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A B S T R A C T   

Initial geometric imperfections are unavoidable in steel members and frames due to erection and manufacturing 
tolerances. These include frame out-of-plumbness, member out-of-straightness and cross-sectional imperfections, 
and can have a significant influence on the response and resistance of steel structures. Thus, they need to be 
accounted for in the analysis and design of steel structures, especially when advanced design procedures are 
adopted. One of the easiest approaches to introduce geometric imperfections in structural finite element models 
is through the linear superposition of scaled eigenmodes, which are obtained from a priori elastic buckling 
analysis. Although the shape and magnitude of frame and member imperfections are specified in international 
standards, the rules for the combination of different types and directions of imperfections are unclear or 
impractical, and often require designers to consider many possible combinations to find the critical, or “worst 
case”, shape of the imperfection including the direction of each eigenmode. This paper investigates the influence 
of the direction of modes contributing to the imperfection on the ultimate load (i.e., resistance) of steel frames 
when using advanced analysis. Ultimate loads are estimated from advanced finite element simulations for 20 
regular and irregular unbraced frames featuring steel and austenitic stainless steel compact sections, in which 
initial imperfections are modelled as linear superpositions of six scaled buckling modes considering all possible 
combinations of direction. The results show that the influence of the imperfection direction on the ultimate frame 
load is small, and that assuming a combination of all buckling modes with positive amplitudes provides a simple 
and accurate estimation of the critical imperfection combination.   

1. Introduction 

Initial geometric imperfections can have a significant influence on 
the resistance and stiffness of steel frames, including frame out-of- 
plumbness imperfections, member out-of-straightness imperfections 
and local cross-sectional imperfections. Traditionally, the effect of sway 
imperfections has been accounted for in structural analyses by directly 
modelling the out-of-plumbness or through the use of equivalent 
notional horizontal loads, while member and cross-section imperfec
tions have been implicitly considered in design expressions (e.g., the 
effect of member imperfections is incorporated in member strength 
design curves, and local imperfections in local buckling expressions). 
However, with the development and incorporation of direct design ap
proaches in the current versions of international standards such as AISC 
360 [1], AISC 370 [2], prEN 1993-1-14 [3], AS/NZS 4100 [4] and AS/ 
NZS 4600 [5], a different and more detailed definition of initial 

geometric imperfections is required. In these direct design approaches, 
the resistance of the structure is directly evaluated from the analysis 
without requiring further resistance checks, and thus the incorporation 
of appropriate initial imperfections in the developed advanced finite 
element (FE) models is critical. 

The most common approaches to consider the effects of initial geo
metric imperfections in advanced analysis are the modelling of imper
fections by directly offsetting the coordinates of the nodes, the reduction 
of member stiffness, the adoption of notional horizontal forces and the 
superposition of scaled elastic buckling modes [6]. While the first 
approach is not practical for everyday engineering practice, one of the 
advantages of the stiffness reduction method is that it does not require 
an explicit modelling of the imperfections. Although several stiffness- 
reduction factors have been proposed to account for the effect of 
initial geometric imperfections [7–9], they have not been assessed 
through probabilistic approaches. The notional horizontal force method 
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has been widely adopted in different structural standards [1–5,10] for its 
simplicity, since it allows modelling structures in their theoretically 
perfect configuration and taking into account the effect of frame and 
member imperfections by introducing a set of equivalent horizontal 
forces. Typically, the elastic buckling mode approach assumes that the 
first eigenmode represents the most critical imperfection and it is scaled 
and introduced as the initial imperfection of the structure [10]. How
ever, the actual failure mode of the structure may be different from the 
first buckling mode due to the significant plastic deformations and load 
redistribution occurring in advanced analysis. In this case, failure may 
occur in parts of the structure deficiently represented in the first buck
ling mode and hence, to ensure imperfections are introduced in all 
members, it is recommendable to include additional higher order ei
genmodes when incorporating initial geometric imperfections [11]. 
Although the amplitude and the shape or pattern of each initial imper
fection type are prescribed in specifications, and the different alterna
tives discussed above exist to input the imperfections in finite element 
models, standards usually require that the most critical combination of 
imperfection directions resulting in the minimum resistance be adopted 
as the nominal resistance of the structure. This is generally not practical, 
since the number of possible imperfection combinations is significant 
even for relatively simple frames. Furthermore, it can be argued that the 
treatment of initial imperfections may be different in the context of the 
traditional two-step design methods and for system-based direct design 
approaches. 

In the traditional two-step design methodology, the prevailing 
analysis type for determining internal actions is the geometric nonlinear 
analysis (GNA), which elastically amplifies deformations caused by 
applied loads and frame out-of-plumbness imperfections, while member 
out-of-straightness imperfections and local cross-sectional imperfections 
are not modelled. In rigid and semi-rigid construction, moments are 
transferred through connections whereby vertical and inclined members 
are invariably subjected to both compression and bending, and hence 
need to be designed for combined loading. This is typically done using 
interaction equations, the simplest form of which is linear (Eq. (1)), and 
which are generally conservative. 

NGNA

ϕcNm
+

MGNA

ϕbMm
= 1 (1)  

where (NGNA, MGNA) are the internal actions predicted by GNA analysis 
and (Nm, Mm) and (ϕc, ϕb) are the nominal member resistances and the 
resistance factors for compression and bending, respectively. In the 
Eurocode terminology, the interaction equation becomes Eq. (2), in 
which (Nb,Rk, Mb,Rk) are the characteristic member resistances for 
compression and bending and γM1 is the partial safety factor for 
instability. 

