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Section 0

Abstract

Computational Mechanics’ problems are often solved using the Finite Element Method
(FEM). The resulting systems of equations may lead to large data and therefore, the so-
lution requires high memory and time to be computed. This situation can be surpassed
by applying Reduced Order Modeling (ROM) techniques, allowing the user to capture the
system’s dominant effects to build a high-fidelity reduced model that gives the possibility
to predict and analyze the behaviour of a complex model using low computational re-
sources within a micro time-step.

This paper aims to enrich the already implemented Kratos’ Rom Application with a recon-
struction of the reaction and 2nd Piola Kirkchhoff stress fields. The applied methodology
is a projection-based strategy using the Proper Orthogonal Decomposition together with
a Gappy Data reconstruction technique. The gappy data comes from building a hyper-
reduced order model (HROM).

A surrogate model application using static condensation and HROM techniques is pro-
posed to show the possibility of solving multibody systems interfacing Kratos’ ROM frame-
work with Mathworks control capabilities in a fast and accurate way. The validation of
the applied methodology is given by 3D complex models.

Sebastian Ares de Parga R. 1



Section 0

Acknowledgements

First of all, I would like to thank Dr. Riccardo Rossi for all the support and trust that he
put in me during this year of work, who offered me the opportunity to work with him and his
team in the development of surrogate and reduced-order models. This stage not only helped
me to orient my goals and tastes for engineering and programming, but it also captivated me
to move forward in the field of research and practical-theoretical production of scientific mate-
rial through a Ph.D. in Civil Engineering with him as the supervisor. It is an honor to have
developed material for the computational mechanics’ software “Kratos Multiphysics”, of which
Riccardo is co-founder.

Within Kratos Multiphysics’ research group, I want to thank the doctoral student M.Sc. Raul
Bravo, who always offered me his help throughout the process of my research, to the extent
that he was a decisive factor in changing the main topic of my thesis by allowing me to go
deeply into his work alongside him in the implementation of model order reduction techniques
for Kratos, reason for which I naturally registered him as a thesis supervisor. I extend huge
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PART I

INTRODUCTION

As the use of computational support tools has grown, Computational Mechanics, the sub-
discipline of mechanics that develops and applies numerical methods with digital computer
capabilities, has been developed immensely to find the solution to Multiphysics Engineering
problems, with the main objective of understanding and harnessing the resources of nature.
This great development coming from the improvement of computers and the availability of
new calculation methods has allowed to analyze high-dimensional problems such as multi-scale,
multibody, and control problems. However, today’s technological opportunities demand to take
advantage of techniques that allow performing analyzes with precision and quickness. One ef-
fective way to overpass this is to perform the so-called dimensionality reduction, which will
enable to transform data from a high dimensional space into a low dimensional space retain-
ing the most meaningful characteristics, properties, or information from the original set of data.

In structural engineering, the most common results of the analysis are the displacements, re-
actions, and stresses to which the structure under analysis is subjected. Obtaining a Reduced
Order Model (ROM) will allow the user to modify input parameters to analyze the response
(displacements, reactions, and stresses) of the structure to these modifications quickly and with
error tolerances predefined by the user.

Many of the software that today allow the analysis of control systems or multi-body prob-
lems, only describe the global behavior of the system, because a full analysis of the results
requires large amounts of memory and time. Arising the need to obtain a ROM that enables
quick analysis and post-processing of the structural elements.

1 Objectives

The main objective is to make use of the capabilities of Kratos Multiphysics, an extremely
powerful and efficient open-source software for solving a wide variety of mechanical problems,
taking the already implemented base of Reduced Order Models (ROM) application that cur-
rently enables the post-processing of the displacements in structural problems and implement
the necessary processes that will allow the post-processing of reactions and stresses. The im-
plementations in Kratos Multiphysics are expected to allow interface with other computational
software such as Simscape and Simulink (Mathworks). Mathworks, offers a very efficient user-
friendly interface for modeling control systems and multibody problems, however, it does not
allow going into detail in the physical responses of the structural components within this model
(post-processing of a structural member), making a simplified analysis with low-fidelity results
coming from the structure.
Kratos Multiphysics aims to provide Mathworks with a ROM that is sufficiently precise (up to
user’s input requirements) to increase the fidelity of its results, and in addition, allow detailed
post-processing of results of the structures involved in the control or multi-body problem.
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PART II

THEORETICAL BACKGROUND

2 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a very reliable matrix factorization, providing a
matrix decomposition that results into a low rank matrix approximation to be used for a wide
variety of cases, in addition, it helps to find the best fit solution for a singular, under-determined,
and/or over-determined linear system of equations of the form:

Ax = b (1)

The SVD is also a basis algorithm of the principal component analysis (PCA), which as it’s
name indicates, focuses on finding the principal descriptive data for high-dimensional sets with
a low-dimensional decomposition.

In computational mechanics, the solution of complex problems leads to large data sets, com-
monly saved as matrices. For instance, if the results of a series of experiments or simulations
of state-dimensions n (e.g. the amount of degrees of freedom in a structural mechanics prob-
lem) are stored in a high dimensional matrix of snapshots, these snapshots represent low rank
systems, meaning that only few patterns (dominant) explain or capture the high dimensional
data [1].

2.1 Definition

Given a matrix data set X ∈ Rn×m:

X =

 | | |
x1 x2 . . . xm

| | |

 (2)

Where xk ∈ Rn is the snapshot vector of the simulation or experimental data. For instance, a
typical application would be in image compression, where the snapshot vectors will be a column
vector with all the pixels that an image contains, whereas for a structural mechanics problem
it could be the displacements of a time-series simulation. This means that the state-dimension
n (rows) will often refer to very high dimensional data. Meanwhile the columns “m” are called
the snapshots of the matrix data set X. Usually, for computational mechanics simulations, X
will have n >> m, and will be referred as the Snapshot Matrix throughout this paper.

The SVD is a unique matrix factorization of a real or complex matrix X ∈ Rn×m (for the
purpose of this paper, consider only real matrices):

X = UΣVT (3)

where U and V are n × n and m × m real unitary matrices respectively with orthonormal
columns, and Σ is a n×m matrix with real, non-negative entries on the diagonal and zeros off

10



Section 2

Figure 1: Full and economy SVD (Redrawn from [1])

the diagonal ordered from largest to smallest. From now on, U, V, and Σ may be referred as
the matrices of left singular vectors, right singular vectors, and singular vectors respectively [1].

2.2 Economy SVD

When n ≥ m, the singular vectors matrix Σ has at most m non-zero elements on the diagonal.
Therefore, representing the singular values as a column vector:

Σ =

[
Σ̂
0

]
(4)

Yielding the economy SVD:

X = UΣVT =
[

Û Û⊥
] [ Σ̂

0

]
VT = ÛΣ̂VT (5)

Where the columns of Û⊥ span a vector space that is complementary and orthogonal to that
spanned by Û. The rank of X is given by the number of the non-zero singular values [1]. To
best describe the previously mentioned, please refer to the figure 1.

2.3 Truncated SVD

In [4], it is established that “The optimal rank-r approximation to X, in a least-squares sense,
is given by the rank-r SVD truncation X̃”.

X̃ = argmin
X̃, s.t. rank (X̃)=r

‖X− X̃‖F= ŨΣ̃ṼT (6)
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Figure 2: Truncated SVD (Redrawn from [1])

Where Ũ, Ṽ, and Σ̃ contains the truncated most important information, and ‖‖F denotes the
Frobenius norm. Therefore, the SVD truncated for r singular values, approximates X:

X ≈ ŨΣ̃ṼT (7)

In figure 2, the truncated SVD is depicted.

