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1 INTRODUCTION

This section serves as an introduction to the project in which the abstract of the project will be
presented, as well as the scope and requirements. Finally the project’s objectives will also be enu-
merated.

In this introduction, the Plathon project will also be explained in broad terms so as to see where
this particular project fits in.

1.1 Abstract

This project is part of a bigger project called Plathon and consists of the study, application and
adaptation of NASA’s orbital simulator 42 to the Plathon project. For this purpose, the program
has been studied with several test simulations in order to better understand its inner workings and
to test the possibilities and limitations of the simulator.

After that, a series of modifications and standalone codes, using Matlab, have been implemented
to better fit the simulator into the project and to allow for better post-processing of the obtained
data. On top of that, the integration of the simulator with the Plathon project will also be discussed.

1.2 Plathon project

The Plathon project aims to develop a platform for the simulation of a constellation of nanosatellites
(cubesats) with the objective of simulating optical and radio frequency communication amongst the
satellites and between satellite and ground station.

This simulation is meant to start by simulating everything with software such as the orbital simula-
tor 42 (the object of this project), but will eventually turn into a hardware in the loop simulation,
where the satellite itself will be included in the simulation. This means that the spacecraft dynamics
and attitude control will not be simulated but rather read directly from the sensors and actuators
on board the satellite.

Moreover, the satellite will also be managing the communications and energy leaving only the or-
bital propagation and environment to the simulators. In figure 1, the basic idea behind the Plathon
project is dispalyed.
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Figure 1: Plathon project schematic

1.3 Scope
The scope of the project covers the following points:
e To understand the inner workings of NASA’s orbital simulator 42.
e To implement the necessary functions or models that better fit the Plathon project.

o To visualise the results using both the 42 simulator GUI and self-made Matlab/Simulink
functions.

e To design a simulation of a constellation of cubesats to test communication amongst them-
selves and the ground station.

e To begin the implementation of 42 into the Plathon project.
The project does not intend:
e To design an orbital simulator.

¢ To manufacture the cubesats or any of its components.

1.4 Requirements
In order to meet the project’s objectives, a set of requirements have been set:
e Any work done must be original.
e Any work done must help accomplishing the objectives of the Plathon project as a whole.

o Cooperation among students working in the Plathon project must be encouraged.
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1.5 Objectives
The project objectives can be summarised in the following points:
e To understand the orbital simulator 42

e To provide the necessary postprocessing functions to allow for a better visualization of the
simulation results

o To implement all necessary modifications to 42 that may be needed to integrate the simulator
into the Plathon project

o To simulate a constellation of satellites to test the capabilities of the program

e To demonstrate through a simulation the concept of inter-process communication of several
42 running in parallel and some standalone AcApp’s controlling the satellites independently

10
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2 PROGRAM OPERATION

In this section, the inner workings of NASA’s orbital simulator 42 will be explained in order to
expose how the program works, how to input the necessary data to start a simulation and what
kind of output it produces.

First, the simulation procedure will be explained so that the way the simulator works can be un-
derstood; then, the different inputs will be detailed so that the necessary information to start a
simulation is clear; after that, the different outputs produced after a simulation will be explained
so as to know what is obtainable; last, the sensor and actuator modelling included in the simulator
will be explained.

2.1 Simulation procedure

The Orbital simulator 42 is a very powerful tool made by NASA to simulate satellites in orbit
around any of the astral bodies of the solar system which includes orbital dynamics and attitude
determination and control [1]. It is part of the OpenSat Kit, a series of programs which are meant
to plan space missions. This implementation inside OpenSat Kit allows the use of 42 with other
software which would simulate other aspect that are not taken into account inside 42 or that are
modelled in a very simple way.

It is capable of simulating several spacecrafts as well as having models implemented for the envi-
ronment (gravitational and magnetic fields), ephemeris, sensors and actuators. It also includes a
GUI to visualise the simulation.

In order to explain how the simulator works, first, the structure of the different files must be ex-
plained. Orbital simulator 42 is split into two different kinds of files, includes and source files. The
former include all necessary global variables, functions and files that are needed for the program
to work. The latter includes the code of the program. Inside the code, three different kinds of
functions can be found, top-level functions, mid-level functions and low-level functions. Top-level
functions basically call other functions in the determined order; mid-level functions perform most
of the operations needed for the simulations; and last, low-level functions are toolkit functions such
as matrix multiplication and so forth.

The main simulation algorithm starts by initialising all aspects of the simulation such as loading
the celestial bodies, spacecrafts and other variables stated by the inputs files. After that it reads
the command inputs for the simulation, and last it performs all necessary simulation calculations
in a loop until the simulation is done.

The main simulation loop begins by reporting the simulation progress into the console, followed by
managing program flags and reading simulation commands. After that, based on the torques and
forces of the previous time step, it updates the spacecraft’s position and attitude using the model
specified in the inputs. Then, it calculates the orbit’s motion, such as drifts from J2. At this point
it checks for the simulation completion, in case this is the end of the simulation, it sets a flag as
true which will end the simulation at this time step (not at this point specifically, as it still makes

11
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some more calculations).

Next, it updates the spacecrafts’ bounding boxes and sends and receives all necessary information
from external apps, in case they are being used. NASA’s orbital simulator 42 is capable of working
together with other programs of the Open Sat Kit tools.

Following that, it updates the planets’, moons’ and other bodies’ ephemeris based on the model set
at the input. Then, after resetting all forces and torques to 0, for every spacecraft present in the
simulation, it checks the environment, perturbations, sensor readings, flight software actuation and
actuators response; before continuing, it splits the forces into external and internal.

Finally, the last part of the main simulation loop performed by the program is reporting some data
into output files.

The environment function performed checks the magnetic field, atmospheric density and presence
of radiation fluxes in radiation belts based on the models defined in the inputs. The perturbations
functions computes the perturbation forces and torques that have been enabled in the input files.
The sensor function, in case sensors have been defined for the spacecraft in question, takes the
truth, i.e. position, quaternions, etc; and through some models adds inaccuracies and noise; if no
sensors are defined, the truth is taken without modification. The flight software function applies the
attitude control algorithm defined in the inputs. Every one of these algorithms performs different
actions, the most basic of them is to comply with the simulation commands relative to attitude.
This is done in different ways depending on the particular algorithm but in most cases a simple PD
algorithm is used. The actuators function, takes the desired forces and torques from the flight soft-
ware function and obtains the actuators’ output forces and torques based on some simple models;
if no actuators are defined, the program uses ideal actuators which output the desired forces and
torques no matter how absurd.

To summarise, the main simulation loop can be described in a few steps (see figure 2 for clarification):

1. Initialisation

2. Ephemeris calculations
Environmental model
Sensor readings

Flight software functions
Actuator model

Spacecraft dynamics

® N o W

If not finished go to 2

12
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Figure 2: 42 simulation procedure [1]

2.2 Input definition

NASA’s orbital simulator 42 uses a series of input text files to load all the desired simulation pa-
rameters. These files follow a very specific format which must be followed so that the program
interprets every file without problems.

There are 5 main input files, although some other inputs must be defined as well. These main
inputs are:

e Inp_Sim.txt
e Inp_Cmd.txt

13
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o Inp_Graphics.txt
e Orb_*.txt
o SC_*.txt

Where * can be any name. Keep in mind that there can be as many Orb and SC files as is desired
for the simulation. In addition to the main inputs, it is also necessary to define 4 extra inputs:

o Inp FOV.txt
e Inp IPC.txt
o Inp_Region.txt
e Inp_ TDRS.txt

The most basic input file, from which all others derive, is the Sim file (See example in appendix A.1),
it defines the basic simulation parameters such as the duration, time step, whether the graphical
interface is desired, the environment characteristics such as the gravity and magnetic field models,
the disturbance forces and torques present, the celestial bodies that will be present as well as the
Lagrange point systems present, the ground stations and finally, the orbit and spacecraft files to be
used.

The next input file is the Cmd file (See appendix A.2 for an example), in this file, all simulations
commands are stated. Commands are used to alter the behaviour of the simulation at a specific
time. Using commands it is possible to control the attitude of any spacecraft present in the simu-
lation, alter the graphics interface, or even impart Av to any spacecraft.

The Graphics input file controls the graphical interface. It is where the different camera angles are
defined as well as indicating whether the different graphical screens are desired. For an example
see appendix A.3.

Inside the Orb file (See example in appendix A.4), the orbital parameters of the reference orbit in
question are defined. There are 4 possible types of orbits according to the program documentation
[4]: zero, flight, central and three-body.

The central orbit type is a two-body orbit, those are appropriate for situations where one celestial
body dominates the orbital motion of the spacecraft. The three-body orbit type, as its name im-
plies, takes into account three-body orbital mechanics, this applies whenever a spacecraft is near
a libration point. The flight orbit type determines the motion relative to a region (regions are
defined as a point fixed in a local reference frame). This type of orbits are the preferred orbit type
for situations where a reference orbit does not make sense, such as take-off and landing, ground
operations. Last the zero orbit type is similar to the flight type but with the reference at the center
of the attracting body. This is used when the spacecraft is near a minor body.

The last of the main input files is the SC file, in this file the spacecraft definition is stated. This

input file can be split into 4 parts, the general definition, the body parameters, the joint parameters
and the actuators and sensors definition.

14



Aerospace engineering Master’s thesis

In the general definition, the initial attitude, orbit propagation method, dynamics flags and flight
software type are defined. In the body parameters, the mass, inertia and geometry file are set; a
spacecraft may be composed of multiple bodies. In the joint parameters, the degrees of freedom,
initial angles and displacements, as well as spring and damping coefficients are defined for the joints
joining two bodies. And in the actuators and sensors definition the amount and parameters of the
different sensors and actuators are included. It is also possible to set a flex file in the body defini-
tions to include a flexible solid model.

With regards to the other inputs, the FOV file (See appendix A.6 for an example) adds field of
view cones to the defined spacecraft which can be seen using the graphical interface; the IPC file
(Example in appendix A.7) allows the simulator to run inter-process communication, which allows
it to work as a standalone program, or to work together with other programs; the Region file
(Example in appendix A.8) defines the regions for the flight orbit type; and finally, the TDRS file
(Example in appendix A.9) includes the TDRS (Tracking and Data Relay Satellite) satellites in the
simulation.

As a summary:

e Inp_Sim: determines the basic simulation information and points to the other input files
e Inp_Cmd: inputs the simulation commands

e Inp_Graphics: configures the GUI

¢ Orb_*: defines a reference orbit

e SC_*: defines a spacecraft and its components

e Inp FOV: adds FOV cones to the visualization

e Inp IPC: configures the sockets for inter-process communication between programs

e Inp_Region: defines the regions present in the simulation

e Inp TDRS: defines the TDRS satellites

Regard how thanks to the Inp_I PC file, the simulator can work in conjunction with other programs
as it controls the flow of information coming/going through the sockets defined inside it.

2.3 Output files

After the simulation has finished, the simulator outputs certain information as text files for further
analysis by the user. These files contain information such as the position and velocity in different
reference frames, the quaternion expressing the attitude of the spacecraft, the angular velocity, and
other complementary information such as the sun vector.

The program only outputs this information for the first spacecraft defined in the inputs, not all of
the spacecrafts present in the simulation. The only information output for all spacecraft are the tree
structure (which indicates the relations between the different bodies and joints present in the space-
craft definition), the dynamic characteristics, such as the mass and inertia, and the dynamics states

15
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(position, velocity, quaternion and rotation rate of the spacecraft with respect to its reference point).

The output files obtained are listed below:

e Acc: accelerometer readings

o Dyn*: dynamic properties of the spacecraft (mass, center of mass, etc)
e DynTime: time since J200 of the simulation

e Hvn: spacecraft’s angular momentum vector in N frame
o Hwhl: reaction wheels momentum

¢ KE: spacecraft’s kinetic energy

¢ MTB: magnetorquer torque

e PosN: spacecraft position in N frame

¢ PosR: spacecraft position in R frame

e PosW: spacecraft position in W frame

e gbn: spacecraft quaternion in N frame

¢ RPY: spacecraft Euler angles in L frame

e svb: Sun pointing vector in B frame

e svn: Sun pointing vector in N frame

e time: simulation time

o Tree*: spacecraft body/joint tree representation

e u*: body dynamic information (angular velocity in N frame, velocity relative to spacecraft
center of mass N frame)

e VelNN: spacecraft velocity in N frame

¢ VelR: spacecraft velocity in R frame

e VelW: spacecraft velocity in W frame

e wbn: spacecraft angular velocity in N frame

¢ x*: body dynamic information (quaternion in N frame, position relative to spacecraft center
of mass in N frame)

As seen in the list above, the simulator uses a series of reference frames, these are:

¢ N frame: world-centered inertial frame, in case of Earth it corresponds to the ECI frame

16
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e W frame: world-centered world-fixed frame, in case of Earth it corresponds to the ECEF
frame

o L frame: local-horizon, local-vertical frame

¢ R frame: orbit reference frame, like L frame but follows the reference orbit instead of the
spacecraft. If the spacecraft is directly on the reference orbit and no perturbations are present,
R frame and L frame are the same

2.4 Sensor modelling

Inside the simulator, in order for the spacecraft to obtain its position, attitude and important
vectors such as the sun pointing vector, some simple sensor models are implemented. These include
the basic sensor used in satellites for attitude determination and are:

o Accelerometers
e Gyroscopes

o Magnetometers
« CSS

« FSS

e Startrackers

« GPS

The basic idea behind these models is to take the truth values and add some random noise or bias.
After that, each different sensor computes different values relevant to attitude determination. In
case a particular type of sensor is missing, the simulator will fill in the measured value with the
truth directly. This, however, does not occur when using the simulator with the standalone AcApp,
in this case it will not have access to the value in question.

In the case of the accelerometer, it calculates the acceleration of the point in the body of the space-
craft where the accelerometer is located in the direction of the axis specified in the input file. After
calculating the true acceleration, it takes into account certain error sources such as the accelerom-
eter’s bias, noise factor and random walk; as well as quantization errors, maximum acceleration
measurable and sample time.

The gyroscope modelling is akin to the accelerometer’s but the position is not relevant as every
point in a rigid solid has the same angular velocity, so only the axis is necessary.

The magnetometer determines the value of the magnetic field in the determined axis, it also noise,
scale error and quantization error. After that, it also takes into account the magnetometer’s satu-

ration.

The CSS does not compute directly the Sun pointing vector, but instead determines if the CSS is
illuminated and at what intensity. After checking whether the spacecraft is in eclipse, it compares

17



Aerospace engineering Master’s thesis

the angle of the true Sun pointing vectorwith respect to the CSS’ axis with the half-cone angle
determined. After that, it adds some quantization error to the illumination value.

Unlike the CSS, the FSS directly determines the angles of the Sun pointing vector with respect to
the FSS’ axis. It does so in a similar way to the CSS but instead of calculating the illumination
value it directly computes the angles.

The startrackers directly compute the spacecraft’s attitude, expressed in quaternions, by taking the
truth and adding some errors in a similar way to the other sensors. However, before even starting
the computations, using the values set in the inputs for the mounting axis, field of view and exclu-
sion angles, it checks whether it is being blinded by the Sun, Earth (or any other body), and the
Moon (only if orbiting the Earth). In case the startracker is being blinded it returns no value.

Finally, the GPS modelling takes the truth values for the position and velocity of the spacecraft, as
well as the time, and after adding some noise, computes the measured values in both inertial and
Earth-fixed reference frames. It also computes the latitude and longitude and the GPS week and
second of the spacecraft.

2.5 Actuator modelling

Just like with the sensors, the simulator includes some actuator modelling so that the forces and
torques applied do not directly correspond to the ideal forces/torques indicated by the attitude
control PD function. However, the models are much simpler.

There are currently three types of actuators:
e Thrusters
o Reaction wheels
e Magnetorquers

The thruster model, takes the required thrust and pulse width from the flight software function
(which is only implemented in one of the example functions) and applies said thrust, previously
being compared with the maximum thrust of the thruster, in the axis and the position specified. If
the resulting thrust force does not go through the center of mass of the spacecraft, it also computes
the generated torque. After all of this, it also checks for the forces that may be caused by the
exhaust plume impacting on other spacecraft surfaces.

The reaction wheel model is very simple. It takes the required torque from the flight software func-
tion and checks that said torque is not greater than the maximum torque that the wheel is capable
of producing. After that, it also checks that the momentum of the wheel is not greater than the
maximum. In the input file, some other parameters are also specified such as the imbalance and in-
ertia of the wheel. This is accounted for as a perturbation force rather than part of the wheel model.

The magnetorquer model is also very simple. It limits the torque to the maximum that the magne-
torquer can produce and then applies this torque depending on the axis of the magnetorquer and

18
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the direction of the magnetic field vector.
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3 CONSTELLATION GENERATION

In this section, the general concept of a constellation, as well as some examples will be provided.
Followed by how the generation of the input files for a constellation are done so as to be used in 42.

First, a justification for constellations of nanosatellites will be made while also remarking some of
the current concerns regarding the increase on space debris; following that, the explanation of a
Matlab program made to generate 42 inputs for a Walker constellation will be presented; last, the
input generator for a simulation of the Iridium constellation will be explained as well as the results
obtained from said simulation.

3.1 Constellations and nanosatellites

A constellation is a group of satellites of similar design and purpose, distributed over space. This is
not to be confused with a cluster formation of satellites, which are satellites in very close proximity
to each other [5].

Constellations may have very different characteristics depending on their objective, however, some
aspects are common such as the intention of providing total coverage in the desired latitudes or
minimizing the number of satellites needed for that purpose due to cost.

Some of the most famous constellations are GNSS constellations like GPS and GLONASS. These
constellations have the objective of providing positioning to the users via broadcast messages, al-
though both of them have the same purpose, due to the different objective latitudes in which to give
service to, the orbital characteristics of both of them vary. This variation in orbital characteristics
is very typical of constellations as each one is tailored to the needs of the mission. A very important
capability of a satellite constellation is the ability to precisely track moving objects and provide
positioning and information services to several users at a time, regardless of their position in the
globe, this is very helpful for both maritime and aerial transportation as while far away from land,
traditional localization services are unavailable.

However, there have been many ideas towards achieving a more generalised constellation pattern.
There are many constellation patterns providing global coverage, one of the most interesting is the
Walker constellation, this constellation achieves global coverage with just 5 satellites at altitudes
of over 11482 km, still requiring the least satellites at lower altitudes [6]. This constellation also
has the benefit of being uniformly distributed, meaning that these constellations are easy to make
and study. Moreover, these constellations can provide several fold coverage without exponentially
increasing the numebr of satellites.

Using this kind of constellation, recent studies have found possible to construct a constellation with
only 264 satellites at 900 km of altitude with a GDOP of only 2.36 [7]. This number could be
lowered by increasing the altitude, which would also decrease the number of satellites needed, but

will put the constellation out of LEO.

Keeping the constellation in LEO is important to comply with the current trends in satellite constel-
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lations, which is the use of nanosatellites (See figure 3), often cubesats, due to their lower cost and
complexity. These satellites are commonly placed in LEO orbits for economic purposes. However,
placing satellites in LEO has other advantages besides cost, such as lower latency communications
due to the close proximity to the Earth.

Total nanosatellites and CubeSats launched www.nanosats.eu

1500 =+=Nanosats launched incl. launch failures

1400 =e=CubeSats launched incl. launch failures
CubeSats deployed after reaching orbit

1300 Nanosats with propulsion modules

1200 CubeSats launched in total units

o
o

1000
900
800
700
600
500
400
300
200
100

Running total of satellites

Figure 3: Total nanosatellites launched [2]

The amount of nanosatellites in orbit as of January 1st, 2021, is about 1474 and there are over 2500
planned nanosatellite launches in 6 years [8]. Comparing it with the 10680 satellites in total that
have ever been launched since 1957 [9], already places the nanosatellite launches at a 10% of total
satellites launched. However, if the trend continues, the number of nanosatellites will continue to
increase exponentially, which will eventually make nanosatellites the most prevalent satellite type
in orbit.

This numbers are worrying with regards to space debris, as with an increasing number of satellites
in orbit, comes and increase in collisions which lead to a chain reaction of debris being catapulted in
erratic orbits causing more collisions. Current estimates place the total number of objects greater
than 1mm at over 128 million, with more than 28000 regularly tracked due to their size [9]. The
reason why nanosatellite constellations are worrying is due to the great amount of new satellites
which are being put in orbit, increasing collision chance. Currently, of the 6250 satellites currently
in orbit, only 3900 are still functioning, meaning that the rest are inert objects without the capa-
bility of dodging any incoming debris that may cross their path, leading to more debris being put
into orbit.
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Figure 4: Nanosatellites current status [3]

In the case of nanosatellites, 1014 are still in orbit, among which, only 210 are not operational (Fig-
ure 4. This indicates a smaller proportion of abandonment of the satellite in orbit. This is due to
the fact that nanosatellites are placed in LEO, meaning that any satellite left there will eventually
decay into the atmosphere naturally due to drag, thus reducing the number of satellites in orbit
after their decommissioning phase. Nevertheless, as LEO becomes more and more congested, the
space debris problem will continue to endanger the current satellite infrastructure.

That being said, there are different initiatives regarding space debris such as NASA’s ODPO (Or-
bital Debris Program Office) [10], or ESA’s Clean Space initiative [11].

3.2 Input generator

In order to perform a simulation of a constellation, the input files for the orbits of each individual
satellite must be written one by one. This, while possible, would be long, arduous and prone to
human error. For that purpose, a matlab file which given the parameters of a Walker constellation,
outputs the necessary input files has been written (See appendix B).

For the constellation definition, 6 parameters are required:

o Inclination in degrees, i

¢ Number of satellites, t
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e Number of planes, p

¢ Relative spacing between satellites in adjacent planes, f
e Periapsis altitude in km, 7.,

o FEccentricity, e

The former four parameters are what defines the Walker pattern, usually expressed i:t/p/f, whereas
the latter two define the size and shape of the orbit. Keep in mind that f must be an integer ranging
from 0 to p-1.

After that, the number of satellites per plane is simply defined as s = ¢/p. Another important
parameter derived from the basic parameters is what is known as the pattern unit, which is simply
PU = 360/t (in degrees).

The pattern unit is used to calculate the in-plane spacing between satellites, the node spacing and
the phase difference between adjacent planes using equations 1, 2 and 3 respectively, all in degrees.

PU, = PU xp (1)
PUs = PU x5 (2)
PU; = PU % f (3)

Following that, it generates an orbit input file per satellite with the same inclination, periapsis
altitude and eccentricity, but with the RAAN and true anomaly assigned to each satellite.

As an example, a Walker constellation 60:12/3/2 will result in s = 4 and PU = 30, resulting in
PU, =90, PUs; =120 and PU¢ = 60. To see the resulting constellation check figures 5 and 6.
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Figure 6: Example constellation orrery view

Finally, it generates the simulation input file with all the orbits and spacecrafts defined.
Keep in mind that in order to change any parameter of both the orbits and the simulation that has

not been explicitly defined in the constellation generator, these values must be change directly into
the functions which generate the input files.
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3.3 Iridium constellation

An interesting exercise performed to demonstrate the capabilities of the orbital simulator 42 was
to simulate a real constellation which is currently operating. This constellation has been chosen to
be the Iridium constellation.

The Iridium constellation is a constellation of 66 cross-linked communication satellites in LEO,
which was replaced completely in 2019 with a new set of satellites [12].

Being a real constellation, the orbital data of all of its satellites is available in different web pages
in the form of TLE. For this particular case, the page used was https://celestrak.com/.

The contents of a TLE are detailed below [13]:

IRIDIUM 106
1 419170 17003A 21120.32238812 .00000093 00000—0 26065—4 0 9993
2 41917 86.3971 151.6191 0002052 85.2850 274.8580 14.34215972224627

Line 0 is the 24-char long name of the satellite, while lines 1 and 2 correspond the the NORAD
TLE format described in tables 1 and 2.

Line 1
Column Description
01 Line number of element data
03-07 Satellite number
08 Classification
10-11 International designator
12-14 International designator
15-17 International designator
19-20 Epoch year
21-32 Epoch
34-43 First time derivative of the mean motion
45-52 Second time derivative of the mean motion
54-61 BSTAR drag term
63 Ephemeris type
65-68 Element number
69 Checksum

Table 1: TLE format description (line 1)
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Line 2
Column Description
01 Line number of element data
03-07 Satellite number
09-16 Inclination (degrees)
18-25 Right ascencion of the ascending node (degrees)
27-33 Eccentricity
35-42 Argument of perigee (degrees)
44-51 Mean anomaly (degrees)
53-63 Mean motion (revolutions per day)
64-68 revolution number at epoch (revolutions)
69 Checksum

Table 2: TLE format description (line 2)

In order to create the simulation, a similar program to the one already described in appendix B
was made. However, as in this case the data was available at a web page in the form of a TLE, the
program had to be changed.

All matlab files used to generate the inputs of the iridium constellation are found in appendix G.
In this program, the TLE are downloaded from the webpage at the moment of execution as the
TLE for the Iridium constellation are updated constantly. Then, this file is split into an array of
characters to allow some processing. The TLE is then loaded into a class which obtains all the
info from it and stores it as variables to be used later. In this class, some functions to obtain
other parameters derived from the TLE’s information are included in case it is desired to create
the inputs directly as keplerian elements, although this is not necessary as 42 can accept TLE data
directly. That was the preferred strategy as 42 propagates the information found on the TLE to
the required epoch, which lessens the necessary pre-processing due to the fact that the TLE’s of all
the satellites in the Iridium constellation are from different epochs.
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Figure 7: Iridium simulation results

Figure 8: Iridium simulation ground track
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Figure 9: Iridium simulation orbits

In figures 7, 8 and 9, the results of the simulation can be seen represented in the 42 GUI. Keep
in mind that the spacecraft models correspond to those of a 1U cubesat and not to the Iridium
satellites.
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4 ATTITUDE CONTROL SUBROUTINE

In this section, a summary of the simulator’s built in attitude control as well as the process followed
to design a fully customised function for a cubesat will be explained.

To begin with, the default fsw routines will be explained and enumerated; then, the definition of
a new attitude control function tailored for a cubesat will be explained; finally, the testing of said
function will be commented with a discussion on its results.

4.1 Default routines

The simulator contains several attitude control functions already programmed. Those vary from
a very simple passive control to more complex functions [14]. However, none of these work to the
needs of this project, meaning that a new function must be designed.

To begin with, let’s analyse the already existing attitude control functions as they provide an insight
on the simulator’s inner working which is crucial to understand in order to design a new attitude
control subroutine.

The most basic control function included is the Passive control mode, as its name implies, the
satellite will not perform any correction with regards to its attitude, it will essentially be a rock.
Obviously, this mode is not interesting for the purpose of this work.

The next function included is the Prototype control mode, with this function, the satellite adjusts
its attitude using a PD controller. In this function, the satellite uses both ideal sensors and ideal
actuators, meaning that the satellite will point where it is commanded without asking how. With
regards to the PD controller, the program calculates the kp and kp constants for each axis based
on the satellite inertia tensor and two constants that can be manually adjusted. Although this
control mode would make attitude control possible, it would be interesting to add more realistic
models for both the actuators and the sensors.

The rest of the functions included, while more realistic, do not comply with the requirements of
this project for different reasons. All of them where tailored specifically to a particular example,
meaning that they require a specific spacecraft body structure as they include amongst other things
a controller to point the solar panels to the Sun. As a cubesat usually consists on a single body,
and in case the solar panels are deployable, they do not have hinges to orientate themselves, these
functions do not work. However, it is interesting to see that the sensors and actuators models can
be easily integrated in control functions.

The last function included, the Ad Hoc function, is nothing more than a template in which to build
other functions. Starting from this, the necessary attitude control functions will be built.

A summary of the default fsw function is included in table 3.
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Name Description

Passive No control

Prototype | Simple PD with ideal sensors and actuators
Spinner Provides spin stabilization

Provides momentum based nadir pointing stabilization

and points solar panels towards the Sun. Requires two bodies
Provides three axis stabilisation on command and points solar
ThreeAxis | panels towards the Sun. Requires two bodies. Must use both

wheels and magnetorquers

Made for a model of the ISS. Holds position, points solar

MomBias

Iss panels towards the Sun, points radiators away from the Sun
and points antenna towards TDRS nearest zenith

Thr Provides three axis stabilization on command using thusters

Ad Hoc Template for programming new functions

Table 3: Summary of fsw functions

4.2 Cubesat attitude control definition

As determined, it is necessary to program a customised attitude control function for the cubesats.
This has to be done in a certain way in order to integrate the function properly with the rest of the
simulator. In appendix C.1, the process needed to include a new function is detailed.

In order to define the function, first it is necessary to state the needs of the attitude control function:

1. The attitude control function shall be capable of determining the attitude of the satellite.

2. The attitude control function shall be capable of adjusting the attitude of the satellite to the
desired attitude in all three axes.

3. The attitude acquisition shall be performed using star trackers and gyroscopes.

4. The attitude actuation shall be performed by either reaction wheels or magnetorquers.

In the program, some basic sensor and actuator modelling is included, in the sensor models, the
truth is taken and some noise and bias is added to distort the real attitude vectors, in the actuators
models, the commanded torques are limited by the maximum torque that the actuator is capable
of producing at that moment.

These models are simple yet adequate but they will be modified as needed to improve the accu-
racy of the simulation with respect to the actuators and sensors designed by the rest of the people
working in the Plathon project.

4.3 Subroutine testing

Once the attitude control functions have been programmed, they must be tested to ensure that they
comply with the requirements. This tests have been performed with a basic simulation tailored to
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the specific needs of each function.

For the CubesatF'SW function (See appendix C.2), the test consisted on the following commands:
e Hold grn = [0,0,0, 1] until 5000 s

o Point Primary vector [0,1,0] at the Sun and Secondary vector [0,0,1] at the Earth after
exiting eclipse

e Hold grn = [1,0,0,0] from 10000 s

When defining the attitude of a satellite, it is important to define at least two vectors, the Primary
vector and the Secondary vector. If only on vector is defined (Primary vector), the spacecraft
is free to rotate around the axis defined by it. By fixing another vector (Secondary vector), the
spacecraft’s attitude is completely defined.
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Figure 10: Eclipse status during simulation
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Quaternion ECI

Figure 11: Quaternion body with respect to ECI during
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Figure 13: Angular velocity of body in ECI during simulation

In figures 10 11, 12 and 13, the eclipse status, quaternion, sun vector and angular velocity are
represented in time respectively.

Note how the sun vector in body turns into [0, 1, 0] as soon as the spacecraft exits the eclipse, thus
pointing at the Sun, the secondary vector pointing a the Earth is not directly observable but it was
defined just so that the attitude was totally determined as indicating the direction of the primary
vector alone does not properly define the orientation of the spacecraft.

With regards to the quaternion, during the parts of the simulation which directly indicated which
quaternion the spacecraft should have, it shows that the spacecraft has no issues achieving the de-
sired quaternion. Note that even though the simulation only stated that the spacecraft should hold
the quaternion [0,0,0, 1] until 5000 s, it held that attitude for longer because the next command
required the condition that the spacecraft were no longer in eclipse.

