
Universitat Politècnica de Catalunya (UPC)

Facultat d’Informàtica de Barcelona (FIB)

Master in Innovation and Research in Informatics

Computer Graphics and Virtual Reality

A WebXR-based plattform for mixed
geometry-based and image-based

exploration of cultural heritage models

Author :

Arnau Farràs Llobet

Tutor :

Carlos Andujar Gran

Co-Tutor :

Marc Comino Trinidad

June 2021

Abstract

The great advances in 3D digitization and upward trend in remote services have led to a growth
in demand for virtual museums and applications to explore cultural heritage. While it is true that
virtual museums are not a novelty, many of these applications are still not very accessible or present
several limitations. In this master’s thesis, we have developed a web application to explore cultural
heritage models without restrictions. The application offers the user a collection of high-quality
photographs from the environment surrounding the user, which can be projected onto the model.
Our application is also compatible with virtual reality headsets providing the same features in a
much more immersive environment. After developing our application, we have carried out a pilot
user study to assess its effectiveness objectively and know the issues that should be addressed in
the final product.

1

Contents
1 Introduction 4

2 Previous work 5
2.1 Cultural Heritage Digitalization . 5
2.2 Web navigation and VR for 3D enviorments . 5
2.3 Showing cultural heritage . 6

3 Application goals 7

4 Application description 8
4.1 Starting the application . 8
4.2 Scene navigation . 8

4.2.1 Image collection . 9
4.3 Secondary view . 10
4.4 User interface and interaction . 12
4.5 Virtual Reality mode . 14

5 Implementation 15
5.1 Application Structure . 15

5.1.1 The pipeline . 16
5.2 The models . 17

5.2.1 Obtaining models . 17
5.2.2 Processing the output from COLMAP . 18
5.2.3 Precomputating extra information . 19

5.3 Preparing the scene . 20
5.3.1 Loading models and cameras . 20
5.3.2 Main camera and navigation . 20

5.4 Photo collection . 22
5.4.1 Ranking images . 22
5.4.2 Automatic image selection . 23
5.4.3 Manual image selection . 23
5.4.4 Clustering images . 24
5.4.5 Visualization . 24

5.5 Tools . 26
5.5.1 Highlighted area . 26
5.5.2 Image projection . 27
5.5.3 Show camera . 28

5.6 Secondary view . 29
5.6.1 Rendering the view . 29
5.6.2 Showing the image . 29
5.6.3 Navigation . 30

5.7 VR mode . 31
5.7.1 Navigation . 31
5.7.2 UI . 32
5.7.3 Photo collection . 34
5.7.4 Secondary view . 36

6 Pilot study 37
6.1 Experiment description . 37

6.1.1 Training . 37
6.1.2 Tasks . 37
6.1.3 Questionnaire . 38

6.2 Analysis of the results . 38
6.2.1 Questionarie . 38
6.2.2 Observations . 38
6.2.3 Comments . 39

2

7 Conclusions 40
7.1 Future work . 40

3

1 Introduction
Thanks to the great advances in laser scanning and photogrammetry in recent decades, 3D digi-
tization of cultural heritage has become a common practice in this domain [29]. The digitalized
cultural heritage has proven to be particularly useful and demanded in many fields. One of its
main advantages would be that it allows preserving the geometrical information of the works in
digital format, thus protecting them from any deterioration caused by time or the human being
himself [11]. Besides, working with scanned models allows historians in a much easier and faster
way the virtual reconstruction of structures damaged or deteriorated by time or other historical
events, thus avoiding using the original pieces, which are usually much more fragile or difficult to
handle [9] [26].

Another interesting application and the one we will focus on in this work is that the virtual
reconstruction of cultural heritage allows both historians and regular users to study and visualize
highly detailed reconstructions of monuments and works of art and in a virtual way, using his own
computer or mobile device, without the need to go in person to the place where the original work
is located and without having to install and use any specialized software.

There are many techniques to digitalize cultural heritage. Between them, the most popular ones
are photogrammetry and 3D terrestrial laser scanning [29]. The first one uses the matching points
between a collection of overlapping photographs to compute the full 3D mesh. In the case of laser
scanning, we measure the distance from the scanner to the surface, measuring the time elapsed
between the transmission and reception of the laser pulse [27]. Both methods will give us point-
clouds of the artwork or the monument. There are techniques to generate 3D meshes from these
pointclouds. However, these often present holes or other artifacts. Currently, some algorithms
solve a large part of these imperfections, but in some cases, the manual repairing of the mesh is
still necessary. To recreate the texture of the model, the same scanners can usually capture the
color at each scan point. Although the quality of the generated texture is often very poor, in some
cases, it is sufficient for the desired task. In the circumstances where more detail is needed, there
are methods such as projecting real images onto the mesh itself.

In this work, we present a novel web-based application for exploring cultural heritage. The models
displayed are highly detailed digital 3D reconstructions from real monuments and artworks. Being
a web application, it does not require the installation of additional software. It is accessible from
the browser, desktop computers, and any mobile device with an internet connection.

The application offers a complete interface that allows both professionals and ordinary users to
navigate within the 3D scene. Through different modes and configuration options, the user can
select and inspect specific regions of the model as well as view and compare real photos of the cho-
sen area. Finally, the application is compatible with virtual reality headsets. If available, the user
can explore and interact with the scene in a VR environment, thereby providing better immersion.

In an increasingly globalized world where there are already countless monuments and digitized
works of art, our application allows users to visit them in a comfortable and efficient way. It also
supposes a solution to any mobility problem so that it would be helpful in situations such as the
current health emergency due to COVID-19.

4

2 Previous work
2.1 Cultural Heritage Digitalization
The evolution of humanity comes from the learning of the previous generations. For this reason,
the preservation and exhibition of cultural heritage assets can be considered a priority for every
nation. With the beginning of the computer era, digitalization plays an important role in that [11].
We already have publications from the 60’s like the ones by George Cowgill talking about the po-
tential of raster devices applied in the archaeological field [17].

From then until now, progress in the field of digitization has gone hand in hand with techno-
logical evolution. Among all the methods, photogrammetry and 3D laser scanning stand out. As
pointed by F. Fassi et al [19], comparing the effectiveness of both methods to reconstruct complex
and extensive heritage areas, the decision to use laser or photogrammetry should depend on the
project purpose. On the one hand, terrestrial laser scanning proves to give a higher precision in
small areas. However, when the laser has to travel long distances, the results are not as good. On
the other hand, using photogrammetry, the precision of the topological information will be lower
than laser scanning but could be our solution if the goal is to digitalize large areas.

There are many other examples of the use of these techniques: Similar to F. Fassi, Naci Yastikli [30]
compared both methods to reconstruct historic buldings. Lucia Arbace et al, 2012 [10], used 3D
scanning with the help of advanced modeling to create digital 3D replicas of a fragmented ter-
racotta statue (The Madonna of Pietranico). Annabelle Davis et al [18], uses laser scanning,
photogrammetry and 3D photografic methods applied to the reconstruction of rock art. In 2013,
Pedro Martín Lerones et al [26], used the projection of 2D artistic images to previously scanned
models. This was useful to emulate the primitive appearance of the artwork and compare the
evolution and the effects of deterioration over time.

2.2 Web navigation and VR for 3D enviorments
We start from the desire to offer the user an interactive application in a 3D environment. As we see
in the work by J. Jankowski and M. Hachet on advances in interaction with 3D environments [23],
this is a highly explored field. Their study reviews an extensive catalog of interaction techniques
for navigation, selection, and manipulation in 3D environments not only at the level of specialized
software but also at the level of Web-based environments. The ultimate goal is to help other
researchers and developers find the interaction techniques that best fit the needs of their project.

When presenting a 3D environment representing a work of art or a monument that exists in
the real world, it is essential to offer the user the maximum possible immersion. To achieve this
goal, a very effective way is through virtual reality (VR) [22]. In this field, we have two main
interaction paradigms, mixed reality and virtual reality itself. The first one, also commonly called
augmented reality, is a combination of what we perceive with our senses and a synthetic virtual
scene that would add additional information to the real environment. In the second one, and in
which we will focus on this project, the immersion is complete. Commonly through Head Mounted
Displays (HMDs), the visual senses are replaced to perceive only the virtual scene.

Virtual reality has already been brought to the web environment before. Until now, the We-
bVR [7] interface has been trendy for this purpose. However, it is currently considered obsolete
due to the emergence of WebXR [8], which adds new features, including augmented reality.

5

2.3 Showing cultural heritage
Currently, we can already find projects that allow any user to visualize 3D environments of cultural
heritage, whether they are small artwork, architectural structures, or even large open spaces. A
good example could be the case of Photo Tourism [28] that present a software to explore large
unstructured collections of photographs, generating a 3D scene that can be explored freely by the
user. To achieve that, they use image-based rendering techniques that allow a smooth transition
between the different photographs. In addition, Photo Tourism provides additional information
through annotations about the current place that is being visited or the element that the user is
looking at, as well as browsing other nearby or relevant photographs.

