
DRAFT

Master thesis
Master in Innovation and Research in Informatics (MIRI)

Auto-scaling a video-conference
platform with Reinforcement learning

REPORT

Author: Francesc Roy Campderrós

Director: Leandro Navarro (DAC - DSG)

Codirector: Felix Freitag (DAC - DSG)

Date: 18/10/2021

Auto-scaling a video-conference platform with Reinforcement learning 1

Abstract
One of the capabilities that video-conferencing platforms are expected to have, as well as other
distributed services, is being able to scale horizontally. This is because workload is not constant
in a lot of applications, so setting a fixed number of servers beforehand will probably end up
with either bad quality of service when load is too high, or resources wasted when load is too
low. From the service providers’s point of view both situations are undesirable. On the one
side, they may be penalised when not delivering sufficient quality of service to their users. On
the other side, having servers infra-used is inefficient, as more servers running imply higher
electricity/renting costs. Therefore this auto-scaling capability is crucial in order to optimize
the expenses at the end of the month.

In this work we develop an auto-scaling algorithm based on Reinforcement learning (RL) to
be applied to the adjustment of computing capacity of a distributed video-conference platform
such as Jitsi and perform a comparisonwith simple threshold basedmethods (TBM), which are
offered by many cloud providers as the default auto-scaling service. We perform this compari-
son under different synthetic workload patterns. Since video-conferencing platforms consume
a lot of computing resources and we want to analyse different high loads, the comparison is
done with simulations.

We demonstrate that RL performs better than TBM in all the scenarios evaluated in terms of
money expended (with different patterns tested) and that the difference between them is ac-
centuated the more complex the workload pattern is.

2 Report

Contents
1 Introduction 5

1.1 Motivation . 5
1.2 Problem statement . 6
1.3 Contribution . 6
1.4 Context . 7
1.5 Thesis Outline . 7

2 Background and Related work 8
2.1 Related work . 8
2.2 Jitsi architecture background . 9
2.3 Threshold based methods (TBM) background . 12
2.4 Reinforcement learning theory (RL) background 12
2.5 Reinforcement learning toy problem . 14
2.6 Reinforcement learning algorithms for model-based MDPs (dynamics known) . 16

2.6.1 Algorithms for policy evaluation . 16
2.6.2 Algorithms for control . 17

2.7 Reinforcement learning algorithms for model-free MDPs (dynamics unknown) . 17
2.7.1 Algorithms for policy evaluation . 18
2.7.2 Algorithms for control . 19

2.8 Remarks . 20

3 Description of the system 21
3.1 Design of the simulator . 21
3.2 Quotas . 25
3.3 Visualization . 25

4 Architecture of the solution 27
4.1 Formulating the auto-scaling problem as an MDP problem 27
4.2 Other formulations of the state space . 28

5 Evaluation 29
5.1 First version (cycles of 600 seconds) . 29

5.1.1 Pattern of connections 1 (uniformly distributed) 30
5.1.2 Pattern of connections 2 (concentration in a 50 second range space) 30

5.2 Second version (cycles of 3600 seconds) . 31
5.2.1 Pattern of connections 1 (uniformly distributed) 31
5.2.2 Pattern of connections 2 (higher load) . 32

6 Conclusions 34
6.1 Concluding remarks . 34
6.2 Future work . 34

6.2.1 Online learning . 34
6.2.2 Comparison of algorithms on the real scenario 35
6.2.3 Deep Q learning . 35

References 39

Auto-scaling a video-conference platform with Reinforcement learning 3

List of Figures
1 Jitsi architecture . 9
2 Jitsi default with serveral shards . 11
3 Jitsi with OCTO enabled . 11
4 MDP scheme . 14
5 MDP toy problem . 15
6 Simulation with auto-scaler disabled. 26
7 Simulation with TBM auto-scaler enabled. 26
8 Results RL algorithm VS TBM methods (Pattern 1) 30
9 Results RL algorithm VS TBM methods (Pattern 2) 31
10 Results RL algorithm VS TBM methods (Pattern 1) 32
11 Results RL algorithm VS TBM methods (Pattern 2) 33
12 Example of stress test with a football fake video as camera input. 37
13 Example of Graphana output under two different loads. 38

4 Report

List of Tables
1 Threshold based algorithm . 12
2 Policy example . 15
3 Policy Evaluation algorithm . 16
4 Policy Iteration algorithm . 17
5 Policy Improvement function . 17
6 Best policy . 17
7 Monte Carlo algorithm . 18
8 TD learning algorithm . 18
9 Monte Carlo Control algorithm . 19
10 Compute estimate of QΠ function . 19
11 Q-learning algorithm . 20
12 Simulation code . 24
13 advance_rounds() function . 24
14 update_price() function . 25

Auto-scaling a video-conference platform with Reinforcement learning 5

1 Introduction

1.1 Motivation
Videoconferencing has experimented a huge growth during last years becoming an important
medium in our everyday lives. From working to education to even socializing, we are moving
to video-conference platforms. This has been possible due to the users having more power-
ful personal computers and high network bandwidth offered by network providers, given that
videoconferencing is traffic intensive [1].

The pandemic has only exaggerated this trend and it seems that public governments and private
companies are planning to keep with this tendency after it finishes, suggesting their employees
to do remote work 2 or 3 days per week as it seems an effective formula.

One of the capabilities that videoconferencing platforms are expected to have, as well as other
distributed services, is being able to scale horizontally, that is, increase (scale out) the number
of servers attending requests if we have a bigger input load in a certain moment or decrease
(scale in) them if the load goes down again.

This is because as a service provider we want to offer a good service quality (at least as good as
the service level agreement or SLA 1) to our users, but always having in mind that more servers
up implies higher costs (electricity or renting costs depending if we own the machines or not)
at the end of the month. This automatized scaling actions are a procedure that administrators
of these platforms try to optimize.

Thus, auto-scaling is a highly interesting topic for the distributed systems research community.
There exist different auto-scaling techniques varying frommore reactive tomore proactive ones.

1SLA is the limit acceptable by the user for a monitored metric of the system, for example: 70% CPU load, 35
packets/second lost, 20 ms response time,etc. An economic compensation may be required when violated.

6 Report

1.2 Problem statement
Having in mind that a server running has a price per second and not complying with an SLA
agreement with users also has a (different and usually higher) price per second, the problem
to solve is to find the optimum number of servers in each moment in terms of money expended
(€).

Therefore, between 2 auto-scaling algorithms that switch on and switch off servers of a dis-
tributed platform, wewill consider better the one that implies a lower cost at the end of a certain
deployment period.

The basic idea of any auto-scaling algorithm is the following: On the one hand if the current
running servers are highly loaded andwe cannot offer good enough service quality to our users,
a new server will be booted up and new video-conferences will be placed to that new server 2.
On the other hand if some servers are infra-used, and we are able to deliver a sufficient service
quality with less resources, some of them will be switched off.

Depending on the technique used to develop the algorithm the quality of the solution in terms
of expenses will be better or worse.

It is worth mentioning that the problem of auto-scaling in videoconferencing services is a lit-
tle bit different than the same problem in other distributed systems like distributed database
management system or a “distributed web server” (a group of web servers hosting the same
website). In video-conference platforms, jobs (video-conferences) performed by the servers
last from minutes to hours. In contrast, jobs (queries or web page delivery) in the mentioned
above distributed systems last some orders of time magnitude less. Moreover, in a videocon-
ferencing platform if some server is switched off, the running conferences inside it have to be
reallocated (in a distributedweb server or databasemanagement system, the systemwaits until
the running requests are finished before switching off).