So as to the angular velocity, the graphs clearly show that all of the reaction wheels were saturated
during most of the simulation as the graphs are mostly square shaped. Keep in mind that having
a constant angular velocity during the time when the spacecraft is pointing to the Sun is a desired
condition and does not imply saturation.

Another important regard, is that in the angular velocity graph, during the last 5000 s of simulation,
some very rapid and short oscillations occur. This is a consequence of the star trackers being inside
the exclusion angle of the Sun/Earth/Moon, which sends erratic information regarding the attitude,
as this is modelled in the sensor functions of the simulator, causing the flight software function to
try to correct the attitude. However, these movements are very small and do not get reflected in
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the quaternion as such. The reason why this was not problematic is that for this simulation, for
testing purposes, the exclusion angles were set very small so as to not interfere with the results that
much.

One important modification that had to be done to 42 for this test was the addition of a new
command as there was no command already programmed to point the satellite at the Sun whenever
it exits eclipse (See appendix D). There were, however, a command which set a quaternion whenever
the spacecraft exited eclipse and one that pointed the spacecraft at the Sun at a given time. Hence,
the command added was a mix of these two.
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5 POST-PROCESSING

During this section, the postprocessing done to visualize the results of the simulation will be ex-
plained. Starting with the built-in GUI included in 42, followed by the description of a post-
processing function made in Matlab to visualise the data obtained through the outputs of the
simulator, continuing with the explanation of a Simulink model to recreate the positions and atti-
tudes of two satellites based on the data of the 42’s output files from a simulation, and ending by
stating the final solution found regarding visualization of the simulation.

5.1 42’s GUI

The first visualization method is the 42 simulator’s own GUI. This allows for real-time visualization
of the simulation with four different viewers. The first one is the cam (See figure 14), in the cam
viewer, the spacecraft can be seen as it orbits the celestial body chosen. It is possible to change
the point of view, the targeted spacecraft or celestial body and other functions such as showing the
reference axes.

e 42Cam

Sim T

uT!

Figure 14: 42 GUI cam viewer
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The next viewer is the map viewer (Figure 15). In the map viewer, all the spacecrafts’ ground tacks
and coverage is represented.

Figure 15: 42 GUI map viewer

The following viewer is the orrery viewer (Figure 16). In this window, the orbits of the celestial
bodies and spacecraft currently in the simulation are displayed.
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Figure 16: 42 GUI orrery viewer

Lastly, the unit sphere viewer (Figure 17) displays the position of different vector and celestial
bodies with respect to the spacecraft.
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Figure 17: 42 GUI unit sphere viewer

View Description
Represents the spacecraft as it orbits. It is possible to change
Cam the angle of the visualization as well as the distance. It is also

possible to represent axis systems and several vectors
Represents the ground tracks over the orbited body as well as

M
ap the coverage
Orrery Represents the orbits and the spacecrafts over a map of the solar system
. . Represents the different vectors and directions with regards to the
Unit-sphere viewer
spacecraft

Table 4: 42 GUI view description

In table 4, a summary of the different views of the 42’s GUI is presented.

While being able to see what happens in the simulation in real time is an advantage, activating
the GUI slow the simulation down to a crawl. This disadvantage heavily outweighs the benefits of
observing the simulation at real time, which means that some sort of postprocessing needed to be
done with the data obtained through the output files.
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5.2 Post-processing function

For a basic postprocessing, a matlab function has been programmed which reads the data from the
output files and plots the different values along the orbit. The plots that can be obtained include
those seen in section 4.3, and the position and velocity both in ECI and ECEF (Figures 18 and 19

respectively).
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The code can be found in appendix E.1. The inputs needed for the postprocessing are the direc-
tory path where the simulations are stored, the name of the simulation folder for the particular
simulation in study, the values of two boolean flags, the former to plot the results and the latter

(a) Position (b) Velocity

Figure 19: Position and velocity in ECEF
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to initiate a simulink model for a 3D simulation (See section 5.3), the number of the spacecrafts to

obtain the data and to simulate in simulink, and the initial time of the simulation in a date vector
format (Y/M/D/H/M/S).

Keep in mind that while the plots can be performed for as many spacecrafts as your computer
allows, the simulink model is only prepared for two spacecraft.

After defining the inputs, the program loads the output files from 42 into arrays. After that, if the
plots are desired, the variables are plotted using matlab’s plot functions. Finally, if the simulink
simulation is requested, it opens the simulink model after having calculated the quaternions in
ECEF, as 42 only outputs the quaternions in ECI and the simulations requires both.

To summarise, the program works in the following way:
1. Define directory path to the output files
. Define whether plots are desired
. Define whether 3D simulation is desired

. Define the spacecrafts desired

. Read the date from the output files

2
3
4
5. Define the simulation’s initial time
6
7. If 2, plot the results

8

. If 3, format variables and open Simulink model

The calculation of the quaternions in ECEF is done by multiplying the quaternion that changes
from ECI to ECEF and the quaternion in ECI. The quaternion in ECI is directly obtained from the
output files but has to be shifted as matlab and 42 use different notations for quaternions (matlab
places the scalar component in the first index of the array whereas 42 places it in the last). The
quaternion that changes from ECI to ECEF is obtained using a function from the aerospace toolkit
with the initial time of the simulation as an input.

5.3 3D simulation

In order to observe the results of the simulation, a 3D simulation using simulink has been made.
For that, the cubesat simulation included in the aerospace toolkit has been used as a template.
This is a simulink block which includes all necessary preparations for a 3D simulation which in-
cludes not only the satellites, but also the Earth and the Sun. Using a premade simulation as a
tmplate also comes with predefined 3D models for the satellites, which may not be 100% accurate
with respect to the satellite being desigend in the Plathon project but serves the purpose of vi-
sualizing the attitude changes. The way in which the template has been modified is by adding a
second satellite, this required the modification of both the simulink block and the 3D simulation file.
The details of the 3D animation block and the modified 3D simulation file can be seen in appendix F
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Figure 20: Simulink 3D simulation

In figure 20, the simulink simulation is displayed. The original 3D animation block had only 4 input
slots, but in order to allow a two satellite simulation, 2 extra slots have been added. The required
inputs are:

o Position of satellite 1 in ECEF

¢ Quaternion of satellite 1 in ECI

e Quaternion of satellite 1 in ECEF
e Time in JD

o Position of satellite 2 in ECEF

e Quaternion of satellite 2 in ECEF

Note that the quaternion in ECI has to be shifted due to differences in notation between 42 and
matlab/simulink.

The model outputs the JD to a matlab array in case it is needed for further postprocessing and
produces a 3D animation.
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Figure 21: Simulink 3D animation initial moment

Figure 22: Simulink 3D animation satellites communicating

In figures 21 and 22, two screenshots of a simulation of 2 satellites communicating are presented.
In this simulation, the two satellites were instructed to point at each other to simulate a data link
via optical communication.
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5.4 Final solution

Although initially using 42’s GUI was deemed not viable due to the way in which it slowed down the
simulation, the proposed Matlab/Simulink alternative presented other problems. First, both the
matlab functions and the simulink model were only capable of post-processing and it was necessary
for the visualization to be done in real-time. Second, the simulink 3D animation was not easily
expandable to multiple satellites due to how 3D animation works in simulink. This presented a
problem regarding the visualization of the simulations as the only real-time visualization slowed
down the simulation. However, the problem with 42’ GUI was found to be hardware-based. As the
simulators are inside virtual machines, these do not use the graphical capabilities of any graphics
card installed in the host computer but rather the integrated graphics of the CPU. To fix this,
the simulator had to be installed directly into the host computer so as to use its graphics card. If
that was the case, 42’s GUI no longer slowed down the simulation and then it could be used for
the real-time visualization of the simulation. The matlab/simulink functions are then only used as
post-processing tools.
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6 INTER PROCESS COMMUNICATION

In this section, the IPC capabilities of 42 will be explained as well as the proposed solution for the
Plathon project. First, the different IPC configurations possible with 42 will be explained; then,
the standalone AcApp will be presented as it plays an important role in the Plathon project; and
finally, the integration of 42 with Plathon will be presented as well as a demonstration simulation
made to showcase the capabilities of the simulator.

6.1 IPC configurations

As mentioned previously, one of the input files of the simulator controls the IPC configuration.
Using this file, it is possible to allow 42 to send and/or receive information through sockets. This
is vital to the Plathon project as the long-term objective is to produce a hardware-in-the-loop sim-
ulation, meaning that some of the tasks that are originally performed by 42 will be externalised to
other software and even to real hardware tests.

There are 7 possible IPC modes for 42, these are:
1. OFF: Self-explanatory, it disables the socket.
2. TX: Writes data through a socket.
RX: Reads data through a socket.
TXRX: Writes and reads data through a socket.
ACS: Writes and reads ACS data through a socket.
WRITEFILE: Writes data thorugh a socket into a file.

A

READFILE: Reads data through a socket from a file.

It is important to note that the data is sent in different moments of the simulation in ACS mode
compared to all others. In ACS mode, 42 sends sensor data through the socket during the ACS
step and waits for the actuator data to be received from an external app, whereas the other modes
write or read simulation related data before the computations.

For the ACS mode, an ID has to be specified as a unique integer which will be used as an argument
for the external app to now which spacecraft has to control.

For the WRITEFILE and READFILE modes, the file name has to be specified in the configuration
as well.

Another setup option is defining the socket as either a client, a server or a GMSEC client. The lat-

ter allows the simulator to work together with GMSEC, a NASA program which aims to integrate
different programs for mission control.
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Apart from that, the name and port of the socket must also be specified in the input file as well
as two flags, one which allows blocking of the socket and another which writes the traffic in the
terminal.

The last configuration needed is the prefix specification. The prefix corresponds to the structures
that 42 searches when reading or writing info from/to a socket. Specifying the prefix wanted makes
42 only send/receive the data required. For instance, specifying "SC[0]” as a prefix will make the
simulator only send/receive the information corresponding to spacecraft 0.

6.2 Standalone AcApp

When selecting the ACS mode for the IPC configuration, 42 delegates the ACS calculations to an
outside app. With 42, comes a small application called AcApp which is a means of testing the
Standalone ACS capabilities of the simulator. Inside this app, some of the 42’s ACS related code
is copied and executed in a loop.

In order to execute a simulation with a Standalone AcApp, the IPC input file must be configured in
ACS mode. Then, on executing the simulation, 42 will send the sensor data and read the actuator
data from an outside app. In this case, to use the Standalone AcApp, it is called from a console
with the ID set on the IPC input file as an argument. After that, the AcApp will do any necessary
ACS calculation.

The ACS function included in AcApp uses different sensors to calculate the attitude of the space-
craft as well as the sun vector, magnetic field vector, etc. After that, it uses a PD to compute the
necessary torque required and sets this as the input for the reaction wheels. Last, it also compen-
sates the momentum gained by the reaction wheels using magnetorquers and orientates the solar
panels towards the sun.

In this case, as the models used are 1U cubesats, solar panels are not movable. However this is not
an issue for the program.

The main problem of the AcApp is that it does not read commands from 42. That means that the
app holds the attitude but cannot make the spacecraft rotate as no command arrives through the
socket. Initially, the functions that control the socket traffic were modified to include this data in
the communication message, however, as the idea is to control the attitude in real time, instead of
sending the data through the socket, it was decided to include a function which reads that data
from another different socket to control the cubesat’s attitude from another external app.

6.3 Integration with Plathon

As the Plathon project aims to produce a hardware-in-the-loop simulation, the function of the 42
simulator is to provide all the data relative to the orbits and environment while delegating all other
functions such as ACS, mission design, sensors and actuators to other software or hardware.
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With that in mind, the proposed system architecture with regards to 42 is the following:
e A main 42 simulator acting as a conductor
e A 42 simulator in an external host computer acting as a GUI

e An external Standalone AcApp controlling ACS and communicating with the rest of the
Plathon system

The basic scheme of this system is represented in figure 23. Note how the ACS communication is
bidirectional while the socket connecting both 42’s only flows in one direction.

Fy

ACS ACS Standalone AcApp

Main 42 Simulation

Tx

A 4

Rx  External 42 GUI

Figure 23: 42 system architecture

When 42 is working in Tx mode, it sends information about the different worlds, such as their
position and velocity with respect to the Sun. It also sends information about the reference orbits.
Furthermore, it sends information about the spacecrafts present in the simulation such as their po-
sition, velocity, momentum, etc. On top of that, for every spacecraft, it sends information regarding
their attitude control functions such as the commanded angles, the sensor readings and so on.

When it is working in ACS mode, it only sends information regarding the attitude control of the
specified spacecraft, like the sensor readings, and receives the information regarding the actuators

of the specified spacecraft such as the commanded angle and actuator torques and forces.

Using this configuration, 42 will simulate with the ACS as an external app through one socket,
while sending all the data necessary for another 42 which will be in an external machine with the
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42 installed in host whose function will be just to represent the results of the simulation in real-time.

When thinking about the future hardware in the loop simulation, it is important to remark that
it is possible to introduce readings from a real sensor or other hardware directly into the main 42
simulation by running it in TxRx mode, as any data received through the socket will overwrite
the simulated data before the main simulation sends the sensor readings in ACS mode. It is also
possible to modify the AcApp’s to read that information directly from the hardware, in that way,
no intervention of the main simulation will occur in the cases were it is not needed.

6.4 IPC simulation

As mentioned in the previous section, the integration of the simulator with the Plathon project was
to be done according to figure 23. For that purpose, the proposed simulation was designed as a
test for the system’s architecture. On top of what has been previously discussed, the simulation’s
attitude commands were programmed directly into the AcApp as a set of instructions. The plan
for Plathon is to send the commands in real time through another application which would connect
directly to the AcApp instead of being an input of the main simulation. However, as this applica-
tion was still not developed and is out of the scope of this project, a simple, temporary solution
was found to be sufficient. This solution was to simply add a function on the AcApp which would
periodically check for the simulation time, which is calculated based on the difference between the
current time and the initial time, as AcApp does not have direct access to the simulation time, just
like many other things, and whenever the time was greater than the value assigned, it would change
the command. The modified AcApp can be seen in appendix H.

Besides that, the AcApp program was changed to meet the characteristics of the spacecrafts present
on the simulation as well as the IPC configuration corresponding to the virtual machines used.

Another change that was made to the original plan was the addition of a second spacecraft to the
simulation which was controlled by a second AcApp. This second spacecraft would receive different
commands and would be in very close proximity to the first one so as to be able to see it on the
GUI The system architecture for this simulation can be seen in figure 24.
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ACS Standalone AcApp 1
ACS Standalone AcApp 2
Rx External 42 GUI

Figure 24: TPC simulation architecture

Due to having 2 different spacecraft’s with different commands, as the commands and socket def-
inition are directly programmed into the AcApp, two different programs had to be compiled inde-
pendently, thus the projects makefile also had to be modified to include this second AcApp in its

set of instructions. This file can be seen in appendix I.

Although this simulation is simple in terms of manoeuvres and is not a full-on constellation, it paves
the way to more complex simulations in the future which may be performed following the defined
architecture. The simulation serves as a demonstration of the IPC capabilities of the simulator
and as a proof of concept for the Plathon project architecture. The most important input files for
the main simulation are found in appendix J, some input files have been omitted as they are not
important or handled externally (such as the graphics or commands).
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Figure 25: IPC simulation cam view

Figure 26: IPC simulation map view

In figures 25 and 26, a view of both the cam and the map respectively can be seen. Both satellites
share the same reference orbit but are in close proximity as they have been defined as a forma-
tion. This has been done for demonstration purposes as having the satellites separated at distances
similar to those found in constellation would have made the visualization of both of them impossible.
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It is also important to highlight that for this simulation, most planets and other celestial bodies
have been deactivated as by having two spacecrafts sending data through the same socket plus
having all the celestial bodies saturated the socket causing overflow issues. This could have been
avoided by sending the data through different sockets but the ports on the host machine were
closed, making that impossible. Nevertheless, this should be an easy fix for the future as changing
the socket configuration is relatively simple.

(a) Initial attitude (b) Final attitude

Figure 27: TPC simulation spacecraft attitude change

In figure 27, both satellites are displayed with their body axes to see the change in attitude. As
seen on the left, both satellites begin the simulation with the same attitude; at the end, as seen on
the right, they have performed a 90 degree rotation in opposite directions. These attitude changes
have been controlled externally to the main simulation through both of the AcApp independently.

Keep in mind that the visualization is also being provided externally in another machine which was

running another 42 simulating in Rx mode, thus not really simulating but representing the data
coming in through the socket. The data flow between the application can be seen in figure 28.
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Figure 28: TPC simulation data traffic between applications

The two consoles on the top correspond to the 42’s while the ones on the bottom correspond to
the AcApp’s. The console on the top right corner is the main simulation, which sends all the infor-
mation that is being simulated through the socket. The console on the top left corner is the GUI,
which receives the information and runs the graphical interface. The one on the bottom right is the
first AcApp which controls the first spacecraft, hence why it only sends data regarding spacecraft 0.
Finally, the console on the bottom left is analogous to the previous one but for the second spacecraft.

With this simulation, the basic Plathon architecture was established for its use in future projects

with more realistic simulations and for its implementation with other software such as CFS for the
completion of the Plathon project as a whole.
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7 SCHEDULE, BUDGET AND ENVIRONMENTAL IM-
PACT

In this section, the project’s schedule, budget and environmental impact will be discussed. For the
schedule, the different activities done during the realization of the project are explained and the
number of hours assigned are represented together with a Gantt chart; in the case of the budget, the
costs of this project are detailed; and last, the environmental impact of the project is also explained.

7.1 Schedule

As stated in the course guide for the Master’s thesis, this project will have a schedule of 300 hours.
In table 5, the hours are split into different activities which have been performed during the term.
The tasks enumerated have the following description:

e Documentation: Gathering of information about the simulator, programming or any other
required information needed to fulfill the objective of the project

e Program comprehension: Time spent studying how the simulator works and what has to be
changed in order to obtain the desired performance/behaviour

e Program tests: simple simulations done to learn how to implement simulations and what the
different parameters are used for

o Postprocessing subroutine: Implementation of a Matlab code to obtain different graphs/in-
formation about the simulation’s result

e« FSW subroutine: programming of a new FSW function customised to a cubesat and testing
of said function

o Satellite visibility simulation: design of a simulation in which two satellites point at each
other together with the necessary modifications to 42 and the creation of a Simulink model
to visualise the results

o Constellation simulation: creation of a Matlab code to generate the input files for a constel-
lation both from scratch and from TLE data and simulation of the Iridium constellation in
42

o Integration with Plathon: Programming of the necessary modifications of the both the simu-
lator and the AcApp for its use in the Plathon project and demonstration simulation

e Report: writing of the report

o Presentation: preparation of the presentation of the project
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Activity Duration (h)
Documentation 15
Program comprehension 30
Program tests 20
Postprocessing subroutine 20
FSW subroutine 40
Satellite visibility simulation 40
Constellation simulation 20
Integration with Plathon 60
Report 35
Presentation 20
TOTAL 300

Table 5: Hours spent per activity

To have a better idea of the amount of time spent with regards to the total, a pie chart is presented
in figure 29.

Hours per activity

= Documentation

m Program comprehension

= Program tests
Postprocessing subroutine

- = F5W subroutine

m Satellite visibility simulation

= Constellation simulation

m Integration with Plathon

= Report

m presentation

¢

Figure 29: Pie chart: hours spent per activity

These activities have been distributed during the term in the manner shown in figure 30. In the
chart, some of the activities are shown to have been done in parallel as in the beginning, the doc-
umentation, program comprehension, tests and other activities could be performed at once. After
that initial phase, the rest of the activities are done sequentially with the exception of the report
which has been done as the project advanced. The presentation is the last task to be performed
after the report’s deadline.
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7.2 Budget

For this project, the only variables for computing the cost were the electricity used and the salary.
With regards to the salary, the cost per hour has been calculated using the average salary for a
scientific professional from [15], which is 25.42 €/h for a male and 21.54 €/h for a female. In this
case, the value taken will be for a male but it is important to note as a society that a 15% difference
between the average salary of a male and a female for the same occupation is unacceptable and it
should be addressed with urgency.

Besides that, the cost of electricity corresponds to the use of different computers. The computer
used has a power supply of 750W but most of the computations were performed by a virtual ma-
chine in a server owned by Plathon. In some cases, up to 2 virtual machines were used at once
(IPC simulation). So, accounting for these variables, for the activities which only required the
host computer, as they are not computationally demanding, the power consumption considered is
about 50W. Then for the main virtual machine used, an extra 500W will be considered as it was
performing intensive computations. The second virtual machine was used as a GUI display, which
only uses graphical power, thus an extra 200W will be taken into account.

As for the electricity cost, using [16], a rough average cost has been estimated to be 0.12 €/kWh.

The host computer was on for the entirety of the project but both virtual machines were only
on for specific activities. In the case of the main virtual machine, it was on during the program
tests, FSW subroutine, satellite visibility simulation, constellation simulation and integration with
Plathon; whereas the second virtual machine was only on during the integration with Plathon. The
total cost for the project can be seen in table 6.

[ Concept ]
Salary - - 25.42 300 7626
Host PC 50 0.12 0.006 300 1.8
Main virtual machine 500 0.12 0.06 180 10.8
Second virtual machine 200 0.12 0.024 60 1.44

r -~~~ moraL | 764004 |
Table 6: Project’s budget

7.3 Environmental impact

The environmental impact of a project based on programming is relatively low. The carbon emis-
sions for the project were caused by the electricity used. According to [17], the average CO2
emissions per MWh were about 0.11 t/MWh. In table 7, the environmental impact of this project
can be consulted.
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Host PC 0.11 15 1.65
Main virtual machine 0.11 90 9.9
Second virtual machine 0.11 12 1.32

Table 7: Project’s environmental impact
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8 CONCLUSIONS

In this section, the project’s conclusions as well as some recommendations for future studies will be
presented. In the conclusions, the different results obtained will be commented while in the recom-
mendation and future studies section, some idea for the continuation of the project with regards to
Plathon will be given.

8.1 Conclusions

The orbital simulator 42 is a powerful tool for orbit propagation and spacecraft dynamics simu-
lation. However, being an open source program means it is designed as a basis for more complex
analyses. In the case of the Plathon project, the idea was to make a hardware in the loop simulation
using 42 just to obtain orbital data such as GPS position.

Due to the demands of the project as a whole, the idea behind this particular project was to adapt
this simulator to the needs of the bigger Plathon project. For that, a series of modifications have
been made to the base code and an architecture consisting on two different simulators, one for the
base simulation and another for the GUI visualization were prepared, as well as two standalone
AcApp’s which would be controlling the attitude of two separate spacecrafts.

Besides that, the capabilities of the simulator were tested for constellations of satellites, in partic-
ular; the Iridium simulation, as the goal of the Plathon project is to test constellations of nano-
satellites.

Also, some postprocessing tools have been developed to further asses the results of the simulations
performed as well as some Matlab codes to automate the generation of some inputs for the simulator
as writing them by hand may become too much of a burden as the number of satellites present in
the simulation increases.

Overall the results of the project have been satisfactory as the implementation of the simulator into
the architecture of the Plathon project has been successful. But there is still much to do in order
to fully achieve the requirements of the Plathon project as whole. These extra step needed for the
fulfillment of the Plathon project’s requirements will be discussed in section 8.2.

However, although the Plathon project still needs some work, this project has paved the way for
future studies using the simulator 42 as it establishes the basis for future work, having prepared
the simulator for its standalone use and by having determined the way the simulator operates.

To conclude, this project has opened the door to new possibilities regarding 42 and its use in the
Plathon project by preparing the simulator for its integration with different software through com-
munication via socket and provides some other tools such as preprocessing and postprocessing. It
also complements the lacking documentation of the 42 simulator with some useful insight into the
program’s inner workings.

As a summary of everything accomplished with this project:
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¢ General knowledge about 42: The program has been studied extensively via reading the
code and performing tests. It has been concluded that it has a lot of potential but still needs
some development behind as some parts such as the sensor and actuator modelling have some
shortcomings that should be addressed.

¢ Constellation simulations: After studying the implications of constellations of nanosatel-
lites and their benefits and problems, it has been concluded that despite issues with space
debris, the benefits they provide outweigh their downsides. Then, a Matlab program to gener-
ate Walker constellations has been implemented and the resulting input files, tested. Following
that, another Matlab program which obtains TLE data from a webpage and obtains the or-
bital parameters to generate the inputs was made. However, due to the fact that TLE data
was from different epochs, the TLE were finally run through 42 directly as it propagated the
orbits to the specified epoch. This method was used to simulate the Iridium constellation to
showcase the capabilities of 42 to simulate large constellations.

o Attitude control: The default 42 fsw functions were studied and deemed inappropriate
for the spacecraft models Plathon is aiming for. Thus, an attitude control function was
implemented to be used for a cubesat. Although the idea behind Plathon is to make a
hardware in the loop simulation with real cubesats, only a limited number of cubesats will be
constructed, which leaves the remaining cubesats in the constellation to be controlled by the
main 42 simulation. While programming this fsw function, some extra attitude commands
were programmed into 42, showing that it is possible to alter the behaviour of the simulation
as necessary.

e Postprocessing: First, the different functionalities of 42’s GUI were checked. As in the
beginning, the simulations using the GUI were several times slower than real time, some post-
processing tools were developed. However, this issue was found to be hardware limited due to
the use of virtual machines without graphical power. Hence, in the end the preferred method
for visualisation of the simulation was using the GUI. Nevertheless, the postprocessing tools
developed may still be useful for data analysis. The first tool developed was a Matlab script
which takes the output files from 42 and graphs all the data requested. After that, using
Simulink, a 3D visualization was created which allowed to see the movement of the satellites
(which were scaled up so that they can be seen) around the Earth with which a simulation
about two satellites pointing at each other was made. Furthermore, in order to obtain the
data from more than one spacecraft, the 42’s report function had to be modified too as it orig-
inally reported only the data from the first spacecraft. This was found to be due to memory
use as getting the data from multiple spacecrafts at once may require a lot of RAM, especially
as the number of spacecrafts increases such as with constellations.

o IPC and Plathon integration: The different IPC configurations for 42 were studied in
order to see how to properly configure sockets to allow 42 to exchange information with
several external simulations or standalone AcApp’s. When the architecture for the Plathon
simulation was defined, the need to modify the basic AcApp arose. This application was
modified in order to adapt it to the desired spacecraft and socket configuration as well as
adding a way to command attitude changes to the spacecraft being controlled. In the mean
time, the way to command attitude changes is temporary as it will be controlled by another
program connecting directly to the AcApp, thus the solution is rather simple, but is working
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as intended nonetheless. Besides that, as 2 AcApp’s will be running at the same time with
different spacecrafts which will be getting different commands, the compiler Makefile had to
be modified too to allow the compilation of a second, different AcApp. Finally, a demonstra-
tion simulation was prepared which had a 42 simulating everything in Tx mode and sending
the data to another 42 in Rx mode to perform the visualization in another machine and to 2
external AcApp’s controlling the attitude of two separate spacecraft.

8.2 Recommendations and future studies

As mentioned, this project is part of the bigger Plathon project. Said project still needs to be de-
veloped as the efforts done with several bachelor’s and master’s thesis during this term only mark
the beginning of the journey.

During the realization of this project, some aspects have been identified which will benefit from
further study. Moreover, with the results of this project, some paths have been opened for devel-
opment regarding Plathon.

With regards to the simulator itself, the models for both the sensors and actuators are really sim-
ple and would benefit from a more detailed model, especially those which will be needed for the
Plathon project such as the GPS receivers (other sensors or actuators may be included as hardware).

Besides that, as simulating a whole constellation of satellites using standalone applications would
not be viable, some satellites will have to be controlled from the main 42 simulation, for that, a
study about a more complex attitude control function which not only controls the attitude of the
spacecraft on demand but also point the solar arrays to the Sun when needed, or point the antennas
to the ground stations or other satellites may be interesting to develop.

With regards to the integration with Plathon, the next logical step is to integrate the standalone
AcApp’s with other software such as CFS in order to control the mission planning in real time and
allow the integration of the hardware in the loop simulation with the rest of the software.

Another possible improvement is to create a better model of the spacecraft akin to the real cubesat
being developed so as to make the any simulation of the spacecraft’s dynamics more realistic.

It is also heavily recommended to study the communications between machines as it plays a huge

role in the simulations as every aspect of it will be controlled by a different device, especially when
the Plathon project has been fully realized.
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Appendix A INPUT FILE EXAMPLES

In this section, some example input files are presented to show the format of said files.

A.1 Inp_Sim

CLLLLLLLLLLLLL<<< 42 The Mostly Harmless Simulator >>>555555555555>>

$ok ok ok ok okokoskok kR ok ok ko kokokkok ok kkkx % Simulation Control
sk sk ok sk ok ok sk ok sk ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok

FAST ! Time Mode (FAST, REAL, or EXTERNAL)
3600.0 0.1 ! Sim Duration, Step Size [sec]

10.0 ! File Output Interval [sec]

TRUE ! Graphics Front End?