2.4 Randomized SVD

To improve the computational cost of the decomposition of large matrices, the randomized
numerical linear algebra is applied to obtain an accurate and efficient decomposition. Using
random test matrices P to sample the column space and find a matrix Q with orthonormal
columns to approximate the column space of a given matrix X, such that:

||X−QQTX||2F< ε (8)

This methods were first developed to improve the multiplication of high-dimensional matrices,
and later expanded to the SVD theory. To explain the idea of randomized SVD, let us focus
in the randomized SVD algorithm of Halko, Martinsson, and Tropp [5].

• The main and first step is to build a random test matrix P ∈ Rm×r to sample the column
space of X ∈ Rn×m:

Z = XP (9)

Construct a matrix Q whose columns form an orthonormal basis for the range of Z by
computing the low-rank QR decomposition:

Z = QR (10)

Sebastian Ares de Parga R. 12
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• It is now possible to project X into a much smaller space with the help of Q:

Y = QTX (11)

To the extend that whenever the singular values decay rapidly, a fair approximation of
X will be obtained:

X ≈ QY (12)

Recalling equation 11, obtain the SVD on Y:

Y = UYΣYVT
Y (13)

Where, since Q is orthonormal and approximates the column space of X:

Σ = ΣY VT = VT
Y (14)

Therefore, substituting 14 into 13:

Y = UYΣVT (15)

• Reconstruct the left singular vector of X with the use of UY and Q:

U = QUY (16)

Based on [1] section 1.8.

2.5 Image Processing

To show the idea of the previous sections and the SVD itself, it is provided a typical example of
SVD application, image processing. A gray-scale image can play the role of a matrix X ∈ Rn×m,
where n and m represent the number of vertical and horizontal pixels of the image respectively.
To show this practical example, the numpy’s SVD library is going to be used truncating the
SVD rank r to different values to capture the behavior of the approximation of the images. The
sample image is a 1280x960 gray-scale image of “Fifa” (San Bernard dog) and was reconstructed
with 5, 20, and 100 truncation values r. In figure 3, it can be seen that for a rank 5 reconstruction
with less than 1% of storage, it can definitely be recognized the figure of a dog, meanwhile for
a rank 20 reconstruction you can completely identify the specific dog’s characteristics with less
than 4% of the information, and finally, for a rank 100 you can even identify small details such
as the shine on her eye. In figure 4 it can be noticed a fast decay on the singular values, and
after around 100 modes it flattens out. In figure 5, it can be observed how singular values
account for more than 50%, 70%, and 90% of the image variance for 5, 20, and 100 modes
respectively.

2.6 Pseudo-Inverse

Physical and statistical problems many times lead to linear problems of the form:

Ax = b (17)

Where the matrix A ∈ Rn×n, x ∈ Rn×m, and b ∈ Rn×m, whose solution comes from the knowl-
edge of the A and b matrices. A unique solution exists if the matrix A is invertible.
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(a) Original (b) r = 5, Storage percentage=0.911%

(c) r = 20, Storage percentage=3.646% (d) r = 100, Storage percentage=18.229%

Figure 3: Image compression of Fifa with different truncation values r.
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Figure 4: Singular Values

Figure 5: Cumulative Energy Singular Values

This solution is achieved by pre-multiplying 17 with the inverse of A:

A−1A︸ ︷︷ ︸
I

x = A−1b (18)

x = A−1b (19)

Where I denotes the identity matrix.

However, many times the matrix A is either singular or rectangular, leading to a non-certain
amount of solutions that could vary from none, one or infinite solutions. This paper will mainly
focus in the rectangular case, where A ∈ Rn×m (usually n >> m, meaning that there are more
equations than unknowns, this system is called over-determined system). One solution space
for 17 is determined by the 4 fundamental spaces, and the SVD is the chosen technique to solve
the minimization problem:

||Ax̃− b||22 (20)
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The truncated SVD of A yields:
A ≈ ŨΣ̃ṼT (21)

And considering the Moore-Penrose pseudo-inverse [6]:

A† = (ATA)−1AT (22)

For a matrix A of the form 21, the left pseudo-inverse [7] is defined as:

A† = ṼΣ̃−1ŨT (23)

Where:
A†A = I (24)

An example of a simple pseudo-inverse application is presented below.

2.7 Simple 1D example

To show a one dimensional linear approximation, a data that originally forms a “line” is pro-
posed with some added noise to then reproduce a line that best fits the noisy data and compare
it with the “original line”. The over-determined system is of the form:

ax = b (25)

x = a†b (26)

Solving for x:
x = ṼΣ̃−1ŨTb (27)

In figure 6 it can be observed that it well approximates the true line regardless of the noisy
data.

Figure 6: Left pseudo-inverse approximation for a one-dimensional over-determined system
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3 Finite Element Method

The finite element method (FEM) is a numerical procedure for the solution of the equations
that govern the behaviour of physical phenomena. These equations are of the form of differ-
ential equations. This method allows to find multiple solutions of the different spatial or time
parameters of the phenomena by solving a numerical system.
In structural mechanics, FEM is a powerful procedure to compute the displacements, reactions,
stresses, strains, among many other different parameters that may arise depending on the phys-
ical phenomena under study.
The basic idea is to decompose a continuum spatial medium into a finite set of small portions.
The original geometry of the continuum medium will be achieved by the collection of the finite
set of portions forming a non-overlapping domain. A FEM mesh is shown in figure (7).

Figure 7: Stanford Dragon mesh (WRL file retrieved from Stanford University)

The solution variables of the finite element problem are expressed in terms of a polynomial
expansion. The need of FEM comes from the fact that solving the analytical variation param-
eters is very complex in many cases, providing an approximation of the exact solution.

This section is based on the Chapter 1 and Chapter 2 of “Structural Analysis with the Finite
Element Method” found in the references [8], with a slight change of notation and preserving
the equations format.

3.1 Analysis

To give a basic introduction of the methodology and concept of FEM, a simple FEM of a 1D
Poisson equation is studied.

The simplest 1D governing equation for the Poisson problem is:

k
d2u

dx2
+Q(x) = 0 (28)

Where u is the unknown variable (e.g. displacement), k represents a physical parameter (e.g..
stiffness), Q(x) is the so-called source term (e.g. forces). In figure 8a, it is shown a graphic
representation of the 1D problem, and in figure 8b, the infinitesimal representation.
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(a) Representation of a Poisson bar problem (b) Infinitesimal section of bar

Figure 8: Poisson problem for a bar (Redrawn from Oñate)

3.2 Weighted Residual Method

The weighted residual method (WRM) is a transformation of the governing equations to an
equivalent integral expression.

Let A(u) be the governing equation in 28:

A(u) =
d

dx

(
k
du

dx

)
+Q = 0 in Ω (29)

where Ω is the domain in analysis.
And, let B(u) be the equation expressing the boundary conditions of the differential equation
A(u):

B(u) :

 u− ū = 0 in Γu

k
du

dx
+ q̄ = 0 in Γq

(30)

where Γu is the Dirichlet boundary where the unknown function is prescribed (e.g. prescribed
displacement) and Γq is the Neumann boundary (e.g. prescribed forces). A diagram of a sample
domain with boundary conditions is shown in figure 9. The unknown u and the parameters
k,Q, and q have different meanings depending on the physical problem (e.g. structural or
heat problem). The equivalent integral expression of the differential equation is obtained by

Figure 9: Domain (Ω), Dirichlet boundary (Γu), and Neumann boundary (Γq) representation.
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multiplying A(u) and B(u) by arbitrary weighting functions W (x) and W̄ (x) respectively:

W (x)A(u) + W̄ (x)B(u) = 0 (31)

And then integrating over the analysis domain (including the boundary):∫
Ω

W (x)A(u)dΩ +

∮
Γ

W̄ (x)B(u)dΓ = 0 (32)

The interesting feature of equation 32, is that it can be expressed in terms of a sum of integrals
of the finite elements because of the additive property of the integral:∑

e

∫
Ωe

W (x)A(u)dΩ +
∑
e

∮
Γe

W̄ (x)B(u)dΓ = 0 (33)

This equation 33 is the basis of the FEM assembly analysis.