Similar to Photo Tourism, Paolo Brivio et al [13] present Photocloud, a system for interactive
exploration for large datasets using several thousand photographs calibrated over 3D data. All
the images of the model are displayed at the bottom bar as thumbnails. These are grouped by
similarity and are sorted according to relevance given the current position and orientation of the
camera. A very interesting feature is that the user can not only navigate between the proposed
images but can also project them in the 3D model thus achieving a higher level of detail.

Mila Koeva et al (2016) [25] used a diferent aporach to visualize Cultural Heritage. Using a
set of high-resolution spherical panoramas in a Virtual Reality environment followed by sounds,
video, and informative texts, they achieve a significant effect of immersion to the user. Another
feature to highlight is that it is a web-based portal which makes it highly accessible. Another
example of visualization of Cultural Heritage through VR can be seen in the work of Choromański
et al [14] where they implemented a visualization based on multi-source 3D data from archives of
Museum of King John III’s Palace (Wilanów). The aim of their work was to help the user to fa-
miliarise with the Museum architecture and history in the closest way as it could be in a real visit.
Dimo Chotrov, and Angel Bachvarov [15] present another web-based framework with virtual reality
integration that allows the user to navigate freely in the 3D scene. The advantage of this last work
is that it simplifies the loading of models through templates and configuration files, making it ac-
cessible and easy for any user to use their own models without the need for high programming skills.

Although Photocloud and Photo Tourism present a work very similar to what we are looking
for, they require the installation of specific software that makes them less accessible and more
limited in terms of use on different devices. On the other hand, Mila Koeva not only presents a
visualization of cultural heritage in a web environment but also offers the possibility of using VR
to achieve more immersion, even so, the fact that the navigation is through the change between
panoramas limits interaction. In our work, we present a complete and free 3D navigation so that
you can investigate more specific details of the scene. Dimo Chotrov, and Angel Bachvarov give
the user full navigation but beyond this the interaction with the scene is very poor. In our project
we seek that the user can select specific areas of the environment to be able to observe in more
detail, like it was done in Photocloud but maintaining the advantages of being a web-based portal
and immersion through VR.

6

3 Application goals
The first step when developing our application is to be very clear about its goals and the series of
tasks that users should be able to perform with it.
In our case, we will split these objectives into different categories (visualization, navigation, inter-
action, VR, accessibility)

1. Visualization

• (a) The user should be able to visualize different models of cultural heritage composed
by a 3D mesh and a texture.

• (b) The user will be able to explore and inspect high quality photographs of the model
from a collection.

• (c) The user will be able to visualize the selected 2D photographs in a separate view
and inspect the photo more closely in fullscreen.

2. Navigation

• (d) The user will be able to move and rotate the camera in any direction without
constraints inside the 3D scene.

• (e) The user will be able to zoom and pan inside the scene
• (f) The user will be able to zoom and pan inside the secondary 2D view from the selected

photograph.
• (g) The user will be able to highlight in the 3D scene the region of the selected photo-

graph as well as project the 2D image into the scene.

3. Interaction

• (h) The user will be provided with an interface with a list of settings to switch the
model, enable/disable GUI elements and decide how the 2D photographs are displayed.

• (i) The user will be able to use different methods and algorithms that allows choosing
the relevant photographs from the suggested ones.

• (j) The user will be able to select a region from the scene to show relevant photos from
the chosen area.

• (k) The user will be able to switch between the 2D/3D views in fullscreen.
• (l) The user will be able to teleport to the capture position of a selected photograph

from the collection.

4. VR

• (m) The user will be able to use a VR headset. The application will track the head
position to update the camera orientation.

• (n) The user will be able to use VR controllers to perform the same interaction tasks in
the virtual environment.

5. Accessibility

• (o) The application will not require the installation of any software.
• (p) The application will be available from the browser using an internet connection.
• (q) The application will support the keyboard and mouse as well as touch controls for

mobile devices.

7

4 Application description
Now that the goals have been defined, we are going to describe the operation of the application
and explain how it solves each one of them. We will only describe the application from a user
point of view. Implementation details (for example, how photos are scored and clustered) will be
discussed Section 5.

4.1 Starting the application
Currently, the application is hosted on the following server:
https://laurelin.synology.me

The application is based on the Three.js library, which uses WebGL to display the scene. Due to
this, the application can be used in any browser compatible with WebGL such as Google Chrome
9+, Firefox 4+, Opera 15+, Safari 5.1+, Internet Explorer 11, and Microsoft Edge. (Objectives o,
p)

If the browser is compatible, the user only needs to access the server URL from any device.
Given that some of the models and photographs are shown in the application are not in the public
domain, access is protected with a login page with a username and password.

4.2 Scene navigation
Once inside the application, a loading bar will appear. Some models and textures are heavy, and
the loading time will depend mainly on the quality of the network connection, although it should
not take more than a few seconds (Figure 1).
When the loading process has finished, the scene will be shown from an arbitrary position. By
default, the "Pedret" model will be loaded as shown in Figure 2.

Fig. 1: Application during the loading process Fig. 2: Pedret model startup

We can explore the scene by changing the position and orientation of the camera using the keyboard
and the mouse. The controls are intuitive and the usual ones in this type of application.

• Move forward/backward: Mouse wheel.

• PAN: Mouse right button + drag.

• Change camera orientation: Mouse left button + drag.

For mobile devices, the touchpad can be used to perform the same actions. (Objectives a, d, e, q)

8

4.2.1 Image collection

A very powerful tool is the image collection. It can be activated and parameterized from the
application interface. The collection is located at the upper part of the screen and consists of sets
of images grouped in stacks along the screen’s horizontal axis (Figure 3).

The images shown are thumbnails of the actual photographs of the model. The images belonging
to the same stack share similarity between them. On the other hand, the size of the stack indi-
cates the degree of relevance for the user according to the current position in the scene and other
parameters, where the largest is the most relevant.

When hovering the mouse over an image, this will be shown in the auxiliary view (if enabled).
While hovering, the user can use the wheel button to explore images from the current stack. Fi-
nally, by clicking on the image, we can automatically move to the position where the photograph
was taken. (Objectives b, l)

Fig. 3: Application showing the image collection

9

4.3 Secondary view
One of our most important objectives of this project was that the user could explore the cultural
heritage environment in very high quality. Unfortunately, the meshes and textures obtained from
the scan are sometimes quite limited. Even projecting the photos in the 3D environment can gen-
erate errors or deformations. To solve this problem, we have added the secondary view. It comes
disabled by default but can be enabled in the options menu.

As we can see in Figure 4, the secondary view is presented as a small box in the lower right
corner and shows a projection of the scene. The camera’s position, orientation, and projection are
based on the last image selected from the collection.

Fig. 4: Secondary view (bottom right) showing the projection of the scene based on the first image
of the collection.

We can decide if we want the same photograph to be shown inside the view through the options
menu. In this way, the user can understand better how the image is related to the model and its
delimitation (Figure 5). Also, it may be the case in which we want to inspect these photographs
more thoroughly. For this, the application offers the possibility to see the secondary view on
fullscreen. By clicking on it, the main and secondary views are swapped. (Objectives b, k)
While we are in fullscreen, we can inspect the photograph in more detail by using zoom and pan,
as can be seen in Figures 6, 7. (Objectives c, f)

10

Fig. 5: Secondary view showing the selected image.

Fig. 6: Secondary view in fullscreen showing the
selected image.

Fig. 7: Secondary view zoomed to apreciate the
small details in high quality.

11

4.4 User interface and interaction
Since the tasks and goals can vary according to the user and the model, the application offers an
extensive menu of options on the upper right side to customize the interaction. (Objective h)

Scene interaction and tools:
One of the most interesting tools is the selection box. At any time, the user can select an area of
the scene (Ctrl + mouse drag). Automatically, the collection is filled with the most relevant photos
according to the chosen area. Additionally, each image is highlighted with an approximation of the
selected area. Given that sometimes the photo collections are very extensive, this tool becomes
handy to find the most representative images of a particular area. Check the behaviour of this tool
in Figures 8, 9.

Fig. 8: User selecting a region in the scene. All
the UI elements are hidden to facilitate the se-
lection task.

Fig. 9: The collection is filled depending on
the specified region. The selection area is high-
lighted in the thumbnails.

Apart from this, in the options menu, we can activate some elements for the scene.

• Photo area: Displays a red transparent area that highlights the area covered by the selected
photo (Figure 10).

• Photo projection: Similar to the previous one, the photograph is projected on the scene. It
becomes helpful to see the real picture in the 3D environment, but depending on the angle
of observation, some areas will be deformed (Figure 11).

• Secondary view: Enables/disables the 2D auxiliary view.

• Show camera: Shows the camera frustrum of the selected image in the scene (Figure 12).

• Show photo: Shows the photo in the secondary view. Also, if the "show camera" option is
enabled, the 2D image is shown in the principal view (Figure 13).

12

Fig. 10: Showing the highlighted area of the se-
lected image.

Fig. 11: Showing the projection in the scene of
the selected image.

Fig. 12: Showing the camera frustum in the
scene.