Inp_Cmd. txt ! Command Script File Name

sk kkk Rk kkk kR kkkkkkkkxxkx - Reference Orbits
ok ok ok oK ok ok ok ok ok Kk ok Kk ok ok ok Kok ok Kk ok K
1 ! Number of Reference Orbits
TRUE Orb_test.txt ' Input file name for Orb 0
$ok ok kKR Rk kKRR Rk kR Rk kR kkokkk k% Spacecraft
K ok oK K K K K ok ok K R kK K KK K KK KK KKK Rk K
1 ! Number of Spacecraft
TRUE 0 SC_test.txt ! Existence, RefOrb, Input file for SC 0
ok kK Rk xRk R Rk kR R kokk kR k Rk k kR k% nvironment
K ok ok Kk ok kK K R KR R KRR KK KR KR K Rk K

02 04 2021 ! Date (UTC) (Month, Day, Year)

12 49 00.00 !' Time (UTC) (Hr,Min, Sec)

37.0 ! Leap Seconds (sec)

NOMINAL ! F10.7, Ap (USER, NOMINAL or
TWOSIGMA)

230.0 ! If USERDEFINED, enter desired F10.7

value

100.0 I If USER.DEFINED, enter desired AP
value

IGRF ! Magfield (NONE,DIPOLE,IGRF)

8 8 ! IGRF Degree and Order (<=10)

2 0 ! Earth Gravity Model N and M (<=18)

2 0 ' Mars Gravity Model N and M (<=18)

2 0 ! Luna Gravity Model N and M (<=18)

FALSE FALSE ! Aerodynamic Forces & Torques (
Shadows)

FALSE ! Gravity Gradient Torques

FALSE  FALSE ! Solar Pressure Forces & Torques (
Shadows)

FALSE ! Gravity Perturbation Forces

FALSE ! Passive Joint Torques

FALSE ! Thruster Plume Forces & Torques
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FALSE ! RWA Imbalance Forces and Torques

FALSE ! Contact Forces and Torques

FALSE !' CFD Slosh Forces and Torques

FALSE ! Output Environmental Torques to
Files

skxkkkokokkkkkxkkkkkkkx Celestial Bodies of Interest
sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk ok ok

MEAN ! Ephem Option (MEAN or DE430)

TRUE ! Mercury

TRUE !  Venus

TRUE ! Earth and Luna

TRUE ! Mars and its moons

TRUE ! Jupiter and its moons

TRUE I Saturn and its moons

TRUE ! Uranus and its moons

TRUE ! Neptune and its moons

TRUE ! Pluto and its moons

FALSE ! Asteroids and Comets

sookokokkokokkokkokkokkk Lagrange Point Systems of Interest sokskocssokorsokorsokokokkoskox

FALSE ! Earth—Moon

FALSE ! Sun—Earth

FALSE ! Sun—Jupiter

sk kKKK Rk KRk kR kR Rk ok Rk ok ok ok GTOUIIA STatTOTIS ko skt s okt sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

5 ! Number of Ground
Stations

TRUE EARTH —-77.0 37.0 ”GSFC” I Exists, World, Lng, Lat,
Label

TRUE EARTH —155.6 19.0 7”South Point” ! Exists, World, Lng, Lat,
Label

TRUE EARTH 115.4 —29.0 ”Dongara” ! Exists, World, Lng, Lat,
Label

TRUE EARTH —71.0 —33.0 ”Santiago” ! Exists, World, Lng, Lat,
Label

TRUE LUNA 45.0 45.0 "Moon Base Alpha” | Exists, World, Lng, Lat,
Label
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A.2 Inp_Cmd

L 42 Command Scri pt Fi le  >>>S555555555555>>
0.0 SC[0] qrl = [0.0 0.0 0.0 1.0]
EOF

L

T T I i iririrT

# All lines after EOF are ignored
# Comment lines begin with #, %, or //
# Blank lines are permitted

# Here are recognized command formats.

%lf means that a floating—point number is expected

%ld means that an integer is expected

%s means that a string is expected

%c means that a character is expected

Look in functions SimCmdInterpreter, GuiCmdInterpreter,
and FswCmdInterpreter for strings and characters that
are meaningful in a particular context

The first %lf is always the SimTime of command execution.

FFH I FHFE

# Sim—related commands
%1f DTSIM = %1f
%1f SC[%]1d ].RotDOF %s
%1f SC[%1d ].G[%1d ]. RotLocked[%1d] %s
%1f SC[%1d ].G[%1d ]. TrnLocked[%1d ] %s
%1f Impart Impulsive Delta—V of [%1f %lf %lf] m/s in Frame %c to Orb[%
1d ]
%c can be N or L
%1f SC[%1d ].LoopGain = %lf
%1f SC[%1d]. LoopDelay = %lf
%1f SC[%1d ].GainAndDelayActive = %s

# GUl-related commands

%1f POV.Host.SC %ld

%1f CaptureCam %s

%1f CamSnap %s

%1f MapSnap %s

%1f Banner = ”"Banner in Quotes”

%1lf GL Output Step = %lf

%1f POV CmdRange = %lf

%1f POV CmdSeq = %ld

%1f POV CmdAngle = [%1f %1f %lf] deg
%1f POV CmdPermute = [%1f %1f %lf; %lf %lf %lf; %lf %lf %l1f]
%1f POV TimeToGo = %lf

%1f POV Frame = %c
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%lf
%1t
%1t
%1t
%lf
%lf
%1t

ShowHUD %s
ShowWatermark %s
ShowShadows %s
ShowProxOps %s
ShowFOV %s

FOV[%1d]. NearExists =
FOV[%1d ]. FarExists =

%s
%s

# FSW—related commands
%1t SC[%ld]| FswTag = %s

# %s is PASSIVEFSW, PROTOTYPEFSW,
%lf SC[%1d] qrn = [%1f %1f %If %lf]
%lf SC[%ld] qrl = [%1f %1f %lf %lf]

etc.

%1f SC[%1d] Cmd Angles = [%1f %lf %lf] deg, Seq = %ld wrt %c Frame

# %c is either N or L

%lf SC[%1d].G[%1d] Cmd Angles = [%1f %lf %l1f] deg

# In the following, the (first) %s is either ”Primary” or ”Secondary”

%1f Point SC[%1d].B[%1ld] %s Vector [%1f %lf %lf]
%1t deg

%1f Point SC[%1d].B[%ld] %s Vector [%1f %lf %l1f]
If deg, Lat = %1f deg, Alt = %lf km

%1f Point SC[%1d].B[%1ld] %s Vector [%1f %lf %lf]

%1f Point SC[%1d].B[%ld] %s Vector [%1f %lf %lf]

%1f Point SC[%1d].B[%ld] %s Vector [%1f %lf %lf]
# Last %s is SUN, MOON, any planet, VELOCITY,

%1f Point SC[%1d ].B[%1d] %s Vector [%lf %lf %l1f]

%1f Point SC[%1d].B[%ld] %s Vector [%1f %lf %lf]
point [%1f %1f %I1f]

%1f Align SC[%1d].B[%ld] %s Vector [%1f %l1f %l1f]
[%1f %1f %1f]
# %c—frame can be H, N, or L

%1f Align SC[%1d].B[%ld] %s Vector [%1f %lf %lf]
vector [%1f %lf %lf]

%1f SC[%1d ]. Thr[%1d] %s

at RA = %lf deg, Dec =
at World[%1d] Lng = %

at World[%]1d ]

at GroundStation[%]1d |
at %s

MAGFIELD

at SC[%l1d ]

at SC[%1d].B[%1d ]

with %c—frame Vector

with SC[%1d].B[%1d ]

%s is OFF or ON
Event Eclipse Entry SC[%ld] qrl = [%1f %1f %lf %lf]
Event Eclipse Exit SC[%ld] qrl = [%1f %1f %1f %lf]

Event Eclipse Entry SC[%ld] Cmd Angles =
wrt %c Frame
# %c is either N or L

Event Eclipse Exit SC[%1d] Cmd Angles =
wrt %c Frame
# %c is either N or L

(%1f %1f %1f] deg, Seq = %ld

[%1f %1f %1f] deg, Seq = %ld

%1f Set SC[%ld] RampCoastGlide we = %1f Hz, amax = %lf , vmax = %lf
%1f Spin SC[%1ld] about Primary Vector at %lf deg/sec
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A.3 Inp_Graphics

CLLLLLLLLL<<<<< 42 Graphics Configuration File >>355555555555555>>

1.0 ' GL Output Interval [sec]

Skymap09. txt I Star Catalog File Name

TRUE ! Map Window Exists

TRUE ! Orrery Window Exists

TRUE ! Unit Sphere Window Exists

FALSE ! Pause at Startup

TRACK HOST ' POV Mode (TRACKHOST,
TRACK TARGET, FIXED_IN_HOST)

SC ! Host Type (WORLD, REFORB, FRM, SC
, BODY)

0 0 L ' Initial Host SC, Body, POV Frame

SC I Target Type (WORLD, REFORB, FRM,
SC, BODY)

0 0 L ! Initial Target SC, Body, POV
Frame

POS_Z ! Boresight Axis

NEG.Y I Up Axis

40.0 ! Initial POV Range from Target [m]

30.0 I POV Angle (Vertical) [deg]

0.0 0.0 0.0 ! POV Position in Host [m]

FRONT ! Initial POV View (FRONT,

FRONTRIGHT, etc)
ok ok kR R Rk kR kR ok kR ok ok AV sk sk ok stk ok ok o6k ok ok ok 368 ok o ok Ok ok ook ok kR R %
742 Cam” I Cam Title [delimited by ”]
800 800 ! Width, Height [pixels]
5.0E-5 ! Mouse Scale Factor
|

4.0 Display ’s Gamma Exponent
(1.8—4.0)
ok kR ok ok ok kR kR ok ok ok ok kR ok ok CAML STIOW IVIEIIUL 5k s sk sk s sk sk ok sk ok ok ok ok ok ok ok ok o ok o ok ook K0k %
FALSE "N Axes” ! Show N Axes
FALSE "L Axes” I Show L Axes
FALSE "F Axes” I Show F Axes
FALSE "B Axes” I Show B Axes
FALSE "N Grid” ! Show N Grid
FALSE "L Grid” ! Show L Grid
FALSE "F Grid” I Show F Grid
FALSE "B Grid” I Show B Grid
FALSE "Gal Grid” I Show B Grid
FALSE 7"FOVs” I Show Fields of View
FALSE ”"Prox Ops” ! Show Prox Ops
FALSE "TDRS” I Show TDRS Satellites
|

TRUE ”Shadows” Show Shadows
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FALSE 7" Astro Labels” ! Show Astro Labels
FALSE "Truth Vectors” ! Show Truth Vectors
FALSE "FSW Vectors” I Show FSW Vectors
TRUE ”Milky Way” ! Show Milky Way
FALSE ”"Fermi Sky” ! Show Fermi Sky

ok ok ok ok ok ok koK kK Rk ok ok ok ok ok ok ok ok Rk R kokokokokokok IVIAP sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kR ok ok R ok ok ok K ok ok ok

742 Map” ! Map Title [delimited by 7]

512 256 ! Width, Height [pixels]

Kok okok ok okok kbR kbR koxokokkoxkokok ok ok VIAP Show IMIEIIU ok s % sk ok s % sk ok sk ok sk ok ok ok ok ok ok ok ok ok ok % ok ok ok %
TRUE ”Clock” ! Show Clock

TRUE 7Tlm Clock” ! Show Clock

FALSE " Credits” I Show Credits

TRUE 7”Night” ! Show Night

ok okokokokkokokskokkokkokkokok k. Unit Sphere Show IMenul s sk skok sk sk skok skok sk sk ok sk sk sk sk ok ok ok ok ok
TRUE I Show Major Constellations

TRUE ! Show Zodiac Constellations
FALSE ! Show Minor Constellations

10
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A.4 Orb_*

CLLLLLLLLLLLLL<< 42 Orbit Description File SSSSSSSSSSSSSSSS>

Test orbit ! Description

CENTRAL ! Orbit Type (ZERO, FLIGHT, CENTRAL,
THREE BODY)

R R R - Use these lines if ZERO R S R R R

MINORBODY 2 ! World

FALSE ! Use Polyhedron Gravity

c:i:i::i:::::::: Use these lines if FLIGHT S S R R S

0 ! Region Number

FALSE ! Use Polyhedron Gravity

sirriiriiiii:: Use these lines if Body—Centered Orbit

EARTH I Orbit Center

FALSE ' Secular Orbit Drift Due to J2

KEP ! Use Keplerian elements (KEP) or (RV)
or FILE

PA ! Use Peri/Apoapsis (PA) or min alt/ecc
(AE)

35786.0 35786.0 I Periapsis & Apoapsis Altitude,
km

200.0 2.0 ! Min Altitude (km), Eccentricity

0.0 ! Inclination (deg)

0.0 ! Right Ascension of Ascending Node (deg)

0.0 ! Argument of Periapsis (deg)

0.0 ! True Anomaly (deg)

0.0 0.0 0.0 ! RV Initial Position (km)

0.0 0.0 0.0 ! RV Initial Velocity (km/sec)

TRV "ORB_.ID” !' TLE or TRV format, Label to find in
file

"TRV. txt” ! File name

tirrrriiiii:: Use these lines if Three—Body Orbit oo

SUNEARTH ! Lagrange system

LAGDOF_MODES ! Propagate using LAGDOFMODES or
LAGDOF COWELL or LAGDOF _SPLINE

MODES Initialize with MODES or XYZ or FILE

L2 Libration point (L1, L2, L3, L4, L5)

800000.0 XY Semi—major axis, km

!
!
!
45.0 I' Initial XY Phase, deg
!
!

W Sense (CW, OCW), viewed from +Z

0.0 Second XY Mode Semi—major Axis, km (L4
, L5 only)

0.0 ! Second XY Mode Initial Phase, deg (L4,
L5 only)

W ! Sense (CW, OCW), viewed from +Z (L4,

11
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L5 only)
400000.0
60.0

1.05 0.5 0.0
0.0 0.0 0.0
dimensional)
TRV "ORB.ID”
find in file
"TRV. txt”

7 Semi—axis , km

Initial Z Phase, deg

Initial X, Y, Z (Non—dimensional)
Initial Xdot, Ydot, Zdot (Non—

TLE, TRV or SPLINE format, Label to

File name

sokokkkkokkkokokkkokkk ko Pormation Frame Parameters sk sk s osksk ok s okok ok sk ok ko %ok ok

N

0.0 0.0 0.0 123

N
0.0 0.0 0.0

Formation Frame Fixed in [NL]
Euler Angles (deg) and Sequence
Formation Origin expressed in [NL]
Formation Origin wrt Ref Orbit (m)

12
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A5 SC_*

CLLLLLLLLLLLLL<<< 42 Spacecraft Description File SODSSODSDEESDEESEEED>

ENCKE
M

Orbit Prop FIXED, EULER_HILL, or ENCKE
Pos of CM or ORIGIN, wrt F

0.00000 0.00000 0.00000 ! Pos wrt F

0.00000 0.00000 0.00000 ! Vel wrt F
$oxokokkxokokkxokokkxkokkxkokkxkkokkxkx  Initial Attitude

sk sk ok sk sk ok sk K ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk ok ok K

1-U Cubesat ! Description

"Cube 17 ! Label

GenScSpriteAlpha .ppm ! Sprite File Name

PASSIVE_ FSW ! Flight Software Identifier

0.2 ! FSW Sample Time, sec

Sk sk sk 3k 3k 3k sk skosk sk sk sk sk sk sk sk ke sk sk sk sk sk ok kok Orbit Paranﬁ%ers Sk 3k sk 3k 3k 3k 3k kosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok okokok
|
|

NAN ! Ang Vel wrt [NL], Att [QA] wrt [NLF]
0.0 0.0 0.0 ! Ang Vel (deg/sec)
0.0 0.0 0.0 1.0 ! Quaternion

!

0.0 0.0 0.0 123 Angles (deg) & Euler Sequence
ok ook ok ok kR sk ok ok kR ook skokskokkkokkokk ok Dynamics Flags
3k 3k sk sk skosk sk sk skoskosk skosk sk sk skosk sk skosk sk sk skosk sk skosk

STEADY ! Rotation STEADY, KIN_JOINT, or DYN_JOINT

FALSE ! Passive Joint Forces and Torques
Enabled

FALSE ! Compute Constraint Forces and Torques

REFPT_CM ! Mass Props referenced to REFPT.CM or
REFPT_JOINT

FALSE ! Flex Active

FALSE ! Include 2nd Order Flex Terms

2.0 ! Drag Coefficient

3K 3K 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk Sk sk sk >k 3k sk 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk >k sk sk sk sk 3k sk 3k sk sk skoskosk sk skoskosk sk sk ko k k ok ok

ok sk skok ok kR kR skokskkskokskokokkokkokkx Body  Parameters
s K ok oK Rk oK Rk oK K K oK K R K K R KK KK K K K K K
s sk ok KoK K KK K R R oK R R oK R K oK R R oK R KR R KK SRR R KR R R R ok R sk KR K ok R R oK KKK SR KK S R R K K R ok Rk ok ok ok Ok

1 ! Number of Bodies
Body 0

1.0 I Mass
2.0 3.0 1.2 ! Moments of Inertia (kg—m"2)
0.0 0.0 0.0 ! Products of Inertia (xy,xz,yz)
0.0 0.0 0.0 ! Location of mass center , m
0.0 0. 0.0 ! Constant Embedded Momentum (Nms)
Cubesat_1U . obj ! Geometry Input File Name

|

NONE Flex File Name

13
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>k 3k 3k 3k 3k 3k 3k ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok >k ok sk ok ok ok 3k 3k sk sk sk sk ok sk ok ok ok ok ok sk ok sk sk ok sk ok ok >k sk sk sk ok sk 3k 3k sk skosk ok ok sk skook ok ok ok ok ok ok ok
Kok kokokkkkk xRk kkkkokkkkkkxxx%%x  Joint Parameters
>k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk 3k sk sk sk 3k sk sk sk sk sk sk sk ko

>k 3K 3k 3k 3k 3k 3k ok sk sk sk sk Sk sk ko sk sk sk sk Sk sk sk >k >k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk >k >k sk sk sk 3k 3k 3k sk sk skoskosk sk skoskosk sk sk ok k k ok ok

(Number of Joints is Number of Bodies minus one)

Joint 0

01 Inner, outer body indices
1 213  GIMBAL RotDOF, Seq, GIMBAL or SPHERICAL
0 123 TrnDOF, Seq

FALSE FALSE FALSE
FALSE FALSE FALSE

RotDOF Locked
TrmDOF Locked

|
|
|
!
!
0.0 0.0 0.0 ! Initial Angles [deg]
0.0 0.0 0.0 ! Initial Rates, deg/sec
0.0 0.0 0.0 ! Initial Displacements [m]
0.0 0.0 0.0 ! Initial Displacement Rates, m/sec
0.0 0.0 0.0 312 ! Bi to Gi Static Angles [deg] & Seq
0.0 0.0 0.0 312 ! Go to Bo Static Angles [deg] & Seq
0.0 0.0 0.0 ! Position wrt inner body origin, m
0.0 0.0 0.0 ! Position wrt outer body origin, m
0.0 0.0 0.0 ! Rot Passive Spring Coefficients (Nm/rad
)
0.0 0.0 0.0 ! Rot Passive Damping Coefficients (Nms/
rad)
0.0 0.0 0.0 ! Trn Passive Spring Coefficients (N/m)
0.0 0.0 0.0 ! Trn Passive Damping Coefficients (Ns/m)

$okok ok okok ok ok okok kR okokkk kok ok sk kokkkkkx Wheel Parameters
Kok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok

0 ! Number of wheels
Wheel 0
0.0 ! Initial Momentum, N-m—sec
1.0 0.0 0.0 ! Wheel Axis Components, [X, Y, Z]
0.14 50.0 I Max Torque (N-m), Momentum (N-m—sec)
0.012 ! Wheel Rotor Inertia, kg—m"2
0.48 ! Static Imbalance, g—cm
13.7 ! Dynamic Imbalance, g—cm”2
0 ! Flex Node Index

ok kokokok ok ok kR kR ok ok okokokokkkxxkkkxx % MIB Parameters
ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o K ok ok ok ok

0 ! Number of MTBs
MIB 0
180.0 ! Saturation (A-m"2)
1.0 0.0 0.0 ! MIB Axis Components, [X, Y, Z]

14
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0 ! Flex Node Index
sk kokokokokkkkkk kR kkokkokkkkkxx Thruster Parameters
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok

0 ! Number of Thrusters
Thr 0
1.0 Thrust Force (N)

!
0 —1.0 0.0 0.0 ! Body, Thrust Axis
1.0 1.0 1.0 ! Location in BO, m
0 ! Flex Node Index
ok kR R ROk KRR R kR R R R R Rk Rk ok x k. GyTO
ok ok ook ok Ok ook K Ok ok ok K Ok ok ok K Ok ok ok K Kk ok ok K K
0 ! Number of Gyro Axes

Axis 0

Sample Time, sec

! Axis expressed in Body Frame

! Max Rate, deg/sec

Scale Factor Error, ppm

Quantization, arcsec

Angle Random Walk (deg/rt—hr)

Bias Stability (deg/hr) over timespan (

HO O oo o
(an)

0.1 ! Angle Noise, arcsec RMS
0.1 ! Initial Bias (deg/hr)
0 ! Flex Node Index
Fok kR R KRRk Rk R Rk kR sk kR kR kok . Magnetometer
ok ok ook ok Ok o ok K Ok o ok K Kk ok ok K K ok ok K R K ok K
0 ! Number of Magnetometer Axes
Axis 0
0.1 ! Sample Time, sec
1.0 0.0 0.0 ! Axis expressed in Body Frame
60.0E—6 ! Saturation , Tesla
0.0 ! Scale Factor Error, ppm
1.0E—6 ! Quantization, Tesla
1.0E—-6 ! Noise, Tesla RMS
0 I Flex Node Index

ok kokokokokok ko Rk kkkkokkkkkx  Coarse Sun Sensor
>k ok ok ok ok sk sk sk ok ok sk ok sk sk sk sk sk sk sk ok sk sk ok ok ok ok ok ok ok ok ok

0 ! Number of Coarse Sun Sensors
CSS 0

0.1 ! Sample Time, sec

0 1.0 1.0 1.0 ! Axis expressed in Body Frame

90.0 ! Half—cone Angle, deg

15
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1.0 ! Scale Factor
0.001 ! Quantization
0 ! Flex Node Index

kokkkkokkkkkkkkkkxkkkxkkkx*x Fine Sun Sensor
st sk sk sk ok sk sk ok sk ok sk sk sk ok sk sk ok sk ok sk ok sk ok sk ok sk sk ok o ok

0 ! Number of Fine Sun Sensors
FSS 0

.2 ! Sample Time, sec

! Mounting Angles (deg), Seq in Body
32.0 ' X, Y FOV Size, deg

! Noise Equivalent Angle, deg RMS

! Quantization , deg

I Flex Node Index

$okokkokokok sk ofokok sk okokokkkokkkkokkx k- Star Tracker

0
3
3
0.1
0.5
0

*k

>k 3k 3k >k >k 3k sk 3k >k ok 3k 3k ok 3k 3k 3k sk sk 3k 3k sk sk sk sk sk sk sk sk sk sk sk kok

0 ! Number of Star Trackers
ST 0
0.25 Sample Time, sec

|
30.0 20.0 10.0 213 ! Mounting Angles (deg), Seq in Body
8.0 8.0 ' X, Y FOV Size, deg
30.0 10.0 10.0 ! Sun, Earth, Moon Exclusion Angles, deg
2.0 2.0 20.0 ! Noise Equivalent Angle, arcsec RMS
0 ! Flex Node Index
$ok ok ok ok ok ok ok kR kR R kR R okok kR xx ok kR kk ok ok k. GPS
ok ko ok ok ok ok ok ok ok ok Kk Kok KOk ko ok ok ok ok ok ok Kok Kok Kok ok ok ok ok
0 ! Number of GPS Receivers
GPSR 0

.25 ! Sample Time, sec
.0 ! Position Noise, m RMS
.02 ! Velocity Noise, m/sec RMS
0.0E—9 ! Time Noise, sec RMS
! Flex Node Index
Fokkokkokokokokok Rk Rk kkkkokokkkkxxxkx Accelerometer
st sk ok ok sk sk ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok Rk ok ok ok ok

0 ! Number of Accel Axes

SN O O

Axis 0

Sample Time, sec

Position in B[0] (m)

Axis expressed in Body Frame
Max Acceleration (m/s”2)
Scale Factor Error, ppm
Quantization, m/s"2

OO R, P, OO
O =
o o
O =
o Ot

OO OO Ut

16
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S oo o O
ot O o O
—_
(aw]

DV Random Walk (m/s/rt—hr)

Bias Stability (m/s”2) over timespan (

DV Noise, m/s
Initial Bias (m/s"2)
Flex Node Index

17
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A.6 Inp FOV

/%

Note: FOV Boresight

is +Z Axis */

fokkokokokokkkxxkkkkkkkokokkkxxx Fields of VIEW skssskkkokkkxxkkkkkkkokokkk k% %

4 I Number of FOVs

”SOLID” ! Label

4 4.0 ! Number of Sides, Length [m]

8.0 4.0 I X Width, Y Height [deg]

0.0 1.0 0.0 0.5 ! Color RGB+Alpha

SOLID ! WIREFRAME, SOLID, VECTOR, or
PLANE

TRUE TRUE ! Draw Near Field, Draw Far Field

0 0 I SC, Body

0.0 0.0 1.0 ! Position in Body [m]

0.0 0.0 0.0 321 ! Euler Angles [deg], Sequence

"WIRE” I Label

24 4.0 ! Number of Sides, Length [m]

10.0 5.0 I X Width, Y Height [deg]

0.7 0.7 0.0 1.0 I Color RGB+Alpha

WIREFRAME ! WIREFRAME, SOLID, VECTOR, or
PLANE

TRUE TRUE Draw Near Field , Draw Far Field

0 0 SC, Body

1.0 0.0 0.0
90.0 0.0 0.0 213

Position in Body [m]
Euler Angles [deg], Sequence

”VMO 7
0 4.0
0.0 0.0
0.0 1.0 1.0 1.0
VECTOR
PLANE
TRUE TRUE
0 0
1.0 0.0 0.0

135.0 0.0 0.0 213

Label

Number of Sides, Length [m]
X Width, Y Height [deg]
Color RGB+Alpha

WIREFRAME, SOLID, VECTOR, or

Draw Near Field , Draw Far Field
SC, Body

Position in Body [m]

Euler Angles [deg], Sequence

"PLANE”
24 8.0
0.0 0.0
1.0 1.0 1.0 0.3
PLANE
PLANE
TRUE TRUE

Label

Number of Sides, Length [m]
X Width, Y Height [deg]
Color RGB+Alpha

WIREFRAME, SOLID, VECTOR, or

Draw Near Field, Draw Far Field

18



Aerospace engineering Master’s thesis

0 0 ! SC, Body
0.0 0.0 0.0 ! Position in Body [m]
—45.0 0.0 0.0 213 ! Euler Angles [deg], Sequence

19



Aerospace engineering Master’s thesis

A.7 Inp IPC

<LLLLLL<<<<<< 42: InterProcess Comm Configuration File
SSSSSSSSSSSSSS>>

0 ! Number of Sockets

Sk okokok ok ok kR kR kR ofokokokok ok ok kR kR Rk kokokkkkxkx [PC 0
koo ok ok ok ok oK ok ok ok ok ok oK ok ok koK ok ok ok K Kk ok

OFF I IPC Mode (OFF,TX,RX,TXRX,ACS,
WRITEFILE, READFILE)

0 ! AC.ID for ACS mode

”State00.42” ! File name for WRITE or READ

CLIENT ! Socket Role (SERVER,CLIENT,
GMSEC_CLIENT)

localhost 10001 ! Server Host Name, Port

TRUE ! Allow Blocking (i.e. wait on
RX)

TRUE ! Echo to stdout

3 ! Number of TX prefixes

”SC” ! Prefix 0

”Orb” ! Prefix 1

"World” I Prefix 2

ook ok ok ok oRok Kok ok kR okok b okok sk okok sk kokkokokk kok k. TPC ]
stk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok Kk ok ok R ok Kk ok K

OFF I IPC Mode (OFF,TX,RX,TXRX,ACS,
WRITEFILE, READFILE)

0 ! AC.ID for ACS mode

"State01.42” ! File name for WRITE or READ

CLIENT ! Socket Role (SERVER,CLIENT,
GMSEC_CLIENT)

localhost 10002 ! Server Host Name, Port

TRUE ! Allow Blocking (i.e. wait on
RX)

FALSE ! Echo to stdout

1 ! Number of TX prefixes

"SC[0].AC” ! Prefix 0

Foskokok ok okok ok skok Kok ok ok R kokok R kkok kok ok kokkokx [PC 2
stk sk ok ok sk sk ok sk ok ok sk sk ok sk ok ok sk ok ok ok ok ok K ok K

OFF ! TPC Mode (OFF,TX,RX,TXRX,ACS,
WRITEFILE, READFILE)

1 ! AC.ID for ACS mode

"State02.42” ! File name for WRITE or READ

CLIENT ! Socket Role (SERVER,CLIENT,
GMSEC_CLIENT)

localhost 10003 ! Server Host Name, Port

TRUE ! Allow Blocking (i.e. wait on
RX)
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FALSE
1
"SC[1].AC”

sk sk ok sk sk ok sk ok ok sk ok ok sk ok sk ok ok ok ok sk ok sk ok ok ok ok ok ok
OFF

WRITEFILE, READFILE)
0
"State03.42”
CLIENT

GMSEC_CLIENT)
localhost 10004
TRUE

RX)
FALSE
1
"SC[0].Tach[0]”

Echo to stdout
Number of TX prefixes
Prefix 0

IPC Mode (OFF,TX,RX,TXRX,ACS,

AC.ID for ACS mode
File name for WRITE or READ
Socket Role (SERVER,CLIENT,

Server Host Name, Port
Allow Blocking (i.e. wait on

Echo to stdout

Number of TX prefixes
Prefix 0
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A.8 Inp_Region

>k 3k 5k >k 3k ok ok ok skook ok sk sk ok skook ok ok sk

1

Regions for 42

Number of Regions

>k 3k 3k ok >k 3kok ok ok skok ok ok sk ok ok skok ok

TRUE

77LZ”

EARTH

LLA

0.0 0.0 0.0
—80.53 28.46 1000.0
1.0E6 1.0E4 0.1
Rgn_Terrain.obj

Exists

Name

World

POSW or LLA
Position in W, m

! Lng, Lat (deg), Alt (m)

Elasticity , Damping,
Geometry File Name

Friction Coef
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A.9 Inp_TDRS

LLLLLLLLLLL<<<<<< 42 TDRS Configuration File

FALSE
FALSE
TRUE

FALSE
FALSE
TRUE

FALSE
FALSE
FALSE
TRUE

"TDRS—1”

”In Memorium”
"TDZ”

77TDS 2

"TD171”

77:[‘DW77
"TDRS—7”
?TD271”
"TDRS—9”

!
!
!
!
!
!
!
!
!
"TDE” !

TDRS—1
TDRS—2
TDRS—-3
TDRS—4
TDRS—5
TDRS—6
TDRS-7
TDRS—8
TDRS—9

Exists, Designation

was lost along with Challenger

Exists, Designation

Exists, Designation

Exists, Designation

Exists, Designation

Exists, Designation

Exists, Designation

Exists, Designation
Designation

TDRS—10 Exists

DSODSSDESDOSDEDDSDSDSS>SD>
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Appendix B CONSTELLATION INPUT GENERATOR

In this appendix, the code fro the constellation input generator are displayed.

