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Abstract

In the transition towards the next generation of wireless technology systems, the increasing

number of devices curbs the potential of current wireless networks to cope with such increases in

network density. Prompted by the innovations in satellite technology, wireless communications

via satellite constitute a cost-effective option to achieve high transmission reliability in remote

areas or to create resilient networks to be used in emergency situations. To counterbalance the

growing network density, one of the main goals in the uplink is to increase the network spectral

efficiency. Three non-exclusive technical approaches are identified in favour of the latter goal:

(i) the application of non-orthogonal multiple access techniques, to overcome the limited

availability of orthogonal resources required in conventional access,

(ii) the exploitation of the collision domain, through interference cancellation, and

(iii) the utilisation of multibeam satellites, that, taking advantage of multiantenna technology,

enable a more efficient reuse of the spatial domain.

By working on the first two points, this dissertation tackles the problem of massive multiple

access. A consensual scheme that meets the main goal and the aim of reducing the interaction

between devices and the satellite in the control plane is Enhanced Spread Spectrum ALOHA,

which combines spreading-based short-packet transmissions with successive interference cancel-

lation (SIC) on the receiver’s side. This combination opens up several design avenues in terms

of energy and code allocation to users when a certain amount of channel state information is

available to them. Motivated by this scheme, this thesis re-examines previous results reported

under capacity-achieving schemes and a genie-aided SIC, and studies the best allocation strate-

gies when the SIC receiver operates nonideally. The former analyses are extended on two fronts:

firstly, by adopting decoding and cancellation policies for short-length codes; and secondly, by

exploring the unbalance of energy, rate, and reliability. With regard to the first point, this disser-

tation investigates a system model for a SIC receiver that, inspired by the demodulator adopted

in the Enhanced Spread Spectrum ALOHA system, deals with the problems of user ordering

and iterative decoding with short packets. With regard to the second point, this dissertation

delves into the user-asymptotic regime and into the application of the calculus of variations

to derive the stationary point equations corresponding to the optimal allocation rules. One of

the main contributions of this thesis is the thorough investigation of discontinuous (piecewise

continuously differentiable) functions as a class of ordered user-energy distributions to maximise

spectral efficiency; an approach which has proved overwhelmingly successful.
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More specifically, the system model derived in the present thesis incorporates, progressively,

practical aspects of the adopted cancellation receiver in three independent chapters:

1. The first part of this thesis investigates the impact of nonideal decoding and imperfect can-

cellation on the first iteration of a SIC receiver aided by redundancy-check error control.

The system model characterises both non-idealities using known univariate functions of

the signal-to-interference-plus-noise ratio (SINR) under the assumption of Gaussian inter-

ference: the packet error rate (PER) and the residual energy functions. The propagation of

packet decoding success/failure events throughout the SIC receiver stages is circumvented

in the user-asymptotic regime, since the system model takes a deterministic form. The

asymptotically optimal energy and rate allocation is studied for a wide variety of cases in-

cluding finitely and infinitely many coded modulation schemes for short and unboundedly

large packets.

2. The second part of this thesis investigates an iterative SIC receiver and extends the allo-

cation designs derived previously to iterations beyond the first. The derivation of a system

model is challenging, since each iteration of the receiver operates with memory with respect

to the previous ones, and due to the fact that the decoding operations for the same user in

different iterations are statistically dependent. This thesis motivates and states a system

model that solves said difficulties by adding minimal complexity to the one adopted previ-

ously. More specifically, the model leverages multivariate PER functions of the SINRs that

each user experiences throughout iterations, and defines bijections to relate the indices of

users that remain decoded unsuccessfully at each iteration. The user-asymptotic regime

is investigated to reveal mathematical forms to the above model that allow for a thorough

understanding of the adopted receiver. Finally, research is conducted to designing smooth

allocation functions with free endpoints exploiting the above user-asymptotic model.

3. The third and last part of this thesis studies the user-ordering problem for a SIC receiver

to which the strengths received from all users are unknown. This thesis derives an accurate

system model for a large-user SIC receiver, which orders users after estimating their symbol

energies at the initial stage through preamble cross-correlations. Analytical findings are

determined in the user-asymptotic regime, in which system performance is governed by

a known kernel. The optimal energy allocation derived for asymptotically many users is

shown to obey, in contrast to the practically exponential user-energy distributions obtained

before, a piecewise constant function; fact that entails great computational advantages of

its application.



Resumen

En la transición hacia la próxima generación de sistemas tecnológicos inalámbricos, el creciente

número de dispositivos frena el potencial de las redes inalámbricas actuales para hacer frente a

esos aumentos en la densidad de red. Impulsadas por las innovaciones en tecnoloǵıa satelital,

las comunicaciones inalámbricas v́ıa satélite constituyen una opción rentable para lograr una

alta fiabilidad de transmisión en zonas remotas o para crear redes reservadas para situaciones de

emergencia. Para contrarrestar la creciente densidad de la red, uno de los objetivos principales

en el enlace ascendente es aumentar la eficiencia espectral de la misma. En favor de este objetivo,

se identifican tres técnicas no excluyentes:

(i) la aplicación de técnicas de acceso múltiple no ortogonal, para hacer frente a la limitada

disponibilidad de recursos ortogonales requeridos en el acceso múltiple convencional,

(ii) la explotación del dominio de colisión por el receptor, mediante la cancelación de interfe-

rencias, y

(iii) la utilización de satélites multihaz, que, usando la tecnoloǵıa multiantena, permiten una

reutilización más eficiente del dominio espacial.

Esta tesis aborda el problema de acceso múltiple masivo trabajando en los dos primeros

puntos. Un esquema consensuado que cumple con el objetivo principal y con el fin de reducir

la interacción entre los dispositivos y el satélite en el plano de control es Enhanced Spread

Spectrum ALOHA, que combina transmisiones de paquetes cortos basadas en el ensanchamiento

de la señal con la cancelación sucesiva de interferencias (SIC) en recepción. Esta combinación

abre diversas v́ıas para la asignación de enerǵıa y código a los usuarios cuando estos disponen

de cierta información sobre el estado del canal. Motivado por el esquema anterior, esta tesis

reexamina resultados previos bajo análisis teóricos de capacidad y cancelación perfecta, y estudia

las mejores estrategias de asignación cuando el receptor SIC opera de forma no ideal. Los análisis

anteriores se ampĺıan en dos frentes: en primer lugar, adoptando poĺıticas de decodificación y

cancelación adaptadas para paquetes cortos; y, en segundo lugar, explorando el desequilibrio

de enerǵıa, tasa de transmisión y fiabilidad. Con respecto al primer punto, esta tesis investiga

un modelo de sistema para un receptor SIC que, inspirado en el demodulador adoptado en el

sistema Enhanced Spread Spectrum ALOHA, aborda los problemas de ordenación de usuarios y

decodificación iterativa con paquetes cortos. En cuanto al segundo punto, esta tesis se adentra

en el régimen asintótico de usuarios y en la aplicación del cálculo de variaciones para derivar las

ecuaciones de punto estacionario correspondientes a las funciones de asignación óptimas. Una

de las principales contribuciones de esta tesis es el descubrimiento de funciones discontinuas
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(continuamente diferenciables a trozos) como una clase de distribuciones de enerǵıa ordenada

para maximizar la eficiencia espectral; un enfoque que ha demostrado ser abrumadoramente

exitoso.

En concreto, el modelo derivado en la presente tesis incorpora, progresivamente y a lo largo

de tres caṕıtulos independientes, aspectos prácticos del cancelador de interferencias adoptado:

1. La primera parte de esta tesis investiga el impacto de la decodificación no ideal y de la

cancelación imperfecta en la primera iteración de un receptor SIC asistido por control

de errores. El modelo de sistema caracteriza ambas no idealidades utilizando funciones

conocidas de la relación señal-a-ruido-más-interferencia (SINR) bajo la suposición de in-

terferencia gaussiana: las funciones tasa de error de paquete (PER) y enerǵıa residual. La

propagación de los eventos de éxito/fracaso en la decodificación de paquetes a lo largo de

las etapas del receptor SIC se sortea en el régimen asintótico de usuarios, puesto que el

modelo de sistema adopta expresiones deterministas. La asignación de enerǵıa y código

se estudia en el régimen asintótico de usuarios para una amplia variedad de casos, in-

cluyendo conjuntos formados por un número finito o infinito de esquemas de modulación

y corrección de errores para paquetes de longitud finita e infinita.

2. La segunda parte de esta tesis investiga un receptor SIC iterativo y extiende las asig-

naciones derivadas anteriormente para iteraciones del SIC más allá de la primera. La

derivación de un modelo para tal sistema supone un reto, ya que cada iteración del re-

ceptor opera con memoria respecto a las anteriores y porque las operaciones de decodifi-

cación para un mismo usuario en distintas iteraciones son estad́ısticamente dependientes.

Esta tesis propone justificadamente un modelo de sistema que resuelve dichas dificultades

añadiendo complejidad mı́nima al adoptado con anterioridad. En concreto, el modelo usa

funciones PER multivariable, cuyos argumentos corresponden a las SINRs que experimenta

un usuario a lo largo de las iteraciones del receptor, y define biyecciones para relacionar

los ı́ndices de los usuarios que permanecen decodificados sin éxito en cada iteración. Se in-

vestiga el régimen asintótico de usuarios para revelar expresiones matemáticas del modelo

anterior que permitan un completo entendimiento del receptor adoptado. Por último, se

investiga el diseño de funciones de asignación continuamente diferenciables con extremos

libres haciendo uso del modelo asintótico anterior.

3. La tercera y última parte de esta tesis estudia el problema de ordenación de usuarios en un

receptor SIC que desconoce las potencias recibidas de todos ellos. La tesis deriva un mo-

delo de sistema para un receptor SIC que gestiona un gran número de usuarios y los ordena

tras estimar sus enerǵıas en la etapa inicial mediante correlaciones de preámbulo. En el

régimen asintótico de usuarios, se obtienen resultados anaĺıticos en los que el rendimiento

del sistema se rige por un kernel conocido. Se demuestra que, contrariamente a las dis-

tribuciones prácticamente exponenciales obtenidas anteriormente, la asignación óptima de

enerǵıa derivada para un número infinito de usuarios obedece una función constante a

trozos; hecho que conlleva grandes ventajas computacionales en su aplicación.



Resum

En la transició cap a la pròxima generació de sistemes tecnològics sense fils, el creixent nombre

de dispositius frena el potencial de les xarxes sense fils actuals per fer front a tals augments en la

densitat de xarxa. Impulsades per les innovacions en tecnologia de satèl·lits, les comunicacions

sense fils via satèl·lit constitueixen una opció rentable per assolir una fiabilitat de transmissió

alta en zones remotes o per crear xarxes que puguin ser utilitzades en situacions d’emergència.

Per contrarestar la creixent densitat de la xarxa, un dels objectius principals en l’enllaç ascendent

és augmentar l’eficiència espectral d’aquesta. S’identifiquen tres tècniques no excloents en pro

d’aquest objectiu:

(i) l’aplicació de tècniques d’accés múltiple no ortogonal, per fer front a l’escassa disponibilitat

de recursos ortogonals requerits en l’accés múltiple convencional,

(ii) l’explotació del domini de col·lisió per part del receptor, mitjançant la cancel·lació d’interfe-

rències, i

(iii) la utilització de satèl·lits multifeix, que, utilitzant la tecnologia multiantena, permeten una

reutilització més eficient del domini espacial.

Aquesta tesi aborda el problema d’accés múltiple massiu treballant en els dos primer punts.

Un esquema consensuat que acompleix amb l’objectiu principal i amb la fita de reduir la inter-

acció entre els dispositius i el satèl·lit en el pla de control és Enhanced Spread Spectrum ALOHA,

que combina transmissions de paquets curts basades en l’eixamplament del senyal amb la can-

cel·lació successiva d’interferències (SIC) en recepció. Aquesta combinació obre diverses vies per

l’assignació d’energia i codi als diferents usuaris quan aquests disposen de certa informació sobre

l’estat del canal. Motivat per l’esquema anterior, aquesta tesi reexamina resultats anteriors sota

anàlisis teòrics de capacitat i cancel·lació perfecta, i estudia les millors estratègies d’assignació

quan el receptor SIC opera de forma no ideal. Els anàlisis anteriors s’amplien sota dos fronts:

en primer lloc, adoptant poĺıtiques de descodificació i cancel·lació adaptades per paquets curts;

i, en segon lloc, explorant el desequilibri d’energia, taxa de transmissió i fiabilitat. Respecte el

primer punt, aquesta tesi investiga un model de sistema per un receptor SIC que, inspirat en el

desmodulador adoptat en el sistema Enhanced Spread Spectrum ALOHA, aborda els problemes

d’ordenació d’usuaris i de descodificació iterativa amb paquets curts. Pel que fa al segon punt,

aquesta tesi s’endinsa en el règim asimptòtic d’usuaris i en l’aplicació del càlcul de variacions

per derivar les equacions de punt estacionari corresponents a les funcions d’assignació òptimes.

Una de les principals contribucions d’aquesta tesi és el descobriment de funcions discont́ınues

(cont́ınuament diferenciables a trossos) com una classe de distribucions d’energia ordenada per
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maximitzar l’eficiència espectral; un enfocament que ha demostrat ser profundament exitós.

Concretament, el model de sistema derivat en aquesta tesi incorpora, de forma progressiva i

al llarg de tres caṕıtols independents, aspectes pràctics del cancel·lador d’interferències adoptat:

1. La primera part d’aquesta tesi investiga l’impacte de la descodificació no ideal i de la can-

cel·lació imperfecta en la primera iteració d’un receptor SIC assistit per control d’errors. El

model de sistema proposat caracteritza ambdues no idealitats fent ús de funcions conegudes

de la relació senyal-a-soroll-més-interferència (SINR) sota la hipòtesi d’interferència gaus-

siana: les funcions taxa d’error de paquet (PER) i energia residual. La propagació dels

esdeveniments d’èxit/fracàs en la descodificació de paquets al llarg de les etapes del SIC

s’aborda en el règim asimptòtic d’usuaris, donat que el model de sistema adopta expres-

sions deterministes. Les funcions d’assignació s’estudien en el règim asimptòtic d’usuaris

per una àmplia varietat de casos, incloent conjunts formats per un nombre finit o infinit

d’esquemes de modulació i correcció d’errors per paquets de longitud finita i infinita.

2. La segona part de la tesi investiga un receptor SIC iteratiu i estén les assignacions derivades

anteriorment per a iteracions del SIC més enllà de la primera. La derivació d’un model per

a tal sistema suposa un repte, ja que cada iteració del receptor opera amb memòria respecte

a iteracions anteriors i degut a que les operacions de descodificació per a un mateix usuari

en iteracions diferents són estad́ısticament dependents. Aquesta tesi proposa justificada-

ment un model de sistema que resol tals dificultats afegint complexitat mı́nima al model

adoptat amb anterioritat. En concret, el model utilitza funcions PER multivariable amb

arguments corresponents a les SINRs que experimenta un usuari al llarg de les iteracions i

defineix bijeccions per a relacionar els ı́ndexs dels usuaris que romanen descodificats sense

èxit en cada iteració. El règim asimptòtic d’usuaris s’investiga amb l’objectiu de revelar

expressions matemàtiques del model anterior que permetin la completa comprensió del

receptor adoptat. Per últim, s’investiga el disseny de funcions d’assignació cont́ınuament

diferenciables amb extrems lliures fent ús del model asimptòtic anterior.

3. La tercera i última part d’aquesta tesi estudia el problema d’ordenació d’usuaris aplicat a

un receptor SIC que desconeix les potències rebudes de tots ells. La tesi deriva un model de

sistema per a un receptor SIC que gestiona un gran nombre d’usuaris i els ordena després

d’estimar les energies de tots ells en l’etapa inicial a través de correlacions de preamble.

En el règim asimptòtic d’usuaris, s’obtenen resultats anaĺıtics en els que el rendiment

del sistema ve determinat per un kernel conegut. Es demostra que, contràriament a les

distribucions pràcticament exponencials obtingudes anteriorment, l’assignació d’energia

òptima derivada per un nombre infinit d’usuaris presenta una estructura constant a trossos;

fet que comporta grans avantatges computacionals en la seva aplicació.
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Elemental Notation

x Column vector.

xH Hermitian of vector x.

0p Allzeros vector of p elements.

1p Allones vector of p elements.

λ−1 Reciprocal of scalar λ.

f(x) Scalar function of the one-dimensional argument x.

f(x) Scalar function of the n-dimensional argument x.

ḟ(x), f ′(x) First derivative of f(x).

f̈(x), f ′′(x) Second derivative of f(x).

f−1(y) Inverse function of y = f(x).

ln(·) Natural logarithm.

log(·) Logarithm to the base 2.

Pr[·] Probability.

Special Functions

δ(x) Dirac’s delta function.

Qm(a, b) Marcum Q function of order m.

Q(x) Gaussian Q function.

Operators

∇t Gradient operator under variable t.

∂x Partial differentiation operator under variable x.

E[·] Expectation operator.

∇EL Euler-Lagrange differentiation operator.

� Hadamard product operator.
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Symbolism

∼ Statistically distributed as.

, Defined as.

≈ Approximately as.

Random Variables

fX(x) Probability density function of the random variable X.

FX(x) Probability distribution function of the random variable X.

F̄X(x) Tail distribution function of the random variable X.

N (µ, σ2) Real Scalar Gaussian distribution with mean µ and variance σ2.

CN (µ, σ2) Complex Scalar Gaussian distribution with mean µ and variance σ2.

N (µ,C) Multivariate Gaussian distribution with mean µ and covariance matrix C.

X 2
r (λ) Non-central chi-squared random variable with r degrees of freedom and non-

centrality parameter λ.

Functional Analysis

J [x(t)] Functional J in x(t).

δJ First variation of the functional J .

δ2J Second variation of the functional J .

C[a, b] Space of continuously differentiable functions defined in [a, b].

Cp[a, b] Space of piecewise continuously differentiable functions defined in [a, b] and

comprising p pieces.

Specific Notation

γx Transmitted symbol energy over noise power spectral density ratio.

γ Received symbol energy over noise power spectral density ratio.

γ̂ Estimated symbol energy over noise power spectral density ratio.

Γ Signal-to-interference-plus-noise ratio.

PER[Γ, R] Packet error rate versus SINR function of the coding scheme of rate R.

PSR[Γ, R] Packet success rate versus SINR function of the coding scheme of rate R.

ε[Γ, R] Residual energy versus SINR function of the coding scheme of rate R.

Φ[Γ, R] Decoding-cancellation characteristic of the coding system of rate R.
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1 Introduction

Over the years, the forecasts for growth in subscriptions and traffic have been successfully

achieved. Thus, the explosive growth of wireless devices is now a widespread trend. In the last

forecast report developed by Ericsson [1] in November 2020, it is stated that “5G subscription

uptake is expected to be significantly faster than for 4G”, and it is shown that the order of

magnitude of these new subscriptions is in the billion. In this context, the way these devices

communicate is going to be substantially different from how it has developed so far. It is

expected that such a high number of devices will be communicating with each other (machine-

to-machine) or towards more complex aggregation nodes. Communication links are going to be

set up intermittently, during very short periods of time, and without centralised coordination [2].

This new paradigm raises the challenge of reliable communication with short packets.

These emerging innovative settings put current wireless communications up against the wall,

and focus the world’s eyes on both industry and academia to devise architectures and protocols

able to handle such a volume of data without prejudicing the requirements of devices, but

rather the opposite, with higher demands on capacity, reliability and low latency. This, in

turn, implies the use of more complex hardware architectures and the more efficient use of the

available channel resources. One of the options to respond to this demand is to complement

the terrestrial cellular infrastructure with non-terrestrial networks (NTNs) [3,4], as for instance,

satellite communications (SatComs) or airborne networks. In both cases, the underlying idea

is to add some intermediate nodes, such as satellites or aircraft platforms, that connect many

devices with a ground station either directly or via space-to-space links.

This dissertation focuses on SatComs, and more concretely, devotes its content to the study

of allocation strategies for very many users accessing a satellite with asynchronous random access

and the receiver performing interference cancellation decoding. The following sections provide

an overall picture of SatComs, which include satellite technology in Section 1.1, and, in Section

1.2, the advanced random access schemes that can counteract the inherent drawbacks of the

satellite channel in an effective way. The rest of the chapter describes the contribution of this

dissertation: Section 1.3 delimits its scope; Section 1.4 revises the main tools used to design

such allocation strategies; and finally, Section 1.5 outlines the technical contributions resulted

from this thesis, and its organisation from this chapter onwards.

1
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1.1 Relevant Aspects of Satellite Communications Technology

The key drivers that motivate the push for the integrated satellite terrestrial networks are due

to the following positive features affecting services [3]:

1. Service continuity. Terrestrial systems cannot guarantee uninterrupted service, as it may

be blocked due to high traffic flow in peak hours or service interruption caused by emer-

gency situations (e.g. in natural disasters). In these cases, satellite networks are very

prompt to offload, from the current network infrastructure, the part of the traffic which

does not demand stringent latency constraints. The latter fits in the context of massive

machine-type communications.

2. Service availability. As the coverage of satellites is usually large, they are very effective

in providing coverage to remote areas where terrestrial networks cannot be deployed for

reasons of infrastructure efficiency and cost.

3. Scalability. One of the options that make SatComs feasible is the scalability they offer.

That is, once the satellite is launched, they allow greater flexibility to support increases in

network density.

These positive aspects, however, are set against the intrinsic drawbacks of the satellite channel,

which appear, essentially, due to the long distance between devices located on the Earth’s

surface and the satellite. Recall that the GEO orbit is around 36.000 kilometres altitude and

the propagation delay is close to half a second. The LEO orbits are found at an altitude of some

thousands of kilometres. The MEO orbits are found in between. This fact somewhat restricts

or focuses the main applicability of SatComs to delay-tolerant applications or to the creation of

resilient wireless networks to be used in emergency situations. These pros and cons have also

motivated the research community to enhance the use of satellite networks further by addressing

the technical challenge of increasing their performance, which can generally be addressed by the

following three non-exclusive techniques:

1. Multi-beam satellite technology. Currently, one of the most prominent techniques is the

use of the multi-antenna technology in space-ground communications, which enables high

throughput coverage in dense scenarios through multiple beams from the same antenna

(array-fed reflectors) that are used to direct transmission to the intended users [5–7].

2. Non-orthogonal multiple access. Conventional multiple access schemes are not suitable for

satellite scenarios due to the inherent characteristics of the satellite channel, and because

the excessively large number of devices poses many difficulties to coordinate the multiple

access. Such are the cases of time-, frequency- and code-based channelisation protocols in

orthogonal multiple access (OMA), which are difficult to implement in large systems due

to the lack of sufficient orthogonal resources available to users [8, 9]. Another example is

the classical demand assignment multiple access (DAMA) protocol adopted in the digital

video broadcasting - return channel satellite (DVB-RCS) standard, where a scheduler

allocates dedicated resources to network subscribers, and which performs inefficiently due

to the large round trip time of transport control protocol signalling [10] (e.g. three-way

handshake and acknowledgement packets).
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In both multi-beam and single-antenna satellites, each beam still covers a large Earth

area. In a super-dense scenario, nevertheless, this implies that multiple access needs to

exploit the available degrees of freedom more efficiently. Along this line, one of the most

competitive techniques is non-orthogonal multiple access (NOMA). It makes possible to

counteract the shortage of orthogonal resources required for conventional OMA, while

allowing simultaneous access by a larger number of devices sharing one or several degrees

of freedom. At the same time, however, this implies that users interfere with each other,

as in the multiple access channel, but only in the shared degrees of freedom. This issue

can be tackled effectively relying on interference cancellation at the receiving node, as

described in the subsequent point.

The mostly dominant NOMA techniques separate users in the power or the code domain

[11]. Power-domain NOMA is mostly used in downlink, where the transmitter (usually,

the base station) overlaps in time and frequency the signals intended to different users

with disparate power levels, and the destination nodes resort to successive interference

cancellation (SIC) [12]. The use of dissimilar power levels facilitates the task of detecting

the strongest signal in every user [13]. Code-domain NOMA is used either in uplink or

downlink. Its main principle prompts the use of spreading-based multiple access through

linear codes from a dense or sparse non-orthogonal basis. Multiple access works in the

same way as in conventional code-division multiple access (CDMA), where users sign their

packets after data encoding, and transmit on the same time and frequency resource. At

the receiver, the processing gain is high due to the low cross-correlation between the

different spreading waveforms, which can be further improved by adopting SIC. The most

well-known code-domain NOMA techniques are as follows:

a) Dense spreading (DS) [14, 15]. Signature waveforms are constituted by repetition

codes with the second moment of their cross-correlation inversely proportional to the

lengths of the employed spreading codes.

b) Low-density spreading (LDS) [16, 17]. Extends the DS format by forcing zeros in

some dimensions of the previous spreading codes.

Other relevant NOMA techniques in this area combine several domains, such as the code

and frequency domains in sparse code NOMA [18].

3. Exploitation of the collision domain. Since users share the same collision domain, they

inevitably interfere with each other at the receiving node. One feasible option to miti-

gate this multiple access interference is by resorting to some multiuser detection (MUD)

technique. Since this implies an increase in computation complexity, current satellite

manufacturers are very sceptical about introducing complex on-board digital signal pro-

cessing, and is therefore preferable to move the increase in computational complexity to

gateway stations [19]. With the focus on code-domain NOMA, several MUD receivers

can be adopted for both DS and LDS depending on the required performance/complexity

ratio. The optimum detector with maximum-likelihood sequence detection achieves the

first-rate performance but its complexity is exponential in the number of users. Less com-

plex MUD schemes can be implemented, such as the belief propagation message-passing
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algorithm [20], the classical SIC algorithm after a bank of matched filters or a bank of

linear minimum mean square error filters [21], or a linear MUD receiver [15, 16] when

computation complexity constitutes a relevant factor. Anyway, the key point is to adopt

an architecture capable of resolving packet collisions.

1.2 Advanced Random Access Schemes

In more realistic satellite networks the number of users accessing the channel is usually random.

To handle this issue, the scientific community has devised many random access (RA) protocols

that involve minimum coordination between transmitting devices and the central node, even

leading to their autonomous operation [22–24].

Conventional RA protocols have been widely investigated in the past [25, 26]. The ALOHA

system [27] is the pioneering packet-based RA protocol where users transmit on an asynchronous

fashion in the same time and frequency resource. The receiver usually operates with a working

window of T seconds and, due to the users’ non-coordinated activity, the number of users in T

seconds follows a Poisson distribution with mean λ > 0 packets per second, such that

Pr{k users in T seconds} = λT

k! exp(−λT ). (1.1)

In this system, packet collision occurs when more than one packet arrive at the central node with

partial overlapping, in which case both may be lost. Due to the non-coordinated activity be-

tween the different network devices and the high collision probability at increasing traffic loads,

the peak throughput is achieved at 0.5e−1 ≈ 18.4% of packets received without collision. Slotted

ALOHA [28] improves the pure ALOHA system by introducing time slot synchronisation at the

central node, such that, user packets are enforced to arrive at the beginning of each time slot,

instead of randomising the access time. The performance of slotted ALOHA is doubled (that is,

e−1 ≈ 36.8%), but the counterpart is that it requires time slot synchronisation. The latter is,

in general, impracticable in large networks since it usually requires the imposition of stringent

coordination constraints. Moreover, its application generates controversy in the scientific com-

munity because the peak throughput does not provide reliable multiple access to many devices,

a fact that, according to the key drivers of the new era of communication, constitutes a limiting

factor. Other RA protocols adopt carrier sensing mechanisms to determine when the channel is

idle, as in IEEE 802.11 [29], where collision avoidance operates with specific messages to reserve

the utilisation of the channel before transmission. Broadly speaking, carrier sensing techniques

such as collision avoidance and also collision detection do not perform satisfactorily since the

long propagation delay reduces the effective usage of the channel.

In view of the above-mentioned limitations in incorporating the pioneering RA schemes in

satellite communications, advanced schemes have been developed on the basis of the earlier ones

with the aim of overcoming these shortcomings and achieving substantial performance gains.

The promising candidates are the Contention Resolution Diversity Slotted ALOHA introduced

in the second generation DVB [30] and in the quasi-synchronous access of interactive services

S-MIM [31], and the Enhanced Spread Spectrum ALOHA adopted in the asynchronous return

link of S-MIM [32]. Both advanced RA schemes are reviewed in the following subsections.
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Figure 1.1: CRDSA RA frame with 8 slots per frame and Nrep = 3.
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Figure 1.2: ACRDA received frames with 8 slots per frame and Nrep = 3.

1.2.1 Contention Resolution Diversity Slotted ALOHA

Contention Resolution Diversity Slotted ALOHA (CRDSA) is an esteemed RA protocol with

time slot synchronisation. The interesting technique used by CRDSA is the combination of tem-

poral diversity by transmitters with the exploitation of interference cancellation by the receiving

node [33]. A slotted multiple access is implemented at the receiver to divide its operation in

frames composed by a number of slots, and users are allowed to transmit Nrep replicas of the

same packet in different slots chosen randomly. CRDSA takes advantage of different replicas

of the same packet to provide more chances to the receiver to decode it successfully. If so,

the packet is reconstructed and cancelled in the other time slots where it is present, so that

the interference level existing in the working frame is mitigated sequentially as the interference

cancellation algorithm progresses, as in the four-user example drawn in Figure 1.1. In this ex-

ample, high performance is attained if users 3 and 4 are respectively decoded from slots 2 and 3,

and later on, subtracted from slot 4 to obtain user 1. Finally, user 2 is decoded from slot 1 after

cancelling user 1. System performance highly depends on the distribution of powers received

from all users and on the specific decoding order, which opens up many possibilities for system

optimisation. With regard to the first, the packet-power unbalance can be exploited if power

control is enabled [34], wherein system performance substantially outperformed. CRDSA’s suc-

cessful performance has motivated its last introduction in the standard DVB-RCS2 [30], as well

as the possibility of transmitting uplink signalling (e.g. logon and control information) and data

traffic in the same payload.

A variant of CRDSA corresponds to the elimination of time slot synchronisation, as proposed

in asynchronous CRDA (ACRDA), which allows for a better application in dense scenarios since
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Figure 1.3: E-SSA memory buffer example: first window.

it suppresses the coordination between devices and the receiving station [35]. In this case, RA

frames are set local to the transmitters and totally asynchronous from the receiver’s perspective,

as shown in Figure 1.2 for three users. ACRDA achieves better performance than CRDSA

while operating in a truly asynchronous mode [34]. In fact, the RA nature of incoming frames

introduces an artificial unbalance exploited by the interference cancellation receiver. Reported

analyses in [34] evidence 35% superior throughput with respect to the best-performing CRDSA.

There are also other variants of contention resolution ALOHA, albeit less analysed through-

out the literature. Enhanced Contention Resolution ALOHA is such an example that prompts

the use of classical combining techniques (selection combining or maximal-ratio combining) to

resolve collision patterns that interference cancellation algorithms are not able to handle [36,37].

1.2.2 Enhanced Spread Spectrum ALOHA

In general terms, spreading-based multiple access has a number of advantages for today’s satellite

communications [38]: firstly, it encourages totally asynchronous transmissions whereby devices

can choose either bandwidth or time expansion; secondly, it allows multiplexing a high number

of users in the same time-frequency resource; thirdly, multiple access interference at the output

of the symbol matched filter resembles Gaussian noise [14], albeit symbols of the same packet

are statistically dependent; and fourthly, system performance with large spreading gains and

high traffic loads practically attains, by using less complex channel decoding techniques, the

performance achieved by very low-rate coding schemes without spreading.

Continuing along the line of uncoordinated RA, Enhanced Spread Spectrum ALOHA (E-

SSA) is the most prominent spreading-based RA protocol, and owes its stunning performance

to a powerful packet-level demodulator at the heart of which operates an iterative SIC decoding

algorithm. E-SSA was initially proposed as a messaging scheme for satellite communications,

more concretely, for the return satellite link [39, 40]. It proved to be appropriate for low com-

plexity terminals due to the low power requirements and its high throughput operation. The

underlying idea is to enable multiuser access in the absence of coordination through the use of

a powerful channel encoder followed by spreading signatures with large time-bandwidth prod-

ucts. On the receiver side, the demodulator operates under a memory buffer where packets from

the different users arrive asynchronously. The demodulation and decoding power of the E-SSA

system relies on a sliding window-based iterative SIC scheme.
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Figure 1.4: E-SSA memory buffer example: second window.

Since the iterative decoding algorithm implemented in the E-SSA system is of great relevance

to this thesis, the remaining of this section summarises and exemplifies this algorithm. Firstly,

samples are stored in a memory buffer after down frequency conversion and decimation, and a

sliding window of size W samples, exceeding the packet duration (in samples), operates by being

shifted in steps of ∆W . Figure 1.3 depicts an example of the first window of the E-SSA memory

buffer. The following iterative approach is performed to process users in every window [40]:

1. Packet detection. Perform packet detection through preamble-based cross-correlations

jointly with a comparative threshold, and perform a packet ranking 1, . . . ,Ki based on the

estimated signal-to-interference-plus-noise ratios (SINRs): Γ[1] ≥ · · · ≥ Γ[Ki].

2. Decoding and cancellation. Select the packet with highest SINR, and perform channel

decoding. Compute and check the cyclic redundancy check (CRC) to determine if packet

error has occurred. If the CRC checks out, regenerate the packet received from that user

with the parameters: complex amplitude, delay, and carrier frequency; estimated using the

successfully recovered packet. Afterwards, the user is cancelled from the memory buffer.

3. Iterative procedure. Return to step 1 and proceed with the decoding-cancellation algo-

rithm in step 2. A halting criterion stops the algorithm when packet detection does not

discover new users and all users detected are processed, or when a maximum number of

iterations is reached.

After processing the first window through the algorithm above, the sliding window is shifted

∆W samples to process users in [∆W,W+∆W ], as shown for the second window in Figure 1.4.

Note that, since the interference level is mitigated as SIC advances in stages, new users can

be detected (step 1.) at each iteration of the demodulation process. Naturally, the computation

complexity strongly depends on the number of iterations performed, as well as on the packet

detection algorithm. In this respect, the traffic load conditions the number of iterations needed

to achieve a minimum quality-of-service requirement [40]. Reported analyses show that the

maximum performance is practically achieved by iterating the SIC algorithm few times (between

three and five), and that the first iterations are critical to system performance.
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1.3 Thesis Scope

This thesis takes up the E-SSA framework, which considers a large number of users connected

to the same receiver via satellite and transmitting under long spreading signatures, and designs

optimal allocation strategies in terms of energy and code allocated to users when the receiver

performs a packet-based SIC scheme with known decoding-cancellation implementation function.

For the above purpose, it is considered that users can accurately and individually estimate their

channel power gains assuming that the satellite broadcasts a downlink signal employed by the

users to obtain their local channel gains. This information allows, since the network has a large

number of devices, the deterministic design of allocation functions in accordance with the known

asymptotic distribution of channel power gains from all users. The analysis undertaken in this

thesis simplifies its practical application since only requires users to use their channel power gain

as the argument of the designed allocation function, to obtain the transmitted symbol energy

and coding rate; an approach that provides accurate and successful results.

The complexity of the analysis lies in the accurate mathematical modelling of the adopted

SIC receiver when some practical features of its operation are considered: the nonideal decod-

ing due to the use of short packets, and the dynamic decode ordering. This thesis covers the

statistical analysis of the SIC receiver in non-iterative and iterative operating modes. More

specifically, this work elaborates a theoretical framework to compute the performance of the

previous systems by analysing the user-asymptotic regime. The model is therefore used to op-

timise the performance of the aforementioned network in terms of energy, code and conjoint

energy and code allocation via the calculus of variations with the goal on the spectral efficiency

maximisation. The unbalance between energy and coding rate for different users of the system,

already known in theoretical foundations of communications, is explored in depth by incorporat-

ing the last analytical findings for short-length codes, which extends them to the energy, code,

reliability, and packet decoding latency sets.

1.4 Mathematical Preliminaries to the Calculus of Variations

One of the innovative contributions of this thesis is the application of some tools from the

calculus of variations, or their equivalent forms in terms of the Hamiltonian equations [41], to

design piecewise continuously differentiable allocations for a network that handles asymptotically

many users. This section elaborates a summary of this mathematical tool from the engineering

perspective of this author.

The objective is to optimise an application J : S → R from a function space S to the real

field R, denoted functional, and defined as

J [x(t)] =
∫ b

a
F [x(t), ẋ(t), t]dt, (1.2)

with F : R3 −→ R a known three-variate function. The functional is defined generally by

considering dependence on the sought function x(t), its derivative ẋ(t), and the independent

variable t. Recall that the over-dot notation (or Newton’s notation) indicates differentiation.
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1.4.1 Definition of a Function Space

The main difference between the calculus of variations, an optimisation over an infinite-dimensional

space, and vector calculus over a finite-dimensional space, is that the first needs the definition

of such a function space from which candidate functions belonging to that space are chosen to

satisfy the necessary equations for optimality [41, Chapter 1.2]. Finding such a function space

is a major concern since there is usually no function space generic enough to take as a starting

point. Only experience and evaluation of the results obtained can dispel this doubt, or at least

increase confidence that the function space adopted provides competitive solutions, even if the

globally optimal solution does not belong to it. The adoption of an unsuitable function space

may lead to finding no solution to the problem or to determining suboptimal solutions. The

experience gained in this work tells us that, in general, standard functionals usually admit at

most discontinuous solutions (piecewise continuous), and this thesis is an example of such a case.

However, there may be singular cases in which even more singular functions solve the target

optimisation. The function spaces considered in the different chapters of the thesis are described

below, and are exemplified in Figures 1.5 and 1.6:

1. Continuously differentiable functions with fixed end points. The most commonly used

function space considers continuously differentiable candidates x(t) ∈ C[a, b] whose end

points lie on the vertical lines t = a and t = b. That is, smooth functions on the interval

a ≤ t ≤ b with continuous derivatives, as shown for some examples in Figure 1.5.

2. Continuously differentiable functions with free end points. A more general function space

results from considering smooth functions with continuous derivatives (C[a, b]) to which,

additionally, the end points a, b may vary freely or between predefined limits, rather than

lying on the vertical lines t = a and t = b. Two examples are shown in Figure 1.5.

3. Piecewise continuously differentiable functions. An even more general function space

consists of piecewise continuously differentiable functions with a finite number of pieces

p1. Each piece comprises a smooth function with continuous derivatives. We denote this

function space Cp[a, b], whereby C1[a, b] ≡ C[a, b]. Some examples are drawn in Figure 1.6.

1The mathematicians authors of [41,42] were not able to extend the study to the cases where infinitely many
discontinuities may be present.
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Note that 1. is a particular case of 2. in which the end points are fixed, and that 1. constitutes

a particular case of 3. in which p = 1.