NGNA

Nb,Rk
/

γM1
+

MGNA

Mb,Rk
/

γM1
= 1 (2) 

The member capacities (Nm, Mm) or (Nb,Rk, Mb,Rk) are calculated 
using strength curves derived from tests and advanced numerical ana
lyses based on a target value of member out-of-straightness, e.g., L/ 
1000, where L is the member length. The ultimate capacity of the frame 
is deemed to be reached when the first (critical) member reaches its 
capacity, i.e., Eq. (1) or Eq. (2) are satisfied. The strength curves for 
calculating the member resistances are typically chosen to produce the 
mean or characteristic value of resistance when averaged over a length 
range, the reference being the target out-of-straightness chosen for the 
tests and advanced analysis. The resistance factors and the partial safety 
factor are calibrated such that the probability of the internal actions 
exceeding their respective member design capacity (e.g., NGNA > ϕcNm) 
does not exceed a target value, typically expressed as a target reliability 
index (βm). The calculation of these factors depends on the bias and 
variance of the strength curves relative to the “true” experimental and 
numerical resistances, which refer to the reference value of out-of- 

straightness. 
In this procedure, it is implicitly assumed that the actual out-of- 

straightness imperfection of the critical member first reaching its ca
pacity equals the target value, typically the tolerance value. The prob
ability that this is the case is small as the imperfection of structural 
members very rarely reaches the tolerance value. A statistically more 
consistent approach would be to use the mean value of out-of- 
straightness, e.g., L/1490 as reported by Bjorhovde [12], or an upda
ted mean value based on more recent data, e.g., L/1996 [13], since the 
mean value represents the most likely value of imperfection of any 
member, including the critical. The variance of the actual value of out- 
of-straightness of the critical member relative to the mean value is 
accounted for by considering the coefficient of variation of the design 
value relative to the test or “true” resistance in the reliability calibration. 

It is evident that if higher strength curves based on a smaller target 
value of out-of-straightness are used for determining member re
sistances, and assuming the resistance of real specimens featuring 
random imperfection amplitudes represents the “true” resistance of the 
members, the resistance factors (ϕc, ϕb) would reduce if the target reli
ability index (βm) is unchanged because the resistance reserve due to the 
conservatism of the strength curve would reduce. On the contrary, the 
partial safety factors (γM1) would increase under the same circum
stances. Alternatively, if the resistance or partial safety factors are un
changed, the reliability index would reduce. These relationships 
emphasise the intrinsic interdependency between the chosen target out- 
of-straightness and the calculated reliability index. 

Summarising this discussion of the traditional two-step design 
methodology,  

1. the structure is assumed to fail when the first (critical) member 
reaches its capacity,  

2. it is implicitly assumed that the out-of-straightness of the critical 
member equals the target value,  

3. the target value of out-of-straightness is usually chosen as a tolerance 
value, whereas a statistically sound approach would be to choose the 
mean value of out-of-straightness,  

4. the amplification of moments is underestimated when GNA analysis 
is used to calculate internal actions, and  

5. the resistance of members subject to combined compression and 
bending is calculated using interaction curves which are typically 
conservative. 

The calculation of resistance and partial safety factors to a target 
reliability index (βm) is subject to these assumptions and inaccuracies. 

The system-based direct design approaches are considerably more 
statistically consistent in their calculation of system resistance and 
partial safety factors [14,15]. The calibration uses accurate statistical 
functions obtained from field measurements (e.g., [11,16–18]) to 
represent all main random variables including out-of-straightness 
[17–20]. Monte-Carlo type simulations are performed considering the 
variance of all random variables in computing the probability of failure, 
which may be expressed in terms of the system reliability index (βs), and 
the system resistance factor (ϕs) or the system partial safety factor (γM,s) 
are chosen so that the system reliability index meets or exceeds the 
target value. The direct design allows additional loading past the failure 
of the first critical members when load redistribution is possible until the 
complete failure of the frame. In this framework, the shape of the 
imperfection is chosen to produce resistances statistically consistent 
with the resistance of frames with measured shapes of imperfection 
[11]. In particular, the mean value of amplitude of out-of-straightness is 
the mean measured value, typically less than the tolerance value. 

Direct design approaches require a nominal model be specified, 
including nominal values of material properties, geometric imperfec
tions, residual stresses, etc. The choice of nominal geometric imperfec
tion is largely arbitrary as the influence of the particular choice of 
nominal imperfection is reflected in the reliability calibration which 
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produces the system ϕs or γM,s factors. It is possible, in the framework of 
system-based direct design, to adopt the more restrictive approach of 
determining the nominal resistance as the minimum resistance, which 
allows specifying less conservative values of ϕs and γM,s. Or conversely, it 
is also possible to accept a more permissive combination of initial im
perfections and to prescribe the associated more conservative system 
factors. 

Because system resistance and ϕs, γM,s-factors are now being cali
brated for inclusion in international standards for the first time, it is 
timely for national standardisation committees to decide how initial 
imperfections should be treated in the determination of system nominal 
resistances and to prescribe system factors accordingly. In this consid
eration, it follows from the above discussion that the reliability indices 
obtained from the traditional two-step design methodology and system- 
based direct design approaches are not directly comparable. Seeing that 
the two-step design methodology ignores the potential additional ca
pacity of the frame achievable by load redistribution in statically 
redundant frames after the critical member reaches its capacity, the 
system target reliability index should be chosen to be at least that of 
members for the two-step design methodology. Equally, if the frame is 
statically determinate, or failure occurs in a statically determinate part 
of a redundant frame, no load redistribution is possible and the target 
reliability of the two approaches should be equal, notwithstanding the 
inaccuracies associated with the member-based approach summarized 
above. 