B.1 Constellation generator

clc
clear
close all

i=45; %inclination in deg

t=50; Jmum of sats

p=>5; Y%mum of planes

f=4; %rel spacing between sats in adjacent planes (from 0 to p—1)
rmin=500; %min altitude in km

e=0; %eccentricity

s=t/p; %num of sats per plane
PU=360/t; %in deg

PUp=PUxp; %in—plane spacing between sats in deg
PUs=PUxs; %node spacing in deg
PUEPUxf; %phase diff between adjacent planes in deg

sat=1:t;
planes=1:p;

RAAN(planes )=0:PUs:360—PUs;
dphi(planes )=PUfx(planes —1);
spacing (1:s)=0:PUp:360—PUp;

filename (1:t)="inputs/Orb_"+sat+”.txt ”;
orbname (1:t)="0Orb_"+sat+”.txt”;
SCname="SC _cubesat . txt”;

k=1;
for j=1:p
for jj=1:s
w=spacing (jj)+dphi(j);
WriteOrbFile (filename (k) ,i ,RAAN(j) ,w,rmin,e)
k=k+1;
end
end
WriteSim (orbname ,SCname, t ) ;
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B.2 WriteOrbFile

function WriteOrbFile (name,i,raan ,w,r,e)
fid=fopen (name, 'w’) ;
fprintf(fid , <<<<<<<<<<<<<<<<..42: .Orbit .Description_File__.
SSSSSSSSSSSSSSS>>\n ) ;

fprintf(fid , Testoorbitocoooooooe I..Description\n’);

fprintf(fid , "CENTRAL...coiiiiiiiiiiinnnnoon !..Orbit .Type.(ZERO, .
FLIGHT, .CENTRAL, _.THREEBODY) \n ") ;

fprintf(fid,’:::::::0000:00: LoUseothese_lines_if ZERO_ooooonooo
sriiriiiiiiiiiiii\n);

fprintf(fid , " MINORBODY 2. cciiiiciinnnnoon IeoWorld\n’);

fprintf(fid , "FALSE. . cciiiiiiiininnnnnoon ! .Use_Polyhedron._Gravity
\n’);

fprintf(fid,’::::::::0::0::: L Use_these._lines_if .FLIGHT..._
srrriirriiiiiiiis\n);

fprintf (fid , 0o e ! ..Region_Number\n’) ;

fprintf(fid , "FALSE. o cciiiiiiiiiinnnnnoon ! .Use_Polyhedron._Gravity
\n’);

fprintf(fid,’:::::::::::::: L Usecthese_lines . if .Body—Centered _Orbit
cetiiiiiiiiiiiiiiii\ml);

fprintf(fid , FARTH. oo ooooonooooon !..Orbit_Center\n’);

fprintf(fid , "FALSE. . oooccoconineonnconnenn !..Secular.Orbit_.Drift.
Due.to.J2\n’);

fprintf(fid , "KEP.._ooooooiiiiiininooninooon I ._Use_.Keplerian.
elements . (KEP)_or_(RV)_or _FILE\n’);

fprintf(fid , ’AE. e !._Use_Peri/Apoapsis_(PA
)_or.min._alt /ecc_(AE)\n’);

fprintf(fid, 35786.0....35786.0ccccciinicccooannon !._.Periapsis . &.
Apoapsis_.Altitude , km\n’);

fprintf(fid , %s . TS oo o I'eoMin_Altitude . (km) , -
Eccentricity\n’ ,num2str(r) ,num2str(e));

fprintf (fid | "0 o e I'._Inclination._(deg)\n’,
num?2str (i) );

fprintf(fid , "%Scocociiiicooinniniocooann I._Right_Ascension._of.
Ascending _Node.(deg)\n’ ,num2str(raan)) ;

fprintf(fid, 0.0 oo ! __Argument._.of_Periapsis.
(deg)\n")

fprintf(fid , "%Scocociiiicoonniniocooann ! ..True_Anomaly.(deg)\n’,
num?2str (w) ) ;

fprintf(fid ,’0.0..0.0.00.0ccccccccccccoeoon '..RV_Initial _Position.(
km)\n ") ;

fprintf(fid,’0.0..0.0220.0 e cno e I_.RV_.Initial_Velocity.(
km/sec)\n’);

fprintf(fid , "TRV_L."ORBID” L.ciiiiciinnnnonn | ._TLE_or _TRV_format , .

Label_.to.find.in.file\n’);

25



Aerospace engineering Master’s thesis

end

fprintf(fid , " ?TRV. tXt 7 c oo i cceee I__File _name\n’);

fprintf(fid,’ ::::::::::::: __Use_these_lines.if _Three—Body.Orbit..
srrriiriiiiriiii\n);

fprintf(fid , ’SUNEARTH. _.cooiiiiicnooninooon !_.Lagrange._system\n’) ;

fprintf(fid , '"LAGDOFMODES. ..o cccmn e | __Propagate_using.
LAGDOF MODES. or .LAGDOF.COWELL. or .LAGDOF_SPLINE\n ") ;

fprintf(fid , MODES. oot ii e . .Initialize _with _MODES
~or XYZ.or .FILE\n’) ;

fprintf(fid , L2 .o iiiiiiiiiniininnnnnoon !'..Libration.point.(L1,.
L2,.L3,_.L4,._L5)\n");

fprintf(fid,  800000.0 e I .. XY_Semi—major_axis , .
km\n’) ;

fprintf(fid, 45.0ccciiciiiiiiiiiiinnnnoon I._Initial XY_Phase, .deg
\n’);

fprintf(fid ,’"CW_Loooiioooiiiiiininoininooon I..Sense . (CW, .OCW) , _
viewed _from .+Z\n"’) ;

fprintf(fid, 0.0 oo I..Second XY_Mode._Semi—
major Axis, km. (L4, _L5_.only)\n’);

fprintf(fid, 0.0 cccciiciiiiiiiiiiionnnnoon ! ._Second _XY_Mode.
Initial _.Phase,._deg.(L4,_L5_only)\n’);

fprintf(fid , "CW. e I _.Sense.(CW, .OCW) , _
viewed _from +Z._ (L4, _L5_only )\n’);

fprintf(fid, 400000.0 it iiiiiaineon ! o.Z_Semi—axis , _km\n’);

fprintf(fid, 60.0cccccccciiiiiiiciinnnnoon !ecInitial .Z_Phase,._deg)\
n’);

fprintf(fid ,’1.05..0.50.0.0cccccccccccocoon leoeInitial X, Y, Z.(Non—
dimensional)\n’);

fprintf(fid,’0.0..20.0220.0 0 ccco e I__.Initial .Xdot,._Ydot,.
Zdot.(Non—dimensional )\n’);

fprintf(fid , "TRV_L."ORBID” L.ciiiciinnnnonn ! ..TLE, -TRV_or .SPLINE.
format , _Label_to_find.in_file\n’);

fprintf(fid ,’"TRV. tXt” c oo !._.File _name\n’);

fprintf(fid ,  sssssssskkkkkkkkksx  Formation _Frame_.Parameters.

************************\n’) )

fprintf(fid , 'Noo oo iiiiiiiiiiiinonnnnoon ! ._Formation_Frame_Fixed
~in_[NLJ\n");

fprintf(fid ,’0.0..0.0..0.0..123 ccconnnn !._.Euler_Angles.(deg) .-
and_Sequence\n’);

fprintf(fid , N ! __Formation._Origin.
expressed.in.[NL]\n’);

fprintf(fid,’0.0..0.0.00.0ccciiicccnnnnnoon !._Formation_.Origin_wrt.

Ref_Orbit.(m)\n’);
fclose (fid);
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B.3 WriteSim

function WriteSim (orb ,SC,t)
fid=fopen (”inputs/Inp_Sim.txt”,’'w’);
fprintf(fid , <<<<<<<c<<<<<< .42 .The_Mostly _.Harmless_.Simulator..
SSSSSSSSSSSSSSS>>\n ) ;
fprintf (fid , ~ssssskkkokkoooon k0 00o0okokokok L Simulation . Control o

**************************\n7) y

fprintf(fid , "FAST ... occiiiiiiiiiiiooinenon I ..Time_Mode. (FAST, .
REAL, _or .EXTERNAL)\n’) ;

fprintf(fid,’36000.0 ... 0.1 ittt ! ._Sim_Duration , .Step.
Size_[sec]\n’);

fprintf(fid , ’10.0ccciiiiciiiiiiniiccniinnnnon !._File_Output.
Interval_[sec]\n’);

fprintf(fid , "FALSE. e ! ..Graphics_Front_End
\n’);

fprintf(fid , 'Inp.Cmd . tXt oecoooon oo canne. ! ._Command._Script._File
~Name\n’) ;

fprintf (fid , * sk kxkorokokokok L Reference .Orbits..

**************************\n’);

fprintf(fid , i oo ! ._Number._of._
Reference_Orbits\n’,t);

for i=1:t
fprintf(fid , "TRUE.. %S cccocinnnooenn I'..Input_file _name.for_Orb.

0\n’,orb(i));
end
fprintf (fid , *sssskrkskokskokoskosorsok ko kokokokokkokkkokx Lo Spacecraft oo
ook KKk ok ok KK Rk R KRRk R Rk kR Rk \ T )

fprintf(fid , %iccccociiiiiiiiiiiieiiiinnncneoo ! ._Number._of.
Spacecraft\n’ t);

for i=1:t
fprintf(fid , "TRUE. %1 %08 . ccccmeen ! ._Existence , _.RefOrb, _Input.

file .for .SC..0\n’,i—1,SC);
end
fprintf(fid | 7 ssssstkskokokokoskoomoor ko ofokkokokokkocoxx LEnvironment oo
s ok ok ok ok K KRR KKK KRR KRRk R Rk Rk ok \ L )

fprintf(fid,’02.04.2021 e I ..Date._(UTC) . (Month, -
Day,_Year)\n’);

fprintf(fid , 12.49.00.00cccciiiiiiccnnnnnnon ! «oTime. (UTC) . (Hr,Min,
Sec)\n’);

fprintf(fid, ’37.0cccccciciiiiiiioccoionennon !..Leap._Seconds.(sec))\
n’);

fprintf(fid , 'NOMINAL_ oo !..F10.7, _Ap.(USER,
-NOMINAL_or -TWOSIGMA) \n " ) ;

fprintf(fid, 230.0ccccccciiiiiiniiccninnnnnon o If _USER DEFINED, .

enter._desired .F10.7 _.value\n’);

27



Aerospace engineering Master’s thesis

fprintf (fid, 100.0 oo oo cceee ! ..If _USER.DEFINED, ..
enter._desired _AP_value\n’);

fprintf(fid , "TGRF...cociiiiiiiiiiiicninnnnnon I..Magfield . (NONE,
DIPOLE, IGRF)\n ") ;

fprintf(fid , 8o 8 ! ._IGRF_Degree._and.
Order_(<=10)\n");

fprintf(fid , 2. 0o o cneen !__.Earth_Gravity .Model
-Noand M.(<=18)\n");

fprintf(fid, 20000t iiiiiiiiiiiiccninnnnnon I._.Mars_Gravity .Model.
N.and M_o(<=18)\n");

fprintf(fid, 20000 ! ._Luna_Gravity .Model.
N_oand M_(<=18)>\n");

fprintf(fid , "FALSE._.FALSE. .. cciccoiannnon !._.Aerodynamic.Forces.
&_Torques.(Shadows)\n’);

fprintf(fid , "FALSE.__ . cociiiiiiioccoiinenon ! ..Gravity.Gradient.
Torques\n’);

fprintf(fid , "FALSE._ . FALSE._ . .. ccooonon I._.Solar_Pressure.
Forces &.Torques.(Shadows)\n’);

fprintf(fid , "FALSE. . cciiiiiiiiiicnnannnnon I._Gravity.
Perturbation_Forces\n’);

fprintf(fid , "FALSE. e I ._Passive_.Joint .
Torques\n’);

fprintf(fid , "FALSE. it !'._.Thruster _Plume._
Forces &.Torques\n’);

fprintf(fid , "FALSE._ . ccciiiiiiiiicninnannon .. RWA_Imbalance .
Forces_.and_Torques\n’);

fprintf(fid , "FALSE. e !._.Contact_Forces_and.
Torques\n’);

fprintf(fid , "FALSE. o cciiiiiiiiiionnnnanon ! ._CFD.Slosh _.Forces.
and.Torques\n’);

fprintf(fid , "FALSE. .. iiiiiiiiiiiiiiooonnno I ..Output.

Environmental .Torques_to_Files\n’);
fprintf(fid ,  ssssssskrkkkkkksxxxxxx . Celestial _.Bodies_of_Interest.

sk sk ok sk ko KKk kR okoskok ko \ LT )

fprintf(fid , MEANL .. iiiiiiiiiiiiccninnnnnon ! ..Ephem.Option . (MEAN.
or .DE430)\n’) ;

fprintf(fid , "TRUE. it I..Mercury\n’);

fprintf(fid , "TRUE. oo ccccce e !._Venus\n’);

fprintf(fid , "TRUE. . iiiiii ittt in ! ._.Earth_and_Luna\n’);

fprintf(fid , "TRUE. . cccoioooommmmnnnnoooonnny !ooMars_and._its .moons\
n’);

fprintf(fid , "TRUE...Cccciciiiiiiiomconnnonnon !._Jupiter_and._its.
moons\n’) ;

fprintf(fid , "TRUE. e I_.Saturn._and._its.
moons\n’) ;

fprintf(fid , "TRUE. .. oiiiiiiiiiiiiooinnnnno. !'..Uranus.and._its .
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end

moons\n’) ;

fprintf(fid , "TRUECC oo e i oniinnnnnnnonoonnn. ! __Neptune_.and.its.
moons\n’ ) ;

fprintf(fid , "TRUE...Cccciiiiiiiiimmconnnonnon ! ._.Pluto_and._its .moons
\n’);

fprintf(fid , "FALSE e !._Asteroids.and.
Comets\n’) ;

fprintf(fid ,  sssxssss0kkkkkkx _Lagrange Point_.Systems_of_Interest.
okok ok kR R Rk ko k \ T )

fprintf(fid , "FALSE.__ . cocciiiiiioccoiinenon ! .cEarth—Moon\n ") ;
fprintf(fid , "FALSE. e I ..Sun—Earth\n’);
fprintf(fid , "FALSE. e ! ._Sun—Jupiter\n’);

fprintf(fid | sssssskkkkkkokooooocx00006 LGround . Stations o

***************************\D7) y

fprintf(fid , 5 i iiiiiiiiiiiiiiiittiiimmootnttmnoonoo ! _Number.
of _.Ground_Stations\n’);
fprintf(fid , "TRUE. _EARTH._—77.0..37.0_._."GSFC” ..o ! _Exists ,

-World, .Lng, .Lat , .Label\n’);
fprintf(fid , "TRUE._.FARTH..—155.6.19.0.."South_.Point”......!_Exists,
-World, _.Lng, .Lat , _.Label\n");

fprintf(fid , "TRUE._.EARTH._.115.4.—-29.0_.."Dongara” ... ! _Exists ,
-World, _.Lng, .Lat , _.Label\n");
fprintf(fid , "TRUE_._EARTH..—71.0_.—33.0_."Santiago” o ... ! _Exists ,

-World, .Lng, .Lat, .Label\n’);

fprintf(fid , "TRUE..LUNA_.._.45.0_..45.0..."Moon_.Base_Alpha”_..!_Exists ,
-World, _.Lng, .Lat , _.Label\n");

fclose (fid);
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Appendix C PROGRAMMING A FSW FUNCTION IN 42

In this appendix, the process for writing a new attitude control function inside 42 simulator will be
detailed and at the end, the cubesat’s attitude control function will be displayed.

C.1 Programming process

Due to how the simulator is programmed, adding a new attitude control function is not as simple
as adding a new subroutine, there are several files that need to be modified in order to include said
function.

The first step is to add a new FSW tag in 42defines.h. In here, a tag for the attitude controller is
added next to a uniquely defined integer. In this case, the line #define CUBESAT_FSW 11 has
been added. The name of the definition (CUBESAT_FSW) will be the name of the controller called
from the inputs.

/* FSW Tags */

#define PASSIVEFSW 0
#define PROTOTYPEFSW 1
#define ADHOCFSW 2
#define SPINNERFSW 3
#define MOMBIAS FSW 4
#define THREE_AXISFSW 5
#define ISS_FSW 6
#define CMGFSW 7
#define THRFSW 8
#define CFSFSW 9
#define NOS3FSW 10
#define CUBESATFSW 11

The next step is to add a new structure for the controller in question, this is done in fswtypes.h
and in Actypes.h. This file contains all the structures used in the attitude control subroutine of the
simulator. First, add a structure inside the general AcType structure. In this case, the structure is
of the type AcCubesatCtriType and is called CubesatCtri.

/* Control Modes */

struct AcPrototypeCtrlType PrototypeCtrl;
struct AcAdHocCtrlType AdHocCtrl;

struct AcSpinnerCtrlType SpinnerCtrl;
struct AcMomBiasCtrlType MomBiasCtrl;
struct AcThreeAxisCtrlType ThreeAxisCtrl;
struct AclssCtrlType IssCtrl;

struct AcCmgCtrlType CmgCtrl;

struct AcThrCtrlType ThrCtrl;

struct AcCfsCtrlType CfsCtrl;

struct AcCubesatCtrlType CubesatCtrl;
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After adding the structure, define it above the main structure. The components of the structure will
depend on the attitude control function being programmed but there is one compulsory variable,
long Init, which will be used by the simulator to initialise the controller.

struct AcCubesatCtrlType {
/+*— Parameters —x/
double Kr[3];
double Kp[3];

/+— Internal Variables —x/

long Init;

double therr [3];

double werr [3];

double Temd[3];
}

After that, in the file 42init.c, a new entry for the DecodeString function must be added so that
the program can interpret the new controller in the inputs. This entry is an else if statement which
returns the integer defined in the #define added in the first step of this process if the string read
at the input coincides with the controller definition.

else if (!strcmp(s,”PASSIVEFSW”)) return PASSIVEFSW;
else if (!strcmp (s,”PROTOTYPEFSW”)) return PROTOTYPEFSW;
else if (!strcmp(s,”’ADHOCFSW”)) return ADHOCFSW;

else if (!strcmp(s,”SPINNERFSW”)) return SPINNERFSW;
else if (!strcmp(s,”MOMBIASFSW”)) return MOMBIASFSW;
else if (!strcmp(s,”THREEAXISFSW”)) return THREE_AXIS FSW;
else if (!strcmp(s,”ISS.FSW”)) return ISS FSW;

else if (!strcmp(s,”CMGFSW”)) return CMGFSW;

else if (!strcmp(s,”THRFSW”)) return THRFSW;

else if (!stremp(s,”CFSFSW”)) return CFSFSW;

else if (!strcmp(s,”CUBESATFSW”)) return CUBESATFSW;

Finally, in the file 42fsw.c, three modification must be done. First, in the FlightSoft Ware function,
a new entry inside the controller tag switch must be added to call the new attitude control function.
In this case, the function will be called CubesatFSW and has as an input the spacecraft structure S.

case CUBESATFSW:
CubesatFSW (S);
break;

Then, in the function InitAC, the new controller must be initialised by assigning 1 to the Init
variable inside the controller structure.

31




Aerospace engineering Master’s thesis

/* Controllers x/
AG—>PrototypeCtrl.Init = 1;
AG—>AdHocCtrl. Init = 1;

AG—>SpinnerCtrl. Init
AG—>MomBiasCtrl. Init =
AG—>ThreeAxisCtrl. Init
AG—>IssCtrl.Init = 1
AG—>CmgCtrl. Init = 1
AG—>ThrCtrl. Init = 1;

ACG—>CfsCtrl. Init = 1;

AG—>ThrSteerCtrl.Init = 1;
AG—>CubesatCtrl.Init = 1;

b

— 1;
1;
pr— 1'

)

Lastly, add the new attitude control function anywhere above FlightSoft Ware (See appendix C.2).
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C.2 Cubesat FSW routine

void CubesatFSW (struct SCType xS)
{
struct AcType *AC;
struct AcCubesatCtrlType *C;
struct CmdType *Cmd;
double gbr[4];
long i;

AC = &S—AC;
C = &AG—>CubesatCtrl;
Cmd = &AG—>Cmd;

if (C>Init) {
C—Init = 0;
for (i=0;i<3;i++) {
FindPDGains (AG>MOI[i][1],0.1,0.7 ,&C—>Kr[i],&C—>Kp[i]);
}
}

ThreeAxisAttitudeCommand (S);
SpinnerCommand (S ) ;

/*Star trackers+/
StarTrackerProcessing (AC);
GyroProcessing (AC);

/% Form attitude error signals */
QxQT(AG—>gbn ,Cmd—=>qrn , gbr );
RECTIFYQ( gbr );
for (i=0;i <3;i++){

C—therr[i] = 2.0xqgbr[i];

C—>werr[i] = AG>wbn[i] — Cmd—>wrn|[i];
}

/*Closed—loop attitude control x/
for (i=0;i<3;i++) {
C>Temd[i] = -C>Kr[i]*C—>werr [1]—C>Kp[i]*C—>therr [i];
}
for (i=0;i<3;i++) AG>Temd[i] = C>Temd[1i |;

/*Reaction wheelsx*/
WheelProcessing (AC);
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Appendix D ADDED SIMULATION COMMANDS

In this section, all added simulation commands to 42 will be displayed. To do so, an else if clause
must be added to the FswCmdInterpreter function in 42fsw.c.

D.1 Point at the Sun when exiting eclipse

else if (sscanf(CmdLine,”Event_.Eclipse_Exit_.Point.SC[%1d].B[%1d].
%s . Vector.[%1f %1f Slf] at Js”,
&Isc ,&Ib, VecString ,&VecR[0],& VecR[1],&VecR[2], TargetString ) =
7 A
*CmdTime = SimTime+DTSIM;
if (!SC[Isc].Eclipse) {
NewCmdProcessed = TRUE;
if (Ib = 0) {
Cmd = &SC[Isc ].AC.Cmd;

else {
Ig = SC[Isc].B[Ib]. Gin;
Cmd = &SC[Isc].AC.G[Ig].Cmd;

¥

Cmd—>Parm = PARM_VECTORS;

Cmd—>Frame = FRAME.N;

if (!stremp(VecString ,”Primary”)) CV = &Cmd—=>PriVec;

else CV = &Cmd—>SecVec;

CV—>Mode = CMD.TARGET;

CV—Frame = FRAMEN;

if (!strcmp(TargetString ,”EARTH”)) {
CV—=TrgType = TARGET'WORLD;
CV—>TrgWorld = EARTH;

¥

else if (!strcmp(TargetString ,”MOON”)) {
CV—=>TrgType = TARGET-WORLD;
CV—=>TrgWorld = LUNA;

else if (!strcmp(TargetString ,”LUNA”)) {
CV—>TrgType = TARGET WORLD;
CV—=>TrgWorld = LUNA;

¥

else if (!strecmp(TargetString ,”MERCURY”)) {
CV—>TrgType = TARGET WORLD;
CV—>TrgWorld = MERCURY;

¥

else if (!strcmp(TargetString ,”VENUS”)) {
CV—=TrgType = TARGET'WORLD;
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CV—=>TrgWorld = VENUS;

else if (!strcmp(TargetString ,”MARS”)) {
CV—>TrgType = TARGET WORLD;
CV—=>TrgWorld = MARS;

}

else if (!strecmp(TargetString ,”JUPITER”)) {
CV—=TrgType = TARGET WORLD;
CV—>TrgWorld = JUPITER;

}

else if (!stremp(TargetString ,”SATURN”)) {
CV—=TrgType = TARGET'WORLD;
CV—TrgWorld = SATURN;

else if (!strcmp(TargetString ,”URANUS”)) {
CV—=>TrgType = TARGET-WORLD;
CV—=>TrgWorld = URANUS;

¥

else if (!strcmp(TargetString ,”NEPTUNE”)) {
CV—>TrgType = TARGET WORLD;
CV—=>TrgWorld = NEPTUNE;

else if (!stremp(TargetString ,”PLUTO”)) {
CV—TrgType = TARGET'WORLD;
CV—>TrgWorld = PLUTO;

}

else if (!stremp(TargetString ,”VELOCITY”)) {
CV—>TrgType = TARGET_VELOCITY

else if (!strcmp(TargetString ,”MAGFIELD”)) {
CV—>TrgType = TARGET MAGFIELD;

else if (!stremp(TargetString ,”TDRS”)) {
CV—=>TrgType = TARGETTDRS;

else {
CV—=>TrgType = TARGET-WORLD;
CV—=>TrgWorld = SOL;

}

UNITV (VecR) ;

for (i=0;i <3;i++) CV=>R[i] = VecR[1i[;
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Appendix E MATLAB POSTPROCESSING FUNCTIONS

In this section, the postprocessing functions programmed with matlab will be displayed.

E.1 Basic postprocessing

clc
clear
close all

addpath (genpath (’C:\ Users\ Lluis\Desktop \UPC\2B\TFM\ simulations’)) %
simulations folder

a=’Constellationtest ’; %particular simulation folder

Simflag=true;

Plotflag=true;

SC=[0,1];

simSC=[0,1];

£0=[2021 2 28 10 0 0];

time=load (strcat (a,’/time.42"),'—ascii’);
for i=1:length(SC)
PosN(i,:,:)=load(strcat (a,’/PosN’ num2str(SC(i), %02u’),’.42"),—

ascii’);

VelN(i,:,:)=load(strcat (a,’/VelN’ num2str(SC(i), %02u’),’.42"),—
ascii’);

PosW(i,:,:)=load(strcat (a,’/PosW’ num2str(SC(i),’ %02u’),’.42’), —
ascii’);

VelW(i,:,:)=load(strcat (a,’/VelW’ num2str(SC(i), %02u’),’.42"), -
ascii’);

gbn(i,:,:)=load(strcat(a,’/qbn’ ,num2str(SC(i), %02u’),’.42"), -
ascii’);

whbn(i,:,:)=load(strcat (a,’/wbn’ ,num2str(SC(i),’ %02u’),’.427), '—
ascii’);

svn(i,:,:)=load(strcat(a,’/svn’ ,num2str(SC(i),’ %02u’),’.42’), '—
ascii’);

svb(i,:,:)=load(strcat(a,’/svb’ num2str(SC(i),’ %02u’),’.42’), —
ascii’);

Eclipse (i,:,:)=load(strcat(a,’/Eclipse’ ,num2str(SC(i), %02u’),’.42"
), —ascii’);

end
lim=length (time) ;

if Plotflag
for i=1l:length (SC)
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figure

plot (time (1:1im) ,PosN(i,1:lim,1) ,time (1:lim) ,PosN(1,1:1im,2),
time (1:1im) ,PosN(1,1:1lim ,3))

title ([ "PosN’ num2str(SC(i), %02u’)])

xlabel (’t(s) )

ylabel (’Position _.ECI(m) )

legend (’'x’,’y’,’z")

grid on

grid minor

figure

plot (time (1:1im) ,VeIN(i,1:lim,1) ,time (1:lim),VelN(1,1:1lim,2),
time (1:lim) ,VelN(1,1:1im,3))

title ([ "VelN’ jnum2str(SC(i), %02u’)])

xlabel ("t (s) )

ylabel (’Velocity _ECI(m/s) )

legend (’v.x’,’v_y’,'v_z )

grid on

grid minor

figure

plot (time (1:1im) ,PosW(i,1:lim,1) ,time (1:lim) ,PosW(1,1:1lim,2),
time (1:1lim) ,PosW(1,1:1im ,3))

title ([ ’PosW’ ,num2str(SC(i), %02u’)])

xlabel ('t (s) )

ylabel (’Position .ECEF (m) )

legend(’'x’,’y’,’z")

grid on

grid minor

figure

plot (time (1:1im) ,VelW(i,1:lim,1) ,time (1:lim) ,VelW(1,1:1im,2),
time (1:1im) ,VelW(1,1:1im ,3))

title ([ 'VelW’ ;num2str(SC(i), %02u’)])

xlabel (’t(s) )

ylabel(’Velocity -ECEF(m/s) )

legend (’'vx’,’v_y’,’v.z)

grid on

grid minor

figure

plot (time (1:lim) ,qbn(i,1:lim,1) ,time(1:lim),gbn(1,1:lim,2) time
(1:1im) ,qbn(1,1:lim ,3) ,time (1:lim) ,qbn(1,1:1im ,4))

title ([ "gbn’ ,num2str(SC(i), %02u’)])

xlabel ("t (s) )

ylabel (’Quaternion ECI’)

legend(’q-1",’q-2",’q-3",7q-4")

grid on

grid minor

figure
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end
end

plot (time (1:1im) ,wbn(i,1:lim,1) ,time (1:lim) ,wbn(1,1:1lim,2) ,time
(1:1im) ,wbn(1,1:1lim ,3))

title ([ 'wbn’ ,num2str(SC(i), %02u’)])

xlabel ("t (s) )

ylabel (’Angular_velocity .ECI(rad/s) ")

legend ( ’\omega_x’, '\omega.y’,’ ’\omega_z ")

grid on

grid minor

figure

plot (time (1:lim) ,svn(i,1:lim,1) ,time(1:lim),svn(1,1:lim,2) ,time
(1:1im) ,svn(1,1:1im ,3))

title ([ ’svn’ ,num2str(SC(i), %02u’)])

xlabel ("t (s) )

ylabel (’Sun.vector .ECI”)

legend(’'x’,’y’,’z")

grid on

grid minor

figure

plot (time (1:1im) ,svb(i,1:lim,1) ,time (1:lim) ,svb(1,1:1lim,2) ,time
(1:1im) ,svb(1,1:1lim ,3))

title ([ ’svb’ ,num2str(SC(i), %02u’)])

xlabel (’t(s) )

ylabel ( ’Sun_vector_body’)

legend ('x’,’y’,’2")

grid on

grid minor

figure

plot (time (1:1im) ,Eclipse (i,1:1im))

title ([ "Eclipse’ ,num2str(SC(i), ' %02u’)])

xlabel ("t (s) )

ylabel (’Eclipse._state’)

grid on

grid minor

%Simulink variable formating¥%

if Simflag

for

i=1:lim

dem=dcmeci2ecef ( "TAU—-2000/2006’ ,datevec (datetime (t0)+seconds (
time (1))));

q(i,:)=dcm2quat(dem) ;

gbn03=[gbn (simSC(1)+1,i,4) gbn(simSC(1)+1,i,1) gbn(simSC(1)+1,i
,2) gbn(simSC(1)+1,i,3)];

gbwl(i,:)=quatmultiply (quatinv (q(i,:)),qbn03);
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gbn03=[gbn (simSC(2)+1,i,4) gbn(simSC(2)+1,i,1) gbn(simSC(2)+1,i
,2) gbn(simSC(2)+1,i,3) ];
gbw2 (i ,:)=quatmultiply (quatinv (q(i,:)),qbn03);
end

XECEF1=[time ,reshape (PosW(simSC (1) +1,:,:) ,[],3) ];
XECEF2=[time , reshape (PosW (simSC (2) +1,:,:) ,[],3) |;
qECI=[time ,reshape(qbn (1 ,:,:) ,[],4) ];
qECEF1=[time ,qbwl];

qECEF2=[time ,qbw2];

simtime=[time , time ] ;

%%

open_system (’Viewer )
set_param (' Viewer’,’StopTime’,int2str ((lim—1)*(time (2)—time(1))))
end
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Appendix F SIMULINK 3D MODEL

In this section, the Simulink 3D model will be displayed as well as the 3D animation file for the
simulink simulation.

F.1 Simulink 3D simulation block detail

Figure 31, shows the inside of the simulink 3D animation block modified to display two satellites.
Figures 32 and 33 show the detail of the top and bottom respectively of the 3D animation block.

