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A B S T R A C T   

Background: Ground reaction forces are the gold standard for detecting gait events, but they are not always 
applicable in cerebral palsy. Ghoussayni’s algorithm is an event detection method based on the sagittal plane 
velocity of heel and toe markers. We aimed to evaluate whether Ghoussayni’s algorithm, using two different 
thresholds, was a valid event detection method in children with bilateral spastic cerebral palsy. We also aimed to 
define a new adaptation of Ghoussayni’s algorithm for detecting foot strike in cerebral palsy, and study the effect 
of event detection methods on spatiotemporal parameters. 
Methods: Synchronized kinematic and kinetic data were collected retrospectively from 16 children with bilateral 
spastic cerebral palsy (7 males and 9 females; age 8.9 ± 2.7 years) walking barefoot at self-selected speed. Gait 
events were detected using methods: 1) ground reaction forces, 2) Ghoussayni’s algorithm with a threshold of 
0.5 m/s, and 3) Ghoussayni’s algorithm with a walking speed dependent threshold. The new adaptation 
distinguished how foot strikes were performed (heel and/or toe) comparing the timing when the foot markers 
velocities fell below the threshold. Differences between the three methods, and between spatiotemporal pa
rameters calculated from the two Ghoussayni’s thresholds were analyzed. 
Findings: There were statistically significant (P < 0.05) differences between methods 1 and 3, and between some 
spatiotemporal parameters calculated from methods 2 and 3. Ghoussayni’s algorithm showed better performance 
for foot strike than for toe off. 
Interpretation: Ghoussayni’s algorithm using 0.5 m/s is valid in children with bilateral spastic cerebral palsy. 
Event detection methods affect spatiotemporal parameters.   

1. Introduction 

Cerebral palsy (CP) is the most common cause of chronic childhood 
motor disability (Pakula et al., 2009) with a prevalence of above 2 per 
1000 live births (Odding et al., 2006), and it describes a group of 

permanent disorders affecting movement and posture that are attributed 
to non-progressive lesions in the developing fetal or infant brain 
(Rosenbaum et al., 2007). Spasticity is often the dominant motor dis
order (Rethlefsen et al., 2010), along with loss of selective motor control 
and impaired balance, and secondary musculoskeletal problems like 
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muscle contractures, bony deformities, and joint instability appear as a 
consequence of growth and development of the musculoskeletal system 
(Narayanan, 2007). Their interaction, occurring at multiple levels, af
fects the quality and efficiency of gait, contributing to activity limitation 
and participation restriction (Narayanan, 2007). 

The instrumented gait analysis (IGA) allows a precise quantification 
of gait deviations through objective data that cannot be appreciated 
visually (Chang et al., 2010) and it is often used in the assessment of 
children with CP for multiple purposes (Theologis and Wright, 2015): 1) 
classification: six reliable and valid multiple joint patterns based on IGA 
have reached consensus (Papageorgiou et al., 2019); 2) decision- 
making: IGA can modify treatment decisions in case of disagreement 
with expert clinical evaluation or reinforce the decision in case of 
agreement (Benedetti et al., 2017; Wren et al., 2011); and 3) evaluation 
of treatment effects: IGA provide responsive outcome measures (Gómez- 
Pérez et al., 2019). 

Gait events are essential in different stages of IGA (Ghoussayni et al., 
2004), for example the determination of the gait cycle (from one foot 
strike (FS) to the successive FS on the same side), and stance and swing 
phases (separated by the toe off (TO)) (Chambers and Sutherland, 2002). 
FS is defined as the timing when foot contacts the ground and foot 
forward progression stops, and TO as the timing when toe leaves the 
ground or toe starts forward progression (Bruening and Ridge, 2014). 
These comprehensive definitions cover both healthy and pathological 
subjects, and include kinetic and kinematic components (Bruening and 
Ridge, 2014). 