1.3 Contribution
The contribution is the development of an auto-scaling algorithmbased onReinforcement learn-
ing theory. Once implemented we compare it to a simpler Threshold-based rules technique as
the base case. The comparison is done using a simulator and under different fictitious workload
patterns, and we observe which algorithm reacts better in terms of overall costs.

In the future (not implemented yet)we are going to repeat the comparison in a real environment
built in the guifi.net testbed [2]. The video-conference platform to do the real test will be Jitsi
[3], an open source platform. Workloads will be fictitiously generated with Selenium, a browser
automation framework (but based on real observed traffic from a Jitsi System that is already in
production in the mentioned testbed).

The idea is that with this implementation we are going to propose improvements over the cur-
rent solution for auto-scaling that Jitsi is offering its users [4].

It is important to notice that in this work we are only going to consider scaling in and out.

2Usually there is a load-balancer in front of the servers that distributes the incoming load basing its decisions on
the current load of each server.

Auto-scaling a video-conference platform with Reinforcement learning 7

Another approach could had been scaling up and down, that is resizing the resources assigned
to a single virtual machine (VM). For example if a VM has been provisioned with two vCPUs
and more load is coming, the hypervisor could momentarily increase to three vCPUs.

1.4 Context
This work was carried out under the supervision of Leandro Navarro and Felix Freitag on the
context of the LeadingEdge project, funded by the Chistera initiative [5].

1.5 Thesis Outline
This thesis is organized as follows. The background and related work is reviewed in the next
chapter, Chapter 2. Chapter 3 describes the system and the problem in more detail. Chapter 4
presents the modeling of our problem in the context of Reinforcement Learning. In Chapter 5,
we present the results. Finally, the last chapter concludes this thesis.

8 Report

2 Background and Related work

2.1 Related work
There exist a lot of papers related to the auto-scaling problem. Some of them try to classify the
different approaches that exist to solve it. They are mainly 5 categories: static threshold-based
rules, control theory, reinforcement learning, queuing theory and time series analysis.[6]

Most of them are based on the MAPE (monitor, analyze, plan and execute) loop [6]:

• Monitor is about taking an snapshot of the desired metrics (CPU usage, drop packets per
second, latency of requests, etc.) of the system at a suitable granularity (every one sec-
ond, 5 seconds, 1 minute...). This metric is the mean considering all the servers. Usually
the provider of the VM’s will offer an API to connect to the hypervisor and gather this
information.

• Analyze consists of processing the previous metrics gathered and then getting useful in-
formation of the system utilization (andmaybe also system utilization in the future if they
do prediction).

• Plan is the phase where the auto-scaler designs the actions to take based on the previous
results of the analyze phase.

• Execute is where the actions designed in the previous state are actually executed through
the API that the provider expose to us to be able to talk to the hypervisor.

It is important to distinguish between auto-scaling state-based distributed systems or stateless
ones, because the solution should take into account additional considerations if we are dealing
with an state-based (because the state should be replicated (or transferred) in the new server).
An example of state-based distributed system could be a distributed databasemanagement sys-
tem and an example of a stateless could be a "distributed web server". In this work we deal with
a stateless distributed system.

From the 5 techniques mentioned above some of them are more reactive (they react after they
capture some event) and the other more proactive (they can anticipate and react before some
event has happened).

If we focus in the most simpler reactive solutions, we find a lot of commercial tools that use
this approach. For example Amazon Web Services (AWS) use threshold based methods as its
default auto-scaling service [7]. Also it is the way that RightScale, a popular service in cloud
infrastructures, operates [8].

If we focus on solutions that are a mix of reactive and proactive approaches we find the work
of Ying Liu et al. named ProRenata [9]. ProRenata is an auto-scaler for a Cassandra-like dis-
tributed database management system that explicitly considers scaling overhead, i.e., data mi-
gration cost, to achieve high resource utilization and low latency SLA violation. ProRenata
achieve better results than its proactive competitors because it adds a reactive module that al-
lows it to compare the prediction at "t-1" to the output of the reactive module at "t" and perform
adjustments if needed (usually there is error in the prediction).

Also in the industry this kind of approaches mix is found. For example Netflix, whose servers

Auto-scaling a video-conference platform with Reinforcement learning 9

are hosted in AWS, use AWS reactive auto-scaling system in combination with a internal pre-
dictive model (based on Fast Fourier Transform) [10][11].

Nevertheless in this project we focus our attention in one particular approach, Reinforcement
learning, that is a pure proactive approach. A lot of work has also been done in this field [12].
For example Dutreilh et al. in [13] model the problem as an MDP with a state space consisting
in 3 dimensions (workload in number of requests per second, the current number of running
virtual machines and the performance expressed as the average response time to requests in
seconds). They use Q-learning [14] to find a good policy. Their reward function inspired the
reward function of our work although they penalize the action of booting a VM. They use ficti-
tiously generatedworkload to test their solution in a real testbed. They use advanced techniques
(initialization of the Q function, convergence speedups, performance model change detection
system...) to overcome the problems of having good policies in the early phases of learning,
time for the learning to converge to an optimal policy and coping with changes in the applica-
tion performance over time.

There are other works that mix different techniques mentioned above. For example Dezhabad
et al. in [15] combine RL with a genetic algorithm and queue theory to auto-scale virtualized
firewalls. Barret et al. use parallel executions of diferent autoscalers in order to speed up the
training phase [16].

There exists also a lot of work regarding using fuzzy logic (that falls inside control theory), that
consists on using more sophisticated rules instead of the typical threshold based (qualitative
instead of quantitative rules). For example Jamshidi et al. in [17]. developed RobusT2Scale,
an autoscaler with this technique (and time series analysis) and proved that it is significantly
better than simpler threshold based ones.

On top of that there also exist a lot of work regarding mixing fuzzy logic and reinforcement
learning. The idea is to find the optimal rules through interacting with the system. Here we can
find a lot of work well summarized in [18].

2.2 Jitsi architecture background
In the following figure 1 we can see the basic architecture of the video-conference system that
we are going to deal with:

Figure 1: Jitsi architecture

This is the basic architecture with just one server holding conferences.

10 Report

Let’s describe the different components of Jitsi:

− The Web Server (usually Nginx) serving the front-end files of Jitsi.

− Jitsi Video Bridge (JVB) is the actual video-conference server, that is, a Selective Forward-
ing Unit that receives audio and video streams from endpoints and relays them to ev-
eryone else. It does what a Multipoint Control Unit used to do in old video-conference
systems but with an improved philosophy (no mixing of streams) [19]. This is actually
the component that can be scaled.

− Jicofo is the conference focus agent, that is, it is responsible for managing media sessions
between each of the participants and the JVB, i.e, signaling. It is also responsible to select
the JVB that is going to host the new conference (round-robin as default but also config-
urable to less loaded JVB).

− Prosody is an XMPP Server that allows the communications between all components with
XMPP messages.

This would be the default installation of Jitsi in a single server. However Jitsi is ready to grow
horizontally, i.e to scale, by adding more JVBs in the same machine or another one (as many as
the administrator needs). The only necessary thing would be to indicate them where Prosody
resides and announce themselves. Jicofo would then notice new JVBs instances and would
consider them when dealing with new conferences. If a server is switched off and there are
live conferences running inside it, Jicofo will reallocate these conferences (transparently for the
user) to available servers. This combination of Jicofo, Prosody, Web server and JVBs is what is
described as a Jitsi shard.

Clients are browsers with WebRTC [20] technology. Most major browser such as Chrome, Fire-
fox, Safari and Opera have this feature implemented.

In the default installation of Jitsi, a specific video-conference (so all its participants) can be
hosted only by one JVB. Thismeans that it is not possible to allocate some participants in one JVB
and some other participants of the same conference on another. However this can be configured,
but first let’s describe how a more complex Jitsi deployment would look like.