Fig. 13: Showing the image in the secondary
view and in the camera near plane.

Photo collection:
There is a set of options that allow us to customize the distribution of the collection of photographs
(Figure 14). On the one hand, we can define the maximum number of images allowed in the same
stack and the maximum number of stacks that can be displayed. On the other hand, we can choose
the algorithm that decides which images to show and how they are distributed in the stacks:

• Basic clustering: A fast but not very precise method.

• Single linkage clustering: A much more precise but slower method.

Both methods are explained in more detail in Section 5.

Additionally, we have a checkbox that allows us to activate the automatic suggestion mode. This
mode automatically renews the photo collection according to the camera’s position and orientation
in the scene. Three control bars allow us to tell the influence of the user camera’s position, orien-
tation and projection when generating the collection. The fourth bar serves to define the waiting
time for the new computation.

13

Fig. 14: The red rectangle shows the specific tool menu for the camera collection.

4.5 Virtual Reality mode
If you have a virtual reality headset with controllers, the application can be used in an immersive
environment. In the virtual environment, you can perform the same tasks as in the normal one. In
this case, the camera’s orientation is tracked by the headset, and the UI elements are displayed as
floating panels within the environment. With the virtual controllers the user can use the pointer to
interact with the UI elements. Also, the joystick is used to navigate inside the scene. (Objectives
m, n)

Fig. 15: User enjoying the VR experience. Fig. 16: Scene displayed in VR mode.

14

5 Implementation
In this section, we will explain in detail the implementation of each aspect that takes part of our
application. We also will describe the development process and decision-making in each of the
features.

5.1 Application Structure
First of all, we are going to see a general description of the entire application that will help us to
summarize the key steps which we will go into in detail in the next subsections.

Our goal was to develop a web application that would allow us to represent 3D models and
provide a virtual reality environment. The most common way to achieve this is to use WebGL [6],
a low-level API implemented in Javascript that allows rendering 3D graphics on any web browser.
Still, developing a WebGL application from scratch that meets our goals can take a long time. For
this reason, we decided to base our application on Three.js [5].

Three.js is a javascript library that acts as a layer on top of WebGL. This library allows the
creation of scenes in which we can add meshes with geometry and texture. You can also add lights
and cameras. Finally, we can create a renderer in charge of drawing the scene from a specific
camera. All these elements can be handled or modified in a simple way. We do not have to worry
about anything else as the Three.js layer itself will take on the task of translating all this to WebGL.

Another clear advantage that Threejs provides us is that it also allows us to abstract from the
WebXR API [8], thus facilitating the implementation of virtual reality features. You can check the
layered model description of our application in Figure 17.

Fig. 17: Layered model description of our application.

15

5.1.1 The pipeline

We start from a series of models of cultural heritage obtained by laser scanning as well as a collec-
tion of photographs of the actual structure. Working directly with this data is not very convenient
as it comes distributed among several files, so we will process them to centralize each camera’s
information. In this step, we will also precompute the information about the relationship of the
cameras between them, which will be helpful to us to determine the photos that are relevant to
the user.

Once we have processed the information from the cameras, we pass it on to the application.
Using the Threejs structures, we create the scene with the model and the cameras, and we also
create the collection of photographs from the precomputed information. At this point, we can
decide whether to display the scene in the browser or use the WebXR features to display it in a
virtual reality environment. Figure 18 can help you to visualize the pipeline.

In order to access the application from the internet, both the application and the assets are hosted
on a personal server, fully accessible but password-protected.

Fig. 18: Simplified pipeline of our application.

16

5.2 The models
In this section, we will discuss the process of generating the input files of the application. More
specifically, we will talk about how we have obtained the models and photographs of the cultural
heritage and how we have processed these files to convert them into the data that our application
needs.

5.2.1 Obtaining models

All the models that we show in the application have been obtained using laser scanning. This work
was carried out by Comino et al [16]. The following steps represent a very brief description of the
process:

The first step consisted of traveling to each of the cultural heritage sites to take the 3D scans
and the photographs:

• Església de Sant Quirze de Pedret (Berga, Barcelona). Figure 19.

• Museu Diocesà i Comarcal de Solsona (Solsona, Lleida) Figure 20.

• La Doma (La Garriga, Barcelona) Figure 21.

Fig. 19: Pedret Fig. 20: Solsona Fig. 21: La Doma

In each of the places, a laser scanner Leyca RTC360 was used to scan the scene. Thanks to this
scanner, the point cloud of the model and panoramic photos of the scene were obtained, which
will be converted later into cubemaps. Additionally, a set of photographs of the scene are taken
to show in the application. Some captures were taken on different days so that we can see some
changes in the lighting.

In order to know in which position the photographs are, we follow the following process:

1. We identify image features in each of the faces of different cubemaps constructed from the
panoramic images provided by the scanner.

2. For each photography, we compute their image features and match them to the cubemaps’
ones.

3. Now, since we have registered the 3D position and camera information of the cubemaps, we
can obtain the intrinsic and extrinsic parameters of the cameras using the matched features.
This step is called Structure from motion.

All this process is carried out through a software called COLMAP [2].
COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline
with a graphical and command-line interface. Thanks to the command-line interface, all the above
steps can be automated in one script. In Figure 22 you have a simplified representation of this
process.

We obtain the triangular mesh from the point cloud by using reconstruction algorithms [24]. In
some cases, the generated mesh presents some artifacts that should be fixed. To address this issue,
we used another software called MeshLab [3], which not only allows us to fix these artifacts but
also permits us to visualize both the model and the cameras.

17

Fig. 22: The pipeline to generate the input of the application.

5.2.2 Processing the output from COLMAP

Once the COLMAP commands have been executed, it returns the mesh in .ply format and a set
of files containing information about the cameras:

• cameras.txt: for each camera, it gives us its identifier, the size in height/width, the focal
length, and the principal point. Keep in mind that the same camera ID can correspond to
multiple photographs.

• points3D.txt: this file contains information about the features found in the images. In our
case, this data is useless, so it is discarded.

18

• images.txt: This file contains information about the photographs. Each entry includes the
camera identifier, the name of the image file, and the rotation and translation of the camera.
For each image, it also gives us the 2D coordinates of the found features.

• bundler.out: Contains a list including the rotation matrix, the translation vector, and the
focal length of each camera. The internal format of bundler files is described in the Bundler
User’s guide [1].

• list.txt: Contains a list with the image filenames in the same order as the entries in the
bundler.out file.

As the relevant information is split, working directly with these files is inconvenient. To solve this,
we have created a python script that generates a single json file that contains the list with all the
relevant information for each image. Specifically, we first iterate the bundler.out file to obtain the
position and orientation of each image. For each entry, we discover its image filename by checking
in the list.txt file. Now, we can match the filename in the images.txt file to obtain the camera ID
of each image that will help us find the intrinsic parameters of each camera in the cameras.txt file.

5.2.3 Precomputating extra information

From this list, we could already represent both models and cameras on the scene. However, to make
the corresponding calculations to know which are the relevant photos for the user in a particular
moment, it is necessary to know which points of the mesh are visible from each of the cameras.
This requires casting multiple rays from each camera.

Considering that the meshes we work with are highly dense, computing those raycasts using
Threejs is quite expensive. Furthermore, since both the model and the cameras are static, the
output of these raycasts can be precomputed. The process consists of dividing the frustum of each
camera into a 10x10 grid. Then we cast rays from each of these points (100 rays in total). All these
3D positions are stored in a file to be accessed from the application when necessary. Check figure 23.

Another piece of information that we are interested in precomputing is the similarity between
the cameras. In our case, we understand similarity as the percentage of the image that is shared
between two photographs. Since we have already precomputed the mesh points visible in each
photo, to calculate the similarity between two photos, we will project each of the points of the first
camera on the frustum of another camera and calculate the percentage of points found inside the
frustum (notice that we are not taking into account any possible view occlusions). Next, we carry
out the same task but this time from the second camera to the first. Finally, we take the average
of the two percentages, giving us the similarity between the two. Check figure 24.

Fig. 23: Diagram representing the precomputa-
tion process to obtain the world space position
of the ray intersections. The coordinates found
at the green dots in the grid are saved in a list
to be used later.

Fig. 24: Diagram representing the precomputa-
tion process to obtain the similitude value be-
tween two cameras. The orange dots inside the
highlighted area represent the rays of the cam-
era 1 that can be seen from the camera 2.

19

5.3 Preparing the scene
In this section, we will take a look at how the main scene of our application is structured and how
the information that we have previously precomputed is processed and represented.

