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Abstract: In this article, we propose a recent iterative learning algorithm for sensor data fusion to
detect pitch actuator failures in wind turbines. The development of this proposed approach is based
on iterative learning control and Lyapunov’s theories. Numerical experiments were carried out
to support our main contribution. These experiments consist of using a well-known wind turbine
hydraulic pitch actuator model with some common faults, such as high oil content in the air, hydraulic
leaks, and pump wear.

Keywords: data fusion; iterative learning; fault detection; pitch system; wind turbines

1. Introduction

Data fusion is a mathematical discipline that deals with the acquisition, processing,
and combination of synergies of information gathered from sensors [1]. Data fusion can
be defined as the combination of data and information from different sources, to obtain
improved information [2]. This data fusion is usually done to analyze and understand
a phenomenon [3–5], for instance a system malfunction. Data fusion techniques are present
in a wide range of applications, such as smart city applications [6], allowing to manage
multiple data sources; food analysis context [7]; guidance and control of autonomous
vehicles [8]; medical studies [9], and so on. In addition, there are different analysis methods
that combine data from different sources, where the most common options are algorithms
based on optimization [10], multiblock (or multitable) methods [11], and statistical data
fusion [12]. In our article, we used an original statistical parametric identification to
perform data fusion, where covariance of sensory information is not required, which is
generally not available.

Moreover, the data sensor has been useful to detect possible failures in the pitch
actuator systems of wind turbines [13–16]. Furthermore, it turns out that a parameterized
plant modeling can be a key factor for efficient fault diagnosis based on the fusion of sensor
data. If in addition, only a single sensor is used for the data fusion process, an option to
generate data to be merged is through an iterative process. On the other hand, it is well
known that the iterative learning process can improve your performance on repetitive
tasks in a finite period of time [17–19]. Therefore, the main objective of this article is to
develop a fusion of a sensor data based on adaptive iterative learning. This process will
provide data in each periodic cycle task that will be further analyzed for fault diagnosis
in the wind turbine pitch actuators.

The pitch system of a wind turbine adjusts the pitch angle of the blade by turning
it. In the case of a three-bladed wind turbine, there are generally three identical pitch
actuators [15,20]. This part of a wind turbine is responsible for capturing the wind to
convert it into mechanical energy and then into electrical one. Therefore, if the pitch
actuator system has a fault, the energy efficiency conversion will be affected, among others
mechanical and structural wear. Some common faults are high oil content in the air,
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hydraulic leaks, and pump wear. Our data fusion approach is capable of detecting these
types of failures.

The iterative learning theory used for adaptive learning of a process is a key factor
in many iterative learning control frameworks [17–19]. Therefore, an appropriate mathe-
matical model of the pitch system will be important, and as simple as possible to perform
a simple adaptive iterative learning method to our main objective. Furthermore, an it-
erative learning control has been used to improve control performance of proportional
controllers and derivative ones [21]. Simulation results are given in [21] to support this
affirmation. In [22], an iterative learning control theory is employed in a first-order hyper-
bolic system that helps improve controller robustness on desired time-varying trajectories.
This is also supported by performing numerical examples of given hyperbolic systems.
In addition, [23] shows the realization of the synchronization of non-identical neural net-
work systems that have a variable delay in time coupled by means of an iterative learning
control. According to the simulation results shown in [23], the synchronization objective is
satisfied. Finally, in [24], iterative learning control is applied to a novel computational fluid
dynamics model to show the performance of the controller in improving the aerodynamic
load of wind turbines. In the same way, we will use numerical results to support our main
contribution.

The rest of the structure of this article is as follows. Section 2 presents our data
fusion approach by using a simple mathematical model of the pitch system, and the use of
an adaptive iterative learning framework based on Lyapunov’s theory. Section 3 shows
the results of numerical simulations and followed by Section 4, where the advantages of
the proposed method are discussed. Finally, a summary is presented in Section 5.

2. Wind Turbine Mathematical Modeling

We use the following mathematical model of a tone actuator system [25]:

β̇(t) = − 1
τ

β(t) +
1
τ

up(t), (1)

where up(t), β(t), and τ are the pitch angle command, the pitch angle, and the system time
constant, respectively. This mathematical model is a simple one of the following more exact
model (see [14] and references there in):

β̈(t) = −2ζωn β̇(t)−ω2
n(β(t)− up(t)) (2)

where, once again, β(t) is the pitch angle and up(t) is the pitch angle command; ωn and ζ
are the natural frequency and damping, respectively. Table 1 shows the healthy and faulty
scenarios for a wind turbine. Therefore, our data fusion approach, for design, will use
the simple model (1) and, in testing, the second model (2) under the different scenarios
presented in Table 1.