Suppose we are offering videoconference service around the world. We would like to have
different Jitsi shards distributed around different geographical areas and this way users of the
same conference (typically of the same geographical area) would be allocated to the same shard
(with the help of a unique load-balancer that would redirect the user to its nearest shard). We
will benefit of this fact because users would be closer to the server (less latency).

This a perfect solution if you think there is not going to be a lot of international conferences
in your Jitsi system. However there is a drawback with this implementation. Suppose there is
video-conference with users from different geographical areas. The user that creates the room
is from Australia, so the load-balancer redirects her to its nearest shard. But after that when
new users (from USA for example) want to join the room, the load-balancer will redirect them
to the same shard as the Australian user:

Auto-scaling a video-conference platform with Reinforcement learning 11

Figure 2: Jitsi default with serveral shards

So this situation in figure 2 is not a good design because it is possible that some USA users
have high latency to the JVB and this will downgrade the video-conference. So the solution is
allowing video-bridges to talk between them (using a protocol named OCTO):

Figure 3: Jitsi with OCTO enabled

Where the red points represents the shards (Jicofo and pool of JVBs) and green points the users.

So the idea now is that even the signaling procedure will be handled by the shard located in
Australia again, its Jicofo sees now all JVBs from all shards as possible JVBs to allocate users, so
North-american userswill be allocated to JVBs from the shard located inUSAand theAustralian
user in the Australian shard. JVBs will then be talking to each other to allow the communication
(possibly through a low latency channel provisioned by a company).

OCTO can also be enabled even if only one shard is available. It is a way to allow Jicofo to
allocate users of the same conference to different JVBs. This is how we are going to configure
our infrastructure.

12 Report

2.3 Threshold based methods (TBM) background
There is not a lot of theory needed in order to implement a TBMmethod. An example in pseudo-
code of a threshold method could be:

Loop forever:
Monitored metric = Take snapshot of the system()
if(Monitored metric > Upper threshold):

Add a server()
Wait COOLDOWN seconds()

else if(Monitored metric < Lower threshold):
Stop server()
Wait COOLDOWN seconds()

else:
pass

Wait PHOTO INTERVAL second() # monitoring polling strategy...

Table 1: Threshold based algorithm

The main idea here is to maintain the monitored metric between two values (Upper threshold
and Lower threshold). The monitored metric could be for example: mean current load of the
servers,mean current packet loss rate, mean current response time, etc.

Upper threshold will be below and presumably close to SLA agreement and lower threshold
will be bellow Upper threshold. COOLDOWN can be 20 seconds, 30 seconds, 2 minutes... It
should be a time that is enough to see the effects of actions we have performed to the system
(this is usually called "cooldown period") to avoid oscillation of resources.

The advantage of threshold based methods is their simplicity in terms of implementation. The
downside of threshold base methods is the difficulty in setting good thresholds.

As an example, suppose the load is growing and Upper threshold is reached. If you set the
thresholds too close to the SLA agreement, there exists a higher risk to surpass the SLA agree-
ment because we will react too late if the load keeps growing (because as we already said boot-
ing up a server takes time). So probably wewon’t be delivering a sufficient quality during some
time (and thus paying) until the server is eventually up.

Of course a possibility could be to increase the distance from thresholds to SLA agreements in
order to avoid this situation, butmaybe youwould be anticipating toomuch and thus expending
money unnecessary.

Even if onemanages to find the optimal thresholds, they have to be set for a particularworkload.
If the load of the service changes over time, the algorithm won’t be able to adapt itself to the
new situation.

2.4 Reinforcement learning theory (RL) background
In this workwe develop amore intelligent auto-scaler based on reinforcement learning that ide-
ally will perform better and give better results in terms of cost (€), having in mind that a virtual

Auto-scaling a video-conference platform with Reinforcement learning 13

machine running has a price/second and violating SLA agreements also has a price/second.

Reinforcement learning theory is build on top of a Markov3 Decision Process (MDP) concept.
A MDP is a mathematical concept to model a real process where there is an (intelligent) agent
that can map the world state on an internal simplified state and then interact with it. It will
interact with it taking actions (through rounds) that actually are going to change that state.

Each action that the agent performs (from a set of possible actions), as already said, modifies
the state of the world, so it can help the agent to get closer to a desired state or vice versa.

Due the stochasticity of the world, given that the agent is in a state and takes an action, it can
end in different states with different probabilities.

To model the quality of an state a reward (or utility) function is defined. The reward function
is something that the developer should design carefully, taking into account that this measure
will obviously influence when searching for best actions to perform from each state.

Recapitulating, our agent is going to take different actions (one on each round) and transition-
ing from state to state through time. Themapping of each state S to an actionA is called a policy
Π.

Π : S −→ A(s) (1)

One could then suspect that there are exactly |A||S| possible policies.

Starting from a start state, if we follow a policy as an agent, we will navigate through the state
space (this is an episode) until an end state (or forever if there is no end state). One could
compute how good a policy is summing all the rewards received in an episode. However even
with a specific policy, the agent can take different episodes (stochasticity of the world) so a
better way to evaluate the goodness of a policy is computing the expected reward.

So the objective is to find the optimal policy or at least a good policy, that is, a policy that has a
high expected reward.

3As the name states, a Markov decision process has to hold the Markov property, i.e, given information of the
current state and an action is sufficient to know the future (it is independent of past states or actions that lead you
up to here).

14 Report

Figure 4: MDP scheme

2.5 Reinforcement learning toy problem
As an example, consider a simpleMDPwhich simulates a robot (the agent) interacting with the
world with five possible actions: one step north, one step south, one step east, one step west or
do nothing. Here the world state is modeled with just the x position and the y position of the
robot (7 x 7, 2 dimension grid), so we have 49 states.

This toy problem will help us to later formulate the real auto-scaling problem.

Definitions:

− States: the set of states (each position of the 2D grid in the example)

− Sstart ∈ States: starting state

− Actions(s): possible actions from state s (N,S,W,E,Nothing in the example)

− IsEnd(s): whether at end state or not

− T (s, a, s′): transition probability from s to s’ if taking action a. This is also called the dy-
namics. We are going to suppose that the dynamics of the world do not change over time
(they are stationary).

− Reward(s): reward for being at state s. There are other ways to define the reward, for
example as Reward(s, a), that is, the reward is for being at state s and taking action a.

When the robot performs its action it has 75% of probability of performing it correctly, 15%
probability of probabilities of malfunctioning and perform it in a 90 degrees direction and 15%
of probabilities of malfunctioning and perform it in the other 90 degrees direction (these are
the transitioning probabilities) for N,S,W or E. For the action Nothing, the probabilities of per-
forming the action correctly are 80%. Then it has 5% probabilities to go to any direction (for
example because of the wind hitting our agent).

There will be one end states in our MDP, (x, y) = (3, 3) (there could be more or any). And as
an example we would like that our agent tries to reach state (3, 3) as fast as possible. To achieve

Auto-scaling a video-conference platform with Reinforcement learning 15

that, first we define the reward function for the state as follows:

Reward(s, a) = −[(x− 3)2 + (y − 3)2]− STEP_COST

With STEP_COST = 0 if a is "Nothing", 0.01 otherwise

So implicitlywe are telling our agent that actions that take him closer to (3,3) aremore beneficial.
Pictorially we could draw our MDP like the following image 5.

Figure 5: MDP toy problem

In figure 5 we have only drawn part of MDP, there are states missing and only the transition
probabilities of one chance node of state 2,1 has been written as an example.