5.3.1 Loading models and cameras

The first thing the application does when it starts up is to call the init() function responsible
for initializing the Three.js renderer and creating an empty scene. From this point, we move on
to loading the cameras and the default model. To do this, we read the file cameraInfo.json
asynchronously and iterate through the list of cameras. For each of them, we create and store in
a list an object that we call CameraInfo, which contains the following parameters:

• Photo filename

• Width and height

• Transformation matrix

• Focal lenght

• Camera

• Sprite

• Similitudes vector

• Rays intersection vector

Most of the data is obtained from the JSON file, such as the name of the file, the camera’s intrin-
sic/extrinsic parameters, and the ray vectors and similarities that contain the values that we have
previously precomputed. From this data, we can create a Camera that is a Threejs object. This
object will be useful to project the scene from the selected camera. On the other hand, the Sprite
is another Threejs object that consists of a quad with a texture (the image taken with the camera).
This object can be added later to the scene to display the image in the photo collection. To reduce
the loading time as well as the RAM used by the application, we will load a much smaller version
of the image instead of the real one.

During the initialization step, we will also create a Threejs Mesh to save the model we want
to represent (by default Pedret). Fortunately, Threejs accepts .ply files, so it is not necessary to
transform the model. We also load the texture of the model, which is usually quite large and takes
up a large part of the loading time.

5.3.2 Main camera and navigation

Now we have created the scene, but there one last element missing: the user’s camera.

It will be a perspective camera. The initial position and orientation are decided according to
the loaded model. Other parameters such as FOV, near and far have been chosen arbitrarily after
experimenting with different settings.

To control the camera, Threejs provides us with a set of predefined controls. One of them is
the OrbitControls which allows us to move the camera with the mouse. These controls work as
follows:
Holding the left mouse button the camera moves around a fixed point to which the camera is
facing. With the mouse wheel, we move closer or farther from this point (Figures 25 and 26).
We can also do panning, which consists of moving the orbit point and the camera together in the
direction of movement.

To improve the user experience, we have rewritten part of the original OrbitControls code so
that when you zoom in from a certain threshold, the orbit fixed point moves forward. In this way,
the user can navigate forward without restrictions.

20

An important fact to remark is that there are no light sources in the scene. The main reason is
that we want to visualize the model and the projections of the images with the original information
of the capture.

Fig. 25: Representation of the forward move-
ment of the camera using orbit controls. The
camera moves along the blue line, aproaching or
moving away from the invisible target.

Fig. 26: Representation of the camera rotation
while using orbit controls. The camera rotates
arround the invisible target. The sphere repre-
sents the allowed axes of rotation.

21

5.4 Photo collection
Now that we have seen how the scene is prepared, we will talk about the implementation of
the photo collection shown at the top of the screen. More specifically, we will talk about how the
distribution and order of the photographs is decided and how the different customizable parameters
are implemented.

5.4.1 Ranking images

When deciding which photos are most relevant to the user, the first step is to sort them according
to their score. The total score for a photograph is determined by the weighted sum of different
secondary scores. Each of these is normalized (between 0 and 1), and the user decides the weight
for each of them.

1. Distance score
This first score consists of measuring the distance between the user’s camera and the position in
which the capture was taken (Figure 27). The closer they are, the more score, where the value
would be maximum when the two cameras are in the same x, y, z coordinates, obtaining a score of 1.

To get the normalized score value from the distance value, during the initialization of the ap-
plication, we measure the distance between the two most distant cameras. Then we use this value
to compute the score for our camera, as we can see in the following equation:

Capt_score = max(Max_dist
|Cam_pos−Capt_pos| , 0)

2. Orientation score
This time, instead of taking the distance into account, we measure the difference in their orienta-
tions (Figure 28). More specifically, we measure the angle formed by the forward vectors of the
two cameras. Next, to obtain the normalized value, we divide this value by 180. An angle of 180
would correspond to two cameras looking in opposite directions, which would result in a score of
0.

3. Shared points score
This last one is the most accurate of them but also the one that requires the most computing
time. It consists of counting the number of points of the model visible from the capture that are
also visible from the user’s camera. If all the points are visible, the maximum score of 1 would be
obtained. (figure 29)
The points that are evaluated are those that we have previously precalculated for each camera. We
consider that a point is inside the frustrum when the value in the z-axis in camera space is smaller
than the one of our camera. Plus, after converting its coordinates from world space to NDC, its
value is between -1 and 1 along the x and y axes.

Fig. 27: Score computation us-
ing the distance between the
main camera and the camera
capture.

Fig. 28: Score computation
using the angle difference be-
tween the main camera and
the camera capture.

Fig. 29: Score computation us-
ing the intersection ray count
from the capture camera in the
main camera

22

5.4.2 Automatic image selection

When the automatic suggestion option is enabled, whenever the user moves the camera, the scores
of the entire collection are recalculated according to the weights established by the user.

Note that during the camera movement, the application may recalculate all the scores several
times, causing performance drops. To avoid this problem, we added a timer to prevent the cal-
culation from taking place in each frame. This timer also restarts every time the position and
orientation of the camera have changed. This way, the computation will only be carried out once
the user has stopped moving the camera.

The user also can modify the timer waiting time according to his needs. If the weight assigned to
the shared points score is 0, the computation is quite agile, so it allows setting a low value to the
timer without affecting performance.

5.4.3 Manual image selection

An alternative to automatic selection is manual selection. It consists of selecting an area of the
screen and then calculating the scores taking into account the selected area. In this process, only
the shared points score is taken into account. As we mentioned previously, the score is obtained
by counting the number of points visible from the user’s camera. To adapt it to manual selection,
we will only count the points that enter the selected area. Instead of delimiting between -1 and
1 in NDC coordinates, we will use the offset corresponding to the selected area. This is shown in
Figure 30.

To give visual feedback to the user, we use the Threejs SelectionHelper class, which allows us
to create selection boxes.

Fig. 30: Representation of the offsets used in the manual image selection mode.

23

5.4.4 Clustering images

When displaying the images, a common problem is that there is a lot of redundancy. Many images
resemble each other. To achieve a collection of images with both variety and relevance, we have
made a system of stacks where each stack contains images that are similar to each other. The
user can choose between two different clustering algorithms to decide how these stacks are formed.
Both of them use the similarity information that we precomputed during the preparation of the
input data.

Basic clustering
This method begins by taking the image with the highest score. Then it goes through the ordered
list of images, and for each one of them, we add it to the stack if their similarity value is greater
than a given threshold (given by the user). If the stack is full, but there are still some similar
images remaining, these are discarded.
Once the stack is complete, we move on to the next one using the images that have not yet been
assigned or discarded.

The benefit of this method is that it is very fast. Unfortunately, its precision is quite low.

Single linkage clustering
The second method we offer is based on single linkage clustering [4]. The adaptation for our
scenario works as follows:

1. Each of the images represents a single cluster. We save the similarity of each pair of clusters
in a symmetric table. For now, this value is defined by the pre-computed similarity value.

2. Within all the pairs of clusters, we select the pair of clusters whose similarity is greater, and
we join their elements, forming a single cluster.

3. Next, we update the table of similarities. Being a and b the clusters that we put together
forming a new cluster (a, b) and the function f(x) that determines the similarity of a cluster
x, we eliminate a and b from the table and add (a, b), where the similarity value with each
one of the other clusters k would be denoted as f(a, b) = min(f(a, k), f(b, k))

4. We repeat steps 2-3 until we have the desired number of clusters.

5. For each cluster, we order the elements in decreasing order according to their score. We also
order the stacks from left to right according to the maximum score.

Our implementation has a time complexity of O(n3). For our case, it is enough, although there
are more efficient implementations of the algorithm.

5.4.5 Visualization

The computed clusters are displayed at the top of the screen from left to right, decreasing size to
denote more or less relevance. In the options menu, the user has two customization parameters.
One is used to establish the maximum number of clusters shown on the screen, and the other one
determines the maximum number of photographs that a cluster can contain.

To display the photographs with Threejs, we have used quads with textures. Each photo
is a Threejs Mesh that contains the geometry of a quad and a material with the corresponding
texture. In order to create the black border in the images, we have modified the fragment shader,
where we paint black if the x, y coordinates in NDC are outside the interval (−1 + a, 1 − a) where
a is an arbitrarily decided offset.

Instead of adding these objects to the regular scene, we used an auxiliary scene drawn af-
ter the 3D scene. In this scene, there are only the photographs, and it is drawn using an
orthographic camera whose dimensions are decided and rescaled from the size of the window.

To decide the size and position of each image, we take 1/4 of the screen size. This portion
will correspond to the first stack of photographs. For each photograph in the stack, we decide

24

its size by dividing the total size available by the number of photographs (adding a slight offset
to generate the stair effect). For each following stack, we will take 1/4 of the remaining screen
size and repeat the same process. This way, the stack size is being lowered along the horizontal axis.

One last point to note about the visualization of the photo collection is that we use thumbnails
instead of the real photographs. In this way, we considerably reduce the loading time as well as
the RAM used.

In the following code snipet we summarize the process to calculate the sizes of the elements in the
photo collection. Figure 31 shows all the elements referenced in the code.