40



Aerospace engineering Master’s thesis

¥20[q uoTye[IS (J¢ :T¢ SIS

41



Master’s thesis

Aerospace engineering

7292115e-11 EarthRot VRMLRot

Compute Earth Rotation Rate

q_ecef2b

NN
e ml

Quaternion to VRML

Satellite Model Scaling

G

q_ecizb

G » o[ Fim) .
) T Xirrs k) ®_sun_eci _|_==|-.x|m.._ oo [

T_JD -

L— SaiScale

X_ECEF
Sat Position to VRML

" AntennaTrans

Compute Antenna Properties

Sun Posttion to VAML ~ KeepSuninview

Sun Position

=

ra
—
Quatemion between  Quatemion to VRMLT

o -
"l

Compute Umbra Translation

q_alb

axis_angle _

s=

Figure 32: 3D simulation block top detail

42



Master’s thesis

Aerospace engineering

e

q_ecef2ibl

Satellite Model Scaling1

¥_ECEF1

|v_ q Invig)

AntennaScals

0 anis_anghe e ulnﬁl
LI |

Quaternion to VREMLZ2
[ 5 .._. L E “RML = mlnﬁl
L ER D

Sat Position to WRMLA1

SalScale

AntennaTrans

wec_rot

Compute Antenna Properties |

m to WVRML1

X

KRML »

Antenna Position to VREML1

Naviode Radar

i

Radar on/off1

Figure 33: 3D simulation block bottom detail

43



Aerospace engineering Master’s thesis

F.2 3D animation file

#RML V2.0 utf8
# VRML model of the Earth

# Texture images used are from the NASA Visible Earth catalog:
# http://visibleearth .nasa.gov

WorldInfo {
title ”CubeSat Orbit Visualization”
info 7Copyright 2016—2019 HUMUSOFT s.r.o. and MathWorks, Inc.”
}
NavigationInfo {
visibilityLimit 200000
type "EXAMINE”
speed 10
# avatarSize [ 10 10 10 ]
headlight TRUE
}
DirectionalLight {
direction 1 —2 1
ambientIntensity 0.2
}
DirectionalLight {
direction —1 —2 —1
ambientIntensity 0.2

DEF SkyDome Transform {
# SkyDome diameter in the Inlined file is 10000
translation 0 0 0
scale 8 8 8
children Inline {

url ”"skyAnim.wrl”
}

}

# Sun

PointLight {
radius 10000
location 10000 0 0
# attenuation 0 0 O
color 1 11
attenuation 0 0 0
ambientIntensity 0.5

}

DEF NorthPole Transform {
translation 0 18 0
rotation —1 0 0 1.5708
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children Viewpoint {
description ”"NorthPole”
position 0 0 18
fieldOfView 0.5
¥
}

DEF EarthSide Transform {
translation 0 0 12
children Viewpoint {

description ”"EarthSide”
fieldOfView 0.7854

}
}

DEF Earth Transform {
scale 1 0.999999 0.999999
rotation 0 0 0 1
children |
DEF EarthTopo Transform
scale 6.37814 6.35675
children Inline {
url 7earthAnim.wrl”

}
}

{
6.37814

DEF Satellite Transform {
scaleOrientation 0 1 0 0
scale 0.6667 0.6667 0.6667

rotation 0 0 0 1
children |
DEF BusBody Shape {

appearance Appearance {
texture ImageTexture {

url 7texture/cubesat.jpg”

}

material Material {
specularColor 1 1 1

shininess 1

emissiveColor 0.2 0.2 0.2
diffuseColor 0.2 0.2 0.2

ambientIntensity 0.6

}
}
geometry Box {
size 0.3 0.3 0.3
}

DEF SolarPanel2 Transform {
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translation 0 0.16 —0.3
children Shape {
appearance Appearance {
texture ImageTexture {
url 7texture/solarpanel.jpg”
}
material Material {
shininess 1
diffuseColor 0.9 0.767329 0.619635
ambientIntensity 0

}
}

geometry Box {
size 0.3 0.02 0.3

}
}

DEF SolarPanell Transform {
translation 0 0.16 0.3
children Shape {
appearance Appearance {
texture ImageTexture {
url ”texture/solarpanel.jpg”
}
material Material {
shininess 1
diffuseColor 0.9 0.767329 0.619635
ambientIntensity 0

}
}

geometry Box {
size 0.3 0.02 0.3

}
}
}

DEF Antenna Transform {
children DEF Radar Transform {
translation 0 —0.15 0
children Shape {
appearance Appearance {
material Material {

specularColor 1 1 1
shininess 1
diffuseColor 0.9 0.655038 0.319173
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geometry Cone {
height 0.2
bottomRadius 0.06
}
¥
}

DEF FollowSat Transform {
translation —5.5 2 0
rotation —0.0923 —0.7011 —0.0923 1.5878
children DEF Eeek Viewpoint {
description ”"Satellitel —fixed”
position 0 0 O

}
}
]

DEF Satellite2 Transform {
scaleOrientation 0 1 0 0
scale 0.6667 0.6667 0.6667
rotation 0 0 0 1
children |
DEF BusBody2 Shape {
appearance Appearance {
texture ImageTexture {
url 7texture/cubesat.jpg”
}
material Material {
specularColor 1 1 1
shininess 1
emissiveColor 0.2 0.2 0.2
diffuseColor 0.2 0.2 0.2
ambientIntensity 0.6
}
}
geometry Box {
size 0.3 0.3 0.3
}

}

DEF SolarPanel22 Transform {
translation 0 0.16 —0.3
children Shape {
appearance Appearance {
texture ImageTexture {
url ”texture/solarpanel.jpg”
}
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material Material {
shininess 1
diffuseColor 0.9 0.767329 0.619635
ambientIntensity 0

}
}

geometry Box {
size 0.3 0.02 0.3

}
}
}

DEF SolarPanell2 Transform {
translation 0 0.16 0.3
children Shape {
appearance Appearance {
texture ImageTexture {
url ”texture/solarpanel.jpg”
}
material Material {
shininess 1
diffuseColor 0.9 0.767329 0.619635
ambientIntensity 0

}
}

geometry Box {
size 0.3 0.02 0.3

}
}
}

DEF Antenna2 Transform {
children Transform {
translation 0 —0.15 0
children Shape {
appearance Appearance {
material Material {
specularColor 1 1 1
shininess 1
diffuseColor 0.9 0.655038 0.319173

}
}

geometry Cone {
height 0.2
bottomRadius 0.06

}
}
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}

DEF FollowSat2 Transform {
translation —5.5 2 0
rotation —0.0923 —0.7011 —0.0923 1.5878
children DEF Eeek2 Viewpoint {
description ”Satellite2 —fixed”
position 0 0 O

}
}
]
}
DEF AntennaCone Transform {
translation 0 —0.3333 0
rotation 0 0 0 1
children DEF ConeShape Shape {
appearance DEF ConeOn Appearance {
material DEF AntennaMaterial Material {
transparency 0.4
emissiveColor 0.99 0.424286 0.424286
diffuseColor 0.8 0.255075 0.333323

}
}

geometry Cone {
height 1
bottomRadius 0.1

}
}
}
DEF AntennaCone2 Transform {
translation 0 —0.3333 0
rotation 0 0 0 1
children DEF ConeShape2 Shape {
appearance DEF ConeOn2 Appearance {
material DEF AntennaMaterial2 Material {
transparency 0.4
emissiveColor 0.99 0.424286 0.424286
diffuseColor 0.8 0.255075 0.333323
}
}
geometry Cone {
height 1
bottomRadius 0.1

}
}

DEF Sun Transform {
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translation —13528.3 —5687.39 1011.79
children |
DEF SunOrb Shape {
appearance Appearance {
texture ImageTexture {
url ”texture/sun.jpg”
}

material Material {
specularColor 1 0.8 0
shininess 1
emissiveColor 1 1 0
diffuseColor 1 0.8 0
ambientIntensity 0.5

¥

}

geometry Sphere {
radius 695.508
}
}
DEF Umbra Transform {
translation 14164.7 5954.94 —1059.38
rotation 0 —0.062101 0.55379 5.10102
children Shape {
appearance Appearance {
material Material {
transparency 0.75
diffuseColor 0 0 0
ambientIntensity 1

}
}

geometry Cone {
height 1384
bottomRadius 6.5
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Appendix G IRIDIUM SIMULATION

In this section, the matlab files which create the inputs of the Iridium constellation are displayed.

G.1 Iridium generator

clc
clear
close all

url="https:// celestrak .com/NORAD/elements/iridium-—NEXT. txt ’;
TLEdata=webread (url) ;

name="IridiumTLE ’;

name=strcat (name, ’.txt ) ;

dir="C:\ Users\ Lluis\Desktop \UPC\2B\TEM\TLE’ ;

loc=strcat (dir, filesep ,name) ;

fid=fopen(loc ,’'w’);

fprintf(fid ,TLEdata) ;

fclose (fid);

TLEarray=txt2array (TLEdata) ;

for i=1:size(TLEarray,1)/3
Iridium (i )=TLE(TLEarray ([3*1—2,3%i—1,3%1] ,:));
Iridium (i)=getMinAlt (Iridium (i));
Iridium (i)=getTrueAnomaly (Iridium (i));

end

t=length (Iridium) ;

sat=1:t;

filename (1:t)="inputs/Orb_"+sat+".txt ”;

orbname (1:t)="0Orb_"+sat+”.txt"”;

SCname (1:t)="SC _cubesat”+sat+7.txt”;

SCfilename (1:t)="inputs/SC_cubesat’+sat+”.txt ”;

for i=sat
WriteOrbFileTLE ( filename (i) ,name, Iridium (i) .name) ;
WriteSCFile (SCfilename (i) ,Iridium (i) .name)

end

WriteSimMultSC (orbname ,SCname, t ) ;
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G.2 txt2array

function TLEarray=txt2array (TLEfile)
=1
k=1;
for i=1l:length(TLEfile)
if TLEfile(i)=—newline
k=k+1;
=1
else
TLEarray (k, j)=TLEfile (1) ;
=i+
end
end
end

52



Aerospace engineering Master’s thesis

G.3 TLE

classdef TLE

properties (SetAccess=private)

name="’, number="’, designation=’", epoch=’’, Derl=’", Der2="",
Drag=’", ephType=’", elNum=’",
inc="", RAAN="" ecc="", omega="", M="’, n="", revNum=""

end

properties (Constant=true)
RE=6371, muE=3.986004418¢14

end

properties
minAlt |

end

methods

trueAnomaly , E

function obj=TLE(array)

obj
obj

obj
obj
obj
obj
obj
obj

obj

obj.
.omega=array (3,[35:42]) ;
Mearray (3,[44:51]) ;
.n=array (3,[53:63]) ;
.revNum=array (3 ,[64:68]) ;

obj

obj

obj

obj
end

.name=array (1,[1:24]);
.number=array (2 ,[3:8]) ;
obj. 1
.epoch=array (2,[19:32]) ;
.Derl=array (2,[34:43]);
.Der2=[’. 7 jarray (2,[45:52]) ];
.Drag=array (2,[54:61]) ;
.ephType=array (2,63);
.elNum=array (2 ,[65:68]) ;
obj .
.RAAN=array (3,[18:25]);

designation=array (2,[10:17]) ;

inc=array (3,[9:16]) ;

ece=[". ", array (3,[27:33]) |

function obj=getMinAlt (obj)
a=(obj .muE/(str2double (obj.n)*(2xpi)/(24%x3600))"2)"(1/3);
rp=ax*(l—str2double (obj.ecc));

obj
end

.minAlt=rp—obj .REx1e3;

function obj=getTrueAnomaly (obj)

obj
obj

end
end

.E=obj.KeplerSolver (str2double (obj.ecc) ,str2double (obj.M

)/180%pi,le—5, Newton’) ;

.trueAnomaly=2+atan(sqrt ((1+str2double (obj.ecc)/(1—

str2double (obj.ecc))))*tan(obj.E/2))/pix180;

methods (Static)
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function E=KeplerSolver (e ,M, delta ,solver)
err=1000;
EO0=pi;
maxit=1000;
it =0;
Eprev=E0;
while err>deltadd&it <maxit
it=it +1;
f=Eprev—exsin (Eprev)-M;
df=1—excos (Eprev);
ddf=exsin (Eprev) ;
switch solver
case ”"Newton”
E=NewtonMethod (Eprev , f ,df);
case ”Halley”
E=HalleyMethod (Eprev, f,df, ddf);
otherwise
error ("Invalid solver.”)
end
err=abs(E-Eprev) ;
Eprev=E;
end
if it>=maxit
warning (” Kepler equation did not converge”)
end
end
function X=HalleyMethod (Xprev,{,df, ddf)
if —le—8<(2xdf"2—fxddf)&&(2+df"2—fxddf)<=0
df=0;
f=1;
ddf=1e—8;
elseif 0<(2xdf"2—fxddf)&&(2+xdf"2—f+ddf)<le—8
df=0;
f=—1,
ddf=1le—8;
end
X=Xprev—(2«fxdf) /(2xdf"2—fxddf);
end
function X=NewtonMethod (Xprev,f, df)
if —le—8<df&&df<=0
df=1e—8,;
elseif 0<dfé&&df<le—8
df=1le—38;
end
X=Xprev—{f/df;
end
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end
end
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G.4 WriteOrbFileTLE

function WriteOrbFileTLE (name, TLE, id)
fid=fopen (name, 'w’) ;
fprintf(fid , <<<<<<<<<<<<<<<<..42: .Orbit .Description_File__.
SSSSSSSSSSSSSSS>>\n ) ;

fprintf(fid , Testoorbitocoooooooe I..Description\n’);

fprintf(fid , "CENTRAL...coiiiiiiiiiiinnnnoon !..Orbit .Type.(ZERO, .
FLIGHT, .CENTRAL, _.THREEBODY) \n ") ;

fprintf(fid,’:::::::0000:00: LoUseothese_lines_if ZERO_ooooonooo
sriiriiiiiiiiiiii\n);

fprintf(fid , " MINORBODY 2. cciiiiciinnnnoon IeoWorld\n’);

fprintf(fid , "FALSE. . cciiiiiiiininnnnnoon ! .Use_Polyhedron._Gravity
\n’);

fprintf(fid,’::::::::0::0::: L Use_these._lines_if .FLIGHT..._
srrriirriiiiiiiis\n);

fprintf (fid , 0o e ! ..Region_Number\n’) ;

fprintf(fid , "FALSE. o cciiiiiiiiiinnnnnoon ! .Use_Polyhedron._Gravity
\n’);

fprintf(fid,’:::::::::::::: L Usecthese_lines . if .Body—Centered _Orbit
cetiiiiiiiiiiiiiiii\ml);

fprintf(fid , FARTH. oo ooooonooooon !..Orbit_Center\n’);

fprintf(fid , "FALSE. . oooccoconineonnconnenn !..Secular.Orbit_.Drift.
Due.to.J2\n’);

fprintf(fid ,’FILE._.__ cccoiiiiiioccoiiioonon !._.Use_.Keplerian.
elements . (KEP)_or_(RV)_or _FILE\n’);

fprintf(fid , ’AE. e !._Use_Peri/Apoapsis_(PA
)_or.min._alt /ecc_(AE)\n’);

fprintf(fid, 35786.0....35786.0ccccciinicccooannon !._.Periapsis . &.
Apoapsis_.Altitude , km\n’);

fprintf(fid, 0co0c oo 'oMin_Altitude . (km) , -
Eccentricity\n’);

fprintf (fid, 0o o oo I__Inclination._(deg)\n’);

fprintf(fid , 0cciciiiiiccnaininnnconaan !'._Right_Ascension._of.
Ascending . _Node.(deg)\n’);

fprintf(fid, ’0ccocociicccocioiincocoonan !'ecArgument._of_Periapsis.(
deg)\n’);

fprintf(fid , 0o oo o I e_True_Anomaly.(deg)\n’);

fprintf(fid, 0.0..0.0020.0ccccccccccnoooann !..RV_.Initial .Position.(
km)\n ") ;

fprintf(fid ,’0.0..0.0.00.0ccccccccccicoeoon '..RV.Initial _Velocity.(
km/sec)\n’);

fprintf(fid , "TLE. %87 oo oo oo ! __.TLE_or _TRV._format , _Label .
to_find_in_file\n’,id);

fprintf(fid , "%s” cocicciiiniicncooann !'e.File._name\n’ , TLE) ;

fprintf(fid,’::::::::::::: . Use.these.lines.if .Three—Body.Orbit ..

56



Aerospace engineering Master’s thesis

end

fprintf(fid , "SUNEARTH. . .coiiiiiiininnnnnoon !..Lagrange._system\n’);

fprintf(fid , 'LAGDOFMODES. e civiiiinnnnoon ! ._Propagate_using.
LAGDOF MODES. or .LAGDOF.COWELL. or .LAGDOF_SPLINE\n ") ;

fprintf(fid , "MODES. C oo I .Initialize _with _MODES
~or . XYZ._or _FILE\n");

fprintf(fid , L2 e !__.Libration.point.(L1,.
L2,.L3,.L4,.L5)\n");

fprintf(fid, ’800000.0 ccciiiiiiconnnnnoon .. XY_Semi—major._axis , .
km\n’) ;

fprintf(fid, 45.0 oo I._Initial XY_Phase, .deg
\n’);

fprintf(fid , ’"CWoLo oo iioiiiiiiiiiniinnnnoon I..Sense. (CW, .OCW) ,_
viewed .from .4+Z\n’) ;

fprintf(fid, 0.0 cccccccciiiiiininooninnoon ! ..Second _XY_Mode_Semi—
major_Axis, km. (L4, _L5_only)\n’);

fprintf(fid, 0.0 oo I ..Second XY_Mode..
Initial _.Phase,.deg.(L4,_.L5_.only)\n’);

fprintf(fid , ’"CWoLo oo iioiiiiiiiiiiiiannnoon I ..Sense.(CW, .OCW) ,_
viewed ofrom +Z._ (L4, .L5_only )\n’);

fprintf(fid, 400000.0 oo I ..Z_Semi—axis , km\n’);

fprintf(fid, 60.0 oo I..Initial _Z_Phase,_deg)\
n’);

fprintf(fid, 1.05..0.5.00.0cccicccconnnnoon leoeInitial X, .Y, Zo(Non—
dimensional)\n’);

fprintf(fid,’0.0..20.00.0.0 00 cccccccccocoon I._Initial_Xdot,.Ydot, .
Zdot.(Non—dimensional)\n’);

fprintf(fid , "TRV__"ORBID” ecccicccccccceee ! __.TLE, -TRV_or _.SPLINE.
format ,_.Label_to_find.in.file\n’);

fprintf(fid ,”"TRV. tXt” cociiiiiiinoinnnnoon !..File _name\n’);

fprintf(fid ,  sssxssss0kkkkkkkkxx L Formation _Frame_Parameters.
ook sk ok o KRR KRRk kkok kR Rk \ LT )

fprintf(fid , N !._Formation_Frame_Fixed
Lino [NL]\n");

fprintf(fid ,’0.0..0.0..0.0.0.1230cccccinen !e.Euler_Angles.(deg).
and._.Sequence\n’);

fprintf(fid , N ! ._Formation._Origin.
expressed._in. [NL]\n’);

fprintf(fid , 0.0..0.02.0.0ccccoco e enn !__Formation_Origin_wrt.

Ref_Orbit_(m)\n’);
fclose (fid);
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G.5 WriteSCPFile

function WriteSCFile (name, id)
fid=fopen (name, 'w’) ;
fprintf(fid , <<<<<<<c<<<<<<< .42 _Spacecraft .Description._File_..
SSSSSSSSSSSSSSS>>\n ) ;

fprintf(fid , ’1-U.Cubesat cocvviiicooannnoon I..Description\n’);

fprintf(fid , "%s” e iicciiininniconann I'ecLabel\n’,id);

fprintf(fid , ’GenScSpriteAlpha .ppm.cocooccoe !'..Sprite_File _Name\n’);

fprintf(fid , "PASSIVE FSW__ . coooaoon !|__Flight _Software.
Identifier\n’);

fprintf(fid, 0.2 e iiiiiiiiiiiiiinnnnoon ! . FSW._Sample_Time, _sec
n’);

fprintf(fid , sk krforokokok LOrbit L Parameters.
sk ok ok ok KRR KRR KRR KRk kR kR kR \ LT )

fprintf(fid , "ENCKE. oo 1..Orbit .Prop FIXED, _
EULER_HILL, _or .ENCKE\n") ;

fprintf(fid , "CMoioooiiiiiiiiiiiiiniiannnoon | __Pos.of CM_or _ORIGIN, .
wrt . F\n’);

fprintf(fid,’...0.00000...0.00000...0.00000._!_Pos_wrt_F\n’);
fprintf(fid,’-_._.0.00000...0.00000-..0.00000_!_Vel_wrt_F\n’);
fprintf (fid ,  sssss0ooooooookkokorkkkkxxxk o Initial CAttitude o

>|<***>I<**********************\n7) ,

fprintf(fid, NAN. oo iioiiomnmmnnnnnooooon !eAng.Vel_wrt.[NL], _Att._
[QA] _wrt L [NLF]\n") ;

fprintf(fid,’0.0.0020.000000.0ccccee e I_Ang.Vel_(deg/sec)\n’);

fprintf(fid,’0.0....0.0_....0.0_...1.0_ccooo!_Quaternion\n’);

fprintf(fid ,’0.0....0.0000.0.00000123 000000 I_Angles._(deg)_&_Euler.

7y .
Sequence\n’) ;
fprintf (fid | 7 sssssskkokskokokoooookkxorokokokok Lo Dynamics cFlags oo
ook ok ok o KRR KRR KRRk kR Rk Rk \ LT )

fprintf(fid , "DYNJOINT Lo ! _Rotation .STEADY, .
KIN_JOINT, _or .DYN_JOINT\n ") ;

fprintf(fid , "FALSE. . cciiiiiiiininnnnnoon ! .Passive_Joint .Forces.
and.Torques_Enabled\n’) ;

fprintf(fid , "FALSE.___ccciiiiiiccnooninooon ! _.Compute_Constraint.
Forces._.and_.Torques\n’);

fprintf(fid , "REFPT.CM_ oo ! _Mass_Props.referenced .
to _-REFPT_ CM.or .-REFPT_JOINT\n ") ;

fprintf(fid , "FALSE. . cciiiiiiiininninnoon I_Flex_.Active\n’);

fprintf(fid , "FALSE.___ccciiiiiincnooninooon ! _.Include._2nd._Order_Flex
~Terms\n’);

fprintf(fid, 2.0 oo ! _Drag._Coefficient\n’);

fprintf(fid ,’
sk ok o o o o o o o K KKK KKK KKK K R R R R K R o o K K KRR KK KKK KKK oK R ok R oK oK ok o K KRR R Rk |
n’);
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fprintf (fid ,  sssss0oooookookkokork 00000« _LBody . Parameters .
sk sk sk ok ok K K K K KKK KRR KRRk kSRR Rk Rk Rk \TL )

fprintf(fid ,’
*************>|<*******************>|<**************************************\
n’);

fprintf(fid , 1o e ! .Number._of_Bodies\n’);

fprintf(fid ,’ _.Body._0_

)

fprintf(fid, 1.0ccccciieiiiiiiiiniiannnoon !.Mass\n"’);

fprintf(fid,’2.0..3.0001.2 000 cccccciicncoan ! “Moments_of_Inertia.(kg
S 2)\n);

fprintf(fid,’0.0..0.0220.0 e cnnn e ! _Products_of_Inertia.(
xy,xz,yz)\n’);

fprintf(fid ,’0.0..0.0.00.0ccciiiccconnnnoon ! .Location._of_mass.
center ,.m\n’);

fprintf(fid,’0.0..0.0220.0 e oo e ! .Constant _.Embedded.
Momentum. (Nms)\n’) ;

fprintf(fid , "Cubesat_1U.o0bjoccccoancoocon I .Geometry._.Input._File.
Name\n’) ;

fprintf(fid , 'NONE__ . ccioiiiiimnimoininooon ! _Flex_File _Name\n’);

fprintf(fid ,’
s o o KoK SO KKK SR R K KKK SRR S KKK RO KKK SRR KK KK SR S KKK R KK KK SOk SR KKK SRR K KK SRR ok
n’);

fprintf (fid | sk xko0okokkok L Joint L Parameters .

****>|<**********************\n’) 3

fprintf(fid ,’
S o KKK K KKK K R KKK SRR S KKK RO KKK SR R KK KK SO S KK SR R KK KK SR SR KKK SRR K KRR R KK |
n’);

fprintf(fid , cocooooon (Number_of._Joints.is _.Number_of._Bodies._.minus.
one)\n’);

fprintf(fid ,’ _Joint .0._

\n7)

fprintf(fid , 0.l oo ! .Inner ,_.outer._body.
indices\n’);

fprintf(fid, 1...213 00 GIMBAL . Ceceiiiin e ! _RotDOF, _Seq , .GIMBAL._or
SPHERICAL\n’) ;

fprintf(fid , 0c.o 123 e ! _TrnDOF, _Seq\n ") ;

fprintf(fid , "FALSE_. _FALSE_ _FALSE._ ... ... ! _RotDOF _Locked\n"’) ;

fprintf(fid , "FALSE_. _FALSE_._FALSE_______._... ! .TrnDOF _Locked\n ") ;

fprintf(fid, 0.0..000.000000.0ccccccnnnnenn !.Initial_Angles.[deg]\n
")

fprintf(fid,’0.0..000.000000.0ccccccccoooon I'.Initial _Rates,_deg/sec
\n’);

fprintf(fid,’0.0.0020.000000.0ccccce e !_.Initial _Displacements.
fm]\n")

fprintf(fid , ’0.0..000.000000.0ccccccnnnnean I.Initial _Displacement.
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Rates , m/sec\n’);

fprintf(fid, 0.0...0.0.20.02.31200ccccnncnn !_.Bi_.to_Gi.Static_.Angles
~[deg] &.Seq\n’);

fprintf(fid ,’0.0...0.0..0.00031200cccciccce ! .Go_to_Bo_Static_.Angles
- [deg] &-Seq\n");

fprintf(fid,’0.0..20.0220.0 0o oo e !_Position_wrt.inner.
body._origin , .m\n’);

fprintf(fid,’0.0...0.0000.0 00 cicccconnnnoon ! _Position_.wrt.outer.
body.origin ,.m\n’);

fprintf(fid,’0.0..20.00.0.0ccccccccoccoeoon ! _Rot_Passive_Spring.
Coefficients.(Nm/rad)\n’);

fprintf(fid , 0.0..20.0200.0cccccccce e ! _Rot_Passive _Damping..
Coefficients.(Nms/rad)\n’);

fprintf(fid,’0.0...0.0000.0 00 cicccconnnnonn . Trn_Passive_Spring.
Coefficients.(N/m)\n’);

fprintf(fid,’0.0.220.0220.0 oo nonn ! .Trn_Passive _Damping..

Coefficients_(Ns/m)\n’);
fprintf(fid | " soeksoksonksokskooksokoskoorsokokoorkokokk L Wheel L Parameters .

>|<**************************\n7) ;

fprintf(fid , ’0cciccciiiioiiiiiininooninooon ! 2Number._of._wheels\n’);
fprintf(fid ,’ ~-Wheel _0.__
\n’)

fprintf(fid , 0.0 oo oo I_Initial _Momentum, -N-m—
sec\n’);

fprintf(fid, 1.0..20.00000.0cccccconnnneon I _.Wheel_Axis_.Components,
S[X, Y, LZ\n )

fprintf(fid,’0.14...50.0 i I _Max.Torque. (N-m) ,_
Momentum. (N-m—sec )\n’ ) ;

fprintf(fid, 0.012 ccccciiiiiiiiiinnnnnoon ! _Wheel_Rotor_Inertia , .
kg-m"2\n"’);

fprintf(fid, 0.48 L oot iiiiininoininnoon !.Static _Imbalance , _g—cm
\n’);

fprintf(fid , 13.7 e ! _.Dynamic_Imbalance , .g—
cm”2\n’);

fprintf(fid , 0ccoiiiiiiiiiiiiiiiicinnnnnoon ! _Flex_.Node_Index\n’);

fprintf (fid | 7 sssssskokskokskoksoooorkk ook  MIBLParameters ..
ook ok ok ok K KRR KRR KRRk Rk Rk ok \ LT )

fprintf(fid , 0 oo e ! \Number.of _MTBs\n
7);
fprintf(fid ,”’ . .MTB.0..
A .
1 )7
fprintf(fid, 180.0ccccccciiiicnninooninnoon !_Saturation.(A-m"2)\n")
fprintf(fid, 1.0.2.0.00000.0 ccccccccccceao ! MIB_Axis._.Components, .|
X,.Y, Z]\n");
fprintf(fid , ’0cciiiiiiiiiiiiiiiiicionnnnoon ! _Flex_.Node_Index\n’);
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fprintf (fid ,  ssssss00okkokokokkkk k0000 xx . Thruster .Parameters.

**************************\n’) )

fprintf(fid , 0cciiiiiiiiiiiiiiiiicnonnnnoon ! 2Number._of_Thrusters\n’

)
fprintf(fid ,’ ~.Thr_0_._

\\na);

fprintf(fid, c1.0cc i i ittt cenn ! _Thrust .Force_(N)\n’);
fprintf(fid ,’0..—1.0000.0000.0ccccccnnnnonn ! .Body, .Thrust_.Axis_\n")
fprintf(fid,’.1.0001.0001.00ccccccccccoeoan !.Location_in_.B0O, m\n’);
fprintf(fid , 0o o ! _Flex_Node_Index\n’);

fprintf(fid | sk sokokoorsokokskorsokokokorkookkoxkokok L GyTo o

************************************\n7) )

fprintf(fid, 0cciiiiiiiiiiiiiiiiiccininnncneoo ! \Number_of _Gyro_Axes
\n’);

fprintf(fid ,’ _Axis.0._

) ;

fprintf(fid, 0.1 cccciiciiiiiiiininnnnnoon ! .Sample._Time, sec\n’);

fprintf(fid, 1.0..0.0000.0ccciiicccnnnnnoon I _Axis_expressed._in_Body
~Frame\n’) ;

fprintf(fid, 1000.0 coc oo e ! _Max.Rate ,_deg/sec\n’);

fprintf(fid, 100.0 oo !_.Scale_Factor_Error, .
ppm\n’) ;

fprintf(fid, 1.0 c o ccoocooonnnnnooooooan !.Quantization ,_arcsec.\
n’);

fprintf(fid, 0.07 ccccciciiiiiininonninnoon ! -Angle _Random._Walk._(deg
/rt—hr)\n’);

fprintf(fid, 0.1 ..1.0 e e ! _Bias_Stability .(deg/hr
)oover._timespan.(hr)\n’);

fprintf(fid, 0.1 e iiiiiiiiiiiinionnnnoon ! _Angle_Noise ,_.arcsec.
RMS\n’) ;

fprintf(fid, 0.1 oo I.Initial _Bias.(deg/hr)\
n’);

fprintf(fid, 0ccoiiiiiiiiiiiiiiiiiionnnnoon ! .Flex.Node.Index\n’);

fprintf (fid | 7 sssssskkskokkokoooonrf 0 o000okokokokk L Magnetometer o

********************************\n’);

fprintf(fid , 0 oo ! _\Number._of _Magnetometer
~Axes\n’);

fprintf(fid ,’ _Axis_0.