An example policy could be (not specifically the best one):

N S E N N N N
S N S N N N N
E E E W N N N
N N N · N N N
N N N N N Nothing N
N N N N N N N
N N N N N N N

Table 2: Policy example

Where "·" means no action because it is an end state.

16 Report

An example of an episode (sequence of actions until end state) following this policy could be
(starting from 2,2):

(2, 2) −→ (2, 3) −→ (2, 4) −→ (3, 4) −→ (3, 3) (2)

Note that the agent malfunctioned (luckily) in the fourth step.

We could compute the reward of an episode like this:

Reward = Reward(st) + γ ∗Reward(st+1) + γ2 ∗Reward(st+2) + ... (3)

Where γ is the discount factor that we can fix between [0 − 1]. The meaning of setting γ to 0
is that we only care for immediate rewards. On the other hand, a γ value of 1 that we care the
same for immediate reward than for future very distant rewards. Usually γ is set around 0.9.

But it would be more useful to compute the expected reward (also called Value) of a policy Π
from a particular start state s:

VΠ(s) = EΠ[Reward] (4)

Lastly, one interesting concept that one could want to compute and is going to be useful later is
QΠ(s, a), that is the expected reward following the policy Π but after taking action a instead of
Π(s) in the first move.

2.6 Reinforcement learning algorithms for model-basedMDPs (dynamics known)
In this situation, when the transition probabilities are known, there exists algorithms to compute
exactly the value of a policy and to find the optimum policy.

2.6.1 Algorithms for policy evaluation

There exist an iterative algorithm (based on Dynamic programming) called Policy evaluation
that computes the expected reward of a given policy Π from each state:

Initialize V (0)
Π (s)←− 0 for all states s

While (||V (t)
Π − V (t−1)

Π || ≥ ε):
For each state s:

V
(t)

Π (s)←− Reward(s,Π(s)) + γ ∗
∑

s′ T (s,Π(s), s′) ∗ V (t−1)
Π (s′)

Table 3: Policy Evaluation algorithm

It is also possible to compute the expected reward analytically solving a system of Bellman’s
equations:

VΠ(s) = RΠ(s) + γ ∗
∑
s′∈S

PΠ(s′|s) ∗ VΠ(s′) ∀s ∈ S (5)

Auto-scaling a video-conference platform with Reinforcement learning 17

2.6.2 Algorithms for control

One could also want to compute the optimum policy Πopt, i.e, the one that give us the highest
expected reward with this algorithm:

Set i = 0
Initialize Π0(s) randomly for all states
while i == 0 or the policy has changed in any state:

VΠi ←− policy_evaluation(Πi)
Πi+ 1←− policy_improvement(VΠi ,Πi)
i = i+ 1

Table 4: Policy Iteration algorithm

For s in S an a in A:
QΠi(s, a) = R(s, a) + γ ∗

∑
s′∈S P (s′|s, a) ∗ VΠi(s

′)
For s in S:

Πi+1(s) = argmaxaQΠi(s, a)

Table 5: Policy Improvement function

Remember that the expression that we find in this function QΠ(s, a) has an important meaning
as stated before in subsection 2.5.

It’s easy to see that the best policy of this toy problem will be (and in fact is what 9 give us):

S S S S S S S
E S S S S S W
E E S S S W W
E E E · W W W
E E N N N W W
E N N N N N W
N N N N N N N

Table 6: Best policy

2.7 Reinforcement learning algorithms formodel-freeMDPs (dynamics unknown)
In the unrealistic setting explained above (where we know how the world works and are able to
write down the probabilities of an action taking the agent to specific state) we could compute
the expected reward given a policy using the algorithm stated above 3. Furthermore we could
find the best policy, i.e, the one giving us the highest expected reward 9. In this scenario we say
that we have a model-based MDP.

Nevertheless when we develop an agent (the auto-scaler in our case) that is going to interact
with the world (the infrastructure consisting of the servers,etc) we don’t know a priori the tran-
sitioning probabilities so we are not able to compute the expected reward given a policy neither

18 Report

the best policy one can obtain. So we have a model-free MDP.

So here is where RL comes in. The idea behind RL is that the agent is going to figure out the
expected reward of a policy (and also find the optimal policy) from experience. That is, inter-
acting with the world we are going be able to compute estimations of VΠ(s) and QΠ(s, a) by
indirectly computing estimations of the transition probabilities T (s, a, s

′
) of the world.

2.7.1 Algorithms for policy evaluation

The first Naive algorithm that we can think of is a Monte-Carlo algorithm. This algorithm gives
us an unbiased estimator of VΠ(s) and it works by performing a huge number of episodes and
then computing the average of the reward obtained on each of them:

Initialize N(s)←− 0, G(s)←− 0 for all states s
N(s) is a counter of total first visits, G(s) is total reward
Loop:

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, ..., si,Ti

Define Gi,t = ri,t + γ ∗ ri,t+1 + γ2 ∗ ri,t+2 + ...+ γTi−1 ∗ ri,Ti

Gi,t is the reward from time step t onwards in ith episode
For each state s visited in episode i:

For first time t that state s is visited in episode i:
Increment counter: N(s) = N(s) + 1
Increment total reward: G(s) = G(s) +Gi,t

Update estimate: VΠ(s) = G(s)/N(s)

Table 7: Monte Carlo algorithm

A drawback of this algorithm is that only works withMDPs that have at least one reachable end
state in contrast of Policy Evaluation 3 or algorithms that we are going to see below.

So we need an algorithm that can find the expected reward of a given policy from a model-free
MDP even if there is no end state. This is temporal difference learning (TD-learning):

Initialize VΠ(s) = 0, ∀s ∈ S
Loop:

Sample tuple(st,Π(st), rt, st+1)
VΠ(st) = VΠ(st) + α ∗ ([rt + γ ∗ VΠ(st+1)]− VΠ(st))
st = st+1

Table 8: TD learning algorithm

Where α is a learning rate that can be constant (should be small if we don’t want the values to
oscillate and never converge) or we can make it lower as we make more iterations of the loop.

Note that with this algorithm there is no need to wait until the end of an episode to update our
VΠ(s).

Auto-scaling a video-conference platform with Reinforcement learning 19

The estimator that this algorithm is going to give us is biased but it has less variance that the
one obtained with 7.

2.7.2 Algorithms for control

A first algorithm for control (finding Πopt) in a model free MDP is the following Monte Carlo
method which has a similar structure than Policy Iteration 9 but here we will obtain an estimate
of QΠ(s, a) instead of the real QΠ(s, a):

Initialize N(s, a) = 0,G(s, a) = 0,QΠ(s, a) = 0, ∀s ∈ S ∀a ∈ A
Set i = 0
Initialize Π0(s) randomly for all states
while i == 0 or the policy has changed in any state:

Q̂Πi(s, a)←− compute_estimate_of_Q_PI(Πi)
Πi+ 1←− argmaxaQ̂Πi(s, a) with prob (1− ε) or random(Actions) with prob ε
i = i+ 1

Table 9: Monte Carlo Control algorithm

Loop:
Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, ..., si,Ti

Define Gi,t = ri,t + γ ∗ ri,t+1 + γ2 ∗ ri,t+2 + ...+ γTi−1 ∗ ri,Ti

Gi,t is the reward from time step t onwards in ith episode
For each state (s, a) visited in episode i:

For first time t that (s, a) is visited in episode i:
Increment counter: N(s, a) = N(s, a) + 1
Increment total reward: G(s, a) = G(s, a) +Gi,t

Update estimate: QΠ(s, a) = G(s, a)/N(s, a)

Table 10: Compute estimate of QΠ function

Where ε is a decaying parameter that will allow us to explore different state-actions. This is to
try to avoid ending with a policy that is actually a local optimum.