3.3 Unknown variable

As previously mentioned, FEM is going to give an approximation of the analytical unknowns.
The congruent approximated value is:

u(x, t) ∼= û(x, t) (34)

The approximation of the unknowns (û(x, t)) is usually expressed as a linear combination of
the so-called shape functions Ni(x) and the unknown parameters ai(t) as follows:

û(x, t) =
n∑

i=0

Ni(x)ai(t) (35)

Substituting 34 into 32: ∫
Ω

W (x)A(û)dΩ +

∮
Γ

W̄ (x)B(û)dΓ = 0 (36)

This expression is called the weighted residual expression because A(û) and B(û) represent the
residuals of the approximation of the solution in the domain and its boundary. In such a way
that:

A(û) = rΩ in Ω
B(û) = rΓ in Γ

(37)

Where rΩ and rΓ are the residuals on the domain and boundary respectively.

Substituting 37 into 36: ∫
Ω

WrΩdΩ +

∮
Γ

W̄ rΓdΓ = 0 (38)

Such that if u = û, the residuals rΩ = rΓ = 0.

Finally, substituting 35 into 36, the following system is obtained:∫
Ω

WiA

(∑
j

Njaj

)
dΩ +

∮
Γ

W̄iB

(∑
j

Njaj

)
dΓ = 0; i = 1, n (39)

The equation 39 can simply be expressed in a matrix form, resulting into a linear system of
equations:

Ku = f (40)

Where K ∈ Rn×n contains geometrical and physical properties of the problem, u ∈ Rn contains
the unknown solution, and f ∈ Rn contains the source term function values in the boundary.
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4 Reduced Order Models (ROM)

The concept of model order reduction is old in structural mechanics, covering a wide range of
purposes (e.g. designing and testing), in a way that leads to the creation of a basis that allows
a cheap and fast comparison to experimental and simulation results. It is often associated to
very high-dimensional finite element models. They capture the behavior of the complex models
to later quickly study a system’s dominant effects with high-fidelity results using low computa-
tional resources (e.g. ROM gives the possibility to predict the behaviour of a multibody system
within a micro time-step [9]).

Throughout this paper, the high-fidelity model will be a Finite Element model to which will
be referred to as the “Full Order Model” (FOM), meanwhile the standard Galerkin projection-
based reduced model will be referred as the “Reduced Order Model” (ROM). To obtain the
dimensionality reduction of the model, it is needed to find a basis inside the FOM space, there-
fore, given its orthonormal nature, it is proposed to use the Proper Orthogonal Decomposition
for the computation of such basis [10].
In figure 10 it is shown the equivalence of the spaces for the different models. Being τ the space
of functions where the problem is defined and, τh and τr the subs-spaces of functions FOM and
ROM respectively.

Figure 10: Illustration for τ and its sub-spaces in FOM and ROM.

4.1 Proper Orthogonal Decomposition

This section is an adaption from the Chapter 11 of [1], where some functions were adapted to
this paper’s purposes.

The application of the SVD algorithm to a partial differential equation is a dimensionality
reduction technique which receives the name of “Proper Orthogonal Decomposition”. The suc-
cess of this implementation is that usually complex systems are governed by low-dimensional
patterns of dynamic activity.

To simplify the idea, the 1D Poisson equation is considered to give the main idea of how
the POD is implemented and applied to the FOM approximation.

One common technique to solve differential equations is the use of separation of variables:

u(x, t) = φ(x)a(t) (41)

Where φ and a characterize the spatial and time dependence respectively. The fact that the
solution is not known a priori, leads to a typical assumption that the solution can be described
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as a sum of a set of basis modes which are constant coefficients and are used to construct φ(x):

u(x, t) =
r∑

k=1

φk(x)ak(t) (42)

where r stands for the number of modes. To proceed with the construction of an optimal POD
modes, a training stage of the FOM has to be done, where the snapshot uk consists of sample
solutions of the FOM and the subscript k indicates the sample time-step:

uk := [u(x1, tk),u(x2, tk), . . . ,u(xn, tk)]T (43)

Building a time-steps series of data X:

X =

 | | |
u1 u2 . . . um

| | |

 (44)

with m being the number of time-steps. The matrix X will be called from now on the Snapshot
matrix.

As previously discussed in the “Singular Value Decomposition” section, the SVD provides
a unique matrix decomposition:

X = UΣVT (45)

And applying the rSVD algorithm previously explained in “Randomized Singular Value De-
composition” subsection, it can be obtained a truncated low-rank decomposition of the SVD:

X̃ = ŨΣ̃ṼT (46)

where ||X− X̃||2F< ε||X||2F . This decomposition results into the construction of the modes φk

coming from the left singular vectors Ũ:

Ũ =

 | | |
φ1 φ2 . . . φr

| | |

 (47)

where r stands for the truncated modes. It is important to observe that this modes represent a
data-driven model that provides an equation free analysis (this is crucial for the reconstruction
of the stresses and reactions that will be presented in the following chapters).

It is now possible to obtain an approximation of the FOM solution 35:

u(x, t)︸ ︷︷ ︸
FOM

∼= ũ(x, t)︸ ︷︷ ︸
ROM

(48)

Where the Galerkin projection onto the POD modes yields:

ũ(x, t) =
r∑

i=1

φi(x)qi(t) (49)

In matrix form:
ũ = Ũq (50)

where Ũ ∈ Rn×r and q ∈ Rr. Where n is the state-dimension, and r the truncated modes.

Substituting into the matrix form 40 of the governing equation and multiplying by ŨT gives
the reduced order matrix form:

ŨTKŨq = ŨTf (51)
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4.2 Hyper Reduced Order Models (HROM)

Let us focus now on the problem of how to efficiently compute the reduced vectors of the
elemental residuals:

ŨTf =
ne∑
e=1

ŨT
e fe(Ũeq) (52)

This implies that the cost of building the ROM could be as high as for building the FOM, arising
the need to implement one of the so-called “Hyper-reduction techniques“. This techniques rely
on a careful selection of a subset of elements (es) with a respective weight such that:

ŨTf =
ne∑
e=1

ŨT
e fe(Ũeq) ∼=

∑
e∈es

ŨT
e fe(Ũeq) ωe︸︷︷︸

weight

(53)

4.2.1 Empirical Cubature Method

To find the subset of elements es it can be used the method proposed in [11], and further refined
in [12], called the Empirical Cubature Method.