With the aim of simplifying the definition of initial imperfections in 
design, this paper investigates the influence of the direction of initial 
imperfections modelled as linear superpositions of buckling modes on 
the resistance of steel and stainless steel frames designed using advanced 
analysis. Section 2 provides an overview of the methodologies adopted 
in current structural standards for modelling initial imperfections and 
presents the alternative approach based on the superposition of buckling 
modes proposed in [11]. In Section 3, the benchmark frames used in the 
assessment are presented and the developed advanced finite element 
models are described. Finally, Section 4 presents the analysis of the 
variability in the resistances for different combinations of imperfection 
directions, and proposes a simple approach to modelling geometric 
imperfections without performing multiple analyses. 

2. Modelling of initial geometric imperfections 

2.1. Initial geometric imperfections in standards 

Most major international design standards for steel structures pre
scribe design values for the different types of imperfections and specify 
how to include them in structural analyses, being rather consistent 
among the different standards. The definition of nominal initial geo
metric imperfections differs depending on the considered design 
method: in general, the consideration of frame out-of-plumbness (sway) 
imperfections is always required, while member imperfections only 
need to be included when advanced analyses are carried out. 

The AISC 360 [1] and AISC 370 [2] Specifications require that out- 
of-plumbness imperfections corresponding to a nominal initial storey 
out-of-plumb angle ϕ of 1/500 be included when the Direct Analysis 
Method is adopted by directly modifying the position of the nodes or 
through the use notional loads, although the explicit modelling of initial 
out-of-straightness of individual members is not necessary since these 
imperfections are accounted for in the design provisions for compression 
members. Conversely, the analysis shall include the effects of system 
imperfections (with amplitudes of ϕ=1/500) and member imperfections 
(with amplitudes of L/1000) when the advanced analysis provisions 
given in Appendix 1 are adopted, and the use of notional loads to 
represent either type of imperfection is not permitted. Since advanced 
analysis provisions in [1,2] are currently limited to compact sections, it 
is not necessary to include cross-sectional imperfections in the FE model. 

Regarding global sway imperfections, prEN 1993-1-14 [3] refers to 

prEN 1993-1-1 [10], which prescribes a basic out-of-plumb angle of 
ϕ0=1/400 when cross-sections and members are checked elastically, or 
ϕ0=1/200 for when cross-sections and members are verified using 
plastic resistances, and may be replaced by systems of equivalent hori
zontal forces, or the assumed shape derived from elastic buckling ana
lyses. For member imperfections, prEN 1993-1-14 [3] recommends an 
imperfection amplitude of 80% of the geometric manufacturing toler
ances given in EN 1090 [21], with a minimum value of L/1000, and a 
half-sinusoidal shape along the member length. The use of equivalent 
imperfections that account for the combined effect of geometric im
perfections and residual stresses is also permitted. The combination of 
imperfections should be chosen to identify the lowest resistance; when 
the relevant directions are not evident, several imperfections with 
different directions should be investigated. Finally, cross-sectional im
perfections should also be included when designing plated and cold- 
formed structures using advanced analysis. 

The AS 4100 [4] and AS/NZS 4600 [5] Specifications for steel and 
cold-formed steel structures require that only the effect of frame im
perfections with a basic out-of-plumb angle value of ϕ0=1/200 be 
accounted for, as the effect of cross-sectional and member imperfections 
are already included in the elastic effective stiffnesses and member ca
pacity calculations. However, when structures are designed using 
advanced analysis, frame and member imperfections should be 
modelled, for which a reduced out-of-plumb angle of 1/500 and a 
maximum value of the member imperfection equal to L/1000 are pre
scribed. While the advanced analysis approach is limited to compact 
sections in the AS 4100 [4] Specification for steel structures, and thus 
the modelling of cross-sectional imperfections is not necessary, the AS/ 
NZS 4600 [5] Specification for cold-formed steel structures requires that 
local and distortional imperfections be included in the analysis, with the 
modes determined from linear buckling analyses and the scaling am
plitudes given in [5]. Nevertheless, the incorporation of local and 
distortional imperfections is not required in advanced analysis of 
unbraced frames or racks. 

In summary, the amplitudes assumed in the different specifications 
for initial out-of-plumb imperfections range between 1/500 and 1/200, 
while for member imperfections a consistent value of L/1000 is pre
scribed. These values are, however, significantly higher than the initial 
geometric imperfections measured from actual structures and reported 
in the literature. The measurements carried out on a series of multi- 
storey buildings [22,23] suggested that frame imperfections exhibit a 
mean value of 0.0013 and a standard deviation of 0.00114, which 
correspond to out-of-plumb angles of 1/770 and 1/877, respectively 
[11]. Likewise, member imperfection amplitudes reported in the liter
ature also tend to be remarkably lower than the nominal L/1000 value 
prescribed in the codes, with mean values of L/1996 reported for hot- 
rolled steel I-section members [13] and L/3232 for cold-formed stain
less steel rectangular hollow section columns [16], for example. 