However this algorithm has similar drawbacks thanMonte Carlo method for policy evaluation,
i.e. , we need an end state or this will not work. So a new algorithm is needed and this is where
Q-learning comes into action:

20 Report

Initialize Q(s, a),∀s ∈ S, a ∈ A, t = 0, initial state st = s0
Initialize random policy Π
Loop:

Observe tuple (st, at, rt, st+1)
Q(st, at)←− Q(st, at) + α ∗ (rt + γ ∗maxaQ(st+1, a)−Q(st, at))
Π(st) = argmaxaQ(st, a) with prob 1− ε, else random
t=t+1

Table 11: Q-learning algorithm

It is worth saying that it is not mandatory to initialize theQ(s, a) function to 0. If we try another
initialization we will probably end up with another policy. Setting Q to high values maybe
performs better (it is an heuristic).

2.8 Remarks
When dealing with a model-based MDP, we will be able to get the exact solution in both prob-
lems. However with model-free MDPs we will only be able to find approximations to the exact
solutions of both problems.

Auto-scaling a video-conference platform with Reinforcement learning 21

3 Description of the system
We design a simulator as real as possible in order to be able to execute the two algorithms
(TBM and RL) against it and compare them. But before we compare themwemust train the RL
algorithm (also against the simulator) in order obtain a good policy.

Once the RL algorithm has been trained (and we have good policy, hopefully a good one, prob-
ably not the optimal one) we will then execute both algorithms during a certain amount of
simulated time (a week) and see which performs better in terms of money expended 3.2.

In future work, (after the training and comparison against the simulator has been done) we
will also do the comparison in the real scenario and see if the same results hold (importing the
policy from the previous step for the RL algorithm). If the simulator is a tight approximation
of the real system, the results will hold.

The usage of a simulator has been decided because trying to train the RL algorithm in the real
scenario is infeasible as it would take too much physical time until a good policy is obtained (a
huge number of interactions are needed to get a good estimation of the Q(s, a) function in the
Q learning algorithm). This is a drawback of our algorithm in comparison with the TBM as this
one is ready to be deployed without any training.

A possibility could had also been to do a first training in the simulator and once the policy is
deployed, keep training it in an online manner to get a more accurate policy (according to the
real system instead of the simulator), but this has not been implemented due to time restrictions.

In a first version we are going to do the comparison under different fictitious traffic connection
patterns that repeat themselves in cycles of 10 minutes (with some randomness, that is, the
video-conferences will start at same second of the cycle but a normal random variable will be
added on each cycle for every participant). The duration of the connections will also be ran-
domizedwith a new normal randomvariable on each cycle (themeanwill be video-conferences
of 2 minutes). This is to emulate the stochasticity of the environment.

In a second version we are going to do the comparison also under different fictitious traffic
connection patterns but in this case the cycle will be one hour (also with randomness) because
is a more realistic scenario. Probably the more realistic scenario would be cycles of one day or
one week as this is common in schools (e.g, Maths lesson every Monday at 8:00) or offices (e.g,
meeting on Thursday at 11:00 every week).

The TBMs are implemented with different versions (different thresholds) and we will observe
if RL is able to improve the performance over all of them.

3.1 Design of the simulator
The design of the simulator [21] tries to be as faithful as possible to the real system thanks to
the monitoring implemented using Graphana software [22].With this software we have been
able to analyze how the system reacts to every new connection/disconnection in terms of CPU
usage, etc and map it to the simulator.

The following classes have been implemented in order to built the simulator:

22 Report

User class

This class will have 3 attributes:

• id: to uniquely identify it

• type: 1 or 2. Type 1 represents the user without camera/audio. User type 2 a user with
camera and audio connected.

• duration: the number of seconds left until disconnection of the conference

This class does not have methods.

JVB class

An object from this class, represents a server.

This class will have 3 attributes:

• up: True if up, False if not

• cpu_load: None if not up, current cpu_load if up

• users_connected: list of User’s that are currently being served by this jvb.

This class will have 5 methods:

• start(): sets cpu_load to 0 and up to True

• close(): sets cpu_load to None, up to False, and clears users_connected

• is_up(): returns True if jvb is up, False otherwise

• add_user(user): adds the user to users_connected and increase the cpu_load by +1% (if
user of type 1) or +5% (if user of type 2). This is a measure that has been empirically
observed in the real system.

• advance_round(): advances one second the simulation for that jvb by decreasing 1 unit
on each duration attribute of User’s connected. If the User’s duration becomes 0, it is
removed from the list and the attribute cpu_load is decreased as well.

Jitsi class

An object from this class, represents the entire system.

This class will have 2 attributes:

• video_bridges: a list of available JVBs (up or down).

• video_bridges_up: number of JVBs up

The most important methods of this class will be:

Auto-scaling a video-conference platform with Reinforcement learning 23

• start_jvb(): it starts a new jvb and increments video_bridges_up attribute after 15 seconds
(this is to emulate the behaviour VM machines have when booting up)

• add_user(User): it adds the User to the least loaded jvb from video_bridges list

• stop_jvb(): it stops (also after 15 seconds) the least loaded jvb and reallocates all its users
(in case there is any) to other JVBs that are running. It also decreases video_bridges_up
attribute

• advance_round(): it advances round for all the system, that is all running JVBs

• get_state(): it returns the current state of the system as a tuple composed by the number
of running JVBs, second of the cycle and mean CPU load.

Autoscaler TBM class

An object from this class, represents a TBM auto-scaler that is going to interact with the envi-
ronment (with a Jitsi object).

This class will have 3 attributes:

• Jitsi: the environment to interact with

• Upper threshold

• Lower threshold

The most important method of this class will be:

• perform_action(state): given a state it will start a new jvb if mean CPU load is above the
Upper threshold or it will stop a running jvb if mean CPU load is bellow Lower threshold.
If it does one of these actions, then itwaits 20 seconds of cooldownperiod (20> 15 seconds
needed to start or stop a jvb).

Note: for example if Upper is 60 and Lower is 30 we will call this TBM methods as "60-30 tbm"
algorithm

Autoscaler RL class

An object from this class, represents the agent that is going to interact with the environment
(with a Jitsi object).

This class will have 2 attributes:

• Jitsi: the environment

• Policy: the policy to follow

The most important method of this class will be:

• perform_action(state): given a state it will perform the action the policy is ordering for
that state. If it does one of these actions (start or stop), then itwaits 20 seconds of cooldown

24 Report

period (20 > 15 seconds needed to start or stop a jvb).

The pseudo-code of the simulation is the following:

ROUND_COUNTER = 0 # Second of the cycle
TOTAL_ROUND_COUNTER = 0 # Second of the simulation
CYCLE_IN_SECONDS = 600 # 600 or 3600 seconds
TOTAL_PRICE = 0
PHOTO_INTERVAL = 5 # 5 seconds

jitsi = Jitsi()
autoscaler = None
populate_timetable_for_next_cycle() # adding randomnes to the pattern...

if OPTION == 1:
autoscaler = AutoscalerRL(policy)

else:
autoscaler= AutoscalerTBM()

while TOTAL_ROUND_COUNTER < 604800: # 7 days
state = jitsi.get_state()
autoscaler.perform_action(state)
advance_rounds(jitsi, PHOTO_INTERVAL) # polling strategy...

Table 12: Simulation code

def advance_rounds(jitsi,rounds)
for (rounds):

add_new_connections_for_this_round_to_jitsi(ROUND_COUNTER)
update_price() # update money expended

jitsi.advance_round()

TOTAL_ROUND_COUNTER = TOTAL_ROUND_COUNTER + 1
ROUND_COUNTER = ROUND_COUNTER + 1
if ROUND_COUNTER == CYCLE_IN_SECONDS:

ROUND_COUNTER = 0
populate_timetable_for_next_cycle() # adding randomnes to the pattern...