\n ) ;

fprintf(fid, 0.1 it iiiiiiiiniinnnnoon ! .Sample._Time, sec\n’) ;

fprintf(fid,’1.0..0.0000.0ccccccccccccnooon | _Axis_expressed.in_Body
~Frame\n’);

fprintf(fid, "60.0E—6 oo omncecceceao ! _Saturation ,_Tesla\n’);

fprintf(fid, 0.0ccceccccnnccninconnconncnn !_Scale_Factor_Error, .
ppm\n’ ) ;
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fprintf(fid ,  1.0E—6o oo !-Quantization , _Tesla_\n
7);

fprintf(fid ,’1.0E—6.ccccciiiiiiininnnnnoon ! .Noise ,.Tesla RMS\n’) ;

fprintf(fid , ’0cciccciccioiiiiiincnooninnoon ! _Flex_Node_Index\n’);

fprintf(fid ,  ssssssssrkkkkkksxxxx k%% .Coarse.Sun_Sensor .
sk ok sk ok o KK KKK KRR KRR KRRk Rk Rk Rk k \ L )

fprintf(fid |, 0o oo ! _Number._of_Coarse_Sun.
Sensors\n’);
fprintf(fid ,’ _.CSS.0.
\n7)
fprintf(fid, 0.1 oo I _Sample._Time, sec\n’);
fprintf(fid , ’0cc1.0021.0021.0 0 cccceenn | _Axis_expressed.in_Body
~Frame\n’);
fprintf(fid, 90.0 i cciiiiiiiiciinnnnoon ! _Half—cone_Angle , .deg\n
BE
fprintf(fid, 1.0 oo !.Scale_Factor\n’);
fprintf(fid, 0.001 co oo !_-Quantization\n’);
fprintf(fid, 0cciiiiiiiiiiiiiiiiinionnnnoon ! .Flex.Node.Index\n’);

fprintf(fid | ssssssfkokkkokokooooorcx000006 L Fine .Sun.Sensor .

*******************************\H,) 3

fprintf(fid , 0o e ! _.Number._.of_Fine._Sun.
Sensors\n’);
fprintf(fid ,’ _FSS._0.
0 )
fprintf(fid, 0.2 00 iiiiiiiiiiiiniinnnnoon !'.Sample._Time, sec\n’) ;
fprintf(fid,’30.0..20.0..10.0..213Ccccccce ! .Mounting._Angles._(deg) ,
-Seq.-in._Body\n’) ;
fprintf(fid, 32.0.20232.0cccccccccccccccea I .X, . Y_FOV_Size , _deg\n’)
fprintf(fid, 0.1 e iiiiiiiiiniiniinnnnoon I _.Noise_.Equivalent _Angle
; ~deg RMS\n ") ;
fprintf(fid, 0.5 oo !_-Quantization ,._.deg\n’);
fprintf (fid, 0o o e ! _.Flex_Node_Index\n’);

fprintf(fid | sk sk ook sokokkoxkokok L Star o Tracker o

>|<********>I<***********************\n’) )

fprintf(fid , ’0cciccciicioiiiiiiiinonninnoon ! _.Number_.of_Star .
Trackers\n’);
fprintf(fid ,’ _ST_.0.
\\na);
fprintf(fid, 0.25 0 iciiiiiiiiicionnnnoon ! .Sample._Time, sec\n’);
fprintf(fid,’30.0..20.0..10.0..2130ccccccnee ! .Mounting.Angles.(deg) ,
~Seq.in_Body\n’) ;
fprintf(fid, 8.0 8.0 e 1.X, Y. FOV_Size ,.deg\n’)
fprintf(fid, 30.0..10.0.210.0ccccccconncnn ! .Sun, .Earth , .Moon.

Exclusion_Angles,._.deg\n’);

62



Aerospace engineering Master’s thesis

end

fprintf(fid,’2.0..2.0.220.0 00 ccccno e ! _Noise_Equivalent .Angle
,oarcsec RMS\n’);
fprintf(fid , 0ccociiiiiiiiiiiiniicioannnoon ! _Flex_Node.Index\n’);

Fprintf (fid | 7 sksssotskokoskoskoskokoskooor o ofokokokokokokokox LGPS L
s sk ok ok ok o R KRR KKK KRR KRR KRR SRRk R R Rk Rk ok \ L )

fprintf(fid , 0 e ! .Number._of _GPS.
Receivers\n’);
fprintf(fid ,’ _GPSR.0 ..
\p ! .
W)
fprintf(fid, 0.25 0 cccciiiiinicnonninnoon ! .Sample _Time, sec\n’);
fprintf(fid, 4.0 o I_Position._Noise , .m_RMS\
n’);
fprintf(fid, 0.02 0 ciiciiiiiiiiniinnnnoon !.Velocity .Noise ,.m/sec.
RMS\n ") ;
fprintf(fid, 20.0E—9_ .ccccciiiiccnconineoon ! .Time_Noise , .sec .RMS\n’
)
fprintf (fid, 0o o e ! _.Flex_Node_Index\n’);

fprintf(fid | " soeoksoskoksorsokokskorkoskokkorksokkkokkokk L Accelerometer o

*******************************\n,) N

fprintf(fid , ’0cciccciiiioiiiiiininooninooon ! 2Number._of_Accel _LAxes\n
)

fprintf(fid ,’ _Axis.0_

\\na);

fprintf(fid, 0.1 ccciiiiiiiiiiinonnnnnoon ! .Sample._Time, sec\n’) ;

fprintf(fid,’0.5..1.0001.5 ccciiiccconnnneon !.Position.in.B[0] . (m)\n
)

fprintf(fid,’1.0..0.0220.0 e cccco e | _Axis_expressed.in_Body
~Frame\n’);

fprintf(fid, 1.0.cccccccccoooonnnonooooooan ! .Max_.Acceleration.(m/s
“2)\n’);

fprintf(fid, 0.0 cccccccciiiiiiiinooninooon !_.Scale_Factor_.Error, .
ppm\n’) ;

fprintf(fid, 0.05 o oo ! _Quantization ,.m/s"2\n’
) ;

fprintf(fid, 0.0.c oo ccomnnnnonooooooon ! .DV_Random.Walk. (m/s/rt
—hr)\n’);

fprintf(fid, 0.0.1.0 oo e I_Bias_.Stability.(m/s"2)
—over._timespan.(hr)\n’);

fprintf(fid, 0.0 oo ! .DV_Noise ,.m/s\n’);

fprintf(fid, 0.5 ccciiiiiiiiiiiiiiiionnnnoon !.Initial _Bias.(m/s"2)\n
)

fprintf(fid , ’0ccccceicceoiiiiinncnooniooon ! _Flex_Node_Index\n’);

fclose (fid);
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G.6 WriteSimMultSC

function WriteSimMultSC (orb ,SC, t)
fid=fopen (”inputs/Inp_Sim.txt”,’'w’);
fprintf(fid , <<<<<<<c<<<<<< .42 .The_Mostly _.Harmless_.Simulator..
SSSSSSSSSSSSSSS>>\n ) ;
fprintf (fid , ~ssssskkkokkoooon k0 00o0okokokok L Simulation . Control o

**************************\n7) y

fprintf(fid , "FAST ... occiiiiiiiiiiiooinenon I ..Time_Mode. (FAST, .
REAL, _or .EXTERNAL)\n’) ;

fprintf(fid,’36000.0 ... 0.1 ittt ! ._Sim_Duration , .Step.
Size_[sec]\n’);

fprintf(fid , ’10.0ccciiiiciiiiiiniiccniinnnnon !._File_Output.
Interval_[sec]\n’);

fprintf(fid , "TRUE. it ! ._.Graphics_Front_End
\n’);

fprintf(fid , 'Inp.Cmd . tXt oecoooon oo canne. ! ._Command._Script._File
~Name\n’) ;

fprintf (fid , * sk kxkorokokokok L Reference .Orbits..

**************************\n’);

fprintf(fid , i oo ! ._Number._of._
Reference_Orbits\n’,t);

for i=1:t
fprintf(fid , "TRUE.. %S cccocinnnooenn I'..Input_file _name.for_Orb.

0\n’,orb(i));
end
fprintf (fid , *sssskrkskokskokoskosorsok ko kokokokokkokkkokx Lo Spacecraft oo
ook KKk ok ok KK Rk R KRRk R Rk kR Rk \ T )

fprintf(fid , %iccccociiiiiiiiiiiieiiiinnncneoo ! ._Number._of.
Spacecraft\n’ t);

for i=1:t
fprintf(fid , "TRUE. %1 %08 . ccccmeen ! ._Existence , _.RefOrb, _Input.

file .for.SC..0\n’,i—1,SC(i));
end
fprintf(fid | 7 ssssstkskokokokoskoomoor ko ofokkokokokkocoxx LEnvironment oo
s ok ok ok ok K KRR KKK KRR KRRk R Rk Rk ok \ L )

fprintf(fid,’02.04.2021 e I ..Date._(UTC) . (Month, -
Day,_Year)\n’);

fprintf(fid , 12.49.00.00cccciiiiiiccnnnnnnon ! «oTime. (UTC) . (Hr,Min,
Sec)\n’);

fprintf(fid, ’37.0cccccciciiiiiiioccoionennon !..Leap._Seconds.(sec))\
n’);

fprintf(fid , 'NOMINAL_ oo !..F10.7, _Ap.(USER,
-NOMINAL_or -TWOSIGMA) \n " ) ;

fprintf(fid, 230.0ccccccciiiiiiniiccninnnnnon o If _USER DEFINED, .

enter._desired .F10.7 _.value\n’);
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fprintf (fid, 100.0 oo oo cceee ! ..If _USER.DEFINED, ..
enter._desired _AP_value\n’);

fprintf(fid , "TGRF...cociiiiiiiiiiiicninnnnnon I..Magfield . (NONE,
DIPOLE, IGRF)\n ") ;

fprintf(fid , 8o 8 ! ._IGRF_Degree._and.
Order_(<=10)\n");

fprintf(fid , 2. 0o o cneen !__.Earth_Gravity .Model
-Noand M.(<=18)\n");

fprintf(fid, 20000t iiiiiiiiiiiiccninnnnnon I._.Mars_Gravity .Model.
N.and M_o(<=18)\n");

fprintf(fid, 20000 ! ._Luna_Gravity .Model.
N_oand M_(<=18)>\n");

fprintf(fid , "FALSE._.FALSE. .. cciccoiannnon !._.Aerodynamic.Forces.
&_Torques.(Shadows)\n’);

fprintf(fid , "FALSE.__ . cociiiiiiioccoiinenon ! ..Gravity.Gradient.
Torques\n’);

fprintf(fid , "FALSE._ . FALSE._ . .. ccooonon I._.Solar_Pressure.
Forces &.Torques.(Shadows)\n’);

fprintf(fid , "FALSE. . cciiiiiiiiiicnnannnnon I._Gravity.
Perturbation_Forces\n’);

fprintf(fid , "FALSE. e I ._Passive_.Joint .
Torques\n’);

fprintf(fid , "FALSE. it !'._.Thruster _Plume._
Forces &.Torques\n’);

fprintf(fid , "FALSE._ . ccciiiiiiiiicninnannon .. RWA_Imbalance .
Forces_.and_Torques\n’);

fprintf(fid , "FALSE. e !._.Contact_Forces_and.
Torques\n’);

fprintf(fid , "FALSE. o cciiiiiiiiiionnnnanon ! ._CFD.Slosh _.Forces.
and.Torques\n’);

fprintf(fid , "FALSE. .. iiiiiiiiiiiiiiooonnno I ..Output.

Environmental .Torques_to_Files\n’);
fprintf(fid ,  ssssssskrkkkkkksxxxxxx . Celestial _.Bodies_of_Interest.

sk sk ok sk ko KKk kR okoskok ko \ LT )

fprintf(fid , MEANL .. iiiiiiiiiiiiccninnnnnon ! ..Ephem.Option . (MEAN.
or .DE430)\n’) ;

fprintf(fid , "TRUE. it I..Mercury\n’);

fprintf(fid , "TRUE. oo ccccce e !._Venus\n’);

fprintf(fid , "TRUE. . iiiiii ittt in ! ._.Earth_and_Luna\n’);

fprintf(fid , "TRUE. . cccoioooommmmnnnnoooonnny !ooMars_and._its .moons\
n’);

fprintf(fid , "TRUE...Cccciciiiiiiiomconnnonnon !._Jupiter_and._its.
moons\n’) ;

fprintf(fid , "TRUE. e I_.Saturn._and._its.
moons\n’) ;

fprintf(fid , "TRUE. .. oiiiiiiiiiiiiooinnnnno. !'..Uranus.and._its .

65



Aerospace engineering Master’s thesis

end

moons\n’) ;

fprintf(fid , "TRUECC oo e i oniinnnnnnnonoonnn. ! __Neptune_.and.its.
moons\n’ ) ;

fprintf(fid , "TRUE...Cccciiiiiiiiimmconnnonnon ! ._.Pluto_and._its .moons
\n’);

fprintf(fid , "FALSE e !._Asteroids.and.
Comets\n’) ;

fprintf(fid ,  sssxssss0kkkkkkx _Lagrange Point_.Systems_of_Interest.
okok ok kR R Rk ko k \ T )

fprintf(fid , "FALSE.__ . cocciiiiiioccoiinenon ! .cEarth—Moon\n ") ;
fprintf(fid , "FALSE. e I ..Sun—Earth\n’);
fprintf(fid , "FALSE. e ! ._Sun—Jupiter\n’);

fprintf(fid | sssssskkkkkkokooooocx00006 LGround . Stations o

***************************\D7) y

fprintf(fid , 5 i iiiiiiiiiiiiiiiittiiimmootnttmnoonoo ! _Number.
of _.Ground_Stations\n’);
fprintf(fid , "TRUE. _EARTH._—77.0..37.0_._."GSFC” ..o ! _Exists ,

-World, .Lng, .Lat , .Label\n’);
fprintf(fid , "TRUE._.FARTH..—155.6.19.0.."South_.Point”......!_Exists,
-World, _.Lng, .Lat , _.Label\n");

fprintf(fid , "TRUE._.EARTH._.115.4.—-29.0_.."Dongara” ... ! _Exists ,
-World, _.Lng, .Lat , _.Label\n");
fprintf(fid , "TRUE_._EARTH..—71.0_.—33.0_."Santiago” o ... ! _Exists ,

-World, .Lng, .Lat, .Label\n’);

fprintf(fid , "TRUE..LUNA_.._.45.0_..45.0..."Moon_.Base_Alpha”_..!_Exists ,
-World, _.Lng, .Lat , _.Label\n");

fclose (fid);
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Appendix H MODIFIED ACAPP

In this section, the modified AcApp program will be displayed. The second AcApp created for the
second spacecraft is identical with the exception of the commands and socket configuration. As
such, it has not been included.

#include "Ac.h”

Jx #ifdef __cplusplus
*x+ namespace _42 |
¥+ using mnamespace Kit;

**% #endif
*/

extern void WriteToFile (FILE xStateFile , struct AcType *AC);
extern void WriteToGmsec(struct AcType *AC);
extern void WriteToSocket (SOCKET Socket, struct AcType *AC);
extern void ReadFromFile (FILE xStateFile, struct AcType *AC);
extern void ReadFromGmsec(struct AcType xAC);
extern void ReadFromSocket (SOCKET Socket, struct AcType *AC);

#ifdef _ACSTANDALONE_

KKK KKK KRR A A A A A A A A KK KKK A A AT KKK KKK KRR A AAAA A A A A A KK KA A AR KKK A K
*/

/#* This function copies needed parameters from the SC structure to
*
/

/x the AC structure. This is a crude first pass. It only allocates
*
/

/* memory for the structures, and counts on the data to be filled in
*/

/* via messages.
*/

void AllocateAC (struct AcType *AC)

{

/+* Bodies +/
AG>Nb = 1;
if (AG>Nb > 0) {
AG>B = (struct AcBodyType *) calloc (AG—>Nb, sizeof(struct
AcBodyType) ) ;

}

/x Joints */
AG>Ng = 1;
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if (AG>Ng > 0) {
AG>G = (struct AcJointType
AcJointType) ) ;

}

/* Wheels */
AG—>Nwhl = 3;
if (AG>Nwhl > 0) {
AG—>Whl = (struct AcWhlType
AcWhlType) ) ;
}

/* Magnetic Torquer Bars %/
AG—>Nmtb = 3;
if (AG>Nmtb > 0) {
AG>MIB = (struct AcMtbType
AcMtbType) ) ;
}

/* Thrusters */
AG—Nthr = 0;
if (AC>Nthr > 0) {
AG—>Thr = (struct AcThrType
AcThrType) ) ;
}

/* Control Moment Gyros */
/* Gyro Azes x/

AG—>Ngyro = 3;
if (AG>Ngyro > 0) {

AG>Gyro = (struct AcGyroType x)

struct AcGyroType));

}

/* Magnetometer Azes =/
AG—>Nmag = 3;
if (AG>Nmag > 0) {

calloc (AG>Ng, sizeof(struct

calloc (AG>Nwhl, sizeof(struct

calloc (AG>Nmtb, sizeof (struct

calloc (AG=>Nthr, sizeof(struct

calloc (AG=>Ngyro, sizeof (

AG-MAG = (struct AcMagnetometerType x) calloc (AG—>Nmag, sizeof
(struct AcMagnetometerType) ) ;

}

/* Coarse Sun Sensors x/
AG—>Ncss = 3;
if (AG>Ncss > 0) {
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}

AG—>CSS = (struct AcCssType %) calloc (AG—>Necss,sizeof(struct
AcCssType) ) ;

}

/* Fine Sun Sensors x/
AG—Nfss = 0;
if (AG>Nfss > 0) {
AG>FSS = (struct AcFssType *) calloc (AG—>Nfss,sizeof(struct
AcFssType));

}

/* Star Trackers =/
AG—>Nst = 3;
if (AG>Nst > 0) {
AG>ST = (struct AcStarTrackerType x*) calloc (AG—>Nst,sizeof(
struct AcStarTrackerType));

}

/x GPS x/
AG—>Ngps = 1;
if (AG>Ngps > 0) {
AG>GPS = (struct AcGpsType %) calloc (AG—>Ngps,sizeof(struct
AcGpsType) ) ;

}

/x Accelerometer Azes x*/

/*******>l<>l<>/<>/<>/<>/<>l<*************>l<*************>l<>l<>/<>/<>/<>/<>l<>l<********************

void InitAC (struct AcType *AC)

{

}

AG—>Init = 1;
AG—EchoEnabled = 1;

/* Controllers x/
AGC—>CfsCtrl.Init = 1;

Hendif

/*********************************************************************

/*

Some Simple Sensor Processing Functions
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/* corresponding to the Sensor Models in /2sensors.c

*/

/* Note! These are simple, sometimes naive. Use with care.
*/

[ KKK KKK KA AR KK FA AT A KKK A AT F KA A A AT KA FA A A A
*/

void GyroProcessing (struct AcType %AC)

{

struct AcGyroType xG;
double AO0xA1[3];

double A[3][3],b[3],Ai[3][3];

double AtA[3][3] = {{0.0,0.0,0.0},{0.0,0.0,0.0},{0.0,0.0,0.0}};
double Atb[3] = {0.0,0.0,0.0};

double AtAi[3][3];

long Ig.,i,j;

if (AG>Ngyro = 0) {
/* AC=>wbn populated by true S—=>B[0].wn in f2sensors.c x/

else if (AG>Ngyro = 1) {
G = &ACG—>Gyro [0];
for (i=0;i <3;i++) AG>wbn[i]| = G>RatexG—>Axis[i];
}
else if (AG>Ngyro = 2) {
VxV(AG—>Gyro [0]. Axis ,AG>Gyro [1]. Axis , AOxAl) ;
for (i=0;i<3;i++) {
Af[0][i] = AG>Gyro[0]. Axis[i];
A[1][i] = AG>Gyro[1]. Axis[i];

Af[2][i] = AOxA1[i];
}
b[0] = AG>Gyro[0]. Rate;
b[1] = AG>Gyro[1]. Rate;
b[2] = 0.0;
MINV3 (A, Ai) ;

MxV(Ai,b,AG>wbn) ;

else if (AG—>Ngyro > 2) {
/* Normal Equations x/
for (Ig=0;1g<AG—>Ngyro;Ig++) {
G = &AC—>Gyro[Ig];
for (i=0;i<3;i4++) {
Atb[i] += G—>RatexG—>Axis[1i];
for (j=0;j <3;j++) {
AtATi][j] += G>Axis[i]*G=>Axis[]];
}
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}

¥
MINV3(AtA, AtAi);
MxV(AtAi, Atb ,AG—>wbn) ;

}

/>I<*********************>/<>I<*****>/<>I<>l<>k>k>/<>/<>/<>/<****>/<>I<>l<************************

void MagnetometerProcessing (struct AcType xAC)

{

struct AcMagnetometerType =M;
double A0xAl[3];

double A[3][3],b[3],Ai[3][3];
double AtA[3][3] = {{0.0,0.0,0.0},{0.0,0.0,0.0},{0.0,0.0,0.0}};
double Atb[3] = {0.0,0.0,0.0};

double AtAi[3][3];
long Im,i,j;

if (AG>Nmag = 0) {
/x AC>bvb populated by true S—>bvb in 4f2sensors.c x/
}

else if (AG>Nmag =— 1) {
M = &AC>MAG[0] ;
for (i=0;i<3;i++) AG>bvb[i] = M>Field «M—>Axis[i];

else if (AG>Nmag =— 2) {
VxV(AG>MAG[0]. Axis ,AG>MAG[1]. Axis ,A0xAl) ;
for (i=0;i<3;i++) {
A[0][i] = AC>MAG[O0]. Axis[i];
A[1][i] = AG=MAG[1]. Axis[i];
A[2]][i] = AOxA1[i];

}

b[0] = AG>MAGI[O0]. Field;
b[1] = AG>MAG[1]. Field;
b[2] = 0.0;

MINV3(A, Ai);
MxV(Ai,b,AG=>bvb);

else if (AG>Nmag > 2) {
/* Normal Fquations #*/
for (Im=0;Im<AG->Nmag; Im++) {
M = &ACG>MAG[Im | ;
for (i=0;i<3;i++) {
Atb[i] += M—>Field*M—>Axis[i];
for (j=0;j <3;j++) {
AtA[i][j] += M=>Axis[i]|«M=>Axis[j];
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}

}

}

MINV3(AtA, AtAi) ;

MxV(AtAi, Atb ,AG—=bvb) ;
}

/>l<********************************************************************

void CssProcessing (struct AcType *AC)

{

struct AcCssType *Css;

double AtA[3][3] = {{0 ,0.0,0.0},{0.0,0.0,0.0},{0.0,0.0,0.0}};

double Atb[3] = {0. ,0 },

double AtAi[3][3];

double A[2][3],b[2];

long Ic,i,j;

long Nvalid = 0;

double InvalidSVB[3] = {1.0,0.0,0.0}; /* Safe vector if SunValid
— FALSE +/

if (AG>Ncss = 0) {
/x AC>svb populated by true S—>svb in /f2sensors.c */
}

else {
for (Ic=0;Ic<AC—>Ncss; Ie++) {

Css = &AG—>CSS[Ic |;

if (Css—Valid) {
Nvalid++;
/* Normal equations, assuming Nwvalid will end up > 2 x/
for (i=0;i <3;i++) {

Atb[i] 4= Css—>Axis[i]*Css—=>Illum /Css—>Scale;

for (j=0;j <3;j++) {
AtATi][j] += Css—Axis[i]*Css—>Axis[j];
}
}

/* In case Nvalid ends up == 2 %/
for (i=0;i<3;i++) {

AL0][i] = A[1][i];

A[1][i] = Css—Axis[i];

}
b[0] = Db[1];
b

[1] = Css—>Illum/Css—>Scale;
}

}
if (Nvalid > 2) {
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AG—SunValid = TRUE;
MINV3(AtA, AtAi) ;
MxV(AtAi, Atb,AG—>svb);
UNITV (AG—>svb) ;
}
else if (Nvalid = 2) {
AG—>SunValid = TRUE;
for (i=0;i<3;i++) AC>svb[i] = b[0]*A[0][i] + b[1]xA[1][i];
UNITV (AG—=>svb) ;
}
else if (Nvalid = 1) {
AG—SunValid = TRUE;
for (i=0;i <3;i++) AG>svb[i] = Atb[i];

UNITV (AG—>svb) ;
}
else {
AG—SunValid = FALSE;
for (i=0;i <3;i++) AG=>svb[i] = InvalidSVB /i ];
}
}
}
/*

R R R I T T T I O I
*/
/* This function assumes FSS FOVs don’t overlap, and FSS overwrites CSS
*/
void FssProcessing(struct AcType *AC)
{
struct AcFssType *FSS;
double tanx ,tany,z;
long Ifss ,i;

for (Ifss=0;Ifss <AG>Nfss; Ifss++) {

FSS = &AG—>FSS|[Ifss |;

if (FSS—Valid) {
AG—>SunValid = 1;
tanx = tan (FSS—SunAng|0]) ;
tany = tan (FSS—>SunAng[1]) ;
z = 1.0/sqrt (1.04+tanx*tanx+tanys*tany);
FSS—SunVecS[0] = zxtanx;
FSS—SunVecS [1] = zx*xtany;
FSS—SunVecS [2] = z;
MTxV(FSS—CB, FSS—SunVecS ,FSS—SunVecB) ;
for (i=0;i <3;i++) AG=>svb[i] = FSS—SunVecB][i];
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¥
KK KKK KKK AAA A A A A A A A A KA A KKK KKK KKK KK AAAA A A A A KK KA K KA KKK KKK K
*/
/+ TODO: Weight measurements to reduce impact of “weak” axis */
void StarTrackerProcessing(struct AcType #AC)
{
long Ist ,i;
struct AcStarTrackerType *ST;
long Nvalid = 0;
double gbn[4];

if (AG>Nst = 0) {
/* AC=>qbn populated by true S—=>B[0].qn in 42sensors.c x/
AG—>StValid = TRUE;
}
else {
/+* Naive averaging */
for (i=0;i <4;i++) AG>gbn[i] = 0.0;
for (Ist=0;Ist <AG—>Nst; Ist++) {
ST = &AG>ST[Ist |;
if (ST>Valid) {
Nvalid++;
QTxQ(ST—>qb ,ST—>qn,gbn) ;
RECTIFYQ(gbn) ;
for (i=0;i <4;i++) AG>gbn[i] += gbn|[i];
¥

if (Nvalid > 0) {
AG—StValid = TRUE;
UNITQ(AG—>gbn) ;
}
else {
AG—=StValid = FALSE;
AG—>gbn[3] = 1.0;
}
}
¥
[ AR KA KRR KA A KR KKK KA A KKK KA A AT A KA KA A F KA KA AA
*
/
void GpsProcessing (struct AcType %AC)
{
struct AcGpsType *G;
double DaysSinceWeek , DaysSinceRollover ,DaysSinceEpoch ,JD;
long i;

if (AG>Ngps = 0) {

74



Aerospace engineering Master’s thesis

/* AC=>Time, AC=>PosN, AC=>VelN =/
/* populated in 42sensors.c */

else {
G = &AG>GPS[0];
/* GPS Time is seconds since 6 Jan 1980 00:00:00.0, which is
JD = 2444244.5 x/
DaysSinceWeek = G—=>Sec/86400.0;
DaysSinceRollover = DaysSinceWeek + 7.0xG—>Week;
DaysSinceEpoch = DaysSinceRollover + 7168.0xG—>Rollover;
JD = DaysSinceEpoch + 2444244.5;
/% AC>Time is seconds since J2000, which is JD = 2451545.0 */
AG—>Time = (JD—2451545.0)*86400.0;

/x Position, Velocity %/
for (i=0;i <3;i++) {
AG—>PosN[i] = AG>GPS[0].PosN |1 ];
AG—>VelN[i] = AG>GPS[0].VelN[i];
}
}
}
[ KA AR KA KKK KA KR KKK R KA A KKK KA A AT A A A KA A F KA KA A
*/
void AccelProcessing (struct AcType *AC)
{
}
[ KRR KA KKK KA A KKK KA A K F KA A KKK KA A AT A A A KA AF KKK A KA
*/
/* FEnd Sensor Processing Functions
*/
/>/<>/<>/<>/<>/<>I<>I<>l<>/<>/<>/<>/<>I<>I<>/<>/<>/<>/<>I<>I<>I<>/<>/<>/<>/<>I<>l<***>/<>/<>I<>l<>l<>/<>/<>/<>/<>I<>l<>l<>/<*>/<>/<>I<>I<*********************
*/
/+ Some Actuator Processing Functions
*/
[ KRR KA KA AR KA AR K KA A AR R KA A A KK KA AR KA A A KKK A AR A A E KA A
*/
void WheelProcessing (struct AcType *AC)
{
struct AcWhlType *W;
long Iw;

for (Iw=0;Iw<AG—>Nwhl; Iw++) {

W = &AG—>Whl[Iw | ;

W—>Temd = Limit(—VoV(AG>Temd ,W=>DistVec),—W->Tmax, W>Tmax) ;
}
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/>I<***************************>/<>I<**************>I<>k***********************

*/
void MtbProcessing (struct AcType *AC)
{
struct AcMtbType =*M;
long Im;

for (Im=0;Im<AG—>Nmtb; Im++) {
M = &AG>MIB[Im | ;
M—>Memd = Limit (VoV(AG—>Mcmnd,M—DistVec ) ,—M-=>Mmax, M—>Mmax) ;
}
}
[ KA KK AR KA A KKK KA AR KA A KKK A A A KA KA F A A A KKK A KA KKK KA A
*/
/* End Actuator Processing Functions
*/
[ KA KK AR KA KKK KA KRR KA KKK A KKK KA A F KA A KKK KA A F KA A KKK A A
*/
void AcFsw(struct AcType *AC)
{
struct AcCfsCtrlType =*C;
struct AcJointType xG;
double L1[3],L2[3],L3[3];
double HxB[3];
long i,j;

C = &AG—CfsCtrl;

G = &AC>G0];
if (C=>Init) {
C—>Init = 0;
for (i=0;i <3;i++) FindPDGains (AG>MOI[i][i],0.1,0.7,&C>Kr[i],&
CG>Kp[i]);

C—>Kunl = 1.0E6;

FindPDGains (100.0,0.2,1.0,&G—>AngRateGain[0] ,&G—>AngGain [0]) ;
G—MaxAngRate [0] = 1.0xD2R;

G—>MaxTrq[0] = 10.0;

}

/% .. Sensor Processing */
GyroProcessing (AC) ;
MagnetometerProcessing (AC) ;
CssProcessing (AC) ;
FssProcessing (AC) ;
StarTrackerProcessing (AC) ;
GpsProcessing (AC) ;
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/*

Commanded Attitude x*/

if (AG>GPS[0].Valid) {
CopyUnitV (AG—>PosN,L3) ;
VxV(AG—>PosN ,AG—>VelN | L2);

UNITV(L2) ;

UNITV(L3) ;

for (i=0;i <3;i++) {
L2[i] = —-L2[i];
L3[i] = -L3[i];

}

VxV(L2,L3,L1);

UNITV(L1);

for (i=0;i <3;i++)
ACSCIN[0][i] = L1[i];
ACSCIN[1][i] = L2]1];
AG>CLN|[2][i] = L3[i];

}

C2Q(AG—>CLN,AG—>qln) ;

AC>wln [1] = -MAGV(AC->VeIN ) /MAGV(AC->PosN ) ;

—_

}

else {
for (i=0;i <3;i++) {
for (j=0;j<3;j++) {
AG—>CIN[i][j] = 0.0;
}
AG>CIN[i][i] = 1.0;
AG—>qln[i] = 0.0;
AG>wlIn[i] = 0.0;
}
AG—>qln [3] = 1.0;
}

Attitude Control */

if (AG>StValid) {
QxQT (AG—>gbn ,AG>Cmd. qrn ,AG=>qbr) ;
RECTIFYQ(AG—qgbr) ;

else {
for (i=0;i <3;i++) AG>qgbr[i] = 0.0;
AG—>qbr[3] = 1.0;
}
for (i=0;i<3;i++) {
C—=therr [i] = 2.0xAG—>qbr[i];
C>werr[i] = AG>whn[i] — AG>Cmd.wrn[i];

AG>Temd[i] = -C>Kr[i|*C>werr[i] — C>Kpli]*C—>therr[i];
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}

}

Momentum Management */
for (i=0;i<3;i++) {
AG—>Hvb[i] = AG>MOI[i][i]*AG>wbn[i];
for (j=0;j<AG—>Nwhl; j++) AC—>Hvb[i] += AG—>Whl[j]. Axis[i]*AC—>
Whl[j].H;

}
VxV(AG—>Hvb,AG—=>bvb ,HxB) ;
for (i=0;i <3;i++) AG>Mand|[i] = CG=>Kunl«HxBJ[i];

Solar Array Steering x/
G—>Cmd. Ang[0] = atan2(AG—=>svb[0] ,AG>svb[2]);

Actuator Processing +*/
WheelProcessing (AC) ;
MtbProcessing (AC) ;

void SetPoint (struct AcType *AC) {

double C[3][3];

if (AG>FirstTime = 0) {
AG—>FirstTime = 1;
AG—initTime = AG—>Time;
}

if ((AG>Time — AG—=initTime) < 100) {
AG—>Cmd. Ang[0] = 0;
AG—>Cmd. Ang[1] = 0;
AG—>Cmd. Ang[2] = 0;

AG—>Cmd. RotSeq = 213;
}
else {
AG>Cmd. Ang[0] = 90;
AG—>Cmd. Ang[1] = 0;
AG>Cmd. Ang[2] = 0;
AG—>Cmd. RotSeq = 213;
}

A2C(AG=>Cmd. RotSeq ,AG—>Cmd. Ang [0] *D2R, AG—>Cmd. Ang[1]*D2R,AG—>Cmd.
Ang[2]*D2R,C) ;
C2Q(C,AG>Cmd. qrn) ;
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}

ACG>Cmd.wrn[0] =
AG>Cmd.wrn[1] = 0;
AG—>Cmd.wrn[2] = 0;

|
o

#ifdef _ACSTANDALONE_

/>l<********************************************************************

int main(int argc, char sxargv)

{

FILE xParmDumpFile;

char FileName[120];

struct AcType AC;

SOCKET Socket ;

char hostname[20] = "localhost”;
int Port = 10301;

if (arge > 1) {
AC.ID = atoi(argv[l]);
Port = Port + AC.ID;

¥

Allocate AC(&AC) ;
Socket = InitSocketClient (hostname ,Port 1) ;

/* Load parms */

AC. EchoEnabled = 1;
ReadFromSocket ( Socket ,&AC) ;
AC.FirstTime = 0;

SetPoint (&AC) ;

InitAC(&AC) ;
AcFsw(&AC) ;

sprintf (FileName,”./Database /AcParmDump%021d . txt” ,AC.ID) ;
ParmDumpFile = fopen (FileName , "wt”) ;

WriteToFile (ParmDumpFile, &AC) ;

fclose (ParmDumpFile) ;

WriteToSocket (Socket ,&AC) ;

while (1) {
ReadFromSocket ( Socket ,&AC) ;
SetPoint (&AC) ;
AcFsw(&AC) ;
WriteToSocket (Socket ,&AC) ;
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}

return (0) ;
}
#endif
/x #ifdef __cplusplus
*# )
**% #endif
*/
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Appendix I MODIFIED MAKEFILE

In this section, the modified makefile will be displayed, this modification was necessary to compile
a second AcApp.

