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Summary
This thesis proposes a framework for configuring Task Planning Problems flexibly in an auto-
matic manner using two main modules which are the Perception Module and the Reasoning
Module.

In order to automatize the overall process, initially, a knowledge layer is generated manually,
in which the information regarding the environment is stored using ontologies, whereas the
environmental state where the task is taking place is observed with the help of the Perception
Module. The knowledge layer is then reasoned within the Reasoner Module in order to auto-
matically configure task planning problems by filling Planning Domain Definition Language
(PDDL) [1] files. During this reasoning process, the information retrieved from the Perception
Module is used.

In this paper, both of these modules mentioned above are explained in detail before providing
the results separately for each module. Then, in addition to individual results, a scenario is cre-
ated within a lab environment to test the overall system including both modules. Furthermore,
alternative areas where the Reasoning Module implementation can be benefited from is also
discussed.
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1 Preface

1.1 Origin of the Project
The origin of this thesis is to enhance the existing robotics applications that are currently being
used in the Robotics Lab of the Institute of Industrial and Control Engineering (IOC-UPC). The
motivation of this study can be divided into twomain parts, one of which is the object detection
processwithin the lab and the other is regarding the configuration of the Task Planning problem
files.

Currently, in Robotics Lab of the Institute of Industrial and Control Engineering (IOC-UPC),
the objects are detected using different variety of Fiducial Markers. Even though the usage of
Fiducial markers to detect objects within the task environment gives us high precision results
with high speed, one issue faced during the detection is, the struggle to detect the markers
when there is an occlusion between the objects and the camera. Considering the tasks that are
planned to be executed in IOCRobotics Lab, possible occlusions between the task related objects
can occur. In addition to the occlusions, the Fiducial markers may not be fully visible by the
cameras due to the placement of the marker on the object and the camera poses with respect to
the object itself. One possible enhancement in this case is introducing an object pose estimation
module which can detect the bounding boxes of the objects, evenwith partial occlusions, within
the task environment.

Furthermore, currently in the lab, Task Planning Problems domain and problem files are cre-
ated manually considering the task description. This task description includes assumptions
regarding the state of the environment such as the available objects and agents. However, this
implementation requires an adaptation of the PDDL files for different tasks which consist of
divergent elements and goals to be achieved within the environment. Moreover, this current
application is not feasible for the cases where the state of the environment is dynamic during
the task execution, since the PDDL files remain the same throughout the implementation and
the planner is called once in the beginning of the execution. Possible robotics applications in
which re-generation of PDDL files, through the inclusion of the reasoning concept, can be ben-
efited from will be discussed further in this work.

1.2 Prerequisites
In this thesis, the perceptionmodule studied is the adaptation to IOCRobotics Lab environment
of the Deep Object Pose Estimation, DOPE, project explained in the paper [2] and the available
source code in the repository [3]. For this purpose, Unreal Engine 4 [4] platform is adopted for
the generation of synthetic training data with the help of NVIDIA Deep Learning Dataset Syn-
thesizer, NDDS, plug-in [5]. Training and Validation codes are also provided within the same
GitHub repository mentioned above. One important aspect is that this thesis is not the exact
replicate of the study explained in the original paper, but an adaptation of it considering the
resources available in the lab environment. The same project also provides a Robotic Operation
System, ROS [6], Inference by which the perception module can easily be integrated with the
current applications within the lab.

In addition to the PerceptionModule, within the ReasoningModule, Protege [7] ontology editor
interface is used to create the knowledge layerwhich consists of the records of the environmental
entities. Ontologies are used to describe the knowledge in the form of concepts considering the
relationships among these concepts. The reasoning process is implemented with the help of the
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SWI-Prolog [8] compiler and ROS [6] services created specifically for this task. These services
retrieve information from the knowledge layer by querying over the ontologies and then with
the help of a PDDL-Parser package [9], task specific PDDL files are generated considering the
output of the reasoner.
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2 Introduction
Some of the required capabilities for mobile manipulators to make them able to autonomously
move and work in semi structured human environments are:

• Smart perception capabilities that are able to, not only perceive, but to understand the
current state of the environment (including the robot itself).

• Adaptive planning capabilities that are able to: a) plan at task levels according to the cur-
rent state of the environment and to the goal to be achieved, updating the initial state
and choosing the actions the robot can do to solve the problem; b) plan at motion level
according to the current poses of the objects, modifying grasping configurations if neces-
sary, object placement poses or the robot base location, and choosing themost appropriate
motion planner.

• Robust execution capabilities that are able to integrate both the smart perception capabil-
ities and the adaptive planning capabilities to avoid failures or, if failures occur, be able to
reason on the failed state in order to plan the best recovery strategy.

In this thesis, first two of these capabilities are aimed to be integrated in a single framework to
flexibly configure task specific problem files.

In order to execute a specific task, a sequence of actions should be determined, considering
the given initial and goal conditions of the entities within the environment, assuming that all
the executable actions are deterministic but not stochastic. In this concept, classical planning
approaches can be adopted in which the problem files are represented using the Planning Do-
main Definition Language (PDDL). This language consists of the definition of pre and post
conditions of each possible action in addition to their effects. PDDL can be grouped into two
main files, one for the domain description and one for the problem description for objects initial
states and goal specifications.

Compliance with the dynamic state of the environment enhances the robot capabilities. For this
purpose, generation of a knowledge layer is essential, in such a manner, a reasoning framework
can be utilized on this layer to adapt the PDDL file contents regarding the perceived environ-
ment. Therefore, knowledge needs to be structured such that it is usable for reasoning tasks
and, in this line, ontologies arise as hierarchical structures expressing the universe of discourse
based on relations, such as is-a and has-a, between concepts and instances of classes, being these
concepts, instances, and relations expressed in formal languages.

2.1 Objective of Thesis
The main objective of this thesis can be grouped into two main parts as follows:

• Enhancing the current perception structure based on detecting Fiducial markers placed
on the objects of interest within the IOC Robotics Lab in ETSEIB by introducing a more
robust and efficient object detection application.

• Configuring task planning problems with the help of a reasoning framework considering
the current state of the environment where the task will be executed. This configuration
includes the selection of feasible actions from a given global domain. Information regard-
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ing the current state of the environment is aimed to be retrieved from the perceptionmod-
ule solution suggested above. With this implementation, the closed-world assumption is
discarded and more flexibility is expected to be achieved.

2.2 State-of-the-Art
In this section, previous research regarding both perception for pose estimation and reasoning
using ontologies is discussed.

The state-of-the-art methods for object pose estimation consist of either the classical Fiducial
marker detection or inclusion of Deep Learning with the help of computer vision. There are
different types of Fiducial Markers available in robotics field such as ArUco [10], ARToolkit
[11], ARTag [12], and AprilTag [13] markers. In IOC Lab, ArUco tags are currently being used
and AprilTag & ARTag are also being studied for further enhancements. Each of these mark-
ers have different hand-crafted features that are designed to be robust to be used in detection
and classification tasks. Even though classical Fiducial markers provide high precision results,
they do not always perform well in natural environments. These natural environments define
the circumstances where the pose estimation algorithm is expected to operate. Possible inter-
ference that can be present in detection and classification applications are the scaling, possible
occlusions between the objects, motion-blur due to a non-fixed camera or moving objects, and
off-axis viewing which is described as looking at a display from an angle that is at least one de-
gree away from center. There are studies concerning these drawbacks of using Fiducial markers
such as Fractal Markers [14] that are designed to tackle the occlusion issue. Another solution
suggested is about the motion blur challenge which is especially a concern in quad-copters,
since the markers on them are subject to sudden and unstable motion throughout the operation
[15].

Due to all these downsides of the classical marker detection applications, introduction of deep
learning is being studied recently, since with the appropriate training, they can be more ro-
bust to the above mentioned difficulties. There are many research regarding this topic such as
[16], [17], [18]. They mainly differ in the selection of the neural network architecture or the
loss function. One of the advantages of deep learning in pose estimation is that they benefit
from having a huge training dataset. However, generation of this dataset is expensive to ac-
quire since it requires the labeling of the objects of interest. Therefore, the concept of synthetic
data is introduced into the field to deal with this problem. With the help of synthetic data, the
labeling cost can be reduced since the labels come automatically during the generation process.
However, using only synthetic data for training process causes a gap called ’Domain Gap’ be-
tween the real world and simulation environments considering that after the training process,
the network is expected to performwithin real world applications. A network trainedwith fully
synthetic data will not perform well in real world due to this gap. In order to solve this prob-
lem, Domain Adaptation andDomain Randomization [19] concepts are introduced to close this
Domain Gap. For this purpose photo-realistic rendering platforms are being used to generate
realistic training data to close the ’Appearance Gap’ which is a reason why Domain Gap exists.
Domain Gap also occurs due to a concept called ’Content Gap’ which is because synthetic con-
tent imitates a limited set of scenes, not necessarily reflecting the diversity and distribution of
objects of those captured in the real world [20]. One relatedwork to close thesementioned gaps
is Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects [2] which
is the starting point for the perceptionmodule implementation in this thesis. It is adapted to the
Robotics Lab of the Institute of Industrial and Control Engineering (IOC-UPC) and the steps
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followed are explained in details in Section 3.

The state-of-the-art methods for using knowledge in planning with ontologies involve many
domains such as manipulation domain [21], [22] which aims to find motion plans that are de-
sired to be adopted regarding the obstacles in the environment satisfying certain constraints (i.e.
which obstacles can be collided, from where and with which interacting force), the navigation
domain [23], [24] in which, knowledge is used to build a representation of the environment
combining the metric information needed for navigation tasks with the symbolic information
that stores the context of the aspects within the environment, or perception domain for manipu-
lation [25] in which the observed environment via sensors is stored in the form of ontologies to
improvemanipulation tasks planning. A review of the use of ontologies to give robot autonomy
can be found in [26].