Pseudocode 1: Resizing and positioning the images in the photo collection.

remaining_width = max_width
start_x_stack = 0
offset_per_image = 10px

foreach(stack in collection)
{

width_stack = remaining_width / 4
width_image = width_stack - stack.size() * offset_per_image
foreach(image in stack)
{

image.scale = width_image
image.x = start_x_stack + offset_per_image * image.index
image.y = offset_per_image * image.index

}
remaining_width = remaining_width * (3 / 4)
start_x = start_x + width_stack

}

Fig. 31

25

5.5 Tools
Now that we have explained how navigation and selection work in the photo collection, let’s take a
look at the implementation of the additional tools. This set of tools work from the images selected
by the user and serve to represent the photo information in the 3D scene.

5.5.1 Highlighted area

This tool is used to highlight the area covered by the photograph in the 3D model (Figure 32). To
achieve the effect, we have modified the shaders that draw the model. As we mentioned before,
Threejs allows you to easily render models based on a 3D mesh and a texture. For this, Threejs
uses a default shader which we have rewritten to implement the features we need.

Once the user has selected a photo, we can access the camera’s information that has taken the
capture (position, orientation, FOV, etc.). In addition, we also have the model view and projection
matrix already calculated. What we want to do with this information is to detect which fragments
of the scene are visible from the capture camera. The steps to achieve this are the following ones:

1. We use two uniforms to send the view and projection matrices of the camera that took the
capture to the vertex shader.

2. We multiply the view and projection matrices with the scene’s model matrix to obtain the
model’s vertices in screen space starting from the capture camera instead of the user camera.

3. We divide the coordinates obtained by the perspective (component w) and obtain the coor-
dinates x, y, z in NDC.

4. We calculate the gl_Position by multiplying the matrices of the user’s camera.

5. We send the NDC coordinates of the capture to the fragment shader.

6. In the fragment shader, we evaluate the calculated coordinates. If its x, y values are between
−1 and 1 and z > 0, the fragment evaluated in the user’s camera is within the frustum of
the capture camera. We also detect the fragments on the edge of the image by subtracting
a small offset to the −1, 1 range.

7. For the fragments that are within the range, we use the glsl mix function to mix the color of
the texel corresponding to the fragment with a red color vec3(1, 0, 0). For the fragments that
are on the border, we proceed in the same way, but we give more weight to the red color in
the mix function. Finally, the fragments out of range are drawn in the usual way using only
the texture color. Check the result in Figure 32.

Pseudocode 2: Fragment shader modification to display the red area.

uniform bool showRedArea; //Boolean that controls if the option is enabled.
varying vec2 vUv; //Texture coordinates.
varying vec3 capturePos; //Position of the fragment in NDC (secondary camera).
...
if(showRedArea

&& capturePos.x > -1.0 && capturePos.x < 1.0
&& capturePos.y > -1.0 && capturePos.y < 1.0
&& capturePos.z > -1.0 && capturePos.z < 1.0)

{
if(capturePos.x < -0.95 || capturePos.x > 0.95
|| capturePos.y < -0.95 || capturePos.y > 0.95)

gl_FragColor = vec4(mix(vec3(1.0,0.0,0.0), texture2D(texture1, vUv).xyz, 0.6), 1.0);
else

gl_FragColor = vec4(mix(vec3(1.0,0.0,0.0), texture2D(texture1, vUv).xyz, 0.8), 1.0);
}
else

gl_FragColor = texture2D(texture1, vUv);
...

26

Fig. 32: The area covered by the photo is displayed by a transparent red projection

5.5.2 Image projection

A very similar tool to the previous one is photo projection. Instead of highlighting a red area on
the model, we project the image on top of the mesh. The procedure is the same as before, except
that on this occasion, during the fragment shader phase, we will map the NDC coordinates of the
camera to texture coordinates. The texture coordinates have a range between 0 and 1, so they
need to be converted from NDC is as follows:

texCoord = 1 + NDCcoord/2

Notice that we are not considering the real depth that each texel would have in the 3D object. This
means that the same texel is drawn in each of the points that coincide in the same screen space
coordinate of the capture camera. This can generate artifacts like the ones we can see in Figure 33.

This issue could be fixed by using an auxiliary draw pass to fill the depth buffer with the depth
information. Still, we did not consider it worthwhile since the current result is acceptable enough.
Also, this kind of improvement would lead to a decrease in performance and other types of artifacts
that would have to be managed.

Fig. 33: This figure shows the depth artifact, the texture corresponding to the top of the altar is
replicated on the floor and walls.

27

5.5.3 Show camera

This last tool is used to show the camera of the selected photograph in the 3D scene. For this,
we use a Threejs object called CameraHelper. It requires a camera object which we already have,
then will automatically create a representative model of the camera frustum.

Additionally, if we also enabled the show photograph option, we can see the photo placed in
front of the frustum, as shown in Figure 34.

Fig. 34: This figure shows the camera tool, we can also see the photo in the near plane.

28

5.6 Secondary view
We are now going to talk about the secondary view. By default, this view is located in the lower
right corner of the screen, in front of the rendered scene. We achieved this by limiting the size
of the viewport to an arbitrary percentage of the screen size. Also, to differentiate the secondary
view from the scene, we have added a small border. We achieve this effect by first making a clear
(0, 0, 0) in the viewport and then painting the scene but with a smaller viewport size.

5.6.1 Rendering the view

Instead of drawing the scene directly on the screen, we will use a different render target. Once
drawn, we take the generated texture and put it on a Threejs Mesh (quad). Next, we add this
object to a new scene with an orthographic camera whose size and position are chosen to fit the
object. Finally, we draw the quad from the orthographic camera inside the viewport that we
mentioned earlier.

5.6.2 Showing the image

In the tools menu, we can activate the option "show photo" (not to be confused with "show projec-
tion"). This option displays the selected photograph above the scene in the secondary view. Since
the camera’s configuration that projects the scene is the same as that of the camera that took the
capture, the displayed image fits perfectly with the scene.

In order to show this image, we create a new Mesh corresponding to a quad with the photo
as texture. The next step is to position this model in front of the camera in such a way that it fits
with the scene. To achieve that, we carry out the following steps:

1. We apply the transformation matrix of the selected camera to position and orient the object
with the camera.

2. We shift n units in the z vector in the camera’s eyespace, where the value of n corresponds
to the z − near.

3. Once the object is in front of the camera’s vision frustum, we scale it in its x and y components
to match the edges of the frustum in the near plane. To obtain the scaling values, we use
the following formula:

var frustumHeight = 2 * camera_capture.near * Math.tan(camera_capture.fov * 0.5);
var frustumWidth = frustumHeight * camera_capture.aspect;

Notice that we also increase the FOV of the camera to add context around the photo. Figure 35
gives a visual representation of the previous steps.

One issue we encountered during the implementation of this feature is that the loading time of the
photograph was very high. To solve this problem, we draw the thumbnail while we wait for the
real photo to finish loading.

Fig. 35: Pipeline to render the secondary view.

29

5.6.3 Navigation

If we click on the secondary view, it will be shown in fullscreen, leaving the main view as the
secondary in the left corner. For this, the only thing needed is to swap the rendering order and
exchange the viewport sizes.

The reason we draw the scene on a plane and use an orthographic camera is to allow naviga-
tion of the secondary view in fullscreen mode. The main utility of this view is to allow the user to
examine in detail the photographs and their context in the scene. Since the photo is superposed
in front of the scene instead of being projected, if we used a perspective camera to navigate in
this view, when moving the camera, the perspective would change and the image would no longer
match the scene. If, on the other hand, we used an orthographic camera, the perspective of the
photo would differ from the scene, so it would not match either.
For this reason to allow navigation, first, we draw the scene and the photo, respecting the per-
spective of the camera that took the capture, and once the scene is projected on a plane, we can
navigate through an orthographic camera in front of that plane without risk to create a discordance
between the photograph and the scene.

Note that in order not to lose quality in the shown image, the size of the target render is set
to sizeImage + offset, where sizeImage represents the actual size of the photograph and offset
corresponds to the part of the scene that stands out from the photograph. To calculate this last
value, we calculate how much space it occupies in proportion within the near plane and then mul-
tiply this value by the size of the image.

Figures 36 and 37 show how the camera movement works in the photo collection scene with the
orthographic camera.

Fig. 36: Graphic representation of the grab nav-
igation.

Fig. 37: Graphic representation of the zoom
navigation.

30

5.7 VR mode
In this section, we will talk about the changes made to adapt the application to virtual reality.
To allow VR in Threejs, it is enough to activate the xrEnabled parameter in the initialization of
the renderer. We also add a button to decide whether or not to enter virtual reality. Once inside,
when we call the renderer, instead of using the standard camera, we use a pair of cameras already
prepared to follow the position and orientation of the headset. Threejs makes part of the work eas-
ier for us by automatically initializing and controlling the two VR cameras from our initial camera.

While it is true that Threejs allows you to view the scene on a VR headset directly, it was necessary
to make some design changes to preserve visual coherence.

5.7.1 Navigation

Previously we used the Threejs orbitControls object to navigate within the scene. With the mouse
movement, we controlled the orientation, and with the zoom, we could move forward or backward
in the direction pointed by the camera.