2.2. Initial geometric imperfections as superposition of buckling modes 

The approaches for modelling initial geometric imperfections 
currently prescribed in international specifications are overconservative 
and present some additional problems, including the difficulties asso
ciated with the offset of the node coordinates when the design software 
does not include specific tools for the direct definition of imperfections, 
or the identification of the most critical combination of imperfection 
directions. With the aim of simplifying the definition and input of initial 
geometric imperfections for advanced analysis, a new procedure in 
which initial geometric imperfections are defined as a linear super
position of numerous buckling modes and a suitable amplitude is 
assigned to each of these modes was proposed by Shayan et al. [11]. 
Defining initial imperfections based not only on the first buckling mode, 
but as a combination of numerous eigenmodes, ensures that imperfec
tions are induced in virtually all members, thereby triggering the 
instability associated to the actual failure mode of the structure [11,24]. 
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The study presented in [11] concluded that the first six modes are 
sufficient to accurately represent the actual shape of the initial imper
fections in steel frames, and suitable imperfection amplitudes were 
proposed for each of the six modes. According to [11], the amplitude Aj 
corresponding to the buckling mode j can be determined from Eq. (3), 
where Pj is the normalized scale (participation) factor, F is the amplitude 
factor (F = 0.003 when six buckling modes are adopted), and H and L 
correspond to the total frame height and member length, respectively. 

Aj =

{
Pj⋅F⋅H for sway modes
Pj⋅F⋅L for non − sway modes (3) 

The normalized participation factors Pj were calibrated based on 
statistical data for initial geometric imperfections obtained from the 
literature, considering a range of regular and irregular low-to-mid-rise 
frames under gravity loads, and the values summarized in Table 1 
were recommended for braced and unbraced frames. While the scale 
factors calibrated for the different buckling modes in braced frames were 
very similar since all modes represented member out-of-straightness 
imperfections (see the Pj values in Table 1), the scale factor calibrated 
for the first mode in unbraced frames – which represents the out-of- 
plumbness of the frame – was significantly higher than those corre
sponding to higher modes. Since the imperfection amplitudes Aj were 
calibrated for a wide range of frames based on statistical data repre
senting actual steel structures, the derived scale factors were deemed to 
be applicable to typical frames and have been adopted in this study to 
evaluate the influence of the imperfection direction on the resistance of 
steel frames. 

3. Benchmark frames 

3.1. Description of the frames 

The effect of the imperfection direction on the frame resistance has 
been assessed for a set of different frame layouts and different materials 
similar to those adopted in [11,25,26]. The database comprises simple 
frames (see Fig. 1), the multi-storey and multi-bay frames shown in 

Fig. 2 and the irregular frames presented in Fig. 3, which were subjected 
to vertical point loads or uniformly distributed loads, including a broad 
range of frame geometries and boundary conditions. For each of the 20 
layouts, structural steel and austenitic stainless steel materials were 
considered to assess whether the nonlinear stress-strain behaviour 
exhibited by stainless steel alloys had any influence on the effect of the 
imperfection direction. 

The constitutive model for structural steel was assumed elastic- 
perfectly plastic, while to describe the nonlinear stress-strain relation
ship of the austenitic stainless steel alloy the two-stage Ramberg-Osgood 
model proposed in [27] was adopted. The material properties assumed 
for the structural steel and austenitic stainless steel frames are summa
rized in Table 2, in which E is the Young’s modulus, fy is the yield stress, 
fu is the ultimate tensile strength, εu is the ultimate tensile strain and n 
and m are the nonlinear exponents for the two-stage Ramberg-Osgood 
model. All frames comprised compact I-section beams and columns with 
uniform member sizes, which were chosen from the European HEB se
ries to produce member slenderness values of λc = 1.0. The member 
slenderness was calculated from λc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Npl/Ncr

√
, where Npl is the squash 

load of the cross-section and Ncr is the elastic buckling load. For λc = 1.0, 
the elastic buckling load and the squash load coincide, and structures 
show the greatest sensitivity to initial imperfection around this slen
derness value [11,28,29]. In addition, the database was extended to 
include additional 20 frames with HEB 340 cross-section beams and 
columns for the structural steel material, which resulted in member 
slenderness values ranging between λc = 0.3 − 2.4. In total, 60 different 
frames were investigated. 

3.2. Finite element modelling 

Steel and stainless steel frames were modelled using the general- 
purpose finite element software ABAQUS [30] and using the 2-noded 
linear B31OS beam element available in the library, which is capable 
of accounting for the spread of plasticity through the cross-section and 
along the member length. Frames were restrained in the out-of-plane 
direction so that only in-plane major axis bending/buckling was 
considered. The ultimate load factors for each frame, which are the load 
factors corresponding to the ultimate load or resistance of the frames, 
were determined from second-order inelastic analyses that accounted 
for all material and geometric nonlinearities (advanced analysis) using 
the Riks arc-length technique available in ABAQUS [30]. 

Beam-to-column connections were assumed to be rigid, and loads 
were introduced in the beams or at the beam-to-column joints using 

Table 1 
Recommended participation factors and amplitude factors to model initial 
geometric imperfections in steel frames using six buckling modes [11].  

Type of frame P1 P2 P3 P4 P5 P6 F 

Braced frames 0.20 0.20 0.15 0.15 0.15 0.15 0.003 
Unbraced frames 0.40 0.10 0.15 0.15 0.10 0.10 0.003  

Fig. 1. Simple frame layouts considered in the study (adapted from [25,26]).  
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distributed or point loads, as indicated in Figs. 1-3. The base supports of 
most of the frames were assumed as fixed, although frames with pin- 
ended boundary conditions were also investigated (i.e., Frames 2 and 
15). Material properties were introduced as user-defined true stress- 
plastic strain relationships using the elastic-perfectly plastic or 
nonlinear [27] material models for structural steel and stainless steel, 
respectively. In order to investigate the influence of imperfection di
rection only on the ultimate frame resistances, residual stresses were not 
taken into account in this study, following the approach adopted in [11]. 