1.4.2 Necessary Conditions for Standard Functionals

The fundamental unit in the calculus of variations is called variation: a perturbation of infinites-

imal magnitude at one point of S x(t), as

x(t) + v(t). (1.3)

This definition allows to define the increment of the functional J [x(t)] in C[a, b] at x(t) as

∆J =
∫ b

a
F [x(t)+v(t), ẋ(t)+v̇(t), t]dt−

∫ b

a
F [x(t), ẋ(t), t]dt, (1.4)

and the necessary conditions to find extremals of J are derived by imposing conditions over the

linear part of ∆J in the variation unit. The linear part of ∆J , δJ , denoted first variation can

be obtained either with Fréchet differentiation, by expanding the first term of ∆J up to the first

order as

δJ =
∫ b

a
Fxv(t)dt+

∫ b

a
Fẋv̇(t)dt, (1.5)

or with the Gateaux derivative as

δJ = lim
c→0

∇cJ [x(t) + c·v(t)] =
∫ b

a
Fxv(t)dt+

∫ b

a
Fẋv̇(t)dt, (1.6)

where Fx ≡ ∂xF [x, ẋ, t] and Fẋ ≡ ∂ẋF [x, ẋ, t] denote the partial derivatives of the three-variate

function F [x, ẋ, t] with respect to the first and second arguments, indicated with subscripts.

Both procedures result in the same form for the first variation δJ , which can be still simplified

by integrating the last term (linear in v̇(t)) by parts, which finally reads

δJ =
∫ b

a
(Fx −∇tFẋ)v(t)dt+ Fẋ

∣∣∣
t=b
v(b)− Fẋ

∣∣∣
t=a

v(a). (1.7)

By identifying terms: (i) the first term corresponds to variations of J [x(t)] when x(t) holds the

fixed extrema x(a) = x0 and x(b) = x1, and thus, v(a) = v(b) = 0; and (ii) the second and

third terms correspond to additional variations over x(a) and x(b). This concludes the following

equivalence

max
x(t)

∫ b

a
F [x(t), ẋ(t), t]dt ⇐⇒ max

x0,x1
max
x(t)

∫ b

a
F [x(t), ẋ(t), t]dt (1.8a)

s.t. x(a) = x0 ; x(b) = x1 (1.8b)

Therefore, a necessary condition for x(t) to be a stationary point of the functional J [x(t)] is

that the first variation

δJ = 0 (1.9)
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vanishes for any admissible variation v(t), defined by the perturbations x(t)+v(t) that satisfy

the constraints of the problem. This first-order necessary condition works similarly as vanishing

the first derivative in vector optimisation. As δJ = 0 holds for every admissible variation, it

must be also satisfied for the following particular cases:

1. Null variations on the extrema v(a) = v(b) = 0, which gives

∫ b

a
(Fx −∇tFẋ)v(t)dt = 0, (1.10)

and by invoking the Fundamental Lemma of the Calculus of Variations2, it results that

Fx −∇tFẋ = 0 in a < t < b. (1.11)

This equation can still be simplified by defining the Euler-Lagrange operator ∇EL(·) ,

∂x(·)−∇t∂ẋ(·) and by applying it to the integrand F as ∇ELF = 0.

2. Null variations v(t) in a < t ≤ b, which results in Fẋv(a) = 0 in t = a.

3. Null variations v(t) in a ≤ t < b, which results in Fẋv(b) = 0 in t = b.

Remarkably, ∇ELF = 0 (1.11) constitutes a second-order differential equation in a < t < b

whose initial values are found by computing Fẋ|t=av(a) = 0 and Fẋ|t=bv(b) = 0.

Truly, the extremals x∗(t) that satisfy δJ = 0 constitute stationary points of J . The above

procedure can be extended further by including the second variation of the functional J , actually,

the quadratic part of ∆J , δ2J . A posterior analysis shall be performed to guarantee that x∗(t)
constitutes a maximum or minimum of J [x∗(t)]. This is respectively satisfied when δ2J < 0 or

δ2J > 0. For the interest of the reader, more information can be found in [41].

1.4.3 Necessary Conditions for Broken Extremals

The previous derivation is the main basis of the calculus of variations for “standard” functionals

defined in the function space C[a, b]. In some cases, nevertheless, the standard functional J

does not admit stationary points in C[a, b]. This singular situations usually occur when the

stationary points lie in the boundary of C[a, b], and thus, a broader function space shall be

considered [41, Chapter 3.15]. Such is the case of the function space of piecewise continuously

differentiable functions Cp[a, b], also referred to as broken extremals, where the redefinition of

J [x(t)] in the new function space leads to splitting the integrals into p pieces as

J =
p∑

k=1

∫ t−
k

t+
k−1

F [x(t), ẋ(t), t]dt, (1.12)

with t+0 = a and t−p = b. Following the same rationales as before, the first variation of J reads

δJ =
p∑

k=1

∫ t−
k

t+
k−1

(Fx −∇tFẋ)v(t)dt+
p∑

k=1

[
Fẋ
∣∣∣
t=t−

k

v(t−k )− Fẋ
∣∣∣
t=t+

k−1
v(t+k−1)

]
. (1.13)

2This Lemma constitutes one of the main pillars of the calculus of variations since it allows to establish the
necessary conditions for obtaining stationary functions of target functionals.
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Likewise as in the previous section, a necessary condition for x(t) to be a stationary point of J

in Cp[a, b] is that it satisfies δJ = 0 for any admissible variation. This concludes:

1. the p equations ∇ELF = Fx −∇tFẋ = 0 in t+k−1 < t < t−k for k = 1, . . . , p; and

2. the 2p conditions Fẋ
∣∣
t=t−

k
v(t−k ) = 0 and Fẋ

∣∣
t=t+

k−1
v(t+k−1) = 0 for k = 1, . . . , p.

Remarkably, the same equations derived for standard functionals are still valid in each piece

k = 1, . . . , p, and the 2p conditions must hold where the stationary functions have a corner.

1.5 Thesis Organisation and Research Contributions

The remaining of this section is devoted to summarising each of the chapters of the present thesis,

as well as to listing the research contributions (journals, letters, and conference proceedings)

derived in each of them. For easy readability, the technical contributions are listed in descending

chronological order, beginning with the most recent article.

� Chapter 2: Theoretical Analysis on the Massive Multiple Access Problem

The chapter provides a comprehensive overview of the massive multiple access problem

from an information-theoretic point of view. The first part of the chapter reviews the

capacity of the Gaussian multiple access channel with many users and summarises the

sum-rate achievable with OMA and several spreading-based NOMA techniques. The latter

includes analyses of DS and LDS formats in the user-asymptotic regime as a convenient

tool to analyse massively populated systems. The rest of the chapter presents the practical

aspects affecting the successive decoding receiver so as to illuminate the work carried out

in the following chapters. The main non-idealities appear, from the transmitter’s point of

view, by the use of short packets and, from the receiver’s point of view, by the unknown

identities and strengths received from all users, in which case the receiver proceeds with

the SIC receiver algorithm according to energy estimates. The first issue motivates the

two next chapters, and the second and last issue motivates the study of the SIC receiver

operation under dynamically ordered users.

� Chapter 3: Optimal Allocation Designs for Cancellation Receivers

The scope of the chapter is the design of optimal energy and rate allocation policies for

a massive number of DS spread spectrum users that transmit towards a common central

node, which relies on a practical SIC scheme to deal with the decoding of short packets.

The first part of the chapter conducts the analysis of such a SIC receiver in terms of a

simple system model that characterises statistically the effects of channel decoding and

imperfect SIC cancellation through univariate functions of the SINR. The user-asymptotic

regime is investigated to overcome the randomness present in the previous system model.

Within the E-SSA framework, this chapter deals with the derivation of asymptotically

optimal allocations accounting for the first iteration of the adopted SIC receiver. The

different designs correspond to energy, rate, and conjoint energy-rate allocations under

two methodologies that vary the number of encoders users may have available: firstly,

for an infinite number; and secondly, for a few of them. The main contributions of the
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chapter are the successful adoption of smooth allocations with variable end points, and

the characterisation of the stationary point analytic forms to the allocation problems. At

the simulation level, reported results present the unbalance of energy, rate and reliability

for all users.

The following journal paper and conference proceedings are derived in this chapter:

[J1] F. Molina, J. Sala-Álvarez, F. Rey, and J. Villares, “Asymptotically optimal energy

and rate allocation for massive multiple access with interference cancellation,” Sub-

mitted to IEEE Trans. Commun., 2021.

[C1] F. Molina, J. Sala-Álvarez, F. Rey, and J. Villares, “Channel-aware energy allocation

for throughput maximization in massive low-rate multiple access,” in 2019 53rd IEEE

Int. Conference on Communications, Shanghai (China), May 2019, pp. 1-6.

[C2] F. Molina, J. Sala-Álvarez, J. Villares, and F. Rey, “Joint energy and rate allocation

for successive interference cancellation in the finite blocklength regime,” in 2018 6th

IEEE Global Conference on Signal and Information Processing, Anaheim (CA-USA),

Nov. 2018, pp. 1-5.

[C3] F. Molina, J. Sala-Álvarez, J. Villares, and F. Rey, “Optimal power control law for

equal-rate DS-CDMA networks governed by a successive soft interference cancella-

tion scheme,” in 2018 43rd IEEE Int. Conference on Acoustics, Speech and Signal

Processing, Calgary (AB-Canada), Apr. 2018, pp. 1-5.

[C4] J. Sala-Álvarez, F. Rey, J. Villares, and F. Molina, “Minimum PER user-energy pro-

file for massive SIC receivers under an average energy constraint,” in 2017 18th IEEE

Int. Workshop on Signal Processing Advances in Wireless Communications, Sapporo

(Japan), Jul. 2017, pp. 1-6.

The author has also contributed in the following poster presentation:

– F. Molina, J. Sala-Álvarez, F. Rey, and J. Villares, “Channel-aware energy allocation

for throughput maximization in massive multiple access,” in 2019 IEEE Communi-

cation Theory Workshop, Selfoss (Iceland), May 2019.

� Chapter 4: Optimal Allocation Designs for Iterative Cancellation Receivers

The chapter extends the design of energy and code allocation strategies followed in the

previous chapter by incorporating a SIC receiver that persists in processing users decoded

unsuccessfully in previous iterations. In this respect, the chapter addresses the iterative

decoding problem present in the demodulator adopted in E-SSA (Section 1.2.2), whose

specific architecture complicates its analysis since persistent user decoding is a process

that operates with memory regarding previous iterations. The first part of the chapter

elaborates an original system model to describe the statistical behaviour of the former

iterative cancellation receiver. Afterwards, the user-asymptotic expressions of the above

model are investigated as well as their usefulness for analysing the behaviour of the SIC

receiver deterministically. The second part of the chapter is devoted to optimisation pur-
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poses, where the optimal designs are derived for some cases. The latter part of the chapter

conducts the analysis of the ultimate performance of the SIC receiver with a large number

of iterations through a user-asymptotic analysis based on a fixed-point equation.

The following technical contributions are derived from this chapter:

[J2] F. Molina and J. Sala-Álvarez, “Energy allocation design for the satellite return

channel of a massive NOMA system with interference cancellation,” Submitted to

IEEE Trans. Green Commun. Netw., 2021.

[L1] F. Molina and J. Sala-Álvarez, “Average PER performance metrics of iterative suc-

cessive interference cancellation,” IEEE Wireless Commun. Lett., vol. 9, no. 1, pp.

74-77, 2020.

[C5] F. Molina and J. Sala-Álvarez, “Rate allocation in massive multiple access combining

successive decoding with error control,” in 2020 54th IEEE Asilomar Conference on

Signals, Systems, and Computers - Virtual Event, Pacific Groove (CA-USA), Nov.

2020, pp. 1-6.

[C6] F. Molina and J. Sala-Álvarez, “Energy allocation for short-packet massive multiple

access with two-iteration successive decoding,” in 2019 54th IEEE Int. Conference

on Communications - Virtual Event, Dublin (Ireland), Jun. 2020, pp. 1-6.

� Chapter 5: The Case of Dynamically Ordered Interference Cancellation Decoding

The chapter analyses the performance of a SIC receiver in the presence of unknown symbol

energies, which releases one of the principles of successive decoding. Within the framework

of the E-SSA system outlined in Section 1.2.2, the chapter addresses the problems of

energy estimation and ordering of users. The first part of the chapter studies the main

scenarios where the receiver lacks of knowledge about the symbol energies received from

all users. A SIC receiver that operates according to the energies estimates is adopted.

The second part of the chapter states justifiably an attractive system model to analyse the

performance of the adopted receiver. The model is based on statistical averages rather than

on long-term averages of many Monte Carlo simulations. The third part of the chapter

presents an optimisation in the user-asymptotic regime, and analyses potentially-optimal

broken extremal solutions for the asymptotic performance maximisation of the adopted

SIC receiver.

The main results of the chapter are regarding the system model and for optimisation

purposes, which have resulted in the following contributions:

[L2] F. Molina and J. Sala-Álvarez, “Discontinuous user-energy distribution for dynami-

cally ordered successive interference cancellation,” IEEE Commun. Lett., vol. 25, no.

5, pp. 1673-1677, 2021.

[L3] F. Molina and J. Sala-Álvarez, “Asymptotic performance analysis of successive inter-

ference cancellation with dynamic user-decoding order,” IEEE Commun. Lett., vol.

24, no. 12, pp. 2931-2935, 2020.
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The author has also contributed in the following poster presentation:

– F. Molina, J. Sala-Álvarez, F. Rey, and J. Villares, “An optimal control approach

to the optimization of dynamically ordered successive interference cancellation,” in

2021 IEEE Communication Theory Workshop - Virtual Event, Banff (AB-Canada),

Jun. 2021.

� Chapter 6: Conclusions and Future Work

The chapter summarises the main contributions of this thesis chapter by chapter, and also

outlines future research directions toward the extension of the work exposed herein.

� Other contributions

The author of this thesis has also contributed in the following technical works:

[L4] F. Molina, J. Villares, F. Rey, and J. Sala-Álvarez, “Decentralized random energy

allocation for massive non-orthogonal code-division multiple access,” IEEE Commun.

Lett., vol. 23, no. 12, pp. 2306-2310, 2019.

[C7] J. Borras, F. Molina, R. López-Valcarce, and J. Sala-Álvarez, “Energy-efficient analog

beamforming with short packets in millimeter-wave MIMO systems”, in 2020 54th

Asilomar Conference on Signals, Systems, and Computers - Virtual Event, Pacific

Groove (CA-USA), Nov. 2020, pp. 1-6.

[C8] F. Molina and J. Borras, “Low-complexity switching network design for hybrid pre-

coding in mmWave MIMO systems,” in 2019 27th European Signal Processing Con-

ference, A Coruña (Spain), Sep. 2019, pp. 1-5.





2 Theoretical Analysis on the

Massive Multiple Access Problem

The relevant challenge of this thesis is the massive multiple access problem. This chapter

provides a comprehensive overview of this problem for many users from a theoretical perspective.

Section 2.1 discusses the achievable sum-rate in the Gaussian multiple access channel (MAC)

with orthogonal multiple access in Section 2.1.1 and spreading-based non-orthogonal multiple

access in Section 2.1.2. The latter includes the asymptotic analysis of direct-sequence spread

spectrum with the optimal detector and a suboptimal detector based on successive interference

cancellation (SIC). Practical features of successive decoding are analysed in Section 2.2 with the

focus on the demodulator adopted in the Enhanced Spread Spectrum ALOHA (E-SSA) system

[40]: firstly, with regard to practical decoding of short packets and imperfect SIC cancellation,

and later with regard to the decoding order. Section 2.3 exposes the fundamental interplay

between four relevant magnitudes in every communication system.

2.1 The Gaussian Multiple Access Channel

When K users simultaneously access a common receiver, the classical problem from the infor-

mation theory perspective is to determine the set of achievable rates, or the capacity region of

the K-user MAC. In the Gaussian case, the capacity region is defined by the enclosing

⋃

K⊆{1,...,K}

{
R[1 ≤ k ≤ K] ∈ R+ such that

∑

k∈K
R[k] ≤ log

(
1 +

∑

k∈K
γ[k]

)}
, (2.1)

with γ[k] the ratio of symbol energy to noise power spectral density for user k, henceforth

denoted symbol energy throughout this thesis, and the maximum sum-rate is attained with

Gaussian inputs and via SIC, which results in

CMAC
sum =

K∑

k=1
log

(
1 + γ[k]

1 +∑K
i=k+1 γ[i]

)
= log (1 +Kγ̄) (2.2)

with γ̄ , 1
K

∑K
k=1 γ[k] the average symbol energy over all users. Naturally, it is not possible

to draw this capacity region since it requires a K-dimensional space. Instead, it is possible to

simplify its representation in the two-user plane R[k]×R[j], as shown in Figure 2.1.

17
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SIC

SIC

R[j]

R[k]

Figure 2.1: Capacity region of the K-user Gaussian MAC in the R[k]×R[j] plane.

2.1.1 Orthogonal Multiple Access

The case of orthogonal multiple access (OMA) can be analysed in a general way by considering

that user k employs a fraction 0 ≤ βk ≤ 1 of the totally available degrees of freedom (DoFs), with
∑K
k=1 βk = 1, and that the DoFs allocated to users are not overlapped [43]. No matter if OMA

is organised in the time domain (TDMA), the frequency domain (FDMA), or the code domain

as in conventional CDMA, or others. Since users are orthogonal in at least one dimension, the

attainable sum-rate is the aggregate of individual rates. This gives

COMA
sum =

K∑

k=1
βk log

(
1 + γ[k]

βk

)
, (2.3)

where the signal-to-noise ratio (SNR) of users per DoF is increased by a factor β−1
k , equal to

the reciprocal of the occupancy fraction in DoFs, either because users transmit β−1
k times more

power per DoF or because they capture a smaller fraction βk of the noise present in all DoFs.

It is easy to show that COMA
sum ≤ CMAC

sum , and that its tightness depends on the distribution of

received symbol energies γ[1], . . . , γ[K]. If power control is additionally allowed to users, then

the capacity region of the Gaussian MAC is attained at one point with OMA as long as

γ[k] = (Kγ̄) · βk for k = 1, . . . ,K (2.4)

symbol energies are allocated proportionally to the fraction of DoFs used by users. Therefore,

the channel capacity attained with OMA and optimal power control is

COMA
sum =

K∑

k=1
βk log (1 +Kγ̄) = log (1 +Kγ̄) , (2.5)

which concludes therefore that OMA does not penalise the capacity in the Gaussian MAC.

The direct-sequence (DS) format with orthogonal sequences is a particular case of OMA

where users use the same fraction βk = 1
N of DoFs [15] (N is the spreading factor). In this

case, the maximum sum-rate is achieved when the number of users K is equal to the number

of dimensions N and the uniform energy allocation γ[1] = · · · = γ[K] = γ̄ is enforced. This
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configuration attains the following capacity

COrt. DS
sum = 1

N

K∑

k=1
log (1 +Nγ[k]) = 1

K

K∑

k=1
log (1 +Kγ̄) = log (1 +Kγ̄) . (2.6)

That is, when all users encode data at log(1 +Kγ̄) bits per symbol and transmit at rate R[k] =
1
N log(1 + Kγ̄). No matter if the reader is focused on bandwidth expansion while holding the

symbol time Ts as B ≈ 1
Tc

= N
Ts

, or on fixing the system bandwidth B ≈ 1
Tc

in exchange for

increasing the symbol duration as Ts ≈ N
B .

2.1.2 Spreading-Based Non-Orthogonal Multiple Access

The underlying idea of non-orthogonal multiple access (NOMA) is to counteract the limitation

of OMA, due to the scarce availability of orthogonal resources, by enforcing users to share some

DoFs. One of its advantages is that a larger number of users can simultaneously access the

network since the orthogonality constraint between users is released. This fact motivates, for

this thesis, the asymptotic analysis in which the number of users tends to infinity, K →∞.

Before continuing, a brief note on this regime of operation in OMA: recall that the capacity

value attained by any OMA technique

COMA
sum = log(1 +Kγ̄) (2.7)

remains invariant with respect to K as long as users make use of all DoFs without overlapping,

and that, for the purpose of establishing a fair comparison with respect to the case evaluated

in Section 2.1.1, γ̄ → 0 as K →∞ holding fixed P , Kγ̄. An example of this scenario is when

the bit energy over noise power spectral density ratio is fixed. This regime analysed for DS with

orthogonal sequences enforces the low-rate operation on all users, which must decrease their

transmission rate by a factor proportional to the number of users K, as

R[k] = 1
K

log(1 +Kγ̄) = 1
K

log(1 + P ) (2.8)

but leaves the sum-rate unchanged.

The interest in this operating regime, in the context of massive machine-type communica-

tions, is due to the existence of a large number of devices that operate typically under short

duty cycles. Nevertheless, the requirement of resource orthogonality is very demanding and,

in practice, not feasible to implement. Spreading-based NOMA techniques constitute feasible

physical layer configurations for low-rate devices, as they allow access to a large number of them

with much less coordination at the cost of increasing the complexity of the common receiver.

From the transmitters’ point of view, users spread n-symbol packets to nN chips to operate

in a N times larger signal space. This enables high processing gain since users intersect each

other in only a few dimensions of the signal space. The latter allows for the definition of the

fundamental ratio of spreading-based NOMA techniques by taking the effective number of users

per dimension K/N [15]. In the Gaussian MAC, NOMA users are separated by the different

codebooks they employ; whereas in spreading-based NOMA, users are separated under signature

waveforms even if they employ the same codebook. The DS and low-density spreading (LDS)
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formats constitute the major representative spreading-based NOMA schemes. Both schemes

prompt the use of spreading codes with a low cross-correlation, where LDS includes the exclu-

sive use of sparse codes. In both cases, an interesting regime that provides analytical findings is

the large-system limit where N →∞ as K →∞ while holding the linear relationship

α , lim
K,N→∞

K

N
. (2.9)

Comparative analyses between spreading-based NOMA and OMA schemes must be done for

the same product P = Kγ̄, which in the spreading-based NOMA case is P = αγ̄′, with γ̄′ the

average symbol energy over all users defined for the present spreading-based techniques.

Unfortunately, spreading-based NOMA techniques do not reach the capacity of the Gaussian

MAC, except for some special case, because the spreading and despreading counterparts are re-

stricted to linear operators. Its adoption decreases the computational complexity of the receiver

but at the price of lower performance. The capacity value is only attained when an interference

cancellation-based multiuser detector is adopted and the factor α is sufficiently high, α → ∞.

In this respect, the optimal detector for independent randomly spread streams operates jointly

with all signals after matched filter detection [15] as shown in Figure 2.2.

1st Matched
Filter

ỹ1

2nd Matched
Filter

ỹ2
Optimal
Detector

Kth Matched
Filter

ỹK

y(t)

...
...

b̂1=b1
b̂2=b2...

b̂K=bK

Figure 2.2: Optimal multiuser detection for randomly spread signals.

The optimal detector in the symbol-synchronous case operates as a maximum likelihood se-

quence detector, whereas for asynchronous streams it does so with dynamic programming after

matched filtering [44]. Matched filter is used as a synonym for despreader. In both cases, the

computational complexity is linear in the blocklength but exponential in the number of users

when signature waveforms are known to the receiver. The spectral efficiency (SE) converges as

K →∞ [15] to the quantity

CDS+Opt.
sum = α log

(
1 + γ̄′ − F(γ̄′, α)

4

)
+ log

(
1 + αγ̄′ − F(γ̄′, α)

4

)
− log(e)

4γ̄′ F(γ̄′, α) (2.10)

with

F (γ̄′, α) ,
[√

1 + γ̄′
(
1 +
√
α
)2 −

√
1 + γ̄′

(
1−√α)2

]2
. (2.11)
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1st Matched
Filter

ỹ1 1st Channel
Decoder

b̂1=b1
Regeneration

ŷ1(t)=y1(t)

- 2nd Matched
Filter

+
ỹ2 2nd Channel

Decoder

b̂2=b2
Regeneration

ŷ2(t)=y2(t)

-

Kth Matched
Filter

+
ỹK Kth Channel

Decoder

b̂K=bK

y(t)

-

...
...

...

Figure 2.3: SIC algorithm after the bank of K matched filters.

2.1.3 Successive Decoding for Randomly Spread Signals

Since a large number of users will be transmitting on the satellite return link, the optimal detector

is not considered to be implementable since for hundreds of users, its computational complexity

is huge. A number of multiuser detectors can be adopted if performance is exchanged for

computational complexity [14]. A less complex option analysed throughout the literature is the

incorporation of a linear equaliser based on the minimum mean square error (MMSE) criterion

between the bank of matched filters and the SIC demodulator [21, 45, 46]. The architecture

adopted in [45] consists of an iterative loop of a MMSE detector followed by a bank of channel

decoders. Its analysis is carried out through a simplified model for the decoder, consisting of a

Gaussian approximation of the extrinsic log-likelihood ratios and a known lookup table of the

corresponding bit error rates. In [21], the authors express the more complex MMSE detector as

a weighted polynomial detector with as many stages as the number of users. In all cases, the

performance of such systems is maximised by determining the optimal received symbol energy

distribution and assuming that symbol energies from all users are perfectly known to the receiver.

Some practical aspects challenge the performance/complexity ratio of the previous detector,

specially so, when the receiver operates nonideally or when symbol energies received from all

users need to be estimated. The demodulator adopted in the E-SSA system analyses the low-SNR

regime of the MMSE detector, in which case SIC operates after a bank of matched filters [40,47].

It has the advantages of not requiring the computation of matrix inverses, and decreases the

assumption of having perfect knowledge of received symbol energies. The present thesis adopts

this scheme as its starting point. More generally, when devices use coded modulation schemes

optimal up to the first order in the large blocklength expansion (capacity-achieving), then the

best allocation strategy enables reliable communication with a one-iteration SIC. The SIC’s

algorithm is shown in Figure 2.3. Specifically, the k-th channel decoder operates with the

output of the matched filter ỹk to recover the transmitted bit stream b̂k = bk free of errors,

after which, the signal received from that user is reconstructed as ŷk(t) = yk(t), and is cancelled

from the signal waveform y(t).
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A tractable (mathematical) model for the output of the single-user matched filter is the long-

code model [14, 15], which assumes that spreading codes with large time-bandwidth products

behave equivalently as pseudonoise sequences such that:

(i) signals from other users can be treated as uncorrelated Gaussian noise at the output of

the matched filter even if practical (non-Gaussian) modulations are employed, and

(ii) the second moment of the cross-correlation between spreading waveforms used by different

users is proportional to the length of signatures employed. For the synchronous case, the

latter takes the value 1
N whereas for the asynchronous case it equals θ

N , with 0 ≤ θ ≤ 1 a

decorrelation factor modelling time-mismatching with respect to the symbol synchronous

case (θ = 1). The last remark concerns the introduction of this variable to model practical

systems. For the packet-based demodulator outlined in Section 1.2.2, the uncoordinated

user-transmissions arriving at the E-SSA’s burst demodulator are analysed under θ = 0.5
when the window frames are sufficiently long relative to the packet duration [47].

In the general case, the aggregate SE for K users simultaneously accessing the channel

SE = 1
N

K∑

k=1
log

(
1 + γ[k]

1 + θ
N

∑K
i=k+1 γ[i]

)
(2.12)

is taken as the reference magnitude to evaluate system performance. In this case, as system

performance strongly depends on the received energy distribution γ[1], . . . , γ[K], the SE (2.12)

can be further improved if we let the users vary their transmitted symbol energies so that they

arrive at the SIC receiver with the best distribution that satisfies the average constraint

γ̄ = 1
K

K∑

k=1
γ[k]. (2.13)

In massively populated settings, the large system limit can be duly employed to approximate

the performance of a massive access system or to determine the limit expressions, in the number

of users K, of the allocation designs. Both are actually within the scope of the present work.

In these regime, K,N → ∞ while keeping the traffic load α = K
N fixed, and the discrete user

indexing k = 1, ...,K is turned into the continuous user index

t , lim
K→∞

k

K
in 0 ≤ t ≤ 1. (2.14)

Thus, user-variables indexed by k are substituted by functions of the variable t [48, 49]. In this

asymptotic study, users transmit at an asymptotically vanishing rate 1
NR[k] → 0 using coded

modulation schemes with rate

R(t) = lim
K→∞

R[Kt] = log
(

1 + γ(t)
1 + αθ

∫ 1
t γ(τ)dτ

)
. (2.15)

The SE in the user-limit case, denoted asymptotic SE (ASE), converges as K →∞ to

ASE = α

∫ 1

0
R(t)dt = α

∫ 1

0
log

(
1 + γ(t)

1 + αθ
∫ 1
t γ(τ)dτ

)
dt. (2.16)
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Figure 2.4: ASE of many multiple access tech-
niques in the synchronous case and P = 8dB.
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In this regime of infinite users, vector calculus is meaningless as ASE depends on smooth func-

tions of the variable t. Therefore, the following variational calculus problem is stated in order

to obtain the continuously differentiable γ(t) ∈ C[0, 1] that maximises ASE under the average

energy constraint γ̄ (2.13), taken to the limit of users K →∞:

max
γ(t)

ASE s.t. γ̄ =
∫ 1

0
γ(t)dt. (2.17)

Making use of the calculus of variations (see Section 1.4 for more details)1, the maximum ASE

is attained with the uniform SINR profile Γ(t) = Γ̄

Γ(t) = γ(t)
1 + αθ

∫ 1
t γ(τ)dτ

with Γ̄ , α−1 ln(1 + αθγ̄), (2.18)

which leads to an exponential distribution of all users’ energies, such that, users are decoded

with the same signal-to-interference-plus-noise ratio (SINR) as SIC progresses throughout stages.

Then, users lie in the bisector of the capacity region as they encode information at the same

rate R(t) = log(1 + Γ̄). The attained ASE admits the following closed-form expression

CDS+SIC
sum = α log(1 + α−1 ln(1 + αθγ̄)), (2.19)

which converges as α→∞ to the maximum sum-rate of the Gaussian MAC ASE→ log(1+αγ̄)
in the symbol synchronous case and P = αγ̄ fixed.

2.1.4 System Performance Evaluation of OMA and NOMA Techniques

The competitiveness of each multiple access technique is shown in Figure 2.4 in terms of their

achievable ASEs. The resulting capacity region is drawn in Figure 2.5, where black lines indicate

the achievable bounds of the Gaussian MAC with many users. Recall that the optimal strategy

in OMA with orthogonal DS is that users perform channel inversion and arrive at the central

1The extremal of the functional ASE (2.16) can be found straightforwardly under z(t) ,
∫ 1
t
γ(τ)dτ and the

initial value z(0) = γ̄, by solving the equation ∂zR(t)−∇t∂żR(t) = 0 with R(t) defined in (2.15).
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node with an equal power and rate allocation, in which case the capacity region results symmetric

and users lie in the bisector (black dashed lines). Rather, the optimal allocation strategy with

non-orthogonal DS and a SIC receiver is that users transmit at the same rate and arrive with

exponentially distributed symbol energies. The optimal transmission strategy preserves fairness

in rate allocation but at the price of unbalancing the energies received from different users. In all

cases, as the traffic load α increases, users’ allocation rates move on the bisector of the capacity

region until they attain the capacity of the Gaussian MAC as α → ∞. Broadly speaking, the

performance achieved by different spreading-based NOMA techniques when the blocklength goes

to infinity is found to be far from the capacity of the Gaussian MAC, except when the traffic

load α is sufficiently high or the average symbol energy γ̄ is sufficiently low. Its application,

nonetheless, provides high computational benefits, specially so, when the number of users is

high and the transmission rates are low, and also because its application enables high processing

gains at low signal-to-noise ratios.

2.2 Successive Interference Cancellation: Practical Features

Recall that the main principles of successive decoding are that transmitters and the receiver agree

a decode ordering, and that channel decoding operates free of errors. After processing one user,

the receiver can always proceed to subsequent users after cancelling the last user decoded [43].

Both principles affect the cancellation receiver adopted in the E-SSA system [40], summarised

in Section 1.2.2. Actually, the major part of this thesis devotes its content to analysing the

impact of the previous features in practical machine-type communication scenarios where the

user-decoding order may not be known to the receiver, and/or channel decoding fails due to the

operation with short packets. In a broader context, both features constitute critical steps that

put in doubt the previous studies based on the underlying principles of successive decoding. The

following subsections develop in more detail the previous ideas.

2.2.1 Decode Ordering

The capacity region of the K-user Gaussian MAC is found to have K! corners of equal capacity

attainable by means of SIC, each corresponding to a unique allocation of rate and power to every

user. Recall that the primary assumption in all capacity analyses is that the receiver knows the

user decoding order. Nevertheless, the previous assumption may not hold in all settings. More

concretely, in scenarios where the channel varies sufficiently rapid or in systems constrained

by low coordination, such an assumption may be meaningless. Such is the case of the satellite

framework envisaged in E-SSA [40]. In this case, the decoding order is not known to the receiver,

and thus, it bases the SIC implementation on SINR estimates from preamble cross-correlations.

This particular feature is analysed extensively in Chapter 5.

2.2.2 The Finite Blocklength Regime

All the previous theoretical analyses are only valid when the K devices make use of random

codebooks with infinite-length n → ∞ and power-constrained codewords 1
n‖xkm‖22 = γk for
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m = 1, . . . , 2nRk , and adjust their coding rate Rk as a function of: the SNR γk in the point-

to-point Gaussian channel as Rk = log(1 + γk); and the SINR Γk in the Gaussian MAC as

Rk = log(1 + Γk). Failing that, the above expressions remain as valid if the transmitted packets

are sufficiently long. The machine-to-machine context, however, prompts the transmission of

packets with finite (non-asymptotic) payload. This may cause that the adopted channel decoder

does not always succeed, combined with the fact that signals received from all users cannot be

perfectly reconstructed neither perfectly cancelled from the input signal [50,51]. With the focus

on the capacity region of the Gaussian MAC, the latter rationales entail that a few corners,

possibly a unique corner, achieve superior performance relative to the rest.

2.2.2.1 The Point-to-Point Gaussian Channel

How far are the former analyses from the performance attainable when transmitters make use of

finite-length coding systems? Broadly speaking, the finite blocklength (FBL) regime challenges

the decoding performance of the well-known channel encoders. One of the main differences is

that the power constraint used in the infinite blocklength (IBL) regime can be understood, in

the FBL regime, as two power constraints: the short-term or per-codeword power constraint
1
n‖xm‖22 = γ for all m = 1, . . . ,M ; or the long-term or average power constraint over all the M

equiprobable codewords 1
n

1
M

∑M
m=1 ‖xm‖22 = γ. Recent literature has gone to great lengths to

determine the maximum channel coding rate defined for n-symbol codewords as R = sup logM
n ,

so that a codebook achieving the average packet error probability ε can be constructed. In this

case, unlike in the IBL regime, Gaussian inputs do not constitute optimal distributions under

FBL constraints [52]. The most important result was derived in [53], wherein the authors show

that an achievable result to the channel coding rate logM
n at blocklength n with an average

packet error probability ε and a per-codeword power constraint of γ is

R = logM
n
≈ log(1 + γ)−

√
V (γ)
n
· Q−1(ε), (2.20)

with V (γ) , (1 − (1 + γ)−2) log2 e and Q(x) the tail distribution of the standard Gaussian

density function. Note that the classical expression of the Shannon’s rate achieved with error-

free decoding is recovered as n → ∞. If codebooks are constrained to be Gaussian i.i.d., then,

V (γ) shall be substituted by Viid(γ) = log2 e · 2γ/(1 + γ) [54]. The interpretation of (2.20)

indicates that to transmit at a fraction η of the channel capacity C(γ) , log(1 + γ) as R = ηC,

then the blocklength shall be proportional to V/C2 for a given packet error probability [53]

n ∝ 1
(1− η)2 ·

V (γ)
C2(γ) . (2.21)

In general, the maximum attainable rate in the point-to-point Gaussian channel with a block-

length constraint results severely degraded with respect to the classical Shannon’s rate. The

procedure the authors in [53] follow to obtain (2.20) is based on the analysis of the dispersion

of mutual information, an study absolutely non trivial. Generically, the authors thought of the

behaviour of a communication channel as a “bit pipe” of random length H, measured in bits [55].

In n channel uses, the distribution of H is Gaussian with mean nC(γ) bits and variance nV (γ).
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An error occurs when the number of transmitted bits logM in n channel uses is higher than H.

Then, the average packet error probability ε is

Pr[H < logM ] = Q
(
nC(γ)− logM

nV (γ)

)
= ε. (2.22)

After some straightforward manipulations, it is easy to obtain (2.20), which approximates very

well the behaviour of optimal coding schemes up to the second order in the large-n expansion

for blocklengths n ≥ 100. For the interest of the reader, the expressions corresponding to even

lower blocklengths are derived in [56].

From a more practical point of view, the second order coding rate (2.20) can be closely

achieved by using, instead of the randomly generated codebooks in the IBL regime, more complex

coding systems. As an example, the authors in [57] show that the performance achieved by a

tail-biting convolutional code with 214 states (increasing memory) and by a low-density parity

check code constructed over a finite field of 256 elements (increasing alphabets) are very close

to the best family of codes described by (2.20).

2.2.2.2 The Gaussian Multiple Access Channel

Another interesting analysis is how the former expressions are translated to the Gaussian MAC.

The problem is actually very challenging and no closed form expressions for the exact value of its

maximal channel coding rate are known to date. Without entering into extensive mathematical

details, one of the difficulties of the problem is that codewords transmitted by independent

users satisfy 1
n‖xkmk‖22 = γk for mk = 1, . . . ,Mk, whereas this does not imply, necessarily, that

the joint message satisfies 1
n‖
∑
k xkmk‖22 = ∑

k γk. Different approaches have been followed in

order to delimit, at least, the region of maximum sum-rate for the case studied. In this sense,

some authors have extended the result obtained for the point-to-point Gaussian channel to the

Gaussian MAC by turning the univariate channel dispersion function V (γ) to a positive-definite

dispersion matrix V of dimension (K + 1) × (K + 1) [52, Section III.A]. In particular, for the

two-user setting, an achievable pair of rates ( logM1
n , logM2

n ) to the maximum sum-rate is




logM1
n

logM2
n

logM1
n + logM2

n


 ∈




C(γ1)
C(γ2)

C(γ1+γ2)


−

1√
n
Q−1 (ε; V(γ1, γ2)) . (2.23)

The term Q−1 (ε; V(γ1, γ2)) produces a three-dimensional vector from the probability of the

three-variate Gaussian distribution N (0,V(γ1, γ2)) being higher than 1−ε.
The approach followed in [58] resulted into the attractive outer bound derived for the two-

user case

logM1
n

+ logM2
n

< log(1+γ1+γ2)−
√
V (γ1+γ2)

n
Q−1(ε), (2.24)

which, for a fair comparison with the point-to-point case, it must be fulfilled that γ1+γ2 = γ. The

importance of (2.24) is the assertion that the best communication strategy in the Gaussian MAC

under blocklength constraints experiences a performance degradation, relative to C(γ1+γ2),
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R ≈ log(1 + γ)−
√

V (γ)
n Q−1(ε)

Rate

ReliabilityEnergy

Latency

Figure 2.6: The fundamental interplay.

higher than that experienced in the point-to-point channel under the power constraint γ1+γ2.

Remarkably, joint message coding is better than independent message coding plus successive

interference cancellation. Equivalently, in the Gaussian MAC, independent message encoding

is as good as joint message coding only in the IBL regime. As a last curiosity, the resulting

achievable region obeys curved shapes rather than the sharp corners present in the pentagonal

region obtained in the IBL regime.

2.3 The Fundamental Interplay in Successive Interference Cancellation

The use of interference cancellation-based decoding requires the introduction of such a power

and code allocation scheme that enforces certain unbalance between power and rate of users.