Table 1. Common faulty scenarios [26].

Scenario Abbreviation

No fault H
High air oil content F1
Hydraulic leakage F2

Pump wear F3

3. Results

In this section, the statements of the iterative learning algorithm, applied to sensor
data fusion, to detect pitch actuator failures, are stated.



Sensors 2021, 21, 8437 3 of 12

3.1. Adaptive Iterative Learning Approach

The adaptive iterative learning control scheme is based on performing repetitive tasks
to obtain a parameter estimation. In our case, we repeat a trajectory tracking of a wind
turbine, where the unknown parameter comes from the system time constant. To do so,
we rewrite system (1) as follows:

β̇(t) = −θ(β(t)− up(t)), (3)

where θ = 1/τ is considered an unknown parameter. Then, adaptive iterative learning
deals with finding a periodic learning dynamic to observe the parameter θ that governs
the pitch dynamics.

First, we have to consider the following assumptions about wind turbine pitch actuator
systems:

(A1) The angle pitch dynamic is limited. That is, there exists a positive constant βM ∈ R,
such that 0 < β(t) < βM for all t ≥ 0.

(A2) The systems (1) and (2) are bounded–input–bounded–output (BIBO)-stable dynamics.
Hence, θ in (3) should be a positive constant parameter and assumed unknown.

(A3) The pitch angle command is bounded. That is, there exists a positive constant uM ∈ R,
such that | up(t) |≤ uM for all t ≥ 0.

We define now the next adaptive iterative learning algorithm defined over the time
interval t ∈ [0, T]:

(1− γ)θ̂k(t) = γθ̂k−1(t) + γ|β(t)− up(t)| ,
θ̂k(0) = θ̂k−1(T) ,

θ̂0(t) = θini ,

(4)

where k denotes the k-th learning cycle, or iteration number. The rest of values are: θini is
a constant parameter; 0 < γ < 1 is the parameter set by the user; and T is the time-interval
of the iterative process. The above adaptive iterative dynamic is a special case to the one
proposed, for instance, in [18]. Hence, this dynamic is a kind of parameter observer to θ in (3).

3.2. Data Fusion Design

Now, we present how to perform the data fusion of the experimental data, raw (4),
obtaining for each iteration a significant information able to characterize the data. To do
this, the boundedness of θ̂k(t) (4) must be established first, and then the data fusion can
be accomplished.

To begin with the main result, let use define the following L∞e norm [18]:

‖ x(t) ‖∞e= sup
0≤t≤T

‖ x(t) ‖, (5)

where ‖ · ‖ denotes any vector norm. If the above norm exists, then x(t) ∈ L∞e[0, T].
Next, we have the following result that ensures the boundedness of the iteration

method (4); that is, θ̂k(t) remains in a bounded region for t ∈ [0, T] and for each iteration k.

Theorem 1. The iterative learning process proposed in (4) linked to (3), and under the assumptions
(A1)–(A3), produces θ̂(t) ∈ L∞e[0, T] for each iteration process k = 1, 2, . . . .

The proof of Theorem 1 consists on consider an energy function related to each
iteration, and show that its sequence is bounded. Then, we can ensure that the sequence of
parameter θ̂k(t) is also bounded in [0, T]; that is, θ̂k(t) ∈ L∞e[0, T] for k = 1, 2, . . . .
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Proof. To prove the theorem, it is sufficient to see that the dynamic of (4) remains bounded.
Let us define the following positive definite functional Vk(T) as a Lyapunov-like func-
tion [18]:

Vk(T) = α1

∫ T

0
θ̂2

k (t)dt (6)

The difference of the Vk(t) is given by

∆Vk(T) = Vk(T)−Vk−1(T)

=
∫ T

0 (θ̂2
k (t)− θ̂2

k−1(t))dt
(7)

Let us first simplify the integral term θ̂2
k (t) in (7). Hence, using (4), we get:

θ̂2
k (t) =

(
γ

1−γ

)2(
θ̂k−1(t)+ | β(t)− up(t) |

)2

=
(

γ
1−γ

)2(
θ̂2

k−1(t)+ | β(t)− up(t) |2 +2 | β(t)− up(t) | θ̂k−1(t)
) (8)

Then, using (8), the difference ∆Vk (7) becomes:

∆Vk(T) =
∫ T

0 θ̂2
k (t)− θ̂2

k−1(t) dt

=
∫ T

0

(
γ2

(1−γ)2 − 1
)

θ̂2
k−1(t) +

γ2

(1−γ)2 | β(t)− up(t) |2 +

2 γ2

(1−γ)2 | −β(t) + up(t) | θ̂k−1(t) dt

(9)

Now, we define γ such that γ2

(1−γ)2 − 1 ≤ 0. Then, we get:

∆Vk(T) ≤
∫ T

0
γ2

(1−γ)2 | β(t)− up(t) |2 +

2 γ2

(1−γ)2 | β(t)− up(t) | θ̂k−1(t) dt
(10)

The boundedness of Vk(T) (6) is concluded because β(t) and up(t) are bounded
signals. From assumptions (A1) and (A3), (10) satisfies:

∆Vk(T) ≤
γ2

(1− γ)2

(
(βM + uM)2T + 2(βM + uM)

∫ T

0
θ̂k−1(t)dt

)
. (11)

Finally, taking into account that θ̂k(t) is a continuous function in [0, T], for each k-th
iteration, we conclude that the integral term in (11) is achievable. Hence, ∆Vk(t) < ∞,
and θ̃k(t) ∈ L∞e for all k, and then θ̂k(t) ∈ L∞e. So, θ̂(t) ∈ C[0, T] for each iteration.

Once we ensure the boundedness of the parameter estimation, we can present the data
fusion scheme. The data fusion process employs experimental raw data to extract its
arithmetic mean that describes it. Then, a new data raw ψ(t) is obtained with improved
information. The data fusion block performs the following mathematical operation:

ψ(t) =
1

nT

bnTe

∑
k=0

θ̂k(t), t ∈ [0, T], (12)

where bnTe is the nearest integer of nT, and it corresponds to the n iterative cycles, where
each cycle is ran for t ∈ [0, T]. Therefore nT is the entire simulation time. Notice that all
the sensor data obtained from the iterative process θ̂k(t) (4) are merged into a single data raw
ψ(t). Then, this new data ψ(t) is obtained under each scenario presented in Tables 1 and 2,
and must be compared to the healthy model to establish a detection fault algorithm.
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Table 2. Parameters for hydraulic pitch system under common faulty scenarios [26].

Scenario Parameter ωn (rad/s) Parameter ζ

H 11.11 0.6
F1 5.73 0.45
F2 3.42 0.9
F3 7.27 0.74

3.3. Fault Detection Algorithm

We now propose a diagnosis of pitch actuator failures based on the fusion data
theory. Based on Theorem 1, Figure 1 shows the health monitoring system proposed for
the diagnosis of failures in actuator devices in wind turbines. The data employed here
are presented in Table 2 [26]. The diagnosis is based on the following steps. Under each
scenario in Table 1, a data fusion raw ψ(t) (12) is obtained. Then, a decision parameter
m is defined in each case. First, a healthy value of m for the nominal plant H (healthy
scenario in Table 1) is derived, referred to as mH in Figure 1. Secondly, under each faulty
case, parameter m is evaluated and compared to mH to decide if a failure occurs.

First, let us define parameter m: it corresponds to the regression of data fusion raw.
That is, a linear relation is used to fit our data (t, ψ(t)) in (12) to a polynomial function of
degree one, and by using minimum squares method. Therefore, the linear regression stage
does this regression on the merged data and only m, the slope of the linear regression, is
implemented.

Figure 1. Residual signal r(t) for fault diagnosis based on an interactive learning process. The iterative
learning process is as stated in Theorem 1. The linear regression block is a post-processing unit that
is enabled after the end of the elapsed time for the test. Subscript H refers to the nominal scenario H
in Table 1.

Then, to detect a pitch actuator failure, the factor r = m
mH

is evaluated. If r >> 1,
a malfunction of the system has occurred, as showed in the next section.