2.3 Scope of Thesis
This work studies the use of ontologies, through a suggested Reasoning Module, in solving
manipulation problems, given the information regarding the objects within the environment
which is detected through the Perception Module, predefined manipulation constraints, in ad-
dition to the available agents and their capabilities. Therefore, creation of task specific PDDL
files is required so that the manipulation problem can be solved with any classical task planner.

With the purpose of detecting the aspects within the environment, so that the suggested Rea-
soning Module interprets the current state of the environment, a smart perception module im-
plementation based on deep neural networks is adopted. By doing so, current object detection
algorithms based on marker detection is planned to be enhanced.

In order to automatically generate task specific PDDL files, an initial global PDDL file, which is
provided manually, including all possible actions the agents can execute and the predicates, is
forwarded into the PDDL parser tool, which is described in Section 4.3, to store PDDL content.
From this global PDDL content, only the task specific actions and agents, which are provided
as the output of the reasoner through the framework explained in Section 4.2, are written into
the task specific PDDL file by the same PDDL parser tool. The final PDDL file is used in higher
level tasks such as Task and Motion Planning (TAMP).

The structure of the manuscript is as follows. In Section 3, the Perception Module which is im-
plemented following the study explained in Section 3.1 is described. Then, Reasoning Module
is explained in Section 4 including the background about Ontologies in Robot Manipulation
and Knowledge Layer. The test scenarios generated for the Reasoning Module are specified in
Section 4.6 and the results for both of the modules are provided in Section 5.
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3 Perception Module
In robotics manipulation tasks, detection of objects of interest in the environment with high
accuracy is essential to perform the specified task which includes variety of interactions with
the detected objects. The detection includes the position and the orientationwhich is also called
as the 6 DoF pose of these objects. Different methods are being used for 3D object detection and
pose estimation such as Fiducial Markers or Deep Neural Networks which is taken as reference
for the Perception Module implementation in this thesis. Therefore, Sections between 3.1.1 -
3.1.5 are dedicated to the implementation of a deep neural network in the Robotics Lab of the
Institute of Industrial and Control Engineering (IOC-UPC) for object detection.

3.1 Deep Object Pose Estimation
Inclusion of deep neural networks into 6 DoF pose detection algorithms used to suffer from the
lack of enough training data, since generation of ground-truth for the objects used to be costly
before the introduction of synthetic data concept in which data already comes with the labels.
In addition to facilitating the training of deep neural networks, establishment of synthetic data
concept permit carrying out the training with a dataset that is not correlated with the test data
which is usually captured with real cameras in real world setup.

On the other hand, one of the main concerns in using synthetic training data is that the neu-
ral networks that are trained with synthetic data only, does not perform well in real data due
to the content gap between real and synthetic images. In this work, a concept called Domain
Randomization is being implemented to try to close this Sim-to-Real gap , which is the differ-
ence between the real domain and virtual domain, and enable the network perform well also
in real world without fine-tuning. In addition to domain randomized synthetic data, realistic
training data is also benefited from in training the network to introduce the relevant complex-
ity of real world scenes. In order to generate synthetic data, Unreal Engine and NVIDIA Deep
learning Dataset Synthesizer (NDDS) plug-in are chosen which are discussed in Section 3.1.1 &
3.1.2. Environment created in Unreal Engine in which photo-realistic synthetic data is captured
is described in Section 3.1.3.1 and the generation process of both of photo-realistic and domain
randomized datasets is explained in Section 3.1.3.

3.1.1 Unreal Engine 4

Unreal Engine is a game engine developed by Epic Games [27]. Its newest version is Unreal
Engine 4. In addition to its wide usage within gaming industry, it is also used in film making
and virtual reality applications due to its wide range of features and plug-ins. Information
regarding available features and the releases are published regularly on their website [4].

Unreal Engine is a feasible solution to synthetic image generation since photo-realistic images
can be synthesized with the help of its high-performance rendering capabilities [28]. It also al-
lows implementing other concepts such as Domain Randomizationwhich is widely usedwithin
the synthetic data generation process in order to close the Sim-to-Real gapwith the help of avail-
able plug-ins. For this purpose, a specific Unreal Engine plug-in namedNVIDIADeep learning
Dataset Synthesizer (NDDS) [5] which will be discussed in the next section is used.

In order to install Unreal Engine 4, steps in [29] are followed, initially, to gain access to the
Unreal Engine repository on GitHub. After these steps, desired version of Unreal Engine 4
source code can be cloned and built following the steps in the README file in Unreal Engine
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Figure 3.1: An Example Image Generated using NDDS, with Ground Truth, Segmentation,
Depth, and Object poses

GitHub repository. In this thesis, Unreal Engine version 4.25.4 is installed and built.

3.1.2 NVIDIA Deep learning Dataset Synthesizer (NDDS) Plug-in

NDDS is a plug-in for Unreal Engine 4, developed by NVIDIA, to export synthetic images with
ground truth labels. In addition to the RGB images, the following data can also be generated
within the plug-in:

• Depth Images

• Class Segmentation Images

• Instance Segmentation Images

• Bounding Box of the objects of interest

• Poses of objects of interest

Examples of the abovementioned data can be seen in Figure 3.1. The plug-in also includes tools
to implementDomain Randomizationwithin the environment by randomizing lighting, camera
pose, object poses, objects textures and also by adding distractors into the scene. With all these
included features, synthetic training data can easily be generated combinedwithmetadata. The
metadata is also called as Annotation File in NDDS which provides the pose, class ID and the
visibility (0 meaning fully occluded and 1 meaning fully visible) of the objects in an RGB image
generated using the plug-in. An example of this annotation file can be seen in Figure 3.2.

In order to create this ground truth annotation files, NDDSprovides a tool namedNVCapturable-
ActorTag which is added to objects of interest as in Figure 3.3. After adding the tag to the object
and naming it from the Tag entry as shown Figure 3.3, Include Me option should be selected so
that the tag is detected during the image capturing.
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Figure 3.2: Example Annotation File

There are two other alternatives to NDDS in labeled synthetic data exportation. One of which is
the defaultUnreal Engine 4 screenshot function and the other alternative is the publicly available
UnrealCV tool [30]. However, since NDDS leverages asynchronous, multithreaded sequential
frame grabbing, the plug-in generates data at a rate of 50-100 Hz, which is significantly faster
than the mentioned alternatives.

In this thesis, NDDS plug-in is built from [31], so that it is compatible with the installed Unreal
Engine which is version 4.25.4. Even though, version 4.26 for NDDS plug-in is also available
which is compatible with the newest Unreal Engine version (4.26), this version of NDDS plug-
in is said to be not compatible with Linux. Since our computer setup is a Debian system, NDDS
plug-in version 4.25.4 is selected for this thesis.

After cloning the project from the provided repository, steps below are followed to build the
plug-in. Because when NDDS.uproject is opened via Unreal Engine the error in Figure 3.4 &
Figure 3.5 occurs. Therefore, Visual Code Studio is used for building the project from the source.
The steps below are followed within Visual Code Studio to do so:

1. Create the workspace by runningGenerateProjectFiles.sh /path_to_uproject_file -game -engine
in a terminal. This .sh file is located under Unreal Engine project folder.
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Figure 3.3: NVCapturableActorTag for the Object of Interest

2. Open created .workspace file in Visual Code Studio.

3. Ctrl + Shift + B and type NDDSEditor Linux Development Build to build the code from
source

Then,NDDS.uproject file can be opened via Unreal Engine 4 and the NDDS plug-in with its sub-
packages (Domain Randomization for Deep Neural Networks, Fast Scene Capturer, NVIDIA
Data Object, and NVIDIA Utilities) is visible under the available plug-ins as shown in Figure
3.6.

3.1.3 Synthetic Training Data Generation

Synthetic training dataset consists of two main parts which are the photo-realistic images and
domain randomized images as mentioned earlier. In the Deep Object Pose Estimation paper
followed, using equal amounts of Domain Randomized and Photo-realistic images is suggested,
considering other trials with different proportions. Therefore, the same strategy is applied in
this thesis. Even though both of these datasets are generatedwithin Unreal Engine 4 andNDDS
plug-in, different environmental preparation is required for each case.

3.1.3.1 Environmental Setup

In order to create photo-realistic synthetic images, a realistic environment in Unreal Engine
should be created. On way to do so is to use already existing environments in Unreal Engine
Marketplace [32] which offers both free and paid realistic environments. The assets of these en-
vironments can be sent to Unreal Engine through Epic Games Launcher. However, Epic Games
Launcher is not offered for a Debian platform. Therefore, an intermediate interface is required
to install Epic Games Launcher into a Debian operating system. This can be achieved by using
an open source gaming platform called Lutris [33] for Linux. Yet, in this thesis, Robotics Lab
of the Institute of Industrial and Control Engineering (IOC-UPC) environment is decided to be
created within Unreal Engine and different locations within the lab is selected for realistic data
generation.

Meshes of the objects within the lab were already created to generate scenes to be used in Kau-
tham [34], therefore, the same meshes are converted into wavefront object [35] files and im-
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Figure 3.4: NDDS Build Error

ported to Unreal Engine. However, in order to create realistic images, the textures of these
objects should also be taken into account. Since the original textures of the objects within the
environment were not available, realistic texture packs are found online [36]. Chosen textures
are added to the objects through creating a new Layered Material Instance [37] in UE4.

In order to integrate the textures into the meshes, the structure in Figure 3.7 is being created.
The Texture Object blocks in the same figure are the Roughness, Normal and Occlusion from
top to bottom. A Scaler, which is 256 in Figure 3.7, is also provided in order to set the resolution
of the material. By adjusting this value, the same Material Instance can be used for objects in
different scale.

Another important asset in realistic image generation is introducing realistic lighting within the
environment. In this setup, no natural day light is taken into consideration since no window
structure is created, therefore, only realistic fluorescent lighting ismimicked by using Rect Light
asset [38] in UE4 with the color codes R = 253, G = 242, B = 198. These values are selected to
mimic a natural lighting in the setup. Images of the created lab environment can be seen in
Figure 3.8.