Initial geometric imperfections were introduced as a superposition of 
the first six buckling modes using the *IMPERFECTION option in ABA
QUS, which were obtained from a priori elastic buckling analysis, and 
the amplitudes of each mode were determined from the scaling factors 
proposed in [11] and described in Section 2.2. All possible combinations 

of imperfection directions were investigated by assigning a positive (+1) 
or negative (− 1) sign to each of these amplitudes and by combining 
them using the MESH combination option available in ABAQUS [30], 
which resulted in 26 = 64 different analyses for each of the investigated 
frames. The MESH combination pattern in ABAQUS combines every 
sampled value of a parameter with every sampled value of every other 
parameter in the parametric study [30]; considering that the sampled 
parameters in this study were the signs of the six imperfection shapes 
determined from the elastic buckling analyses (parameters adopted the 
values [− 1,+1]), this procedure guaranteed that the two possible di
rections (i.e, signs) of each mode were combined with all the possible 
directions of the other five imperfection shapes. In total, 3840 advanced 
analyses were performed on steel and stainless steel frames. Fig. 4 shows 
three examples of imperfection direction combinations for Frame 1: the 

Fig. 2. Multi-storey and multi-bay frame layouts considered in the study (adapted from [25,26]).  
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initial imperfection pattern corresponding to the linear superposition of 
six buckling modes with all positive (red) and all negative (blue) am
plitudes are shown, in addition to an intermediate case with a combi
nation of positive and negative directions (green). The initial geometry 
of the perfect frame is also shown as reference. 

4. Influence of the imperfection direction on the frame 
resistance 

4.1. Illustrative example 

To illustrate the influence of the initial imperfection introduced in 
finite element models, a simple pitched portal frame subjected to two 
point loads at the beam-to-column joints (see Frame 6 in Fig. 1) was 
investigated. Several advanced analyses with different initial geometric 
imperfections were carried out, and the failure modes and frame re
sistances were compared. Imperfection patterns including global sway 
imperfections and member imperfections were obtained from an elastic 
buckling analysis, and combined using different amplitudes. Fig. 5 
shows the failure modes and ultimate loads (taken as the maximum 
loads of the load-displacement curves and which represent the resis
tance of the frames) obtained for Frame 6 considering different types, 
combinations and amplitudes of sway and member imperfections. When 
combinations of sway and member imperfections were considered 
following the requirements in international steel standards, using am
plitudes of ϕ=1/200 and e0=L/1000, respectively, the advanced simu
lations predicted sway-type failure modes and the same ultimate loads 
for the four possible combinations of frame and member imperfection 
directions (see Fig. 5(a)), which indicated a negligible effect of the 

imperfection directions on the ultimate response of the frame. 
On the contrary, when only member imperfections following the 

non-sway buckling modes and amplitudes e0 of the member imperfec
tion equal to L/1000 and L/200 were introduced, a clear dependency on 
the imperfection direction was observed for the two amplitudes of 
member imperfection. The failure modes and ultimate loads reported in 
Fig. 5(c)-(f) highlight the influence and importance of the initial 
imperfection pattern considered in advanced analysis, as the choice of 
some imperfection combinations led to failure modes similar to those 
obtained when global sway imperfections were introduced (cases (c) 
and (f), when the imperfections of both columns lean in the same di
rection), while other combinations resulted in significantly higher ulti
mate load predictions when they locked in failure modes with higher 
critical loads (as per cases (d) and (e)). The values of the ultimate loads 
were different for the two member imperfection amplitudes considered 
(i.e., L/1000 and L/200), as shown in Fig. 5, but the conclusions are the 
same. The analysis also showed that even for very small initial sway 
imperfection amplitudes (i.e., ϕ=1/5000, significantly smaller that the 
1/200 or 1/500 values specified in the codes), the frame exhibited sway- 
type failure modes for the four combinations of member imperfection 
directions (as per in Fig. 5(b)), although resulted in higher ultimate 
loads than the Fu=282 kN value predicted using the sway imperfection 
amplitude prescribed in the codes (case (a)). This highlighted the in
fluence out-of-plumbness imperfections had not only on the ultimate 
load of the frame, but also on the failure mode observed. In a similar 
way, the fact that small sway imperfections were sufficient to result in 
sway failure modes emphasizes the importance of introducing a com
bination of different buckling modes as initial imperfections when 
designing frames using advanced analysis (especially sway 

Fig. 2. (continued). 
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imperfections), to ensure that the critical shape is present and that the 
instability associated with the actual failure mode of the structure is 
triggered [11,24]. 

4.2. Influence of the initial imperfection direction 

The influence of the imperfection direction on the frame resistance is 
assessed in this Section based on the finite element analyses of steel and 
stainless steel frames presented in Section 3. Advanced finite element 
analyses (i.e., GMNIA analyses) were carried out for each of the frame 
layouts, cross-sections and materials investigated, in which initial geo
metric imperfections were introduced as the linear superposition of the 
first six buckling modes using the amplitudes recommended in [11] and 
introduced in Section 2.2. The study considered all possible combina
tions of imperfection directions for the six buckling modes, obtaining 64 
different ultimate load factors λu for each frame investigated, and the 
variability of these load factors was evaluated. 