In a nutshell, the Empirical Cubature Method implies saving the training’s projected elemental
residuals Rφ

k into a snapshot matrix:

Sr = [Rφ
1 ,R

φ
2 , · · · ,Rφ

m] (54)

Find a modal basis by applying the SVD:

Sr = UΣ︸︷︷︸
GT

VT (55)

Note that G is associated to the elements and modes.
Minimize an objective function of the form:

J(G, es,w) = ||G1−Gesw||22 (56)

Where se and w are the selected elements and non-negative elemental weights such that:

||G1−Gesw||22< ε (57)

4.3 Gappy Data

This section arise from the fact that many times, it will be necessary to restore incomplete or
degraded information coming from an image, data set, and/or the solution of a variable in a
computational mechanics simulation. In previous sections, it has been shown how to recover
a large data set or matrix with the most significant information coming from the SVD fac-
torization. The question is, is it possible to recover a snapshot with incomplete or degraded
information with the help of the training stage (Snapshot Matrix) ? How much information is
required to recover the snapshot or how well the space of training has to be defined?

To illustrate and explain a solution to this problem, the same notation as from the previ-
ous chapters is going to be considered, where the snapshot is u and the snapshot matrix is X.
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When the snapshot is missing information or is only measured in certain points, a concept
called a masked snapshot ǔ is introduced, and it is defined as:

ǔ = Mu (58)

where M ∈ Rg×n, u ∈ Rn, and ǔ ∈ Rg. n and g stand for the state dimension and the gappy
data measurements respectively.

The matrix M is a Boolean matrix that stores the information of where the gappy data is.
Where Mij = 0 on the mask and Mij = 1 elsewhere. An example of M is shown below:

M =


1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 (59)

Applying the standard POD to equation 58:

ǔ ≈M
r∑

i=1

φiqi (60)

Or in matrix form:
ǔ ≈MŨq (61)

where ǔ ∈ Rg, Ũ ∈ Rn×r, and q ∈ Rr. r stands for the number of truncated SVD modes.
Everson and Sirovich [13] showed that q minimizes the error in:

||ǔ−Mũ||22 → ||ǔ−MŨq||22 (62)

And therefore, recalling equation 50, considering a masked solution:

Mũ︸︷︷︸
ǔ

= MŨ︸︷︷︸
Ǔ

q (63)

where ǔ ∈ Rg and Ǔ ∈ Rg×r.

Solving 63 for q by pre-multiplying by the pseudo-inverse of Ǔ:

Ǔ†Ǔ︸ ︷︷ ︸
I

q = Ǔ†ǔ (64)

yields:
q = Ǔ†ǔ (65)

The approximation of the FOM solution with gappy data is achieved by substituting 65 into
50:

ũ ≈ ŨǓ†ǔ (66)

where ũ ∈ Rn, Ũ ∈ Rn×r, Ǔ† ∈ Rr×g, and ǔ ∈ Rg.

Sebastian Ares de Parga R. 23



Section 4

4.4 Static condensation

The static condensation is a ROM technique that represents a FOM model only by means of the
prescribed boundary condition (master) degrees of freedom, by expressing the non-prescribed
boundary condition degrees (slave) of freedom in terms of the master.

Considering the static equation in 40:
Ku = f (67)

where for a structural mechanics problem, K ∈ Rn×n is the stiffness matrix, u ∈ Rn is the
displacement vector, and f ∈ Rn is the force vector. n is the number of degrees of freedom of
the system. Now, considering that the problem can be separated into master and slave degrees
of freedom: [

Kmm Kms

Ksm Kss

](
um

us

)
=

(
fm
fs

)
(68)

where Kmm ∈ Rnm×nm , Kms ∈ Rnm×ns , Ksm ∈ Rns×nm , Kss ∈ Rns×ns , um ∈ Rnm , us ∈ Rns ,
fm ∈ Rnm , and fs ∈ Rns . nm and ns are the master and slave degrees of freedom respectively,
such that n = nm + ns.

Since for the slave degrees of freedom there is no restriction on it’s displacement, the slave
force vector fs = 0, yielding: [

Kmm Kms

Ksm Kss

](
um

us

)
=

(
fm
0

)
(69)

This system of equations can be partitioned into:

Kmmum + Kmsus = fm (70)

Ksmum + Kssus = 0 (71)

From equation 71, solving for the slave displacements in terms of the master displacements:

us = −Kss
−1Ksmum (72)

Substituting equation 72 into 70:

Kmmum + Kms(−Kss
−1Ksmum) = fm (73)

Simplifying:
(Kmm −KmsKss

−1Ksm)︸ ︷︷ ︸
KG

um = fm (74)

The transformation matrix to map from the ROM into the FOM is then defined as:[
um

us

]
=

[
I

−Kss
−1Ksm

]
︸ ︷︷ ︸

TG

[
um

]
(75)

Yielding a ROM system of equations of the form:

KGum = fm (76)

where KG ∈ Rnm×nm .
Hence:

KG = TT
GKTG (77)

The resulting system of equations in equation 74 is equivalent to the system in equation 69,
and was first proposed by Guyan in [14].
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4.4.1 Craig-Bampton Method

The Guyan static condensation can be improved by considering a dynamic behaviour of the
structure and accounting for the mass and stiffness matrix. Let us consider the equation of
motion:

Mü + Ku = f (78)

Recalling that u can be split into master and slave degrees of freedom such that:

u =

[
um

us

]
(79)

The Craig-Bampton method [15] defines a transformation matrix such that:[
um

us

]
=

[
I 0

−Kss
−1Ksm φq

]
︸ ︷︷ ︸

TCB

[
um

q

]
(80)

where TCB ∈ Rn×n, φq ∈ Rnm×ns , and q ∈ Rns are the Craig Bampton transformation matrix,
the fixed base mode-shapes, and modal degrees of freedom respectively.

Substituting into equation 78 and pre-multiplying by TT
CB:

TT
CBMTCB︸ ︷︷ ︸

MCB

[
üm

q̈

]
+ TT

CBKTCB︸ ︷︷ ︸
KCB

[
um

q

]
= TT

CB

[
fm
fs

]
(81)

The Craig Bampton mass and stiffness matrices are then defined as:

MCB =

[
Mmm Mmq

Mqm Mqq

]
(82)

KCB =

[
Kmm 0

0 Kqq

]
(83)

Recalling that the force vector fs = 0 and substituting 82 and 83 into 81:[
Mmm Mmq

Mqm Mqq

] [
üm

q̈

]
+

[
Kmm 0

0 Kqq

] [
um

q

]
=

[
fs
0

]
(84)

5 Multibody systems

In a simple manner, it can be said that a general multibody system (MBS) embraces two
main characteristics, namely: (i) mechanical components that describe large translational and
rotational displacements and (ii) kinematic joints that impose some constraints or restrictions
on the relative motion of the bodies. In other words, a multibody system encompasses a
collection of rigid and/or flexible bodies inter-connected by kinematic joints and possibly some
force elements [2].
The bodies that are part of a multibody system can be considered rigid or flexible:

• Rigid: when its deformations are so small that they do not affect the overall behavior of
the body.
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• Flexible: its deformations affect the overall behavior of the body.

In the three-dimensional space, the motion of a free rigid body can be fully described by using
six generalized coordinates associated with the six degrees of freedom. In turn, when a body
includes some amount of flexibility, it has six rigid degrees of freedom plus the number of
generalized coordinates necessary to describe the deformations [16]. The multibody system

Figure 11: Abstract representation of a multibody system with its most significant components:
bodies, joints, and forces elements (Image taken from [2])

solution can be very expensive, in such a way that it is necessary to make a reduction in the
computational cost of the analysis, relying on a ROM technique.