3.1.3.2 Object of Interest

Even though it is possible to train a single set of weights for detecting multiple objects at the
same time, in this thesis, only one object is selected which is available in the Robotics Lab of
the Institute of Industrial and Control Engineering (IOC-UPC). This object is a part of a toy
plane which is already being used in manipulation tasks in the lab. The wavefront object of the
model was also available. The model can be seen in Figure 3.9 which does not include color
data initially. This feature is added within Unreal Engine 4 later.
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Figure 3.5: NDDS Build Error

One way to import the chosen model into UE4 environment is directly through Import button
right next to Add New button. After importing the model into Unreal Engine and including the
color codes which are obtained approximately from the images of the real object, the model
looks as in Figure 3.10.

One problem encountered when importing the model with this method is the wrong visibility
value inside the annotation files. In order to solve this problem, an alternative importingmethod
is followed. For this purpose, a 3D computer graphics software tool Blender [39] is used. In
Blender, there is an available add-on called Send To Unreal [40] which enables sending models
to Unreal Engine 4 directly. Before sending the model to UE4, after importing the model to
Blender, the model should be added into the Mesh category. In order to do so, after selecting
the imported model by clicking on it, button M should be pressed on the keyboard and Mesh
option should be selected from the appearing menu. Later, through the Pipeline -> Export -
> Send to Unreal drop-down menu in Blender, the model can be sent to Unreal Engine. The
visibility issue is solved when the objects are imported following this method.

The object.json file in Figure 3.11 is generated automatically when the scene is started being cap-
tured to represent the objects of interest which have the NVCapturableActorTag in the created
environment. This file can be found in /Dataset_Synthesizer/Source 4.25/NVCapturedData/Test-
Capturer directory. The settings for the selected capturer, an asset of NDDS plug-in, to capture
the RGB images with the desired features is explained in the next section.
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Figure 3.6: NDDS Plug-in

3.1.3.3 Scene Capturer Settings

In order to capture RGB images and desired features, NDDS offers an asset named NVSceneCap-
turer. The settings in Figure 3.12& 3.13 are chosen to capture the RGB images and the annotation
files.

The capturer settings are saved to camera.json in /Dataset_Synthesizer/Source 4.25/NVCaptured-
Data/TestCapturer directory automatically when the scene is started being captured.

3.1.3.4 Photo-realistic Image Generation

The Robotics Lab of the Institute of Industrial and Control Engineering (IOC-UPC) setup cre-
ated in Unreal Engine 4 is used as the environment in this case. Four different locations within
the lab are chosen which are:

1. The White Table with the Chessboard

2. The Lab Floor

3. The Wooden Table

4. The White Table without the Chessboard

Locations where the images are captured can be seen in Figure 3.19.

After the selection of placeswithin the lab, the data generation strategy defined in Falling Things
Dataset [41] is followed, in which the objects are rendered randomly around the selected loca-
tions and they are allowed to fall under gravity. In addition to the object of interest, UnderBody,
other parts of the same toy plane, as in Figure 3.14, are also imported into the lab environment
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Figure 3.7: Material Instance Script

to create occlusion between the objects in the captured images. While these objects are falling,
they can also collide with each other or with other elements in the environment which increases
the randomness in the images generated. Meanwhile, the capturer is sent to random positions
and orientations within a set of range while the scene is being captured.

In order to implement the collisions correctly, collision meshes should be added to the objects
involved. These objects are not only the ones that are falling but also other assets that are in-
volved in the collision such as the tables or the floor of the lab. There are two types of collisions
which are called Simple Collision and Complex Collision which can be added to the objects. The
one that is used for the meshes in the environment is the Simple Collision which can be added
following [42]. It is visualized through the Colision dropdown menu as it can be seen in Figure
3.15. More details regarding collision meshes in Unreal Engine can be found in [42].

As a means to render the objects at random locations and let them fall under gravity, Blueprint
Visual Scripting [43], which is the visual scripting system inside Unreal Engine 4 is used. It can
be reached from the menu shown in Figure 3.16, in Unreal Engine 4.

The interface built for this purpose can be seen in Figures 3.17 & 3.18.

The following nodes are used in this blueprint structure with the described purposes:



p. 21

Figure 3.8: Robotics Lab of the Institute of Industrial and Control Engineering (IOC-UPC) En-
vironment Setup in Unreal Engine

• Random Float in Range - Generates a random number between Min and Max

• Make Vector - Makes a vector from {X, Y, Z}

• Random Rotator - Generates a random rotation, with optional random roll

• SpawnEvent - Custom Events provide a way for creating events that can be called at any
point in the Blueprint’s sequence [44]

• Event BeginPlay - Event when play begins for the actor

• Get Actor of Class - Find the first Actor in the world of the specified class

• Set Timer by Event - Set a timer to execute delegate

• Set Actor Location and Rotation - Move the actor instantly to the specified location and
rotation

Example images in Figure 3.19 (512 x 512) are obtainedwith the described environmental setup.
50K images are generated using the same structure. For photo-realistic training dataset, only
ground truth RGB images and their annotation files are generated within this setup.

The accuracy of the generated training data can be checked through an interface called NVIDIA
Dataset Utilities (NVDU) [45] which is a Python based project that enables visualizing the
annotations delivered by NDDS plug-in through the command nvdu_viz. An example image
from the training dataset and its visualized 3D bounding box and axes can be seen in Figure
3.20.
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Figure 3.9: UnderBody Model Visualized in Blender

3.1.3.5 Domain Randomized Image Generation

Unlike the photo-realistic case, no environment setup is used in this case. The setup includes the
scene capturer, the object of interest, UnderBody, the distractors in the scene to create occlusions.
As a background, images from COCO dataset [46] are used as suggested in the original paper.
1923 images are selected randomly from the COCO dataset and placed as the background with
a 100 Hz rate of change.

All the placed objects, including the object of interest, which is UnderBody, and distractors in
different shapes, sizes and textures are located inside a 3D volume in front of the background.
In this volume, they are spawned at random locations and orientations every 0.01 second. The
texture of the distractors is also changed every 0.01 second given a manually created texture
subset. Other parameters that are being randomized are the lighting intensity and HSV values
within a range. The lighting randomization setting can be seen in Figure 3.21 and the created
setup is as in Figure 3.22. In the same Figure, the image on the right bottom corner is what the
scene capturer sees from the current location.

Scene capturer is static in this scenario unlike the case in photo-realistic image generation en-
vironment so the camera is not sent to random locations and orientations during the image
capturing. The imported objects are randomly spawned inside the created cube which is a Trig-
gerVolume asset [47], while the capturer is taking the images.

Again, 50K images (512 x 512) with annotation files are generated within this setup and exam-
ples of the data created can be seen in Figure 3.23. For domain randomized training dataset,
only ground truth RGB images and their annotation files are generated within this setup.

3.1.4 Training

Training process in Deep Object Pose Estimation is based on detecting the keypoints in an RGB
image and retrieving pose information from these keypoints. For this purpose, input to the
selected deep neural network, which is mentioned in Network Architecture section, is an RGB
image and the output has two main parts. One of which is the Belief Maps and the other output
is theVector Fields. There are nine BeliefMaps at the output, eight for the vertices and one for the
centroid of the bounding box of the object of interest. Likely, there are eight Vector Fields each
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Figure 3.10: UnderBody Model with Color Included

Figure 3.11: The object.json File

of which corresponds the direction from the vertex towards the centroid of the same object.

BeliefMaps can be thought as a 2D heat-map of where a keypoint is located, high value is equiv-
alent to high likely-hood of finding a point there. The maximum locations on the heat-map
are where the keypoints are located. In addition to belief maps, DOPE can deal with multi-
ple instances of a single object, therefore, different objects should be dissociated and thus each
keypoint map is also associated to an Affinity Field, which can be considered as a vector field.
Each pixel outputs a vector direction in x and in y. That vector is normalized and it is pointing
towards a direction which is then benefited to detect multiple instances of the same object class.
PnP algorithm [48] is used to estimate the 6 DoF pose of the objects from the belief maps and
vector fields. More details regarding the creation of both belief maps and vector fields can be
found in the original paper in Section 3.2

Training process which is implemented in the original Deep Object Pose Estimation project, the
deep neural network architecture suggested in the original paper, hardware setup used for the
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Figure 3.12: Scene Capturer Settings

Figure 3.13: Feature Extraction Options Selected for the Scene Capturer

training in the thesis, the training algorithm which is adapted to the used hardware specifi-
cations, and the ROS interface provided in the original project are described in the following
sections.

3.1.4.1 Original Training

Original source code for training is implemented using PyTorch [49] and the selected optimiza-
tion algorithm for network weights update is the Adam Optimizer [50].

The following algorithm hyper-parameters are suggested in the original training process. The
complete list of the used parameters can be seen in the original source code [51].

1 $ python train.py --data /path_to_training_dataset --datatest /
path_to_test_dataset --batchsize 128 --epochs 60 --outf UnderBody --gpuids 0
1 2 3 4 5 6 7

One important point is that in the original case, 8GPUs are being used for the training. However,
the hardware setup in this thesis has only a single GPUwhich has the specifications described in
Section 3.1.4.3. Therefore, the original training code is adapted to the available hardware setup.
The new training implementation is explained in Section 3.1.4.4.

3.1.4.2 Network Architecture

A fully convolutional deep neural network is being used in the original work, therefore, the
same architecture is adopted in this thesis. Further details regarding Network Architecture can
be accessed through the original paper [2], Section 2.1.
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(a) TopWing Model (b) UpperBody Model

Figure 3.14: Toy Plane Model Parts used as Distractors

3.1.4.3 Hardware Setup

Hardware setup used in this thesis for training has the following specifications:

• Processor - AMD Ryzen 7 3700X 8-Core Processor

• GPU - NVIDIA Corporation TU106 (GEForce RTX 2060 Rev. A [52])

• RAM - 16410093 KB

• OS - Linux AMD64 Buster

3.1.4.4 Revised Training

Considering the hardware setup available, the maximum batchsize that can be selected is 10.
However, 8 is suggested to be chosen in this case, since it is a number of power of 2. The reason
behind this is the way computer memory works in GPU. Since mini-batches are going to be
vectorized and parallely processed in GPU, choosing a non binary (not power of 2) mini-batch
size may result in inefficient hence poorer performance. When large volume of data is being
dealt with, small inefficiencies can have a large impact on performance.