The assessment of the ultimate load factors λu is presented in Ta
bles 3-5. While Table 3 presents the results for steel frames with multiple 
column slenderness λc values (constant HEB 340 cross-section assumed 
for all columns and beams), Tables 4 and 5 report the results for steel and 
stainless steel frames with column slenderness values of λc = 1.0, 
respectively. In these tables, the maximum-to-minimum ultimate load 
factor ratios λu,max/λu,min and the coefficients of variation (COV) of the 
ultimate load factors are reported for each frame considered. The λu,max 
load factor corresponds to the maximum of the 64 ultimate load factor 
values predicted for each frame, while λu,min is the minimum of the 64 
ultimate load factor values, which according to the draft European 
guidelines [3] corresponds to the most critical combination of initial 
imperfections and should be adopted as the nominal imperfection when 
designing with advanced analysis. Tables 3-5 also report the λu,pos/λu,min 
ratios, where λu,pos is the ultimate load factor for the imperfection 
combination that assumes all positive amplitudes, and the percentage of 
ultimate load factors below λu,pos for each frame. Note that when 
determining the imperfection shape assuming all positive amplitudes, 
the mode shapes are taken as produced by the buckling analysis, and so 
are arbitrarily assigned a sign, i.e., the direction of the individual 
buckling mode is arbitrary. 

4
×

4
m

3×6 m

Frame 17

8
m

 +
 3

×
4

m

3×6 m

Frame 18

2
×

4
m

4 m + 2×6 m + 4 m

Frame 19

3
×

4
m

6 m + 4 m + 6 m

Frame 20

Fig. 3. Irregular frame layouts considered in the study (adapted from [11]).  

Table 2 
Material properties for structural steel and austenitic stainless steel frames.  

Alloy E 
[GPa] 

fy 

[MPa] 
fu 

[MPa] 
εu 

[mm/mm] 
n 
[− ] 

m 
[− ] 

Structural steel 210 235 – – – – 
Austenitic stainless steel 200 310 670 0.54 6.3 2.6  

Fig. 4. Initial geometric imperfection patterns resulting from the linear com
bination of six buckling modes with different directions (amplitude signs). 
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The results shown in Tables 3–5 suggest that the influence of the 
imperfection direction on the predicted ultimate frame load is small. The 
differences between the maximum and minimum load factors within 
each frame lie between 0 and 6%, and very low coefficients of variation 
are observed (0.00–0.03). Given that the normalized scale factors Pi 
reported in Table 1 for buckling modes 2 to 6 representing the out-of- 
straightness of members are significantly lower than the P1 factor for 
the out-of-plumbness of unbraced frames, these results suggest that the 
influence of the highest buckling modes on the ultimate load of the 
investigated frames is low. This is in line with the sensitivity analysis 
results reported in [28], which indicated that the influence of the initial 
sway imperfections on the resistance of steel frames is much more sig
nificant than that of initial member imperfections. The results also show 
that the variability in the ultimate load factors is not significantly 
affected by the material or the type of frame, since the λu,max/λu,min ratios 
and COV values reported in Tables 3–5 are very similar for steel and 

stainless steel frames, and for simple, multi-storey, multi-bay and 
irregular frames. 

The λu,pos/λu,min ratios reported in these tables also indicate that 
while, in general, the ultimate load factors corresponding to the critical 
imperfection combination λu,min of course are lower than the ultimate 
load factors for the imperfection combination with all positive ampli
tudes λu,pos, the differences observed are insignificant, with all λu,pos/ 
λu,min ratios ranging between 1.00 and 1.01 in Tables 3-5. The number of 
imperfection direction combination cases in which the ultimate load 
factor is lower than λu,pos depends on the frame, but ranges between 
0 and 58%. The same results are illustrated in Fig. 6, in which the λu,max/ 
λu,min and λu,pos/λu,min ratios are presented for the different steel and 
stainless steel frames investigated as functions of the member slender
ness of the critical column λc. These results indicate that the maximum 
variability in ultimate load factors (i.e., highest λu,max/λu,min ratios) 
generally occurs for frames with member slenderness values λc of around 

Fig. 5. Illustrative example: failure modes and ultimate loads for Frame 6 considering different types, combinations and amplitudes of sway and member imper
fections; imperfection shown in black insert in (c-f). 
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1.0, while the influence of λc on the λu,pos/λu,min ratios is less remarkable. 
Overall, the assessment of the ultimate load factors presented in this 

Section highlights the fact that the adoption of a linear combination of 
buckling modes that assumes all modes with positive amplitudes (λu,pos) 
is a simple approach that estimates the minimum ultimate load (λu,min) 
with good accuracy, without requiring that all possible combinations be 
considered to find the critical imperfection combination, as required by 
prEN 1993-1-14 [3]. Provided sufficient imperfection types are intro
duced through the consideration of different sway and non-sway modes, 
designers can simply adopt initial geometric imperfections resulting 
from the approach proposed in [11], with all positive amplitudes, and 
obtain a sufficiently accurate prediction of the ultimate frame load. 
Fig. 7 shows the histogram for all the ultimate load factors λu normalized 
by the corresponding λu,pos factor for all the frames considered in the 
analysis. Fig. 7 clearly shows that the great majority of the λu/λu,pos ratios 
lie in the 0.99–1.02 range, with the mean and standard deviation of λu/ 
λu,pos being 1.009 and 0.014, respectively. 