5.1 Multi-freedom Constraints

The governing equations for constrained multibody systems are formulated in a manner suitable
for their automation, a common way to enforce this, is via multifreedom constraints. Let us
consider an example of an structural support, this conditions are imposed as constraints on
individual degrees of freedom and are called “single-freedom” constraints (SFC). For example,
let us consider a fixed node u1:

ux1 = 0 uy1 = 0 (85)

This condition involves two homogeneous SFCs, whereas if it was necessary to apply an offset
whose value is different from “0” for the same node, it would involve two non-homogeneous
SFCs.
In a more complex case, there are the so-called multifreedom constraints (MFC) which are
equations that define and connect 2 or more constraints. In such a way that we can differentiate
SFCs from MFCs in the following way:

Nd = Pv︸ ︷︷ ︸
SFCs

F (Nd) = Pv︸ ︷︷ ︸
MFCs

(86)

Where:

• Nd = Nodal displacements

• Pv = Prescribed value
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• F (∗) = functional equation

When nodal displacements involve more than one point, it is called multi-point [3]. For instance:

ux1 − 2ux2 = 1 (87)

Both Mathworks and Kratos use this method to ensure that the interfaces to be connected in
the multibody problem have 6 degrees of freedom represented in a single master node for each
interface.

5.1.1 Imposing Methods

In order to take MFCs into account, the original system of equations must be modified by a
change in the equations that define the master stiffness of the problem. This modification is
called “constraint application” [3].
The three most used methods are:

• Master-Slave Elimination: The degrees of freedom involved in the MFC are separated
into master and slave degrees of freedom, in such a way that the slave degrees of freedom
are eliminated from the global system and only the master degrees of freedom appear.

• Penalty method: Each MFC is treated as a fictitious structural element that enforces
the condition, being this parameterized with a numerical weight that will return to the
original form when it tends to infinity.

• Lagrange Multiplier: For each MFC an unknown will be added to the initial system of
equations in such a way that they will represent constraint forces that force the system
to comply with the restrictions exactly as if they were applied to the unrestricted system.

In figure 12, a summary of the characteristics of these methods is shown, where it can be con-
cluded that the Penalty method has a serious accuracy problem, Lagrange Multipliers despite
its great characteristics such as generality, non-sensitivity to user decisions, among others, do
not retain positive definiteness of the system, therefore, Kratos Multihpyisics applies the method
of Master-Slave elimination for MFCs.

Figure 12: Assessment summary of three MFC application methods [3]
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5.1.2 Master-Slave

The system of equations will be modified in such a way that when taking into account the
different MFCs, a solution vector ū will be obtained from the elimination of the slave degrees
of freedom of the original solution u. This new vector ū will then have the master degrees of
freedom and those that are not related to the MFCs [3].
This should be done with the help of a transformation matrix in such a way that:

u = Tū (88)

Recalling the original system of equations in 40:

Ku = f (89)

Applying the MFCs of the problem and pre-multiplying by TT the new global system will be
of the form:

K̄ū = f̄ (90)

Where:
TTKT = K̄ (91)

TTf = f̄ (92)
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6 GiD

GiD is a user friendly pre and post-processor for numerical simulation of engineering and
scientific phenomena. GiD offers a wide variety of possibilities within its framework:

• Geometrical modeling (CAD)

• Mesh generation

• Definition of analysis data

• Data transfer to analysis software

• Post-processing operations

• Visualization of results

The most used characteristics for this paper were the geometrical modeling, mesh generation,
definition of analysis data, and data transfer to analysis software.

Figure 13: GiD logo

GiD creates the necessary input files for Kratos Multiphysics 7 to solve the mechanical
simulation via a problem type (visit Kratos Multiphysics - GiD for more details).

7 Kratos Multiphysics

Kratos is a powerful finite element method (FEM) based framework for building multidisci-
plinary programs, providing multiple tools for applications of multiphyiscs problems allowing
interaction between them. Kratos has implemented an interface in Python to define the main
procedure which significantly improves the flexibility of the framework in time of use.
Its core is mainly developed in C++, which provides a faster implementation by introduc-
ing object oriented programming. Kratos is a FREE Open source (visit Kratos Multiphysics
Repository) which means the main code and program structure is available and aimed to grow
with the need of any user willing to expand it.
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Figure 14: Kratos logo

In appendix F, an example of how to build a Kratos simulation is given with an application
of a process. However, it is worth mentioning that to build and run a simulation within Kratos
framework, is necessary to build 4 indispensable files:

• *.mdpa: File containing the mesh geometry.

• ProjectParameters.json: File containing the problem settings and BCs.

• MainKratos.py: Main script to run the simulation.

• *Materials.json: File containing the material properties.

7.1 ROM Application

Kratos Multiphysics provides an application to develop ROMs. On this paper, it is provided
a short overview of the capabilities that Kratos provides for an Structural Mechanics problem
from the ROM point of view.
The first step to build a ROM is the training stage, where the user has to define a space of
training of which all the snapshots of the time-step solutions are saved into a Snapshot Matrix.
As mentioned in the section 4.1, the construction of a basis of which the finite element equations
are projected is achieved via the singular value decomposition of the Snapshot Matrix. This
method is called the Proper Orthogonal Decomposition.

7.1.1 Creating the SVD basis

An example of how a displacement Snapshot Matrix is obtained in Kratos is shown below:� �
1 ""

2 # This method is executed in order to finalize the current step

3 def FinalizeSolutionStep ( self ) :
4 super ( ) . FinalizeSolutionStep ( )
5 ArrayOfDisplacements = [ ]
6 for node in self . _GetSolver ( ) . GetComputingModelPart ( ) . Nodes :
7 ArrayOfDisplacements . append ( node . GetSolutionStepValue ( DISPLACEMENT_X , 0 ) )
8 ArrayOfDisplacements . append ( node . GetSolutionStepValue ( DISPLACEMENT_Y , 0 ) )
9 ArrayOfDisplacements . append ( node . GetSolutionStepValue ( DISPLACEMENT_Z , 0 ) )

10 self . time_step_solution_container . append ( ArrayOfDisplacements )
11

12 # This method is executed after the computations , at the end of the solution -

loop

13 def Finalize ( self ) :
14 super . ( ) Finalize ( )
15 SnapshotMatrix=self . GetSnapshotsMatrix ( )
16

17 def GetSnapshotsMatrix ( self ) :
18 SnapshotMatrix = np . zeros ( ( l en ( self . time_step_solution_container [ 0 ] ) , l en (

self . time_step_solution_container ) ) )
19 for i in range ( l en ( self . time_step_solution_container ) ) :
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20 Snapshot_i= np . array ( self . time_step_solution_container [ i ] )
21 SnapshotMatrix [ : , i ] = Snapshot_i . transpose ( )
22 return SnapshotMatrix� �

Once the Snapshot Matrix is saved, it is needed to apply the SVD to create a basis with a given
tolerance:� �

1 ""

2 u , s , _ , _= RandomizedSingularValueDecomposition ( ) . Calculate ( SnapshotMatrix , 1 e−6)� �
where u and s are the left singular values (Φ) and singular values respectively.
The left singular values have to be saved in a json format to read it when building the ROM.

7.1.2 Solving ROM

Kratos Multiphyisics’ solution strategy is based on looping over the elements, assemble the
global system, and solve it. The ROM application considers the same solution strategy by
looping over the elements but reducing the left hand side (LHS) and right hand side (RHS) of
the system with the SVD basis:

K =
∑
e

Ke

︸ ︷︷ ︸
LHS FOM

KROM =
∑
e

ΦeTKeΦe

︸ ︷︷ ︸
LHS ROM

(93)

b =
∑
e

be

︸ ︷︷ ︸
RHS FOM

bROM =
∑
e

ΦeTbe

︸ ︷︷ ︸
RHS ROM

(94)

This will result into a reduced system of equations of the form:

KROMduROM = bROM (95)

And solve for duROM.
The next step is to project the ROM solution to the FOM fine basis, this is achieved by:

du = ΦduROM (96)

In figure 15, a flowchart is presented.