Gait event detection is one of the most time-consuming processes in 
IGA (Bruening and Ridge, 2014). Accurate automated event detection is 
important to increase the efficiency and repeatability of IGA (Bruening 
and Ridge, 2014; Ghoussayni et al., 2004). Force plate measurements 
(ground reaction forces (GRF)) are considered the gold standard in the 
detection of gait events (Bruening and Ridge, 2014; Gonçalves et al., 
2019). However, this equipment is not always available in gait analysis 
laboratories (Bruening and Ridge, 2014; Ghoussayni et al., 2004) and/or 
applicable in pathological populations such as CP (Bruening and Ridge, 
2014; Gonçalves et al., 2019), as some subjects step with more than one 
foot on each force plate (Gonçalves et al., 2019) or slide or drag their feet 
in swing phase, creating false force thresholds (Bruening and Ridge, 
2014). In these cases, marker detection systems (three-dimensional (3D) 
marker coordinates) take relevance as alternative methods to GRF 
(Bruening and Ridge, 2014). Moreover, they present some advantages in 
comparison to GRF, such as the possibility of detecting gait events for 
several strides within the measurement volume, or their applicability in 
treadmill walking (Ghoussayni et al., 2004). 

There exist different gait event detection methods based on kine
matic data (Desailly et al., 2009; Ghoussayni et al., 2004; Hreljac and 
Marshall, 2000; Hsue et al., 2007; Zeni et al., 2008). When comparing 
these automated algorithms for the detection of gait events in children 
with CP, using visual inspection (Bruening and Ridge, 2014) or force 
plates (Gonçalves et al., 2019) as a reference, the algorithm reported by 
Ghoussayni et al. (Ghoussayni et al., 2004) (hereafter called Ghous
sayni’s algorithm) shows the best results. This algorithm is based on the 
velocity in the sagittal plane of two foot markers (heel and toe) 
(Ghoussayni et al., 2004). Two empirically set thresholds have been 
used: 0.05 m/s (Ghoussayni et al., 2004) (in healthy adult subjects) and 
0.5 m/s (Bruening and Ridge, 2014; Gonçalves et al., 2019) (in children 
with CP). Another threshold, walking speed dependent, was proposed to 
increase the accuracy of Ghoussayni’s algorithm in children with CP 
(Bruening and Ridge, 2014). However, in that case, no statistical results 
were reported in the study (Bruening and Ridge, 2014). 

In children with CP, six different gait patterns have reached 
consensus (genu recurvatum, drop foot, true equinus, jump gait, 
apparent equinus and crouch gait) (Papageorgiou et al., 2019). Beyond 
the gait pattern, children with CP perform FS in different ways (with the 
heel, toe, and/or both at the same time) (Read et al., 2003), and it is not 
always possible to distinguish them visually. This fact should be taken 

into account when detecting FS. Ghoussayni et al. (Ghoussayni et al., 
2004) validated their automated algorithm with healthy adults, so they 
did not address this issue. Bruening and Ridge (Bruening and Ridge, 
2014) classified the children in different gait patterns, and used the toe 
marker in place of the heel marker for the detection of FS in the equinus 
group. Gonçalves et al. (Gonçalves et al., 2019) also considered different 
gait patterns, but they detected FS using the heel marker in all cases. 

Validation of a new measurement method requires comparison with 
the gold standard (Doğan, 2018). The objective of the present study is to 
compare Ghoussayni’s algorithm, both using a threshold of 0.5 m/s 
(hereafter called Gho05) and using a walking speed dependent threshold 
(hereafter called GhoWS), with the gold standard (GRF) in order to 
evaluate if Gho05 and GhoWS can be used as alternative methods for the 
detection of gait events in children with bilateral spastic CP. Based on 
Ghoussayni et al. (Ghoussayni et al., 2004), Bruening and Ridge (Bru
ening and Ridge, 2014) and Gonçalves et al. (Gonçalves et al., 2019), our 
hypotheses are: 1) both Gho05 and GhoWS are valid alternatives to GRF 
for detecting gait events in children with bilateral spastic CP, and 2) 
GhoWS provides closer results to GRF than Gho05. We also aimed to 
define a new adaptation of Ghoussayni’s algorithm for the detection of 
FS in children with CP, according to the following requirement: the 
capability to distinguish the way any child with CP performs each FS 
(with the heel, toe, or both at the same time), independently of the gait 
pattern. Finally, we aimed to study the effect of gait event detection 
methods on spatiotemporal (ST) parameters. 