NIRRT InInn 3 : :
AR Macro Definitions
NN,
T T ar Tl auTruulT

# Let’s try to auto—detect what platform we’re on.
# If this fails , set 42PLATFORM manually in the else block.
AUTOPLATFORM = Failed
ifeq ($(MSYSTEM) ,MINGW32)
AUTOPLATFORM = Succeeded
42PLATFORM = __MSYS__
endif
UNAMES := $(shell uname —s)
ifeq ($(UNAMES) ,Linux)
AUTOPLATFORM = Succeeded
42PLATFORM = __linux__
endif
ifeq ($(UNAMES) ,Darwin)
AUTOPLATFORM = Succeeded
42PLATFORM = __APPLE__
endif
ifeq ($(AUTOPLATFORM) ,Failed)
# Autodetect failed. Set platform manually.
#42PLATFORM = __APPLE__

#42PLATFORM = __linux__
42PLATFORM = __MSYS__
endif

GUIFLAG = -D _USE_GUL
HGUIFLAG =

SHADERFLAG = -D _USE_SHADERS.
#SHADERFLAG =

CFDFLAG =
#CFDFLAG = —D _ENABLE_CFD_SLOSH_

FFTBFLAG =
#FIBFLAG = —D _ENABLE FFTB_CODE.

#GSFCFLAG =
GSFCFLAG = —D _USE_.GSFC_WATERMARK_
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#STANDALONEFLAG =
STANDALONEFLAG = —D _AC_STANDALONE.

NOS3FSWFLAG =
#NOSFSWFLAG = —-D _ENABLE_NOS3_FSW._

#GLFWFLAG =
GLFWFLAG = —D _USE_.GLFW_

GMSECFLAG =
#GMSECFLAG = —D _[ENABLE_GMSEC_
ifeq ($(strip $(GMSECFLAG)) ,)
GMSECDIR =
GMSECINC =
GMSECBIN =
GMSECLIB =
else
GMSECDIR = ~/GMSEC/
GMSECINC = —I $(GMSECDIR) include/
GMSECBIN = L $(GMSECDIR) bin /
GMSECLIB = —IGMSECAPI
endif

# Basic directories
HOMEDIR = ./

PROJDIR = ./

KITDIR = $(PROJDIR)Kit /
OBJ = $(PROJDIR) Object /
INC = $(PROJDIR) Include/
SRC = $(PROJDIR) Source/
KITINC = $(KITDIR) Include/
KITSRC = $(KITDIR) Source/
INOUT = $(PROJDIR)InOut/
GSFCSRC = $(PROJDIR) /GSFC/Source/
IPCSRC = $(SRC)IPC/

#EMBEDDED = —D EMBEDDED MATLAB
EMBEDDED =

ifeq ($(42PLATFORM) ,__APPLE__)
# Mac Macros

CINC = —I /usr/include —I /usr/local/include

EXTERNDIR =

GLINC = —I /System/Library/Frameworks/OpenGL. framework/Headers/ —I /

System/Library /Frameworks /GLUT. framework /Headers/

# ARCHFLAG = —arch i386
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ARCHFLAG = —arch x86_64

LFLAGS = —bind_at_load
ifeq ($(strip $(GLFWFLAG)) ,)
LIBS = —framework System —framework Carbon —framework OpenGL —
framework GLUT
GUIOBJ = $(OBJ)42GlutGui.o $(OBJ) glkit .o
else
LIBS = —lIglfw —framework System —framework Carbon —framework
OpenGL —framework GLUT
GUIOBJ = $(OBJ)42¢glfwgui.o $(OBJ)glkit .o
endif
EXENAME = 42
CC = gcc
endif

ifeq ($(42PLATFORM) , __linux__)
# Linux Macros
CINC =
EXTERNDIR =

ifneq ($(strip $(GUIFLAG)) ,)
GUIOBJ = $(OBJ)42GlutGui.o $(OBJ) glkit .o
#GLINC = —I /usr/include/
GLINC = —I $(KITDIR)/include /GL/
LIBS = —1glut —IGLU —IGL —1dl —Im
LFLAGS = —L $(KITDIR) /GL/lib /
ARCHFLAG =

else
GUIOBJ =
GLINC =
LIBS = —1d1 —Im
LFLAGS =
ARCHFLAG =

endif

ifneq ($(strip $(NOSSFSWFLAG)) ,)
LIBS += —Ipthread

endif

EXENAME = 42

CC = gcc

endif

ifeq ($(42PLATFORM) ,__MSYS_.)

CINC =
EXTERNDIR = /c/42ExternalSupport/
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ifneq ($(strip $(GUIFLAG)) ,)
GLEW = $ (EXTERNDIR)GLEW/
GLUT = $ (EXTERNDIR) freeglut /
LIBS = —lopengl32 —lIglu32 —lfreeglut —lws2_32 —Iglew32

LFLAGS = —L $(GLUT)lib/ —L $(GLEW)lib/
GUIOBJ = $(OBJ)42GlutGui.o $(OBJ) glkit .o
GLINC = —1 $(GEW)include /GL/ —1 $(GLUT)include /GL/
ARCHFLAG = —D GLUTNO_LIBPRAGMA —D GLUTNO_WARNING_DISABLE —D
GLUT_DISABLE_ATEXIT_HACK

else
GUIOBJ =
GLINC =
LIBS = —lws2_32
LFLAGS =
ARCHFLAG =

endif

EXENAME = 42.exe

CC = gcc

endif

# If not using GUI, don’t compile GUl-related files
ifeq ($(strip $(GUIFLAG)) ,)

GUIOBJ =
endif

# If not in FFIB, don’t compile FFITB-related files
ifneq ($(strip $(FFIBFLAG)) ,)
FFTBOBJ = $(OBJ)42fftb .o
else
FFTBOBJ =
endif

ifneq ($(strip $(CFDFLAG)) ,)
SLOSHOBJ = $(OBJ)42CtdSlosh . o
else
SLOSHOBJ =
endif

# If not _ACSTANDALONE., link AcApp.c in with the rest of 42
ifneq ($(strip $(STANDALONEFLAG)) ,)
ACOBJ =
else
ACOBJ = $(OBJ)AcApp.o
ACOBJ2 = $(OBJ)AcApp2.0
endif
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ifneq ($(strip $(GMSECFLAG)) ,)
GMSECOBJ = $(OBJ) gmseckit .o
ACIPCOBJ = $(OBJ) AppReadFromFile.o $(OBJ)AppWriteToGmsec.o $(OBJ)
AppReadFromGmsec.o \
$(OBJ) AppWriteToSocket.o $(OBJ) AppReadFromSocket.o $(OBJ)
AppWriteToFile.o
SIMIPCOBJ = $(OBJ)SimWriteToFile.o $(OBJ)SimWriteToGmsec.o $(OBJ)
SimWriteToSocket .o \
$(0OBJ)SimReadFromFile.o $(OBJ)SimReadFromGmsec.o $(OBJ)
SimReadFromSocket . o
else
GMSECOBJ =
ACIPCOBJ = $(OBJ) AppReadFromFile.o \
$(OBJ) AppWriteToSocket.o $(OBJ)AppReadFromSocket.o $(OBJ)
AppWriteToFile.o
SIMIPCOBJ = $(OBJ)SimWriteToFile.o $(OBJ)SimWriteToSocket.o \
$(0OBJ)SimReadFromFile.o $(OBJ)SimReadFromSocket .o
endif

420BJ = $(0OBJ)42main.o $(0OBJ)42exec.o $(0OBJ)42actuators.o $(0OBJ)42cmd.o

\

OBJ)42dynamics.o $(OBJ)42environs.o $(OBJ)42ephem.o $(OBJ)42fsw.o \

$(OBJ)
$(OBJ)42init .o $(OBJ)42ipc.o $(OBJ)42perturb.o $(OBJ)42report.o \
$(0OBJ)42sensors.o \

$(0OBJ)42no0s3.0

KITOBJ = $(OBJ)dcmkit.o $(OBJ)envkit.o $(OBJ)fswkit.o $(OBJ)geomkit.o \
$(OBJ)iokit.o $(OBJ)mathkit.o $(OBJ)nrlmsise00kit.o $(OBJ)msis86kit.o \
$

(OBJ) orbkit .o $(OBJ)radbeltkit.o $(OBJ)sigkit.o $(OBJ)sphkit.o $(OBJ)

timekit .o

ACKITOBJ = $(OBJ)dcmkit.o $(OBJ)mathkit.o $(OBJ)fswkit.o $(OBJ)iokit .o

$(OBJ) timekit .o

ACIPCOBJ = $(OBJ) AppReadFromFile.o \

$(OBJ) AppWriteToSocket.o $(OBJ)AppReadFromSocket.o $(OBJ) AppWriteToFile

.0

#ANSIFLAGS = —Wstrict—prototypes —pedantic —ansi —Werror
ANSIFLAGS =

CFLAGS = —Wall —Wshadow —Wno-deprecated —g $(ANSIFLAGS) $(GLINC) $(

CINC) —I $(INC) —I $(KITINC) —I $(KITSRC) $(GMSECINC) —O0 $(ARCHFLAG

) $(GUIFLAG) $(SHADERFLAG) $(CFDFLAG) $(FFTBFLAG) $(GSFCFLAG) $(
GMSECFLAG) $ (STANDALONEFLAG) $ (NOS3FSWFLAG) $(GLFWFLAG)
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A L L )L 3

T i i i RUIeS tO llnk 42
L ) ) ) ) )
T i i i1t

42 : $(420BJ) $(GUIOBJ) $(SIMIPCOBJ) §(FFTBOBJ) §(SLOSHOBJ) $(KITOBJ) §
(ACOBJ) $(GMSECOBJ)
$(CC) $(LFLAGS) $(GMSECBIN) —o $(EXENAME) $(420BJ) $(GUIOBJ) $(
FFTBOBJ) §(SLOSHOBJ) $(KITOBJ) $(ACOBJ) $(GMSECOBJ) §(
SIMIPCOBJ) $(LIBS) $(GMSECLIB)
AcApp : $(OBJ)AcApp.o $(ACKITOBJ) $(ACIPCOBJ) $(GMSECOBJ)
$(CC) $(LFLAGS) —o AcApp $(OBJ)AcApp.o $(ACKITOBJ) $(ACIPCOBJ)
$(GMSECOBJ) $(LIBS)

)AcApp2.0 $(ACKITOBJ) $(ACIPCOBJ) $(GMSECOBJ)
$ (LFLAGS) —o AcApp2 $(OBJ)AcApp2.0 $(ACKITOBJ) $(ACIPCOBJ
$(GMSECOBJ) $(LIBS)

AcApp2 : $(0OBJ
$(CC)
)

L ) ) S 1 3 2
T i R’uleb to Compl]‘e ObJeCtb
H H

$(OBJ)42main. o : $(SRC)42main.c
$(CC) $(CFLAGS) —c $(SRC)42main.c —o $(OBJ)42main.o

$(0OBJ)42exec.0 : $(SRC)42exec.c $(INC)42.h
$(CC) $(CFLAGS) —c $(SRC)42exec.c —o $(OBJ)42exec.o

$(OBJ)42actuators.o : $(SRC)42actuators.c $(INC)42.h $(INC)Ac.h $(INC)
AcTypes.h
$(CC) $(CFLAGS) —c $(SRC)42actuators.c —o $(OBJ)42actuators.o

$(0OBJ)42cmd.o : $(SRC)42cmd.c $(INC)42.h $(INC)Ac.h $(INC)AcTypes.h
$(CC) $(CFLAGS) —c $(SRC)42cmd.c —o $(OBJ)42cmd. o

$(OBJ)42dynamics.o : $(SRC)42dynamics.c $(INC)42.
$(CC) $(CFLAGS) —c $(SRC)42dynamics.c —o $(O B J)42dynamics .o
$(OBJ)42environs.o : $(SRC)42environs.c $(INC)42.h
) —c¢ §

$(CC) $(CFLAGS (SRC)42environs.c —o $(OBJ)42environs.o

$(OBJ)42ephem. o : $(SRC)42ephem.c $(INC)42.h
$(CC) $(CFLAGS) —c $(SRC)42ephem.c —o $(OBJ)42ephem.o

$(0OBJ)42fsw .o : $(SRC)42fsw.c $(INC)Ac.h $(INC)AcTypes.h
$(CC) $(CFLAGS) —c $(SRC)42fsw.c —o $(OBJ)42fsw.o
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$(OBJ)42¢glfwgui.o : $(SRC)42glfwgui.c $(INC)42.h $(INC)42glfwgui.
h
$(CC) $(CFLAGS) —c $(SRC)42glfwgui.c —o $(OBJ)42glfwgui.o

$(0OBJ)42GlutGui.o : $(SRC)42GlutGui.c $(INC)42.h $(INC)42GlutGui
.h
$(CC) $(CFLAGS) —c $(SRC)42GlutGui.c —o $(OBJ)42GlutGui.o
$(0OBJ)42init .o . $(SRC)42init.c $(INC)42.h
$(CC) $(CFLAGS) —c $(SRC)42init.c —o $(OBJ)42init .o
$(0OBJ)42ipc.o : $(SRC)42ipc.c $(INC)42.h
$(CC) $(CFLAGS) —c $(SRC)42ipc.c —o $(OBJ)42ipc.o
$(OBJ)42perturb.o : $(SRC)42perturb.c $(INC)42.h
$(CC) $(CFLAGS) —c $(SRC)42perturb.c —o $(OBJ)42perturb.o
$(OBJ)42report.o : $(SRC)42report.c $(INC)42.h
$(CC) $(CFLAGS) —c $(SRC)42report.c —o $(OBJ)42report.o
$(0OBJ)42sensors .o : $(SRC)42sensors.c $(INC)42.h $(INC)Ac.h $(INC)
AcTypes.h

$(CC) $(CFLAGS) —c $(SRC)42sensors.c —o $(OBJ)42sensors.o

$(OBJ)dcmkit . o : $(KITSRC) dcmkit . ¢
$(CC) $(CFLAGS) —c $(KITSRC)dcmkit.c —o $(OBJ)dcmkit .o

$(0OBJ) envkit .o : $(KITSRC) envkit . c
$(CC) $(CFLAGS) —c $(KITSRC)envkit.c —o $(OBJ)envkit.o

$(OBJ) fswkit .o : $(KITSRC) fswkit . c
$(CC) $(CFLAGS) —c $(KITSRC) fswkit.c —o $(OBJ)fswkit .o

$(OBJ) glkit .o . §(KITSRC) glkit .c $(KITINC) glkit .h
$(CC) $(CFLAGS) —c $(KITSRC) glkit.c —o $(OBJ) glkit .o

$ (OBJ) geomkit .o : $(KITSRC) geomkit.c $(KITINC)geomkit.h
$(CC) $(CFLAGS) —c $(KITSRC)geomkit.c —o $(OBJ)geomkit .o

$(OBJ) gmseckit .o : $(KITSRC) gmseckit.c $(KITINC) gmseckit.h
$(CC) $(CFLAGS) —c $(KITSRC) gmseckit.c —o $(OBJ)gmseckit.o

$(0OBJ)iokit .o : $(KITSRC) iokit .c
$(CC) $(CFLAGS) —c $(KITSRC)iokit.c —o $(OBJ)iokit .o

$(OBJ) mathkit .o : $(KITSRC) mathkit . c
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$(CC) $(CFLAGS) —c $(KITSRC)mathkit.c —o $(OBJ)mathkit.o

$(OBJ) nrlmsise00kit .o : $(KITSRC) nrlmsise00kit .c
$(CC) $(CFLAGS) —c $(KITSRC)nrlmsise00kit.c —o $(OBJ)
nrlmsise00kit .o

$(OBJ) msis86kit .o : $(KITSRC) msis86kit.c $(KITINC)msis86kit.h

$(CC) $(CFLAGS) —c $(KITSRC)msis86kit.c —o $(OBJ) msis86kit .o
$(OBJ) orbkit .o : $(KITSRC) orbkit . c

$(CC) $(CFLAGS) —c $(KITSRC)orbkit.c —o $(OBJ)orbkit.o
$(OBJ)radbeltkit .o : $(KITSRC) radbeltkit .c

$(CC) $(CFLAGS) —c $(KITSRC)radbeltkit.c —o $(OBJ)radbeltkit .o
$(0OBJ)sigkit .o : $(KITSRC) sigkit . c

$(CC) $(CFLAGS) —c $(KITSRC)sigkit.c —o $(OBJ)sigkit .o
$(OBJ) sphkit .o : $(KITSRC) sphkit . c

$(CC) $(CFLAGS) —c $(KITSRC)sphkit.c —o $(OBJ)sphkit.o
$(OBJ) timekit .o : $(KITSRC) timekit . c

$(CC) $(CFLAGS) —c $(KITSRC) timekit.c —o $(OBJ)timekit .o
$(OBJ)42CfdSlosh .o . §(GSFCSRC) 42 CfdSlosh.c §(INC)42.h

$(CC) $(CFLAGS) —c $(GSFCSRC)42CfdSlosh.c —o $(OBJ)42CfdSlosh.o
S(OBJ)42 ffth .o . $(GSFCSRC) 42 ffth .c $(INC)42.

$(CC) $(CFLAGS) —c §$(GSFCSRC)42tfth .c —o $(O B J)42tftb .o
$(OBJ)AcApp.o : $(SRC)AcApp.c $(INC)Ac.h $(INC)AcTypes.h

$(CC) $(CFLAGS) —c $(SRC)AcApp.c —o $(O B )AcApp.o

$(OBJ)AcApp2.o0 : $(SRC)AcApp2.c $(INC)Ac.h $(INC)AcTypes.h
$(CC) $(CFLAGS) —c $(SRC)AcApp2.c —o $(OBJ)AcApp2.o0

$(0OBJ)SimWriteToFile.o : $(IPCSRC)SimWriteToFile.c $(INC)42.h $(INC)
AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)SimWriteToFile.c —o $(OBJ)
SimWriteToFile.o

$(OBJ) SimWriteToGmsec.o : $(IPCSRC)SimWriteToGmsec.c $(INC)42.h $(INC)
AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)SimWriteToGmsec.c —o $(OBJ)
SimWriteToGmsec . o
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$(OBJ)SimWriteToSocket.o : $(IPCSRC)SimWriteToSocket.c $(INC)42.h $(
INC)AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)SimWriteToSocket.c —o $(OBJ)
SimWriteToSocket .o

$(OBJ)SimReadFromFile.o : $(IPCSRC)SimReadFromFile.c $(INC)42.h $(INC)
AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)SimReadFromFile.c —o $(OBJ)
SimReadFromFile.o

$ (OBJ) SimReadFromGmsec.o : $(IPCSRC)SimReadFromGmsec.c $(INC)42.h $(
INC) AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)SimReadFromGmsec.c —o $(OBJ)
SimReadFromGmsec. o

$(OBJ)SimReadFromSocket.o : $(IPCSRC)SimReadFromSocket.c $(INC)42.h $(
INC)AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)SimReadFromSocket.c —o $(OBJ)
SimReadFromSocket . o

$(OBJ) AppWriteToFile.o : $(IPCSRC)AppWriteToFile.c $(INC)42.h $(INC)
AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)AppWriteToFile.c —o $(OBJ)
AppWriteToFile.o

$ (OBJ) AppWriteToGmsec.o : $(IPCSRC)AppWriteToGmsec.c $(INC)42.h $(INC)
AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)AppWriteToGmsec.c —o $(OBJ)
AppWriteToGmsec. o

$(OBJ) AppWriteToSocket.o : $(IPCSRC)AppWriteToSocket.c $(INC)42.h $(
INC) AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)AppWriteToSocket.c —o $(OBJ)
AppWriteToSocket . o

$(0OBJ) AppReadFromFile.o : $(IPCSRC)AppReadFromFile.c $(INC)42.h $(INC)
AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)AppReadFromFile.c —o $(OBJ)
AppReadFromFile. o

$(OBJ) AppReadFromGmsec.o : $(IPCSRC)AppReadFromGmsec.c $(INC)42.h $(
INC)AcTypes.h
$(CC) $(CFLAGS) —c $(IPCSRC)AppReadFromGmsec.c —o $(OBJ)
AppReadFromGmsec . o

89



Aerospace engineering Master’s thesis

$(OBJ) AppReadFromSocket.o : $(IPCSRC)AppReadFromSocket.c $(INC)42.h $(
INC)AcTypes.h

$(CC) $(CFLAGS) —c $(IPCSRC)AppReadFromSocket.c —o $(OBJ)
AppReadFromSocket . o

$(OBJ)42no0s3 .0 : $(SRC)42nos3.c
$(CC) $(CFLAGS) —c $(SRC)42nos3.c —o $(OBJ)42nos3.0

Miscellaneous Rules

clean
ifeq ($(42PLATFORM) ,_WIN32)
del .\ Object\*.0 .\$(EXENAME) .\InOut\*.42
else ifeq ($(42PLATFORM) , WING64)
del .\ Object\x.0 .\$(EXENAME) .\InOut\=.42
else
rm —f $(OBJ)*.0 ./$(EXENAME) ./AcApp $(INOUT)=x.42 ./Standalone

/*.42 . /Demo/%.42 ./Rx/*.42 ./Tx/*.42
endif
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Appendix J IPC SIMULATION INPUTS

In this section the most important input files for the IPC simulation will be displayed. These inputs
include:

e Inp IPC
e Inp_Sim
e Orb_*
e SC_*1
e SC_*2

J.1 Inp IPC

LLLLLL<<<<< 42 InterProcess Comm Configuration File
SSSSSSSESSSSSSSS>
3 I Number of Sockets
ok ok Rk R kR Rk KRk R Rk kR ok kR kxR xRk xkkx TPC 0
sk sk sk 3k sk sk 3k sk sk ok sk sk sk sk 3k sk k ok sk sk sk sk %k sk k ok sk k ok

X ! IPC Mode (OFF,TX,RX,TXRX,ACS,
WRITEFILE, READFILE)

0 ' AC.ID for ACS mode

"State01.42” ! File name for WRITE or READ

SERVER ! Socket Role (SERVER,CLIENT,
GMSEC_CLIENT)

localhost 10301 ! Server Host Name, Port

TRUE ! Allow Blocking (i.e. wait on
RX)

TRUE ! Echo to stdout

3 ! Number of TX prefixes

”SC” ! Prefix 1

”?Orb” ! Prefix 2

"World” ! Prefix 3

ook ok ok ok ok ok kK Ok kK Rk Kok KRk ok Rk Rk sk kokokokkokok ok [PC ]
skosk 3k skosk sk sk sk skosk sk skoskosk sk sk skosk sk skoskosk sk skosk sk sk skosk

ACS I IPC Mode (OFF,TX,RX,TXRX,ACS,
WRITEFILE, READFILE)

0 ' AC.ID for ACS mode

"State00.42” ! File name for WRITE or READ

SERVER ! Socket Role (SERVER,CLIENT,
GMSEC_CLIENT)

localhost 10301 !'Server Host Name, Port

TRUE ! Allow Blocking (i.e. wait on
RX)

TRUE ! Echo to stdout
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1 ! Number of TX prefixes
"SC[0].AC” ! Prefix 0
$okokokok ok ok kR kR Rk kR ok Rk Rk kR okkokokkkxxxkx [PC ]

st sk sk sk sk sk sk ok ok ok S ok ok ok sk sk sk sk sk ok kR o ok ok ok sk sk sk

ACS I IPC Mode (OFF,TX,RX,TXRX,ACS,
WRITEFILE, READFILE)

1 ! AC.ID for ACS mode

"State01.42” ! File name for WRITE or READ

SERVER I Socket Role (SERVER,CLIENT,
GMSEC_CLIENT)

localhost 10301 !'Server Host Name, Port

TRUE ! Allow Blocking (i.e. wait on
RX)

TRUE ! Echo to stdout

1 ! Number of TX prefixes

"SC[1].AC” ! Prefix 0
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J.2 Inp_Sim

CLLLLLLLLLLLLL<<< 42 The Mostly Harmless Simulator >>55555555555555>
$okkokokokokkk Rk kR Rk kokkokokkkkxxx Simulation Control
ok sk sk sk sk sk sk ok Sk ok ok ok ok sk sk sk sk kR o ok ok ok ok ok

FAST ! Time Mode (FAST, REAL, or EXTERNAL)
5000.0 0.1 ! Sim Duration, Step Size [sec]

1.0 ! File Output Interval [sec]

FALSE ! Graphics Front End?

Inp_Cmd. txt ! Command Script File Name

sokkokok kR ok kok ok kokkkkkkkok ok k- Reference Orbits

st sk sk s ok ok sk ok sk ok sk ok sk ok s ok sk sk ok sk ok sk ok sk ok
1 ! Number of Reference Orbits
TRUE  Orb_LEO. txt !' Input file name for Orb 0
Fokk kR KRRk Rk Rk kR Rk Rk Rk kkkkkk  Spacecraft

st sk sk s sk sk ok sk ok sk ok sk ok sk sk sk ok sk ok sk ok sk ok ok Kk ok

2 ! Number of Spacecraft
TRUE 0 SC_test.txt ! Existence, RefOrb, Input file for SC 0
TRUE 0 SC_testl.txt ! Existence, RefOrb, Input file for SC 0

sk sk s ok ok kK ok Kok Kok kokok Kok Kok sk ok ok kokkokk k- Bnvironment
S ok ok o o o o K K K K K K KKK ok ok ok ok ok o K K K K
03 21 2016 ! Date (UIC) (Month, Day, Year)
12 00 00.00 ! Time (UTC) (Hr,Min, Sec)
0.0 ! Leap Seconds (sec)
|

USER F10.7, Ap (USER, NOMINAL or TWOSIGMA
)

230.0 ! If USERDEFINED, enter desired F10.7
value

100.0 ' If USER.DEFINED, enter desired AP
value

IGRF ! Magfield (NONE,DIPOLE,IGRF)

8§ 8 ! IGRF Degree and Order (<=10)

8 8 ! Earth Gravity Model N and M (<=18)

2 0 ! Mars Gravity Model N and M (<=18)

2 0 ! Luna Gravity Model N and M (<=18)

FALSE  FALSE ! Aerodynamic Forces & Torques (
Shadows)

FALSE '  Gravity Gradient Torques

FALSE  FALSE ! Solar Pressure Forces & Torques (
Shadows)

FALSE ! Gravity Perturbation Forces

FALSE ! Passive Joint Forces & Torques

FALSE !' Thruster Plume Forces & Torques

FALSE ! RWA Imbalance Forces and Torques

FALSE ! Contact Forces and Torques

FALSE ! CFD Slosh Forces and Torques
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FALSE ! Output Environmental Torques to
Files

sokckkokkokkokkkokkokkxokkkkx Celestial Bodies of Interest
kosk >k sk sk sk sk sk skosk sk skoskosk sk sk sk sk sk ok k

MEAN Ephem Option (MEAN or DE430)
FALSE Mercury

FALSE Venus

TRUE Earth and Luna

FALSE Mars and its moons

!
!
!
!
!
FALSE !' Jupiter and its moons
!
!
!
!
|

FALSE Saturn and its moons

FALSE Uranus and its moons

FALSE Neptune and its moons

FALSE Pluto and its moons

FALSE ! Asteroids and Comets

sopkkokkokokokkokokkokkk - Lagrange Point Systems of Interest sk soksorskokokskok ok

FALSE ! Earth—Moon

FALSE ! Sun—Earth

FALSE ! Sun—Jupiter

sk sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok k ke Ground Stations Sk 3k skosk 3k 3k 3k kosk sk skosk sk sk sk sk sk sk sk sk sk sk sk ok ok okok

5 ! Number of Ground
Stations

TRUE EARTH -77.0 37.0 7”GSFC” ! Exists, World, Lng, Lat,
Label

TRUE EARTH —155.6 19.0 ”South Point” I Exists, World, Lng, Lat,
Label

TRUE EARTH 115.4 —29.0 ”Dongara” I Exists, World, Lng, Lat,
Label

TRUE EARTH —-71.0 —33.0 ”Santiago” ! Exists, World, Lng, Lat,
Label

TRUE LUNA 45.0 45.0 "Moon Base Alpha” ! Exists, World, Lng, Lat,
Label
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J.3 Orb_*

L 42
Low Earth Orbit !
CENTRAL !
irriiriiiiii:: Use these lines
MINORBODY 2 !
FALSE !
.............. Use these lines
0 !
FALSE !
.............. Use these lines
EARTH !
FALSE !
KEP !