7.1.3 HROM

Rom application also gives the possibility to build a Hyper Reduced Order Model by finding
a set of elements and corresponding positive weights, such that when building the reduced
system contributions the loop will only be held on the selected elements (es << e), obtaining
an accurate approximation of the ROM model.

To find the set of elements, it is necessary to train the HROM (same training space used
to train ROM) and build a Snapshot Matrix of the projected residuals (RHS). Then, the Em-
pirical Cubature Method (ECM) [11] will select the elements and it’s corresponding weights by
minimizing a least-squares problem.

The solution strategy for the HROM models remains the same as for the ROM, but now
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Figure 15: Kratos Implementation Flowchart
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only running a loop over the selected elements, project the contributions to the reduced basis
and multiply the contribution by the corresponding weight obtained on the ECM:

KHROM =
∑
e∈es

ΦeTKeΦeωe︸ ︷︷ ︸
LHS HROM

(97)

bHROM =
∑
e∈es

ΦeTbeωe︸ ︷︷ ︸
RHS HROM

(98)

In figure 15, a flowchart is presented.

7.2 Displacement Reconstruction

7.2.1 Stanford Bunny

To show the ROM application capabilities for a structural mechanics problem, the Stanford
Bunny (SB) (WRL file retrieved from Stanford University) benchmark problem will be used,
where a force will be applied to the face of the bunny and the base is fixed to undergo large
displacements under a linear behaviour, the idea is best pictured in figure 16. The Stanford
Bunny mesh has 49654 tetrahedral elements and 10915 nodes.

7.2.1.1 Results

The training of the ROM was done with a tolerance of 1e-8 for the SVD, leading to a truncation
of 6 modes. In figure 17a it is shown the displacement field of the FOM model, in 17b it can
be noticed that the solution looks exactly the same for the FOM model, and for the HROM,
in figure 17c it is shown the projection of the HROM displacement field onto the skin of the
FOM, which is taken only from 20 elements and 110 nodes shown in figure 17d (the opaque
displacement field is shown only for topological reference). In addition, in figure 18a it can be
observed a fast decay on the singular values and figure 18b shows that the first mode contains
more than 99% of the information needed because it is a linear problem.

Pressure Load

Fixed

Figure 16: Stanford Bunny Diagram
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Tolerance Modes L2 Error ROM L2 Error HROM
1.00E-02 1 1.80E-03 9.99E-02
1,00E-05 3 4.16E-06 3.17E-05
1,00E-06 4 9.68E-07 1.92E-05
1,00E-08 6 5.10E-08 1.80E-05
1.00E-09 8 5.17E-09 1.73E-05

Table 1: L2 error for different truncated modes

(a) FOM (b) ROM (c) HROM (d) HROM es

Figure 17: FOM,ROM, and HROM SB displacements

(a) Singular Values (b) Cumulative Energy Singular Values

Figure 18: Displacement SB singular values

In table 1, it can be observed that the tolerance given for the SVD outputs an L2 error
of similar magnitude. If the tolerance leads to high truncated modes, the SVD will introduce
noise to the approximation an the L2 error will grow.

7.2.1.2 Kratos Methodology

To create the displacement basis to build the ROM, and run the HROM simulations it is needed
to follow the extra steps:

• Add “rom basis process” to the project parameters with a given tolerance as shown in
appendix A.

Sebastian Ares de Parga R. 34



Section 7

• Define a training space in the project parameters.

• Include the “Empirical Cubature” Rom Application strategy within the Main Kratos.py
file (refer to appendix B).

• Define an HROM project parameters and apply the conditions to the new model parts
within the Hyper Reduced Model Part. Run HROM simulation as in appendix C.

7.2.2 Modal Basis

To have a physical point of view of the modes coming from the POD, an example of an structural
frame being affected by a pressure load coming from the slab as shown in figure 19. In figure
21, it can clearly be observed how well the physics of the problem are projected into the modes.
And in figure 20, it can clearly be observed that the first 7 modes cover more than 99% of the
physical behaviour of the training.

Pressure Load

Fixed

Fixed

Fixed

Fixed

Figure 19: Structural Frame Diagram

(a) Singular Values (b) Cumulative Energy Singular Values

Figure 20: Structural Frame Singular Values
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(a) Mode 1 (x10) (b) Mode 2 (x10) (c) Mode 3 (x10) (d) Mode 4 (x10)

(e) Mode 5 (x10) (f) Mode 6 (x10) (g) Mode 7 (x10)

Figure 21: Structural Frame POD modes

7.3 Stress Reconstruction

When building the HROM, the only variable that is reconstructed and projected to the fine
basis is the displacement. Nevertheless, from the HROM, the information of the 2nd Piola
Kirchhoff stress vector evaluated on the Gauss points can still be obtained on the selected
elements.

σ̃gp

e∈es
∈ R(ge∗nes∗sd) (99)

where ge is the number of Gauss points per element (for a domain with equal elemental char-
acteristics), nes is the number of selected elements, and sd is the dimension of the stress field.

Recalling section 4.3, the selected elements coming from the HROM can be considered a masked
subset approximation of elements of the FOM, such that:

σ̃gp ≈Mσgp (100)

where σgp ∈ R(ge∗ne∗sd) is the snapshot of the 2nd Piola Kirchhoff stress vector evaluated on
the Gauss points, ne is the number of elements.

This means that the POD can be applied to the stress field similar to 61, such that there
exists a linear operator Ψ and a coefficients vector s that minimizes:

||σgp −Ψs||22 (101)

where Ψ is the modal basis of left singular values coming from the SVD of the Snapshot Matrix
of the 2nd Piola Kirchhoff stress vector evaluated on the Gauss points:

Sgp = Uσ︸︷︷︸
Ψ

ΣσVσT (102)
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where Sgp ∈ R(ge∗ne∗sd)×m, m is the number of time-steps of the training stage.

Setting 101 to 0:
σgp = Ψs (103)

Recalling 100 by pre-multiplying 103 by a masking matrix M:

Mσgp︸ ︷︷ ︸
σ̃gp

= MΨ︸︷︷︸
Ψ̃

e∈es

s (104)

Yielding:
σ̃gp = Ψ̃s (105)

Pre-mulitplying by the pseudo-inverse of Ψ̃ to solve for s:

s = Ψ̃
†
σ̃gp (106)

Substituting equation 106 into equation 103:

σgp ≈ ΨΨ̃
†
σ̃gp (107)

yields the reconstruction of the stress field evaluated on the Gauss points.

7.3.1 Nodal Extrapolation (Smoothing)

The reconstructed stress field is:
σgp ∈ R(ge∗ne∗sd) (108)

where σgp is a matrix containing the value at the Gauss points of the 2nd Piola Kirchhoff stress
vector of a rearranged sample time-step snapshot.
To visualize the stresses, it is needed to provide a continuous nodal field given by:

σn = N̄σgp (109)

where σn ∈ R(nn∗sd) and N̄, are the 2nd Piola Kirchhoff stress vector evaluated on the nodes
and the interpolation functions respectively (shape functions). nn denotes the number of nodes.
The orthogonalization of the interpolation functions leads to:∫

Ωe

N̄T N̄|J|dΩeσ
n =

∫
Ωe

N̄Tσgp|J|dΩe (110)

where |J| is the determinant of the Jacobian [17].