It is known throughout the literature that, the maximum sum-rate under a SIC receiver is

achieved by enforcing a sensitive interplay between the energy and rate of the different users at

the receiver’s input. As an example, the above unbalance can be straightforwardly evidenced

on the basis of the following two study cases: firstly, when users transmit at the same rate R̄

(in bits per channel use), the symbol energy distribution that maximises the network sum-rate

under reliable communication is the exponential distribution

γ[k] = β · 2−kR̄ for k = 1, . . . ,K (2.25)

with β , 2KR̄(2R̄ − 1); and secondly, when users arrive with equal symbol energies γ[1] = · · · =
γ[K] = γ̄, in which case the rate transmitted by every user reads

R[k] = log
(

1 + γ

1 + (K − k)γ

)
for k = 1, . . . ,K, (2.26)

and which behaves as the allocation R[k] ≈ γ̄/(1 + (K − k)γ̄) nats/channel use in the low-SNR

regime, and as R[k] ≈ log(1 + 1
K−k ) nats/channel use in the high-SNR regime.

The most important analyses regarding the channel coding rate in the FBL regime (2.20) have

extended the former interplay between energy and rate for the case when SIC deals with packets

of finite length, according to four fundamental magnitudes: energy, rate, packet decoding latency

(blocklength) and reliability. This thesis provides a theoretical framework to assess the impact of
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the practical effects described in Section 2.2 on the performance of SIC. Throughout the thesis,

the above problems affecting the SIC receiver are duly studied, and theoretical designs for the

energy and code allocation to many users are constructed taking into account the interaction

between the magnitudes above.

And now, without further ado, the work carried out by the author of this thesis begins from

this point onwards.



3 Optimal Allocation Designs for

Cancellation Receivers

One of the most important challenges in wireless multiple access systems is how to transmit short

packets efficiently, since the concept of reliable communication, first introduced in pioneering

information-theoretic analyses, should be substituted by the more adequate concept: practical

reliability. In the Gaussian multiple access channel (MAC), the introduction of finite block-

length constraints heavily degrades the maximum attainable rate even for the best performing

family of codes. This chapter investigates the combination of finite-length channel codes with

successive interference cancellation (SIC), which involves the introduction of some tweaks in the

classical SIC algorithm illustrated in Figure 2.3. More concretely, this chapter is inspired by the

demodulator implemented in Enhanced Spread Spectrum ALOHA (E-SSA) [40], and aims at

providing a theoretical framework (model) to analyse an imperfect SIC receiver, without having

to resort to lengthy Monte Carlo simulations for validation. The model is used in Section 3.5 to

design the best transmission strategy in terms of energy and code allocated to asymptotically

many users. The design is effectuated first for a dense number of encoders attaining the maxi-

mal channel coding rate up to the first and second order, and complemented later for a few of

them for practical purposes. Numerical studies analyse in depth the unbalance of energy, rate

and reliability for different users. Last but not least, the practicality of the former allocation is

explored intensively for a practical SIC implementation simulated at low level.

3.1 Problem Statement

First of all, to contextualize the problem, the scenario of interest considers very many nodes

transmitting to a satellite which relays the aggregate signal towards a ground station as shown

in Figure 3.1. A possible context for such a scenario is when several low-complexity devices, e.g.

groups of sensors that collect information of many magnitudes, transmit data to aggregation

nodes that forward the information towards a central node via a satellite link. The analysis in

this chapter focuses on a satellite service for the network of a large number K of aggregation

nodes, (henceforth, users) connected to the gateway through slowly time-varying channels with

instantaneous channel power gains

h[1] ≥ · · · ≥ h[k] ≥ · · · ≥ h[K]. (3.1)

29
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Figure 3.1: An example of the envisaged satellite return link.

Users are endowed with medium/high complexity terminals with directive antennas. Taking

advantage of sufficiently high directive antennas, channel power gains are dominated by strong

line-of-sight paths, which can be obtained from the directions of arrival of users’ signals.

In this MAC, the K users have available p coded modulation systems, or simply encoders,

R , {R1, . . . ,Rp} with ne-symbol blocklength constraints. The i-th encoder Ri maps ki bits

to ne symbols, so that the coding rate is Ri = ki/ne bits per symbol. fi(·) denotes the encoding

function of the i-th encoder and f−1
i (·) its decoding function. The k-th user operates as follows:

(i) encodes the information vector bk as fi(bk) to generate the packet sk consisting of ne coded

symbols and no preamble symbols, with n , no+ne. The coding rate of user k is R[k] ∈ R1≤i≤p;

and (ii) adopts the direct-sequence (DS) spread spectrum format to modulate each symbol of

the preamble and the payload. For the latter, and inspired by E-SSA, user k takes the spreading

code ck from a long sequence with period far exceeding the symbol duration to generate the

unit-energy signature waveform for symbol m as

ck,m(t) = 1√
N

N∑

i=1
ck[i+mN ]p

(
t− i

N
T

)
. (3.2)

N is the spreading factor, T is the symbol time and p(t) is the chip pulse. The non-italic variable

t denotes time. The second moment of the cross-correlation between different waveforms is θ
N

with 0 ≤ θ ≤ 1. Then, the baseband signal transmitted by user k is

xk(t) =
√
γx[k]

n∑

m=1
sk[m]ck,m(t−mT ), (3.3)

where γx[k] denotes its transmitted energy per symbol (over noise energy per unit bandwidth).

When the channel of each user varies sufficiently slowly so as to assume that transmitted

packets are affected by stationary flat-fading (in practice, slowly time-varying channels with

multiplicative power gains h[k] (3.1)), the baseband signal received at the gateway is

y(t) =
K∑

k=1

√
γx[k]h[k] ejΩk

n∑

m=1
sk[m]ck,m(t−mT − τk) + w(t). (3.4)



3.2. State of the Art 31

Ω1≤k≤K are the respective (random) carrier phases, τ1≤k≤K are the end-to-end delays, and w(t)
is additive white Gaussian noise.

This chapter analyses a simplified version of the demodulator implemented in E-SSA [40], in

which the K users are processed resorting to a SIC approach constituted by one iteration and one

stage per user. The nonideal decoding and cancellation operations of the imperfect SIC receiver

are analysed in depth. Other SIC approaches more close to [40] are analysed in Chapters 4 and

5. As interference cancellation-based strategies exploit system performance under appropriate

allocation designs, this chapter investigates the best energy and rate allocation for all users when

they estimate accurately their channel power gains from a downlink pilot. Clearly, depending

on the implemented SIC strategy, the allocation design may be problematic due to randomness

involved in the successful or unsuccessful decoding of users. This thesis circumvents this problem

in the user-asymptotic regime since, as K increases, the allocation problem can be addressed in

a deterministic way by deriving an asymptotic allocation g(h) as a function of the asymptotic

distribution of channel power gains limK→∞ h[1], . . . , h[K]. Then, the designed allocation is

used by user k to determine its transmitted symbol energy γx[k] and coding rate R[k] in an

autonomous way, as

(γx[k], R[k]) = g(h[k]). (3.5)

In this chapter, both the transmitted symbol energy and rate distributions γx[1], . . . , γx[K] and

R[1], . . . , R[K] are designed so as to maximise the user-aggregate spectral efficiency (SE) subject

to an average energy constraint over all users γ̄x, as

max
R[k],γx[k]

1
N

K∑

k=1
R[k] (1− per[k]) s.t. 1

K

K∑

k=1
γx[k] = γ̄x, (3.6)

with per[k] the packet error probability corresponding to user k. 1−per[k] is its reliability.

This chapter first overviews in Section 3.2 the state of the art relative to practical SIC algo-

rithms with decoders for short packets, and the allocations already designed in both terrestrial

and satellite settings. Subsequently, the modelling of a practical SIC is addressed in Section 3.3

for a finite number of users, and, in Section 3.4, for asymptotically many users. The rest of this

chapter devotes Section 3.5 to designing, in the user-asymptotic case, the allocation functions for

a variety of cases. Explicit derivations are moved, for clarity of explanations, to the Appendix

3.A located at the end of this chapter. Finally, conclusions are offered in Section 3.6.

3.2 State of the Art

The most relevant aspect to consider is the architecture adopted for the multiuser receiver, which

for the optimal detector consists of a joint decoding algorithm such as belief propagation or

maximum-likelihood sequence detection after a bank of matched filters [15]. A computationally

lighter architecture is a linear minimum mean square error (MMSE) equaliser followed by SIC

[45,59], which provides near-optimal performance at low traffic loads, and moderate performance

in high activity load situations. In principle, its complexity is lower, but it requires the perfect

knowledge of received symbol energies from all users and, if the number of users is high, inverting
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a matrix of large dimension K×K. Some approaches have agreed to analyse the suboptimal

MMSE detector as a multi-stage detector [21,60] as it allows for obtaining some analytical results.

In practice, nonetheless, E-SSA [40] considers the low-SNR regime of the MMSE equaliser by

adopting a bank of matched filters followed by SIC, whose specific implementation for practical

settings with short-packet decoding proves of substantial relevance.

The best known SIC strategies are distinguished by the adopted cancellation policy. For a

hard SIC, the binary outputs after hard decision are used for cancellation [61], whereas a soft SIC

operates with the symbol reliabilities just before the hard (binary) decision. Soft cancellation [45]

outperforms the hard cancellation since it performs a more conservative cancellation when the

decoding is less reliable [62], specially so at low SNRs. Figure 3.2 depicts its block diagram.

y(t) +
k=k+1

k ∈ {1, . . . , K}

kth Matched
Filter

ỹk kth Channel
Decoder

ŝk
Regeneration

ŷk(t)

-

Figure 3.2: Block diagram of the successive decoding receiver with hard/soft cancellation.

Another well-known scheme is that of a SIC receiver operating under error control, in which

case the receiver takes advantage of error control mechanisms already encapsulated with data,

such as cyclic redundancy check (CRC), and it only reconstructs and cancels the decoded packet

when the received CRC matches that calculated from the decoded data. This is the case of the

cancellation system incorporated in the already mentioned E-SSA demodulator [40], which will

be analysed throughout this work. Figure 3.3 depicts the block diagram corresponding to this

scheme. Note that, due to CRC checkout, cancellation is only produced in case that the CRC

test is passed. Naturally, since the CRC provides very high reliability, the reconstruction of

the signal yk(t) received from user k uses the hard outputs of the channel decoder after correct

CRC. Remarkably, the system operates as a hard SIC receiver aided by packet error detection.

y(t) +
k=k+1

k ∈ {1, . . . , K}

kth Matched
Filter

ỹk kth Channel
Decoder

b̂k Check
CRC

ok

bk

Regeneration
ŷk(t)

-

ko

ŷk(t) = 0

Figure 3.3: Block diagram of the successive decoding receiver with error control.

Several allocation designs for the above SIC architectures have been derived in the literature,

however, limited to studying the interaction of only two of the four magnitudes: rate, energy,

reliability and packet decoding latency. The literature in the context of this thesis has analysed

more extensively the interplay between energy and other magnitudes. The pioneering work [48]

derives, under asymptotically many DS spread spectrum users and a genie-aided SIC receiver

that operates after the bank of matched filters, that the best transmission strategy is when
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users transmit at the same rate and perform channel inversion so as to arrive with exponentially

distributed energies. In view of the previous result, other analyses have derived the best energy

allocation strategy for a practical setting in which users employ the same physical layer [40,47].

Finally, an iterative approach to obtain the power control law of all users at a target reliability

is proposed [61]. Remarkably, cancellation receivers benefit from a packet-power unbalance with

an exponential trend [63]. The rest of the interplays have been analysed mostly in other contexts.

As an example, the authors in [64] analyse the interplay between power and blocklength under

second-order coding rates and a rough approximation of full interference. Other analyses study

non-orthogonal multiple access access under latency constraints [65].

The following study analyses the exact behaviour of a SIC received aided by error control,

and serves as a starting point for later sections.

3.3 The User-Finite Model

This thesis works on the rigorous analysis of a packet-oriented SIC policy aided by error control,

to then derive the allocation strategies that maximise the performance of a massively populated

network. The starting point is the baseband signal captured through the receiver’s antenna

y(t) =
K∑

k=1

√
γ[k] ejΩk

n∑

m=1
sk[m]ck,m(t−mT − τk) + w(t). (3.7)

γ[k] , γx[k]h[k] is the symbol energy received from user k. Carrier frequency offsets are obviated

in this chapter and in the rest of the thesis. The first operation carried out by the receiver is to

detect the K users, to proceed afterwards with successive decoding following a pre-established

decode ordering. The natural order for such decoding must be set as a function of the pair

(γ[k], R[k]) of all users 1 ≤ k ≤ K. Since both variables are part of the optimisation problem,

it is not evident to see which combination of symbol energies and rates constitute the best user-

decoding order to maximise SE for arbitrary distributions γ[1], . . . , γ[K] and R[1], . . . , R[K] [66].

One way to circumvent the ordering problem is to rank users in non-increasing order of signal-

to-interference-plus-noise ratio (SINR) estimates, which coincides, under accurate estimations1,

with the order established by the distribution of received symbol energies, as

γ[1] ≥ · · · ≥ γ[k] ≥ · · · ≥ γ[K]. (3.8)

The case when estimates are not accurate is addressed in Chapter 5. Since the above ordering is

part of the optimisation process addressed in later sections, this chapter considers an equivalent

ordering from channel power gains

h[1] ≥ · · · ≥ h[k] ≥ · · · ≥ h[K], (3.9)

a fact that is validated via simulations after the allocation design.

In this respect, this chapter investigates the problem of energy and rate allocation for a large

1Under accurate SINR estimations Λ[1 ≤ k ≤ K] at the initial stage, it is easy to obtain Λ[k] − Λ[k + 1] =
ρ(γ[k]− γ[k + 1]) with ρ > 0. Consequently, the order of symbol energies preserves the order of SINRs.
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number of users when all of them are detected, and the receiver proceeds on the basis of the

ordering (3.9). The SIC receiver performs K stages and operates as follows to process user k:

1. Matched filtering. The single-user detector operates with the aggregate input signal using

the matched filter (despreader) for user k. The output of the symbol matched filter

ỹk =
√
γ[k] ejΩk sk +

√
Nt[k] wk (3.10)

comprises the useful signal from user k contaminated by the additive Gaussian term wk.

The term wk contains Gaussian uncorrelated samples. Recall that E[sHk sk] = 1 and

E[wH
k wk] = 1. The last term in (3.10) contains the thermal noise plus the cross-correlation

between the signature of user k and the waveforms received from interfering users. The

magnitude (in power) of noise plus interference affecting user k is the factor Nt[k].

2. Decoding and cancellation. The channel decoder guesses the bit stream transmitted by

user k by making use of the decoding function of the i-th decoding system as b̂k = f−1
i (ỹk).

The CRC is then computed and compared with the received CRC to determine whether the

decoded bit stream is correct or not. The used error control code is considered sufficiently

powerful so as to assume that the probability of getting a bit stream with false alarm

CRC is sufficiently low. If the CRC checks out, the transmitted packet is regenerated

as sk = fi(bk), and its complex amplitude Â[k] and timing τ̂k are improved using the n

symbols of sk. The signal received from user k is regenerated as

ŷk(t) = Â[k]
n∑

m=1
sk[m]ck,m(t−mT − τ̂k), (3.11)

and cancelled at the waveform level from the received signal y(t) as y(t)−ŷk(t). Then, the

subsequent user, k → k+1, is processed until and including user k = K.

The adopted SIC policy corresponds to a simple version of the packet decoding strategy imple-

mented in the E-SSA system [40]. We adopt one-iteration SIC rather than iterative SIC, and a

sufficiently long sliding window that does not overlap or, failing that, without sliding window.

More sophisticated receivers are analysed in posterior chapters.

Naturally, the above model does not allow a straightforward evaluation of the adopted SIC

receiver. For this very reason, a simpler and mathematically more tractable model is derived

next. Since long spreading codes make multiple access interference Gaussian2 at the output

of the matched filter even if users do not employ Gaussian codebooks, the expressions above

are derived in terms of the SINR variable Γ, whereby interference contributes as an added

uncorrelated Gaussian term3. Then, the SINR after despreading user k is

Γ[k] = γ[k]
Nt[k] . (3.12)

The assumption of Gaussian interference after every matched filter leads to assess the magnitude

2Rapidly converging to a Gaussian distribution when the spreading factor N increases.
3Strictly speaking, the Gaussian assumption does not consider interfering symbols of the same user statistically

independent. The reason is because codewords maintain the dependence introduced by the encoder employed.
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of imperfection of the decoding and cancellation operations by adopting known functions of

the variable SINR Γ. For channel decoding, we consider that the packet error rate (PER)

versus SINR curve associated with every encoder R1≤i≤p is known and denoted PER[Γ, Ri].
Analogously, the residual energy (RE) fraction to model imperfect cancellation is the known

curve ε[Γ, Ri]. The advantage of adopting such functions to model the above operations is that

both can be obtained through independent simulations of the joint decoding-cancellation system.

The estimated PER of the i-th coding systemRi at SINR Γ = γ/Nt is obtained as (3.13a): by

computing the average number of unsuccessful decoding trials of a noisy vector y = √γejΩfi(b)+√
Ntw, constituted by: a random message b encoded as fi(b); a uniformly distributed random

phase Ω; and Gaussian noise w ∼ CN (0, I). The RE versus SINR curve is computed by esti-

mating amplitude of only the successfully decoded packets, and by evaluating (3.13b):

PER[Γ, Ri] = Pr
[
f−1
i (y) 6= b

]
, (3.13a)

ε[Γ, Ri] = 1
γ

E
[
‖(√γejΩ − Â)fi(b)‖22

]
. (3.13b)

With the former definitions, the denominator of the SINR Γ[k] = γ[k]/Nt[k] (3.12) is the

noise plus interference term affecting user k after despreading (or equivalently, at the channel

decoder input), given by

Nt[k] = 1 + θ

N

k−1∑

i=1
ε[i]γ[i] + θ

N

K∑

i=k+1
γ[i]. (3.14)

In this expression, the second term corresponds to the interference of processed users and the

third term to that of users not processed yet. θ
N is the effective decorrelation factor for asyn-

chronous DS users (θ = 1 for synchronous users and θ = 0.5 for totally asynchronous users),

and ε[i] is the binary random variable that models the decoding success of user i:

1. ε[i] = 1 with probability PER[Γ[i], R[i]] when the CRC does not check out (packet error),

2. ε[i] = ε[Γ[i], R[i]] complementarily, with probability PSR[Γ[i], R[i]] , 1−PER[Γ[i], R[i]],
when the CRC checks out (packet successful). PSR stands for packet success rate.

The analysis assumes that ε[1≤k≤K] are statistically independent, since the decoder operates

practically independently with independent messages subject to an uncorrelated Gaussian term.

Under this model, each user can be decoded correctly or incorrectly and, since the system

evolves sequentially, the probability tree reaches 2k states at the end of stage k. Of course, as it

has already been mentioned, if users are allocated to sufficiently low error probabilities, then the

above model turns out to be deterministic in practice, although actually, the model is random.

In this chapter, however, since the configuration for the error probabilities depends in its turn

on the allocation design, the goal of this thesis, such a simplification is considered invalid and

the chapter continues with the previous random expressions.
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3.4 The Asymptotic Model

A simple way to deal with the randomness of the above model is by resorting to the user-

asymptotic regime. As demonstrated below, this allows to replace the random variables by their

expectations; thus, turning the (random) system model in Section 3.3 into a deterministic one

in exchange for operating in a function space rather than in a vector space.

To that aim, firstly, the following user index is adopted

t , lim
K→∞

k

K
, (3.15)

which must not be confused with the time variable t (non-italic) used in Section 3.3. This

definition considers a dense number of users in the (continuous) interval 0 ≤ t ≤ 1, wherein the

strongest user k = 1 corresponds to t = 0 and the weakest user k = K to t = 1. In this case,

the decoding order is given by the non-increasing channel function

h(t) = lim
K→∞

h[Kt] (3.16)

which, moreover, if h(t) is smooth in t, defines a continuously differentiable function also called

profile. The latter will cause the allocation functions to also be smooth.

Secondly, the above is used to determine the behaviour of the SIC system in this regime.

We multiply and divide the last two addends of (3.14) by K and replace the sums by integrals

under the differential dt , limK→∞K−1. Therefore, the user-asymptotic SINR profile is

Γ(t) = γ(t)
Nt(t)

in 0 ≤ t ≤ 1, (3.17)

and as SIC progresses, Nt(t) evolves according to the continuous expression in the variable t

Nt(t) = 1 + αθ

∫ t

0
q[Γ(τ), R(τ)]γ(τ)dτ + αθ

∫ 1

t
γ(τ)dτ, (3.18)

where q[Γ, R] , 1− (1− ε[Γ, R])PSR[Γ, R] is, in fact, the expectation of ε 4. It is still possible

to come up with a simpler expression for Nt(t). It can be characterised, using the decoding-

cancellation characteristic Φ[Γ, R] , θ(1−ε[Γ, R])Γ·PSR[Γ, R], either by the differential equation

(3.19) or by its equivalent integral form (3.20)

Ṅt(t)
Nt(t)

= −αΦ
[
γ(t)
Nt(t)

, R(t)
]
, (3.19)

Nt(t) = Nt(0) exp
(
−α
∫ t

0
Φ
[
γ(τ)
Nt(τ) , R(τ)

]
dτ
)
, (3.20)

with the initial value

Nt(0) = 1 + αθ

∫ 1

0
γ(τ)dτ. (3.21)

4When γ(t) and R(t) are smooth, every interval ∆ sufficiently small of users contains many independent and
(practically) identically distributed random variables. This justifies substituting them by their expectations.
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3.4.1 Advantage of the User-Asymptotic Model

One of the main advantages of analysing the SIC system with asymptotically many users is

that its random behaviour for finite K users becomes deterministic. For a finite number of

users, the more users considered, the more valid the result. The second advantage is that many

equivalent expressions for the mitigation of interference described by the noise plus interference

term can be obtained. Specifically, the following equivalent differential/integral expressions in

the continuous variable t and γ(t) = γx(t)h(t) are derived

1) Nt,1(t) = 1 + αθ

∫ t

0
q

[
γ(τ)
Nt,1(τ) , R(τ)

]
γ(τ)dτ + αθ

∫ 1

t
γ(τ)dτ, (3.22a)

2) Ṅt,2(t)
Nt,2(t) = −αΦ

[
γ(t)
Nt,2(t) , R(t)

]
and Nt,2(0) = Nt(0), (3.22b)

3) Nt,3(t) = Nt(0) exp
(
−α
∫ t

0
Φ
[
γ(τ)
Nt,3(τ) , R(τ)

]
dτ
)
. (3.22c)

Subscripts are added only in this subsection to distinguish the above expressions. Clearly, in the

user-asymptotic regime, the above expressions are equal Nt,1(t) = Nt,2(t) = Nt,3(t). However,

since the expressions are not given in explicit form, they need to be computed numerically by

partitioning t into M intervals, e.g. t0, . . . , tM−1 with t0 = 0 and |ti − tj | = 1
M , and then by

deriving discrete versions for the above equations (differential equations as finite differences and

integrals as Riemann sums). The term associated with the interval ti≥1 is computed as:

1) Nt,1(ti) = 1 + αθ

M

i−1∑

k=0
q

[
γ(tk)
Nt,1(tk)

, R(tk)
]
γ(tk) + αθ

M

M−1∑

k=i+1
γ(tk), (3.23a)

2) Nt,2(ti) = Nt,2(ti−1)
(

1− α

M
Φ
[
γ(ti−1)
Nt,2(ti−1) , R(ti−1)

])
, (3.23b)

3) Nt,3(ti) = Nt,3(ti−1) exp
(
− α

M
Φ
[
γ(ti−1)
Nt,3(ti−1) , R(ti−1)

])
, (3.23c)

with the initial term resulting in

Nt,1(t0) = Nt,2(t0) = Nt,3(t0) = 1 + αθ

M

M−1∑

k=0
γ(tk). (3.24)

Indeed, the mismatch between the above three computations depends on the number of intervals

M . The asymptotic model allows for choosing the most conservative version to compute the

noise plus interference term. It is straightforward to show that 1) and 2) are in fact equivalent,

and that both correspond to the first-order Taylor expansion of 3). Since Φ[Γ, R] > 0, the latter

constitutes a worst case for computing Nt(ti) and the chosen one for the numerical implementa-

tion. The only point that remains to be solved is whether random variables can be substituted

by their expectations in the system model described in Section 3.3 rather than resorting to the

user-asymptotic regime. What is certain and has been observed by the author of this thesis is

that the asymptotic computation followed by a numerical implementation provides higher accu-

racy, especially so, if the system operates at moderate PERs, where the error propagation along
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the SIC receiver stages becomes more relevant. In this respect, some examples that evidence

the impact of M on system performance for K users are shown in Section 3.5.4.4.

3.5 Asymptotically Optimal Allocation Designs

This section addresses the energy and rate allocation design to maximise asymptotic spectral

efficiency (ASE). We exploit the previous asymptotic system model and conduct the allocation

design in the asymptotic large-user regime leveraging tools from the calculus of variations within

a predefined function space. The objective is to study the triple interplay between the rate,

energy and reliability magnitudes of different users. To finally derive the conjoint energy and

rate allocation design with optimal reliability, some simplified cases are first addressed by fixing

one of the above magnitudes. More specifically, the cases of fair reliability, fair transmitted power

and fair encoding rate are analysed, respectively, throughout Sections 3.5.1–3.5.3. Finally, the

long-awaited energy and rate allocation with optimal reliability is analysed in Section 3.5.4. In

general and in anticipation of the solution, since allocation functions do not always show explicit

forms, simulations are attached to each section for better understanding.

3.5.1 Energy and Rate Allocation with Fair Reliability

This section investigates the conjoint energy and rate allocation with fair constrained reliability,

with the focus on highlighting the unbalance between energy and rate of the different users when

they are subject to equal blocklength and individual reliability constraints. More concretely, the

model adopted considers, generically, the blocklength represented under the variable ne and

users subject to the individual reliability (packet success probability) constraint 0 < ρ ≤ 1.

The first part of this section studies the case of uniform unitary channel power gains h(t) = 1
in 0 ≤ t ≤ 1. In this case, the best-performing allocation with zero channel unbalance γx(t) =
γ(t) can be also interpreted as the most favourable channel-independent distribution to SIC.

Recall that, in the infinite blocklength (IBL) regime ne →∞ with a genie-aided SIC receiver

that operates under perfect cancellation ε = 0, the best transmission strategy attains reliable

communication ρ = 1 when users are allocated to the same transmission rate and they arrive at

the receiver’s front end with exponentially distributed energies as

γ(t) = Γ̄(1 + αθγ̄x) exp(−αθΓ̄t) in 0 ≤ t ≤ 1, (3.25)

Γ̄ , α−1 ln(1 + αθγ̄x), (3.26)

such that, users are decoded with equal SINRs Γ(t) = Γ̄. The attained ASE is α log(1 + Γ̄).
The first analysis that follows extends the previous study: firstly, from the transmitters’ point

of view, when R consists of infinitely many coding schemes with rates Ri ∈ r(Γ) corresponding

to second-order coding rates (in the large-ne expansion) [53]

r(Γ) = log(1 + Γ)−
√
V (Γ)
ne
Q−1(1−ρ); (3.27)

and secondly, from the receiver’s point of view, when each cancellation is subject to a non-
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Figure 3.4: ASE versus traffic load α.

committal value ε(Γ) = ε. This case corresponds to Φ[Γ, R] ≡ Φ[Γ] = θ(1 − ε)ρΓ. Admittedly,

because ne is not infinite, it is not possible to generate a continuous coding rate since, in practice,

Ri = ki/ne belongs to a discrete set. Nevertheless, we adopt a model in which we consider the

previous possible (Ri ∈ R+) as an approximation to the practical case. The allocation problem

is formulated in the space of discontinuous functions C[0, t∗] as:

max
0<t∗≤1

max
γx(t)

α

∫ t∗

0
r

(
γx(t)
Nt(t)

)
dt s.t.

∫ t∗

0
γx(t)dt = γ̄x ; (3.19) ; (3.21). (3.28)

By the calculus of variations, the above optimisation problems can be solved jointly. The

interpretation of the obtained results reveals that the optimal SINR profile must again be uniform

in the variable t, Γ(t) = Γ̄ in 0 ≤ t ≤ t∗. In this case, however, the value of Γ̄ is in general far

from the analytical value (3.26) found previously, which now reads

Γ̄ = 1
αt∗θ(1− ε)ρ

ln
( 1 + αθγ̄x

1 + αθγ̄x(1− (1− ε)ρ)

)
. (3.29)

The received symbol energy profile is the discontinuous function

γ(t) =
{

Γ̄(1 + αθγ̄x) exp(−αθ(1− ε)ρΓ̄t) if 0 ≤ t ≤ t∗
0 if t∗ < t ≤ 1

. (3.30)

Moreover, the optimal 0 < t∗ ≤ 1 guarantees that Γ(t) ≥ Γ∗ in 0 ≤ t ≤ t∗, with Γ∗ the unique

solution to r(Γ∗) = r′(Γ∗)Γ∗, for which the attained network performance is ASE = αρt∗ · r(Γ̄).
The per-user reliability constraint ρ hardly penalises the SINR Γ̄ but, instead, the coding rate

r(Γ̄) results severely degraded, specially so, at low blocklengths. A short simulation is undertaken

to evaluate numerically the penalty loss in ASE due to the use of short-length packets. Figure

3.4 shows the ASE attained with the above uniform SINR profile sweeping several traffic loads.

Comparative performance analyses are carried out with γ̄x = 8dB and θ = 1. Clearly, the finite

blocklength (FBL) regime strongly downgrades ASE, specially so, under demanding reliability
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constraints. The energy distribution that mostly favours SIC performance is shown to be uniform

for α → 0, which coincides with the optimal distribution for the conventional matched filter in

absence of SIC. The energy unbalance increases with the offered traffic, since the first users

must compensate for higher interference whereas the last users must decrease their transmitted

energy to satisfy the average energy constraint.

The second part of this chapter investigates the impact produced by the known channel h(t)
on the allocation designs. The goal is to find the best energy unbalance at transmission γx(t)
subject to the average energy constraint over all users γ̄x. ASE is the benchmark figure of merit.

We have the following optimisation:

max
0<t∗≤1

max
γx(t)

α

∫ t∗

0
r

(
γx(t)h(t)
Nt(t)

)
dt s.t.

∫ t∗

0
γx(t)dt = γ̄x ; (3.19) ; (3.21). (3.31)

The solution to this problem considers discontinuous functions γx(t) ∈ C[0, t∗], where 0 < t∗ ≤ 1
is optimised as well. The stationary point equation that governs optimality, derived in point 1

of Appendix 3.A.1, is

λ = r′(Γ(t))
Nt(t) 1

h(t) + αθγ̄xc− αθ(1− ε)ρIx(t)
in 0 ≤ t ≤ t∗ (3.32)

with c , 1 + αθγ̄(1 − (1 − ε)ρ), γ̄ ,
∫ t∗

0 γx(τ)h(τ)dτ and Ix(t) ,
∫ t∗
t γx(τ)dτ . In this case, the

optimal user-index 0 < t∗ ≤ 1 guarantees that Γ(t) ≥ Γ∗ in 0 ≤ t ≤ t∗, with Γ∗ the unique

solution to r(Γ∗) = r′(Γ∗)Γ∗. Specifically, if the user-admission is t∗ < 1, then Γ(t∗) = Γ∗ and

users t∗ < t ≤ 1 remain silent Γ(t∗ < t ≤ 1) = 0. Remarkably, although the optimal Γ(t) is not

given in explicit form, it is not uniform in t, in contrast to the case of uniform unitary channel

gains h(t) = 1. The unbalance of the SINR profile is then a function of the unbalance of the

channel gain profile h(t). More specifically, the slope of the optimal Γ(t) profile, Γ̇(t), is roughly

close to ∇t ln h(t). Nonetheless, the exact results must be evaluated numerically. The following

lines describe a numerical implementation to compute, exactly, the optimal Γ(t) from (3.32).

Numerical Resolution: The proposed algorithm adopts a partition of t in M intervals

t0, . . . , tM−1 of the same length and t0 = 0, and performs bisection searches over the parameters

Γ(t0) and γ̄. The algorithm performs M steps for each pair of them. At the first step i = 0, λ > 0
is computed by evaluating (3.32) at t = t0 with Nt(t0) = 1+αθγ̄ and Ix(t0) = γ̄x. Next, the sym-

bol energies are computed as γ(t0) = Γ(t0)Nt(t0) and γx(t0) = γ(t0)/h(t0), and the cumulative

integrals are updated as Ix(t1) = Ix(t0)− 1
M γx(t0) and Nt(t1) = Nt(t0) exp(− α

MΦ[Γ(t0)]). Now,

at step i ≥ 1: (i) Γ(ti) is computed as the SINR that satisfies (3.32) for the computed λ. If Γ(ti) <
Γ∗ the algorithm is stopped and t∗ = ti−1 is set; (ii) γ(ti) = Γ(ti)Nt(ti) and γx(ti) = γ(ti)/h(ti)
are computed; and (iii) Ix(ti+1) = Ix(ti) − 1

M γx(ti) and Nt(ti+1) = Nt(ti) exp(− α
MΦ[Γ(ti)]) are

updated. After computing the last step i = M−1, γ̄ assumed known and the computed profile

γx(t0), . . . , γx(tM−1) are verified to satisfy the initial constraints, computed as

γ̄x = 1
M

M−1∑

i=0
γx(ti) and γ̄ = 1

M

M−1∑

i=0
γx(ti)h(ti), (3.33)

within an acceptable tolerance. If not, Γ(t0) and γ̄ are updated, and the procedure is repeated.
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Figure 3.5: Optimal SINR profile Γ(t), computed under M = 1000 points, at α = 4.0.
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Figure 3.6: Optimal coding rate profile R(t), computed under M = 1000 points, at α = 4.0.

Figures 3.5 and 3.6 depict the optimal SINR and rate allocation profiles computed under

user channel power gains log-normally distributed with unit mean and deviation σ. As shown,

effectively, when the channel is not unbalanced (σ = 0dB), the optimal profiles are uniform in

the variable t. In contrast, when the channel is unbalanced σ > 0dB, they are shown to be non-

increasing in t. The latter is achieved when strongest users exploit high SINRs and transmission

rates, and the weakest users remain silent rather than perform channel inversion. The optimal

profiles in the IBL and FBL regimes attain practically the same SINRs except for their respective

user-admission indices (see Figure 3.5). Rather, the respective coding rates depicted in Figure

3.6 substantially differ. With regard to network performance, the ASE achieved is higher when

the channel profile h(t) provides sufficient unbalance for the offered traffic. Contrarily, ASE is

penalised when h(t) is highly unbalanced.
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3.5.2 Rate Allocation with Fair Transmitted Power

This subsection investigates the best rate allocation strategy when all users transmit equal

symbol energy γ̄(t) = γ̄x, in which case the received symbol energy distribution preserves the

unbalance of the known (non-increasing) channel profile h(t), as

γ(t) = γ̄xh(t). (3.34)

Recall that if users employ capacity-achieving coding schemes (IBL regime), then the optimal

allocation shall be adjusted according to R(t) = log(1 + γ(t)/Nt(t)). The interesting case,

however, is when users employ coding schemes for short packets. The analysis conducted in this

section considers infinitely many coding schemes achieving second-order coding rates in the long

blocklength expansion. In this case, one option to optimise the coding rate of each user t, R(t),
is by letting it vary freely and by accounting for the effective transmission rate

R(t) · PSR
[
γx(t)h(t)
Nt(t)

, R(t)
]
, (3.35)

with the function PSR[Γ, R] , 1−PER[Γ, R] computed from the second-order normal approxi-

mation of the maximal channel coding rate (dropping the term logn
n ) as

PER[Γ, R] = Q
(

(log(1 + Γ)−R)
√

ne
V (Γ)

)
, (3.36)

and with the noise plus interference term computed as

Ṅt(t)
Nt(t)

= −αΦ
[
γ̄xh(t)
Nt(t)

, R(t)
]

and Nt(0) = 1 + αθγ̄x

∫ 1

0
h(t)dt. (3.37)

Note that in (3.35), sufficiently high coding rates will produce low PSR values. For each coding

scheme, the known PER versus SINR curve must be smooth and non-increasing in Γ (actually, a

reasonable and verifiable assumption for the PER versus SINR curves of typical coding schemes).

It is easy to check that PER[Γ, R] in (3.36) is smooth, non-increasing in Γ, and increasing in R.
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Figure 3.9: Optimal coding rate profile R(t), computed under M = 1000 points, at α = 4.0.

Two examples are shown in Figure 3.7. The first derivatives are drawn in Figure 3.8.

The allocation problem is to determine the continuously differentiable R(t) ∈ C[0, 1] that

maximises ASE

max
R(t)

α

∫ 1

0
R(t) · PSR

[
γ(t)
Nt(t)

, R(t)
]

dt s.t. (3.37). (3.38)

As discussed in point 2 of Appendix 3.A.1, the optimal R(t) profile may be found by solving

β(t)ΦR

[
γ(t)
Nt(t)

, R(t)
]

= PSR
[
γ(t)
Nt(t)

, R(t)
]

+R(t)PSRR

[
γ(t)
Nt(t)

, R(t)
]

(3.39)

in 0 ≤ t ≤ 1 jointly with the following differential equation and the initial value β(1) = 0:

β̇(t) = αR(t)PSRΓ

[
γ(t)
Nt(t)

, R(t)
]
γ(t)
Nt(t)

− αβ(t)ΦΓ

[
γ(t)
Nt(t)

, R(t)
]
γ(t)
Nt(t)

. (3.40)

Numerical Resolution: The procedure to compute the optimal R(t) from (3.39)–(3.40) considers

a partition of 0 ≤ t ≤ 1 into M intervals t0, . . . , tM−1 with t0 = 0. A temporarily known

β(t0) < 0 is considered. Since γ(t) is known, at step i, R(ti) is computed from (3.39) and

β̇(ti) from (3.40), then Nt(ti) and β(ti) are updated respectively, under finite differences, as

Nt(ti+1) = Nt(ti) exp(− α
MΦ[γ(ti)/Nt(ti), R(ti)]) and β(ti+1) = β(ti) + 1

M β̇(ti). The initial value

for β(t0) < 0 is obtained by bisection search until satisfying β(tM−1) = 0 within an acceptable

tolerance.

Figure 3.9 illustrates some examples of the optimal rate allocation profiles when channel

power gains of all users are lognormally distributed with unit mean and deviation σ, and users

transmit packets of ne = 500 symbols. The rate allocation with optimal reliability derived in

this subsection is compared with that under fair reliability for the same average reliability. The

optimal R(t) profiles result very close to those generated under fair reliability allocation except

when the traffic load is high and the channel is sufficiently unbalanced. In the case evaluated
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Figure 3.10: Optimal user-PER profile PER[Γ(t), R(t)], computed under M = 1000 points, at α = 4.0.
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Figure 3.11: Dispersion of the optimal user-PER profile (minimum and maximum PER values), and the
average PER over all users.

in this section, in which users do not enable power control, the coding rates are adjusted to

generate, together with the SINR of each user, a non-decreasing user-PER profile as shown

in Figure 3.10. The objective is to minimise the error5 propagation along the stages of SIC,

which is achieved by allocating more reliability to the strongest users and less reliability to the

weakest users. Remarkably, the optimal operation of SIC is found when users are allocated to

non-decreasing PERs roughly in the range [10−4, 1]. The dispersion of the optimal user-PER

profile is depicted in Figure 3.11, which shows higher dispersion as the received symbol energy

distribution becomes more unbalanced.

