable frequency or the TBWP have been presented. We have also derived and

specified the required conditions and approximations for a proper performance of this

technique, and its limits. The DFT technique presents the advantages of a simple

structure, stability, as well as low losses and cost, being able to reach ultra-wide

bandwidths.

The present state of the art applications of such techniques, specially of DFT,

have been also described, focusing in the Time Reversal technique through photonic

means, which has been demonstrated to be a very efficient solution for information

transmission in wireless communications.

Finally, simulations have been performed in order to provide an idea of the numerical

magnitudes of the parameters and to confirm the relevance of the techniques to

practical applications, as well as their limitations. A MW signal has been firstly

generated, showing alll the steps taken in the process and calculating the maximal

achievable frequency and the time duration. Then, a TBWP=32 has been proved for

a generated chirped MW signal, taking some of the results obtained in the previous

simulation, in perfect agreement with the theoretical analysis. At last, we have time

reversed a signal by making use of the DFT technique, showing how the bandwidth

limitation affects to the reversed signal.

As further lines of research, we propose to build a set-up in the lab that may confirm

the simulation results.
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Appendix A
Maxwell Macroscopic Equations

In order to study the effect of a dispersive medium we will begin our derivation from
the famous Maxwell’s equations for microscopic media, presented here once again:

∇ · e = ρ

ε0
∇× e = −∂b

∂t
(A.1)

∇ · b = 0 ∇× b = µ0j + µ0ε0
∂e
∂t

(A.2)

Where all is written in lowercase letters as the fields and currents are referred to the
microscopic level. µ0 is the magnetic permeability of free space and ε0 the vacuum
permittivity (also called dielectric constant). e is the microscopic electric field, b
the microscopic magnetic field or flux density, j the electric flux and ρ the charge
density. However, analyzing the propagation of waves inside dense materials with
these equations becomes almost impossible and not practical, since the microscopic
fields that vary rapidly in space and time are not measurable. Therefore, following
the procedure used by H.A.Lorentz we will go from these expressions for the micro-
scopic fields to the ones for the macroscopic field, doing some plausible suppositions.
We will define the macroscopic field as the mean of the field inside a volume.

E(r, t) = e(r’, t) = 1
∆V

∫
∆V

e(r’, t)dV ′ (A.3)

The charge and current can also be averaged giving place to ρmacro = ρ̄, from now
on just referred as ρ and J = j̄. Therefore, the equations (A.1) and (A.2) can be
rewritten for the macroscopic fields as:

∇ · E = ρ

ε0
∇× E = −∂B

∂t
(A.4)

∇ ·B = 0 ∇×B = µ0J + µ0ε0
∂E
∂t

(A.5)

Nevertheless, for better understanding of the role played by the medium in these
equations we can divide the charge into free charge and bound charge, the first one
referring to electrons which are freely to move in the medium and the second one to
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electrons "bounded" to the positively charged nucleus. Therefore we can also divide
the current into free and bound current(or flux). These relations are expressed as:

ρ = ρfree + ρbound J = Jfree + Jbound (A.6)

From now one we will refer to ρfree and Jfree as ρf and Jf respectively and to ρbound
and Jbound as ρb and Jb for simplicity. Taking these into account we can define this
bound charge and current through some auxiliary measurable magnitudes (Landau,
Lifshitz and Pitaevskii, 1984) as:

ρbound = −∇ ·P (A.7)

Jbound = ∂P
∂t

+∇×M (A.8)

Where P is defined as the polarization vector and M as the magnetization vector.
As it can be seen from the previous equations, the bound charge is conserved:

∇ · J + ∂ρbound
∂t

= 0 (A.9)

Now we can rewrite equations (A.4) and (A.5) making use of new macroscopic fields
called electric displacement field D and the new magnetic field H (J.M. Cabrera,
1998).

D = ε0E + P H = B
µ0
−M (A.10)

To finally obtain:

∇ ·D = ρfree ∇× E = −∂B
∂t

(A.11)

∇ ·B = 0 ∇×H = ∂D
∂t

+ Jfree (A.12)

Arriving to the famous Maxwell equations for the macroscopic field.
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Appendix B
Glossary

We present the acronyms used in the thesis.

DST: Direct Space to Time.

DFT: Direct Fourier Transformation.

TBWP: Time Bandwidth Product.

DST: Direct Space to Time.

MW: Microwave.

RF: Radiofrequency.

FTM: Frequency to Time Mapping.

TR: Time Reversal.

GVD: Group Velocity Dispersion.

GDD: Group Delay Dispersion.

GDD: Group Delay Dispersion.

FWHM: Full Width at Half Maximum.

MLL: Mode-Locked Laser.

SLM: Spatial Light Modulator.

PD: Photodetector.

DF: Dispersive Fiber.

WS: Wave-Shaper.

LCFBG: Linearly Chirped Fiber Bragg Grating.

BW: Bandwidth.

AWG: Arbitrary Waveform Generation.
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