In VR, the position and orientation of the camera are updated through the Headset sensors.
Threejs decides the height at which the camera is located by mapping the actual height of the
headset to the world space coordinates. This automatic assignment works quite well when the
mesh of the 3D model corresponding to the ground coincides with the 0 coordinate on the vertical
axis, but this may lead to some invalid positions since there are some models that contain sections
with different heights. A good example is Pedret, where it is necessary to go upstairs to access the
side section.

To solve this problem, every time we move to a new position in VR, we cast a vertical ray from
under the model. Since none of our models has two or more stacked floors, the first intersection of
the ray with the mesh will correspond to the new position on the ground.

Exploring the scene in VR:
There are different methods for getting around in virtual reality. The first we considered was the use
of joysticks to move continuously. However, it is well known that this method often causes motion
sickness. Some techniques, such as using a variable FOV, proved to be successful in reducing this
effect [20]. In our case, given the time constraint, we have opted for the use of teleportation [12].
This method is comfortable to use, easy to implement, and avoids the problems of motion sickness.

Choosing the teleport target:
In order to decide the teleport target, we need to detect the inputs of the virtual controllers. Threejs
also facilitates part of the work by offering us an object that automatically synchronizes its posi-
tion and orientation with the controller in the real world. In addition, the controller can be seen
within the scene since it has a Mesh as well as a ray that indicates to the user where it is pointing.
This object comes with a list of events that can be detected, such as connection/disconnection,
movement, and selection (main trigger). This last event is the one that we are going to use to
carry out our teleportation.

The most intuitive way to implement this method would be to cast a ray in the direction pointed
by the controller and move the camera in the x and z coordinates where the ray intersects with the
model. However, this method is not very comfortable for the user and often forces them to look
continuously towards the ground. Other techniques are based on curved trajectories [21], which
are more intuitive for the user.

31

Our approach is based on the use of a parabola (Figure 38) which is obtained by the following
formula:

Pseudocode 3: Geting the target position using a parabola.

...
//Cursor position
const p = handController.getWorldPosition()
const v = handController.getWorldDirection()
//Parabola equation
const t = (-v.y + Math.sqrt(v.y**2 - 2*p.y*gravity))/gravity
var cursorPos = new Threejs.Vector3(0,0,0)
cursorPos.addScaledVector(v,t)
cursorPos.addScaledVector(gravity,0.5**t**2)
return cursorPos
...

The formula allows us to obtain points on the trajectory of the parabola, which we use to draw
a Threejs line in the scene. Additionally, we have added a 3D Mesh (arrow shape) at the point
where the parabola reaches the ground to indicate in which exact position the camera will move.

When the user holds down the trigger of the right controller, we capture the event and display
the parabola with the arrow in the scene. The shape and position are updated every frame while
the user is holding the trigger. Once the user has decided which position he wants to teleport, he
releases the trigger, and the camera is moved to the new coordinates. Check the result in Figure 39.

Fig. 38: Graphic representation of the teleport-
ing feature using curve trajectories.

Fig. 39: User using the teleport tool in the VR
mode.

5.7.2 UI

Previously for the options menu, we used the Threejs GUI class. This allowed us to create check-
boxes, dropdown menus, and drag bars. Unfortunately, this menu was not an element inside the
scene, instead it was an HTML element that we cannot see in the VR environment. However,
thanks to the HTMLmesh class, we can convert this element into a Mesh that we can add inside
the scene. In addition, this class allows us also to capture the selection events of the VR con-
trollers, making this Mesh an interactive UI within the scene. Unfortunately, some elements such
as dropdown lists did not work quite well this way, so they were removed from the interface or
adapted to other types of UI elements.

32

At this point, we only need to choose where and how we position the UI inside the scene. To
be able to access the UI at any time, the most logical implementation is to follow the user posi-
tion. To do this, we create a Threejs Group object. This object allows us to join multiple objects
as children of the group, which we can transform as we want, and the elements that compose it
will follow the same transformations. In this case, what we will do is a group that we will call
camera_group, which will contain the UI, the camera, the photo collection, and the secondary view.

The local position of the elements in this group has been chosen arbitrarily after experimenta-
tion with different configurations. At the end, we placed the UI on the left side with a slight
rotation on the vertical axis so that it is facing the user. To prevent the interface from being too
intrusive, it comes disabled by default, and it is only activated while the left trigger is held down.

We discovered while experimenting with the UI that if it followed the orientation of the head-
set at all times, it was very difficult to interact with the elements. Hence we decided that each
time the user held down the trigger to activate the UI, it would be positioned according to the
position and orientation of the camera, but then it becomes a static element until we deactivate
it. Figure 40.

Fig. 40: UI displayed in the VR mode.

33

5.7.3 Photo collection

Remember that when we drew the photo collection, the Meshes that contained the images were set
on a different scene. To adapt this to virtual reality, the Meshes will have to be visible in the main
scene. To achieve this, we will add each one of them to a new Threejs Group. Inside that group,
we position the images by the same procedure used in the normal mode with the difference that
in each stack, we will add a little offset between the images on the z-axis to provide a sensation of
volume in the scene. Next, we scale the group size by an arbitrary number so that it occupies the
desired size along with the scene. Finally, we add the group inside the camera_group. This way,
when we activate the image collection, it will be positioned in front of the camera. Notice how the
photo collection is displayed in VR in Figure 41.

In order to detect the photograph that we want to select, we use the same system that we have
used with the tools menu. We cast a ray from the controller and check if it intersects with any of
the images. Once selected, if we press the trigger, it will move us to the capture position. If we
want to scroll in one of the stacks, we only need to press the side trigger.

Fig. 41: Displaying the photo collection in VR.

34

Area selection
In VR mode, we also wanted to integrate the area selection mode. Remember that in normal mode,
it was as simple as selecting an area on the screen and then calculating its coordinates in screen
space. These coordinates were used to delimit the points that we counted inside that frustum
fraction of the camera. To achieve the same effect in VR, the process we followed these steps:

1. When the user presses the area selection button (side trigger), we launch a ray from the
controller towards the model. We keep the intersection point for later.

2. While the user keeps the button pressed, we cast rays to know the second selection point.

3. We project the two points to camera-space and pass it to the fragment shader that draws
the model.

4. In the fragment shader, we check if the fragment stays within the range between the two
points. If so, we mix the fragment’s color with a vec3(0, 0, 1) (blue color). Check Figure 42

5. When the user releases the trigger, we calculate the points inside the area from the last
camera-space coordinates we have, just as we did in normal mode.

Fig. 42: Using the selection area in VR mode.

35

5.7.4 Secondary view

This element was easier to adapt since we already had the view drawn in a Threejs Mesh. There-
fore, the only thing we had to do was introduce the element into the camera_group and decide
the local position so that it would be comfortable to visualize. In this case, we have chosen the
camera’s right side with a slight rotation in the vertical axis to face the user. We consider unnec-
essary the additional zoom/drag controls in VR mode since the same user can move closer to or
away from the panel by moving the headset. At the right side of Figure 43 we can appreciate the
big plane showing the secondary view.

One problem we encountered was that interface elements sometimes were occluded by the Scene
Mesh. To solve this issue, we opted to draw these elements without taking into account the depth
buffer.

Fig. 43: Showing the secondary view in VR mode.

36

6 Pilot study
In this section, we will talk about the study carried out to verify the usability of our application.
The study’s main objective is to determine if the application is useful and easy to use to explore
cultural heritage environments. To do this, we have developed a five-stage experiment. First, the
participants will learn to use the application in web mode. In the second stage, they will be asked
to perform some tasks. In the 3rd and 4th stages, the same process is repeated, but this time for
virtual reality. Finally, in the last stage, the participants will answer a questionnaire.

Five people voluntarily participated in the study. Their ages were between 20 and 70 years old.
Most of the participants had little or no experience in VR and navigating 3D environments. This
last fact is important as it helps determine whether the application is accessible for inexperienced
users to learn.

6.1 Experiment description
6.1.1 Training

As we have said previously, users follow a five-stage process. The first one consists of brief guided
training for navigation the scene using the different tools. Once the training is completed, the
user has about 2-3 minutes to freely familiarize himself with the environment. To be as objective
as possible, we will use a specific model for the learning stage (Pedret), reserving the other two
for the tasks. This way, we prevent the user from obtaining key information to perform the tasks
during the learning phase.

6.1.2 Tasks

For the tasks, we will use two variables. The first is the task itself, and the second is the recom-
mendation system used for it:

• Automatic system: The auto-detect option is enabled. The user has to solve the task
starting from the images shown in the collection of photos recommended in this way.

• Manual system: The user can only use the area selection tool to generate the collection of
photos.

Since the number of participants is relatively small, we have decided that the experimentation
follows a within-subjects design. In our case, this means that all participants perform all tasks
using both recommendation systems. Since the same task is solved twice, the second time it is
done, it is easier for the user regardless of the recommendation system used. To counterbalance
this fact conditions the study, we will randomize the order of the recommendation system used.

We have followed the following criteria to decide what tasks should be performed to give us useful
information:

• The tasks are easy to understand and perform, enough for all users to complete them all
without help.

• The result after completing the task is always correct. We do not ask answers that could
invalidate the result due to ambiguity or misinterpretation.