5interference from users cancelled imperfectly plus that from users decoded unsuccessfully.
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3.5.3 Energy Allocation with Fair Encoding Rate

This section investigates the energy allocation problem when R consists of a single coding

scheme (p = 1). For brevity of notation, the coding rate is denoted R, and a single-argument

PER curve PER[Γ] is adopted to characterise the error performance of the former coding scheme.

This system configuration facilitates the computation of the noise plus interference profile, which

can be simplified using the univariate function Φ[Γ] , θ(1− ε[Γ])Γ·PSR[Γ] as

Ṅt(t)
Nt(t)

= −αΦ
[
γx(t)h(t)
Nt(t)

]
and Nt(0) = 1 + αθ

∫ 1

0
γx(t)h(t)dt. (3.41)

When users employ a capacity-achieving coding scheme and the SIC cancellation system is

characterised either by a slight slope or by a SINR-independent cancellation error magnitude

ε[Γ] ≈ ε, communication is reliable for users 0 ≤ t ≤ t∗ as long as they are allocated above

the SINR Γth , 2R−1 (if R is given in bits per channel use). In this case, the received symbol

energy profile γ(t) is such that it generates the uniform SINR profile Γ(t) = Γth in 0 ≤ t ≤ t∗,

and it is cast as (3.42a) with the initial noise plus interference term (3.42b):

γ(t) = ΓthNt(0) exp(−αΦ[Γth]t) in 0 ≤ t ≤ t∗, (3.42a)

Nt(0) = 1− ε
exp(−αΦ[Γth]t∗)− ε

. (3.42b)

The optimal t∗ is computed as

t∗ , max
{
t0 ∈ (0, 1] ,

∫ t0

0

γ(t)
h(t)dt ≤ γ̄x

}
, (3.43)

and the attained network performance is ASE = αt∗R. If active users operate with a finite-length

coded modulation scheme and they are additionally constrained by fair reliability 0 < ρ ≤ 1,

the previous results are still applicable by just substituting Γth by the SINR that achieves the

target reliability PSR[Γtarget] = ρ. The attained network performance is ASE = αt∗ρR.

The case when users employ a short-length coding scheme and with no reliability constraints

is studied next. This case was analysed in our conference paper [67]. We seek for the smooth

transmitted symbol energy profile γx(t) ∈ C[0, t∗] (with a possible discontinuity at t = t∗ ≤ 1)

that maximises ASE subject to an average energy constraint, as follows:

max
0<t∗≤1

max
γx(t)

αR

∫ t∗

0
PSR

[
γx(t)h(t)
Nt(t)

]
dt s.t.

∫ t∗

0
γx(t)dt = γ̄x ; (3.41). (3.44)

The adopted figure of merit accounts for the average number of successful packet transmissions

over all users (network reliability). The stationary point equation (point 3 of Appendix 3.A.1)

is cast in terms of such a γx(t) that satisfies

λ = PSR′[Γ(t)]
Nt(t)

(
1
h(t) + αθγ̄x

)
− α(Ix(t) + αθγ̄xI(t))Φ′[Γ(t)]

in 0 ≤ t ≤ t∗, (3.45a)

Ix(t) ,
∫ t∗

t
γx(τ)dτ , I(t) ,

∫ t∗

t
γx(τ)h(τ)dτ. (3.45b)
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Figure 3.12: ASE versus traffic load α. Simulations compare: multiple encoders (p → ∞) and a single
encoder (p = 1) of rate 2/3; and fair reliability ρ = 1−10−3 (Fair Rel.) and optimal reliability (Opt Rel.).

The optimal t∗ is either t∗ = 1 if Γ(0 ≤ t ≤ 1) ≥ Γ∗, or such 0 < t∗ ≤ 1 that it allocates Γ(t∗) =
Γ∗, with Γ∗ computed as the solution to PSR[Γ∗] = Γ∗·PSR′[Γ∗]. In most of cases, Γ∗ is a unique

point located at the right of the inflexion point PSR′′ [Γip] = 0. If Γ∗ is not unique, all solutions

must be taken into account during the optimization procedure. The concluding remark is that

the optimal Γ(t) is not uniform in t. Since the solution depends on the PSR derivative function,

the expected result is that it becomes more unbalanced as PSR[Γ] is smoother. Nonetheless, its

exact computation must be addressed numerically.

Numerical Resolution: The procedure carried out to compute the optimal Γ(t) from (3.45a)

considers the same partition for the user-variable t as in previous cases: M intervals of the same

length t0, . . . , tM−1 with t0 = 0. M steps are followed: at step i = 0, λ > 0 is computed from

(3.45a) evaluated at t = t0 with Nt(t0) = 1 + αθI(t0), the symbol energies are computed as

γ(t0) = Γ(t0)Nt(t0) and γx(t0) = γ(t0)/h(t0), and cumulative integrals are updated as Ix(t1) =
Ix(t0) − 1

M γx(t0), I(t1) = I(t0) − 1
M γ(t0) and Nt(t1) = Nt(t0) exp(− α

MΦ[Γ(t0)]). Now, at step

i ≥ 1: (i) Γ(ti) is computed by solving (3.45a) for λ. If Γ(ti) < Γ∗, the algorithm is stopped and

t∗ is set to t∗ = ti−1; (ii) γ(ti) = Γ(ti)Nt(ti) and γx(ti) = γ(ti)/h(ti) are computed; and (iii)

Ix(ti+1) = Ix(ti)− 1
M γx(ti), I(ti+1) = I(ti)− 1

M γ(ti) and Nt(ti+1) = Nt(ti) exp(− α
MΦ[Γ(ti)]) are

updated. Finally, bisection searches over Γ(t0) and I(t0) are performed.

Approximate Numerical Resolution: An approximate resolution, that holds to a sufficient

accuracy, can be carried out when users operate at sufficiently high SINRs so as to assume

Φ[Γ] = θ(1 − ε[Γ])Γ PSR[Γ] ≈ θ(1 − ε[Γ])Γ in Γ > Γ∗, case in which its first derivative can be

approximated by Φ′[Γ] ≈ θ(1 − ε). In this situation, the stationary point equation (3.45a) can

be simplified and the optimal SINR profile can be computed more efficiently.

As shown in Figure 3.12, when users transmit short packets the ASE achieved with a single

encoder can surpass that with multiple encoders constrained by fair reliability. Besides, in

practice, when the blocklength is sufficiently high the same ASE is achieved. The reason is

because fair reliability allocates very different packet error probabilities to users relative to the
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Figure 3.13: Optimal received symbol energy profile γ(t) at the blocklength ne = 200.
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Figure 3.14: Optimal SINR profile Γ(t) at the blocklength ne = 200.

case of optimal reliability, which allocates non-decreasing error probabilities to all users. The

optimal (channel dependent) received energy profiles γx(t) are shown in Figure 3.13 together with

the profiles that mostly benefit SIC (channel independent), computed under h(t) = 1 and the

same average received symbol energy. This simulation reveals that the best transmission strategy

is that users perform channel inversion to generate a symbol energy profile γ(t) = γx(t)h(t) very

close to the most favourable distribution at reception. Small mismatching is evidenced at the

first and the last users. The more the offered traffic increases, the more unbalanced γ(t) becomes;

since the first users must deal with high interference levels. The respective SINR profiles are

drawn in Figure 3.14. As shown, when the PER curve is not steep (as in the IBL regime),

the SINR profile is not flat neither. Generally, Γ(t) is non-increasing and its slope depends

on the steepness of PER[Γ]. At low traffic loads Γ(t) is practically uniform, Γ(0)/Γ(t0) ≈ 1,
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Figure 3.15: Optimal user-PER profile PER[Γ(t)].
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Figure 3.16: Dispersion of the optimal user-PER profile. This corresponds to the points of minimum
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whereas at high loads it becomes substantially unbalanced, Γ(0)/Γ(t0) > 1. A consequence of

the above result is that the packet error probability of each user is a non-decreasing function of

the decoding order, as shown in Figure 3.15. Another interesting analysis presented in Figure

3.16 is the dispersion of the optimal user-PER profile. At sufficiently low traffic loads, even if the

optimal SINR profile is practically uniform, users experience a dispersion in PER values of less

than one order of magnitude. The reason is because users are allocated to high SINRs, where

the PER derivative function (evaluated at such SINRs) is close to zero, and then, the optimal

user-PER profile is practically dispersion-less. Rather, as the load increases users are allocated

to lower SINRs, where the PER derivative function produces more relevant results. The PER

range for saturated traffic loads (i.e. t∗ < 1) is about two orders of magnitude.
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3.5.4 Energy and Rate Allocation with Optimal Reliability

This section addresses the much anticipated energy and rate allocation problem with optimal

reliability. Recall that, as evidenced in the previous section, the allocation of equal reliability to

all users downgrades network performance, specially so, when users transmit very short packets.

This section conducts the allocation design by letting the energy, rate and reliability vary freely

so as to maximise ASE now defined as

ASE = α

∫ 1

0
R(t) · PSR

[
γx(t)h(t)
Nt(t)

, R(t)
]

dt. (3.46)

For this case, we recover the initial expression for the noise plus interference profile with

Φ[Γ, R] = θ(1− ε[Γ, R])Γ·PSR[Γ, R] and PSR[Γ, R] = 1−PER[Γ, R], as

Ṅt(t)
Nt(t)

= −αΦ
[
γx(t)h(t)
Nt(t)

, R(t)
]

with Nt(0) = 1 + αθ

∫ 1

0
γx(t)h(t)dt. (3.47)

The remaining of this section is organised in four subsections. Section 3.5.4.1 aims at studying

the theoretical limits of SIC under optimal reliability, which are used in Section 3.5.4.2 to conduct

a more practical allocation design under a finite number of encoders. Section 3.5.4.3 compares

the performance achieved by both systems. The last section (Section 3.5.4.4) analyses the

practicality of the proposed allocation, and validates the accuracy of the theoretical results for

a low-level SIC implementation inspired in the first iteration of the demodulator adopted in

E-SSA [40], where, additionally, the single-encoder setting is extended to multiple encoders.

3.5.4.1 Allocation Designs with Asymptotically Many Encoders

This section considers, for all users, a pool R of infinite, p → ∞, channel encoders achieving

optimal second order coding rates with a per-codeword power constraint [53], case in which the

PER characteristic of each coding scheme results the bivariate function of the SINR Γ and the

rate R also adopted in (3.36). On the basis of previous analyses, we shall consider discontinuous

allocations γx(t), R(t) ∈ C[0, t∗] as candidates to satisfy the optimization problem:

max
0<t∗≤1

max
γx(t),R(t)

α

∫ t∗

0
R(t)PSR

[
γx(t)h(t)
Nt(t)

, R(t)
]

dt s.t.
∫ t∗

0
γx(t)dt = γ̄x ; (3.47). (3.48)

It should be emphasised that this analysis corresponds to a more general study than that of

unboundedly large packets ne → ∞, since a generic blocklength ne is considered. Recall that,

in the IBL regime, we shall particularise PSR[Γ, R] = 1 and R(t) = log(1 + γx(t)h(t)/Nt(t)).
In the case studied herein, the optimal γx(t), R(t) profiles must satisfy the following stationary

point equations in 0 ≤ t ≤ t∗ (the proof is sketched in Appendix 3.A.1)

λ = αR(t)PSRΓ[Γ(t), R(t)]
Nt(t)

(
1
h(t) + αθγ̄x

)
− α(Ix(t) + αθγ̄xI(t))ΦΓ[Γ(t), R(t)]

, (3.49a)

λ = −PSR[Γ(t), R(t)] +R(t)PSRR[Γ(t), R(t)]
(Ix(t) + αθγ̄xI(t))ΦR[Γ(t), R(t)] , (3.49b)
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and the optimal 0 < t∗ ≤ 1 guarantees that active users 0 ≤ t ≤ t∗ are allocated above to a

minimum SINR Γ(t) ≥ Γ∗ and rate R(t) ≥ R∗, with the pair (Γ∗, R∗) the unique solution to

Γ∗ · PSRΓ[Γ∗, R∗] = PSR[Γ∗, R∗], (3.50a)

−R∗ · PSRR[Γ∗, R∗] = PSR[Γ∗, R∗]. (3.50b)

As the blocklength tends to infinity, this implicit constraint vanishes, (Γ∗, R∗) → (0, 0). The

minimum allocation values guarantee that fractional variations in rate and SINR do not incur in

fractional PSR decrements of higher magnitude. The solution for the stationary points Γ(t), R(t)
needs to be obtained numerically following a similar procedure to the one presented in the

previous section.

3.5.4.2 Allocation Designs with Finitely Many Encoders

Another interesting configuration is the case studied in this subsection, where users have available

p coded modulation schemes denoted by the set R , {R1, . . . ,Rp}. The analysis herein pursues

the determination of the best transmission strategy based on known coded modulation schemes,

rather than evaluating theoretical limits as in the previous case. Then, we shall consider that

users are decoded in groups of users that employ the same coding scheme, for which we assume

a partition of 0 ≤ t ≤ 1 into the following p+ 1 intervals:

{t+0 , t−1 } ∪ {t+1 , t−2 } ∪ · · · ∪ {t+k−1, t
−
k } ∪ · · · ∪ {t+p−1, t

−
p } ∪ {t+p , t−p+1}. (3.51)

Superscripts indicate the left and the right limits at every point tk: t−k and t+k . Then, three

optimization problems are posed to determine the best energy/code allocation strategy that,

taking advantage of the unbalance introduced by the known distribution of channel power gains,

maximises ASE. The study pursued herein corresponds to an extension of our conference paper

[68]. The allocation problem is formulated in the function space of piecewise continuously

differentiable functions γx(t), R(t) ∈ Cp[t+0 , t−p ], as:

max
P(R)

max
t1,...,tp

max
γx(t)

α
p∑

k=1

∫ t−
k

t+
k−1

RkPSR
[
γx(t)h(t)
Nt(t)

, Rk

]
dt (3.52a)

s.t.
p∑

k=1

∫ t−
k

t+
k−1

γx(t)dt = γ̄x (3.52b)

s.t. Ṅt(t)
Nt(t)

= −αΦ
[
γx(t)h(t)
Nt(t)

, R(t)
]

(3.52c)

s.t. Nt(0) = 1 + αθ

∫ 1

0
γx(t)h(t)dt (3.52d)

Outward from the expression inside: firstly, the optimal allocation γx(t) is determined by fixing

the partition t1, . . . , tp (with a little abuse of notation, tk denotes t−k and t+k ) and R; secondly,

the optimal indices t1, . . . , tp are determined by fixing the other magnitudes; and thirdly, per-

mutations over R are addressed. The solution derived in Appendix 3.A.1 is summarized below:

1. The stationary solution to the inner optimisation results into k = 1, . . . , p equations, each
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of which is used to obtain the k-th piece of γx(t) in the respective interval, as

λ = αRkPSRΓ[Γ(t), Rk]
Nt(t)

(
1
h(t) + αθγ̄x

)
− α(Ix(t) + αθγ̄xI(t))ΦΓ[Γ(t), Rk]

in t+k−1 < t ≤ t−k . (3.53)

2. The optimisation of the user indices t1, . . . , tp conclude that the optimal allocation profile

γx(t) also satisfies the following equation at the corners t1, . . . , tp−1

λ = α · RkPSR[Γ(t−k ), Rk]−Rk+1PSR[Γ(t+k ), Rk+1]
F (t−k , Rk)− F (t+k , Rk+1)

(3.54)

with F (t, R) = γ(t)( 1
h(t) + αθγ̄x) − α(Ix(t) + αθγ̄xI(t))Φ[Γ(t), R], and the optimal index

t−p ensures Γ(t) ≥ Γ∗ with Γ∗ computed as PSR[Γ∗, Rp] = Γ∗·PSR′[Γ∗, Rp]. Then, it equals

either t−p = 1 or such a value that satisfies Γ(t−p ) = Γ∗.

In general, the optimisation problem is non-convex due to the p! permutations over the set

R and the shape of the error characteristics of each coding scheme. Nonetheless, if the PER

curves corresponding to the different coding schemes PER[Γ, R1≤i≤p] and the characteristics

Φ[Γ, R1≤i≤p] are not intertwined with each other in Γ ≥ Γ∗, then the solution can be obtained

in a computationally affordable way by means of the following algorithm.

Numerical resolution: The number of encoders employed by users and the fraction of users

using each encoder shall be determined along with the allocation. We then propose an algorithm

that dynamically constructs the set of encoders used by users and that achieves the optimal

system performance. To that aim, the stationary point equations are solved together, with the

interval 0 ≤ t ≤ 1 discretised as τ0, . . . , τM−1 with |τi − τi+1| = 1
M , and the following three

variables temporarily known: R1, Γ(τ0) and I(τ0). The algorithm performs M steps. At step

i = 0, λ > 0 is computed by evaluating (3.53) at t = τ0 as

λ = αR1PSRΓ[Γ(τ0), R1]
Nt(τ0)

(
1

h(τ0) + αθγ̄x
)
− α(Ix(τ0) + αθγ̄xI(τ0))ΦΓ[Γ(τ0), R1]

(3.55)

with Ix(τ0) = γ̄x and Nt(τ0) = 1 + αθI(τ0), and Nt(τ1) = Nt(τ0) exp(− α
MΦ[Γ(τ0), R1]), I(τ1) =

I(τ0) − 1
M γx(τ0)h(τ0) and Ix(τ1) = Ix(τ0) − 1

M γx(τ0) are updated. At step i = 1 and for each

encoder R1≤j≤p, the SINR Γ(τ1)|Rj is computed from (3.53) with Nt(τ1), Ix(τ1) and I(τ1). Also,

for each encoder Rj 6=1, λ|Rj (the conditional on Rj is due to notation) is computed from (3.54)

λ|Rj = α · R1PSR[Γ(τ0), R1]−RjPSR[Γ(τ1)|Rj , Rj ]
F (τ0, R1)− F (τ1, Rj)

. (3.56)

If some λ|Rj coincides with λ within a tolerance margin, R(τ1) = Rj is allocated and Γ(τ1)|Rj →
Γ(τ1) is considered. Otherwise, R(τ1) = R1 is allocated and Γ(τ1)|R1 → Γ(τ1) is considered.

Next, Nt(τ2) = Nt(τ1) exp(− α
MΦ[Γ(τ1), R(τ1)]), I(τ2) = I(τ1) − 1

M γx(τ1)h(τ1) and Ix(τ2) =
Ix(τ1)− 1

M γx(τ1) are updated. At step i = i+1, the steps described above for i = 1 are followed,

choosing as reference the encoder employed by the last user. Firstly, the SINRs Γ(τi)|R1≤j≤p
are computed from (3.53) with the precomputed Nt(τi), Ix(τi) and I(τi). Secondly, λ|Rj is

computed from (3.54), and the corresponding Nt(τi), Ix(τi) and I(τi) are updated.
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Figure 3.17: ASE versus offered traffic α with optimal and fair reliability ρ = 1−10−2.

3.5.4.3 Performance Evaluation

The ASE is used as the key performance indicator. For simulation purposes, we consider users

subject to a log-normal channel power unbalance of unit mean and deviation σ = 3dB. To

simulate a more realistic case, we suppress the very high channel power gains from the log-

normal theoretical model. More specifically, only the values h with Pr[H < h] ≤ 1−10−3 are

used, and the resulting distribution is then scaled to have unit mean. The cancellation system

operates as ε[Γ, R] = 1%, and the factor θ is set to 1. The energy constraint is γ̄x = 8dB.

The attained ASE with finite blocklength constraints is drawn in Figure 3.17 and compared

with the performance achieved when users are constrained by fair reliability. The first analysis

considers for all users, infinitely many coding schemes optimal up to second order (in the large

blocklength expansion). As shown, both systems achieve similar ASEs when users transmit long

packets, which corresponds to coding systems with PER curves sufficiently steep (in Figure 3.17,

this corresponds to ne = 500). Rather, when the PER curves are less steep, which corresponds

to shorter packet lengths, the difference between the two ASEs is greater and increases notably

with the offered traffic. The need of an adequate allocation becomes more relevant as the load

increases since the receiver operates in a more interference-limited regime. Besides, a common

point between optimal and fair reliability is that they achieve ASEs far from the optimal ASE

in the IBL regime. The main reason is the use of finite-length codes, since they require more

SINR to achieve high reliability relative to the study under capacity-achieving schemes. In

general, fair reliability penalises ASE since the optimal performance is attained unbalancing the

reliabilities of users. Fair reliability allocates zero energy to more users and devotes the rest

of energy to compensate for the non-unbalanced reliability. The latter is shown in Figure 3.18.

Effectively, when users transmit short packets ne = 200, the best transmission strategy under

optimal reliability activates the transmission of approximately 10% more users. This analysis

results more noticeable as the reliability constraint is more demanding. Instead, optimal and

fair reliability admit practically the same number of users for increasing blocklengths.
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Figure 3.18: Fraction of active users 0 < t∗ ≤ 1 with optimal and fair reliability ρ = 1−10−2.
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Figure 3.19: ASE versus traffic load α for infinitely (p → ∞) and finitely many (p = 2) encoders. The
case of p = 2 considers second-order coding schemes [53] with R1 = 4/3 and R2 = 2/3 bits/symbol.

The above analysis considers, as a theoretical limit, that users have available infinitely many

coding schemes, p → ∞. Figure 3.19 depicts the results from Section 3.5.4.2 for p = 2 coding

schemes. As shown, regardless of blocklength and offered traffic, the proposed allocation practi-

cally attains the ASE achieved with asymptotically many encoders with only two of them with

sufficiently far apart rates. The latter is interesting for practical scenarios since a finite and very

small number of encoders allows for an overwhelming performance as long as users enable loose

power control to compensate for the poor combination of coding rates. Figure 3.20 depicts the

fraction of users using every encoder. On a practical level, the following code allocation policy

is followed. At low traffic loads, users mostly exploit high-rate codes and, as the offered traffic

increases, the use of such codes is increasingly restricted to only users with better channels, while
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Figure 3.20: Range of users employing every encoder. Simulations correspond to ne = 500 symbols.
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Figure 3.21: Coding rates (in bits/symbol) versus traffic load α for p→∞ and p = 2 encoders.

users with moderate channel gains use the more protective encoder, and users with worst chan-

nels remain silent. Examples of the optimal coding rate of each user are shown in Figure 3.21.

The coding rate of each user is non-increasing in t. In the IBL regime with perfect cancellation

ε[Γ, R] = 0, the decoding order does not penalise ASE as long as energy and rate are allocated

adequately. When practical decoding and cancellation features are considered, however, users

suffer due to the interference from previous decoding failures and imperfectly cancelled users.

In this case, it is preferable that strong users transmit at high rates and that the rate loss is

suffered more by the latter users, which must employ more protective encoders. Remarkably,

the same ordering is evidenced for finitely many coding schemes, which indeed simplifies the

optimisation in Section 3.5.4.2.
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Figure 3.22: ASE versus traffic load α for infinitely (p → ∞) and finitely many (p = 2) encoders. The
case of p = 2 considers optimal second-order coding schemes of rates R1 = 4/3 and R2 = 2/3 bits/symbol.
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Figure 3.23: ASE versus traffic load α for infinitely (p → ∞) and finitely many (p = 2) encoders. The
case of p = 2 considers optimal second-order coding schemes of rates R1 = 4/3 and R2 = 2/3 bits/symbol.

Figure 3.22 reveals the optimal SINRs allocated to all users. While for infinitely many

coding schemes the SINR of each active user follows a continuous profile, no such profile exists

when users have only a few of them. The result is not surprising. The optimal SINR profile

bears a similar relationship to the profile obtained in Section 3.5.3, where all users employ the

same coded modulation scheme. In our case, the optimal SINR profile is practically uniform

in each piece of the function. It is also worth noting that the last user assigned with energy is

allocated to a SINR equal to the SINR point Γ∗ of the most protective code. The dispersion of

the optimal SINR profile for the active users of each piece is drawn in Figure 3.23, which shows

an almost constant dispersion throughout the offered traffic. This fact indicates that the best



56 Chapter 3. Optimal Allocation Designs for Cancellation Receivers

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110−4

10−3

10−2

10−1

100

User index t

P
ac
k
et

er
ro
r
p
ro
b
a
b
il
it
y

ne = 500, p → ∞
ne = 200, p → ∞
ne = 500, p = 2
ne = 200, p = 2

Figure 3.24: Optimal user-PER profile PER[Γ(t), R(t)] for p → ∞ and p = 2 encoders. The evaluated
traffic load is α = 3.0.
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Figure 3.25: Dispersion of the optimal user-PER profile versus traffic load. Simulations correspond to
the case p = 2 and the blocklength ne = 500 symbols.

transmission strategy allocates non-decreasing packet error probabilities to users. Although the

optimal SINR profile is close to a piecewise constant function, the optimal user-PER profile

shows a substantially higher dispersion across active users. Some examples are shown in Figure

3.24 where, effectively, the first users are allocated to lower packet error probabilities whereas

the last users are allocated to increasing error probabilities. The reason is to minimize the

impact of error propagation along the stages of SIC while improving ASE. The dispersion of

the optimal user-PER profile versus traffic load is drawn in Figure 3.25, showing dispersions of

more than one order of magnitude over each piece. The total dispersion is around two orders of

magnitude.
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Figure 3.26: Received symbol energy profile γx(t) at α = 3.0 for p→∞ and p = 2 encoders.
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Figure 3.27: Transmitted symbol energy profile γx(t) at α = 3.0 for p→∞ and p = 2 encoders.

The last part of this subsection draws the optimal received and transmitted symbol energy

profiles in Figures 3.26 and 3.27, respectively. Regardless of the number of encoders users

may have available, the optimal symbol energies allocated to users are adjusted so as to create a

distribution at reception with an exponential trend. This corresponds, depending on the channel

unbalance, to non-monotonic transmitted energy profiles γx(t), unlike the previous profiles.

3.5.4.4 The Practical Implementation and Performance Assessment

Although previous allocation designs are derived on the basis of a strong theoretical model

and under some assumptions for the specific SIC demodulator, the practicality of the above

allocations has not been addressed yet. The following lines address this purpose. Recall that,
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we only need that the computation of the PER and RE versus SINR functions is carried out

using the same algorithms as the SIC implementation will then use. This section assesses the

asymptotic results for many users. More specifically, it elaborates on the relationship between

the number of usersK and the number of pointsM needed to solve the stationary point equations

derived from asymptotically many users. As described in Section 3.3, we assume that users are

pre-loaded with the optimal allocation and that they are able to estimate with high accuracy their

individual channel power gains. To that aim, the central node estimates the power of thermal

noise, computes the optimal distribution from the variational calculus-based approach addressed

in this chapter, and transmits, on a low-rate control channel, a broadcast signal containing a

compressed table with the optimal energy and rate allocation and the asymptotic distribution

of user-channel power gains. The k-th user employs its individual and accurate estimate ĥ[k]
from the downlink pilot to determine, based on the known profile h(t), the position it occupies

in the overall ordering as

t̂k = h−1
(
ĥ[k]

)
. (3.57)

This index t̂k is then used to obtain the coding rate and the transmitted symbol energy as R(t̂k)
and γx(t̂k). At the simulation level, we consider a satellite scenario with a (simplified) theoretical

model for the channel power gain profile h(t). From simulating a satellite scenario with European

coverage, we have obtained that the channel attenuations from of all users plus the antenna

radiation pattern can be fit into a lognormal distribution. Chip sequences are binary, and the

square root raised cosine pulse with roll-off factor 0.35 is used for pulse shaping. The coded

modulation scheme combines QPSK with the standardised 3GPP turbo code [69]. We evaluate

the coding rates 2/3 and 1/3 with payloads ne = 498 and ne = 504 symbols, and we consider

preambles of no = 50 symbols. The PER versus SINR curve corresponding to each coding scheme

is simulated by estimating PER over some SINR points, and by interpolating and smoothing

the resulting curve. The first derivative of te PER versus SINR curve is computed through

numerical differentiation. During simulations, we use them as lookup tables to obtain accurate

findings for the PER and its first derivative at any SINR. The cancellation system estimates

amplitude and phase of users decoded successfully (with perfect CRC detection) by correlating

the reconstructed packet with the input signal. Carrier frequency offsets are discarded. The RE

versus SINR curve is computed likewise as the PER curve, under the above cancellation system.

As stated along the present chapter, the numerical resolution to determine the optimal

allocation needs some numerical implementation for the noise plus interference term at each stage

of SIC. Our first study evaluates, precisely, the impact that different numerical implementations

produce on the individual reliabilities of all users. These correspond to expressions in 2) and 3)

exhibited in Section 3.4.1 to compute the term associated with the interval ti:

2) Nt,2(ti) = Nt,2(ti−1)
(

1− α

M
Φ
[
γ(ti−1)
Nt,2(ti−1) , R(ti−1)

])
, (3.58a)

3) Nt,3(ti) = Nt,3(ti−1) exp
(
− α

M
Φ
[
γ(ti−1)
Nt,3(ti−1) , R(ti−1)

])
. (3.58b)

We show the obtained results in Figure 3.28 and Table 3.1. As demonstrated, the computation
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Table 3.1: Average PER over active users at α = 3.0. Theoretical analyses (K → ∞) are computed
under M = 1200 points. Empirical computations assess the optimal profiles for K users.

Average PER (×10−3) K →∞ K = 600 K = 300 K = 150
Computation as 2) 13.60 23.49 20.35 17.38
Computation as 3) 13.98 10.60 10.37 9.48
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Figure 3.28: Theoretical and empirical user-PER profile for different numerical implementations of the
noise plus interference term.

according to 3) results in a more conservative numerical implementation that concludes, theo-

retically, in a lower ASE while maintaining practically the average PER over active users. This

is achieved by preventing the transmission of more users. The computations under method 2)

conclude higher mismatching between theoretical and empirical computations. The reason is

that for a finite number of users, the decoding and imperfect cancellation errors exhibit a non

deterministic behaviour that is propagated along SIC stages, and which can be prevented, to

a greater extend, as long as the asymptotic model is computed through a more conservative

version of the noise plus interference term. The remaining of this chapter adopts the version 3)
(integral form) to compute numerically the noise plus interference term.

The analysis that follows simulates the optimal allocation at a number of K and M pairs

and the traffic load α = 3.0. Results are shown in Table 3.2. Broadly speaking, the use of

the most conservative version for the calculation of the noise plus interference term results in

lower average PERs than those predicted theoretically (K → ∞). The above results show less

variability as the number of points M increases. Conversely, if the number of points M is

low, system performance is not well predicted by the asymptotic computations. This is due to

the fact that as M decreases, the proposed algorithm results in a conservative allocation that

results, later on, in much lower empirical average PERs. Furthermore, in these cases, system

performance is highly sensitive to the number of users K and to the sampling of 0 ≤ t ≤ 1 used

to compute the theoretical allocation.
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Table 3.2: Average PER over active and over all (active / all) users at α = 3.0.

PER (×10−3) M = 300 M = 600 M = 1200
Theoretical K →∞ 13.57 / 92.48 13.26 / 74.11 13.11 / 64.10
Empirical K = 1200 00.85 / 84.96 02.46 / 65.64 06.93 / 58.24
Empirical K = 600 10.66 / 61.77 01.14 / 84.35 10.60 / 61.71
Empirical K = 300 02.55 / 82.34 07.47 / 67.02 10.37 / 59.85
Empirical K = 150 02.53 / 62.38 05.68 / 65.34 09.48 / 55.70

3.6 Concluding Remarks

This chapter has performed an extensive treatment of the allocation problem for a massively

populated satellite network in which short length-packets are transmitted, preamble plus payload

are modulated following direct-sequence spread spectrum, and the receiver employs an interfer-

ence cancellation-based multiuser receiver after the conventional matched filter. This chapter

has tackled the allocation design accounting for the first iteration of the iterative cancellation

receiver proposed in E-SSA, for which the following key system designs have been considered.

Firstly, by analysing the random access behaviour of many machine-type communication trans-

missions under asymptotically many users. Secondly, by accounting for the known asymptotic

distribution of channel power gains from all users. Thirdly, by considering many encoders with

finite blocklength constraints, each of them characterised by its perfectly known packet error

rate versus signal-to-interference-plus-noise ratio curve.

The adoption of a successive decoding strategy aided by redundancy-check error control

has conducted its analysis in the asymptotic large-user regime to deal with randomness in

packet decoding success and failures propagated throughout the stages. Furthermore, the joint

energy and rate allocation has been analysed by tackling simpler problems that allow a better

understanding of the triple interplay between energy, rate and reliability, and, at simulation

level, by adopting a log-normal theoretical model for the distribution of channel power gains.

The stationary point allocations derived via the calculus of variations no longer exhibit the form

of continuously differentiable functions. In fact, the optimal profiles are discontinuous in the user

variable by silencing users with the worst channels. The best strategy for active users is to protect

the weakest users from the increasing interference, propagated throughout the stages, from users

cancelled imperfectly and from users decoded unsuccessfully. The latter is achieved, generally,

by allocating non-increasing symbol energies (at reception), rates, SINRs and user-reliability.

The most relevant simulations disclose that, when users have available few coded modulation

schemes, the best energy allocation strategy results very close to the best distribution at the

receiver’s input, and that the performance loss incurred due to the low number of encoders can

be practically compensated if users enable loose power control. Finally, low level simulations of

a real SIC implementation reveal the very accurate predictions of our theoretical computations.
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Appendix 3.A Proofs

This appendix provides the details of the optimization problems stated in the present chapter.

The calculus of variations is used as the optimisation tool. For the reader’s interest, the main

background in optimization over function spaces can be found in [41, 70]. More concretely, this

appendix only focuses on the derivation of the stationary point equations corresponding to the

stated problems. Their resolution is dealt with in the respective sections.

All the stationary point equations presented in Section 3.5 can be obtained by evaluating

particular cases of the stationary solution computed under asymptotically many coding schemes

subject to finite blocklength transmission constraints. The optimisation problem is

max
0<t∗≤1

max
γx(t),R(t)

α

∫ t∗

0
R(t)PSR

[
γx(t)h(t)
Nt(t)

, R(t)
]

dt s.t.
∫ t∗

0
γx(t)dt = γ̄x, (3.59)

where Nt(t) depends on γx(t) and R(t) through the dynamic equation and its initial value:

Ṅt(t)
Nt(t)

= −αΦ
[
γx(t)h(t)
Nt(t)

, R(t)
]
, (3.60a)

Nt(0) = 1 + αθ

∫ t∗

0
γx(t)h(t)dt. (3.60b)

The way to proceed is firstly, to adopt a function space with smooth and discontinuous elements

γx(t), R(t) ∈ C[0, t∗], and secondly, to consider smooth and infinitesimal variations

γx(t) + vx(t) (3.61a)

R(t) + vR(t) (3.61b)

in 0 ≤ t ≤ t∗. Differentiability of functionals is measured through the norm

‖y(t)‖ = max
0≤t≤t∗

|y(t)|+ max
0<t<t∗

|ẏ(t)|+ max
0<t<t∗

|ÿ(t)|+ . . . . (3.62)

We impose several conditions on the above variations. On the one hand, the variation vx(t)
may not vary freely as a consequence of the superimposed average energy constraint in the right

side of (3.59). More concretely, if we evaluate the constraint at any γx(t) ∈ C[0, t∗], then the

admissibility condition for such a smooth variation vx(t) is

∫ t∗

0
γx(t)dt+

∫ t∗

0
vx(t)dt = γ̄x. (3.63)

On the other hand, since there is no constraint imposed over R(t), vR(t) is only constrained by

those smooth perturbations that produce finite norm ‖R(t) + vR(t)‖ <∞.

The above does not help us to solve the problem itself but it provides the necessary back-

ground to later on understand the operations applied in the adopted function space.
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Appendix 3.A.1 Optimal Allocation Designs with Infinitely Many Encoders

The starting point is the Lagrangian

L[γx(t), R(t)] = α

∫ t∗

0
R(t)PSR

[
γx(t)h(t)
Nt(t)

, R(t)
]
− λ

(∫ t∗

0
γx(t)dt− γ̄x

)
(3.64a)

−
∫ t∗

0
β(t)

(
Ṅt(t)
Nt(t)

+ αΦ
[
γx(t)h(t)
Nt(t)

, R(t)
])

dt. (3.64b)

We consider that when γx(t), R(t) vary as γx(t)+vx(t) and R(t)+vR(t), the noise plus interference

profile does it as Nt(t) + δNt(t). Then, if we expand L[γx(t)+vx(t), R(t) + vR(t)] up to the first

order at any point γx(t) that satisfies the constraint
∫ t∗

0 γx(τ)dτ = γ̄x, we have

L ∼ α

∫ t∗

0
R(t)PSR[·]dt (3.65a)

+ α

∫ t∗

0
(PSR[·] +R(t)PSRR[·]− β(t)ΦR[·]) vR(t)dt (3.65b)

+
∫ t∗

0

(
αR(t)PSRΓ[·] h(t)

Nt(t)
− λ− αβ(t)ΦΓ[·] h(t)

Nt(t)

)
vx(t)dt (3.65c)

−
∫ t∗

0

(
αR(t)PSRΓ[·] Γ(t)

Nt(t)
− β(t) Ṅt(t)

Nt
2(t)
− αβ(t)ΦΓ[·] Γ(t)

Nt(t)

)
δNt(t)dt (3.65d)

−
∫ t∗

0

β(t)
Nt(t)

δṄt(t)dt. (3.65e)

The functions PSR[Γ, R],Φ[Γ, R] and their derivatives are written obviating their explicit argu-

ments, as PSR[·], Φ[·] and PSRΓ[·], PSRR[·], ΦΓ[·], ΦR[·]. The first term of L corresponds to the

zeroth-order term, and the rest to the first variation of L, denoted δL.

The last term is now integrated by parts with u = β(t)/Nt(t) and dv = δṄt(t)dt, as

∫ t∗

0

β(t)
Nt(t)

δṄt(t)dt = β(t)
Nt(t)

δNt(t)
∣∣∣∣
t=t∗

t=0
−
∫ t∗

0

(
β̇(t)
Nt(t)

− β(t)Ṅt(t)
Nt

2(t)

)
δNt(t)dt, (3.66)

for which the first variation yields

δL = α

∫ t∗

0
(PSR[·] +R(t)PSRR[·]− β(t)ΦR[·]) vR(t)dt (3.67a)

+
∫ t∗

0

(
αR(t)PSRΓ[·] h(t)

Nt(t)
− λ− αβ(t)ΦΓ[·] h(t)

Nt(t)

)
vx(t)dt (3.67b)

−
∫ t∗

0

(
αR(t)PSRΓ[·] Γ(t)

Nt(t)
− β̇(t)
Nt(t)

− αβ(t)ΦΓ[·] Γ(t)
Nt(t)

)
δNt(t)dt (3.67c)

+ β(0)
Nt(0)δNt(0)− β(t∗)

Nt(t∗)
δNt(t∗) (3.67d)

with the variations δNt(0) expressed as a function of those vx(t) as

δNt(0) = αθ

∫ t∗

0
h(t)vx(t)dt. (3.68)
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Now, δL = 0 for every admissible variation is necessary for first-order optimality. In particular:

1. for vx(t) = δNt(t) = 0 and admissible vR(t) 6= 0, and invoking the Fundamental Lemma

of the Calculus of Variations (FLCV), we get

PSR[·] +R(t)PSRR[·]− β(t)ΦR[·] = 0 in 0 ≤ t ≤ t∗; (3.69)

2. for vR(t) = δNt(t) = 0 and admissible variations vx(t) 6= 0, the FLCV results into the

following stationary point equation in 0 ≤ t ≤ t∗

αR(t)PSRΓ[·] h(t)
Nt(t)

− λ− αβ(t)ΦΓ[·] h(t)
Nt(t)

+ β(0) αθ

Nt(0)h(t) = 0; (3.70)

3. analogously to the previous case, for vR(t) = vx(t) = 0, δNt(t) 6= 0 in 0 < t < t∗ and null

variations over the end points δNt(0) = δNt(t∗) = 0, we have

αR(t)PSRΓ[·]Γ(t)− β̇(t)− αβ(t)ΦΓ[·]Γ(t) = 0 in 0 ≤ t ≤ t∗. (3.71)

The boundary condition is β(t∗) = 0.