It should be noted that the total imperfection amplitudes resulting 
from the mode scale factors proposed in [11] are sometimes significantly 
lower than those prescribed in the different specifications, as discussed 

in Section 2.1. To evaluate the actual imperfection amplitudes intro
duced in the finite element models by means of the linear superposition 
of the six buckling modes, sway and member imperfections were back- 
calculated from the developed ABAQUS models using the initial node 
coordinates. Out-of-plumb angles were estimated from the relative dis
placements of the bottom and top ends of the columns, while member 
imperfections were calculated as the differences between the total im
perfections and the imperfections corresponding to the out-of- 
plumbness for each node. From these results, out-of-plumb angles 
determined from the participation and amplitude factors reported in 
Table 1 were found to lie between 1/260 and 1/1080 for the frames 
analysed, while the resulting member imperfection amplitudes ranged 
between L/825 and L/8440, depending on the column considered. In 
order to evaluate whether the conclusions drawn in this Section are still 
valid for frames with larger initial imperfections, similar to those pre
scribed in the codes, the influence of the imperfection amplitude on the 
variability of ultimate load factors is investigated in the next Section. 

Table 3 
Ultimate load factor assessment for steel frames with HEB 340 cross-section 
(multiple column slenderness λc values).  

Frame λu,max/λu,min COV λu,pos/λu,min Cases below λu,pos [%] 

Frame 1 1.040 0.013 1.000 0.0 
Frame 2 1.027 0.012 1.002 37.5 
Frame 3 1.003 0.000 1.003 6.3 
Frame 4 1.002 0.001 1.002 31.3 
Frame 5 1.039 0.010 1.010 1.6 
Frame 6 1.029 0.011 1.000 0.0 
Frame 7 1.025 0.011 1.004 25.0 
Frame 8 1.045 0.015 1.003 9.4 
Frame 9 1.032 0.015 1.000 0.0 
Frame 10 1.029 0.014 1.000 0.0 
Frame 11 1.009 0.002 1.009 3.1 
Frame 12 1.020 0.007 1.000 0.0 
Frame 13 1.005 0.002 1.002 48.4 
Frame 14 1.026 0.010 1.004 25.0 
Frame 15 1.033 0.016 1.002 37.5 
Frame 16 1.023 0.008 1.006 32.8 
Frame 17 1.024 0.011 1.002 31.3 
Frame 18 1.051 0.025 1.000 0.0 
Frame 19 1.001 0.000 1.001 3.1 
Frame 20 1.008 0.004 1.008 50.0  

Table 4 
Ultimate load factor assessment for steel frames with column slenderness λc =

1.0.  

Frame λu,max/λu,min COV λu,pos/λu,min Cases below λu,pos [%] 

Frame 1 1.041 0.014 1.001 1.6 
Frame 2 1.036 0.014 1.006 26.6 
Frame 3 1.002 0.001 1.002 57.8 
Frame 4 1.010 0.005 1.000 0.0 
Frame 5 1.040 0.013 1.004 9.4 
Frame 6 1.038 0.013 1.000 0.0 
Frame 7 1.031 0.011 1.004 26.6 
Frame 8 1.037 0.015 1.004 15.6 
Frame 9 1.035 0.013 1.000 0.0 
Frame 10 1.030 0.015 1.000 0.0 
Frame 11 1.010 0.003 1.010 12.5 
Frame 12 1.015 0.007 1.001 1.6 
Frame 13 1.010 0.005 1.000 0.0 
Frame 14 1.024 0.011 1.003 25.0 
Frame 15 1.040 0.019 1.000 0.0 
Frame 16 1.026 0.008 1.006 31.3 
Frame 17 1.012 0.005 1.001 3.1 
Frame 18 1.055 0.026 1.000 0.0 
Frame 19 1.003 0.000 1.002 9.4 
Frame 20 1.020 0.004 1.010 15.6  

Table 5 
Ultimate load factor assessment for austenitic stainless steel frames with column 
slenderness λc = 1.0.  

Frame λu,max/λu,min COV λu,pos/λu,min Cases below λu,pos [%] 

Frame 1 1.032 0.013 1.000 0.0 
Frame 2 1.033 0.011 1.002 21.9 
Frame 3 1.003 0.001 1.001 12.5 
Frame 4 1.011 0.005 1.001 4.7 
Frame 5 1.030 0.011 1.010 10.9 
Frame 6 1.030 0.011 1.000 0.0 
Frame 7 1.051 0.024 1.000 0.0 
Frame 8 1.032 0.015 1.002 21.9 
Frame 9 1.022 0.010 1.000 0.0 
Frame 10 1.030 0.015 1.000 0.0 
Frame 11 1.000 0.000 1.000 0.0 
Frame 12 1.012 0.006 1.001 21.9 
Frame 13 1.000 0.000 1.000 0.0 
Frame 14 1.030 0.008 1.010 7.8 
Frame 15 1.034 0.015 1.002 25.0 
Frame 16 1.012 0.005 1.001 14.1 
Frame 17 1.023 0.011 1.000 0.0 
Frame 18 1.060 0.025 1.000 0.0 
Frame 19 1.023 0.009 1.000 0.0 
Frame 20 1.001 0.001 1.001 34.4  

Fig. 6. Assessment of the influence of the imperfection direction on the ulti
mate load factors λu for steel and stainless steel frames. 
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4.3. Influence of the initial imperfection amplitude 

As indicated above, the imperfection amplitudes resulting from the 
combination of the different buckling modes using the scaling parame
ters proposed in [11] are considerably lower than the values typically 
prescribed in design provisions for sway and member imperfections for 
some of the investigated frames, since the amplitude factor F was cali
brated using data on actual initial imperfection measurements. With the 
objective of assessing the influence of the initial imperfection amplitude 
on the variability of the frame resistance, and whether the conclusions 
drawn in Section 4.2 are still valid for higher imperfection amplitudes, 
more similar to those specified in the codes, the analysis presented in the 
previous Section was repeated for four of the frames investigated (Frame 
1, Frame 12, Frame 17 and Frame 20) assuming imperfection amplitudes 
equal to two times the values proposed in [11] (i.e., adopting F=0.006 in 
Eq. (3)). The imperfections resulting from this assumption lie between 
out-of-plumb angles of 1/130 and 1/540 and member imperfection 
amplitudes between L/413 and L/4220, and thus constitute an upper 
limit to the initial imperfection magnitudes prescribed in the codes. 