Even though training can be implemented using a really small batch size, using a smaller batch-
size than the suggested one highly affects the training process and the performance of the
trained network due to reasons discussed below:

• In general, choosing a really small batch size makes the training process too slow due to
the significantly lower computational speed, because of not exploiting vectorization to the
full extent.

• The smaller the batch size is the more noisy the gradients get. Therefore, the oscillations
around a minimum are greater since the estimate of the gradient will be less accurate.
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Figure 3.15: Simple Collision Visualization for UnderBody Model

Even though, greater oscillations can help getting out of a bad local minimum, choosing
a really small batch size can also make the convergence to a minimum harder.

Due to memory insufficiency of NVIDIA Corporation TU106 (GEForce RTX 2060 Rev. A) to
achieve the suggested batch size for training, which is 128, a training code adapted to a single
GPU system is used. By using the Sub-batching concept, the proposed batch size for training is
reached. The idea behind this concept is, the training data loader is called as if the batches are
in size of the given subbatchsize instead of the batchsize. The new data loader for training data is
created as below and the revised training source code can be found in [53].

1 trainingdata = torch.utils.data.DataLoader(train_dataset ,
2 batch_size = opt.subbatchsize ,
3 shuffle = True ,
4 num_workers = opt.workers ,
5 pin_memory = True
6 )

The training algorithm for the network can be seen in the Appendix Listing 2.

In addition to the sub-batch concept added into the original source code, another update is
running the forward pass with auto casting. The reason why amp.autocast(), which is from
the Automatic Mixed Package, is chosen for forward passing is that the instances of autocast
serve as context managers or decorators that allow parts of the script to run in mixed precision.
In these parts, CUDA ops run in an op-specific dtype chosen by autocast. This is due to the
reason where some operations use the torch.float32 (float) datatype and other operations use
torch.float16 (half). Some ops, like linear layers and convolutions, are much faster in float16.
Other ops, like reductions, often require the dynamic range of float32. Therefore, Automatic
Mixed Precision package is used to improve the performance while maintaining accuracy.

Following command is called for the revised training:
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Figure 3.16: Open Level Blueprint Menu Access

1 $ python train.py --data /path_to_training_dataset --batchsize 128 --
subbatchsize 8 --epochs 60 --outf UnderBody

Rest of the input arguments are kept at their default values which can be found in the source
code [53]. Results of the training process are discussed in Section 5.1.

3.1.5 ROS Interface

A ROS Interface is provided in Deep Object Pose Estimation project to publish the information
regarding the detected objects in the environment through ROS. This interface consists of two
main ROS nodes which are:

1. Camera Node: This node publishes the RGB images obtained through the camera within
the system. One important requirement is that the camera should publish the correct
camera info topic so that the trained network can get the poses of the objects correctly.
The content of the camera info includes:

• Camera Matrix - Also known as the Intrinsic Matrix which allows to transform 3D
coordinates to 2D coordinates on an image plane using the pinhole camera model.

• Distortion Model - The model which describes the mathematical deviation of a cam-
era from the pinhole model.

• Distortion Coefficients - The coefficients used to represent Tangential & Radial dis-
tortion [54].

• Rectification Matrix - A rotation matrix aligning the camera coordinate system to the
ideal stereo image plane so that epipolar lines in both stereo images are parallel.

• Projection Matrix - The matrix that describes the transformation between an image
point and a ray in Euclidean 3-space [55].

The camera being used in Robotics Lab of the Institute of Industrial and Control Engineer-
ing (IOC-UPC) is a Kinect XBOX Camera with the camera info aspects in Figure 3.24.
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Figure 3.17: Blueprint Structure to Spawn the UnderBody Model in the Environment

This Kinect camera is connected to the Geminis computer in lab. Therefore, Geminis
should be set as the ROS_MASTER in order to reach the published images from another
computer in the lab. In order to create the bridge between two computers in the lab, the
following commands are required to be called to start retrieving the recitified images from
Geminis:

(a) roslaunch kinect2_bridge kinect2_bridge_hq.launch (in Geminis)

(b) export ROS_MASTER_URI:https://geminis:11311 (in local)

From the topics Kinect XBOX camera publishes, the /kinect2/hd/image_color_rect is used.

2. DOPE Node: The node that reads the images coming from the Camera node and pub-
lishes information regarding the detected object. To do so, it reads the content of con-
fig_pose.yaml, an example of this file can be seen in Figure 3.25, provides the following
concepts:

• Weights - The path for the trained network weights for every object wished to be
detected.

• Dimensions - Object cuboid dimensions in cm.

• Class IDs - Different class ID assignment for every object.

• Draw Colors - Color codes for the cuboid to be drawn around the detected objects in
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Figure 3.18: Blueprint Structure to Spawn the TopWing Model in the Environment

RGB images.

• Model transforms -Anoptional transform that can be applied to the cuboids returned
by DOPE node.

• Meshes - Optional object mesh path for RViZ visualization purposes.

• Mesh Scales - An optional scale that will be applied to the dimension values in case
the values provided are in meters.

• Threshold Map - A threshold map applied to the belief maps to retrieve the binary
peaks for vertex detection.

• Sigma - The standard deviation of Gaussian filter applied to the belief maps.

• Threshold Points - Confidence threshold for objects corner detection.

Then, the following topics are being published:

• /dope/webcam_rgb_raw - RGB images from camera

• /dope/dimension_[obj_name] - Dimensions of object

• /dope/pose_[obj_name] - Timestamped pose of object

• /dope/rgb_points - RGB images with detected cuboids overlaid
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(a) An Example Image on the Chess Table Location (b) An Example Image on the Floor Location

(c) An Example Image on the Wooden Table Location (d) An Example Image on the White Table Location

Figure 3.19: Example Photo-realistic Images
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(a) Annotation Visualization for Figure 3.19a (b) Annotation Visualization for Figure 3.19b

(c) Annotation Visualization for Figure 3.19c (d) Annotation Visualization for Figure 3.19d

Figure 3.20: Example nvdi_viz for Photo-realistic Images

• /dope/detected_objects - vision_msgs/Detection3DArray of all detected objects

• /dope/markers - RViz visualization markers for all objects
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Figure 3.21: Lighting Randomization Parameters

Figure 3.22: Created Setup to Obtain Domain Randomized Images
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(a) Example Image 1 (b) Example Image 2

Figure 3.23: Example Images Obtained with Domain Randomization

Figure 3.24: camera_info Topic for Kinect XBOX Camera
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Figure 3.25: The config_pose.yaml File
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4 Reasoning Module
In order to model the task with appropriate PDDL files in an autonomous manner, which are
specific to the given task, following challenges should be addressed:

1. Detecting the objects and agents within the environment using a proper perception mod-
ule,

2. Interpreting the perceived environment through a reasoning framework to understand
the current scene, and

3. Generating the task specific PDDL files, given a global domain PDDL file including all the
possible actions that can be executed within the environment, based on the current state
of the environment.

This paper suggests an overall schema shown in Figure 4.2 to implement a structure that resolves
the above mentioned challenges.

4.1 Perception
In order to provide the necessary information to the reasoning process to generate PDDL files
for a given task, perception module should transfer the observed environment where the task
will take place. Various methodologies can be followed for this purpose, in this Reasoning
Module section, detection is achieved through fiducial markers that are placed on the objects
to be detected since Deep Object Pose Estimation implementation studied in Section 3 is not
providing accurate detection results at this stage. The raw information regarding the detected
aspects within the perceived environment is shared with the main perception module which
organizes the structure of the data and then transfers this metadata in an XML, as in Listing 1,
format to the reasoning algorithm. This metadata includes the following information for every
object that has been detected:

• The name of the object

• The pose

• The fiducial marker ID

• The camera which detects the object
1 <?xml version="1.0"?>
2 <Object >
3 <Index >1</Index>
4 <ArucoID >101</ArucoID >
5 <FrameID >Kinect_Camera </FrameID >
6 <ObjectName >OBJECTA </ObjectName >
7 <NodeName >Kinect </NodeName >
8 <Pose>x=1.032 y=0.123 z=0.245 wx=0.9 wy=0.2 wz=0.3 w=0.6</Pose>
9 </Object >

10 <Object >
11 <Index >2</Index>
12 <ArucoID >102</ArucoID >
13 <FrameID >Kinect_Camera </FrameID >
14 <ObjectName >OBJECTB </ObjectName >
15 <NodeName >Kinect </NodeName >
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16 <Pose>x=1.032 y=0.123 z=0.245 wx=0.9 wy=0.2 wz=0.3 w=0.6</Pose>
17 </Object >
18 <Object >
19 <Index >3</Index>
20 <ArucoID >103</ArucoID >
21 <FrameID >Kinect_Camera </FrameID >
22 <ObjectName >OBJECTC </ObjectName >
23 <NodeName >Kinect </NodeName >
24 <Pose>x=1.032 y=0.123 z=0.245 wx=0.9 wy=0.2 wz=0.3 w=0.6</Pose>
25 </Object >

Listing 1: Example obj_list.xml File

4.2 Reasoning Framework

4.2.1 Knowledge Layer

Prior to implementing the reasoning process which is explained in Section 4.2.2, the knowledge
layer should be generated. For this purpose, Perception and Manipulation Knowledge (PMK)
ontology is used as a template. More information regarding PMK knowledge structure can be
found in Section PMK Knowledge Structure in [25].