It is possible to end up with simpler expressions for the stationary point equations. Multi-

plying (3.70) by γx(t) and subtracting (3.71) from it, we obtain the relationship

β̇(t) = λγx(t) + β(0) αθ

Nt(0)γx(t)h(t). (3.72)

After some straightforward manipulations, one can obtain the closed-form expression β(0) =
λγ̄xNt(0), after which, substituting it into (3.72), we get

β̇(t) = λγx(t) (1 + αθγ̄xh(t)) , (3.73)

β(t) = −λ (Ix(t) + αθγ̄xI(t)) , (3.74)

with

Ix(t) ,
∫ t∗

t
γx(τ)dτ and I(t) ,

∫ t∗

t
γx(τ)h(τ)dτ. (3.75)

Substituting the results into (3.70), we finally obtain:

1. the stationary point equation for the optimal γx(t) for a given coding rate profile R(t):

λ = αR(t)PSRΓ[Γ(t), R(t)]
Nt(t)

(
1
h(t) + αθγ̄x

)
− α(Ix(t) + αθγ̄xI(t))ΦΓ[Γ(t), R(t)]

, (3.76)

2. the stationary point equation for the optimal R(t) for a given energy profile γx(t):

λ = PSR[Γ(t), R(t)] +R(t)PSRR[Γ(t), R(t)]
(Ix(t) + αθγ̄xI(t)) ΦR[Γ(t), R(t)] . (3.77)

Moreover, the outer optimization in (3.59) can be found differentiating L with respect to the
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user index t∗ when t∗ < 1. Otherwise, t∗ = 1. The first gives

αR(t∗)PSR[Γ(t∗), R(t∗)] = λ (γx(t∗) + αθγ̄xγ(t)) , (3.78)

which combined with (3.76)–(3.77) at t = t∗, energy and rate allocation are produced above the

points Γ(t∗) and R(t∗) solutions of

Γ(t∗) · PSRΓ[Γ(t∗), R(t∗)] = PSR[Γ(t∗), R(t∗)], (3.79a)

−R(t∗) · PSRR[Γ(t∗), R(t∗)] = PSR[Γ(t∗), R(t∗)]. (3.79b)

Appendix 3.A.2 Particular Cases of the Optimal Allocation Designs

As stated at the beginning of this Appendix, the stationary point equations presented along this

chapter correspond to particular cases of the equations (3.76)–(3.77), each of which is reviewed

in the sequel:

1. Section 3.5.1 addresses the optimal allocation design constrained by fair reliability. The

following problem to determine the optimal γx(t) ∈ C[0, t∗] needs to be addressed:

max
0<t∗≤1

max
γx(t)

α

∫ t∗

0
r

(
γx(t)h(t)
Nt(t)

)
dt s.t.

∫ t∗

0
γx(t)dt = γ̄x. (3.80)

Note that, the above problem corresponds to (3.59) but substituting PSR[Γ, R] → r(Γ)
and Φ[Γ, R]→ Φ[Γ] = θ(1− ε)Γρ, and addressing the optimisation under γx(t) and not in

R(t). Therefore, the solution concludes the stationary point equation (3.76) particularized

at the above values:

λ = r′(Γ(t))
Nt(t) 1

h(t) + αθγ̄xc− αθ(1− ε)ρIx(t)
in 0 ≤ t ≤ t∗, (3.81)

with c = 1 + αθI(0)(1 − (1 − ε)ρ). The optimization under t∗ concludes that if t∗ < 1,

then r(Γ(t∗)) = r′(Γ(t∗)) · Γ(t∗).

2. Section 3.5.2 finds the best coding rate profile R(t) ∈ C[0, 1] in case of fair transmitted

powers. The following optimization problem needs to be addressed:

max
R(t)

α

∫ 1

0
R(t) · PSR

[
γ(t)
Nt(t)

, R(t)
]

dt. (3.82)

The above problem corresponds to (3.59) where the constraint is suppressed and the opti-

misation is addressed only in R(t) with t∗ = 1. In this case, the stationary point equation

for R(t) can be obtained directly from (3.69), which gives

β(t)ΦR

[
γ(t)
Nt(t)

, R(t)
]

= PSR
[
γ(t)
Nt(t)

, R(t)
]

+R(t)PSRR

[
γ(t)
Nt(t)

, R(t)
]

(3.83)

and with β(t) computed, together with the end point β(1) = 0, as

β̇(t) = αR(t)PSRΓ

[
γ(t)
Nt(t)

, R(t)
]
γ(t)
Nt(t)

− αβ(t)ΦΓ

[
γ(t)
Nt(t)

, R(t)
]
γ(t)
Nt(t)

. (3.84)
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3. Section 3.5.3 derives the best energy profile γx(t) ∈ C[0, t∗] when all users employ the same

coded modulation system. We have the following variational calculus problem:

max
0<t∗≤1

max
γx(t)

αR

∫ t∗

0
PSR

[
γx(t)h(t)
Nt(t)

]
dt s.t.

∫ t∗

0
γx(t)dt = γ̄x. (3.85)

Note that, the above problem corresponds to (3.59) where R(t) = R, PSR[Γ, R]→ PSR[Γ]
and Φ[Γ, R] → Φ[Γ] = θ(1 − ε[Γ])Γ·PSR[Γ]. Then, the stationary point equation results

(3.76) with the above considerations, as

λ = PSR′[Γ(t)]
Nt(t)

(
1
h(t) + αθγ̄x

)
− α(Ix(t) + αθγ̄xI(t))Φ′[Γ(t)]

in 0 ≤ t ≤ t∗. (3.86)

The optimal t∗ is either t∗ = 1 or such 0 < t∗ ≤ 1 that sets PSR[Γ(t∗)] = Γ(t∗)PSR′[Γ(t∗)].

Appendix 3.A.3 Optimal Allocation Designs with Finitely Many Encoders

This section solves the optimal allocation problem with finitely many encoders:

max
t1,...,tp

max
γx(t)

α
p∑

k=1

∫ t−
k

t+
k−1

RkPSR
[
γx(t)h(t)
Nt(t)

, Rk

]
dt (3.87a)

s.t.
p∑

k=1

∫ t−
k

t+
k−1

γx(t)dt = γ̄x. (3.87b)

In this case, it is straightforward to show, by following the same rules as in the previous section,

that the inner optimisation results in the same stationary point equation (3.76) evaluated for the

given coding schemes R1, . . . ,Rp and user indices t+0 , t
−
1 . . . , t

+
p−1, t

−
p . We get the k = 1, . . . , p

stationary point equations

λ = PSRΓ[Γ(t), Rk]
Nt(t)

(
1
h(t) + αθγ̄x

)
− α(Ix(t) + αθγ̄xI(t))ΦΓ[Γ(t), Rk]

in t+k−1 ≤ t ≤ t−k . (3.88)

The optimal user index at the corner tk is obtained by differentiating L under tk. This leads,

for the firsts k = 1, . . . , p−1 corners, to

λ = α · RkPSR[Γ(t−k ), Rk]−Rk+1PSR[Γ(t+k ), Rk+1]
F (t−k , Rk)− F (t+k , Rk+1)

, (3.89)

with

F (t, R) = γ(t)( 1
h(t) + αθγ̄x)− α(Ix(t) + αθγ̄xI(t))Φ[Γ(t), R]. (3.90)

The last corner t−p is optimised when t−p = 1 or when the following equation is satisfied:

PSR[Γ(t−p ), Rp] = Γ(t−p )PSRΓ[Γ(t−p ), Rp]. (3.91)





4 Optimal Allocation Designs for

Iterative Cancellation Receivers

This chapter continues the research in the previous chapter. Recall that, when users employ

optimal coding schemes up to the first-order (capacity-achieving), the successive interference

cancellation (SIC) receiver can decode all transmitting users successfully without exception.

As demonstrated previously, this strategy contrasts with the fact that, in emerging wireless

networks, users employ coding schemes for short packets, that is, with non-infinite bit-payload.

The latter implies that, from a strictly mathematical point of view, reliable communication is not

guaranteed to all users regardless of the adopted SIC scheme. This chapter is devoted, precisely,

to analysing this problem. Continuing along this line, one option to increase decoding capabilities

of the SIC receiver is to iterate the decoding algorithm over the users decoded unsuccessfully

after the first iteration. As is thoroughly explained in this chapter, this small modification of the

classical SIC algorithm, applied many times, provides almost reliable communication to users

in exchange for an increase in the receiver’s complexity. Its exact characterisation, however, is

challenging from a statistical point of view since the new iterative system results in a chain of

dynamic subsystems linked by operations that are statistically dependent. The chapter analyses

this iterative cancellation system in detail, and puts forth a system model that greatly simplifies

the analysis of this complex receiver. In our view, the main contribution of this chapter is the

system model proposed in the following publication

[L1] F. Molina and J. Sala-Álvarez, “Average PER performance metrics of iterative successive

interference cancellation,” IEEE Wireless Commun. Lett., vol. 9, no. 1, pp. 74-77, 2020

which, to the author’s knowledge, is the first one to have reported an exact analysis per iteration

of a SIC receiver in the infinite-user regime.

This chapter first describes in Section 4.1 the state of the art relative to iterative cancellation

systems. For a better understanding of the complexity of this receiver, the system model already

published by the author of this thesis [71] ([L1]) is analysed step by step: firstly, investigating a

SIC receiver that persists twice in decoding users (two-iteration SIC) in Sections 4.2 and 4.3; and

secondly, generalising the model to an iterative SIC receiver that performs an arbitrary number

of iterations in Sections 4.5 and 4.6. The allocation designs are investigated under two-iteration

SIC in Section 4.4. Conclusions are offered in Section 4.7.

67
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4.1 State of the Art

One of the aspects that conditions, to a greater extent, the performance attainable by SIC

is the error correcting power of adopted channel coding schemes. When the blocklength is

infinite, ne →∞, the received noisy codewords can all be decoded without errors if users adapt

their coding rates according to the signal-to-interference-plus-noise ratio (SINR) they experience

when going a decoding attempt, or cannot if the users fail to do so. This abrupt behaviour

has motivated, throughout the literature, the design of energy-code allocation strategies by

considering simply the logarithm as the mapping function between energy and rate [48], or more

complex functions [46]. These works assume that users transmit unboundedly long packets, or

with a sufficiently long payload (in the order of thousands of symbols).

Nevertheless, when users transmit short packets the picture is different. As shown in the

previous chapter, the decoder always succeeds with a certain probability at every SINR point

despite the lower error correction power that achieved by decoders for short packets. Notably,

the decoding behaviour of short-length decoding is smooth in the SINR. Eventually, some users

may be decoded unsuccessfully after the first iteration of the SIC receiver. Chapter 3 has dealt

extensively with a system model for such a SIC receiver. A competitive approach to tackle the

processing of users decoded unsuccessfully is to iterate the SIC algorithm over all users [45],

or only over users remaining decoded unsuccessfully [40]. Naturally, both strategies entail an

increase of the receiver’s complexity, but system performance is stunning. The choice of one of

the latter strategies depends, strictly, on whether the receiver operates with redundancy check

error control (CRC) or not. In [45], the authors consider users employing the same modulation

and error correcting code, and a receiver constituted of a minimum mean square error (MMSE)

multiuser detector that iterates over a bank of channel decoders. Many iterations further improve

the SINR of all users, and the packet error rate versus SINR curve is adopted as a lookup table

to compute system performance in the last iteration. In [40, 47], SIC is adopted after the

bank of single-user matched filters, which analyses the low-SNR regime of the MMSE-based

multiuser receiver. In this case, users enter CRCs to enable error control at reception and the

receiver persists in decoding only users decoded unsuccessfully. Other approaches are followed

to improve symbol reliabilities when error control is not available [72]. Both schemes exploit the

performance of the receiver as long as users arrive with an appropriate power unbalance.

This chapter derives an accurate model for the operation of iterative SIC that operates under

redundancy-check error control. The challenging task is the model adopted for the persistent

decoding operations of the same user. Throughout the literature, iterative SIC has been analysed

on very few circumstances. As an example, such a system is analysed in [47] by setting initial

and convergence conditions in terms of the SINRs that achieve target packet error probabilities;

a trigger condition is set heuristically to ensure that iterative SIC converges to low packet

error probabilities (around 10−3 or 10−4) if users are allocated, at the first iteration, to error

probabilities PER / 0.9. Is this universal condition too pessimistic, or can it be done better?

In the opinion of this author, the necessity of introducing such a trigger criterion is due to the

model already developed overlooks the memory in decoding the same user throughout iterations.

This chapter sheds light on this aspect, and uses the model as the starting point to optimise

system performance.
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Figure 4.1: Block diagram of an iterative SIC receiver aided by redundancy-check error control.

4.2 The Model of Two-Iteration SIC

This section analyses in detail the operative of iterative SIC from a statistical point of view. The

block diagram of the decoding-cancellation system is shown in Figure 4.1. Unlike the previous

chapter, this section considers a SIC receiver that persists twice in decoding users. In Figure

4.1, this corresponds to ι ∈ {1, 2}. The starting point of this section is the baseband signal1

received from many direct-sequence users

y(t) =
K∑

k1=1

√
γ[k1] ejΩk1

n∑

m=1
sk1 [m]ck1,m(t−mT − τk1) + w(t). (4.1)

The index set K1 , {1, . . . ,K} is employed to index users as 1 ≤ k1 ≤ K, where the subscript 1 is

added, unlike in the previous chapter, to emphasise the notation relative to the first iteration. In

the expression above,
√
γ[k1]ejΩk1 is the complex amplitude received from user k1. As described

in the previous chapter, the first iteration of SIC processes all users in K stages (one per user)

and, so as not to lose the thread, the specific operations performed by the receiver are reviewed

next. Recall that, at stage k1, the decoder operates with the output of the matched filter

(despreader)

ỹ1
k1 =

√
γ[k1] ejΩk1 sk1 +

√
N1
t [k1] w1

k1 (4.2)

to obtain the packet sk1 transmitted by user k1. w1
k1

is the Gaussian noise plus interference term

affecting user k1, and N1
t [k1] is the noise plus interference level. The superscripts “1” mention

explicitly the iteration index ι = 1. Then, the i-th decoding function is used to recover the bit

sequence transmitted by user k1 as b̂1
k1

= f−1
i (ỹ1

k1
), after which CRC checks if the decoding has

been successful or not. If so, the received user is reconstructed as ŷk1(t), and is cancelled at the

waveform level as y(t) − ŷk1(t). The model adopted for the complete operation of SIC in the

first iteration is based on the Gaussian interference assumption, which allows to compute the

SINR of user k1 and its noise plus interference term as in Chapter 3:

Γ1[k1] = γ[k1]
N1
t [k1] , (4.3)

N1
t [k1] = 1 + θ

N

k1−1∑

i=1
ε1[i]γ[i] + θ

N

K∑

i=k1+1
γ[i]. (4.4)

1Carrier frequency offsets are discarded in our analysis.
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In this expression, ε1[1≤i<k1] are the binary random variables associated with the decoding-

cancellation operation of users i < k1 already processed. The joint decoding-cancellation system

is analysed, as in Chapter 3, by adopting the known packet error rate (PER) and residual energy

(RE) curves. For user i, ε1[i] equals 1 with probability PER[Γ1[i], R[i]], and ε[Γ1[i], R[i]] with

probability PSR[Γ1[i], R[i]] , 1−PER[Γ1[i], R[i]]. PSR stands for packet success rate.

The above is, in fact, a summary of a part of the previous chapter, after which the first SIC

iteration ends with K2 packet errors and succeeds with K−K2 users. The novelty introduced in

this section may be found in that the K2 users that survive decoded unsuccessfully undergo a new

decoding attempt following the same SIC scheme. Bear in mind that at least one user must be

decoded successfully and cancelled to proceed to the new iteration. Otherwise, further decoding

attempts will fail. This section continues assuming that K2 < K. Henceforth, the notation

employed differs from that already published in [71] and leads to a more simple analysis.

The index set K1 = {1, . . . ,K} is partitioned into those corresponding to the subset of users

decoded successfully Kok
1 and that of users decoded unsuccessfully Kko

1 . Recall that only users

k1 ∈ Kko
1 are processed again. Two problems arise: firstly, that the number of users to be

processed is smaller than K; and secondly, whether the matched filter outputs for the same user

and different iterations are statistically dependent or not. To tackle the first issue the index set

in the second iteration is K2 , {1, . . . ,K2}, users are indexed as 1 ≤ k2 ≤ K2, and the mappings

φ1,2 : k1 ∈ Kok
1 7−→ k2 ∈ {1, . . . ,K2}, (4.5)

φ2,1 : k2 ∈ {1, . . . ,K2} 7−→ k1 ∈ Kok
1 , (4.6)

relate the indices of users between iterations. It is worth noting that φ1,2 can only be applied

to the subset of users Kok
1 that survive (decoded unsuccessfully) after the first iteration, while

φ2,1 can be applied to all indices 1 ≤ k2 ≤ K2. Thus, user k in the first iteration ι = 1 is ranked

at position φ1,2[k] in the second iteration ι = 2, and conversely, user k in the second iteration

ι = 2 was ranked the φ2,1[k]-th in the first iteration ι = 1. Figure 4.2 exemplifies the above.

k1=1 k1=2 . . . k1 . . . k1=K

× k2=1 . . . k2 . . . ×

φ1,2[2]φ2,1[1] φ1,2[k1]φ2,1[k2]

Figure 4.2: An example of the relationship between the indices of users of different iterations.

The second issue is related to the processing of users. Recall that the matched filter is only

computed for users that survive after the first iteration. The model assumes Gaussian statistic

for interference. The output of the matched filter for the k2-th user in the second iteration is

ỹ2
k =

√
γ[k] ejΩk sk +

√
N2
t [k] w2

k with k = φ2,1[k2]. (4.7)

N2
t [φ2,1[k2]] is variance of noise plus interference after despreading, and w2

k is a unit-power
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Gaussian term. In the expression above, the Gaussian term w2
k is not statistically independent

from the corresponding w1
k (4.2) in the first iteration. Actually, both terms are related through

the linear decomposition of w1
k as

√
N1
t [k] w1

k =
√
N2
t [k] w2

k +
√
N1
t [k]−N2

t [k] wc
k, (4.8)

where w2
k is the noise plus interference term affecting user k after subtracting wc

k. The latter

term corresponds to the interference cancelled between the stage k in the first iteration and the

stage φ1,2[k] in the second iteration. Note that w1
k (in the first SIC iteration) comprises two

Gaussian independent terms, whereas in the second iteration (4.7) is only valid if a packet error

event occurred in the first iteration. That said, the i-th decoding function is applied on ỹ2
k to

determine the bit sequence b̂2
k = f−1

i (ỹ2
k), and cancellation is produced when CRC checks out.

The SINR after despreading user k2 in the second iteration is computed as

Γ2[k] = γ[k]
N2
t [k] with k = φ2,1[k2]. (4.9)

The difficulty of analysing this second iteration is the model chosen for channel decoding since,

as shown before, the despreader outputs of different iterations are not statistically independent.

The conclusion drawn from the previous rationale is that the same PER characteristic used in

the first iteration evaluated at the new SINR as PER[Γ2, Ri], does not model the magnitude

of packet error decoding correctly2. Note that the above does not include any variable relative

to the previous iteration. The following lines conduct an explanation to the model adopted for

channel decoding in the second iteration. Contrasting the two expressions for the output of the

matched filter of the same user k in different iterations

ỹ1
k =

√
γ[k] ejΩk sk +

√
N2
t [k] w2

k +
√
N1
t [k]−N2

t [k] wc
k (4.10)

ỹ2
k =

√
γ[k] ejΩk sk +

√
N2
t [k] w2

k, (4.11)

intuition leads to think that channel decoding will succeed more frequently when a high amount

of interference (N1
t [k]−N2

t [k]) is cancelled between iterations. The latter means, essentially, that

N2
t [k] shall be much lower than N1

t [k] for the channel decoder to operate with a substantially

different noise realisation, or, in practice, with an independent noise realisation. The application

of this result to user k2 entails that the second SIC iteration exploits, performance-wise, the

decoder’s capabilities when Γ2[k2] is sufficiently high when compared to Γ1[φ2,1[k2]]. Remarkably,

the important finding is that the packet error probability for persisting decoding operations

depends on the current and previous SINRs of the same user. Continuing along this line, the

novelty introduced herein is the modelling of channel decoding for the second iteration through

the multivariate PER function

PER2[Γ1,Γ2, Ri], (4.12)

2It is easy to check that the model is incorrect. Assume a trivial case where no interference is cancelled. Then
Γ2 = Γ1, and therefore, the decoder would give the same result as in the first iteration, that is, a packet failure
event. In contrast, the model PER[Γ2, Ri] produces a packet error probability notably different.
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which stands for the packet error probability for a user with SINR Γ2 that has been unsuccessfully

decoded in the previous iteration under SINR Γ1, and which generalises the definition of the PER

versus SINR characteristic well-known in the literature as an instance of block error rate [73],

packet loss ratio [47], frame error rate [45] or simply, packet error rate [49]. Recall that the last

argument “Ri” is only used to identify the encoder, and thus, the above characteristic is now a

bivariate function of the SINR at each iteration.

The PER functions associated with the i-th coding scheme can be computed together: firstly,

by generating vector b and encoding it as
√
γejΩfi(b) (Ω is uniformly distributed in [−π,+π]);

secondly, by subjecting communication to Gaussian noises w2,wc ∼ CN (0, I); thirdly, by gen-

erating the signals

y1 = √γejΩfi(b) +
√
N2
t w2 +

√
N1
t −N2

t wc, (4.13)

y2 = √γejΩfi(b) +
√
N2
t w2, (4.14)

with the SINRs Γ1 = γ/N1
t and Γ2 = γ/N2

t ; and finally, by computing the following expressions

PER[Γ1, Ri] = Pr
[
f−1
i (y1) 6= b

]
, (4.15)

PER2[Γ1,Γ2, Ri] = Pr
[
f−1
i (y2) 6= b | f−1

i (y1) 6= b
]
. (4.16)

The introduction of such a function (4.16) allows to describe the exact behaviour of channel de-

coding conditioned on previous packet decoding failures. The counterpart is that its calculation

is computationally exhaustive since it constitutes a bivariate function of (Γ1,Γ2).

Under the above definitions, the noise plus interference term affecting user k2 in the second

iteration reads as follows, and whose terms are described in the sequel:

N2
t [φ2,1[k2]] = 1 + ξ1 + θ

N

k2−1∑

i=1
ε2[i]γ[φ2,1[i]] + θ

N

K2∑

i=k2+1
γ[φ2,1[i]], (4.17)

1. The second term ξ1 corresponds to the aggregate interference from users successfully de-

coded and imperfectly cancelled in the first iteration. Mathematically, this term is com-

puted by adding the contributions of users whose decoding random variable ε1[1 ≤ k1 ≤ K]
denotes a successful decoding event.

2. The third term corresponds to the aggregate interference from users i < k2 processed in

the second iteration before stage k2. For its computation, recall that k = φ2,1[i] produces

the user index of the i-th decoding in the first ordering. In the expression above, ε2[i] is a

random variable associated with the decoding and cancellation of user i, which equals 1 if

packet decoding fails with probability PER2[Γ1[i],Γ2[i], R[i]] and equals ε[Γ2[i]] with com-

plementary probability PSR2[Γ1[i],Γ2[i], R[i]] , 1 − PER2[Γ1[i],Γ2[i], R[i]]. The random

variables ε2[1 ≤ k2 ≤ K2] are statistically independent of each other.

3. The fourth term is the aggregate interference from users k2 < i ≤ K2 still not processed

at stage k2.
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Figure 4.3: Probability tree of user undergoing a second decoding attempt regardless of the first outcome.

4.2.1 Analytical Findings for the PER Function

The above model provides, in contrast to prior works, mathematical expressions that allow for the

exact analysis of two-iteration SIC based on a multivariate decoding function. Nevertheless, the

major weakness of the above model is that the calculation of such a function is computationally

intense, and it can only be obtained by simulating a particular coding and modulation scheme.

This subsection delves into the understanding of this multivariate function, and derives analytical

findings for such a function that allow its approximation and also the evaluation of two-iteration

SIC when theoretical coded modulation schemes are employed, provided that the classical PER

versus SINR curve PER[Γ] is known.

Figure 4.3 depicts the probability tree corresponding to the persistent decoding of one user.

Two strategies are compared: firstly, when the receiver operates with error control, in which

case the second iteration ι = 2 only proceeds if the first decoding fails. The packet error

probability after two decoding attempts results p1
ko[Γ1]p2

ko|ko[Γ2]; and secondly, when the re-

ceiver does not operate with error control, in which case the second iteration is performed

regardless of the outcome of the first attempt since the latter is unknown to the receiver. The

packet error probability for the latter case is p1
ko[Γ1]p2

ko|ko[Γ2] + p1
ok[Γ1]p2

ko|ok[Γ2]. Clearly, the

first approach achieves lower error probability and the performance improvement is due to

the error detection in the intermediate step. Now, substituting the previous notation by the

PER functions defined previously as p1
ko[Γ1] = PER[Γ1, Ri], p2

ko|ko[Γ2] = PER2[Γ1,Γ2, Ri] and

p1
ko[Γ1]p2

ko|ko[Γ2]+p1
ok[Γ1]p2

ko|ok[Γ2] = PER[Γ2, Ri], the following relationship is stated for a chan-

nel decoding operation governed by error control:

PER[Γ1, Ri]PER2[Γ1,Γ2, Ri] ≤ PER[Γ2, Ri]. (4.18)

A last remark: this bound shall be substituted by an equality when the algorithm does not

operate with error control in the intermediate step. The latter equation sets the upper bound

PER2[Γ1,Γ2, Ri] ≤
PER[Γ2, Ri]
PER[Γ1, Ri]

(4.19)

which evidences a lot of insight to understand the behaviour of an iterative cancellation receiver.
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Figure 4.4: Contour lines of PER2[Γ1,Γ2] at the SINR gain g = Γ2/Γ1. The exact computations (cross
markers) are drawn over the theoretical upper-bound (4.19) (solid lines). Simulations are carried out for
the turbo code standardised in DVB-RCS [74] with 440 bits, coding rate 1/2, QPSK modulation, and 10
max-log-map iterations. The symbol payload is ne = 440.

Firstly, the second decoding attempt does not succeed, PER2[Γ1,Γ2, Ri] ≈ 1, when low inter-

ference is cancelled between iterations, and thus Γ2 ≈ Γ1. Secondly, the receiver exploits the

decoding performance when Γ2 � Γ1.

Figure 4.4 depicts the results of a short simulation, run to evidence the tightness of the above

bound for a standardised coded modulation system (details about its parameters may be found

in the caption of Figure 4.4). The results are not surprising; the bound is very tight when Γ2 is

sufficiently larger than Γ1, since the equivocation probability p2
ko|ok[Γ2] turns out to be very low

at high Γ2/Γ1 ratios. Notably, it is very unlikely that the decoder will fail in decoding a packet

previously decoded successfully unless the SINR gain g = Γ2/Γ1 is very low. As shown in the

attached figure, poor SINR gains, for instance g = 0.1dB or g = 0.2dB, entail the inaccurate

tightness of the above upper bound. Remarkably, simulations reveal that SINR gains of less

than half a dB are enough to use the bound as a strict equality.

4.3 The Asymptotic Model of Two-Iteration SIC

As in the previous chapter, the system is in general random, since users can be decoded correctly

or incorrectly at each stage. For the case studied herein, randomness in decoding users is

propagated throughout SIC stages of every iteration even more than in the previous chapter,

where users are subjected to a single decoding operation. This fact complicates the obtention

of a tractable form for its understanding. Rather, a mathematically tractable form to address

the analysis of such an iterative cancellation system may be found by resorting to the user-

asymptotic regime, in which case the system model defined in Section 4.2 takes a very attractive

form. The asymptotic model for each of the iterations is described below.
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4.3.1 The First Iteration of Two-Iteration SIC

The asymptotic model corresponding to the first iteration is the one described in Section 3.4,

and reviewed below. More concretely, the continuous user indexing

t = lim
K→∞

k1
K

(4.20)

identifies users in the first SIC iteration, at the same time the traffic load α , K/N is asymp-

totically held constant. The SINR of user t after despreading reads

Γ1(t) = γ(t)
N1
t (t) , (4.21)

with the noise plus interference term N1
t (t) computed from any of the following equivalent forms:

1) N1
t,1(t) = 1 + αθ

∫ t

0
q1

[
γ(τ)
N1
t,1(τ) , R(τ)

]
γ(τ)dτ + αθ

∫ 1

t
γ(τ)dτ, (4.22a)

2)
Ṅ1
t,2(t)

N1
t,2(t) = −αΦ1

[
γ(t)
N1
t,2(t) , R(t)

]
and N1

t,2(0) = N1
t (0), (4.22b)

3) N1
t,3(t) = N1

t (0) exp
(
−α
∫ t

0
Φ1

[
γ(τ)
N1
t,3(τ) , R(τ)

]
dτ
)
. (4.22c)

Herein, q1[Γ1, Ri] , 1−(1−ε[Γ1, Ri])PSR[Γ1, Ri] and Φ1[Γ1, Ri] , θ(1−ε[Γ1, Ri])Γ1·PSR[Γ1, Ri],
and the initial noise term is

N1
t (0) = N1

t,1(0) = N1
t,2(0) = N1

t,3(0) = 1 + αθ

∫ 1

0
γx(t)h(t)dt. (4.23)

The average number of users decoded unsuccessfully after the first iteration is computed in

the asymptotic large-user regime as

per1 = lim
K→∞

1
K

K∑

k1=1
PER[Γ1[k1], R[k1]] =

∫ 1

0
PER[Γ1(t), R(t)]dt. (4.24)

4.3.2 The Second Iteration of Two-Iteration SIC

This subsection analyses the second SIC iteration, which processes users previously decoded

unsuccessfully. In this new iteration, the number of users to be processed is considered, again,

asymptotically large. The assessment of such a model for a finite number of users is addressed

in later sections. Under the user-asymptotic assumption, the indexing in the second iteration is

t2 = lim
K2→∞

k2
K2

, (4.25)

and analogously as in the first iteration, the traffic load in the second iteration K2/N → α2
is asymptotically held constant. As evidenced next, the adoption of this asymptotic large-user

regime allows to predict the decoding power of two-iteration SIC in a comfortable and simple
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way. One of the most interesting results is the tractable analytic relation for the mappings φ2,1
and φ1,2 in Section 4.2, that are now defined as

φ1,2 : t ∈ [0, 1] 7−→ t2 ∈ [0, 1] (4.26)

φ2,1 : t2 ∈ [0, 1] 7−→ t ∈ [0, 1] (4.27)

Specifically, under the asymptotic model it is true that each interval of length dt in the first

iteration can be expressed as the union of two disjoint intervals, whose lengths add up to dt, as

dt = PER[Γ1(t), R(t)]dt+ PSR[Γ1(t), R(t)]dt. (4.28)

PER[Γ1(t), R(t)]dt is the interval of users decoded unsuccessfully and PSR[Γ1(t), R(t)]dt is that

of users decoded successfully3. Since only users in the first interval undergo a second decoding

attempt, each differential dt contains an interval dφ1,2(t) of users decoded unsuccessfully

dφ1,2(t) = 1
per1

PER[Γ1(t), R(t)]dt, (4.29)

the fraction of users decoded unsuccessfully in the interval dt over the total of those decoded

unsuccessfully in the first iteration. The initial value problem φ̇1,2(t) = 1
per1

PER[Γ1(t), R(t)]
with φ1,2(0) = 0 can be solved straightforwardly as

φ1,2(t) = 1
per1

∫ t

0
PER[Γ1(τ), R(τ)]dτ. (4.30)

Note that, since φ1,2(0) = 0 and φ1,2(1) = 1, t2 = φ1,2(t) defines a warping of 0 ≤ t ≤ 1 onto

itself: 0 ≤ t2 ≤ 1. The latter definitions allow to start defining the SINR after despreading for

the user t2 in the second iteration, previously given by (4.9), as

Γ2(t) = γ(t)
N2
t (t) with t = φ2,1(t2), (4.31)

with the noise plus interference term affecting the same user t2 given by

N2
t (φ2,1(t2)) = 1 + ξ1 + α2θ

∫ t2

0
q2
[
Γ1(φ2,1(τ)),Γ2(φ2,1(τ)), R(φ2,1(τ))

]
γ(φ2,1(τ))dτ

+ α2θ
∫ 1

t2
γ(φ2,1(τ))dτ,

(4.32)

and with q2[Γ1,Γ2, Ri] , 1 − (1 − ε[Γ2, Ri])(1 − PER2[Γ1,Γ2, Ri]). It is still possible to obtain

simpler equations of the noise plus interference level evolving with SIC in terms of a differential

equation or its integral version. The formal proof is extended in Appendix 4.B.1, and concludes

the following equivalent continuous expressions in the variable t:

1) N2
t,1(t) = 1 + ξ1 + αθ

∫ t

0
q2

[
γ(τ)
N1
t,1(τ) ,

γ(τ)
N2
t,1(τ) , R(τ)

]
PER

[
γ(τ)
N1
t,1(τ) , R(τ)

]
γ(τ)dτ (4.33a)

3The model is only valid if R(t) is smooth in 0 ≤ t ≤ 1, or failing that, if R(t) is smooth except at some
discontinuity points.
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+ αθ

∫ 1

t
γ(τ)PER

[
γ(τ)
N1
t,1(τ) , R(τ)

]
dτ,

2)
Ṅ2
t,2(t)

N2
t,2(t) = −αΦ2

[
γ(t)
N1
t,2(t) ,

γ(t)
N2
t,2(t) , R(t)

]
and N2

t,2(0) = N1
t,2(1), (4.33b)

3) N2
t,3(t) = N1

t,3(1) exp
(
−α
∫ t

0
Φ2

[
γ(τ)
N1
t,3(τ) ,

γ(τ)
N2
t,3(τ) , R(τ)

]
dτ
)
. (4.33c)

The major changes have been the substitution of α2 by α, the introduction of the decoding-

cancellation function Φ2[Γ1,Γ2, Ri] = θ(1 − ε[Γ2, Ri])Γ2(1 − PER2[Γ1,Γ2, Ri])PER[Γ1, Ri], and

the initial noise plus interference term N2
t,2(0) = N2

t,3(0) = N1
t (1). In the expressions above,

numerical subscripts and superscripts are included for notation purposes. The computation

of the above terms can be extended by combining different versions of the terms N1
t (t) and

N2
t (t). Note that both the differential and the integral expressions reveal that the initial noise

plus interference level at the second iteration N2
t (0) = N1

t (1) coincides with the endpoint of

the first iteration. The second iteration continues with what was left at the end of the first

iteration. Furthermore, unlike when handling a finite number of users and only users decoded

unsuccessfully are processed again, the interest in analysing the system in the asymptotic large-

user regime is that the calculations are equivalent to processing all user-indices, again, and

weighting their cancellation by PER[Γ1, Ri]. Moreover, if we also make use of the approximation

PER2[Γ1,Γ2, Ri] ≈ PER[Γ2, Ri]/PER[Γ1, Ri], then Φ2[Γ1,Γ2, Ri] can be simplified as

Φ2[Γ1,Γ2, Ri] ≈ θ(1− ε[Γ2, Ri])Γ2(PER[Γ1, Ri]− PER[Γ2, Ri]). (4.34)

The mitigation of noise plus interference in the second SIC iteration depends on the magnitude

PER[Γ1, Ri]− PER[Γ2, Ri]. (4.35)

Thus, the iterative cancellation receiver exploits its decoding performance only when Γ2/Γ1 is

sufficiently high so that PER[Γ2, Ri]� PER[Γ1, Ri].

4.4 Allocation Designs for Two-Iteration SIC

The design of optimal allocations is addressed herein with the aim of maximising asymptotic

spectral efficiency (ASE). The spectral efficiency (SE) achieved in the first SIC iteration aggre-

gates the effective transmission rates of all users. Analogously, the SE achieved in the second

SIC iteration aggregates the effective transmission rates of all users decoded unsuccessfully in

the first iteration. They are respectively given by

SE1 = 1
N

K∑

k1=1
R[k1] PSR[Γ1[k1], R[k1]], (4.36)

SE2 = 1
N

K2∑

k2=1
R[φ2,1[k2]] PSR2[Γ1[φ2,1[k2]],Γ2[φ2,1[k2]], R[φ2,1[k2]]]. (4.37)
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After some manipulations, explicitly shown in Appendix 4.B.2, the ASE after two iterations

is cast as the compact expression

ASE = ASE1 + ASE2 = α

∫ 1

0
R(t) PSR

[
γ(t)
N2
t (t) , R(t)

]
dt, (4.38)

which is, actually, the figure of merit to be maximised in the following. Recall that, in the

infinite-user regime, the noise plus interference terms N1
t (t) and N2

t (t) can be computed from

any of the equations (4.22a)–(4.22c) and (4.33a)–(4.33c).

4.4.1 Rate Allocation with Fair Transmitted Power

This subsection solves the rate allocation problem when users transmit the same power and

the receiver performs two-iteration SIC. Recall that, in this case, the received symbol energy

distribution γ(t) = γ̄xh(t) presents the unbalance produced by the distribution of the channel

power gains from all users. The cases of fair and optimal reliability are also studied.

To evaluate the performance gain of two-iteration SIC versus the one-iteration SIC, we first

address a naive study in which the rate allocation already designed accounting for the one-

iteration SIC in Section 3.5.2 (of the previous chapter) is run under two-iteration SIC. The ASE

(in Table 4.1) hardly varies whereas the average PER over all users (in Table 4.2) is highly

reduced. This leads to think that the more iterations performed, the more iterative SIC exploits

its decoding power and allows to allocate vanishing error probabilities. Note that the average

PERs decay more than two orders of magnitude when the offered traffic is sufficiently high. The

highest ASE gains are obtained for short packets since the allocations designed in Section 3.5.2

allocate users to higher error probabilities and to lower system throughputs. Remarkably, the

potential benefit of iterative SIC is in coding systems having softer PER curves.

Table 4.1: ASE for several blocklengths and traffic loads. The optimal rate allocation designed under
one-iteration SIC (1-SIC) is compared with the performance achieved by the same allocation under two-
iteration SIC (2-SIC).