2. Methods 

Data were collected retrospectively from a previous study made at 
the Motion Analysis Laboratory of the Institut Guttmann (Badalona, 
Spain). 

2.1. Participants 

The potentially eligible participants were children with a diagnosis 
of bilateral spastic or mixed CP, age between 4 and 14 years, Gross 
Motor Function Classification System (GMFCS) (Reid et al., 2011) levels 
I to III, and ability to carry out simple verbal instructions. No child had 
moderate or severe pain, or severe visual impairment. Exclusion criteria 
were: 1) disability to walk 7 m independently without assistive devices; 
and 2) unavailability to detect at least one valid gait event using GRF. 
The study was approved by the Research Ethics Committee of the 
Institut Guttmann (Badalona, Spain), and parents gave written informed 
consent for participating in the study. 

2.2. Procedures 

Each child walked barefoot, without orthosis or assistive devices, at 
self-selected speed on a 7-m walkway. A minimum of three trials were 
collected. Two reflective markers (radius 15 mm) were placed on each 
foot (right and left), one on the posterior end of the calcaneus (heel 
marker) and the other on the second metatarsal head (toe marker), 
based on the Plug-in-Gait model (Kainz et al., 2017). 3D marker co
ordinates were measured using a six infrared cameras system (SMART- 
D, BTS Bioengineering, Milan, Italy). GRF were measured using two 
force plates (9286BA, Kistler, Granollers, Spain). Data were synchro
nously recorded at 140 Hz and filtered using a fourth order low pass 
Butterworth filter with a cutoff frequency of 6 Hz. Additionally, lateral 
and frontal views of feet motion were video recorded. 

2.2.1. Gait event detection using GRF (Gold Standard) 
Gait events were detected using a 10 N threshold from the vertical 

component of GRF. FS was estimated as the first frame with GRF vertical 
component above 10 N, and TO as the first frame below 10 N. Events were 
considered valid when only one foot was in contact with the force plate and 
its heel or toe (depending on the event type) was clearly located on the 
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force plate. 

2.2.2. New adaptation of Ghoussayni’s algorithm for the detection of foot 
strike in children with cerebral palsy 

We defined a new adaptation of Ghoussayni’s algorithm for detecting 
FS in children with CP. The new adaptation consisted of calculating 
sagittal plane velocities of the two foot markers (heel and toe) (Ghous
sayni et al., 2004), and comparing the timing (in frames) when each one 
fell below a given threshold. Three different situations made it possible 
to distinguish three types of FS: 1) heel strike: when heel marker velocity 
fell below the threshold before than toe marker velocity, 2) toe strike: 
when toe marker velocity fell below the threshold before than heel 
marker velocity, and 3) both at the same time: when both (heel and toe) 
marker velocities fell below the threshold at the same time. FS was 
estimated as the first frame with sagittal plane velocity of at least one of 
the two foot markers (heel and/or toe) below the threshold. 

In the present study, this new adaptation of Ghoussayni’s algorithm 
was applied using two different thresholds: 0.5 m/s (Gho05, see Section 
2.2.3), and a walking speed dependent threshold (GhoWS, see Section 
2.2.4). 

2.2.3. Gait event detection using Gho05 
The gait events previously detected with GRF were estimated using 

Ghoussayni’s algorithm (Ghoussayni et al., 2004) with a threshold of 
0.5 m/s (Bruening and Ridge, 2014). FS was estimated as the first frame 
with sagittal plane velocity of at least one of the two foot markers (heel 
and/or toe) below 0.5 m/s, using the new adaptation of Ghoussayni’s 
algorithm. TO was estimated as the first frame with sagittal plane ve
locity of the toe marker above 0.5 m/s. 