Depending on the scenario, new instances and relations should be added to the existing tem-
plate. In order to manipulate the knowledge layer which consists of the ontology files, an ontol-
ogy editor interface Protege [7] and ontology web language (OWL) [56] are used in this thesis.
New classes, individuals, object properties and data properties can be implemented within this
editor in order to represent the scenario in which the robotics task will take place.

After generating the ontologies in OWL format, Prolog [8] and created predicates are used in
this thesis to reason over the OWL file. Prolog is a logic programming language widely used
in semantic web applications and Prolog engine’s main job can be defined as reasoning if a
statement is true or false. When a statement is true (in case of success) it outputs the instan-
tiations which make it true. This happens through unification [57]. In this framework, Prolog
is being used to retrieve the outputs of the defined predicates which can be considered as the
questions that are used to query over the ontologies in the knowledge layer. In order to reason
the predicates, the information coming from the perceived environment is used as inputs to the
predicates.

For this purpose, a Prolog file is generated, which is connected to the ontology by loading the
OWL file into the Prolog environment through the following code piece.

1 :- rdf_load(’/home/fato/pmk_python_interface/pyswip/ontologies/twoRoom.owl’).
2 :- rdf_db:rdf_register_ns(sir_pmk , ’http :// www.semanticweb.org/fato/ontologies

/2021/1/ untitled -ontology -5#’, [keep(true)]).

The first line loads the ontology and the second line registers the given prefix, which is sir_pmk
in this case, to ontologys Uniform Resource Locator (URI), which is specific to the generated
ontology and used to identify the ontology and the elementswithin the ontology file. Therefore,
the instances of the ontology can be called through this generated prefix. An example to this
can be seen in Figure 4.1 where sir_pmk:’Can_1’ is an Artifact individual created in an example
OWL file.

This created Prolog file also includes the initialization of all the predicates, specifying the num-
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ber of required inputs. Each of the initialized predicate is defined later in the same Prolog file.
The initialization step can be seen as below where also the number of required inputs are spec-
ified.

1 :- rdf_meta
2 find_subclass(r,r),
3 find_robot_cap(r,r),
4 find_spatial_rel(r,r,r),
5 find_obj_prop(r,r,r,r,r,r,r),
6 find_obj_cons(r,r),
7 find_grasp_pose(r,r),
8 find_robot(r,r).

An example predicate definition for find_obj_prop(Artifact, Diameter, Length, Height, Width, Color,
Type) is as seen below, which returns the properties (i.e. Diameter, Length, Height, Width,
Color, and Type) of the provided Artifact.

1 find_obj_prop(Artifact , Diameter , Length , Height , Width , Color , Type):-
2 (rdf_has(Artifact , sir_pmk:’diameter ’, D) -> literal_type_conv(D, Diameter);

true),
3 (rdf_has(Artifact , sir_pmk:’height ’, H) -> literal_type_conv(H, Height); true),
4 (rdf_has(Artifact , sir_pmk:’length ’, L) -> literal_type_conv(L, Length); true),
5 (rdf_has(Artifact , sir_pmk:’width ’, W) -> literal_type_conv(W, Width); true),
6 (rdf_has(Artifact , sir_pmk:’color ’, C) -> literal_type_conv(C, Color); true),
7 rdf_has(Artifact , rdf:type , T),
8

9 literal_type_conv(T, Type).

In order to compile the created Prolog files, SWI-Prolog [8] is being used, which is a compiler
for the Prolog language.

SWI-Prolog can be built through the package manager (sudo apt-get install swi-prolog) , however,
in this thesis, it is built from its source code following the steps below which are also provided
in [58]:

1. Install SWI-Prolog from the source.
1 git clone https :// github.com/SWI -Prolog/swipl -devel.git
2 cd swipl -devel
3 git submodule update --init

2. Get the prerequisites for SWIPL (The following code piece is for Debian based systems,
for other systems check [58], Section Getting the Prerequisites):

1 sudo apt -get install \
2 build -essential cmake pkg -config \
3 ncurses -dev libreadline -dev libedit -dev \
4 libgoogle -perftools -dev \
5 libunwind -dev \
6 libgmp -dev \
7 libssl -dev \
8 unixodbc -dev \
9 zlib1g -dev libarchive -dev \

10 libossp -uuid -dev \
11 libxext -dev libice -dev libjpeg -dev libxinerama -dev libxft -dev \
12 libxpm -dev libxt -dev \
13 libdb -dev \
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Figure 4.1: SWI-Prolog Interface

14 libpcre3 -dev \
15 libyaml -dev \
16 default -jdk junit4

3. After installing the dependencies build SWI-Prolog.
1 cd swipl -devel
2 mkdir build
3 cd build
4 cmake -DCMAKE_INSTALL_PREFIX =/usr/local ..
5 make
6 sudo make install

By using SWI-Prolog, the predicates defined in the Prolog file can be reasoned through swipl
interface in a terminal in the same directory where the Prolog file is located. The created Prolog
file and the linked ontology should be parsed in the interface before reasoning the predicates.
It is done by calling [twoRoom]., which is an example Prolog file, command in the same termi-
nal where swipl is called initially. An example return of find_obj_prop(Artifact, Diameter, Length,
Height, Width, Color, Type) predicate, within twoRoom.pl Prolog file, for the object Can_1 can be
seen in Figure 4.1. There are two returns to this predicate since sir_pmk:’Can_1’ has two possible
Types. It is either an owl:’NamedIndividual’which is by default for OWL individuals created and
also a sir_pmk:’Can’, which is the Class sir_pmk:’Can_1’ belongs to.

With the help of swipl, the knowledge layer which consists of OWL & Prolog files, can be ac-
cessed.

4.2.2 Ontology-based reasoning for robot manipulation

Robotic manipulation involves the planning at task level (determining which is the sequence
of actions to be done to perform a given task) and at motion level (finding the sequence of
collision-free motions that allow to safely move the robot from one configuration to another).
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In this scope, a standardized ontological-based reasoning framework called Perception andMa-
nipulation Knowledge (PMK)was introduced in [25] as a tool to help task andmotion planning
systems (TAMP) in terms of reasoning, by providing:

• Reasoning for perception related to sensors and algorithms, e.g. to determine which is the
sensor to be used in a given situation.

• Reasoning about the objects features, e.g. to determine if an object is pickable or not.

• Reasoning for situation analysis to spatially evaluate the objects relations between each
other, e.g. to determine if an object is behind another.

• Reasoning for planning to reason about the preconditions of actions, action constraints
and geometric reasoning related to the robot and to the environment, e.g. to determine if
a grasping pose is reachable or to select a feasible placement region.

PMK is enhanced here by including knowledge about the actions the available robots can per-
form into the ontologies, and by extending the object features related to those actions. Also,
reasoning predicates are provided to help in the selection of the actions required to solve a
given task and to automatically set the PDDL domain and problem files.

4.2.2.1 Robot-centered reasoning

Robot-centered reasoning predicates include:

1. find_robot(Region, Robot) to return the available robots within the environment and the
regions they are located at;

2. find_robot_capability(Robot, Capability)) to return the capabilities of a given robot;

3. find_robot_reach(Robot, Region) to check if the given robot can reach the given region
using its capabilities.

4.2.2.2 State-centered reasoning

State-centered reasoning is required to reason on the initial and goal state of the world. Even
though the perception module provides the poses of the detected objects and agents, it does
not provide the symbolic regions where they are located, nor the spatial relation information
between the detected objects (i.e. in, on, left, right). For this purpose, spatial evaluation pred-
icates from PMK, which convert raw perceived environment information into spatial locations
and relations through specified calculations, are used to reason on the state of the environment
based on the perceived objects. These calculations are based on comparing perceived coordi-
nates of the object with specific values depending on the spatial relation definition. For instance,
to infer the on relation between two objects, the X & Y coordinates should be similar for the two
objects. Meanwhile, the Z coordinate should be contiguous within a certain threshold. More
details regarding the spatial relation descriptions can be found in [25], Table 1. In addition to
finding the spatial relations between the objects, the initial and goal states can be reasoned with
the following predicates that are inherited from PMK:

1. retrieve_symb_init(ObjPose, SymbRgn) to return the symbolic region where the given ob-
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Figure 4.2: Flowchart of the overall symbolic reasoning operation

ject pose is located at;

2. retrieve_symb_goal(Task, SymbGoal) to return the symbolic goal region for a given task.

The overall reasoningprocess through the abovementionedpredicates being queried over knowl-
edge is presented in Section 4.4.

In order to reason over the knowledge, an intermediate layer between the knowledge and the
user program is required to organize the sequence of the predicates to be queried with the
relevant information coming from the perception module. For this purpose, in this thesis, the
overall system schema in Figure 4.3 is implemented through a ROS interface.

One necessary step to implement this architecture is to establish a connection between SWI-
Prolog and Python which is chosen as the programming language for this implementation. For
this purpose, in this thesis, a package called PySwip [59] is used. With the help of this package,
Prolog files can be queried within Python. In the same Python environment, a ROS interface is
also implemented to access the query results through a ROS service which can be called within
any ROS application when necessary.

In the original source of PySwip, it is suggested to work with the package in a virtual envi-
ronment and an installation through pip [60], however, when the ROS service is implemented
within this setup, a Segmentation Fault (core dumped) error occurs when the created ROS service
is called to query the predicates. Therefore, instead of installing PySwip through pip, the source
code is cloned and added inside the Python project. It is located inside the /tests directory in
the project.(Provided repository can be checked [61].) By doing so, the Segmentation Fault is
fixed.

After creating the link between SWI-Prolog and Python, a service is created which takes the
predicate to be reasoned and its inputs as a Request from the Client and returns the reasoned
statement as a Response. Created ROS service, Predicate.srv, has the following structure.

1 pyswip_msgs/Question predicate
2 pyswip_msgs/Inputs [] inputs
3 ---
4 pyswip_msgs/Responses [] responses
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Figure 4.3: Knowledge Management Schema

pyswip_msgs package can be found in the provided source [61].