Table 13: advance_rounds() function

It is important to keep in mind that in Table 12 we are assuming that we already have a trained
policy (Q learning has not been coded again) for the case of AutoscalerRL.

Auto-scaling a video-conference platform with Reinforcement learning 25

3.2 Quotas
We are going to keep track of the price paid after the 7 days of the simulation in order to be able
to compare both algorithms. This price is going to be updated on each round (every simulated
second) adding the price A of having a server running in the cloud provider for one second
and adding the price B of unfulfilling the SLA agreement with our customer (using more than
CPU_LOAD_SLA% resources of the system because it has been observed that the quality of the
conference starts decreasing at this point) for one second:

def update_price(jitsi)
TOTAL_PRICE = TOTAL_PRICE + A * jitsi.video_bridges_up
if mean_cpu_load >= CPU_LOAD_SLA:

TOTAL_PRICE = TOTAL_PRICE + B * (1 + (mean_cpu_load - CPU_LOAD_SLA)/CPU_LOAD_SLA)

Table 14: update_price() function

A and B have been set to real values that we can find in real scenarios. A has been set to 0.000025
(0.09€ per hour [23]) and B to 0.00025 (0.9€ per hour). So usually its much more expensive (x
10) the price that we have to pay to our users for unfulfilling SLA agreement than the price that
we pay for renting the machines.

It should be noticed that the price that we pay to our users for unfulfilling the SLA agreement
is not fixed, it will increase as we decrease the service quality.

3.3 Visualization
We have used a graphic library [24] in order to be able to visualize the traffic patterns we are
fictitiously generating (in this case only with 2 video-bridges). This library is a helpful tool to
design patterns.

26 Report

Figure 6: Simulation with auto-scaler disabled.

Figure 7: Simulation with TBM auto-scaler enabled.

In Figure 6 we see an example of how a single JVB reacts under a workload pattern that con-
centrates the conferences in a certain moment of the cycle. The auto-scaler is disabled so, the
second JVB is not running.

In Figure 7 the same pattern is used but now a simple TBM is switching on and off the servers
depending the workload the platform is holding.

Auto-scaling a video-conference platform with Reinforcement learning 27

4 Architecture of the solution
In this section we discuss the three design choices to be made: the state definition (how to
represent the world), the action space (actions that the agent can do) and the reward function
(the quality of each state).

4.1 Formulating the auto-scaling problem as an MDP problem
Let’s formulate now our problem as and MDP problem. The first idea was to use this state
definition:

(#servers up, #users connected, mean cpu load, second of the cycle) (6)

Note thatwith this state definition, the state space hasmore than several thousandmillion states.
Having in mind that our toy problem had only 49 states, we decided to decrease this state space
to make it tractable. This is because in Q learning algorithm it is necessary to visit each of the
states many times to obtain a good estimate of Q function. So we should train/interact with the
environment too much time before having a good policy.

We decided to drop the users connected dimension making our agent less intelligent but easier
to train. We also decided to reduce the dimension of mean CPU load and second of the cycle
discretizing them by segments of 20 units.

So the state will be defined finally as follow:

(#servers up, mean cpu load, second of the cycle) (7)

Where the values that each dimension can take are the following ones:

• # servers up = {1,..,15}. With the traffic patterns we are going to generate it is enough.

• mean cpu load = {0,1,...,200}. We allow a server to go beyond its 100% load capacity.
For example if the server is at its 95% capacity and we add 1 video-conference more, the
load will raise to 105%. It has been observed empirically that the mean CPU load never
exceed the 4000% in the different fictitious traffic patterns that we are going to use in the
evaluation, thus the value 200 (4000/20).

• second of the cycle = {0,1,2...,29} or {0,1,2...,179} depending on the version (600/20 or
3600/20)

Nowwith this state definition the state space has 15 x 201 x 30 = 90450 states in first version and
15 x 201 x 180 = 542700 states in the second.

The three possible actions will be:

{+1 server, −1 server, do nothing} (8)

So we have this number of possible policies: 390450 and 3542700 respectively.

28 Report

Note that not all actions can be performed from all states (for example, we should always have
a minimum of one server up and a maximum of 15), so in fact the number of policies would be
a little bit smaller.

One limitation that this video-conferencing system has is that it is not possible to reallocate one
user (that has been already allocated in a server) into another server. If this was possible we
would have specify this as possible actions.

The reward function will be defined as minus the price that you would pay in the next PHOTO
INTERVAL seconds if anything changes (having in mind that PHOTO INTERVAL is the time
between two photos of the system):

Reward(s) = −(#server up ∗A ∗ PHOTO INTERV AL+ SLA) (9)

Where SLA is just a function in the following format:

SLA =

{
(1 + (mcl−CPU_LOAD_SLA)

CPU_LOAD_SLA) ∗B ∗ PHOTO INTERV AL ifmcl > CPU_LOAD_SLA
0 else

(10)

Where mcl stands for mean CPU load.

4.2 Other formulations of the state space
We could try to train our agent with a different formulation of the state. For example we could
try:

(#servers up,mean cpu load,mean cpu load t minus 1,mean cpu load t minus 2) (11)

Wheremean cpu load tminus 1 andmean cpu load tminus 2 are simply themean CPU usage in
the last two previous photos of the system (that is 10 and 5 seconds ago as PHOTO_INTERVAL
will be always 5 in our characterization).

Note that this state space definition is independent of ROUND_COUNTER (the second of the
cycle) so probably it would scale better to bigger cycles without the need of increasing the num-
ber of states.

This has not been implemented due to time restrictions.

Auto-scaling a video-conference platform with Reinforcement learning 29

5 Evaluation
As mentioned above, we are going to evaluate both algorithms with patterns that repeat them-
selves in cycles of 10 minutes (first version) and cycles of 1 hour (second version). Each of the
experiments versions is going to be tested against two type of patterns.

The first version (10 minutes) will be tested with:

• A pattern where video-conferences initializations are uniformly distributed during the
cycle.

• A pattern where 50% of the initialitzations are uniformly distributed in all the cycle but
the other 50% uniformly distributed in a 50 second range space (so we will have a higher
concentration in that range space).

The second version (1 hour) will be tested with:

• A pattern where video-conferences initializations are uniformly distributed during the
cycle.

• A pattern where video-conferences initializations are uniformly distributed during the
cycle but the load (number of conferences) will be higher.

This kind of patterns have been selected in order to have a variety of situations that help us to
understand how the algorithms behave.

We have decided to take a PHOTO_INTERVAL of 5 seconds. It is worth to mention that if we
increase this timewindowwe are probably going to decrease the performance of TBMalgorithm
more than the performance of theRL (that ismore robust against these changes). This is because
the RL algorithm will simply learn to be more conservative in order to prevent reaching SLA
levels. In contrast, TBM algorithm will not be able to react during the time window until the
next PHOTO_INTERVAL decision, so it will be more time unfulfilling the SLA requirements.

It is important to notice that as we need usually more than several hundreds of thousands or
even millions of interactions (in 1h cycle version that is the most realistic situation) with the
simulator in order to get a good policy (and each interaction represents and action from the
auto-scaler and 5 seconds of waiting time), it would be unfeasible to train it against the real
environment as it would take at least 600 000 * 5 seconds ≈ 1 month.

Each of the experiments (with each configuration) has been executed 100 times and results
averaged. This has been possiblewith SERTComputation Cluster of the Computer Architecture
Department of UPC [25].

The mean duration of all the video-conferences is 120 seconds and they are all composed by
five users of type 1 (audio and camera disabled) and one user of type 2 (camera and audio
enabled). The CPU_LOAD_SLA has been set to 70%.