[\
jen)

0.0 0.0
0.0 0.0
"ORB_ID”
file

"TRV. txt” !
............. Use these lines
SUNEARTH !
LAGDOF_MODES !

o O O O
o O O O

TRV

Orbit Description File

if THREE BODY

SSSSSSEESSSEESSESS>
Description

Orbit Type (ZERO, FLIGHT, CENTRAL,
1f ZERO .................
World

Use Polyhedron
if FLIGHT
Region Number
Use Polyhedron
if CENTRAL
Orbit Center
Secular Orbit
Use Keplerian

Gravity

Drift Due to J2
elements (KEP) or (RV)

Use Peri/Apoapsis (PA) or min alt/ecc

Periapsis & Apoapsis Altitude , km

Min Altitude (km), Eccentricity
Inclination (deg)

Right Ascension of Ascending Node (deg

Argument of Periapsis (deg)
True Anomaly (deg)

RV Initial Position (km)

RV Initial Velocity (km/sec)
TLE or TRV format, Label to find

in

File name

Lagrange system
Propagate using LAGDOFMODES or

LAGDOF.COWELL or LAGDOF_SPLINE

MODES !

L2 !

800000.0 !

45.0 !

W !

0.0 !
, L5 only)

0.0 !
L5 only)

W !
L5 only)

Initialize with MODES or XYZ or FILE
Libration point (L1, L2, L3, L4, L5)
XY Semi—major axis, km

Initial XY Phase, deg (OCW from —Y)
Sense (CW, (CW), viewed from +Z
Second XY Mode Semi—major Axis, km (L4

Second XY Mode Initial Phase, deg (L4,

Sense (CW, (CW), viewed from +7Z (L4,
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400000.0

60.0

1.05 0.5 0.0

0.0 0.0 0.0
dimensional)

TRV "ORBID”
find in file

"TRV. txt”

$okok ok okokokkkokokkkkokkkkok Formation

L

0.0 0.0 0.0 123

L
0.0 0.0 0.0

! 7 Semi—axis, km

! Initial Z Phase, deg

!' Imnitial X, Y, Z (Non—dimensional)
!' Initial Xdot, Ydot, Zdot (Non—

! TLE, TRV or SPLINE format, Label to

! File name

Frame Parameters % %%k kokok ok o % % 4 % % % %
! Formation Frame Fixed in [NL]

! Euler Angles (deg) and Sequence

! Formation Origin expressed in [NL]

! Formation Origin wrt Ref Orbit (m)
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J.4 SC_*1

CLLLLLLLLLLLLL<<< 42 Spacecraft Description File SSSSSSEESSSEESSSSS>
1-U Cubesat ! Description

"Cube 17 ! Label

GenScSpriteAlpha .ppm ! Sprite File Name

CFS_FSW ! Flight Software Identifier

0.1 ! FSW Sample Time, sec

Fok Kk kKoK ok ok ok Rk ok sk kokokkokok sk k ok ok k. OTDIt Parameters sk oskoskoskosk skosk sk s o sk sk ok ok ok sk ok ok % % ok ok ok
ENCKE ! Orbit Prop FIXED, EULER_HILL, or ENCKE
CM ! Pos of CM or ORIGIN, wrt F

0.00000 0.00000 0.00000 ! Pos wrt F
0.00000 0.00000 0.00000 ! Vel wrt F
$oxokokkxokokkxokokkxkokkxkokkxkkokkxkx  Initial Attitude

sk sk ok sk sk ok sk K ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk ok ok K

NAN ! Ang Vel wrt [NL], Att [QA] wrt [NLF]
0.0 0.0 0.0 ! Ang Vel (deg/sec)
0.0 0.0 0.0 1.0 ! Quaternion

!

0.0 0.0 0.0 123 Angles (deg) & Euler Sequence
ok ook ok ok kR sk ok ok kR ook skokskokkkokkokk ok Dynamics Flags
K ok oK K ok oK K ok oK Kk oK Kk oK Kk KK R KK koK K

DYN_JOINT ! Rotation STEADY, KIN_JOINT, or
DYN_JOINT

FALSE ! Passive Joint Forces and Torques
Enabled

FALSE ! Compute Constraint Forces and Torques

REFPT_CM ! Mass Props referenced to REFPT.CM or
REFPT_JOINT

FALSE ! Flex Active

FALSE ! Include 2nd Order Flex Terms

2.0 ! Drag Coefficient

>k 3k 3k 3k 3k 3k sk sk sk sk sk ok Sk sk ko sk sk sk ok ok ok sk >k >k >k ok ok 3k 3k 3k sk sk skosk sk sk sk sk sk ok sk sk ok sk sk ok sk ok >k >k >k sk sk ok ok 3k sk sk skoskosk sk sk skosk ok ok ok ok ok ok ok

ok sk okok ok ok ok kR skokskkokok ok kol kol kkokx Body  Parameters
sk 3k 3 5k ok ok ok ok K ok ok ok ok K ok Kk ok Kk oK Kk Kok X
sk % sk ok ok ok ok Kk Kk ok ok ok ok ok Kk Kk ok ok ok ok Kk oKk ok ok ok ok Kk oK K ok ok ok ok ok Kk oKk ok ok ok Kok KOk Kk ok ok

1 ! Number of Bodies
Body 0
1.0 I Mass
2.0 3.0 1.2 ! Moments of Inertia (kg—m"2)
0.0 0.0 0.0 ! Products of Inertia (xy,xz,yz)
0.0 0.0 0.0 ! Location of mass center, m
0.0 0. 0.0 ! Constant Embedded Momentum (Nms)
Cubesat_1U . obj ! Geometry Input File Name
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NONE

! Flex File Name

>k 3k 3k 3k sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok sk sk sk ok sk sk sk sk sk skook ok ok ok ok ok ok ok ok ok ok ok

kokok ok okok sk okok kokkokok sk ok ok sk ok kkokkokkk k. Joint Parameters

>k 3k 3k >k >k 3k 3k >k 3k 3k sk sk 3k 3k >k ok 3k 3k 3k ok 3k ok ok ok ok ko

>k 3k 3k 3k 3k 3k sk ok sk sk sk ok ok ok sk ok sk sk sk ok ok sk ok >k sk sk ok ok 3k 3k 3k sk sk sk sk sk sk sk ok ok ok sk sk sk sk ok sk ok >k >k sk sk ok ok 3k 3k 3k sk skoskosk sk skoskook ok ok ok ok ok ok ok

(Number of Joints is Number of Bodies minus one)

Joint 0

1

0
1 213
0

123
FALSE FALSE
FALSE FALSE

0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
)

0.0 0.0
rad)
0.0 0.0

0.0 0.

0.
0.

sl vl anllen B en)
o OO oo

GIMBAL

0
0

! Inner, outer body indices
! RotDOF, Seq, GIMBAL or SPHERICAL
! TrnDOF, Seq

! RotDOF Locked

I TrnDOF Locked

! Imitial Angles [deg]

! Inmitial Rates, deg/sec
! Initial Displacements [m]

! Initial Displacement Rates, m/sec

! Bi to Gi Static Angles [deg] & Seq

! Go to Bo Static Angles [deg] & Seq

! Position wrt inner body origin, m

! Position wrt outer body origin, m

! Rot Passive Spring Coefficients (Nm/rad

! Rot Passive Damping Coefficients (Nms/

! Trn Passive Spring Coefficients (N/m)
! Trn Passive Damping Coefficients (Ns/m)

sk kokokokok kR xRk kkkkokkkkkkxx k%% Wheel Parameters
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok

3

! Number of wheels

Wheel 0

0.0
1.0
1E3
0.012
0.48
13.7

0.0
3E3

0.0

! Initial Momentum, N-m—sec

! Wheel Axis Components, [X, Y, Z]
I Max Torque (N-m), Momentum (N-m—sec)
! Wheel Rotor Inertia, kg—m"2
! Static Imbalance, g—cm
! Dynamic Imbalance, g—cm”2
I Flex Node Index

Wheel 1

0.0
0.0
1E3
0.012

3E3

0.0

! Imitial Momentum, N-m—sec
! Wheel Axis Components, [X, Y, Z]

! Max Torque (N-m), Momentum (N-m—sec)
! Wheel Rotor Inertia, kg—m"2
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0.48 ! Static Imbalance, g—cm
13.7 ! Dynamic Imbalance, g—cm”2
0 ! Flex Node Index

Wheel 2
0.0 Initial Momentum, N-m-sec

!
0.0 0.0 1.0 ! Wheel Axis Components, [X, Y, Z]
1E3 3E3 ! Max Torque (N-m), Momentum (N-m-sec)

!

!

!

0.012 Wheel Rotor Inertia, kg—n"2
0.48 Static Imbalance, g—m
13.7 Dynamic Imbalance, g—cm”2

0 ! Flex Node Index
sk ok okokok ok kR Rk Rk Rk okokkkkxxkkkxxx MIB Parameters
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ko K ok ok ok ok

3 ! Number of MTBs
MIB 0
180.0 ! Saturation (A-m"2)
1.0 0.0 0.0 ! MIB Axis Components, [X, Y, Z]
I Flex Node Index
MIB 1
180.0 ! Saturation (A-m"2)
0.0 1.0 0.0 ! MIB Axis Components, [X, Y, Z]
0 ! Flex Node Index
MIB 2
180.0 ! Saturation (A-m"2)
0.0 0.0 1.0 ! MIB Axis Components, [X, Y, Z]
0 ! Flex Node Index

sk kokkokokkkxxxkkkkkkkkkkkxx Lhruster Parameters
ok ok ok Kk ok ok ok Kk ok ok ok Kk K Kok K

0 ! Number of Thrusters
Thr 0
1.0 Thrust Force (N)

1.0 1.0 1.0 Location in B0, m
0 Flex Node Index
ok Ok sk kR Ok Sk KR RR kKR ROk R ok Rk ok kok k- GyTO

!

0 —1.0 0.0 0.0 ! Body, Thrust Axis
!
!

3k 3k 5k ok 3kook ok skok ok ok skok ok skok ok sk ok sk ok skok sk skok ok ok sk ok skook ok kok

3 ! Number of Gyro Axes
Axis 0
0.1 ! Sample Time, sec
1.0 0.0 0.0 ! Axis expressed in Body Frame
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! Max Rate, deg/sec
! Scale Factor Error, ppm
! Quantization , arcsec
! Angle Random Walk (deg/rt—hr)
! Bias Stability (deg/hr) over timespan

! Angle Noise, arcsec RMS
I' Initial Blas (deg/hr)

! Flex Node Index

Axis 1

0.0 1.0 0.0
1000.0

o O
o O
— =

! Sample Time, sec
! Axis expressed in Body Frame
! Max Rate, deg/sec
Scale Factor Error, ppm
! Quantization, arcsec
! Angle Random Walk (deg/rt—hr)
! Bias Stability (deg/hr) over timespan

! Angle Noise, arcsec RMS
I Initial Blas (deg/hr)

! Flex Node Index

Axis 2

0.01
0.01
0

! Sample Time, sec
! Axis expressed in Body Frame
! Max Rate, deg/sec
Scale Factor Error, ppm
! Quantization , arcsec
! Angle Random Walk (deg/rt—hr)
! Bias Stability (deg/hr) over timespan

! Angle Noise, arcsec RMS
! Initial Blas (deg/hr)
! Flex Node Index

sk 5k 5k 5k 5k 5k K 5k K sk sk sk ok ok %k %k ok ok sk sk ok sk sk ok ok ok ok Magnetometer

>k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skok

3

! Number of Magnetometer Axes
Axis 0

0.1

1.0 0.0 0.0
60.0E—6

0.0
1.0E—6
1.0E—6

Sample Time, sec

Axis expressed in Body Frame
Saturation , Tesla

Scale Factor Error, ppm
Quantization , Tesla

Noise, Tesla RMS
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Flex Node Index

Axis 1

Sample Time, sec

Axis expressed in Body Frame
Saturation , Tesla

Scale Factor Error, ppm
Quantization , Tesla

Noise, Tesla RMS

Flex Node Index

Axis 2

*¥ O R R OO OO

Sample Time, sec

Axis expressed in Body Frame
Saturation, Tesla

Scale Factor Error, ppm
Quantization , Tesla

Noise, Tesla RMS

Flex Node Index

Fokkokokokokok ok Rk Rk kkkkokokk k% Coarse Sun Sensor

>k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skok

Number of Coarse Sun Sensors

CSS 0

Sample Time, sec
Axis expressed in Body Frame
Half—cone Angle, deg

Flex Node Index

Sample Time, sec
Axis expressed in Body Frame
Half—cone Angle, deg

Flex Node Index

Sample Time, sec

Axis expressed in Body Frame
Half—cone Angle, deg

0.

0 1.0 0.0 0.0 !

180.0 !

1.0 ! Scale Factor
0.001 ! Quantization
0 !

CSS 1

0.1 !

0 0.0 1.0 0.0 !

180.0 !

1.0 ! Scale Factor
0.001 ! Quantization
0 !

CSS 2

0.1 !

0 0.0 0.0 1.0 !

180.0 !

1.0 ! Scale Factor
0.001 ! Quantization
0 !

Flex Node Index
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$okkokokokokkok ok ok ok kkkkokkokkkkkkx Fine Sun Sensor
sk sk ok sk ok ok sk ok sk sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk ok sk ok sk ok
0 ! Number of Fine Sun Sensors

FSS 0

0.2 ! Sample Time, sec

3 ! Mounting Angles (deg), Seq in Body

3 ' X, Y FOV Size, deg

0.1 ! Noise Equivalent Angle, deg RMS

0.5 ! Quantization , deg

0 ! Flex Node Index

Kook ko ok ok Rk kR Rk ok ok kkokxkkkkokx - Star Tracker
i s I I TIITI I T

3 ! Number of Star Trackers

ST 0

! Sample Time, sec
0.0 0.0 213 ! Mounting Angles (deg), Seq in Body
' X, Y FOV Size, deg
0.0 ! Sun, Earth, Moon Exclusion Angles, deg
20.0 ! Noise Equivalent Angle, arcsec RMS
! Flex Node Index

SN O oo o
OO O O
Q0
e

ST 0

.1 ! Sample Time, sec

0 0.0 213 ! Mounting Angles (deg), Seq in Body

.0 ' X, Y FOV Size, deg

0.0 ! Sun, Earth, Moon Exclusion Angles, deg

20.0 ! Noise Equivalent Angle, arcsec RMS
! Flex Node Index

SN O oo
O O O .

ST 0

! Sample Time, sec
0.0 0.0 213 ! Mounting Angles (deg), Seq in Body
8.0 ' X, Y FOV Size, deg
0.0 ! Sun, Earth, Moon Exclusion Angles, deg
20.0 ! Noise Equivalent Angle, arcsec RMS
I Flex Node Index

Kok ok ok ok ok ok ok ok ok kR ok ok ok kR ok ok ok kR kkx ok k ok GPS

*¥ O N O oo O
SO OO+

Sk sk sk sk sk sk sk sk skosk sk sk skosk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok ok sk sk
1 ! Number of GPS Receivers

GPSR 0

oy

! Sample Time, sec
! Position Noise, m RMS
! Velocity Noise, m/sec RMS

O =~ O
o O N
[\
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20.0E—9 ! Time Noise, sec RMS
0 ! Flex Node Index
sok xRk ok kR ok Rk ok ok xRk Rk Rk Rk xkx Accelerometer

Sk skosk sk 3k 3k 3k 3k skosk sk sk skosk sk sk sk sk kosk sk sk sk sk sk sk ok ki kokok

0 ! Number of Accel Axes
Axis 0
0.1 ! Sample Time, sec
0.5 1.0 1.5 | Position in B[0] (m)
1.0 0.0 0.0 ! Axis expressed in Body Frame
1.0 ! Max Acceleration (m/s"2)
0.0 ! Scale Factor Error, ppm
0.05 ! Quantization, m/s"2
0.0 ! DV Random Walk (m/s/rt—hr)
0.0 1.0 ! Bias Stability (m/s"2) over timespan (
hr)
0.0 ! DV Noise, m/s
0.5 ! Initial Bias (m/s"2)
0 I Flex Node Index
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J.5 SC_*2

CLLLLLLLLLLLLL<<< 42 Spacecraft Description File SSSSSSEESSSEESSSSS>
1-U Cubesat ! Description

"Cube 27 ! Label

GenScSpriteAlpha .ppm ! Sprite File Name

CFS_FSW ! Flight Software Identifier

0.1 ! FSW Sample Time, sec

Fok Kk kKoK ok ok ok Rk ok sk kokokkokok sk k ok ok k. OTDIt Parameters sk oskoskoskosk skosk sk s o sk sk ok ok ok sk ok ok % % ok ok ok
ENCKE ! Orbit Prop FIXED, EULER_HILL, or ENCKE
CM ! Pos of CM or ORIGIN, wrt F

1.00000 1.00000 1.00000 ! Pos wrt F
0.00000 0.00000 0.00000 ! Vel wrt F
$oxokokkxokokkxokokkxkokkxkokkxkkokkxkx  Initial Attitude

sk sk ok sk sk ok sk K ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk ok ok K

NAN ! Ang Vel wrt [NL], Att [QA] wrt [NLF]
0.0 0.0 0.0 ! Ang Vel (deg/sec)
0.0 0.0 0.0 1.0 ! Quaternion

!

0.0 0.0 0.0 123 Angles (deg) & Euler Sequence
ok ook ok ok kR sk ok ok kR ook skokskokkkokkokk ok Dynamics Flags
K ok oK K ok oK K ok oK Kk oK Kk oK Kk KK R KK koK K

DYN_JOINT ! Rotation STEADY, KIN_JOINT, or
DYN_JOINT

FALSE ! Passive Joint Forces and Torques
Enabled

FALSE ! Compute Constraint Forces and Torques

REFPT_CM ! Mass Props referenced to REFPT.CM or
REFPT_JOINT

FALSE ! Flex Active

FALSE ! Include 2nd Order Flex Terms

2.0 ! Drag Coefficient

>k 3k 3k 3k 3k 3k sk sk sk sk sk ok Sk sk ko sk sk sk ok ok ok sk >k >k >k ok ok 3k 3k 3k sk sk skosk sk sk sk sk sk ok sk sk ok sk sk ok sk ok >k >k >k sk sk ok ok 3k sk sk skoskosk sk sk skosk ok ok ok ok ok ok ok

ok sk okok ok ok ok kR skokskkokok ok kol kol kkokx Body  Parameters
sk 3k 3 5k ok ok ok ok K ok ok ok ok K ok Kk ok Kk oK Kk Kok X
sk % sk ok ok ok ok Kk Kk ok ok ok ok ok Kk Kk ok ok ok ok Kk oKk ok ok ok ok Kk oK K ok ok ok ok ok Kk oKk ok ok ok Kok KOk Kk ok ok

1 ! Number of Bodies
Body 0
1.0 I Mass
2.0 3.0 1.2 ! Moments of Inertia (kg—m"2)
0.0 0.0 0.0 ! Products of Inertia (xy,xz,yz)
0.0 0.0 0.0 ! Location of mass center, m
0.0 0. 0.0 ! Constant Embedded Momentum (Nms)
Cubesat_1U . obj ! Geometry Input File Name
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NONE

! Flex File Name

>k 3k 3k 3k sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok sk sk sk ok sk sk sk sk sk skook ok ok ok ok ok ok ok ok ok ok ok

kokok ok okok sk okok kokkokok sk ok ok sk ok kkokkokkk k. Joint Parameters

>k 3k 3k >k >k 3k 3k >k 3k 3k sk sk 3k 3k >k ok 3k 3k 3k ok 3k ok ok ok ok ko

>k 3k 3k 3k 3k 3k sk ok sk sk sk ok ok ok sk ok sk sk sk ok ok sk ok >k sk sk ok ok 3k 3k 3k sk sk sk sk sk sk sk ok ok ok sk sk sk sk ok sk ok >k >k sk sk ok ok 3k 3k 3k sk skoskosk sk skoskook ok ok ok ok ok ok ok

(Number of Joints is Number of Bodies minus one)

Joint 0

1

0
1 213
0

123
FALSE FALSE
FALSE FALSE

0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
)

0.0 0.0
rad)
0.0 0.0

0.0 0.

0.
0.

sl vl anllen B en)
o OO oo

GIMBAL

0
0

! Inner, outer body indices
! RotDOF, Seq, GIMBAL or SPHERICAL
! TrnDOF, Seq

! RotDOF Locked

I TrnDOF Locked

! Imitial Angles [deg]

! Inmitial Rates, deg/sec
! Initial Displacements [m]

! Initial Displacement Rates, m/sec

! Bi to Gi Static Angles [deg] & Seq

! Go to Bo Static Angles [deg] & Seq

! Position wrt inner body origin, m

! Position wrt outer body origin, m

! Rot Passive Spring Coefficients (Nm/rad

! Rot Passive Damping Coefficients (Nms/

! Trn Passive Spring Coefficients (N/m)
! Trn Passive Damping Coefficients (Ns/m)

sk kokokokok kR xRk kkkkokkkkkkxx k%% Wheel Parameters
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok

3

! Number of wheels

Wheel 0

0.0
1.0
1E3
0.012
0.48
13.7

0.0
3E3

0.0

! Initial Momentum, N-m—sec

! Wheel Axis Components, [X, Y, Z]
I Max Torque (N-m), Momentum (N-m—sec)
! Wheel Rotor Inertia, kg—m"2
! Static Imbalance, g—cm
! Dynamic Imbalance, g—cm”2
I Flex Node Index

Wheel 1

0.0
0.0
1E3
0.012

3E3

0.0

! Imitial Momentum, N-m—sec
! Wheel Axis Components, [X, Y, Z]

! Max Torque (N-m), Momentum (N-m—sec)
! Wheel Rotor Inertia, kg—m"2
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0.48 ! Static Imbalance, g—cm
13.7 ! Dynamic Imbalance, g—cm”2
0 ! Flex Node Index

Wheel 2
0.0 Initial Momentum, N-m-sec

!
0.0 0.0 1.0 ! Wheel Axis Components, [X, Y, Z]
1E3 3E3 ! Max Torque (N-m), Momentum (N-m-sec)

!

!

!

0.012 Wheel Rotor Inertia, kg—n"2
0.48 Static Imbalance, g—m
13.7 Dynamic Imbalance, g—cm”2

0 ! Flex Node Index
sk ok okokok ok kR Rk Rk Rk okokkkkxxkkkxxx MIB Parameters
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ko K ok ok ok ok

3 ! Number of MTBs
MIB 0
180.0 ! Saturation (A-m"2)
1.0 0.0 0.0 ! MIB Axis Components, [X, Y, Z]
I Flex Node Index
MIB 1
180.0 ! Saturation (A-m"2)
0.0 1.0 0.0 ! MIB Axis Components, [X, Y, Z]
0 ! Flex Node Index
MIB 2
180.0 ! Saturation (A-m"2)
0.0 0.0 1.0 ! MIB Axis Components, [X, Y, Z]
0 ! Flex Node Index

sk kokkokokkkxxxkkkkkkkkkkkxx Lhruster Parameters
ok ok ok Kk ok ok ok Kk ok ok ok Kk K Kok K

0 ! Number of Thrusters
Thr 0
1.0 Thrust Force (N)

1.0 1.0 1.0 Location in B0, m
0 Flex Node Index
ok Ok sk kR Ok Sk KR RR kKR ROk R ok Rk ok kok k- GyTO

!

0 —1.0 0.0 0.0 ! Body, Thrust Axis
!
!

3k 3k 5k ok 3kook ok skok ok ok skok ok skok ok sk ok sk ok skok sk skok ok ok sk ok skook ok kok

3 ! Number of Gyro Axes
Axis 0
0.1 ! Sample Time, sec
1.0 0.0 0.0 ! Axis expressed in Body Frame
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! Max Rate, deg/sec
! Scale Factor Error, ppm
! Quantization , arcsec
! Angle Random Walk (deg/rt—hr)
! Bias Stability (deg/hr) over timespan

! Angle Noise, arcsec RMS
I' Initial Blas (deg/hr)

! Flex Node Index

Axis 1

0.0 1.0 0.0
1000.0

o O
o O
— =

! Sample Time, sec
! Axis expressed in Body Frame
! Max Rate, deg/sec
Scale Factor Error, ppm
! Quantization, arcsec
! Angle Random Walk (deg/rt—hr)
! Bias Stability (deg/hr) over timespan

! Angle Noise, arcsec RMS
I Initial Blas (deg/hr)

! Flex Node Index

Axis 2

0.01
0.01
0

! Sample Time, sec
! Axis expressed in Body Frame
! Max Rate, deg/sec
Scale Factor Error, ppm
! Quantization , arcsec
! Angle Random Walk (deg/rt—hr)
! Bias Stability (deg/hr) over timespan

! Angle Noise, arcsec RMS
! Initial Blas (deg/hr)
! Flex Node Index

sk 5k 5k 5k 5k 5k K 5k K sk sk sk ok ok %k %k ok ok sk sk ok sk sk ok ok ok ok Magnetometer

>k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skok

3

! Number of Magnetometer Axes
Axis 0

0.1

1.0 0.0 0.0
60.0E—6

0.0
1.0E—6
1.0E—6

Sample Time, sec

Axis expressed in Body Frame
Saturation , Tesla

Scale Factor Error, ppm
Quantization , Tesla

Noise, Tesla RMS
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Flex Node Index

Axis 1

Sample Time, sec

Axis expressed in Body Frame
Saturation , Tesla

Scale Factor Error, ppm
Quantization , Tesla

Noise, Tesla RMS

Flex Node Index

Axis 2

*¥ O R R OO OO

Sample Time, sec

Axis expressed in Body Frame
Saturation, Tesla

Scale Factor Error, ppm
Quantization , Tesla

Noise, Tesla RMS

Flex Node Index

Fokkokokokokok ok Rk Rk kkkkokokk k% Coarse Sun Sensor

>k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skok

Number of Coarse Sun Sensors

CSS 0

Sample Time, sec
Axis expressed in Body Frame
Half—cone Angle, deg

Flex Node Index

Sample Time, sec
Axis expressed in Body Frame
Half—cone Angle, deg

Flex Node Index

Sample Time, sec

Axis expressed in Body Frame
Half—cone Angle, deg

0.

0 1.0 0.0 0.0 !

180.0 !

1.0 ! Scale Factor
0.001 ! Quantization
0 !

CSS 1

0.1 !

0 0.0 1.0 0.0 !

180.0 !

1.0 ! Scale Factor
0.001 ! Quantization
0 !

CSS 2

0.1 !

0 0.0 0.0 1.0 !

180.0 !

1.0 ! Scale Factor
0.001 ! Quantization
0 !

Flex Node Index
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$okkokokokokkok ok ok ok kkkkokkokkkkkkx Fine Sun Sensor
sk sk ok sk ok ok sk ok sk sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk ok sk ok sk ok
0 ! Number of Fine Sun Sensors

FSS 0

0.2 ! Sample Time, sec

3 ! Mounting Angles (deg), Seq in Body

3 ' X, Y FOV Size, deg

0.1 ! Noise Equivalent Angle, deg RMS

0.5 ! Quantization , deg

0 ! Flex Node Index

Kook ko ok ok Rk kR Rk ok ok kkokxkkkkokx - Star Tracker
i s I I TIITI I T

3 ! Number of Star Trackers

ST 0

! Sample Time, sec
0.0 0.0 213 ! Mounting Angles (deg), Seq in Body
' X, Y FOV Size, deg
0.0 ! Sun, Earth, Moon Exclusion Angles, deg
20.0 ! Noise Equivalent Angle, arcsec RMS
! Flex Node Index

SN O oo o
OO O O
Q0
e

ST 0

.1 ! Sample Time, sec

0 0.0 213 ! Mounting Angles (deg), Seq in Body

.0 ' X, Y FOV Size, deg

0.0 ! Sun, Earth, Moon Exclusion Angles, deg

20.0 ! Noise Equivalent Angle, arcsec RMS
! Flex Node Index

SN O oo
O O O .

ST 0

! Sample Time, sec
0.0 0.0 213 ! Mounting Angles (deg), Seq in Body
8.0 ' X, Y FOV Size, deg
0.0 ! Sun, Earth, Moon Exclusion Angles, deg
20.0 ! Noise Equivalent Angle, arcsec RMS
I Flex Node Index

Kok ok ok ok ok ok ok ok ok kR ok ok ok kR ok ok ok kR kkx ok k ok GPS

*¥ O N O oo O
SO OO+

Sk sk sk sk sk sk sk sk skosk sk sk skosk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok ok sk sk
1 ! Number of GPS Receivers

GPSR 0

oy

! Sample Time, sec
! Position Noise, m RMS
! Velocity Noise, m/sec RMS

O =~ O
o O N
[\
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20.0E—9 ! Time Noise, sec RMS
0 ! Flex Node Index
sok xRk ok kR ok Rk ok ok xRk Rk Rk Rk xkx Accelerometer

Sk skosk sk 3k 3k 3k 3k skosk sk sk skosk sk sk sk sk kosk sk sk sk sk sk sk ok ki kokok

0 ! Number of Accel Axes
Axis 0
0.1 ! Sample Time, sec
0.5 1.0 1.5 | Position in B[0] (m)
1.0 0.0 0.0 ! Axis expressed in Body Frame
1.0 ! Max Acceleration (m/s"2)
0.0 ! Scale Factor Error, ppm
0.05 ! Quantization, m/s"2
0.0 ! DV Random Walk (m/s/rt—hr)
0.0 1.0 ! Bias Stability (m/s"2) over timespan (
hr)
0.0 ! DV Noise, m/s
0.5 ! Initial Bias (m/s"2)
0 I Flex Node Index
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