2.2.4. Gait event detection using GhoWS 
The gait events previously detected using GRF and Gho05 were also 

estimated using Ghoussayni’s algorithm (Ghoussayni et al., 2004) with a 
walking speed dependent threshold (Bruening and Ridge, 2014). Bru
ening and Ridge (Bruening and Ridge, 2014) defined the threshold (for 
FS and TO) as a simple function of walking speed, according to the 
correlation between walking speed and sagittal plane velocity of foot 
markers at the gait events (FS and TO) (see Eqs. (1) and (2)). Walking 
speed was calculated as stride speed (m/s), dividing stride length by 
stride time (Carcreff et al., 2018; Hollman et al., 2011). Stride length (m) 
was computed as the distance between the heel marker at two successive 
FS of the same foot (Carcreff et al., 2018), and stride time (s) as the time 
difference between two successive FS of the same foot (Carcreff et al., 
2018). Both variables were computed from a gait cycle containing the 
gait event that was being estimated, in order to obtain a stride speed as 
close as possible to the true walking speed at that moment. The two 
successive FS used to calculate the stride speed were estimated using 
Gho05 due to the difficulty to detect two successive FS from GRF only. 

FS threshold = 0.78 × Walking Speed (1)  

TO threshold = 0.66 × Walking Speed (2) 

FS was estimated as the first frame with sagittal plane velocity of at 
least one of the two foot markers (heel and/or toe) below the FS 
threshold (see Eq. (1)), using the new adaptation of Ghoussayni’s al
gorithm. TO was estimated as the first frame with sagittal plane velocity 
of the toe marker above the TO threshold (see Eq. (2)). 

2.2.5. Spatiotemporal parameters 
We compared ST parameters calculated from gait events detected 

using Gho05 and GhoWS. Gait cycles containing at least one of the gait 
events detected previously (using GRF, Gho05 and GhoWS) were 
selected (see Fig. 1). The fundamental events of each gait cycle (initial 
FS, opposite TO, opposite FS, TO and final FS) were detected using 
Gho05 and GhoWS. The following ST parameters were calculated: stride 
length, stride time, stride speed, first double support (percentage of the 

gait cycle from initial FS to opposite TO), single support (percentage of 
the gait cycle from opposite TO to opposite FS), and time of TO (per
centage of the gait cycle from initial FS to TO). We could not detect the 
five fundamental events of a gait cycle using GRF so it was not possible 
to calculate ST parameters from GRF. 

2.3. Statistical analysis 

Statistical analysis was done separately for FS and TO. Pearson cor
relation coefficients (r) were used to evaluate the linear relationship 
between the gold standard (GRF) and the two Ghoussayni’s thresholds 
(Gho05 and GhoWS). Bland-Altman plots (Bland and Altman, 1986) 
were used to evaluate the degree of agreement between GRF and the 
other methods. In Bland-Altman plots, mean bias was calculated as the 
average of the differences (in frames) between GRF and the other 
methods, and limits of agreement (LoA) as the mean bias ±2SD (Bland 
and Altman, 1986). Bland-Altman plots only define LoA, without 
assessing whether these limits are acceptable or not (Giavarina, 2015). 
Acceptable limits must be previously defined, based on clinical needs, 
biological considerations or other goals (Giavarina, 2015). We defined 
acceptable limits of − 5 and 5 frames, that is, − 35.7 and 35.7 ms, based 
on the accuracy window of 33 ms used by Bruening and Ridge (Bruening 
and Ridge, 2014). Difference of means tests for non-normal distribution 
paired data were used to analyze the statistical significance of differ
ences between the three methods (Friedman test), and between ST pa
rameters calculated from Gho05 and GhoWS (Wilcoxon test). Mean 
differences (and 95% confidence intervals for differences) were also 
reported. A P-value lower than 0.05 was considered. Microsoft Excel and 
the Statistical Package for the Social Sciences (SPSS v.26) were used. 

3. Results 

Twenty-two potentially eligible participants were identified. Six 
children were excluded (see Fig. 1). Sixteen children (seven males and 

Fig. 1. Study flow diagram. EC, Exclusion criteria; GRF, Ground reaction 
forces; Gho05, Ghoussayni’s algorithm using a threshold of 0.5 m/s; GhoWS, 
Ghoussayni’s algorithm using a walking speed dependent threshold; FS, Foot 
strike; TO, Toe off; ST, Spatiotemporal. 
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nine females) with a diagnosis of bilateral spastic CP and a mean age of 
8.9 ± 2.7 years were included in the present study (see Table 1). Sixty- 
two trials were collected and 51 of them contained at least one valid 
event. Ninety-eight gait events (50 FS and 48 TO) were detected, first 
with GRF, and afterwards with Gho05 and GhoWS. Three types of FS 
were distinguished: heel strike (n = 30), toe strike (n = 6), and both at 
the same time (n = 14) (see Table 1). 