Blocklength / Load α = 2.0 α = 3.0 α = 4.0 α = 5.0
1-SIC ne = 500, Optimal 2.01 2.40 2.65 2.83
2-SIC ne = 500 2.03 2.41 2.67 2.85
1-SIC ne = 200, Optimal 1.86 2.18 2.37 2.50
2-SIC ne = 200 1.88 2.21 2.41 2.54

Table 4.2: Average PER over all users for several blocklengths and traffic loads. The optimal rate
allocation designed under one-iteration SIC (1-SIC) is compared with the performance achieved by the
same allocation under two-iteration SIC (2-SIC).

Blocklength / Load α = 2.0 α = 3.0 α = 4.0 α = 5.0
1-SIC ne = 500, Optimal 1.69 · 10−2 1.72 · 10−2 1.76 · 10−2 1.81 · 10−2

2-SIC ne = 500 2.47 · 10−5 4.95 · 10−6 1.12 · 10−6 2.64 · 10−7

1-SIC ne = 200, Optimal 2.37 · 10−2 2.43 · 10−2 2.50 · 10−2 2.59 · 10−2

2-SIC ne = 200 1.15 · 10−4 3.57 · 10−5 1.28 · 10−5 4.98 · 10−6
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Another approach that attains higher performance is when all users are subject to the per-

user reliability constraint 0 < ρ ≤ 1 (at the last SIC iteration). The rate allocation problem is

to determine such R(t) profile that achieves the required reliability, as:

R(0 ≤ t ≤ 1) > 0 ∈ C[0, 1] , PSR
[
γ(t)
N I
t (t)

, R(t)
]

= ρ. (4.39)

In this case, the attained network performance is ASE = αρ
∫ 1

0 R(t)dt.
The above expression considers the general term N I

t (t) for the noise plus interference level

according to the I iterations of the SIC receiver. For one-iteration SIC (I = 1), N1
t (t) is

computed from one of the expressions (4.22a)–(4.22c), and for two-iteration SIC (I = 2), N2
t (t)

from one of the expressions (4.33a)–(4.33c). A last remark, when users operate in the infinite

blocklength (IBL) regime, ne → ∞, reliable communication, ρ = 1, is possible performing one-

iteration SIC as long as user t encodes data using a capacity-achieving coding scheme with

rate R(t) = log(1 + γ(t)/N1
t (t)). In the finite blocklength (FBL) regime, no explicit form for

such R(t) profile that solves the above problem is found, in which case the following numerical

procedures are proposed:

1. Numerical resolution for one-iteration SIC : The allocation design is straightforward. At

step 0 ≤ i ≤M−1, the R(ti) that satisfies PSR[γ(ti)/N1
t (ti), R(ti)]=ρ is determined. The

initial noise term is N1
t (t0) = 1 + αθ

M

∑M−1
i=0 γ(ti), and N1

t (ti) is updated at each step as

N1
t (ti+1) = N1

t (ti) exp(− α
MΦ1[γ(ti)/N1

t (ti), R(ti)]).

2. Numerical resolution for two-iteration SIC : The value N2
t (t0) is assumed known temporar-

ily, and found after M steps by bisection search. At step 0 ≤ i ≤ M−1, R(ti) is found

by solving PSR[γ(ti)/N2
t (ti), R(ti)] = ρ, after which the noise plus interference terms

N1
t (ti) and N2

t (ti) are updated as N1
t (ti+1) = N1

t (ti) exp(− α
MΦ1[γ(ti)/N1

t (ti), R(ti)]) and

N2
t (ti+1) = N2

t (ti) exp(− α
MΦ2[γ(ti)/N1

t (ti), γ(ti)/N2
t (ti), R(ti)]).

In both cases, the expressions (4.22c) and (4.33c) have been adopted for the calculation of the

noise plus interference terms. Nonetheless, the above algorithm can be modified by combining

other expressions.

Lastly, it is still possible to improve on the previous design if, instead of imposing the same

reliability constraint to all users, the per-user reliability is allowed to vary freely. The case of

one-iteration SIC corresponds exactly to the problem solved in Section 3.5.2. The following lines

concentrate on designing the rate allocation profile R(t) when the receiver performs two-iteration

SIC. The optimisation problem is

max
R(t)

α

∫ 1

0
R(t) PSR

[
γ(t)
N2
t (t) , R(t)

]
dt, (4.40)

where the term N2
t (t) depends on R(t) through any of the expressions (4.22a)–(4.22c) and

(4.33a)–(4.33c). We proceed as in Section 3.5.2, by deriving the stationary point equation and
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by proposing a numerical method to obtain the solution. The stationary R(t) profile satisfies

R(t)PSRR

[
γ(t)
N2
t (t) , R(t)

]
+ PSR

[
γ(t)
N2
t (t) , R(t)

]
+

−β1(t)(Φ1)R
[
γ(t)
N2
t (t) , R(t)

]
− β2(t)(Φ2)R

[
γ(t)
N1
t (t) ,

γ(t)
N2
t (t) , R(t)

]
= 0

(4.41)

in 0 ≤ t ≤ 1, with β1(t) and β2(t) computed by solving the following differential equations with

the boundaries β1(1) = β2(0) and β2(1) = 0:

β̇1(t) = −α γ(t)
N1
t (t)

(
β1(t)(Φ1)Γ1

[
γ(t)
N1
t (t) , R(t)

]
+ β2(t)(Φ2)Γ1

[
γ(t)
N1
t (t) ,

γ(t)
N2
t (t) , R(t)

])
, (4.42)

β̇2(t) = α
γ(t)
N2
t (t)

(
R(t)PSRΓ2

[
γ(t)
N2
t (t) , R(t)

]
− β2(t)(Φ2)Γ2

[
γ(t)
N1
t (t) ,

γ(t)
N2
t (t) , R(t)

])
. (4.43)

We have validated that the use of a simple and fast numerical resolution, such as the ones

implemented in Chapter 3, leads to numerical inaccuracies. The reason is that, in this case, the

stationary point equations are very sensitive to the computation of the terms N1
t (t) and N2

t (t).
In previous implementations, N1

t (ti+1) and N2
t (ti+1) are computed explicitly as a function of

the previous terms N1
t (ti) and N2

t (ti) (see Section 3.4.1 for further details). There exist, mainly,

two ways to increase the accuracy of these computations: by increasing the number of points

M , or by resorting to more accurate, and therefore, more complex solving methods. The rate

allocation problem solved herein follows the second approach. Specifically, the above variational

calculus problem is discretised into M intervals as

max
R(t0),...,R(tM−1)

α

M

M−1∑

i=0
R(ti) PSR

[
γ(ti)
N2
t (ti)

, R(ti)
]
, (4.44)

and we solve it using sequential quadratic programming [75], where the noise plus interference

term at each step ti corresponds to the solution of the non-linear equations

N2
t (ti) = N2

t (ti−1) exp
(
− α

M
Φ2

[
γ(ti)
N1
t (ti)

,
γ(ti)
N2
t (ti)

, R(ti)
])

for i = 1, . . . ,M−1 (4.45a)

N1
t (ti) = N1

t (ti−1) exp
(
− α

M
Φ1

[
γ(ti)
N1
t (ti)

, R(ti)
])

for i = 1, . . . ,M−1 (4.45b)

N2
t (t0) = N1

t (tM−1) , N1
t (t0) = 1 + αθ

M

M−1∑

i=0
γ(ti). (4.45c)

To speed up computations and get higher numerical accuracy, the sequential quadratic program-

ming algorithm is aided by the analytical expression of the gradient of the cost function. The

latter corresponds, exactly, to the left part of (4.41) evaluated at each t = ti. Additionally, β1(t)
and β2(t) are calculated numerically, starting from the (M−1)-th term β2(tM−1) = 0 down to

β2(t0). β2(ti) for i = 0, . . . ,M−2 are computed recursively as β2(ti) = β2(ti+1) − 1
M β̇2(ti+1).

The computation of β1(t) is analogous starting from β1(tM−1) = β2(t0).
In general, it is easy to obtain a non-smooth function due to the high dimensionality of

the adopted vector space, a known problem in the literature. So as to obtain a smooth so-
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Figure 4.5: ASE versus traffic load α. Computations compare: (i) the IBL regime ne → ∞; (ii) the
optimal ASE under one-iteration (1-SIC) and two-iteration (2-SIC) SIC; and (iii) 2-SIC with fair reliability
ρ, set with the same average reliability as that resulted under optimal 2-SIC.

lution with high accuracy, we propose an incremental method in traffic load that computes

the optimal rate allocation profile at α → 0, whose analytic form solves PSR [γ(ti), R(ti)] =
−R(ti)PSRR [γ(ti), R(ti)] in i = 0, . . . ,M−1, and uses it to initialise the problem (4.44) at

α = ∆α. The resulting rate allocation is then used to initialise (4.44) at α = 2∆α, and the

process is repeated at α = n∆α until reaching the target traffic load.

The remaining of this section compares the optimal allocations designed herein and their

performance with those in Section 3.5.2 (of Chapter 3) designed under one-iteration SIC. Sim-

ulation parameters are the same as in Chapter 3. The average symbol energy is γ̄x = 8dB and

users are subject to channel power gains lognormally distributed with unit mean and deviation

σ = 3dB. The uncanceled energy factor is ε(Γ) = 1% and the decorrelator factor θ is set to 1.

Simulations are carried out under M = 1000 points. Figure 4.5 depicts ASE versus traffic load

for optimal and fair-constrained reliability holding the same average reliability. As shown, two-

iteration SIC outperforms one-iteration SIC, specially so, at low blocklengths. Also, the benefit

of its use increases with α. This is because the more interference between iterations is cancelled,

the more the decoding performance is exploited, which occurs more frequently the larger α is.

The cases evaluated under fair reliability and two-iteration SIC do not always improve the ASE

achieved with optimal reliability and one-iteration SIC. In fact, ASE is only shown to be superior

when the blocklength is low. Broadly speaking, the non-unbalanced reliability of users results

in a penalising factor to ASE. In all cases, however, ASE in the FBL regime with one-iteration

and two-iteration SIC are shown to be far from the theoretical limit in the IBL regime since

the transmission of short packets strongly degrades the maximum attainable rate relative to the

capacity of the Gaussian channel.

Some examples of the optimal rate allocation profiles are illustrated in Figure 4.6. As shown,

rate allocation constrained by fair reliability allows to increase only the coding rate of the first

users in detriment of the last users’ coding rate. Contrarily, the transmission rate of practically
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Figure 4.7: User-PER profile PER[Γι(t), R(t)] at the traffic load α = 4.0 and ne = 200 symbols. The
iteration index is ι ∈ {1, 2}.

all users can be increased provided that no fair reliability constraint is imposed. Additionally,

how users benefit, individually, from two-iteration SIC in terms of packet error probability is

depicted in Figure 4.7 and addressed below. The optimal rate allocation under two-iteration

SIC allocates high PERs to users in the first SIC iteration. In the depicted example, the first

iteration decodes 51% of the traffic load, leaving the rest for the second iteration, which succeeds

in decoding approximately 99% of the remaining load. As observed, the rate allocation under

two-iteration SIC with optimal reliability increases the individual performance of the strongest

users providing them with almost reliable communication. Rather, the case of fair reliability

allocation substantially differs from the previous case, even if both systems are compared under
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Figure 4.8: Evolution of the noise plus interference level throughout SIC receiver stages. Its evolution
throughout the first iteration corresponds to the abscissae range 0 to 1, and that of the second iteration
to the range 1 to 2. The traffic load is α = 4.0 and the blocklength is ne = 200 symbols.

the same average reliability. In the case of fair reliability, the first iteration cancels 16% of the

traffic load and the second iteration deals successfully with 99% of the remaining load. In any

case, an interesting conclusion is that the optimal user-PER profile is non-monotonic, unlike

the optimal user-PER profile designed under one-iteration SIC. This conclusions slightly differs

from that in our conference paper [76] due to the computation method used for the optimal R(t)
profile. Notably, user-reliabilities are very sensitive to the computation method.

The previous behaviour is also present in Figure 4.8, albeit in a different way. It depicts

the evolution of noise plus interference level as SIC progresses throughout stages. The optimal

allocation constrained by fair reliability leaves the major part of interference to the second SIC

iteration. Rather, the case of optimal reliability deals with a big part of the interference in the

first iteration and leaves weaker users to the second iteration. Both approaches contrast with

the results shown for one-iteration SIC (dashed), which removes as much interference as possible

in the first decoding attempt.
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4.4.2 Energy Allocation with Fair Encoding Rate

This section addresses the design of the best transmission strategy in terms of energy allocated

to users when they share the same coded modulation system. The described setting is closely re-

lated with the physical layer configuration proposed in Enhanced Spread Spectrum ALOHA [40],

in which iterative SIC exploits system performance. This subsection, nevertheless, investigates

a two-iteration SIC. Further iterations of the adopted receiver are analysed in later sections.

Herein, the PER versus SINR curve, PER[Γ], obviating the argument R is adopted, for which

the scope of the present section is to determine the best energy allocation rule γx(t) ∈ C[0, t∗]
subject to an average energy constraint, as:

max
0<t∗≤1

max
γx(t)

αR

∫ t∗

0
PSR

[
γx(t)h(t)
N2
t (t)

]
dt (4.46a)

s.t.
∫ t∗

0
γx(t)dt = γ̄x (4.46b)

s.t. N2
t (t) = N1

t (t∗) exp
(
−α
∫ t

0
Φ2

[
γx(τ)h(τ)
N1
t (τ) ,

γx(τ)h(τ)
N2
t (τ)

]
dτ
)

(4.46c)

s.t. N1
t (t) = N1

t (0) exp
(
−α
∫ t

0
Φ1

[
γx(τ)h(τ)
N1
t (τ)

]
dτ
)

(4.46d)

s.t. N1
t (0) = 1 + αθ

∫ t∗

0
γx(t)h(t)dt. (4.46e)

Note that we seek again for a discontinuous allocation in 0 ≤ t ≤ 1, which allocates null energy

to users t∗ < t ≤ 1. For the design above, we proceed in the same way as in the previous

section. The inner problem is solved numerically through sequential quadratic programming,

where the above asymptotic expressions are sampled at the indices t0, . . . , tM−1. The following

optimization needs to be addressed numerically

max
0≤M∗≤M−1

max
γ(t0),...,γ(tM∗ )

αR

M

M∗∑

i=0
PSR

[
γ(ti)
N2
t (ti)

]
(4.47a)

s.t. γ̄x = 1
M

M∗∑

i=0

γ(ti)
h(ti)

(4.47b)

s.t. N1
t (ti) = N1

t (ti−1) exp
(
− α

M
Φ1

[
γ(ti)
N1
t (ti)

])
i ≥ 1 (4.47c)

s.t. N2
t (ti) = N2

t (ti−1) exp
(
− α

M
Φ2

[
γ(ti)
N1
t (ti)

,
γ(ti)
N2
t (ti)

])
i ≥ 1 (4.47d)

s.t. N1
t (t0) = 1 + αθ

M

M∗∑

i=0
γ(ti) ; N2

t (t0) = N1
t (tM∗) (4.47e)

where, additionally, to speed up computations, the gradients of the cost function and constraints

are computed as sampled versions of the variational derivatives of the original variational calculus

problem. Appendix 4.B.4 derives explicit expressions for them.

Simulations are attached in the sequel. Simulations are carried out taking the same simula-

tion parameters as in Section 4.4.1. Firstly, the ASE of many systems is compared versus traffic

load. The case of a single channel encoder practically attains the optimal ASE achieved when us-
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Figure 4.9: ASE versus traffic load α. The performance of the following systems is compared: (i) the
IBL regime ne → ∞ with infinitely many coding systems p → ∞ and with a single coding system with
rate R1 = 1 or R2 = 2/3 bits/symbol; (ii) one-iteration (1-SIC) and two-iteration (2-SIC) SIC with a
short-length encoder of ne = 200 symbols; and (iii) the optimal rate allocation derived in Section 4.4.1.

ing infinitely many coding systems, p→∞, and rates adjusted according to R(t) = log(1+Γ(t)).
This advantageous result is of practical interest since the rate allocation problem can be reduced

to a few encoding systems with low penalty on ASE. The interesting problem, however, is when

SIC deals with short packets. As shown for packets of ne = 200 symbols, the performance

attained under one-iteration SIC can be substantially improved by providing a second decoding

attempt to packet decoding failures in the first iteration, as in two-iteration SIC. As is evi-

dent from subsequent simulations, this is achieved primarily by allowing the transmission to

more users. The latter differs substantially from the optimal behaviour under one-iteration SIC,

which forces users not reaching the minimum SINR requirement to be silent. The results are

also compared with the optimal rate allocation derived in Section 4.4.1. At sufficiently high

traffic loads, ASE can be further increased by enabling energy allocation rather than rate allo-

cation. The reason is that, through energy allocation, one can increase the transfer of energy,

thus enabling higher ASE. This is not possible only through rate allocation since the received

energy distribution remains fixed.

The energy unbalance needed at reception is studied next through the energy profiles de-

picted in Figure 4.10. Recall that the optimal energy allocation under one-iteration SIC results

practically exponential. Two-iteration SIC allows for a substantial reduction of the unbalance

in the received symbol energy distribution when all users are admitted in the system, compared

with the optimal allocation under one-iteration SIC. The latter occurs primarily at low activity

loads. In contrast, at high activity loads, it is preferable to practically maintain the unbalance

of optimal distributions in exchange for allowing the transmission to more users (see the optimal

distributions depicted under square and crossing markers).

The next analysis studies the unbalance of per-user packet error probability. Figure 4.11

shows the optimal user-PER profiles associated with the respective receivers at the low block-

length ne = 200 symbols. In contrast to what occurs under one-iteration SIC, the optimal
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Figure 4.11: User-PER profile for one-iteration (1-SIC) and two-iteration (2-SIC) SIC. The iteration
index is ι ∈ {1, 2}, and the simulated traffic load is α = 3.0.

operation under two-iteration SIC decodes most of the interference in the first iteration leav-

ing the rest to the second iteration. Moreover, it allocates vanishing error probabilities to the

strongest users, which attain in practice reliable communication. In the depicted simulation, all

users experience lower PERs, relative to the optimal one-iteration SIC, thanks to two-iteration

SIC. The fraction of active users is also evidenced in the same figure. As drawn, one-iteration

SIC accepts approximately 70% of users, whereas two-iteration SIC enables communication to

80% of users. Remarkably, unlike one-iteration SIC, two-iteration SIC takes advantage of un-

balancing user reliabilities. The strongest users are allocated to very low error rates and the

weakest active users to higher PERs.
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Figure 4.12: Asymptotic and empirical user-PER profile at α = 2.0. Empirical results are evaluated
under the standardised DVB-RCS turbo code [74] with QPSK modulation, 440 bits and coding rate 1/2.
Empirical computations are averaged under 105 Monte Carlo runs.

The only study that remains still not analysed is the validation of the performance achieved

by the optimal allocation design for a practical coded modulation scheme. The simulation

is depicted in Figure 4.12. Specifically, we adopt the standardised turbo code from digital

video broadcasting (the same coded modulation scheme as the simulation in Figure 4.4). The

asymptotic computations K,N → ∞ predict very well the real behaviour of the SIC system

at the first iteration ι = 1 for hundreds of users. The first users experience results slightly

better (the solid blue line practically matches the square and the “×” markers). The rest of

users experience packet error probabilities even better than those predicted by the asymptotic

model. Higher accuracy is obtained as the number of users increase. This behaviour is firstly,

due to the computation of the asymptotic functions by means of a more conservative version

of the noise plus interference term, which computes the i-th term by solving the non-linear

equation N1
t (ti) = N1

t (ti−1) exp(− α
MΦ1[γ(ti)/N1

t (ti)]), and secondly, since the better error rates

experienced by first users cause less interference to other users. The matching between the

asymptotic and the empirical results in the second iteration is slightly worse. As predicted, the

very first users experience very low packet error probabilities (in the attached figure, they are

shown to be lower than 10−4). The rest of users experience error probabilities higher than those

predicted by the asymptotic computations. This is due to the combination of small mismatching

in the first iteration, which is propagated throughout the stages of SIC, and the fact that the

number of users undergoing a second decoding attempt (in the second iteration) is random,

as it depends on the effectiveness of the decoding success in the first iteration. A conclusive

result is that, even with the difficulties encountered in analysing iterations beyond the first one,

the proposed asymptotic model predicts the behaviour of the system well, and under a very

complexity affordable method.
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4.5 The Generalised Model of Iterative SIC

This section extends the above model to an iterative SIC system that performs an arbitrary

number of iterations I. Recall from the previous section that, in order to proceed to subsequent

iterations, at least one user must be successfully decoded and cancelled from the input signal.

To generalise the above model, the following definitions are taken:

1. As already seen, the number of users remaining in the system evolves dynamically through-

out SIC iterations starting from K down to zero. Without loss of generality, users are

re-indexed at the beginning of each iteration ι. More specifically, the index set of users

processed in the iteration ι is Kι , {1, . . . ,Kι}, where for the purpose of generalisation, the

number of users to be processed in the ι-th iteration is denoted Kι (K1 = K is the initial

number of users) and the user-index used in the same iteration is kι ∈ Kι. Consequently,

the number of users in the system evolves iteration-by-iteration as

K1 > K2 > · · · > KI−1 > KI . (4.48)

2. At the end of the ι-th iteration, the index set Kι can be partitioned into the disjoint subsets

Kok
ι and Kko

ι respectively associated with users decoded successfully and unsuccessfully in

the current iteration. Only users kι ∈ Kko
ι are processed in the next iteration ι + 1. The

relationships between user-indices of consecutive iterations ι and ι+ 1 are

φι,ι+1 : kι ∈ Kko
ι 7−→ kι+1 ∈ {1, . . . ,Kι+1}, (4.49)

φι+1,ι : kι+1 ∈ {1, . . . ,Kι+1} 7−→ kι ∈ Kko
ι , (4.50)

and they can be composed to determine the relationship between user-indices of iterations

ι and ν, φι,ν : kι 7−→ kν , as

φι,ν>ι , φν−1,ν ◦ φν−2,ν−1 ◦ · · · ◦ φι+1,ι+2 ◦ φι,ι+1, (4.51)

φι,ν<ι , φν+1,ν ◦ φν+2,ν+1 ◦ · · · ◦ φι−1,ι−2 ◦ φι,ι−1. (4.52)

3. The channel decoding model corresponding to the i-th coding scheme considers, at itera-

tion ι, the packet error probability conditional on unsuccessful decoding in all preceding

iterations as the multivariate function

PERι[Γ1, . . . ,Γι, Ri]. (4.53)

The computation of the previous function is an extension of the algorithm described in

Section 4.2 to compute PER2[Γ1,Γ2, Ri]. The explicit computation is detailed in Appendix

4.A. Note that the proposed decoding model captures the system’s memory through the

sequence of non-decreasing SINRs of each user in the current ι and the previous 1 ≤ j < ι

iterations Γ1 < · · · < Γι. This function applied to model the average number of packet

decoding errors of a user kι with SINRs

Γι[kι] , [ Γ1[φι,1[kι]],Γ2[φι,1[kι]], . . . ,Γι[φι,1[kι]] ] (4.54)
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considers that channel decoding does not succeed with probability PERι[Γι[kι], Ri] (used

for brevity of notation), and that succeeds with complementary probability.

The interest in this generalised model is that it allows an accurate description of the behaviour

of an iterative SIC iteration-by-iteration. This characterisation was not possible before the con-

tribution of this thesis (described in [71]). Albeit the accuracy of the system model, its difficulty

is the calculation of such a multivariate function. One way to approximate its computation is by

considering that PERι[Γι, Ri] highly depends on the SINRs associated with the latest iterations,

so that multivariate PER can be approximated by the latest two SINRs:

PERι[Γι, Ri] ≈ PER2[Γι−1,Γι, Ri]. (4.55)

Rigorously speaking, the accuracy of the above model applied to iterative SIC can only be

guaranteed for the first two or three SIC iterations. Beyond the third iteration, the accuracy

of the previous approximation highly depends on the combination of SINRs evaluated. For the

purpose of generalisation, the subsequent analysis does not particularise PERι[Γι, Ri] until later.

The same description line as in Section 4.2 is followed to define the kι-th user SINR

Γι[φι,1[kι]] = γ[φι,1[kι]]
Nt
ι[φι,1[kι]]

, (4.56)

with the noise plus interference term affecting user kι, Nt
ι[φι,1[kι]], computed considering Gaus-

sian interfering signals added to thermal noise, as

N ι
t [φι,1[kι]] = 1 + ξι−1 + θ

N

kι−1∑

i=1
ει[i]γ[φι,1[i]] + θ

N

Kι∑

i=kι+1
γ[φι,1[i]]. (4.57)

In the previous expression, ξι−1 is the aggregate interference from users decoded successfully

and imperfectly cancelled in preceding iterations. Herein, ει[1 ≤ i < kι] are the binary random

variables modelling the joint decoding-cancellation of users already processed before stage kι.

Note that, as the SIC progresses throughout stages, more interference is removed and less

interference remains in the system. Even if users increase their SINRs at each iteration, the

channel decoding success depends on the SINR gain Γι/Γι−1. Remarkably, although the sequence

of SINRs is non-decreasing, that of SINR gains does not necessarily increase.

4.6 The Asymptotic Generalised Model of Iterative SIC

The first consideration to enable analysis under this model is to assume an asymptotic number

of users at the beginning of the first iteration as well as at the beginning of further iterations.

The above model is consistent in the asymptotic large-user regime since, at each iteration, only a

fraction of the dense number of users processed is decoded successfully. For a more practical case,

in which the number of users is finite, the model is certainly true for the firsts few iterations as

long as the system handles hundreds of users, but it is perhaps questionable for iterations beyond

the firsts. Nonetheless, the adoption of this asymptotic model facilitates the understanding of

iterative SIC sensitivity to system parameters.
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This section takes the system model in Section 4.5 to the asymptotic large-user regime. The

asymptotic system model is summarised next:

1. The sequence of asymptotic traffic loads (as N →∞) at every iteration

α1 ,
K1
N

> · · · > αι ,
Kι

N
> · · · > αI ,

KI

N
(4.58)

is defined assuming that the system processes asymptotically many users at every iteration

(K1, . . . ,KI) −→∞. The traffic loads α1 and α are used interchangeably. Moreover, users

in every iteration 1 ≤ ι ≤ I are indexed using the continuous indexing

tι , lim
Kι→∞

kι
Kι

with 0 ≤ tι ≤ 1. (4.59)

In the same manner as in previous sections, the user variables indexed by kι are turned into

asymptotic functions in the continuous variable tι. Considerations for a finite number of

users are addressed in latter sections. Continuing under the asymptotic large-user regime,

the vector of non-decreasing SINRs for a user tι after despreading from iteration ι down

to ι = 1 is (4.60), where the SINR of user tι at iteration ι is defined by (4.61):

Γι(t) =
[
γ(t)
N1
t (t) , . . . ,

γ(t)
Nt
ι(t)

]
with t = φι,1(tι), (4.60)

Γι(φι,1(tι)) = γ(φι,1(tι))
Nt
ι(φι,1(tι))

. (4.61)

In the above expressions, φι,1(tι) computes the index of user tι of the ι-th iteration, in the

first iteration. The indices t1 and t are used interchangeably. Equivalent expressions for

the noise plus interference profile Nt
ι(φι,1(tι)) are discussed in the fourth point.

2. The asymptotic average number of users unsuccessfully decoded in iteration ι is

perι =
∫ 1

0
PERι[Γι(φι,1(τ)), R(φι,1(τ))]dτ, (4.62)

for which the asymptotic traffic loads of consecutive iterations ι and ι − 1 are computed

as αι = αι−1perι−1, or as a function of the initial traffic load as αι = α1
∏ι−1
k=1 perk.

3. In this regime, it is possible to derive a very interesting result for the asymptotic relation-

ship between user indices of iteration ι and the first iteration ι = 1. To that aim, the proof

associated with φ1,2 in Section 4.3.2 is taken as a reference. In the case studied herein,

after the Kι stages, each user interval dtι can be decomposed as 4

dtι = PERι[Γι(φι,1(tι)), R(φι,1(tι))]dtι + PSRι[Γι(φι,1(tι)), R(φι,1(tι))]dtι. (4.63)

The next iteration ι+ 1 deals with all the intervals PERι[Γι(φι,1(tι)), R(φι,1(tι))]dtι. The

4Recall that R(t) shall be a smooth, or failing that, a piecewise smooth function.
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following differential equation is formulated and solved

φ̇ι,ι+1(tι) = 1
perι

PERι[Γι(φι,1(tι)), R(φι,1(tι))], (4.64)

φι,ι+1(tι) = 1
perι

∫ tι

0
PERι[Γι(φι,1(τ)), R(φι,1(τ))]dτ. (4.65)

Finally, making use of the relationships (4.51)–(4.52) the following relationships between

user-indices of the first iteration and the iteration ι+ 1 are obtained:

φ̇1,ι+1(t) = 1
Πι
k=1perk

ι∏

k=1
PERk[Γk(t), R(t)], (4.66)

φ1,ι+1(t) = 1
Πι
k=1perk

∫ t

0

ι∏

k=1
PERk[Γk(τ), R(τ)]dτ. (4.67)

4. The noise plus interference term for a user tι (t = φι,1(tι)) is computed as

N ι
t (t) = 1 + ξι−1 + αιθ

∫ t

0
qι [Γι(τ), R(τ)] φ̇1,ι(τ)γ(τ)dτ + αιθ

∫ 1

t
φ̇1,ι(τ)γ(τ)dτ. (4.68)

with qι[Γι, Ri] , 1− (1− ε[Γι, Ri])PSRι[Γι, Ri].

It should be noted that the above model requires the multivariate function PERι[Γ1, . . . ,Γι, Ri]
for each iteration 1 ≤ ι ≤ I and each coding scheme. One way to simplify the above model while

accepting some reduction in accuracy, is, as discussed above, to adopt the following model for

the multivariate function

PERι[Γι, Ri] ≈ PER2[Γι−1,Γι, Ri] ≈
PER[Γι, Ri]

PER[Γι−1, Ri]
. (4.69)

In this case, the noise plus interference level can be calculated in the form of a differential or

integral equation through the expressions

Ṅ ι
t (t)

N ι
t (t)

= −α1Φι

[
γ(t)
N ι
t (t)

,
γ(t)
N ι
t (t)

, R(t)
]
, (4.70)

N ι
t (t) = N ι

t (0) exp
(
−α1

∫ t

0
Φι

[
γ(τ)

N ι−1
t (τ)

,
γ(τ)
N ι
t (τ) , R(τ)

]
dτ
)
. (4.71)

with Φι[Γι−1,Γι, Ri] , θ(1−ε[Γι, Ri])Γι(PER[Γι−1, Ri]−PER[Γι, Ri]), and the initial noise plus

interference term N ι
t (0) = N ι−1

t (1).
The average packet error rate after ι iterations is computed as

per =
ι∏

k=1
perk (4.72a)

=
ι∏

k=1

∫ 1

0
PERk[Γk(φk,1(τ)), R(φk,1(τ))]dτ, (4.72b)

after which, by applying the approximation (4.69) and using the expressions derived in point 3
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it results in

per ≈
∫ 1

0
PER[Γι(t), R(t)]dt. (4.73)

As mentioned before, the above asymptotic model allows to evaluate the asymptotic performance

of an iterative canceller in a very convenient way. For a practical case, where the system handles

K users, the model predicts accurately the behaviour of the real system at the first few iterations.

For further iterations, it does not constitute a strict match, since the initial assumption of having

an asymptotically large number of users to process in each iteration fails to be an accurate

assumption. To the author’s best knowledge, the accurate matching of this model to a practical

case needs a halting policy that stops the operation of iterative SIC when some criterion that

relates the number of users K with N ι
t (0)−N ι

t (1) is met.

In any case, the above model relies on the assumption that the receiver operates under

perfect packet error detection, which, for practical purposes, is not always true. The latter is

only possible if users encapsulate a sufficiently long CRC to underestimate packet detection

errors. Throughout the thesis, this problem has been circumvented by assuming perfect packet

error detection. The impact of finite CRC on system performance remains to be analysed.

4.6.1 A Fixed Point Equation for Iterative SIC

The investigation in this chapter is continued in the asymptotic large-user regime so as to

evidence the behaviour of iterative SIC for over two iterations. In this regime, it is always

possible to continue the analysis pursued above for many iterations since: firstly, at each iteration

a fraction of non-zero users is decoded successfully; and secondly, at the end of each iteration a

fraction of non-zero users is decoded unsuccessfully, and thus, left to be decoded.

Roughly speaking, one can understand the iterative SIC system in the asymptotic large-user

regime as a system that, at each iteration, operates with an input N ι
t (0) and that outputs N ι

t (1).
The specific input-output relationship is given by the evolution of the noise plus interference level

at each stage t in (4.71). This interpretation allows to analyse the mitigation of the noise plus

interference term throughout iterations by means of a fixed-point equation. At each iteration,

the noise plus interference term does not increase, and the system converges (does not cancel

substantially inter-user interference) when the input and output magnitudes are the same. For

the previous scenario where all users use the same channel encoder, we perform a heuristic

optimisation by superimposing an exponential packet-power distribution at the receiver’s input,

in order to evidence the noise plus interference mitigation over the iterations. In Figure 4.13 we

plot the initial and final noise plus interference levels for a SIC receiver of I iterations. More

concretely, the optimisations for receivers with 3, 5 and 10 iterations are compared. The vertical

lines correspond to the mitigation of the noise level plus interference. From top to bottom, the

initial and final levels are depicted. As can be seen, when the receiver performs few iterations,

it is beneficial to concentrate the highest cancellation magnitude in the first SIC receiver stages

whereas when the receiver performs a higher number of iterations, it is better to split the SIC

cancellation power in the different iterations.
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Figure 4.13: Evolution of the noise plus interference level throughout iterations of the SIC receiver.
Simulations correspond to a theoretical encoder with ne = 200 symbols and R = 1 bit/symbol. The
traffic load is α = 2.4.

4.7 Concluding Remarks

This chapter has dealt with an important feature of the demodulator adopted in the Enhanced

Spread Spectrum ALOHA system: the iterative successive decoding policy that iterates the

multiuser decoding strategy over users decoded unsuccessfully. The above is employed to over-

come the nonideal decoding behaviour of coded modulation systems for short packets. The

model for this receiver is challenging due to two important facts: firstly, the receiver handles

a lesser number of users at each iteration; and secondly, the decoding operations operate with

memory with respect to previous decoding attempts for the same user. All this focuses the

investigation in this chapter to model the noise plus interference level of iterative SIC in the

infinite-user regime as a deterministic function of previous packet success/failure decoding er-

rors. The novelty introduced in this chapter is twofold; firstly, the usage of invertible mappings

to relate users in the different iterations of SIC; and secondly, the modelling of the magnitude

of packet error failures in the second iteration using a multivariate packet error rate function of

the signal-to-interference-plus-noise ratios experienced by a user in all its processed stages.

The energy and rate allocation functions are designed leveraging the attractive form that

the above system model shows in the infinite-user regime. The optimisation under two-iteration

SIC concludes that the optimal allocations substantially outperform the optimisations under

one-iteration SIC when the packet error rate characteristic curves of employed coding systems

are smoother, and users are not constrained by fair reliability. The optimal allocations are also

discontinuous in the user decoding variable, and enable the transmission to a high number of

users. Later simulations reveal that, using an heuristic criteria with many decoding iterations,

iterative SIC can practically overcome the sum-rate loss of SIC due to the use of finite-length

coding as long as the number of users is sufficiently high.
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Appendix 4.A Computation of the Multivariate PER

The computation of the multivariate PER functions associated with the i-th coding scheme for an

iterative SIC system constituted by I iterations can be generalised from the algorithm in Section

4.2: firstly, generate vector b and encode it as
√
γejΩfi(b); secondly, subject communication

to the statistically independent Gaussian noises w1, . . . ,wI ∼ CN (0, I); thirdly, generate the

received signals

yk = √γejΩfi(b) +
√
Nt
I wI +

I−1∑

ι=k

√
Nt
ι−Nt

ι+1 wι for k = 1, . . . , I (4.74)

with Nt
1 ≥ Nt

2 ≥ · · · ≥ Nt
I and Γι = γ/Nt

ι; and finally, compute the multivariate PER at each

iteration 1 ≤ ι ≤ I as

PER[Γ1, Ri] = Pr
[
f−1
i (y1) 6= b

]
, (4.75)

PERι[Γ1, . . . ,Γι, Ri] = Pr
[
f−1
i (yι) 6= b | f−1

i (y1) 6= b, . . . , f−1
i (yι−1) 6= b

]
. (4.76)
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Appendix 4.B Proofs

Appendix 4.B.1 Noise Plus Interference Profile of Two-Iteration SIC

This appendix derives two equivalent expressions for the noise plus interference term affecting

user t2 given by

N2
t (φ2,1(t2)) = 1 + ξ1 + α2θ

∫ t2

0
q2
[
Γ1(φ2,1(τ)),Γ2(φ2,1(τ)), R(φ2,1(τ))

]
γ(φ2,1(τ))dτ

+ α2θ
∫ 1

t2
γ(φ2,1(τ))dτ

(4.77)

with q2[Γ1,Γ2, R] = 1− (1− ε[Γ2, R])(1− PER2[Γ1,Γ2, R]). The next steps are followed:

1. The change of variable u = φ2,1(τ) is applied to both integrals. The differential is

dτ = φ̇1,2(u)du = PER[Γ1(u), R(u)]
per1

du. (4.78)

In the first integral, the limits are φ2,1(0) = 0 and φ2,1(t2). In the second integral, the

limits are φ2,1(t2) and φ2,1(1) = 1. The result gives

N2
t (φ2,1(t2)) = 1 + ξ1 + α2θ

∫ φ2,1(t2)

0
q2
[
Γ1(u),Γ2(u), R(u)

]
γ(u)dφ1,2(u)

+ α2θ
∫ 1

φ2,1(t2)
γ(u)dφ1,2(u).

(4.79)

2. The noise plus interference term N2
t (t) can be defined substituting argument φ2,1(t) by t,

expanding dφ2,1(t), and substituting α2 = αper1, as

N2
t (t) = 1 + ξ1 + αθ

∫ t

0
q2
[
Γ1(u),Γ2(u), R(u)

]
PER[Γ1(u), R(u)]γ(u)du

+ αθ

∫ 1

t
γ(u)PER[Γ1(u), R(u)]du.