However, since the ROM analysis is being performed in linear elements with only one Gauss
point per element, the stress evaluated on the integration points will be constant through all
the element’s nodes, easing the extrapolation operation by only smoothing the stress field as a
weighted average of the nodal areas defined as:

σn = DPσgp (111)

where D ∈ Rnn×nn , and P ∈ Rnn×ne , are an inverted lumped nodal area matrix (diagonal) and
the matrix of elemental area contribution to the nodes.
The inverse of the lumped nodal area matrix is defined as:

Djj =
1∑

k∈ej
Ajk

(112)
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where Ajk is the kth elemental area of the jth neighbour node. ej denotes the subset of neigh-
bouring elements of the jth node.
The matrix of elemental area contribution to the nodes is given by:

Pjk = Ajk (113)

where Ajk is the area of the neighboring kth element of the jth node.

7.3.2 Plasticity

When reconstructing a plasticity model, the modal basis can be better conditioned by perform-
ing an extra step. First, apply the SVD only to the Elastic training space (Elastic Snapshot
Matrix ):

Se = Ue︸︷︷︸
Ψe

ΣeV
T
e (114)

After building the elastic modal basis Ψe, it is needed to build the Elasto-plastic Snapshot
Matrix Sep and perform an orthogonal projection onto the elastic basis:

Šep = (I−ΨeΨe
T)Sep (115)

looping on equation 115 may reduce numerical losses.

Applying the SVD to Šep:
Šep = Uep︸︷︷︸

Ψep

ΣepVT
ep (116)

Once the plastic modal basis Ψep is built, both modal basis can be appended column-wise:

Ψ =
[
Ψe Ψep

]
(117)

To ensure that the basis is orthogonal a QR decomposition can be performed to the elasto-plastic
modal basis such that:

Ψ = Q︸︷︷︸
Ψ̌

R (118)

This may cause extra modes and therefore, lead to more selected elements.

7.3.3 Kratos Methodology

To reconstruct the stress field for an HROM, it is needed to add some extra steps:

• Add the stress variable to reconstruct and the given tolerance to the “rom basis process”
module as in appendix A.

• Include the “stress reconstruction process” module in the HROM project parameters as
in appendix D.
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7.4 Reaction Reconstruction

In structural mechanics, it is often needed to calculate the reactions of the structural elements
on the restricted surfaces for design and analysis purposes. The Kratos’ Structural Mechanics
Application provides the residuals (RHS) of every element of the FOM, ROM, and HROM, and
assembles the reactions as a sum of all the elemental contributions of the RHS to each of the
nodes in the FOM. For the case of the ROM, it is only necessary to provide a new assembling
of the reactions given the POD solution. In a nutshell, the assembling of the reactions was
implemented by creating two lists of lists containing the neighboring elements for each node
and the neighboring nodes for each element respectively and assigning a new reaction Id to
map the corresponding contribution to the restricted surfaces. It is worth mentioning that the
reactions will only be presented on the restricted surfaces, meaning that it is only needed to
assemble the solution on the nodes that belong to these surfaces.

For the HROM, the provided information of the RHS yields only on the selected elements
(es):

r̃
e∈es
∈ R(nes∗nd) (119)

where r̃ contains the RHS contribution of all the degrees of freedom of the selected elements
subset. nd is the number of degrees of freedom per element.

Similar to the stress field 100, r̃, can be considered as masked approximated data from the
FOM model:

r̃ ≈Mr (120)

where r ∈ R(ne∗nd) is the FOM fine basis residuals vector.

Applying POD for the reconstruction of the residuals yields the minimization problem:

||r−Υz||22 (121)

where Υ is the modal basis of left singular values coming from the SVD of the Snapshot Matrix
of the FOM residuals:

R = Ur︸︷︷︸
Υ

ΣrVrT (122)

where R ∈ R(ne∗nd)×m.
Setting equation 121 to 0:

r = Υz (123)

Pre-multiplying by the masking matrix M:

Mr︸︷︷︸
r̃

= MΥ︸︷︷︸
Υ̃

e∈es

z (124)

Yielding:
r̃ = Υ̃z (125)

Pre-multiplying by the pseudo-inverse of Υ̃ to solve for z:

z = Υ̃
†
r̃ (126)
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To recover the FOM basis snapshot of residuals, substitute equation 126 into equation 123:

r ≈ ΥΥ̃
†
r̃ (127)

Finally, it is needed to assemble the reaction on the restricted surfaces’ nodes for the visualiza-
tion of the post-process.

7.4.1 Kratos Methodology

To reconstruct the reaction field for a ROM or HROM, it is needed to add some extra steps:

• Add the stress variable to reconstruct and the given tolerance to the “rom basis process”
module as in appendix A.

• Include the “reaction reconstruction process” module in the ROM/HROM project param-
eters as in appendix E.

8 Static condensation process

Recalling the Guyan static condensation in section 4.4, it seeks for a Stiffness Matrix that
accounts only for the degrees of freedom involved in the boundary master nodes (interface
nodes in a multibody problem):

KGdm = fm (128)

A ROM model can be obtained by training the FOM model, and through a surrogate model,
obtain the Guyan’s reduced stiffness matrix following these steps:

1. Identify the surfaces (interface frames) of the flexible body that will be the connections
to the multibody or control model:

Interface frames

Figure 22: Static Condensation Interface Frames

2. Recalling that the static condensation is defined by master nodes, it is usual to propose
a master node per interface frame at the center of the constrained surface:
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Master node

Slave nodes

Figure 23: Static Condensation master and slave nodes

the slave nodes are the nodes that define the geometry of the interface frames.

3. To find the first column of the reduced stiffness matrix KG of the reduced system:
K11 K12 . . . K1md

K21 K22 . . . K2md

...
...

. . .
...

Kmd1 Kmd2 . . . Kmdmd


︸ ︷︷ ︸

KG


d1

d2
...
dmd


︸ ︷︷ ︸

dm

=


f1

f2
...
fmd


︸ ︷︷ ︸

fm

(129)

where md is the number of master degrees of freedom. It is needed to perform a FOM
simulation imposing an infinitesimal strain d1 = ε1 (small displacement) on the first
master degree of freedom and fix all the other master degrees of freedom such that the
reduced system is the following:

K11 K12 . . . K1md

K21 K22 . . . K2md

...
...

. . .
...

Kmd1 Kmd2 . . . Kdd



ε1
0
...
0

 =


f1

f2
...
fmd

 (130)

The equations will then yield: 
K11ε1 = f1

K21ε1 = f2
...

Kmd1ε1 = fmd

 (131)

where ε1, f1,f2,...,fmd
are known. As mentioned in section 5.1, the infinitesimal dis-

placements and rotations are imposed using Multi-point Constraints, via the master-slave
imposing method 5.1.2. This can be repeated for all the degrees of freedom, n ∈ md:

K1nεn = f1

K2nεn = f2
...

Kmdnεn = fmd

 (132)

where εn, f1,f2,...,fmd
are known.
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RESULTS

9 Stress field

9.1 Wrench

To show the reconstruction of the stress field, a common benchmark test of a wrench is pre-
sented. Where torque is applied to turn an object such as fasteners, bolts, nuts, etc. In figure
24 a diagram of the proposed problem is shown. The material properties of the wrench are
elastic, however, the training of the wrench will cover a geometrical non-linearity behaviour to
test the behaviour under large displacements.