Correlation coefficients between the gold standard (GRF) and the 
other methods were r = 0.99 (P < 0.01) both for Gho05 and GhoWS, and 
both for FS and TO. Bland-Altman plots are shown in Fig. 2. For FS, the 
mean bias was smaller between GRF and Gho05 than between GRF and 
GhoWS (− 0.18 and 1.08 frames, respectively); and LoA were − 4.60 and 
4.24 frames between GRF and Gho05, and − 3.49 and 5.65 frames be
tween GRF and GhoWS, exceeding (GhoWS) the acceptable limits (− 5 
and 5 frames). For TO, the mean bias was also smaller between GRF and 
Gho05 than between GRF and GhoWS (− 1.08 and − 1.58 frames, 
respectively); and LoA were − 7.10 and 4.94 frames between GRF and 
Gho05, and − 6.44 and 3.28 frames between GRF and GhoWS, exceeding 
(both Gho05 and GhoWS) the acceptable limits. 

The statistical significance of differences, mean difference, and 95% 
confidence interval for the difference between the three methods are 
shown in Table 2. For FS, there were no statistically significant (P <
0.05) differences between GRF and the two Ghoussayni’s thresholds. For 
TO, there were statistically significant differences between GRF and 
GhoWS, but not between GRF and Gho05. In both cases (FS and TO), 
there were statistically significant differences between Gho05 and 
GhoWS. 

ST parameters from 58 gait cycles defined using Gho05 and GhoWS 
were compared. There were statistically significant differences between 
ST parameters calculated from Gho05 and GhoWS in the following 
cases: first double support, single support, and time of TO (see Table 3). 

4. Discussion 

We compared two different thresholds of Ghoussayni’s algorithm 
(Gho05 and GhoWS) with the gold standard gait event detection method 
(GRF) in order to validate them as alternative event detection methods 
in children with bilateral spastic CP. Ghoussayni’s algorithm (Ghous
sayni et al., 2004) is based on kinematic data, so it can be applied in 
severely involved or very young patients walking with small steps, when 
the assessment with GRF cannot be done, or on treadmills where force 
plates were not build in. Gho05 had already shown good performance in 

children with CP (Bruening and Ridge, 2014; Gonçalves et al., 2019). 
However, no statistical results about GhoWS had been published before 
the present study (Bruening and Ridge, 2014). 

Ninety-eight valid gait events from 16 children with bilateral spastic 
CP were detected. This number was conditioned by the gold standard 
event detection method. In optimal conditions (healthy gait pattern and 
force plates configuration adapted to stride length), it would have been 
possible to obtain a maximum of 4 gait events per trial (right FS, left FS, 
right TO and left TO). We collected 62 trials, so that would have resulted 
in 248 gait events. The pathological gait of children with CP (short, 
irregular, slide and drag steps) reduced the applicability of force plate 
data and we actually detected 98 gait events, the 39.5% of all potential 
events. This result reinforces the need to develop alternative methods to 
GRF based on kinematic data, such as Ghoussayni’s algorithm. More
over, methods based on kinematic data are not conditioned to the 
number of force plates and all the gait events occurring within the 
measurement volume can be detected (Ghoussayni et al., 2004). 

Our results indicated that both Gho05 and GhoWS were significantly 
close enough to GRF (in terms of equal means) in the detection of FS, but 
only Gho05 was significantly close enough to GRF in the detection of TO, 
so our hypotheses were rejected. These results are consistent with those 
reported by Gonçalves et al. (Gonçalves et al., 2019), who validated 
Gho05 for children with unilateral or bilateral spastic CP. However, they 
are not aligned with those of Bruening and Ridge (Bruening and Ridge, 
2014), who found that GhoWS improved Ghoussayni’s algorithm ac
curacy. Our results also indicated better performance of Ghoussayni’s 
algorithm for FS than for TO. These results are also in agreement with 
those reported by Ghoussayni et al. (Ghoussayni et al., 2004), who 
showed smaller average differences between GRF and the automated 
algorithm in relation to FS (within 1.5 frames) than to TO (between 9 
and 10 frames). Inaccuracies in TO detection could be improved by 
using a Hallux marker, but its placement presents some problems 
depending on the CP gait pattern (Bruening and Ridge, 2014). 