(4.80)

3. Differentiating N2
t (t) with respect to variable t and arranging terms using Φ2[Γ1,Γ2, R] ,

θ(1− ε[Γ2, R])Γ2(1− PER2[Γ1,Γ2, R])PER[Γ1, R], the following differential equation and

its equivalent integral form is obtained:

Ṅ2
t (t)

N2
t (t) = −αΦ2

[
γ(t)
N1
t (t) ,

γ(t)
N2
t (t) , R(t)

]
, (4.81)

N2
t (t) = N2

t (0) exp
(
−α
∫ t

0
Φ2

[
γ(τ)
N1
t (τ) ,

γ(τ)
N2
t (τ) , R(τ)

]
dτ
)

(4.82)

with the initial noise plus interference term N2
t (0) equal to the noise plus interference term

left at the last step of the first iteration

N2
t (0) = N1

t (1) = Nt(0) exp
(
−α
∫ t

0
Φ1

[
γ(τ)
N1
t (τ) , R(τ)

]
dτ
)
. (4.83)
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Appendix 4.B.2 Closed-Form Expression for Asymptotic Spectral Efficiency

This appendix derives a closed-form expression for the ASE after two SIC iterations

ASE = ASE1 + ASE2. (4.84)

ASE1 and ASE2 denote the ASEs achieved in each iteration, defined by

ASE1 = α

∫ 1

0
R(t) PSR[Γ1(t), R(t)]dt, (4.85a)

ASE2 = α2

∫ 1

0
R(φ2,1(t)) PSR2[Γ1(φ2,1(t)),Γ2(φ2,1(t)), R(φ2,1(t))]dt. (4.85b)

The change of variable u , φ2,1(t) is applied on ASE2. The differential is

dτ = φ̇1,2(u)du = PER[Γ1(u), R(u)]
per1

du, (4.86)

and the integral limits are φ2,1(0) = 0 and φ2,1(1) = 1. This gives

ASE2 = α

∫ 1

0
R(u) PSR2[Γ1(u),Γ2(u), R(u)]PER[Γ1(u), R(u)]du, (4.87)

where we have used that α2 = αper1. Now, making use of PSR2[Γ1,Γ2, Ri] = 1−PER2[Γ1,Γ2, Ri]
and using the upper-bound PER2[Γ1,Γ2, Ri] ≤ PER[Γ2, R]/PER[Γ1, Ri] with strict equality, the

following is obtained after some straightforward manipulations

ASE2 = α

∫ 1

0
R(u) PSR[Γ2(u), R(u)]du− α

∫ 1

0
R(u) PSR[Γ1(u), R(u)]du. (4.88)

Finally,

ASE = ASE1 + ASE2 = α

∫ 1

0
R(u) PSR[Γ2(u), R(u)]du. (4.89)

Appendix 4.B.3 Optimal Rate Allocation with Fair Transmitted Power

This appendix derives the stationary point equations of the rate allocation problem under two-

iteration SIC. The functional to be maximised under R(t) is

α

∫ 1

0
R(t) PSR

[
γ(t)
N2
t (t) , R(t)

]
dt, (4.90)

with γ(t) = γ̄xh(t) a given smooth function, and the noise plus interference N2
t (t) computed as

Ṅ2
t (t)

N2
t (t) = −αΦ2

[
γ(t)
N1
t (t) ,

γ(t)
N2
t (t) , R(t)

]
,

Ṅ1
t (t)

N1
t (t) = −αΦ1

[
γ(t)
N1
t (t) , R(t)

]
(4.91)
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under the initial terms N1
t (0) = 1 + αθ

∫ 1
0 γ(t)dt and N2

t (0) = N1
t (1). The Lagrangian is

L = α

∫ 1

0
R(t) PSR

[
γ(t)
N2
t (t) , R(t)

]
dt−

∫ 1

0
β1(t)

(
Ṅ1
t (t)

N1
t (t) + αΦ1

[
γ(t)
N1
t (t) , R(t)

])
dt

−
∫ 1

0
β2(t)

(
Ṅ2
t (t)

N2
t (t) + αΦ2

[
γ(t)
N1
t (t) ,

γ(t)
N2
t (t) , R(t)

])
dt.

(4.92)

From this point onwards, the explicit arguments of functions PSR Φ1, and Φ2 are obviated.

The space of smooth functions with continuous first derivative R(t) ∈ C[0, 1] is adopted. The

stationary point equation is found by considering variations R(t) + δR(t) and by computing the

first variation of the Lagrangian, with respect to the variation δR(t), as

δL = α

∫ 1

0
(R(t) PSRR[·] + PSR[·]− β1(t)(Φ1)R[·]− β2(t)(Φ2)R[·]) δR(t)dt. (4.93)

The same result is obtained if R(t) does not vary at t = 0 and t = 1: δR(0) = δR(1) = 0.

Then, using the Fundamental Lemma of the Calculus of Variations the stationary point solution

satisfies

R(t) PSRR[·] + PSR[·]− β1(t)(Φ1)R[·]− β2(t)(Φ2)R[·] = 0 in 0 ≤ t ≤ 1. (4.94)

An identical approach can be followed to determine the corresponding N1
t (t) and N2

t (t). To

avoid a lengthy mathematical development, a simplified approach is described next:

1. With regard to N2
t (t), by applying the Euler-Lagrange operator (∂N2

t
− ∇t∂Ṅ2

t
) over the

integrand of L. The following differential equation is obtained for β2(t)

β̇2(t) = α
γ(t)
N2
t (t) (R(t)PSRΓ2 [·]− β2(t)(Φ2)Γ2 [·]) . (4.95)

2. With regard to N1
t (t), by applying the Euler-Lagrange operator (∂N1

t
− ∇t∂Ṅ1

t
) over the

integrand of L. The following differential equation in β1(t) is obtained

β̇1(t) = −α γ(t)
N1
t (t) (β1(t)(Φ1)Γ1 [·] + β2(t)(Φ2)Γ1 [·]) . (4.96)

3. The initial values for the differential equations are β2(1) = 0 and β1(1) = β2(0).

Appendix 4.B.4 Optimal Energy Allocation with Fair Encoding Rate

This appendix derives the stationary point equations of the energy allocation problem under

two-iteration SIC. The functional to be maximised under γx(t) is

αR

∫ t∗

0
PSR

[
γx(t)h(t)
N2
t (t)

]
dt− λ

(∫ t∗

0
γx(t)dt− γ̄x

)
, (4.97)
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with the noise plus interference term N2
t (t) computed as

Ṅ2
t (t)

N2
t (t) = −αΦ2

[
γ(t)
N1
t (t) ,

γ(t)
N2
t (t) , R(t)

]
, N2

t (0) = N1
t (t∗) (4.98)

Ṅ1
t (t)

N1
t (t) = −αΦ1

[
γ(t)
N1
t (t) , R(t)

]
, N1

t (0) = 1 + αθ

∫ t∗

0
γx(t)h(t)dt. (4.99)

The Lagrangian is

L =
∫ t∗

0
PSR

[
γx(t)h(t)
N2
t (t)

]
dt− λ

(∫ t∗

0
γx(t)dt− γ̄x

)
(4.100a)

−
∫ t∗

0
β1(t)

(
Ṅ1
t (t)

N1
t (t) + αΦ1

[
γx(t)h(t)
N1
t (t)

])
dt (4.100b)

−
∫ t∗

0
β2(t)

(
Ṅ2
t (t)

N2
t (t) + αΦ2

[
γx(t)h(t)
N1
t (t) ,

γx(t)h(t)
N2
t (t)

])
dt. (4.100c)

Following the rationales in Appendix 4.B.3, the first variation reads

δL =
∫ t∗

0
(∂γL −∇t∂γ̇L) vγ(t)dt+ (∂γ̇L)

∣∣∣
t=t∗

vγ(t∗)− (∂γ̇L)
∣∣∣
t=0

vγ(0) (4.101a)

+
∫ t∗

0

(
∂N1

t
L −∇t∂Ṅ1

t
L
)
δN1

t (t)dt+ (∂Ṅ1
t
L)
∣∣∣
t=t∗

δN1
t (t∗)− (∂Ṅ1

t
L)
∣∣∣
t=0

δN1
t (0) (4.101b)

+
∫ t∗

0

(
∂N2

t
L −∇t∂Ṅ2

t
L
)
δN2

t (t)dt+ (∂Ṅ2
t
L)
∣∣∣
t=t∗

δN2
t (t∗)− (∂Ṅ2

t
L)
∣∣∣
t=0

δN2
t (0). (4.101c)

In our case, we have ∂γ̇L = 0, ∂Ṅ1
t
L = − β1(t)

N1
t (t) , δN1

t (0) = αθ
∫ t∗

0 h(t)vγ(t)dt, ∂Ṅ2
t
L = − β2(t)

N2
t (t) , and

δN2
t (0) = δN1

t (t∗). Then, the above yields

δL =
∫ t∗

0

(
∂γL −∇t∂γ̇L+ αθ

β1(0)
N1
t (0)h(t)

)
vγ(t)dt (4.102a)

+
∫ t∗

0

(
∂N1

t
L −∇t∂Ṅ1

t
L
)
δN1

t (t)dt+ (∂Ṅ1
t
L)
∣∣∣
t=t∗

δN1
t (t∗)− (∂Ṅ2

t
L)
∣∣∣
t=0

δN1
t (t∗) (4.102b)

+
∫ t∗

0

(
∂N2

t
L −∇t∂Ṅ2

t
L
)
δN2

t (t)dt+ (∂Ṅ2
t
L)
∣∣∣
t=t∗

δN2
t (t∗). (4.102c)

We obtain the following stationary point equation in 0 ≤ t ≤ t∗:

PSRΓ[·] h(t)
N2
t (t) + αθ

β1(0)
N1
t (0)h(t) = (4.103a)

αβ1(t)(Φ1)Γ[·] h(t)
N2
t (t) + αβ2(t)

[
(Φ2)Γ1 [·] h(t)

N1
t (t) + (Φ2)Γ2 [·] h(t)

N2
t (t)

]
+ λ (4.103b)

with the functions β1(t) and β2(t) computed as

β̇1(t) = αβ1(t)(Φ1)Γ[·]Γ1(t) + αβ2(t)(Φ2)Γ1 [·]Γ1(t) (4.104)

β̇2(t) = αβ2(t)(Φ2)Γ2 [·]Γ2(t)− PSRΓ[·]Γ2(t) (4.105)

with the boundaries β1(t∗) = β2(0) and β2(0) = β1(1).



5 The Case of Dynamically Ordered

Interference Cancellation Decoding

The energy and code allocations derived in the previous chapters are based on the assumption

that the receiver knows the decoding order of users, prior to performing successive interference

cancellation (SIC). An example of such a scenario is when the receiver perfectly knows the

strengths received from all users or, failing that, when it can estimate them accurately. In

these cases, SIC can operate by decoding the best user at each stage. The present chapter,

however, analyses the case when the strengths (symbol energies or powers) received from all

users are unknown to the receiver. Thus, received symbol energies are first estimated, after

which the SIC receiver proceeds in non-increasing order of the former estimates. We refer to

this receiver, as in some context-aware settings, as a dynamically ordered SIC. This chapter

presents an original analysis to one of the aspects that, relative to the demodulator adopted

in the Enhanced Spread Spectrum ALOHA system outlined in Section 1.2.2, remains to be

analysed: the impact of estimation-based decode ordering on system performance. As described

afterwards, the scenarios of interest may correspond to wireless setting where the large number of

users challenges the receiver’s capability to obtain a perfect estimation of the strengths received

from all users, or to cases in which the identities of users are unknown to the receiver.

The main results derived in this chapter are condensed in the following publications:

[L2] F. Molina and J. Sala-Álvarez, “Discontinuous user-energy distribution for dynamically

ordered successive interference cancellation,” IEEE Commun. Lett., vol. 25, no. 5, pp.

1673-1677, 2021,

[L3] F. Molina and J. Sala-Álvarez, “Asymptotic performance analysis of successive interference

cancellation with dynamic user-decoding order,” IEEE Commun. Lett., vol. 24, no. 12,

pp. 2931-2935, 2020.

The remaining of this chapter starts in Section 5.1 with the state of the art relative to

dynamically ordered SIC. The system models for many users and asymptotically many users [77]

are presented, respectively, in Section 5.2 and Section 5.3. The best energy allocation strategy,

derived in the asymptotic large-user regime [78], is addressed in Section 5.4. Finally, conclusions

are offered in Section 5.5. Appendix 5.A contains the mathematical derivations corresponding

to the present chapter.
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5.1 State of the Art

The previous chapters of this thesis have evaluated and optimised the performance of a net-

work whose receiver operates under iterative or non-iterative SIC policies, considering that the

decoding order of users is known to the receiver. With regard to the latter consideration, the

analyses undertaken previously were not exceptions. Most theoretical studies have adopted such

an argument as it constitutes one of the theoretical foundations of SIC [43,79]. However, down

to more practical settings, more recent analyses under the umbrella of non-orthogonal multiple

access (NOMA) have alleviated the need of agreeing on a decoding order between transmitting

users and the receiver station.

To go deep into this matter, let us put first our analysis into the context of machine-type

communications. In the uplink of a massive NOMA system, it is common that large-scale fading

coefficients are partially known, or totally unknown to the receiver. The reason is largely due to

the dense dissemination of users in certain areas and their low activity periods, which challenges

the task of the receiver to obtain the channel state information of all users. In these cases, as

users may transmit with different powers and be affected by dissimilar channel attenuations,

it is a common practice to consider, for system model analysis, users subject to (statistically)

independent non-identically distributed large-scale fading [80]. Mainly, two approaches have

been followed to set a user-decoding order before proceeding to successive decoding. The first

approach consists in establishing a decoding order based on a deterministic parameter, which

allows to apply the already known results to our study case; for instance, when the receiver

knows the expectation of the large-scale fading coefficients affecting all users [80, Section III.B].

A second approach consists in setting the decoding order based on the instantaneous power levels

received from all users, in which case one can consider that the received powers are obtained

accurately [47] [80, Section III.A], or need to be estimated. Analyses of cancellation receivers that

follow the second approach, also referred to as dynamically ordered SIC, have been, admittedly,

very few [81–83]. All of them derive outage expressions for two or three users by calculating all

possible combinations of orderings. However, these analyses may be infeasible for many users.

This chapter elaborates on the second approach, for a scenario comprising very many users.

In the satellite communications context, the demodulator implemented in Enhanced Spread

Spectrum ALOHA [40] constitutes a representative example of a practical system that deals

with the problem of ordering users from the estimation of their strengths via preamble cross-

correlations. This scenario may extend the unsourced random access paradigm [84–86], since the

receiver does not know the identities of all users, and no channel state information is given. The

last remark has reference to the fact, in these scenarios, a feasible configuration that facilitates

the ordering task is that users employ the same coded modulation scheme.

5.2 System Model

As stated in the introductory section of the present chapter, the novelty introduced herein is

the adoption of a SIC receiver to which the strengths (powers or symbol energies) received from

all users are unknown. This chapter is intended to be mostly self-contained, and thus, some

concepts already discussed throughout previous chapters of this thesis are reviewed as well.
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The setting evaluated can be contextualized, as in some context-aware settings, in the satel-

lite scenario envisaged in Enhanced Spread Spectrum ALOHA, where K direct-sequence users

transmit on the uplink. The starting point of this chapter is the same K-user multiple access

set-up adopted in the previous chapters, except for the peculiarity that the identities of all users

are unknown to the receiver and that no channel state information is provided to it. Since the

receiver needs to estimate the strengths of all users, we deem it appropriate, as inspired by the

unsourced random access context [84–86], that the same codebook be adopted by all users1. In

this respect, f(·) is the encoding function used to generate, from the binary sequence bk, the

packet transmitted by user k, sk = f(bk), consisting of a ne-symbol payload and a no-symbol

preamble. Direct-sequence spread spectrum is adopted together with long spreading signatures

ck,m(t) for each symbol m of the transmitted packet. The spreading gain is N .

The baseband signal at the receiver’s front-end is

y(t) =
K∑

k=1

√
γx[k]h[k] ejΩk

no+ne∑

m=1
sk[m]ck,m(t−mT − τk) + w(t), (5.1)

with γx[k] the energy per symbol transmitted by user k, h[k] its slowly time-varying channel

power gain, and Ωk the random carrier phase term. T is the symbol period, τk the end-to-end

delay, and w(t) Gaussian noise.

The symbol energy received from user k is γ[k] = γx[k]h[k], and thus, the distribution of

received energies is γ[1], . . . , γ[K], which, for the convenience of analysis, is considered ordered

non-increasingly according to the indexing 1 ≤ k ≤ K. The analysis that follows studies a SIC

receiver to which the symbol energies γ[1], . . . , γ[K] are unknown. In this sense, the demodulator

adopted in the Enhanced Spread Spectrum ALOHA system has dealt with a similar, albeit

more complex, problem [40]. It detects users and estimates their strengths combining preamble

cross-correlations with an iterative SIC approach. This chapter, however, focuses only on the

estimation-based ordering of users (at the initial stage) based on preamble cross-correlations.

To that aim, it is considered that all users are detected, and the chapter deepens into evaluating

the impact of noisy estimations on the ordering process and on system performance.

More specifically, at each time slot or window frame, generically denoted n, the imple-

mentation carried out by the receiver first estimates the symbol energies from all users, and

then performs SIC. The system model derived herein distinguishes between: (i) the user-index

1 ≤ k ≤ K set in non-increasing order of the (real) received symbol energies; and (ii) the

user-order 1 ≤ k′ ≤ K set in non-increasing order of energy estimates2, as:

γ[1] ≥ · · · ≥ γ[k] ≥ · · · ≥ γ[K], (5.2)

γ̂[1] ≥ · · · ≥ γ̂[k′] ≥ · · · ≥ γ̂[K]. (5.3)

After ordering users, one can make use of the system model derived in Chapter 3 by defining

1Note that if users, due to different quality-of-service requirements, employ different encoders, the receiver
needs to estimate: (i) the strengths received from all users; and (ii) the encoder employed by every user. With
regard to the second task, users must encapsulate some additional information inside payload to allow, in the
absence of coordination between users and the receiver, the identification of the encoder employed by each user.

2The ordering produced by energy estimates coincides with that set by signal-to-interference-plus-noise ratio
estimates, when interference is stationary along the processing window frame.
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the mapping function between indexings k′ and k: φn : k′ −→ k. Note that the last definition

preserves the subscript n to emphasise that φn changes at every processing time unit n. Then,

the system starts by processing user φn[k′ = 1] down to user φn[k′ = K]. At stage k′ (out of

K), the receiver operates with the output of the matched filter (despreader)

ỹk =
√
γ[k] ejΩk sk +

√
Nt[k′] wk with k = φn[k′]. (5.4)

Note that φn[k′] produces the index of the k′-th ordered user, at time n, in the ordering based

on the received symbol energies. The term wk is the sampled waveform associated with the

cross-correlation between the spreading signature of user φn[k′] and others, and Nt[k′] is the

variance of noise plus interference at stage k′. The advantage of using direct-sequence spread

spectrum is that, at the despreader’s output, the statistical distribution of interfering signals

resembles a Gaussian distribution even if users do not employ Gaussian codebooks (actually,

the case evaluated herein). Then, by treating interference as Gaussian signals that contribute

as an addition to thermal noise, the signal-to-interference-plus-noise ratio (SINR) corresponding

to the despreader’s output at stage k′ is

Γ[k′] = γ[φn[k′]]
Nt[k′]

, (5.5)

where its denominator denotes the variance of the noise plus interference level affecting the user

processed at stage k′, computed as

Nt[k′] = 1 + θ

N

k′−1∑

i=1
ε[i]γ[φn[i]] + θ

N

K∑

i=k′+1
γ[φn[i]]. (5.6)

In the above expression, θ
N is the average decorrelation factor between symbol signatures in the

long-code model [14], and 0 ≤ θ ≤ 1 is a known average factor that models the dispersion of

user-delays τ1≤k≤K . As in the previous chapters, the adopted SIC policy is aided by redundancy-

check error control that operates at stage k′ as follows: firstly, channel decoding “determines” the

bit stream transmitted by user k as b̂k = f−1(ỹk); and secondly, the CRC is checked out, after

which cancellation is only produced if packet decoding succeeds. The respective success/failure

packet decoding event to model the processing of user k = φn[k′] is modelled through the binary

random variable ε[k′], which equals 1 when b̂k 6= bk, an event that occurs with probability

PER[Γ[φn[k′]]; and equals ε[Γ[φn[k′]]] complementarily when b̂k = bk. In the previous line:

(i) PER[Γ] is the known packet error rate (PER) versus SINR curve associated with the

employed decoding system, adopted to model the error performance of its operation, and

(ii) ε[Γ] is the known residual energy (RE) curve, used to model the average fraction of energy

that remains after cancelling a user.

At this point, and after the K stages of the cancellation receiver, our concern is to evaluate

its performance. This chapter adopts the (user-aggregate) spectral efficiency figure of merit that

adds the effective transmission rates of all users, defined by

SE = K

N
R (1− perlt), (5.7)



5.2. System Model 103

with R the rate of the coded modulation scheme employed by all users, and perlt the (long

term) average number of packet decoding errors averaged over sufficiently large time slots. In

this chapter, nonetheless, since users employ the same physical layer and transmission protocol,

the above figure of merit is uniquely determined by the behaviour of channel decoding after

operating with each user. Motivated by relevant performance figures of merit sensitive to system

model parameters from a network- or user-centric perspective, this chapter also evaluates the

individual and network long-term average packet error probabilities:

perlt[k] = lim
L→∞

1
L

L∑

n=1
PER

[
Γ[φ−1

n [k]]
]
, (5.8)

perlt = 1
K

K∑

k=1
perlt[k]. (5.9)

Certainly, the above (long-term) model simplifies the performance evaluation of such a re-

ceiver and achieves high accuracy, but still lacks sufficient elements to provide insights into the

behaviour of dynamically ordered SIC without descending into the simulation level. The fol-

lowing subsection addresses this purpose, where a system model based on statistical averages

rather than on long-term averages is proposed and reasonably justified.

5.2.1 Estimating the Strengths of All Users

The energy estimates corresponding to all users are analysed herein. Recall that user strengths

are estimated at the initial SIC stage and before proceeding to successive decoding. Actually,

our study adopts a simpler approach than that in [40]. In our case, the task of ordering users

is decoupled from the decoding process. More specifically, after detecting all users, a bank of

single-user detectors compute preamble cross-correlations3, each of them to estimate the symbol

energy received from a user. The SINR corresponding to the k-th user energy estimator is

Λ[k] = γ[k]
1 + θ

N

∑
i 6=k γ[i]

. (5.10)

That is, users are subject to the same noise plus interference level at the despreader’s output,

except for their own contribution. Nonetheless, when the number of users K is sufficiently large,

the denominator of the former expression can be accurately approximated by a constant term

by adding, additionally, the contribution of user k to the SINR of its estimator, as

Λ[k] ≈ γ[k]
1 + αθγ̄

. (5.11)

α , K/N is the system load, and γ̄ , 1
K

∑K
k=1 γ[k] is the average symbol energy received from

all users4. Remarkably, as the number of users increases, user-energy estimations are affected

by the same noise plus interference level.

3Cross-correlation constitutes the basis for the maximum-likelihood single-user estimation of the energy of a
signal in presence of Gaussian interfering signals treated as noise and known preambles.

4The validity of posterior results is subject to having γ̄ <∞, according to [14, Ch. 2].
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The analysis that follows investigates the statistical behaviour of symbol energy estimates.

Since the estimates are computed from the same signal y(t) after the respective despreading op-

erators, energy estimations are subject to noise plus interference terms that are not statistically

independent from the strictly mathematical point of view. Nonetheless, one can consider, for

analysis purposes, energy estimates to be statistically independent provided that: firstly, the

preambles employed by all users are independent; secondly, that long-spreading codes after de-

spreading largely change the noise plus interference terms w1≤k≤K affecting all estimators; and

thirdly, that users are subject to non-synchronous interfering signals. Remarkably, the latter

considerations allow to assume, to a sufficiently high accuracy, that different users are subject to

terms wk statistically independent. Thus, estimated symbol energies are modelled as indepen-

dent random variables. Specifically, the estimated symbol energy from user k follows a scaled

non-centred chi-squared distribution

γ̂[k] ∼ 1
β
X 2

2 (βγ[k]) , (5.12)

with 2 degrees of freedom and non-centrality parameter βγ[k] = 2noΛ[k]. In the expression

above, β , 2no(1 + αθγ̄)−1 is a known factor independent of k.

The previous estimations can be further enhanced if it is considered: firstly, that during

many consecutive time slots or working frames, the same users transmit without varying their

transmitted symbol energies; and secondly, that the channel distribution varies sufficiently slowly

so that the received energy distribution γ[1], . . . , γ[K] stays practically unchanged. Then, energy

estimations can be improved by averaging those obtained in m previous time slots or window

frames. Then, symbol energy estimates are distributed as

γ̂[k] ∼ 1
β
X 2

2m (βγ[k]) , (5.13)

a non-central chi-square distribution with 2m degrees of freedom and non-centrality parameter

βγ[k] = 2mnoΛ[k], with β , 2mno(1 + αθγ̄)−1. A last remark concerns the straightforward

prove that the estimator is consistent since γ̂[k]→ γ[k] as m→∞.

5.2.2 Statistical Average System Model

As stated previously, our objective is to gain further knowledge on the behaviour of dynamically

ordered SIC with estimation-based ordering of users. To that aim, this subsection assumes that

the same users are transmitting during many time slots, and that the distribution of received

symbol energies γ[1], . . . , γ[K] stays practically constant within a sufficiently long period of time.

The latter assumption holds as long as the channel of each user varies sufficiently slowly (as found

in the land mobile satellite channel) and users do not vary their transmitted powers. Therefore,

instead of operating with instantaneous ordering expressions, one can make use of statistics and

turn long-term expressions into statistical averages. The explanation in this section provides a

more extensive discussion relative to that in our article [77].

Some key points are first stated to illuminate the system model proposed herein, which differs

substantially from those adopted in the previous chapters and also from the recent literature.

Getting down to the substance, since users are ordered at different positions in different time
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units or window frames, the adoption of the univariate model (in previous chapters) in which

user k is processed at stage k is meaningless. Instead, for instance, the proposed model considers

the SINR of user k when is ordered and processed at stage k′, defined as the ratio between the

symbol energy received from user k to the noise plus interference level:

Γ̄[k, k′] = γ[k]
N̄t[k, k′]

. (5.14)

The overline notation is added to distinguish the variables from those adopted in the long-term

system model described previously. The difficulty lies in the calculation of the term N̄t[k, k′],
the noise plus interference term corresponding to user k when is ordered the k′-th.

5.2.2.1 Calculation of the noise plus interference term

The model adopted for N̄t[k, k′] is based on a comprehensive large-user analysis of the term

Nt[k′] (5.6), whose expression is reproduced below

Nt[k′] = 1 + θ

N

k′−1∑

i=1
ε[i]γ[φn[i]] + θ

N

K∑

i=k′+1
γ[φn[i]]. (5.15)

The corresponding user processed at stage k′ experiences an interference level consisting of

the interference from users already processed (first summation) plus that from users yet to be

processed (second summation). Regarding the first summation, one can consider that if the

number of users already processed k′−1 is sufficiently large, the summation is equivalent to a

summation where all users u 6= k other than k = φn[k′] are processed in all previous stages

i < k′, and their respective contributions are weighted by their probabilities. In this respect,

the factor pu,i|k,k′ is used to denote the probability that a user u is ordered the i-th conditioned

on the fact that user k is ordered the k′-th:

pi,u|k,k′ , Pr[φ−1
n [i]=u | φ−1

n [k]=k′]. (5.16)

Inspired by this model, the average interference from users already processed when user k is

ordered the k′-th is computed as

ξ̄prv[k, k′] , θ

N

k′−1∑

i=1

∑

u6=k
q[Γ̄[u, i]]γ[u]pu,i|k,k′ , (5.17)

where q[Γ] = 1 − (1 − ε[Γ])PSR[Γ] is the expectation of the random variable ε[i] in (5.15),

which subtracts the fraction (1− ε[Γ])PSR[Γ] of the user’s energy after processing it. PSR[Γ] ,
1−PER[Γ] is the packet success rate function. Similar rationales can be followed with regard to

the second summation in (5.15), to finally compute the interference level from users remaining

unprocessed at state k′ when user k is ordered the k′-th, as

ξ̄rem[k, k′] , θ

N

K∑

i=k′+1

∑

u6=k
γ[u]pu,i|k,k′ . (5.18)



106 Chapter 5. The Case of Dynamically Ordered Interference Cancellation Decoding

The reader must note that the large-user model adopted consists of an extension of the models

described in the previous chapters, where univariate functions are turned into bivariate functions

of the user index k and the user order k′, and where, at each SIC stage, we assume that the

system works equivalently as when all users different from the evaluated one are processed.

Joining the above computations, we have the expression for the new noise plus interference term

N̄t[k, k′] = 1 + θ

N

k′−1∑

i=1

∑

u6=k
q[Γ̄[u, i]]γ[u]pu,i|k,k′ +

θ

N

K∑

i=k′+1

∑

u6=k
γ[u]pu,i|k,k′ . (5.19)

The challenge is to find an expression for the probability pu,i|k,k′ since it contains four argu-

ments and, therefore, its expression intuitively can make the final analysis difficult. We strive

for a simplification and derive a simpler model. Let us observe the conditional imposed on the

probability pu,i|k,k′ , k, k′, which is a common term to all addends of the above summations. In

the many-user regime, the conditional becomes more and more irrelevant. That is, the fact that

user k is ordered in a specific position does not condition, to a large extent, the order of the

rest of users, and as K →∞ the conditional turns out to be independent. Under this assump-

tion and considering many users, the probability pu,i|k,k′ can be approximated by obviating the

conditional

pu,i|k,k′ ≈ pu,i , Pr[φ−1
n [u] = i] (5.20)

that is, by the probability that user u is ordered the i-th. It is easy to illustrate the magnitude

of this approximation with a simple example. Consider that all K users are estimated with

the same SINR, which corresponds to the case when the received symbol energy distribution

γ[1] = · · · = γ[K] is uniform. Then, all users have the same probability of being ordered at

a given position. Keeping the subscript notation in the probability terms, we have pu,i = 1
K .

Moreover, the previous probability conditional on user k already ordered is pu,i|k,k′ = 1
K−1 ,

term that converges as K → ∞ to pu,i. For the moment, we will leave each of the terms pk,k′

without an analytical expression. Their computations are addressed in Section 5.2.2.3 for a

generic received symbol energy distribution.

The approximation (5.20) allows to compute accurately the interference corresponding to

users already processed and that to users remaining unprocessed, as

ξ̄prv[k, k′] = θ

N

k′−1∑

i=1

∑

u6=k
q[Γ̄[u, i]]γ[u]pu,i, (5.21)

ξ̄rem[k, k′] = θ

N

K∑

i=k′+1

∑

u6=k
γ[u]pu,i. (5.22)

Joining both terms, the model for the noise plus interference term seen by user k when is ordered

at position k′ is

N̄t[k, k′] = 1 + θ

N

k′−1∑

i=1

∑

u6=k
q[Γ̄[u, i]]γ[u]pu,i + θ

N

K∑

i=k′+1

∑

u6=k
γ[u]pu,i. (5.23)



5.2. System Model 107

5.2.2.2 Calculation of individual and network key performance indicators

As we have commented in previous sections, the focus of the present chapter is also the eval-

uation of individual and global utilities, more specifically, the ones defined in (5.8)–(5.9). The

key performance indicators are the packet error probability associated with user k and the av-

erage packet error probability over all users, which were defined previously through long-term

expectations. Recall that, the ordering is established on the basis of estimates but, once the

ordering is given, system performance depends on the symbol energies received from all users.

The model adopted addresses the above peculiarity by computing the performance indicators

based on statistical averages rather than on long-term computations. The following expressions

are obtained:

per[k] =
K∑

k′=1
PER

[
γ[k]

N̄t[k, k′]

]
pk,k′ , (5.24)

per = 1
K

K∑

k=1

K∑

k′=1
PER

[
γ[k]

N̄t[k, k′]

]
pk,k′ . (5.25)

5.2.2.3 Computation of User-Order Probabilities

The only computation that remains yet to be found is the probability that user k is ordered the

k′-th: pk,k′ (we have adopted the initial notation for the user-index k and the user-order k′).

The challenge is to find an expression for the probability matrix




p1,1 p1,2 · · · p1,K
p2,1 p2,2 · · · p2,K

...
...

. . .

pK,1 pK,2 · · · pK,K



. (5.26)

An expression for each of the former probabilities is provided next, which are shown to take the

same form except for some parameters.

We focus the following analysis on the user’s energy estimate k, γ̂[k], and we first analyse

the distribution of φ−1
n [k] conditioned on γ̂[k] = x, φ−1

n [k]|{γ̂[k]=x}. The order of user k can be

obtained as the sum of K−1 Bernoulli random variables Bi 6=k equal to 1 when γ̂[i] ≥ γ̂[k], the

energy estimated from user i is higher than that estimated from user k γ̂[k] = x, as

φ−1
n [k]|{γ̂[k]=x} = 1 + B1 + · · ·+ Bk−1 + Bk+1 + · · ·+ BK . (5.27)

The success probability of the i-th Bernoulli random variable Bi is computed from the tail

distribution of a non-central chi-squared distribution, as

qi = Pr[γ̂[i] ≥ x] = Pr
[
X 2

2m (βγ[k]) ≥ βx
]

= Qm

(√
βγ[k],

√
βx

)
. (5.28)

Qm(a, b) is the Marcum-Q function of order m (m is an integer).

The distribution of φ−1
n [k]|{γ̂[k]=x} is Poisson Binomial, and approaches the normal distri-
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bution N (µk(x), σ2
k(x)) as K increases. The mean and variance are computed as

µk(x) , 1 +
∑

i 6=k
qi and σ2

k(x) ,
∑

i 6=k
qi(1− qi). (5.29)

The probability of a user being ordered the k′-th can be then computed approximately by

sampling the Gaussian density fN (k′;µk(x), σ2
k(x)) at the order point k′, and by averaging the

result according to the density of energy estimates fγ̂(x; γ[k]) associated with user k, as

pk,k′ ≈
∫ ∞

0
fN
(
k′;µk(x), σ2

k(x)
)
fγ̂(x; γ[k])dx. (5.30)

A last remark concerns the above approximation, which simplifies the computation of the user-

order probabilities through the probability mass function of the Poisson Binomial random vari-

able with that of a Gaussian density. Certainly, the result is only valid for a sufficiently large

number of users K, in practice, in the order of hundreds of users.

5.3 The Model for Asymptotically Many Users

As seen throughout the present document, this thesis elaborates on the analysis of the SIC

receiver in the asymptotic large-user regime. This section provides an amenable tractable form

to the above model, divided in four subsections. Firstly, a brief analysis on the asymptotic

user-order probabilities is addressed in Section 5.3.1. Secondly, the system model described in

Section 5.2.2 is turned into the asymptotic large-user regime in Section 5.3.2. Next, Section 5.3.3

comments briefly on the extension of the model derived herein to the more complex iterative

receiver adopted in the E-SSA system. Finally, Section 5.3.4 presents the simulation results.

The user-asymptotic behaviour of the system model described in Section 5.2.2 is analysed

first. As considered in the previous chapters, it is advantageous to adopt a more convenient

notation to index users in the user-asymptotic regime. Two asymptotic indexings are defined:

t = lim
K→∞

k

K
(0 ≤ t ≤ 1), (5.31)

t′ = lim
K→∞

k′

K
(0 ≤ t′ ≤ 1), (5.32)

which condense a dense number of users in the interval [0, 1]. Henceforth, 0 ≤ t ≤ 1 is denoted

user-index, and 0 ≤ t′ ≤ 1 user-order. The latter definitions together with the asymptotic traffic

load relationship

α , lim
K,N→∞

K

N
, (5.33)

allow to define asymptotic and smooth functions of the user-variable t or the user-variable t′.

Examples of such smooth functions are the distributions corresponding to the received and to

the estimated symbol energies from all users:

γ(t) , lim
K→∞

γ[Kt] and γ̂(t′) , lim
K→∞

γ̂[Kt′]. (5.34)
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5.3.1 Asymptotic User-Order Probabilities

As seen above, the difficulty of the previous model lies on determining an explicit expression

for the probability that user k is ordered the k′-th pk,k′ = Pr[φ−1
n [k] = k′], which, due to the

asymptotic indexings (5.31)–(5.32), is now turned into the probability that user k → Kt is

ordered at k′ → Kt′, defined by

dp(t, t′) = lim
K→∞

Pr[φ−1
n [Kt] = Kt′]. (5.35)

Note that dp(t, t′) is an infinitesimal quantity since the number of possible orders for a user t

increases as K →∞ in the same order.

Curiously, as proved in Appendix 5.A.1, dp(t, t′) admits a closed-form expression in the

asymptotic large-user regime. The order of user k = Kt depends only on its estimated symbol

energy and not on the estimates corresponding to other users. This is rigorously true in the

user-asymptotic regime since the asymptotic distribution of estimated energies is known, and

we only need the estimate from user k = Kt to determine its position in the known asymptotic

distribution. Therefore, the asymptotic user-order probabilities are cast compactly as

dp(t, t′) = a(t, t′)dt′, (5.36)

an asymptotic (K-independent) kernel a(t, t′) times the differential 1
K → dt′. The proof fol-

lows from taking the expressions derived in Section 5.2.2.3 to the user-limit. Summarising the

contribution in Appendix 5.A.1, the asymptotic kernel a(t, t′) obeys three equivalent expressions:

a(t, t′) = ∇t′F̄γ̂(µ̄−1(t′); γ(t)) (5.37a)

= ˙̄Fγ̂(x; γ(t)) · 1
˙̄µ(x)

∣∣∣∣
x=µ̄−1(t′)

(5.37b)

= −fγ̂(x; γ(t)) · 1
˙̄µ(x)

∣∣∣∣
x=µ̄−1(t′)

. (5.37c)

In the expression above, F̄γ̂(x; γ) , Pr[X 2
2m(βγ) ≥ βx] and fγ̂(x; γ) in x ≥ 0 are, respectively,

the tail distribution and the density function of symbol energy estimates. Moreover, µ̄−1(t′) is

the inverse function of

µ̄(x) =
∫ 1

0
Qm

(√
βγ(τ),

√
βx

)
dτ (5.38)

applied to the user-order t′, or equivalently, the x solution to µ̄(x) = t′. Finally, the last

observation concerns the consistency of the above model in that, the probabilities dp(t, t′) add

up to 1 in both directions t and t′.

5.3.2 Asymptotic System Model

In previous sections, the system’s behaviour has been explored for many users and, in some cases,

leveraging some approximations based on the asymptotic large-user regime. This subsection

derives the user-asymptotic form of the model adopted before, to enable full understanding of
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dynamically ordered SIC. The SINR (5.14) now turns into the bivariate function of the user-index

t and the user-order t′

Γ̄(t, t′) = γ(t)
N̄t(t′)

, (5.39)

where the noise plus interference profile Nt(t′) comes from considering that, as K → ∞, the

term N̄t[k, k′] = N̄t[Kt,Kt′] → Nt(t′), obviating the absence of contribution of the evaluated

user in the noise plus interference level. In this regime, the asymptotic noise plus interference

function corresponding to the adopted SIC policy is

N̄t(t′) = 1 + αθ

∫ 1

0

∫ t′

0
q[Γ̄(u, τ)]γ(u)dp(u, τ)du+ αθ

∫ 1

0

∫ 1

t′
γ(u)dp(u, τ)du. (5.40)

Remarkably, inner integrals operate under the differential dp(u, τ) = a(u, τ)dτ , and outer inte-

grals under du. Note that the above expressions correspond, simply, to an extension of the model

derived in Chapter 3 for one-iteration SIC with known decoding order, where single integrals

have been substituted by double integrals that average the contribution of all users at each stage.