5.1 First version (cycles of 600 seconds)
First we test both algorithms against workload patterns of 10 minute cycles.

30 Report

5.1.1 Pattern of connections 1 (uniformly distributed)

The number of conferences is 50 per cycle.

Figure 8: Results RL algorithm VS TBM methods (Pattern 1)

The 4 TBM methods used in the comparison are the best 4 that wee could found as defined
here 3.1: The blue one is the 55 − 25 tbm, the yellow one is the 60 − 25 tbm, the green one the
55− 30 tbm and the red one the 60− 30 tbm.

We can observe in Figure 8 that after 200 000 iterations of training our agent is able to beat any
of the possible TBMmethods. After that it seems that is not worth to continue with the training.

Even if it seems that there is a little difference, this is the difference in price for one single week.
For a complete year it would be multiplied by 52 (52 weeks in one year).

We could probably get better results if instead of discretizing the time dimension and cpu di-
mensions in units of 20 we do it in units of 10 because our agent will have a finer input of what
is happenning. However if we discretize in smaller segments we will need longer trainning
periods as we have more states to visit.

Also we could mention that the learning rate has been fixed to 0.15. We could try to decrease
the learning rate from 0.15 to 0.05 in the middle of the training after 200 000 iterations and see
if we get further improvements.

5.1.2 Pattern of connections 2 (concentration in a 50 second range space)

The number of conferences is 50 per cycle.

Auto-scaling a video-conference platform with Reinforcement learning 31

Figure 9: Results RL algorithm VS TBM methods (Pattern 2)

In Figure 9 we observe that RL is also able to do better than the best TBMs. Moreover it takes
less rounds than in pattern 1.

We can see that RL algorithm is the best algorithm in the 2 different situations after sufficient
rounds of training. It is important to notice that the gap in performance between the TBM
methods and the RL algo increase as the pattern is more complex.

It is worthmentioning thatwe have only considered thresholds that aremultiple of 5. Wewould
probably get better results if finer thresholds were considered for the TBM.

5.2 Second version (cycles of 3600 seconds)
Next we test both algorithms against workload patterns of 1 hour cycles. This is a more realistic
scenario in applications.

5.2.1 Pattern of connections 1 (uniformly distributed)

The number of conferences is 300 per cycle. This decision is because we have multiplied the
number of conferences by 6 (as the cycle length has been multiplied by 6) and thus be able to
compare both results (pattern 1 for version 1 and 2).

32 Report

Figure 10: Results RL algorithm VS TBM methods (Pattern 1)

As we can observe in this Figure 10, as the state space gets bigger (because the cycle is bigger)
we needmore andmore interactions with the environment to obtain a good policy. We can have
an idea of how many iterations would be necessary to train a RL algorithm if cycles were of 24
hours.

Here we can see that we would need more than 600 000 iterations to perform better than TBM
algorithms. After that it seems that is not worth to continue with the training.

5.2.2 Pattern of connections 2 (higher load)

The number of conferences is 900 per cycle.

Auto-scaling a video-conference platform with Reinforcement learning 33

Figure 11: Results RL algorithm VS TBM methods (Pattern 2)

In this figure 11, as before, the difference in performance between the algorithms increase as the
complexity (higher load) of the pattern increase (the difference is almost 10 € summing renting
and SLA violation costs, in contrast to ≈ 5€ in pattern 1).

Even that 100 experiments were done with each configuration we can see that there exist high
variance in the results, so we do not see a smooth line. Nevertheless this variance decreases as
the number of iterations increase.

34 Report

6 Conclusions
In this work we have develop a auto-scaling algorithm based on Reinforcement learning and
analysed how it performs against different workload patterns in comparison with threshold
based methods. The analysis is done with a simulator that imitates a real video-conference
platform such as Jitsi.

6.1 Concluding remarks
The first conclusion thatwe could get from thiswork, is that although TBMalgorithms are easier
to deploy, as they do not need any training, RL algorithms achieve better results determining
the optimum number of servers in a distributed application. Also, the difference is accentuated
as more complex the pattern is as we saw with pattern 2 in each of the versions.

Moreover, if we implement online learning, RLwill be able to adapt to the new situation if there
are smooth changes in load patterns and these persist over time (in contrast to TBM algorithms
that will downgrade its performance as they are set for a particular load pattern).

It is true however, that RL will not be able to adapt to rapid changes that do not last enough
time to learn them (as it needs many interactions with the same transition probabilities to get a
good Q estimation).

The workflow with any problem using RL could be like this: obtaining a first Q function and
policy through interacting with a simulator and then getting a more accurate solution with
online training against the real environment (with the Q function and policy obtained with the
simulator as the starting point). Starting the training directly on the real scenario without using
a simulator implies prohibitive amount of time as an important number of iterations are needed
before obtaining a good policy (better than TBM).

Although it has not been stated in section 5 (Evaluation), we can conclude as well that it is a
little bit tricky to tune the parameters in order to achieve an effective learning. The learning rate
α should not be to small (or we will get trapped in local optimums) neither too big (we will
oscillate and not converge). Another tricky tuning parameter is ε (the exploration parameter).
If we decay ε too slow we will explore too much and not exploit to the promising direction (as
we have a limited amount of interactions). If we decay ε to fast , very few exploration will be
made and then probably we are going to end in a local optimum.

Also the definition of the reward function is vital and a key element to help our agent take
appropriate decisions and other definitions could be investigated. The designer could try with
different reward functions and eventually pick the one that makes the agent learn faster or a
better policy.

6.2 Future work

6.2.1 Online learning

In our scenario we supposed that the dynamics of the environment are not changing through
time (same connection patterns from users through time). Nevertheless if it is the case that con-
nection patterns change, it would be interesting to keep learning and updating our Q function
(and thus the policy) to adapt to the new situation. This is actually howmost of Reinforcement
Learning solutions are implemented.

Auto-scaling a video-conference platform with Reinforcement learning 35

6.2.2 Comparison of algorithms on the real scenario

In order to do the comparison on the real scenario, Jitsi servers should be deployed in physical
or virtual machines following the official guides. The generation of load by clients would be
automated using scripts. In Annex 1 we have described the first steps to prepare the scenario.

6.2.3 Deep Q learning

When the state space is too big, it is infeasible to visit all state action pairs in order to have an
accurate estimate of the Q(s, a) function so Q-learning algorithm doesn’t work. An alternative
way to dealwith this problem, is to use deep reinforcement learning, i.e., instead of representing
Q(s, a) as a table, it is represented as a deep neural network (state and action as inputs and Q
value as output) that is able to generalize to state action pairs not seen before. With this idea
we could make the state-space richer, including weekday, the number of connected users (or
including more old CPUs usages in formulation 4.2). Also discretizing in smaller units or no
discretizing at all. And thus we could see if we get better results (in terms of money expended
or in terms of number of interactions needed until a good policy is obtained).

36 Report

Annex 1: Preparing a real scenario to test the obtained policy
The comparison of the auto-scalers (TBM vs RL) in the real scenario has not been implemented.
Nevertheless the first steps preparing the scenario have been documented.

Generating fictitious workload patterns
In order to create fictitious load we have deployed a cluster of video-conference clients (web-
browsers) ready to connect to the server. To automate the process of connecting to the server we
used the Selenium library. Selenium is a Python library that allow us to interact with a browser
[26].

Chrome, the browser chosen in our case, has been used in its headless mode to allow machines
without a graphic environment to execute it. To emulate real users connecting to the server we
will provide a fake video and fake audio to our clients to use it as if it were the webcam and
micro output (a feature offered by Chrome).