Results were obtained for steel frames with member slenderness 
values of λc = 1.0, since the analysis presented in Section 4.2 showed 
that while there is very little influence of the material type, the 
maximum deviations in ultimate load factors occur for λc = 1.0. The 
λu,max/λu,min and λu,pos/λu,min ratios corresponding to the new analysis are 
reported in Table 6, where the coefficients of variation of the ultimate 
load factors and the cases with λu < λu,pos are also included. Comparing 
the results in Table 6 with the equivalent values reported in Table 4, it 
can be seen that the λu,max/λu,min ratios and COV values increase for 
higher imperfection amplitudes, as does the number of cases with ulti
mate load factors below λu,pos. However, the λu,pos/λu,min ratios remain 
practically unchanged. This indicates that although the variability of the 
load factors is slightly higher, the adoption of initial geometric 

imperfections resulting from the superposition of buckling modes with 
all positive directions is still acceptable for imperfection amplitudes 
similar to those prescribed in the different specifications. As the λu,pos/ 
λu,min ratios observed for F=0.003 and F=0.006 were similar, it is 
inferred that the results for the amplitudes prescribed in specifications 
will lie within the two scenarios investigated. 

Finally, Fig. 8 compares the ultimate load factors obtained for the 
original amplitude factor F=0.003 proposed in [11] with those corre
sponding to the double imperfection amplitudes investigated in this 
Section for the four frames analysed. The ratios between the ultimate 
load factors λu corresponding to F=0.006 and F=0.003 (i.e., λu,F=0.006/ 
λu,F=0.003) were calculated for the same imperfection direction combi
nations, and plotted for Frame 1, Frame 12, Frame 17 and Frame 20 to 
evaluate the influence of the initial imperfection amplitudes on the 
frame resistance. The ratios reported in Fig. 8 indicated that, as ex
pected, the λu,F=0.006/λu,F=0.003 ratios lie below unity for all the frames 
investigated in this Section because the ultimate load factors corre
sponding to the larger imperfection amplitudes λu,F=0.006 were lower. 
Fig. 8 also shows that the different frames exhibited a distinct sensitivity 
to the initial imperfection magnitude, with Frame 12 being the most 
sensitive among the frames analysed, with a difference in ultimate loads 
of around 10%, followed by Frame 1, with a 5% difference, and Frames 
20 and 17, with differences of 3% and 1%, respectively. The results also 
showed that the influence of the initial imperfection amplitude on the 
ultimate loads was quite uniform for the different imperfection direction 
combinations, which ultimately results in similar levels of ultimate load 
factor variability for the two imperfection amplitude levels, F=0.003 
and F=0.006, as discussed above. 

5. Conclusions 

Initial imperfections present in steel structures include global 
(frame) sway imperfections, member out-of-straightness imperfections 
and cross-sectional (local or distortional) imperfections. The nonlinear 
response of structures can be considerably influenced by initial geo
metric imperfections, and both the stiffness and the resistance can be 
affected. Hence, initial imperfections need to be modelled in advanced 
structural finite element models. Based on the method proposed by 
Shayan et al. [11] to model initial geometric imperfections as a linear 
combination of the first six buckling modes, this paper investigates the 
influence of the imperfection direction on the ultimate response of steel 
and stainless steel frames in advanced analysis. The study is based on a 
set of simple, multi-storey, multi-bay and irregular unbraced frames, 
featuring structural steel and austenitic stainless steel alloys and a range 
of member slenderness values, for which the ultimate load factors cor
responding to all the different possible combinations of imperfection 
directions were determined and analysed. The assessment of the ulti
mate load factors showed that the influence of the imperfection direc
tion on the ultimate load is small for the investigated frames, and no 

Fig. 7. Histogram for the λu/λu,pos ultimate load factor ratios for steel and 
stainless steel frames. 

Table 6 
Ultimate load factor assessment for steel frames with column slenderness λc =

1.0 and double imperfection amplitude.  

Frame λu,max/λu,min COV λu,pos/λu,min Cases below λu,pos [%] 

Frame 1 1.057 0.025 1.000 0.0 
Frame 12 1.032 0.012 1.002 9.4 
Frame 17 1.031 0.014 1.000 0.0 
Frame 20 1.020 0.007 1.010 21.9  
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Fig. 8. Influence of the initial imperfection amplitude on the frame resistance.  
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significant differences were observed for simple, multi-storey, multi-bay 
or irregular frames or for different materials. The results also indicated 
that the adoption of a linear combination of buckling modes that as
sumes all six modes with positive amplitudes is a simple yet congruous 
approach to modelling geometric imperfections. For codes that require 
the geometric imperfection to be chosen as the worst case scenario, the 
approach provides resistances close to the minimum frame resistance. 
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