In this user-asymptotic regime, the model is easy to be understand: if we observe any position t′i
of the interval 0 ≤ t′ ≤ 1 over a window ∆t′ as [t′i−∆t′

2 , t′i+∆t′
2 ], we may find: a fraction

∆p(t1,t′i)
∆t′

of users with energy γ(t1); a fraction
∆p(t2,t′i)

∆t′ of users with energy γ(t2); etc. The smaller the

window length ∆t′, the truer the result. Generalising the result, we have that, at each interval

dt′, we may find the fraction dp(t,t′)
dt′ = a(t, t′) of users received with the same energy γ(t), albeit

ordered randomly within the interval dt′. We have adopted a model that ignores the ordering of

users in each infinitesimal interval, by considering that all users contribute as a fraction of the

mitigation of interference at each stage.

With regard to the noise plus interference term (5.40), it is possible to come up with a

simpler expression in terms of a dynamic equation (differential equation) that can be obtained

by differentiating (5.40) with respect to the user-order t′, and by dividing the result by N̄t(t′).
The following differential equation and initial condition are obtained:

˙̄Nt(t′)
N̄t(t′)

= −α
∫ 1

0
Φ
[
γ(u)
N̄t(t′)

]
a(u, t′)du, (5.41)

N̄t(0) = 1 + αθ

∫ 1

0
γ(u)du, (5.42)

with Φ[Γ] , θ(1−ε[Γ])Γ·PSR[Γ] the same decoding-cancellation characteristic defined in Chapter

3. Now, using (5.37c) for the term a(u, t′) and defining the term Nt(t′) using as argument

the energy corresponding to the user-order t′, by means of substituting t′ = µ̄(x) as Ñt(x) =
N̄t(µ̄(x)), the following differential equation and initial condition are obtained:

˙̃Nt(x)
Ñt(x)

= α

∫ 1

0
Φ
[
γ(u)
Ñt(x)

]
fγ̂(x; γ(u))du, (5.43)

Ñt(∞) = 1 + αθ

∫ 1

0
γ(u)du. (5.44)
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The interest in obtaining this form of differential equation is that (5.43) contains explicitly the

density fγ̂(x; γ). Note that, whereas the user order goes from t′ = 0 down to t′ = 1, the order in

the variable x goes from the highest estimated symbol energy x→∞ down to the lowest x→ 0.

With all this said, the last expressions that remain to be determined are the asymptotic forms

of the packet error probabilities at individual (5.24) and network (5.25) level. With regard to the

individual figure of merit, the asymptotic expression for the packet error probability averages

the contribution of a user in all possible orderings. This corresponds to one of the following two

equivalent expressions

per(t) =
∫ 1

0
PER

[
γ(t)
N̄t(τ)

]
a(t, τ)dτ (5.45a)

=
∫ ∞

0
PER

[
γ(t)
Ñt(x)

]
fγ̂(x; γ(t))dx. (5.45b)

Along the same line, the figure of merit that averages the individual packet error probabilities

over all users reads

per =
∫ 1

0

∫ 1

0
PER

[
γ(t)
N̄t(τ)

]
a(t, τ)dτdt (5.46a)

=
∫ 1

0

∫ ∞

0
PER

[
γ(t)
Ñt(x)

]
fγ̂(x; γ(t))dxdt. (5.46b)

5.3.3 Extension of the Asymptotic System Model

The limitation of the proposed analysis is the adopted SIC policy, that estimates the strengths of

users at the initial stage and before proceeding to successive decoding. Certainly, the estimation

of energies can be improved if, as the system progresses by cancelling users, symbol energies

of remaining users are re-estimated to reduce the variance of previous estimations. The latter

corresponds to a more complex SIC receiver. However, the present analysis, even evaluating

a naive version of a more sophisticated receiver, should be understood as a starting point to

enable, following the same methodology, the analysis of more intricate schemes. As an example,

to analyse the demodulator adopted in the Enhanced Spread Spectrum ALOHA system [40],

the processes of estimation and ordering of users can not be decoupled as in our study. In

such a case, intuition leads to analyse the joint system as two intertwined dynamical systems.

Nevertheless, its extensive analysis is reserved for future research.

5.3.4 Empirical Evaluation

So as to evaluate the accuracy of the proposed statistical average system model relative to the

long-term average model, the individual and network performance figures of merit are compared.

The simulation carried out comprises K users transmitting packets of payload ne = 450 symbols

encoded with a theoretical coded modulation system of rate 1 bit/symbol. In addition, it is

also considered that users are received with the exponential distribution γ(t) = 10 exp(−1.5t)
sampled as t = k/K for k = 1, . . . ,K, and that symbol energies are estimated through preambles
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Figure 5.1: Asymptotic and empirical user-order probabilities for users t1 = 0.25 and t2 = 0.75. The
simulated traffic load is α = 1.50. The empirical computations are computed for K = 64 users.

of no = 50 symbols. With regard to the SIC receiver, the residual energy factor is set, as in the

previous chapters, to ε[Γ] = ε = 1%, and the decorrelation factor θ to 1.

Figure 5.1 depicts the empirical user-order probabilities overlapped with the asymptotic

computations. Empirical computations simulate the ordering process with K = 64 independent

estimations of symbol energies from the stated distribution γ(t). Two observations are carried

out. Firstly, at the asymptotic level, the order of user t converges to its index, t′ → t, set as

a function of the received symbol energies, the more energy estimates are averaged. Secondly,

at the empirical level, the asymptotic probabilities match the empirical computations for only

K = 64 users. The same conclusion is obtained from simulating different distributions. Notably,

the user-order probabilities are validated for a low K.

The next simulations evaluate the accuracy of the statistical average model:

(i) The packet error probability averaged over all users is analysed versus the traffic load α

in Figure 5.2. As shown, the asymptotic computations per (5.46a) predict very accurately

the empirical behaviour perlt (5.9) of the adopted SIC in all the regimes evaluated. The

asymptotic predictions improve slightly when the empirical computations are carried out

under a higher number of users. Moreover, system performance is substantially degraded

when the symbol energies received from all users are estimated in the presence of high

interference levels (high α). In these cases, when tenths of symbol energies are averaged,

the variances of such estimations are reduced, as well as its impact on system performance.

(ii) The individual packet error probabilities experienced by all users are evaluated. To that

aim, the asymptotic probability profile per(t) in (5.45a) is contrasted with the (long-

term) empirical computation perlt[Kt] (5.8) for K users. As shown, the asymptotic results

practically match the empirical computations when the number of users is sufficiently high.

In the depicted simulation, an accurate prediction is shown when the system supports some

hundreds of users.
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Figure 5.2: Average packet error probability over all users (network-centric figure of merit) versus traffic
load α. The asymptotic computations K →∞ depict per (5.46a) with a decode ordering based on symbol
energy estimates (dynamic) and on the received symbol energies (optimal). The empirical computations
depict perlt (5.9) averaged under 104 Monte Carlo runs.
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Figure 5.3: Individual packet error probabilities (user-centric figure of merit) achieved with dynamic
ordering of users. The asymptotic computations K →∞ depict the user-PER profile per(t) (5.45a), and
the empirical computations show the long-term figure of merit perlt[Kt] (5.8) averaged under 104 Monte
Carlo runs.
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5.4 Asymptotically Optimal Energy Allocation

Similarly to previous chapters, this section devotes its content to addressing the energy allo-

cation problem in the user-asymptotic regime accounting for the adopted SIC. According to

the structure used in previous chapters, the present analysis corresponds to the energy alloca-

tion design with optimal reliability and fair coding rate. Recall that, in order to reduce the

complexity of the SIC receiver with dynamic decoding order, users adopt the same coded mod-

ulation scheme. This simplifies the ordering task, as users are decoded in non-increasing order

of estimated symbol energies. Getting to the crux of the matter, we assume that, contrarily to

the receiver, users are capable of accurately estimating their individual channel gains without

feedback from the receiver. The former holds reasonably provided that the satellite broadcasts a

known pilot over a low-rate control channel and that the channel reciprocity hypothesis applies.

The figure of merit to evaluate system performance is the asymptotic spectral efficiency

(ASE) defined by the following two equivalent expressions

ASE = αR

∫ 1

0

∫ 1

0
PSR

[
γ(t)
N̄t(t′)

]
a(t, t′)dtdt′ (5.47a)

= αR

∫ 1

0

∫ ∞

0
PSR

[
γ(t)
Ñt(x)

]
fγ̂(x; γ(t))dxdt. (5.47b)

This chapter addresses, relative to Chapters 3 and 4, a more simplified problem in which the av-

erage energy constraint is enforced at reception, with the aim at setting the working point of the

SIC receiver. Such an analysis corresponds to the case when channel power gains corresponding

to all users are practically the same, or when users transmit towards a satellite transponder

that fixes the operating point of the satellite’s amplifier. In the latter and more reasonable case,

it is understood that the constraint on the transmitted energy is also present, but that of the

receiver is more restrictive. The energy allocation problem solved herein can be extended, at a

larger stage, to the more general case by setting the average energy constraint to transmitters.

5.4.1 Optimal User-Energy Distribution

The maximisation of ASE (5.47b) is addressed by solving the following variational calculus

problem subject to an average energy constraint γ̄ (5.48b), and the dynamical equation, derived

in this chapter, governing the evolution of the noise plus interference level along the SIC receiver

stages (5.48c)–(5.48d). The following problem needs to be solved:

max
γ(t)

ASE (5.48a)

s.t. γ̄ =
∫ 1

0
γ(t)dt (5.48b)

s.t.
˙̃Nt(x)
Ñt(x)

= α

∫ 1

0
Φ
[
γ(t)
Ñt(x)

]
fγ̂(x; γ(t))dt (5.48c)

s.t. Ñt(∞) = 1 + αθγ̄ (5.48d)
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tp ≤ 1 t

Figure 5.4: Piecewise continuous γ(t) candidates with end points 0 and tp. The blue curve depicts a
general piecewise continuously differentiable function, and the red curve a piecewise constant function.

Unlike the variational calculus problems addressed in the previous chapters, this chapter presents

an innovative point: the adoption of a broader function space. Such is the case of piecewise

continuously differentiable functions

γ(t) ∈ Cp[t0, tp] with t0 = 0 , tp ≤ 1 (5.49)

comprising at most p + 1 pieces. The last piece, defined in tp < t ≤ 1, corresponds to users

allocated to zero energy. Those functions are also denoted in the field of the calculus of variations

as broken extremals [41, Chapter 3.15]. Some examples of the adopted candidate distributions

are depicted in Figure 5.4. In this case, to impose such a function space on (5.48a)–(5.48d), we

must replace the integrals defined over the interval 0 ≤ t ≤ 1 by multiple integrals, such as for

the average energy constraint

p∑

k=1

∫ tk

tk−1
γ(t)dt = γ̄. (5.50)

The reader shall understand that, formally, writing
∫ 1

0 (·)dt entails, implicitly, the adoption of

continuously differentiable candidates. In this function space, we shall extend the above problem

by addressing the optimisation of the user-indices t1, . . . , tp and the number of pieces p ∈ N+.

Therefore, the following problem needs to be solved:

max
p≥1

max
0<t1,...,tp≤1

max
γ(t)

αR
p∑

k=1

∫ tk

tk−1

∫ ∞

0
PSR

[
γ(t)
Ñt(x)

]
fγ̂(x; γ(t))dxdt (5.51a)

s.t. γ̄ =
p∑

k=1

∫ tk

tk−1
γ(t)dt (5.51b)

s.t.
˙̃Nt(x)
Ñt(x)

= α
p∑

k=1

∫ tk

tk−1
Φ
[
γ(t)
Ñt(x)

]
fγ̂(x; γ(t))dt (5.51c)

s.t. Ñt(∞) = 1 + αθγ̄. (5.51d)

The first (outer) optimisation needs to be addressed through enumerative search. With regard
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to the second and third (inner) problems, the calculus of variations provides a tool for addressing

them together. Detailed calculations can be found in Appendix 5.A.2. Summarising the con-

tribution, the stationary point equation reveals that the optimal user-energy distribution γ(t)
conforms to a piecewise constant structure regardless of the user-indices t1, . . . , tp:

γ(t) = γk in tk−1 ≤ t < tk for k = 1, . . . , p. (5.52)

An example of such a structure can be found in Figure 5.4. It should be noted that the above

result does not indicate that such a piecewise constant function with p > 1 must exist neces-

sarily. The proof of existence implies finding such a function that satisfies the stationary point

equation at each interval. In fact, if it does not exist, the optimal distribution would be the con-

tinuously differentiable function γ(t) = γ̄ in 0 ≤ t ≤ 1, since the function space of continuously

differentiable functions is contained inside that of piecewise continuous functions. The interest

in this function space applied to our analysis is that, certainly, it is possible to find piecewise

continuously differentiable distributions that satisfy the stationary point equations. The unique

case in which the optimal γ(t) is continuous everywhere is when α→ 0, in which case γ(t) = γ̄

in 0 ≤ t ≤ 1. The rest of cases need to be evaluated numerically.

Up to this point, this chapter has proved that the stationary points of the spectral efficiency

maximization of dynamically ordered SIC follow piecewise constant functions. The result is clear:

the exponential energy distribution is only optimal when users are processed in the correct order

of received symbol energies. Whenever symbol energies from all users need to be estimated, and

they are so at the initial stage, it is better to create groups of users who share the same energy.

This way, all users from a given group achieve the same individual performance, and estimating

the energy of a particular user becomes the energy estimation of any user from a given group.

5.4.2 Search of the Optimal User-Energy Distribution

The stationary point user-energy distributions constitute piecewise constant functions. The lat-

ter includes the global optimum, local optima and some saddle points (if they exist). Based

on this statement and given the complexity of the involved equations to determine the globally

optimal solution, the next motivation of this section is the proposal of a complexity-affordable

search to obtain the best (if possible) piecewise constant function or, failing that, a very com-

petitive locally-optimal solution. Recall that the amplitude (energy), length and the number of

intervals of the best distribution remain to be determined. In view of the structure derived for

the optimal distribution, our approach particularises the variational calculus problem (5.51a)–

(5.51d) for a generic piecewise constant profile that comprises p pieces in the interval 0 ≤ t ≤ 1.

The following steps are followed:

1. The energy and length of each piece are denoted by vectors

γ , [γ1, . . . , γp] (5.53)

∆ , [∆1, . . . ,∆p] with ∆1≤i≤p = ti − ti−1, (5.54)
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for which the average energy constraint
∑p
k=1

∫ tk
tk−1

γ(t)dt = γ̄ (5.51b) turns out into

∆Tγ = γ̄ ; ∆T1p = 1. (5.55)

2. The dynamic equation for the noise plus interference term (5.51c) particularised for a γ(t)
that follows the structure above can also be also turned, after defining the known function

B[γ, Nt, x] , Φ
[

γ

Nt

]
� fγ̂(x; γ), (5.56)

into the integral

Ñt(x) = Ñt(∞) exp
(
−α
∫ ∞

x
∆TB[γ, Ñt(y), y]dy

)
(5.57a)

Ñt(∞) = 1 + αθγ̄. (5.57b)

Even in this case, the integral must be addressed numerically. The approach proposed

herein computes a Riemann sum instead of the summation in a continuous interval. The

interval x ∈ [0,∞) is discretised into M intervals of the same length from x0 = 0 to

xM−1 = xmax. Then, the term Ñt(x) is computed recursively as

Ñt(xM−1) = 1 + αθγ̄, (5.58a)

Ñt(xi−1) = Ñt(xi) exp
(
− α

M
∆TB[γ, Ñt(xi), xi]

)
i = 1, . . . ,M−1. (5.58b)

3. The ASE defined in (5.51a) is particularised for a γ(t) that follows the structure of the

optimal user-energy distribution. By defining

A[γ, Nt, x] , PSR
[

γ

Nt

]
� fγ̂(x; γ), (5.59)

and by using the same discretisation as in the second point, the ASE reads

ASE = αR

M

M−1∑

i=0
∆TA[γ, Ñt(xi), xi]. (5.60)

Finally, the resulting vector optimization constitutes two maximisations:

max
p≥1

max
γ,∆

1
M

M−1∑

i=0
∆TA[γ, Ñt(xi), xi] (5.61a)

s.t. γ̄ = ∆Tγ ; 1 = ∆T1p (5.61b)

s.t. Ñt(xi−1) = Ñt(xi) exp
(
− α

M
∆TB[γ, Ñt(xi), xi]

)
for i = 1, . . . ,M−1 (5.61c)

s.t. Ñt(xM−1) = 1 + αθγ̄ (5.61d)

s.t. γ,∆ ≥ 0p (5.61e)

s.t. γi ≥ γi+1 for 0 ≤ i ≤ p−1 (5.61f)
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(i) The inner optimisation determines, for a given p, the amplitude and length of each piece.

The vector optimisation is solved through sequential quadratic programming.

(ii) The optimal p is found in the outer optimization problem by enumerative search and,

since the search is unbounded, a halting criterion is added to its computation. More

specifically, the algorithm adopted increases p and obtains locally-optimal distributions

until insignificant changes are experimented to the so-far best solution. This may happen

when we obtain locally-optimal singular distributions having similar amplitudes (γi ≈ γj

for some i, j), or some interval with practically or null length (some ∆k ≈ 0).

5.4.3 Numerical Results

This section presents the results obtained from the previous algorithm. The worst case for the

receiver to carry out the task of ordering users is considered: the symbol energies received from

all users are estimated without averaging previous estimates. According to the nomenclature

used throughout the chapter, this corresponds to m=1. With regard to the users, transmitted

packets are of ne = 450 symbols plus no = 50 preamble symbols. The adopted coded modulation

scheme is a best-performing code of rate R that follows the second order expansion of the

maximal channel coding rate. The PER versus SINR curve is

PER[Γ] = Q
(√

ne
V (Γ) (C(Γ)−R)

)
. (5.62)

With regard to the receiver, simulations consider the same parameters as in the previous chap-

ters. The average symbol energy is γ̄ = 8dB, the uncancelled energy fraction is ε[Γ] = ε = 1%,

and the decorrelator factor θ is set to 1. With regard to the search algorithm, it is true that it

provides very competitive solutions at moderate/low computation complexity. Nonetheless, the

obtained distributions are found to be very sensitive to the algorithm’s parameters xmax and

the number of points M , although their performance are found to be very close to each other.

In this respect, the section has considered an academical point of view for these simulations in

that, both values are chosen to be sufficiently high so as to obtain the best distributions, to the

best of our accuracy. The values chosen are xmax = 100 and M = 50005.
The simulation drawn in Figure 5.5 evaluates ASE versus traffic load α for optimal and

dynamic decoding orders, with the aim at evaluating the loss in network performance due to

performing the estimation-based ordering of users. The performance of three coded modulation

schemes with rates R1 = 4/3, R2 = 1, and R3 = 2/3 bits/symbol are compared. The ASE

is shown to be highly penalised when the SIC receiver proceeds according to energy estimates.

The lowest performance degradation is achieved when users employ high-rate coding schemes.

The reason is because they operate at higher SINRs, and thus, enable better performance to

the estimation and the ordering processes. Contrarily, the use of lowest coding rates enables the

processing of users at high traffic loads but to the detriment of the performance of estimations.

The optimal number of pieces p at each traffic load is illustrated in Figure 5.6. As shown, it

exhibits a complex interaction between unbalancing or not the received user-energy distribution.

5For more practical studies, M should be less than a thousand to speed up computations.
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Figure 5.5: ASE with optimal and dynamic decode ordering versus traffic load α. Computations compare
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Figure 5.6: Number of pieces p versus traffic load α for optimal and dynamic decode orderings.

SIC benefits from exponentially distributed energies, whereas the impact of energy estimates on

SIC performance benefits from uniform energies. At α→ 0, the best distribution is the uniform

γ(t) = γ̄ regardless of the coding system adopted. At other α, the optimal number of pieces

is more intricate; for instance, at low α, the number of pieces increases so as to approach the

unbalance of the optimal distribution under optimal decode ordering. However, the SINRs of

energy estimates decrease as α increases, and thus, it is better to decrease the number of pieces

for a certain range of α until interference is so high that SIC demands a strong energy unbalance

to succeed. Remarkably, it is beneficial to use low p to reduce the impact of imperfect estimates

on ASE. Some examples of the obtained distributions are depicted in Figures 5.7 and 5.8.
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Figure 5.7: Optimal user-energy distribution at α = 2.0. The figure compares the profiles with optimal
and dynamic decode orderings for the encoders with rates R2 = 1 and R3 = 2/3 bits/symbol.
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Figure 5.8: Optimal user-energy distribution at α = 3.0. The figure compares the profiles with optimal
and dynamic decode orderings for the encoders with rates R2 = 1 and R3 = 2/3 bits/symbol.
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5.5 Concluding Remarks

This chapter has analysed the impact of dynamic ordering of users on the performance of succes-

sive interference cancellation. The work carried out in the present chapter is framed within one of

the most relevant points of the demodulator adopted in the Enhanced Spread Spectrum ALOHA

system [40], which selects the user estimated with highest signal-to-noise-plus-interference ratio

at each decoding stage. The demodulator adopted in this chapter considers the ordering problem

at the initial stage, in which all users are considered to be detected and the decode ordering is

approached after estimating symbol energies from all users through preamble cross-correlations.

This chapter has proposed and validated a system model to analyse the behaviour of a

dynamically ordered successive decoding receiver. The analysis was inspired by the asymptotic

large-user system behaviour, in which the order of a particular user only depends on the symbol

energy estimated from the same user and not from that corresponding to other users. The

system model computes, at each stage, a statistical average that weights the contributions of

all users by the probability that each user be ordered at the given stage. The asymptotic large-

user regime has been investigated to show tractable expressions of the proposed model. The

maximisation of asymptotic spectral efficiency has been tackled by means of the calculus of

variations in a space of piecewise continuously differentiable functions. The most striking result

is the fact that, effectively, the stationary user-energy distributions are shown to be no longer

continuously differentiable, except for the case of vanishing traffic load. Rather, stationary point

distributions comprise many pieces. Furthermore, a complexity-affordable search algorithm with

high performance/complexity ratio is investigated to obtain competitive distributions.
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Appendix 5.A Proofs

Appendix 5.A.1 Asymptotic User-Order Probabilities

This appendix derives the user-asymptotic expression of the probability that user k is ordered

at position k′

pk,k′ = Pr[φ−1
n [k] = k′]. (5.63)

Recall that, as shown in Section 5.2.2.3, the proof for a finite number K of users starts by

computing the distribution of the order of user k conditioned on the estimated symbol energy

γ̂[k] = x. This leads, if K is large enough, to the Gaussian distribution

φ−1
n [k]|{γ̂[k]=x} ∼ N (µk, σk) (5.64)

with the mean µk and variance σ2
k computed as

µk = 1 +
∑

i 6=k
Pr[γ̂[i] > x] , σ2

k =
∑

i 6=k
Pr[γ̂[i] > x] Pr[γ̂[i] < x]. (5.65)

As a curiosity, the convergence to Gaussianity is very fast. For some tenths of users, the previous

assumption holds justifiably. Then, the probability mass function corresponding to the order of

user k can be approximated: firstly, by sampling the Gaussian density; and secondly, by taking

the average over all possible values of γ̂[k]; as

pk,k′ =
∫ ∞

0
fN
(
k′;µk(x), σ2

k(x)
)
fγ̂(x; γ[k])dx. (5.66)

In the asymptotic large-user regime, due to the definition of the asymptotic indices to index

and to order users t = k/K and t′ = k′/K, the user-order probability pk,k′ is turned into that

of user t be ordered the t′-th

dp(t, t′) = Pr[φ−1
n [Kt] = Kt′]. (5.67)

In addition, the bijection φ−1
n [Kt] is turned into the asymptotic function φ−1

n (t), which produces

the order of user t in the dense interval 0 ≤ t′ ≤ 1, as

φ−1
n (t) , lim

K→∞
1
K
φ−1
n [Kt]. (5.68)

We take as reference the rationales exposed before and show the user-asymptotic behaviour of

the expressions above. Firstly, the order of user t conditioned on γ̂(t)=x follows the Gaussian

distribution φ−1
n (t)|{γ̂(t)=x} ∼ N (µ̄, σ̄2) with mean µ̄ and variance σ̄2 computed as

µ̄(x) = lim
K→∞

1
K


1 +

∑

i 6=k
Pr[γ̂[i] > x]


 =

∫ 1

0
Qm

(√
βγ(τ),

√
βx

)
dτ, (5.69)

σ̄2(x) = lim
K→∞

1
K2σKt = 0. (5.70)
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Therefore, the distribution is deterministic:

φ−1
n (t)|{γ̂(t)=x} ∼ δ(t− µ̄(x)). (5.71)

The result is clear. In the asymptotic large-user regime, the estimates from other users do not

affect the order of a given user. The asymptotic distribution of energy estimates is known,

and the receiver only needs to estimate the symbol energy received from user t, γ̂(t) = x, to

determine the position µ(x) it occupies in the decode ordering. The probability that user t is

ordered the t′-th is computed as the differential

dp(t, t′) = dt′
∫ ∞

0
δ(t′ − µ(x))fγ̂(x; γ(t))dx. (5.72)

Applying the change of variable τ , µ(x) with the differential dx = ∇τ µ̄−1(τ) = dτ
˙̄µ(µ̄−1(τ)) and

the integral limits µ(0) = 1 and µ(∞) = 0, we have

dp(t, t′) = −dt′
∫ 1

0
δ(t′ − τ)fγ̂(µ̄−1(τ); γ(t)) 1

˙̄µ(µ̄−1(τ))dτ (5.73a)

= −fγ̂(µ̄−1(t′); γ(t)) dt′
˙̄µ(µ̄−1(t′)) . (5.73b)

Appendix 5.A.2 Derivation of the Stationary Point Equation

This appendix derives the stationary point equation associated with the spectral efficiency max-

imisation of dynamically ordered SIC under an average energy constraint:

max
0<t1,...,tp≤1

max
γ(t)

αR
p∑

k=1

∫ tk

tk−1

∫ ∞

0
PSR

[
γ(t)
Ñt(x)

]
fγ̂(x; γ(t))dxdt (5.74a)

s.t. γ̄ =
p∑

k=1

∫ tk

tk−1
γ(t)dt (5.74b)

s.t.
˙̃Nt(x)
Ñt(x)

= α
p∑

k=1

∫ tk

tk−1
Φ
[
γ(t)
Ñt(x)

]
fγ̂(x; γ(t))dt (5.74c)

s.t. Ñt(∞) = 1 + αθγ̄. (5.74d)

The Lagrangian is formulated in the function space of piecewise continuous elements, as

L[γ(t), Ñt(x)] ,
p∑

k=1

∫ tk

tk−1

∫ ∞

0
A[γ(t), Ñt(x), x]dxdt− λ

( p∑

k=1

∫ tk

tk−1
γ(t)dt− γ̄

)

−
∫ ∞

0
β(x)

( ˙̃Nt(x)
Ñt(x)

− α
p∑

k=1

∫ tk

tk−1
B[γ(t), Ñt(x), x]dt

)
dx.

(5.75)

with

A[γ,Nt, x] , PSR
[
γ

Nt

]
fγ̂(x; γ) (5.76)

B[γ,Nt, x] , Φ
[
γ

Nt

]
fγ̂(x; γ) (5.77)
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The stationary point equations are found by considering variations γ(t)+v(t) and Ñt(x)+vNt(x),
and by expanding the functional J up to the first order. The first variation is cast as

δJ =
p∑

k=1

∫ tk

tk−1

[∫ ∞

0
(Aγ + αβ(x)Bγ) dx− λ

]
vγ(t)dt

+
∫ ∞

0

[ p∑

k=1

∫ tk

tk−1
(ANt + αβ(x)BNt) dt+ β̇(x)

Ñt(x)

]
vNt(x)dx

− β(∞)
Ñt(∞)

vNt(∞) + β(0)
Ñt(0)

vNt(0).

(5.78)

The stationary points are found by satisfying δJ = 0 for any admissible variation vγ(t) and

vNt(x). Two steps are followed:

1. Firstly, the stationary symbol energy profile γ(t) is determined by particularising δJ at

null variations vNt(x) = 0. We have

p∑

k=1

∫ tk

tk−1

[∫ ∞

0
(Aγ + αβ(x)Bγ) dx− λ

]
vγ(t)dt = 0 (5.79)

for all the admissible variations vγ(t). Since we have considered piecewise continuous

functions, the Fundamental Lemma of the Calculus of Variations applies at each interval

tk−1 ≤ t < tk for k = 1, . . . , p. This gives the following set of equations

∫ ∞

0

(
Aγ [γ(t), Ñt(x), x] + αβ(x)Bγ [γ(t), Ñt(x), x]

)
dx = λ 0 ≤ t < t1 (5.80a)

...
∫ ∞

0

(
Aγ [γ(t), Ñt(x), x] + αβ(x)Bγ [γ(t), Ñt(x), x]

)
dx = λ tk−1 ≤ t < tk (5.80b)

...
∫ ∞

0

(
Aγ [γ(t), Ñt(x), x] + αβ(x)Bγ [γ(t), Ñt(x), x]

)
dx = λ tp−1 ≤ t < tp (5.80c)

The interesting observation in all of them is that, all the equations only depend on γ(t)
and not on t inside their respective intervals. The conclusion is that the stationary point

symbol energy profiles γ(t) follow piecewise constant structures:

γ(t) = γk in tk−1 ≤ t < tk for k = 1, . . . , p. (5.81)

2. Secondly, the stationary point for the noise plus interference term Ñt(x) is found by par-

ticularising δJ at vγ(t)T = 0 and vNt(∞) = vNt(0) = 0. This gives, after the application

of the fundamental lemma of the calculus of variations

−
p∑

k=1

∫ tk

tk−1

(
ANt [γ(t), Ñt(x), x] + αβ(x)BNt [γ(t), Ñt(x), x]

)
dt = β̇(x)

Ñt(x)
. (5.82)

Since Ñt(∞) does not vary, vNt(∞) = 0. Thus, the initial value of β̇(x) is β(0) = 0.
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6.1 Conclusions

This thesis has dealt with the design of energy and code allocation strategies for the uplink of a

massively populated network in which the receiver leverages interference cancellation to provide

high throughput and reliable multiple access. The scenario under evaluation is contextualised

in the framework of massive machine-type communications, where many devices run a latency

tolerant application and rely on a transparent satellite connected to a ground-based gateway

over the downlink. This thesis has addressed two main problems in this framework:

1. The derivation of system models that characterise statistically the behaviour of practical

successive interference cancellation (SIC) systems. This thesis has explored the appli-

cation of the key design aspects of the demodulator adopted in the Enhanced Spread

Spectrum ALOHA system, which incorporates asynchronous spread spectrum transmis-

sions together with a powerful packet-based demodulation algorithm based on iterative

SIC. This demodulator fully extends the one considered in classical information-theoretic

analyses, as it combines the packet detection process with the ordering of users and the

iterative decoding-cancellation system implementation for short-length codes. A particu-

lar challenge has been to establish a model embodying the above features. The present

thesis has approached the more complex analysis of the joint system by incorporating such

features gradually along three chapters.

2. The design of allocation strategies for a large number of users. The known analytical

findings corresponding to the maximisation of the network sum-rate reveal that all users

must transmit at the same rate and arrive with exponentially distributed symbol ener-

gies. This thesis has explored in depth the already known unbalance between energy and

coding rate of different users by incorporating analytical findings for short-length codes.

In this respect, when the asymptotic distribution of channel power gains from all users is

known, the analytic form of the best allocation strategy has been determined leveraging

the user-asymptotic regime of the previous system model. More specifically, this thesis

has addressed the problem of allocating energy and code to asymptotically many users by

taking advantage of the calculus of variations over function spaces. Contrarily to vector
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optimisation, the difficulty of this problem lies in considering a function space generic

enough, so as to enable discontinuous candidates to be potentially optimal solutions to the

stated problems. One of the main contributions of this thesis has been the bet on discon-

tinuous (piecewise continuously differentiable) functions to solve the problems of energy

and code allocation.

This thesis has been organised into five chapters, whose conclusions are summarised below

chapter by chapter. The introductory part has been divided into two chapters:

1. The research challenges and overview on massive multiple access in the context of satellite

communications have been summarised in Chapter 1. The use of non-orthogonal multiple

access jointly with the exploitation of the collision domain by the receiver have been iden-

tified as major objectives to counterbalance the increasing network density. The analysis

in this thesis has been focused on the uplink; two relevant random access protocols that

solve such a problem effectively have been outlined throughout the chapter. This thesis

has selected one of them for study: the Enhanced Spread Spectrum ALOHA protocol. In

this scheme, users employ coding systems for short packets and non-orthogonal spreading

waveforms, and the receiver handles multiple packet collisions under an innovative itera-

tive multiuser decoding algorithm. The specific features of such a multiuser receiver have

been discussed as motivation for introducing posterior chapters.

2. A theoretical perspective on Gaussian multiple access channels (MAC) under infinite and

finite blocklength constraints has been analysed in Chapter 2. The first part of the chap-

ter has reviewed pioneering analyses on orthogonal and non-orthogonal multiple access

approaches to the Gaussian MAC, with specific application to broadband satellite services

under spreading-based multiple access and many users. The second part of the chapter

has been devoted to the performance analysis of multiuser receivers for randomly spread

users with optimal detection and successive decoding. In addition, the chapter has also

discussed the main practical features of successive decoding corresponding to the decoding

of short packets, imperfectly cancelled users, and the user decode ordering.

The substance of the work carried out in this thesis revolves around the practical features of the

iterative demodulator adopted in the Enhanced Spread Spectrum ALOHA system:

3. The first iteration of an imperfect SIC receiver has been analysed in Chapter 3. The

non-idealities of channel decoding for short packets and imperfect cancellation have been

studied for a SIC receiver aided by redundancy-check error control. The model adopted

for such a receiver has addressed the characterisation of both features through the known

packet error rate (PER) and the residual energy (RE) curves versus signal-to-interference-

plus-noise ratio (SINR). Under this policy, the events of packet success and packet failure

corresponding to users previously processed are propagated throughout the stages of SIC,

totalling an exponential number of possible combinations. This thesis has shown that a

convenient approach to address such an issue is by analysing the user-asymptotic regime,

in which case the above model has resulted into a set of differential or integral equations

that describe the evolution of noise plus interference throughout the processing stages.

The allocation designs accounting for the first iteration of such a receiver have been
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derived by resorting to the calculus of variations for a broad variety of energy, rate, and

conjoint designs. The commonest result after all the designs is that SIC benefits much

more from unbalancing energy, rate and reliability rather than from allocating uniformly

one or more of them to users. The optimal allocations share a common trait: they belong

to a metric space of discontinuous functions that allocate null energy to weakest users.

4. The previous analysis and the system-based optimization presented in the previous chapter

have been extended in Chapter 4 by taking up an iterative approach to the adopted

SIC receiver. More specifically, the iterative SIC receiver bases its operation on further

iterations of the demodulator adopted in the Enhanced Spread Spectrum ALOHA system,

in which users decoded unsuccessfully are processed persistently. Remarkably, the system

has been modelled as a cascade of SIC schemes that operate, at each iteration, with less

users and variables statistically dependent on previous iterations. For system modelling,

this has entailed the introduction of multivariable functions for user decoding. The user-

asymptotic regime is analysed to facilitate the mathematical treatment of the previous

system model, and also, to enable the full understanding of the sensitivity of the adopted

iterative receiver to system model parameters.

The allocation designs corresponding to this chapter have explored the unbalance be-

tween energy and code allocated to users with fair and optimal reliability. Iterative SIC

has been shown to outperform substantially the non-iterative SIC analysed in the previ-

ous chapter when the traffic load is sufficiently high and the coded modulation schemes

employed by users are less competitive. Moreover, iterative SIC has shown an overwhelm-

ing performance in all the scenarios analysed if the number of users and iterations are

sufficiently high, as it practically provides error-free decoding performance to all users.

5. The impact of estimated symbol energies has been studied throughout Chapter 5. To that

aim, it has been considered that the receiver does not know the identities of all users and

that no channel state information is provided to the receiver. The adopted receiver then

performs SIC after estimating the symbol energies received from all users. This analysis

corresponds to a simplified approach of the demodulator adopted in Enhanced Spread

Spectrum ALOHA. The challenge in this chapter has been the derivation of an accurate

system model for such a receiver implementation. Through an extensive development, the

model is based on the behaviour of such a system in the user-asymptotic regime. Sum-

marising the contribution, the long-term average expressions have been substituted by

statistical averages that weight the contribution of all users by the known ordering prob-

abilities. The user-asymptotic regime has been studied in depth to simplify the analytical

complexity of the system model. More specifically, the analysis has been turned into de-

terministic, and the ordering probabilities have shown a very simple form in terms of the

density of energy estimates from preamble cross-correlations.

The asymptotic optimisation of the above system has been useful to identify the best-

performing energy allocation for the user-aggregate spectral efficiency. It has been shown

that the stationary point distributions have the structure of piecewise constant functions,

that decrease the impact of energy estimation on the task of ordering users, at the same

time that unbalance user-energies to benefit the performance of the SIC receiver.
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6.2 Potential Topics for Future Research

Following the completion of this thesis, the next research lines have been identified as potential

topics to continue the studies initiated in the last three chapters:

1. An accurate system model for less users. This thesis has focussed mainly on settings

involving many users as a direct observation of current massive machine-type communica-

tion scenarios. More specifically, the system models corresponding to the adopted receivers

have resorted to the asymptotic large-user regime to deal with the randomness present in

packet decoding success and failure events. The limitation of this work, then, is the ap-

plication of our system models and asymptotic allocations for a finite number of users. In

this respect, as it has been demonstrated throughout the present thesis, we must have in

the order of a few hundred users to validate the asymptotic expressions.

A future research line would consist in introducing some corrections in the asymptotic

computations to validate such expressions for even less users.

The subsequent future research lines put more attention into practical implementation aspects

of the system considered:

2. The detection of users. Taking the demodulator adopted in the Enhanced Spread Spectrum

ALOHA system as reference, one of the aspects that has been left unstudied is the packet

detection process. Recall that such a demodulator combines the detection and ordering of

users with the successive decoding implementation. In this respect, the present thesis has

studied the above features when all transmitting users are detected.

An interesting study reserved for future research would be the analysis and the intro-

duction of the packet detection algorithm to the system model and to the allocation design

procedure proposed in this thesis. For the one-iteration SIC discussed in Chapter 3, we

believe it is relatively straightforward. The univariate PER function can be modified to

include the process of detecting users. However, its analysis for iterative SIC can be more

complex since the decoding algorithm can be intertwined with the detection of new users.

3. The iterative ordering and decoding of users. Another future research topic concerns

Chapter 5, where system analysis and performance has been analysed for a simple study

case in which the estimation and the ordering of users are decoupled from successive

decoding. According to the implementation adopted in the Enhanced Spread Spectrum

ALOHA system, the performance of the receiver can be improved further if the estimation

task is combined with the decoding of users (see Section 5.3.3 for more details).

The analysis pursued in Chapter 5 has been found to be consistent with the above

policy. Then, the future work would be determining an analytical expression for the user-

order probabilities corresponding to the new ordering and cancellation policy.

4. A model for sliding-window based iterative SIC. As described in Chapter 1, the highest

performing system performs a sliding window-based interference cancellation approach

that overlaps many windows within a burst frame. For simplicity, more simplified cases

have been analysed throughout this thesis. A very interesting future work involves the

analysis and modelling of the more complex approach described extensively in [40].
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