4.3 PDDL Parser
In order to deal with the last challenge which is the generation process of task specific PDDL
files, a PDDL parser and writer tool is required. With the help of this package, the global PDDL
file provided should be parsed into its elements (e.g. actions and predicates that are defined
to set preconditions and effects of the given actions) and also the new PDDL files should be
generated given the set of feasible actions. For this purpose a parser package called Universal-
PDDL-parser [9] is being used. By using the features of this package, the initial global domain
file with all the possible actions is parsed into its elements and the content is stored using the
classes within the package. With the help of this hierarchical class structure, the links between
the elements in the global file are also preserved.

After reading and storing the global domain file, the task specific PDDL files for the given task
can be automatically generated by using the same parser tool to write into a new PDDL file
including only the actions that are relevant for the task. The decision of this relevance is made
by the reasoner. In order to rewrite the task specific domain file, the feasible actions list deter-
mined by the reasoning process is forwarded into print(std::ostream& os, std::vector<std::string>
actionList) function in the parser package where os input is the new task specific PDDL file to be
generated and the actionList input is the feasible action set coming from the reasoner. The new
PDDL file output is saved inside the current directory.

4.4 Automatic Generation of Domain PDDL File
PDDL files are generated autonomously with the help of the aforementioned perception mod-
ule, reasoning process, and the PDDL parser. Subsequent to perceiving the environment where
the task will take place through perception module, elements within the environment are inter-
preted with the reasoning process.

In order to select an action or another, a set of core reasoning checks has to be done. These
checks rely on the robot & state-centered reasoning in which they are combined to answer the
query: What are the actions to be included in the PDDL files to solve this problem? The answer is
the new PDDL files based on the current situation of the environment. In order to reason the
specified query, the following core checks are reasoned for a given task and situation:

1. Spatial relations between the objects are retrieved as described in Section 4.2.2.2, such as
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Obj1 on Obj2;

2. Initial and goal states are obtained through retrieve_symb_init() and retrieve_symb_goal()in
symbolic form as defined in Section 4.2.2.2;

3. Available robots through find_robot() and their capabilities through find_robot_capability()are
reasoned as defined in Section 4.2.2.1.

Finally, based on the answers of the previous core checks: a) The robot assigned to the task
is selected; b) The PDDL file is automatically generated including feasible actions for a given
task through the PDDL parser. These core checks can be extended based on the complexity of
the task. An example code base of this implementation can be seen in Listing 3 with all the
predicates queried in order. Depending on the actions available in the provided global domain
PDDL, the actions selection can be implemented.

One example for the reasoning-based action selection process explained above can be an envi-
ronment in which an object is placed on top of a counter which is out of reach for the given
robot. This robot has to grasp this object in order to comply with its task description. In this
case, navigation capability is required to bring the object from its current state to a region where
it is reachable. After reasoning all the available robots and their capabilities, MOVE action can
be added to the robot which has navigation capability and that robot can be assigned to this
specific task to bring the object.

Another example can be, an environment where the objects should be placed on top of each
other with a given order. If the retrieved spatial relations and the initial states of the objects
are not correct in terms of ordering, UNSTACK action with the robot which is available within
the environment and can implement this action through its capabilities can be included into the
task.

4.5 Automatic Generation of Problem PDDL File
In addition to selection of task specific actions, the reasoning framework provides which avail-
able agent in the environment executes which task in order to solve the task problem. Therefore,
depending on the robot and task pairing, appropriate predicates and goal states are written into
the task specific PDDL problem file. An example case of task specific PDDL problem file is dis-
cussed in Section 5.2.

4.6 Test Scenarios
In order to test the explained reasoning framework, two test scenarios are generated and de-
scribed in this section. The results regarding the scenarios are provided in Section 5.2.

4.6.1 Tiago Kitchen Scenario

In this scenario, Tiago is inside a kitchen environment, as in Figure 4.4, inwhich it has to transfer
objects between counters & prepare beverages (glass of wine, cup of coffee etc.). Since there is
only a single agent in the environment, Tiago, task specific domain PDDL is generated only for
Tiago. This task specific domain PDDL file should contain the following relevant actions:

• Pick-up
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• Put-down (place)

• Move

• Pour

The following actions should be eliminated from the global domain PDDL:

• Open Drawer

• Ask a Human

• Push & Pull

Figure 4.4: Tiago Kitchen Test Environment

In order to decide which actions are kept and which actions are eliminated from the global
domain PDDL, the following queries needs to be answered for this scenario:

1. Which robot is present in the environment?

2. Is there a human present in the environment?

3. Does the robot have navigation capabilities?

4. Does the robot have grasping capabilities?

5. Are there any objects stored in the drawers?

6. Are the objects within the environment pickable? (considering weight limitations)

The answers to these questions are:

1. Tiago. (Then, the queries regarding robot capabilities are for Tiago in this case.)

2. No. (We will ask client to eliminate ‘Ask a human’ action)

3. Yes. (We will ask client to keep ‘Move’ action)
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4. Yes. (We will ask client to keep ‘Pick’, ‘Place’ & ‘Pour’ actions)

5. No. (We will ask client to eliminate ‘Open Drawer’ action)

6. Yes. (We will ask client to eliminate ‘Push & Pull’ actions )

4.6.2 Tiago & Yumi Counter Scenario

In this scenario, there are two counters (Counter1 & Counter2) available in the environment.
Each of these counters has three regions (Left, Right & Middle). Yumi is placed in front of
Counter2 and Counter1 is out of reach for Yumi since it does not have navigation capabilities. In
the same environment there are three objects (BlockA, BlockB & BlockC) available. In addition
to Yumi, Tiago is also present in the environment.

In the initial problem PDDL file, all of the objects are on top of Counter2 and Yumi has to
implement a Stack&Unstack task using these objects. The task description can be seen in Figure
4.5a. However, an unexpected situation occurs when the perception module detects BlockB on
Counter1 instead of Counter2 as in Figure 4.5b. Therefore, reasoning should be implemented
in order to regenerate the domain and problem PDDL files to solve the specified task. The
specified task requires BlockB to be brought on Counter2 so that Yumi can pick it. In this task,
the reasoner should include Tiago into the task so that Tiago brings the BlockB from Counter1
to Counter2 for Yumi to complete the Stack & Unstack task. The environment can be visualized
as in Figure 4.5.

This task specific domain PDDL file for Tiago should contain the following relevant actions:

• Pick

• Place

• Move

This task specific domain PDDL file for Yumi should contain the following relevant actions:

• Pick

• Stack

• Unstack

In addition to the task specific domain PDDL, the problem PDDL file should include tiago at
Counter2 as a goal state.

It can be seen that the objects also have LocationName info. This specifies the region where the
objected is detected at. The Regions are detected through Aruco Markers as well.

In order to fill both the domain and problem PDDL files, following sequence of queries are
reasoned:

1. What are the available robots in the environment?

2. What are the capabilities of these robots?
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INITIAL STATE

GOAL STATE

(a) Initial & Goal State

UNEXPECTED  STATE

(b) Unexpected State

Figure 4.5: Yumi Manipulation Task

3. Which symbolic regions can be reached by these robots using their capabilities?

4. Where is the current location of the Object of Interest? (ObjectC in this case)
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5 Results

5.1 Deep Object Pose Estimation
This section presents the results obtained after training the network with the revised training
scenario described in Section 3.1.4.4. Training loss convergence graph can be seen in Figure
5.1. In order to analyze the evolution of the output belief maps the target images in Figure 5.2
are forwarded through the network in the training process in epochs number 1, 3, and 60, the
output belief maps generated by the network are saved, and the target belief maps for the given
target images are compared for the same epochs in Figure 5.3, 5.4, and 5.5.

One important note is, the target images are not forwarded through the network in their original
form but with Gaussian noise, random rotation and translation added as in Figure 5.2 in order
to reduce over-fitting.

Another critical note is, in this thesis, there is no labeled real data available for test and validation
purposes. The only possible test and validation dataset can be created using synthetic data
which is not used for training. However, since these images are again captured within the same
setup, it would be highly correlated with the training data. Therefore, in this work, the trained
network is not analyzed with a test dataset and test loss graph is not presented. As a future
work, real images can be captured and labeled for test purposes.

Figure 5.1: Loss Graph for Training

However, when the trained network is tested with the exact same target image in Figure 5.2c
after loading the network weights, the obtained belief map is as in Figure 5.6b. From this result,
it can be seen that the objects features are not learned correctly.

Another test case is with the input in Figure 5.7a and the output belief map is as in Figure 5.7b.
The possible reasons behind this outcome is explained in Conclusions Section.
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(a) Target Image Example for Epoch 1 (b) Target Image Example for Epoch 3

(c) Target Image Example for Epoch 60

Figure 5.2: Example Target Images Saved in Training for Epoch 1,3 and 60

5.2 Reasoning Module
This section presents the results for Tiago & Yumi Scenario as defined in Section 4.6 since the
complete procedure described in Section 4.4 is implemented for this specific scenario. The same
implementation can also be extended to Tiago Kitchen scenario in the future, which is also
described in Section 4.6, which requires generating new global PDDL files and new actions.

Before automatically generating PDDL files, the knowledge layer is created for Tiago & Yumi
scenario. Ontology file created for Tiago & Yumi Scenario, which can be found in [61] under
/pyswip/ontologies directory, can be examined through the modeling hierarchy graph, which
shows the hierarchical relation between the classes generated, as in Figure A.1. Moreover, the
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(a) Target Belief Map Example (b) Output Belief Map Example after 1 Epochs

Figure 5.3: Target & Output Belief Map Comparisons after 1 Epoch of Training

(a) Target Belief Map Example (b) Output Belief Map Example after 3 Epochs

Figure 5.4: Target & Output Belief Map Comparisons after 3 Epoch of Training

instantiation knowledge, which shows the object properties between the instances, can be seen
in Figure A.2. The different colored arrows in instantiation knowledge show different object
properties created. In this specific figure, the instance tiago is visualized, however, other in-
stances can also be visualized through this OntoGraph feature within Protege editor. Both of
these visuals are generated with Protege ontology editor. Same figures can be obtained for
Tiago in Kitchen scenario using the same ontology tools.



p. 50 MUAR Thesis

(a) Target Belief Map Example (b) Output Belief Map Example after 60 Epochs

Figure 5.5: Target & Output Belief Map Comparisons after 60 Epochs of Training

(a) Detected Object with Validation Code (b) Output Belief Map

Figure 5.6: Validation Code Trial 1

The Prolog file generated for the same scenario can be found in the project repository [61] under
/pyswip/prolog directory.