The new adaptation of Ghoussayni’s algorithm for the detection of FS 
in children with CP made it possible to distinguish the way each child 
performed each FS. This is an advantage over the method used by 
Gonçalves et al. (Gonçalves et al., 2019), who detected FS using the heel 
marker in all cases, although some children perform FS with the toe. It is 
also an advantage over the method used by Bruening and Ridge (Bru
ening and Ridge, 2014), who first classified children into different gait 
patterns, and then detected FS using the toe or heel marker according to 
this classification, without taking into account that some children do not 

Table 1 
Participants’ characteristics.  

ID Sex CP, type GMFCS, level Age, y Weight, kg Height, m Mean walking speeda (SD), m/s Foot strikeb,type (n) Orthosis Assistive device 

1 Male Mixed III 6.3 17.4 1.10 0.55 (0.08) Toe (2), both (1) Yes No 
2 Female Spastic II 9.4 22.5 1.30 0.95 (0.19) Heel (2), both (2) Yes No 
3 Male Spastic III 9.9 34.9 1.32 0.50 (0.05) Heel (4) Yes Crutches 
4 Female Spastic III 12.1 41.5 1.47 1.11 (0.12) c Yes Crutches 
5 Male Spastic II 7.9 26.8 1.32 0.92 (0.08) Toe (1) Yes No 
6 Female Spastic III 8.1 46.2 1.25 0.66 (0.03) Heel (1), both (2) No Walker 
7 Male Spastic II 12.1 50.2 1.57 0.91 (0.01) Heel (1), both (1) No No 
8 Female Spastic II 8.8 24.2 1.25 0.95 (0.01) Both (3) Yes No 
9 Female Mixed II 11.5 28.5 1.32 0.43 (0.08) Toe (2) No Walker 
10 Male Spastic II 12.8 33.4 1.45 1.01 (0.03) Heel (2) No No 
11 Female Spastic I 4.9 21.3 1.09 1.08 (0.05) Heel (5), both (1) Yes No 
12 Male Spastic II 8.3 29.9 1.31 0.91 (0.11) Heel (1), both (1) Yes No 
13 Female Mixed II 12.5 34.4 1.44 1.03 (0.06) Heel (6), toe (1) No No 
14 Female Spastic II 6.9 18.1 1.10 0.93 (0.17) Heel (2), both (2) Yes No 
15 Female Mixed I 5.6 18.4 1.08 1.15 (0.04) Heel (6) No No 
16 Male Spastic II 5.8 27.9 1.20 0.99 (0.15) Both (1) Yes No 

ID, identification; CP, cerebral palsy; GMFCS, Gross Motor Functional Classification System; SD, standard deviation. 
a Mean value of the walking speeds calculated for the detection of gait events using Ghoussayni’s algorithm with a walking speed dependent threshold (GhoWS). 
b Estimated using the new adaptation of Ghoussayni’s algorithm with a threshold of 0.5 m/s (Gho05): heel strike (heel marker velocity fell below the threshold 

before than toe marker velocity), toe strike (toe marker velocity fell below the threshold before than heel marker velocity), both at the same time (both -heel and toe- 
marker velocities fell below the threshold at the same time) 

c No valid foot strikes were detected using ground reaction forces (GRF). 
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Fig. 2. Bland-Altman plots between GRF and Ghoussayni‘s thresholds (Gho05 and GhoWS), for foot strike (FS) and toe off (TO). GRF, Ground reaction forces; Gho05, 
Ghoussayni’s algorithm using a threshold of 0.5 m/s; GhoWS, Ghoussayni’s algorithm using a walking speed dependent threshold; SD, Standard deviation. 

Table 2 
Statistical significance of differences and mean difference (95% confidence interval for the difference) between GRF, Gho05 and GhoWS.  