4. Numerical Simulations

Table 2 shows the stages analyzed. Therefore, the healthy model in Figure 1 refers to
the H scenario in Table 1. The experimental parameter considered in pitch actuator exact
model (2), simpler model (3) and the iterative learning algorithm (4) are defined in Tables 1–3.
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Table 3. Experimental parameters.

Name Value

γ 0.5
T 1

30 sec
θini 0
n 1000

For reference, the following color labeling is used: (H) blue, (F1) red, (F2) orange,
and (F3) green. By using the pitch command signal given in Figures 2–4 show the results of
the simulation of the proposed scheme . Then, in all simulations, additive noise is attached
to the pitch command signal for the robustness analysis of the proposed method. Table 4
shows the obtained regression parameters, where in the three faulty scenarios parameter
r is greater than 1 and the detection algorithm works. Moreover, Figure 4 pictures data
fusion variable ψ(t) (4), and again the fault detection is illustrated.

Table 4. First numerical experiment results of regression parameter m.

Case m r = m/mH

H 810.14 (mH) 1
F1 1732.83 2.13
F2 2921.09 3.60
F3 1238.93 1.52

Figure 2. First simulation: pitch command signal for testing, where additive noise signal can
be observed.
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Figure 3. First simulation: pitch actuator responses for each case in Table 1: H (blue), F1 (red), F2

(orange), and F3 (green). The command signal is the one in Figure 2.

Figure 4. First simulation: data fusion raw ψ(t) in (4) for each case in Table 1: H (blue), F1 (red), F2

(orange), and F3 (green). Notice that the fault detection is reached.

Second experiment outcomes are shown in Figures 5–7. Once again, Table 5 gives
the reading regression parameters. From Tables 1–5, a threshold to the residual signal r(t)
can be easily set to locate each failure. That is, despite the noise added to the data, our



Sensors 2021, 21, 8437 8 of 12

method is able to discern among the three different failure scenarios. As Table 5 shows,
the parameter r for each case is located in a range of different values.

Figure 5. Second experiment: pitch command signal, where the additive noise is included to show
the robustness of the proposed method.

Figure 6. Pitch actuator responses to command in Figure 5: H (blue), F1 (red), F2 (orange), and F3

(green).
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Figure 7. Data fusion for each case in Table 1: H (blue), F1 (red), F2 (orange), and F3 (green), under the
second experiment. This figure is related to Table 4: both indicates a pitch actuator fault detection.

Table 5. Second numerical experiment results.

Case Regression Parameter r = m/mH

H (mH) 848.30 1
F1 (m) 1800.57 2.12
F2 (m) 3053.26 3.59
F3 (m) 1295.67 1.52

5. Discussion

Based on the simplest model used for the pitch actuator system (3), and because
the iterative process identifies a parameter related to the system time-constant, the best
option for the iterative process is to use a stepped pitch reference command, as shown
in the previous simulations. However, to see the performance of our approach, we use
a sine pitch command signal as shown in Figure 8. Numerical experiment results are shown
in Figures 9 and 10. Furthermore, Table 6 gives the related results of the iterative process
results. Even in this case, the system reacts differently to different failure cases. Although
the sinusoidal signal is not commonly used as a reference in estimating the time constant
of a system, our approach still allows us to detect variability of this parameter. Compared
to Table 5, the classification is not as robust, as expected when dealing with a sinusoidal
input.Therefore, future work will be to design a residual signal, as for the sinusoidal pitch
command, which will do the same job.
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Figure 8. Sinusoidal pitch command signal.

Figure 9. Actuator responses: H (blue), F1 (red), F2 (orange), and F3 (green).
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Figure 10. Data fusion profile: H (blue), F1 (red), F2 (orange), and F3 (green). In this case, the fault
detection is clear for F2 faulty scenario.

Table 6. Third numerical experiment results.

Case Regression Parameter r = m/mH

H (mH) 162.42 1
F1 (m) 273.60 1.68
F2 (m) 739.94 4.55
F3 (m) 287.80 1.77

6. Conclusions

In this article, we developed an iterative learning algorithm capable of isolating pitch
actuator faults based on a square pitch command signal. The option to employ the iterative
learning approach is the ability to learn from the past to arrive at a present conclusion.
This is an important process in system learning based on data results. Hence, our approach
can be a recent contribution of this theory, to pitch actuator analyses in wind turbines.
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