The cluster of clients have been deployed in UPC Cloud. We have rented machines of 1 core
and 1 GB of memory. Each of this machines runs 5 clients (5 browsers) that simulates users
connected to Jitsi with camera off and audio muted. We have also rented machines of 4 cores
and 2 GB of memory. Each of this machines runs 1 client that simulates a user connected to Jitsi
with camera and audio on.

This configuration of clients pretend to simulate common scenarios for example in online teach-
ing where the teacher has the camera an audio on but students do not.

An important problem that we have found during this work is the huge amount of CPU re-
sources needed in order to stress a single JVB. We need a lot of users connected to do so and
to simulate a user a browser is needed,which is computationally expensive when dealing with
video and audio because of the encoding a decoding process.

Alternatives have been considered, as building our own light WebRTC client with open source
libraries, but this has been discarded because the limited amount of time. Another alternative
could be to use services offered by companies like WebRTC Test [27] that offer doing massive
tests against your WebRTC servers, but this has also been discarded due to price constraints.
Consequently limiting the resources of the VM hosting the JVBs (to be able to stress them with
less requests) has been the chosen approach.

Auto-scaling a video-conference platform with Reinforcement learning 37

Figure 12: Example of stress test with a football fake video as camera input.

Monitoring the system
The Jitsi servers will be deployed in VMs in our own physical servers. The infrastructure will
consist in 3 VMs, one hosting the Web server, Prosody, Jicofo and one JVB, and the other 2 just
hosting a JVB. We will always start our experiments with just one JVB up.

The capacities of each VM are as follows:

• 0.5 CPUs (limited by the hypervisor to ease the process of stressing the machine)

• 0.5 GB RAM

Tomonitor how the system behaveswe have used a software suite composed of Prometheus and
Graphana. Prometheus is a time series database that is going to collect all the output metrics
of Jitsi. Graphana will be used to visualize this metrics with graphs that are going to help us
understand better the situation.

38 Report

Figure 13: Example of Graphana output under two different loads.

We would use the HTTP API of prometheus [28] to monitor the system and get the CPU usage
of each machine. This will API will be called each 5 seconds (polling strategy).

It will not be necessary to call any hypervisor API to boot machines as we would already have
themachines running (with jitsi service running or not running). This is unrealistic and it beats
the purpose of this work (becausewewould be paying renting costs always), but it will simplify
the test. We could just use an script with a delay that eventually starts the JVB intead of starting
the JVB directly (to emulate real booting processes).

In the future we could consider also to deploy the Jitsi servers on Docker containers instead of
VMs as it is know that the booting process is faster.

Aditional considerations
It could also be interesting, in future versions of the algorithm, to investigate Jicofo log files
(where there is information about new connections of users, disconnections, JVB events, etc.)
as they could provide useful information. Using a simple XMPP client to connect to Prosody to
listen to rooms where JVBs and Jicofo talk, could also be insightful.

Auto-scaling a video-conference platform with Reinforcement learning 39

References
[1] Video-conference requeriments, https://www.freeconference.com/blog/the-minimum-speed-

required-for-video-conferencing/

[2] Guifi Common Network Website, https://guifi.net/es

[3] Jitsi Website Project, https://jitsi.org/

[4] Jitis Auto-scaler, https://github.com/jitsi/jitsi-autoscaler

[5] Chistera, Leading Edge, https://www.chistera.eu/projects/leadingedge

[6] Tania Lorido-Botran · JoseMiguel-Alonso · Jose A. Lozano,AReview of Auto-scaling Tech-
niques for Elastic Applications in Cloud Environments, Journal of Grid Computingmanuscript

[7] AWS Auto-scaling, https://aws.amazon.com/es/autoscaling/

[8] Flexera RightScale Docs, https://docs.rightscale.com/

[9] Ying Liu · Navaneeth Rameshan · Enric Monte, ProRenaTa: Proactive and Reactive Tuning
to Scale a Distributed Storage System, 2015 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing

[10] Daniel Jacobson · Danny Yuan · Neeraj Joshi, Scryer: Netflix’s Predictive Auto Scaling
Engine, The Netflix tech blog

[11] Daniel Jacobson · Danny Yuan · Neeraj Joshi, Scryer: Netflix’s Predictive Auto Scaling
Engine — Part 2, The Netflix tech blog

[12] Yisel Gari · David A. Monge · Elina Pacini, Reinforcement Learning-based Application
Autoscaling in the Cloud: A Survey, Engineering Applications of Artificial Intelligence

[13] Xavier Dutreilh · Sergey Kirgizov · Olga Melekhova, Using Reinforcement Learning for
Autonomic Resource Allocation in Clouds: Towards a Fully Automated Workflow, ICAS 2011 :
The Seventh International Conference on Autonomic and Autonomous Systems

[14] Christopher Watkins · Peter Dayan, Q-learning, Machine Learning

40 Report

[15] Naghmeh Dezhabad · Saeed Sharifian, Learning-based dynamic scalable load-balanced firewall
as a service in network function-virtualized cloud computing environments, The Journal of
Supercom- puting, 2018

[16] Enda Barrett · Enda Howley · Jim Duggan, Applying reinforcement learning towards au-
tomating resource allocation and application scalability in the cloud, Concurrency Computation
Practice and Experience, 2012

[17] Pooyan Jamshidi · Aakash Ahmad · Claus Pahl, Autonomic Resource Provisioning for
Cloud-Based Software, SEAMS’14

[18] Hamid Arabnejad · Claus Pahl · Pooyan Jamshidi, A Comparison of Reinforcement Learning
Techniques for Fuzzy Cloud Auto-Scaling, 2017 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID)

[19] SFU vs MCU, https://quobis.com/es/2021/05/03/sfu-vs-mcu-cual-es-la-mejor-forma-de-
gestionar-una-multiconferencia/

[20] WebRTC Website Project, https://webrtc.org/

[21] Repository with the code of the simulator and algorithms,
https://gitlab.com/francescroy/rl_real_case_2

[22] Grafana software, https://grafana.com/

[23] AmazonWeb Services pricing of virtualmachines, https://aws.amazon.com/ec2/pricing/on-
demand/

[24] Python graphic library, https://matplotlib.org/

[25] DAC Services, https://www.ac.upc.edu/ca/nosaltres/serveis-tic/servicios-1

[26] Selenium’s framework web, https://www.selenium.dev/

[27] WebRTC Test, https://testrtc.com/

Auto-scaling a video-conference platform with Reinforcement learning 41

[28] HTTP Prometheus API guide, https://prometheus.io/docs/prometheus/latest/querying/api/

	Introduction
	Motivation
	Problem statement
	Contribution
	Context
	Thesis Outline

	Background and Related work
	Related work
	Jitsi architecture background
	Threshold based methods (TBM) background
	Reinforcement learning theory (RL) background
	Reinforcement learning toy problem
	Reinforcement learning algorithms for model-based MDPs (dynamics known)
	Algorithms for policy evaluation
	Algorithms for control

	Reinforcement learning algorithms for model-free MDPs (dynamics unknown)
	Algorithms for policy evaluation
	Algorithms for control

	Remarks

	Description of the system
	Design of the simulator
	Quotas
	Visualization

	Architecture of the solution
	Formulating the auto-scaling problem as an MDP problem
	Other formulations of the state space

	Evaluation
	First version (cycles of 600 seconds)
	Pattern of connections 1 (uniformly distributed)
	Pattern of connections 2 (concentration in a 50 second range space)

	Second version (cycles of 3600 seconds)
	Pattern of connections 1 (uniformly distributed)
	Pattern of connections 2 (higher load)

	Conclusions
	Concluding remarks
	Future work
	Online learning
	Comparison of algorithms on the real scenario
	Deep Q learning

	References