Gait event GRF and Gho05 GRF and GhoWS Gho05 and GhoWS 

F Mean difference (95% CI) F Mean difference (95% CI) F Mean difference (95% CI) 

Foot strike (frame) 2.300 − 0.18 (− 0.81;0.45) 2.000 1.08 (0.43;1.73) 4.300*** 1.26 (0.89;1.63) 
Toe off (frame) 1.633 − 1.08 (− 1.96;− 0.21) 4.338*** − 1.58 (− 2.29;− 0.88) 2.705* − 0.50 (− 1.07;0.07) 

GRF, Ground reaction forces; Gho05, Ghoussayni’s algorithm using a threshold of 0.5 m/s; GhoWS, Ghoussayni’s algorithm using a walking speed dependent 
threshold; F, standardized Friedman test statistic in absolute value; CI, confidence interval for the difference. * P < 0.05; ** P < 0.01; *** P < 0.001. 

Table 3 
Statistical significance of differences and mean difference (95% confidence interval for the difference) between spatiotemporal parameters calculated from Gho05 and 
GhoWS.  

Spatiotemporal parameter Standardized Wilcoxon test statistic in absolute value Mean difference (95% CI) 

Stride length (m) 1.217 − 0.0005 (− 0.0012;0.0003) 
Stride time (s) 0.570 − 0.0011 (− 0.0025;0.0002) 
Stride speed (m/s) 1.217 0.0005 (− 0.0003;0.0013) 
First double support (%) 3.714*** − 1.3729 (− 2.0071;− 0.7386) 
Single support (%) 3.782*** 1.4347 (0.7737;2.0958) 
Time of toe off (%) 3.643*** − 1.2682 (− 1.8748;− 0.6616) 

Gho05, Ghoussayni’s algorithm using a threshold of 0.5 m/s; GhoWS, Ghoussayni’s algorithm using a walking speed dependent threshold; CI, confidence interval for 
the difference. * P < 0.05; ** P < 0.01; *** P < 0.001. 
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perform all FS in the same way. 
ST parameters are calculated from gait events. Focusing on the 

methods’ mean bias, Gho05 showed a negative difference both for FS 
and TO, so it tends to delay the gait events in comparison to GRF. GhoWS 
showed a positive difference for FS and a negative difference for TO, so it 
tends to advance FS and delay TO in comparison to GRF (the same was 
observed in comparison to Gho05). This fact could result in bigger dif
ferences between GRF (or Gho05) and GhoWS in terms of ST parameters 
such as first double support, single support, and time of TO; which are 
calculated from FS to TO, or vice versa. When comparing ST parameters 
calculated from Gho05 and GhoWS, statistically significant differences 
were found in the three mentioned ST parameters. Our results reinforce 
the thought that, in IGA, careful consideration should be given when 
comparing ST parameters obtained using different methods (Ghoussayni 
et al., 2004). 

Some limitations should be considered when interpreting the results 
of this study: 1) severely involved or very young patients walking with 
small steps are the target population of kinematic based event detection 
methods, but these characteristics do not allow comparison with the 
gold standard (GRF), which is the most accurate validation method; 2) 
the number of gait events was small due to the low percentage of valid 
events detected from GRF in the included CP population; 3) the walking 
speed used in GhoWS was calculated using FS detected from Gho05, due 
to the difficulty to obtain two successive FS from GRF (which only 
occurred in one trial); 4) the different types of FS were not equally 
represented: heel strike (60%), toe strike (12%), both at the same time 
(28%); and 5) It was not possible to calculate ST parameters from gait 
events detected using GRF, so we could only compare ST parameters 
obtained from Gho05 and GhoWS. 

5. Conclusions 

In conclusion, Gho05 is a valid method for detecting gait events in 
children with bilateral spastic CP. GhoWS is only valid for detecting FS, 
so it can be dismissed as a general gait event detection method for this 
population. Ghoussayni’s algorithm showed better performance for FS 
than for TO. The new adaptation of Ghoussayni’s algorithm for the 
detection of FS distinguishes the way that any child with CP performs 
each FS. GRF showed low efficiency to detect valid events in children 
with bilateral spastic CP. Significantly different gait event detection 
methods can result in significantly different ST parameters. Further 
research should be conducted to improve the detection of TO, and to 
establish which is the best method to detect FS in children with CP. 
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