Global PDDL domain file provided Tiago & Yumi scenario is as in Listing 4. Task specific
domain PDDL file for the same scenario after the reasoning process are as in Listing 5 & 6
for Tiago and Yumi. The video of the simulation for Tiago & Yumi Scenario is available at
https://youtu.be/MI7NOs1C_S0.

https://youtu.be/MI7NOs1C_S0
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(a) An Example Test Input Image (b) Output Belief Map

Figure 5.7: Validation Code Trial 2
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6 Cost Analysis
The project has been completed from February to September(32 weeks) with an average of 4
hours a day. Four of theseweeks are fromAugust, therefore, inAugust only the studentworking
cost and the personal laptop usage are included into the calculations since the lab was closed
during August. Considering 5 working days a week, the total project hours are 640 hours, 80 of
which includes only the personal laptop setup and the student working hours.

The hardware equipment involves a PCworkstation and the personal laptop. Since the develop-
ment of the project was done at Robotics Lab of the Institute of Industrial and Control Engineer-
ing (IOC-UPC), the depreciated cost of the workstation used has been added. The useful life
of the workstation and the personal laptop is considered as 5 years when operated at 10 hours
a day 7 days a week. This gives a useful life of 18,250 hours. The workstation PC is employed
for 60% of the project hours that are spent in the lab and for the 40% of the overall time spent
in the lab, personal laptop is used. The working hours of the student is considered the same as
the total project hours. ETSEIB recommends the salary for the students will be considered of 8
€/h. Supervision and meeting hours with the director of the project and other members of the
staff of the laboratory will be considered of 60 hours in total with an average cost of 30 €/h.

The electricity consumption is considered for the workstation PC, personal laptop and Kinect
Camera. The average electrical cost in 2021 is taken as 0.21 €/kWh. The energy consumption
for the personal laptop is estimated as 68.5 W, for 304 hours it makes 20.82 kWh. The energy
consumption for the workstation PC is estimated as 200W, for 336 hours it makes 67.2 kWh. On
the other hand, Kinect Camera has a consumption of 12W, for 20 hours which makes 0.24 kWh.

Table 6.1 presents the costs described. The total cost of the project is 6972.85 €.

Table 6.1: Cost table (Variable cost of workstation PC has been computed dividing their fixed cost by
their life expectancy in hours. Variable cost of electric consumption of each system have been computed
by multiplying the power consumption by the average price of electricity as described in the Cost section)

COST HEAD Description Fixed Cost
AC

Life Expectancy
h

Variable cost
AC/ h

Utilization Time
h

Cost to Project
AC

Hardware Equipment
Workstation PC
Personal Laptop
Kinect Camera

1400
500
300

18,250
18,250
26,280

0.077
0.027
0.011

336
304
20

25.78
8.33
0.22

Electric Consumption
Workstation PC
Kinect Camera
Personal Laptop

- -
0.042
0.0024
0.014

336
20
304

14.11
0.048
4.37

Student Working Hours - - - 8 640 5120
Supervisor Working Hours - - - 30 60 1800

Total Cost 6972.85 AC
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7 Environmental & Social Impact
This section discusses how the suggested reasoning-based robotics manipulation framework
can impact both the environment and the society.

7.1 Environmental Impact
Flexibly configuring the task planning problems autonomously in robotics applications is ex-
pected to increase the integration of service robots into the daily and industrial routines. In-
creasing the demand towards service robots brings up concerns regardingpowering these robots
through sustainable and clean resources. Taking the enhancements within the powering indus-
try into account, this may no longer be a matter with the elongated cycle life, efficient manufac-
turing and recycling strategies. On the other hand, if carefully managed, changes in automa-
tion levels especially among service robots could create environmental improvements compared
with the processes used today.

7.2 Social Impact
Many efforts in industrial and service robotics pursue making mobile manipulators able to act
autonomously in semi-structured human environments. The final aim is to actually make them
able to be robot co-workers at the factory floor or robot helpers at home. The framework pro-
posal presented in this thesis eases the adaptation of service robots into these semi-structured
human environments. This advancement in service robots would shape the employment struc-
ture, especially for the manufacturing industry including non-complex tasks. Moreover, more
complex tasks can be facilitated with the help of these improvements. Furthermore, these ad-
vances increase the utilization of robots for wide range of personal tasks in the daily routine of
humans. Therefore, owning robot helpers in households can be the new normal.
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Conclusions
In this work, regarding the Perception Module, Deep Object Pose Estimation implementation
is adapted into Robotics Lab of the Institute of Industrial and Control Engineering (IOC-UPC).
Following conclusions are drawn which are also the possible reasons behind the overall perfor-
mance of the trained network, as presented in Section 5.1, of the module:

1. Since the synthetic data generation environment inUnreal Engine 4 is created from scratch,
the following difficulties are faced during the implementation and these may also have an
impact on the overall performance of the trained network especially for the real world
usage:

(a) The created environment for photo-realistic image generation is not realistic enough.
Therefore, in the future, the available environments can be imported to Unreal En-
gine through EpicGames Launcher. This requires building the EpicGames Launcher
to the Linux environment in the lab through the software Lutris as mentioned ear-
lier. With the help of high variety of available realistic environments in Unreal En-
gineMarketplace, adequate diversity of scenes can also be introduced into the photo-
realistic training dataset.

(b) Selecting randomization parameter (i.e. lighting, camera pose, object poses) ranges
can be hard to tune and they have a big impact on the content of the training dataset
generated. Thedataset content should bediverse enough to represent different scenes.

2. In addition to the difficulties mentioned above, the following aspects regarding the train-
ing dataset can have an impact on the trained network performance:

(a) The toy plane models that are used as distractors for the photo-realistic images are
similar to each other in color and shape. This may cause difficulties within feature
extraction. Therefore, different models can be imported into the environment and
used as distractors during training data generation.

(b) The actual Falling Things Dataset to generate photo-realistic images capture data
through two cameras placed in the environment. However, in this thesis, only a sin-
gle camera is used to capture the scene.

(c) Training dataset folder consists of sub-folders for different environment setups and
different locations in the same environment. Depending on how the data loader
treats this folder structure, shuffling may not handled correctly since the images are
in different folders. It may be shuffling only the content in the same directory but
not all the training content. One proof of this is seeing the same location for target
images saved during the training as it can be seen in Figure 5.2.

3. Finally, following training aspects can also have an effect on the performance of the net-
work:

(a) Gradient scaling is being used in order to prevent the gradients fromflushing to zero.
It multiplies the networks losses by a scale factor. This functionality is used with its
default values as suggested in the original project. However, the parameters of the
function (init_scale, growth_factor, backoff_factor, growth_interval [62]) may need
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to be tuned for this specific training implementation

(b) The final training loss is recorded as 0.0003-0.0004 for the example training scenarios
discussed in the original project repository. However, it is ∼ 0.003 for the training in
this thesis. This may be due to being stuck at a local minima since the convergence
loss graph seems to be stable but not oscillating around a value.

(c) Hyper-parameter tuning for the training also affects the trained network. However,
regarding the learning rate selection, Deep Object Pose Estimation uses Adam adap-
tive learning rate optimization algorithm for training, so it automatically adjusts the
learning rate over time. It is expected to see the loss going down immediately after
starting the training, therefore, the learning rate can be left untouched so that Adam
optimizer can modify it properly. By looking at the loss convergence graph in Figure
5.1, the drop in the beginning of the training can be seen clearly.

As a future work:

• Another alternative to using Unreal Engine to generate synthetic data can be the renderer
called NVISII [63] which is a python-enabled ray tracing based renderer built on top of
NVIDIAOptiX (C++/CUDA backend). This may be easier to work with since Unreal En-
gine is a complex interface including lots of different aspects and requiresmore experience
to manipulate these elements.

• The original training code can be adopted with a more powerful setup and the original
batchsize. Available GPU cloud servers can be checked for this purpose.

• Asmentioned in the Results for DeepObject Pose Estimation in Section 5.1, no real images
are acquired from the Kinect camera and labeled. Therefore, test and validation datasets
are not created, since generating them in the same synthetic image generation setupwould
create a high correlation between them and the training dataset. Therefore, as a next step,
non-correlated dataset can be created from real images. Even though there are plenty
of labeling tools available for 2D bounding box of the objects of interest, labeling the 3D
bounding box of the objects is required for this work. Since labeling 3D bounding boxes
for each image is an expensive process, an alternative approach can be annotating 3D
objects in a video clip and populating them to all frames in the clip as studied in [64].
Nevertheless, this involves an additional interface implementation for labeling process.

In this work, regarding the Reasoning Module, the main focus was the development of tools to
provide robots with manipulation capabilities to make them autonomous enough to automati-
cally plan and execute the tasks, continually adapting to possible changes in the environment.
In order to achieve this, an already existing framework called Perception and Manipulation
Knowledge (PMK) is taken as a template. PMK ontology is extended by including new in-
stances, object properties, and data properties under the same hierarchical class structure. Its
Prolog file is also extended by adding new predicates to query over the ontology. With assis-
tance of this, the new knowledge layer consists of information about the actions that can be
implemented by the robots available in the environment. This extension requires broadening
the object features related to these actions.