• It is necessary to examine the collection of photographs to complete the tasks.

The following list contains the different tasks used in the study:

• Doma: navigate to the left-wing and read the inscription above the crucifixion of Christ.

• Doma: navigate to the altar and discover what elements hold the hands of the central figure
in the mural.

• Solsona: Examine the front mural and discover what musical instruments are being played.

• Solsona: Examine the arch and discover the characters drawn on the inside face.

37

Doma tasks will be performed in web mode and Solsona’s tasks in VR mode. Since we used
different models for each mode, experimentation in web mode does not condition the performance
of tasks in VR mode.

6.1.3 Questionnaire

Finally, the user is asked to answer a questionnaire of 17 questions. Mainly, we ask the participant
to indicate which method considers most effective for each of the tasks and modes. We also ask
them to evaluate more general characteristics such as the application’s usefulness, the level of
immersion and usability. In the Annex 7.1 section, you can find the exact procedure of each stage
and the complete list of questions of the questionnaire.

6.2 Analysis of the results
6.2.1 Questionarie

Previous experience:
Half of the participants had previous experience in 3D navigation, either in video games or in other
virtual museums. As far as virtual reality is concerned, most participants had never used a headset
before, and those who had used it had minimal experience. Still, no one got dizzy during the VR
experience.

Completion of tasks:
Unfortunately, most users needed some additional help to complete the tasks. All users understood
the task they had to perform, but sometimes they forgot how to use any of the tools, or they got
lost in the scene. Regarding the different tools to complete the tasks, there is no clear consensus
on which tool is better. Some participants felt more comfortable with the automatic mode, and
others preferred the manual.

App evaluation:
The majority of participants considered that the photos displayed in the collection of photographs
were valuable and relevant. Regarding the application’s usefulness in virtual museums, everyone
considered it a helpful tool, being the web mode, the most practical to carry out the tasks, and
the VR mode the most immersive.

In case you want more information, in the Figure 44, you can find the complete table with the
results of the study.

6.2.2 Observations

The training phase lasted longer than expected:
It was quite difficult for the participants to learn to move around comfortably, especially for those
who had no previous experience in 3D environments. On some occasions, they teleported using
the selected photograph ending completely disoriented. On the other hand, sometimes they were
clear about where they were but found it difficult to go or position themselves in a specific place.
Regarding the different tools (photo collection, secondary view, selection), they also had difficulties
assimilating and remembering how to use each of these features.

The interface was a bit confusing:
To select a photo, you just need to move the mouse over it in the collection. Due to this, sometimes
the participants moved the mouse over one of the images inadvertently, causing the projected im-
age to change, which was disconcerting. Another common problem was that during the automatic
mode, sometimes the participant had found the desired photos. However, after zooming or moving
the camera a little to take a closer look, the collection was unintentionally recalculated again as
they left the automatic option enabled.

Participants did not use the tools as expected
Most of the time, the participants preferred to move repeatedly in the scene even though they
already had the correct photograph on hand in the collection. They trusted that the photo they
were looking for would be automatically projected. They found the secondary view a bit confusing

38

so they tried to complete the task without using it. Also, they hardly ever explored the stacked
photos. Only after spending a lot of time experimenting with the application, participants ended
up making good use of the tools.

6.2.3 Comments

Regarding the two methods to perform the selection of images (automatic and manual), the par-
ticipants agreed that both were effective and that they complemented each other depending on the
situation. Another aspect that the participants agreed on was that they were pretty annoyed that
the base model was so blurry. They consider that with a little more quality, the application would
improve a lot and it would also be easier to orient in the scene. Ultimately most of them agreed
that the tools could be more intuitive.

39

7 Conclusions
In this master’s thesis, we have developed an application for the exploration of cultural heritage
models. The application offers the user a collection of high-quality photographs which can be used
to move around the scene or examine more closely. In addition, thanks to the virtual reality mode,
the user can explore the model in an immersive environment.

In this report, we have described the application development process, starting from obtaining
of the scanned models using photogrammetry, followed by the implementation of the tools and
visualization of the scene. Finally, we have conducted a small study to verify the effectiveness of
the application.

We believe that we have achieved our goal and that the application proved to be helpful for
exploring models of cultural heritage. Even so, we believe that there are still many features that
could be improved in the future to give the user a better experience.

7.1 Future work
In the development of the application, we have been able to implement all the features that we set
as objectives. Even so, due to the limitation of time, the application lacks a bit of polishing to be
able to be presented as a definitive product. There are lots of enhancements that could improve
the user experience.

Interface
As we have seen in the study, it has some limitations and is still not intuitive for users. A change
that could substantially improve this aspect would be to change the photo selection system. In-
stead of selecting the photo automatically by hovering over, we could select it only when clicking
on it. Once selected, it could be highlighted with a different color in the photo collection. This way,
the user knows at every moment which photograph of the collection is working on. The selected
photo would also be shown in the secondary view, and the options chosen in the tools menu would
be applied to it. As the selection now replaces the teleport option, we could add a "teleport to
photo" button in the tool menu to travel to the capture position.

Photo recomendation
Regarding the collection of photos, in some circumstances, the proposed photos did not make much
sense. The main reason is because the photographs corresponding to areas obstructed by walls
were not discarded. Fixing this problem implies more ray casts, which ends with a significant
performance drop as the raycast implementation in Ihreejs is inefficient for large meshes. A good
way to solve this could be to using a simplified mesh only for the raycast calls.

Another reason is that the method used to decide whether two photos are "similar" could be
further elaborated. Currently, we calculate the average of the ray casts that coincide in both pho-
tographs. Although this is good enough for our purpouse, surely it could be combined with other
methods to improve the results.

40

Acknowledgments
The digitization of the St. Quirze de Pedret models was partially funded by the Spanish Ministry
of Economy and Competitiveness and FEDER Grants TIN2017-88515-C2-1-R, the Romanesque
Pyrenees, Space of Artistic Confluences II (PRECA II) project (HAR2017-84451-P, Universitat de
Barcelona) and the JPICH-0127 EU project Enhancement of Heritage Experiences: the Middle
Ages. Digital Layered Models of Architecture and Mural Paintings over Time (EHEM). We would
like to thank the Museu Diocesà i Comarcal de Solsona, Carles Freixes, Lídia Fàbregas, for kindly
allowing ViRVIG to scan Pedret’s mural paintings at MDCS. We would also like to thank the
Ajuntament de la Garriga and Enric Costa for kindly allowing Marc Comino to scan the Doma
church.

41

References
[1] Bundler v0.4 user’s manual. https://www.cs.cornell.edu/~snavely/bundler/

bundler-v0.4-manual.html. Accessed: 2021-06-21.

[2] Colmap. https://colmap.github.io/. Accessed: 2021-05-09.

[3] Meshlab. https://www.meshlab.net/. Accessed: 2021-05-09.

[4] Single linkage clustering. https://scikit-learn.org/stable/modules/clustering.html#
hierarchical-clustering/. Accessed: 2021-05-16.

[5] Three.js. https://threejs.org/. Accessed: 2021-05-07.

[6] Webgl. https://www.khronos.org/webgl/. Accessed: 2021-05-07.

[7] Webvr api. https://developer.mozilla.org/en-US/docs/Web/API/WebVR_API. Accessed:
2021-04-17.

[8] Webxr api. https://https://developer.mozilla.org/en-US/docs/Web/API/WebXR_
Device_API. Accessed: 2021-04-17.

[9] Lucia Arbace, Elisabetta Sonnino, Marco Callieri, Matteo Dellepiane, Matteo Fabbri, Antonio
Iaccarino Idelson, and Roberto Scopigno. Innovative uses of 3d digital technologies to assist
the restoration of a fragmented terracotta statue. Journal of Cultural Heritage, 14(4):332–345,
2013.

[10] Lucia Arbace, Elisabetta Sonnino, Marco Callieri, Matteo Dellepiane, Matteo Fabbri, Anto-
nio Iaccarino Idelson, and Roberto Scopigno. Innovative uses of 3d digital technologies to assist
the restoration of a fragmented terracotta statue. Journal of Cultural Heritage, 14(4):332–345,
2013.

[11] David Arnold. Computer graphics and cultural heritage: From one-way inspiration to sym-
biosis, part 1. IEEE computer graphics and applications, 34(3):76–86, 2014.

[12] Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey. Point & teleport lo-
comotion technique for virtual reality. In Proceedings of the 2016 Annual Symposium on
Computer-Human Interaction in Play, pages 205–216, 2016.

[13] Paolo Brivio, Luca Benedetti, Marco Tarini, Federico Ponchio, Paolo Cignoni, and Roberto
Scopigno. Photocloud: Interactive remote exploration of joint 2d and 3d datasets. IEEE
computer graphics and applications, 33(2):86–96, 2012.

[14] K Choromański, J Łobodecki, K Puchała, and W Ostrowski. Development of virtual real-
ity application for cultural heritage visualization from multi-source 3d data. International
Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2019.