The proposal has first dealt with the development of reasoning capabilities to reason on the
environment detected by the perception module (objects and available robots) and on the task



p. 59

goal to be achieved in order to find out the required actions to solve the task, and to assist the
task planner with the automatic generation of the PDDL files. For this purpose, a PDDL parser
package called Universal PDDL Parser is included into the ROS interface created which queries
over the knowledge and generates the PDDL files respectively in an autonomous manner. The
adaptive task and motion planning capabilities of the proposed framework is a step towards
making robots more aware, smarter and reactive. As a future work:

• This work can be extended by adding more actions that the robots can execute and incor-
porate the human operator as an agent so as to allow robots to play the co-worker role.

• The overall system can bemade evenmore robust and smartwhen a functioningDeepOb-
ject Pose Estimation module is integrated into the system. Since the detection can not be
achieved through the Perception Module explained in Section 3, Aruco Marker detection
was adopted into the overall system as the perception module which was already being
used for detection purposes in Robotics Lab of the Institute of Industrial and Control En-
gineering (IOC-UPC).
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Appendices

Appendix A
1 for batch_idx , targets in enumerate(loader):
2

3 data = Variable(targets[’image’].cuda())
4

5 # Runs the forward pass with autocasting.
6 with amp.autocast ():
7 output_belief , output_affinities = net(data)
8

9 target_belief = Variable(targets[’beliefs ’].cuda())
10 target_affinity = Variable(targets[’affinities ’].cuda())
11

12 loss = None
13

14 # Belief maps loss
15 for l in output_belief: #output , each belief map layers.
16 if loss is None:
17 loss = ((l - target_belief) * (l-target_belief)).mean()
18 else:
19 loss_tmp = ((l - target_belief) * (l-target_belief)).mean()
20 loss += loss_tmp
21

22 # Affinities loss
23 for l in output_affinities: #output , each belief map layers.
24 loss_tmp = ((l - target_affinity) * (l-target_affinity)).mean()
25 loss += loss_tmp
26

27 if train:
28 # Scales loss. Calls backward () on scaled loss to create scaled

gradients
29 # Backward passes under autocast are not recommended.
30 # Backward ops run in the same dtype autocast chosen for

corresponding forward ops.
31 scaler.scale(loss).backward ()
32

33 if batch_idx % (opt.batchsize // opt.subbatchsize) == 0:
34 if train:
35 # scaler.step() first unscales the gradients of the

optimizer ’s assigned params.
36 # If these gradients do not contain infs or NaNs , optimizer.

step() is then called ,
37 # otherwise , optimizer.step() is skipped.
38 scaler.step(optimizer)
39

40 # Updates the scale for next iteration.
41 scaler.update ()
42 nb_update_network +=1
43 optimizer.zero_grad ()

Listing 2: Revised Training Loop
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1 ...
2 #Read the detected objects from object_list.xml
3 objs = initialize_objects ()
4

5 #Find spatial relations between the detected objects
6 spatial = []
7 for obj1 in objs:
8 for obj2 in objs:
9 if obj1.index == obj2.index:

10 continue
11 response_spatial = call_reasoner (["",obj2.Pose ,obj1.Pose],["

find_spatial_relation" ,("Obj1","Obj2","Relation")])
12 spatial.append(response_spatial.responses [0]. responses [2])
13

14 #Retrieve the initial and goal state in symbolic form
15 for obj in objs:
16 response_init = call_reasoner (["",obj.Pose],["retrieve_sym_init",("ObjPose",

"SymbRgn")])
17 obj.init = response_init.responses [0]. responses [1]
18

19 response_goal = call_reasoner (["",""],["retrieve_sym_goal" ,("Task","SymbGoal")])
20

21 response_robot = call_reasoner (["",""],["find_robot",("Room","Robot")])
22

23 #Append all the found robots into a robot array. It will be [’yumi ’,’tiago ’] for
icra.pl

24 robots = []
25 for i in range(len(response_robot.responses [0]. responses)/2):
26 robots.append(response_robot.responses [0]. responses [2*i])
27

28 print("Available robots are ", robots)
29

30 #Check the capabilities for every robot in the environment
31 for rob in range(len(robots)):
32 response_cap = call_reasoner (["",robots[rob]],["find_robot_capability",("

Robot","Capability")])
33

34 for rob in range(len(robots)):
35 response_reach = call_reasoner ([objs [2].init ,robots[rob]],["find_robot_reach

",("Robot","Region")])
36 #Choose the robot which returns true to this predicate , which is tiago in

this case since yumi can’t reach Region_C but tiago can since it has
37 #navigation capabilities
38 if response_reach.responses [0]. responses [0] == "True":
39 chosen_robot = robots[rob]
40 ...

Listing 3: Reasoning Predicates in Order
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Appendix B
1 (define (domain blocksworld)
2

3 (:types obstacle robot location)
4

5 (: predicates
6 (clear ?obs)
7 (on -table ?obs)
8 (handEmpty ?rob)
9 (holding ?rob ?obs)

10 (on ?obs ?underObs)
11 (at ?rob ?from)
12 (in ?obs ?from)
13 (mobile ?rob))
14

15

16 (: action move
17 :parameters (?rob - robot ?from - location ?to - location)
18 :precondition (and (at ?rob ?from) (mobile ?rob))
19 :effect (and (at ?rob ?to)
20 (not (at ?rob ?from))))
21

22 (: action pick
23 :parameters (?rob - robot ?obs - obstacle ?from - location)
24 :precondition (and (handEmpty ?rob) (in ?obs ?from)
25 (at ?rob ?from) (clear ?obs))
26 :effect (and (holding ?rob ?obs)
27 (not (handEmpty ?rob)) ))
28

29 (: action place
30 :parameters (?rob - robot ?obs - obstacle ?from - location)
31 :precondition (and (holding ?rob ?obs)
32 (at ?rob ?from))
33 :effect (and (handEmpty ?rob) (in ?obs ?from)
34 (not (holding ?rob ?obs)) ))
35

36 (: action stack
37 :parameters (?rob -robot ?obs - obstacle ?underObs - obstacle ?from -

location)
38 :precondition (and (clear ?underObs) (holding ?rob ?obs) (not (mobile ?rob)

)
39 (in ?underObs ?from) (at ?rob ?from))
40 :effect (and (clear ?obs) (handEmpty ?rob) (on ?obs ?underObs) (in ?obs ?

from)
41 (not (clear ?underObs)) (not (holding ?rob ?obs))))
42

43 (: action unstack
44 :parameters (?rob -robot ?obs - obstacle ?underObs - obstacle ?from -

location)
45 :precondition (and (on ?obs ?underObs) (clear ?obs) (not (clear ?underObs))

(not (mobile ?rob))
46 (handEmpty ?rob) (in ?underObs ?from) (at ?rob ?from) )
47 :effect (and (holding ?rob ?obs) (clear ?underObs)
48 (not (on ?obs ?underObs )) (not (in ?obs ?from )) (not (clear ?

obs)) (not (handEmpty ?rob))))
49 )

Listing 4: Global Domain PDDL File
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1 (define (domain blocksworld)
2

3 (:types obstacle robot location)
4

5 (: predicates
6 (clear ?obs)
7 (on -table ?obs)
8 (handEmpty ?rob)
9 (holding ?rob ?obs)

10 (on ?obs ?underObs)
11 (at ?rob ?from)
12 (in ?obs ?from)
13 (mobile ?rob))
14

15

16 (: action move
17 :parameters (?rob - robot ?from - location ?to - location)
18 :precondition (and (at ?rob ?from) (mobile ?rob))
19 :effect (and (at ?rob ?to)
20 (not (at ?rob ?from))))
21

22 (: action pick
23 :parameters (?rob - robot ?obs - obstacle ?from - location)
24 :precondition (and (handEmpty ?rob) (in ?obs ?from)
25 (at ?rob ?from) (clear ?obs))
26 :effect (and (holding ?rob ?obs)
27 (not (handEmpty ?rob)) ))
28

29 (: action place
30 :parameters (?rob - robot ?obs - obstacle ?from - location)
31 :precondition (and (holding ?rob ?obs)
32 (at ?rob ?from))
33 :effect (and (handEmpty ?rob) (in ?obs ?from)
34 (not (holding ?rob ?obs)) ))
35 )

Listing 5: Task Specific Domain PDDL File for Tiago
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1 (define (domain blocksworld)
2

3 (:types obstacle robot location)
4

5 (: predicates
6 (clear ?obs)
7 (on -table ?obs)
8 (handEmpty ?rob)
9 (holding ?rob ?obs)

10 (on ?obs ?underObs)
11 (at ?rob ?from)
12 (in ?obs ?from)
13 (mobile ?rob))
14

15 (: action pick
16 :parameters (?rob - robot ?obs - obstacle ?from - location)
17 :precondition (and (handEmpty ?rob) (in ?obs ?from)
18 (at ?rob ?from) (clear ?obs))
19 :effect (and (holding ?rob ?obs)
20 (not (handEmpty ?rob)) ))
21

22 (: action stack
23 :parameters (?rob -robot ?obs - obstacle ?underObs - obstacle ?from -

location)
24 :precondition (and (clear ?underObs) (holding ?rob ?obs) (not (mobile ?rob)

)
25 (in ?underObs ?from) (at ?rob ?from))
26 :effect (and (clear ?obs) (handEmpty ?rob) (on ?obs ?underObs) (in ?obs ?

from)
27 (not (clear ?underObs)) (not (holding ?rob ?obs))))
28

29 (: action unstack
30 :parameters (?rob -robot ?obs - obstacle ?underObs - obstacle ?from -

location)
31 :precondition (and (on ?obs ?underObs) (clear ?obs) (not (clear ?underObs))

(not (mobile ?rob))
32 (handEmpty ?rob) (in ?underObs ?from) (at ?rob ?from) )
33 :effect (and (holding ?rob ?obs) (clear ?underObs)
34 (not (on ?obs ?underObs )) (not (in ?obs ?from )) (not (clear ?

obs)) (not (handEmpty ?rob))))
35 )

Listing 6: Task Specific Domain PDDL File for Yumi
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