[15] Dimo Chotrov and Angel Bachvarov. A flexible framework for web-based virtual reality pre-
sentation of cultural heritage. In AIP Conference Proceedings, volume 2333, page 140002. AIP
Publishing LLC, 2021.

[16] Marc Comino, Antoni Chica, and Carlos Andujar. Easy Authoring of Image-Supported Short
Stories for 3D Scanned Cultural Heritage. In Michela Spagnuolo and Francisco Javier Melero,
editors, Eurographics Workshop on Graphics and Cultural Heritage. The Eurographics Asso-
ciation, 2020.

[17] George L. Cowgill. Computer applications in archaeology. page 331–337, 1967.

[18] Annabelle Davis, David Belton, Petra Helmholz, Paul Bourke, and Jo McDonald. Pilbara
rock art: laser scanning, photogrammetry and 3d photographic reconstruction as heritage
management tools. Heritage Science, 5(1):1–16, 2017.

[19] Francesco Fassi, Luigi Fregonese, Sebastiano Ackermann, and Vincenzo De Troia. Comparison
between laser scanning and automated 3d modelling techniques to reconstruct complex and
extensive cultural heritage areas. International archives of the photogrammetry, remote sensing
and spatial information sciences, 5:W1, 2013.

42

https://www.cs.cornell.edu/~snavely/bundler/bundler-v0.4-manual.html
https://www.cs.cornell.edu/~snavely/bundler/bundler-v0.4-manual.html
https://colmap.github.io/
https://www.meshlab.net/
https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering/
https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering/
https://threejs.org/
https://www.khronos.org/webgl/
https://developer.mozilla.org/en-US/docs/Web/API/WebVR_API
https://https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API
https://https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API

[20] Ajoy S Fernandes and Steven K. Feiner. Combating vr sickness through subtle dynamic field-
of-view modification. In 2016 IEEE Symposium on 3D User Interfaces (3DUI), pages 201–210,
2016.

[21] Markus Funk, Florian Müller, Marco Fendrich, Megan Shene, Moritz Kolvenbach, Niclas
Dobbertin, Sebastian Günther, and Max Mühlhäuser. Assessing the accuracy of point &
teleport locomotion with orientation indication for virtual reality using curved trajectories.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages
1–12, 2019.

[22] Athanasios Gaitatzes, Dimitrios Christopoulos, and Maria Roussou. Reviving the past: cul-
tural heritage meets virtual reality. In Proceedings of the 2001 conference on Virtual reality,
archeology, and cultural heritage, pages 103–110, 2001.

[23] Jacek Jankowski and Martin Hachet. Advances in interaction with 3d environments. In
Computer Graphics Forum, volume 34, pages 152–190. Wiley Online Library, 2015.

[24] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Trans.
Graph., 32(3), July 2013.

[25] Mila Koeva, Mila Luleva, and Plamen Maldjanski. Integrating spherical panoramas and
maps for visualization of cultural heritage objects using virtual reality technology. Sensors,
17(4):829, 2017.

[26] Pedro Martín Lerones, José Llamas, Jaime Gómez-García-Bermejo, Eduardo Zalama, and
Jesús Castillo Oli. Using 3d digital models for the virtual restoration of polychrome in inter-
esting cultural sites. Journal of Cultural Heritage, 15(2):196–198, 2014.

[27] G. Pavlidis, A. Koutsoudis, F. Arnaoutoglou, V. Tsioukas, and C. Chamzas. Methods for 3D
digitization of Cultural Heritage. J. Cult. Herit, 8(1):93–98, 2007.

[28] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo collec-
tions in 3d. In ACM siggraph 2006 papers, pages 835–846. 2006.

[29] N. Yastikli. Documentation of cultural heritage using digital photogrammetry and laser scan-
ning. J. Cult. Herit, 8(4):423–427, 2007.

[30] Naci Yastikli. Documentation of cultural heritage using digital photogrammetry and laser
scanning. Journal of Cultural heritage, 8(4):423–427, 2007.

43

Annex
Web tasks:

1. In the Doma model, if you navigate to the left-wing and, you will find a crucified Christ.
Can you read the inscription at the top of this?

2. In the Doma model, navigate to the altar and look at the central illustration of the mural.
Can you see what the central figure in the illustration is holding in each hand?

VR tasks:

1. In the Solsona model, take a look at the mural on the front wall of the room. There are some
musicians, discover what type of instrument they are using.

2. In the Solsona model, take a look at the lower vignette of the inner part of the central arch.
There is a humanoid figure and some letters next to it, can you read them?

Modes:

1. Using the automatic recommendation system.

2. Using the recommendation-by-selection system.

Stage 1: Web training

1. We give a basic description of the objective of the application and the study to the partici-
pants.

2. We open the application in the browser with the default model (Pedret).

3. We proceed to explain the navigation controls and the most relevant tools to explain.

4. The participant expends between 2-3 minutes to familiarize with the environment and tools
freely.

Stage 2: Web tasks

1. We ask the user to perform one of the two tasks with one of the two modes.

2. We ask the user to perform the same task but this through the alternative mode.

3. We ask the user to perform the remaining task using the alternate mode.

4. We ask the user to perform the same task with the first mode used for the first task.

Stage 3: VR training

1. We open the application in the browser with the default model (Pedret).

2. We proceed to explain the navigation controls and the most relevant tools to explain.

3. The participant expends between 2-3 minutes to familiarize with the environment and tools
freely.

Stage 4: VR tasks

1. We ask the user to perform one of the two tasks with one of the two modes.

2. We ask the user to perform the same task but this through the alternative mode.

3. We ask the user to perform the remaining task using the alternate mode.

4. We ask the user to perform the same task with the first mode used for the first task.

44

Stage 5: Questionnaire

1. For task (1) on the Web, I consider that the manual mode is more practical than the auto-
matic. Score from 1 to 10 where 1 means "completely disagree" and 10 "completely agree".

2. For task (2) on the Web, I consider that the manual mode is more practical than the auto-
matic. Score from 1 to 10 where 1 means "completely disagree" and 10 "completely agree".

3. For task (1) in VR, I consider that the manual mode is more practical than the automatic.
Score from 1 to 10 where 1 means "completely disagree" and 10 "completely agree".

4. For task (2) in VR, I consider that the manual mode is more practical than the automatic.
Score from 1 to 10 where 1 means "completely disagree" and 10 "completely agree".

5. At a general level, I consider that the manual mode is more practical than the automatic.
Score from 1 to 10 where 1 means "completely disagree" and 10 "completely agree".

6. Rate from 1 to 10 the intuitiveness and comfort of navigation in Web mode (10 being the
maximum score)

7. Rate from 1 to 10 the intuitiveness and comfort of navigation in VR mode (10 being the
maximum score)

8. Rate from 1 to 10 the usefulness of the secondary view (10 being the maximum score)

9. Rate from 1 to 10 the relevance of the photos shown in the photo collection (10 being the
maximum score)

10. Rate from 1 to 10 the usefulness of the collection of photos (10 being the maximum score)

11. Rate from 1 to 10 the usefulness of the projection of the photograph in the scene (10 being
the maximum score)

12. Rate from 1 to 10 the usefulness of the Web mode to explore the model and perform tasks
like the previous ones (10 being the maximum score)

13. Rate from 1 to 10 the practicality of VR mode to explore the model and perform tasks like
the previous ones (10 being the maximum score)

14. Rate from 1 to 10 the level of immersion in the scene using the Web mode (10 being the
maximum score)

15. Rate from 1 to 10 the level of immersion in the scene using VR mode (10 being the maximum
score)

16. Rate from 1 to 10 the general usefulness of the application for use in virtual web museums
(10 being the maximum score)

17. Answer true or false in the following questions:

(a) At times I have become disoriented or lost in the scene.
(b) I got dizzy in VR mode.
(c) After the initial explanation, I have required additional help to navigate the scene and

perform the tasks.
(d) I have encountered difficulties completing one or more tasks.
(e) This is the first time I have used a virtual reality headset.
(f) I have previous experience (+ 4h) navigating in 3D environments either in other virtual

museums or in video games.

45

Fig. 44: Study results

46

	Introduction
	Previous work
	Cultural Heritage Digitalization
	Web navigation and VR for 3D enviorments
	Showing cultural heritage

	Application goals
	Application description
	Starting the application
	Scene navigation
	Image collection

	Secondary view
	User interface and interaction
	Virtual Reality mode

	Implementation
	Application Structure
	The pipeline

	The models
	Obtaining models
	Processing the output from COLMAP
	Precomputating extra information

	Preparing the scene
	Loading models and cameras
	Main camera and navigation

	Photo collection
	Ranking images
	Automatic image selection
	Manual image selection
	Clustering images
	Visualization

	Tools
	Highlighted area
	Image projection
	Show camera

	Secondary view
	Rendering the view
	Showing the image
	Navigation

	VR mode
	Navigation
	UI
	Photo collection
	Secondary view

	Pilot study
	Experiment description
	Training
	Tasks
	Questionnaire

	Analysis of the results
	Questionarie
	Observations
	Comments

	Conclusions
	Future work