Fixed

Surface Load

Figure 24: Wrench Diagram

9.1.1 Results

The model was successfully trained and built passing from 60425 elements to only 8 elements (4
modes). In figure 25a the stress field for the complete model is shown, in figure 25b the ROM
model is shown with an obtained precision of 2.23E-07, and in figures 25c and 25d the stress
field of the HROM are presented. The difference of the L2 error for two different truncated
modes can be found in tables 2 and 3.

Displacement
Tolerance Modes L2 Error ROM L2 Error HROM
1.00E-05 3 2.64E-06 3.36E-04
1.00E-06 4 1.49E-07 9.16E-05

Table 2: Wrench displacement field L2 error for different truncated modes
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Stress
Tolerance Modes L2 Error ROM L2 Error HROM
1.00E-04 3 4.56e-05 5.52E-04
1.00E-05 4 2.23E-07 2.97E-05

Table 3: Wrench stress field L2 error for different truncated modes

(a) FOM (b) ROM (c) HROM (d) HROM es

Figure 25: FOM, ROM, and HROM Wrench Stresses

9.2 Uni-axial Tensile Test

The POD is to be tested through the uni-axial tensile test to check for the approximation
of material non-linearities using the Von Mises plasticity model. This is a famous test that
eliminates the dimensions of the geometry and capture the material properties by obtaining the
stress-strain curve. The tensile test consists only in fixing the lower boundary of the geometry
and apply a very slow prescribed displacement on the upper boundary as shown in figure 26.

Prescribed Displacement

Fixed

Figure 26: Tensile Test Diagram

9.2.1 Results

The training space of the model was 210 simulations covering the elastic and plastic range.
The testing space was the same as the training to check for consistency of the 210 simulations,
covering the elastic yielding and hardening range. The resulting errors are presented in tables
4 and 5.
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(a) FOM (b) ROM (c) HROM (d) HROM es

Figure 27: FOM, ROM, and HROM Tensile Test Elasticity Range Stresses

(a) FOM (b) ROM (c) HROM (d) HROM es

Figure 28: FOM, ROM, and HROM Tensile Test Yielding Range Stresses

(a) FOM (b) ROM (c) HROM (d) HROM es

Figure 29: FOM, ROM, and HROM Tensile Test Hardening Range Stresses

Displacement
Range L2 Error ROM L2 Error HROM

Elasticity 9.62E-08 3.04E-06
Yield 1.48E-07 3.07E-06

Hardening 4.39E-06 2.54E-05

Table 4: Tensile displacement field L2 error for different ranges
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Stress
Range L2 Error ROM L2 Error HROM

Elasticity 1.30E-06 2.55E-05
Yield 2.83E-06 2.54E-05

Hardening 1.70E-05 2.84E-05

Table 5: Tensile displacement field L2 error for different ranges

10 Reaction field

10.1 Rubber Fixed Ended Beam

In structural mechanics, it is often needed to know the reaction of the restricted surfaces or
supports. A typical structural mechanics element is the beam, therefore, to test the reconstruc-
tion of the reaction field, a benchmark problem of a fixed ended rubber beam with two pressure
loads is going to be reduced. In figure 30, it is provided a diagram of the problem definition,
where the pressure load 2 is bigger than the pressure load 1.

Fixed

Surface 1

Fixed

Surface 2

Pressure Load 1

Pressure Load 2

Figure 30: Fixed Ended Diagram

10.1.1 Results

The FOM model was successfully hyper-reduced from 12460 elements to only 10. In figure 31 it
is shown the fixed surface 1’s reactions for the FOM, ROM, and HROM models, and in figure
32 the fixed surface 2’s reactions for the FOM, ROM, and HROM models. The reduction was
performed for two different tolerances to validate the results and errors, the L2 errors are shown
in tables 6 and 7 for the displacement and reaction field respectively.

Displacement
Tolerance Modes L2 Error ROM L2 Error HROM
1.00E-06 4 1.54E-06 1.33e-05
1.00E-08 7 2.91E-08 1.68E-06

Table 6: Rubber Fixed Ended Beam displacement field L2 error for different truncated modes
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Stress
Tolerance Modes L2 Error ROM L2 Error HROM
1.00E-06 4 2.88E-06 1.36E-05
1.00E-08 6 3.91E-08 5.85E-06

Table 7: Rubber Fixed Ended Beam reaction field L2 error for different truncated modes

(a) FOM (b) ROM (c) HROM (d) HROM es

Figure 31: FOM, ROM, and HROM Rubber Fixed Ended Beam Reactions, Surface 1

(a) FOM (b) ROM (c) HROM (d) HROM es

Figure 32: FOM, ROM, and HROM Rubber Fixed Ended Beam Reactions, Surface 2
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APPLICATION

11 Mathworks

MathWorks is a private corporation that specializes in mathematical computing software. Its
top products include Matlab and Simulink, which support simulation and data analysis.

• Matlab: Numerical computing system that offers an integrated development environment
(IDE) with its own programming language (M language).

• Simulink: Visual programming environment, which works on top of the Matlab program-
ming environment.

– Simscape - Quickly model physical systems within the Simulink environment.

Figure 33: Matlab, Simulink, & Mathworks logo

Currently, Mathworks is capable of running multibody simulations successfully involving Rigid
and Flexible Bodies for linear behaviour using Simscape’s Reduced Order Flexible Solid block,
which applies the finite element import method defined in Modeling Flexible Bodies with Sim-
scape Multibody as an “approximation of a flexible body as the superposition of a rigid-body
model and a deformation model (their motions shown in figure 34). The rigid-body model cap-
tures the rotation and translation of the body as if it did not deform at all. The deformation
model calculates the elastic deflections at selected points throughout the body as though the body
had been pinned in place. The two models connect through separate components known as de-
flection joints”. The block needs the information of the Mass, Stiffness, and Damping matrices
and the nodal location of the interface frames (surface connections to other Simscape Multibody
elements) to perform the analysis.

11.1 Problem definition

Mathworks presents a test model that is an excavator arm as a flexible body as a benchmark
problem for the flexible body Simscape’s block (follow this link for more information Flexible
Dipper Arm). The body is part of a multibody system (see figure 36), however this paper will
focus more on the ROM block and its features.
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Figure 34: Flexible body motion as a superposition of rigid body motion and deformation
(Image taken from Mathworks)

There are several ways to generate the reduced-order data required by the Reduced Order
Flexible Solid block. Typically, you generate a substructure (or super-element) by using finite-
element analysis (FEA) tools. Mathworks uses the “Partial Differential Equation Toolbox” to
create a reduced-order model for a flexible dipper arm performing a simplified Craig-Bampton
modal analysis which provides a “low fidelity” analysis of the matrices. Meanwhile Kratos
with its fast solver settings, propose to obtain the stiffness matrix by performing a static con-
densation process to replace the stiffness matrix from the PDE toolbox as shown in figure 35,
providing a “higher fidelity” model and the possibility to create a ROM and/or HROM to
post-process the variables such as the displacement, reaction, and stress field of the flexible
body. It is worth mentioning that the static condensation method was chosen to extend the
possibility for a material and/or geometrical non-linear analysis.

Figure 35: Reduced Order Flexible Solid Block Diagram
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Figure 36: Simulink’s Flexible Dipper Arm Multibody Problem

11.2 Kratos-Mathworks interface

To be able to interface the information coming from Kratos Multiphysics with Simulink, it is
first necessary to generate the geometries and parameters for both software (detailed informa-
tion of how to build the Kratos’ model can be found in the Appendix F). In figure 37 and 38 the
geometries of the different software for the solution of the proposed problem are shown.

(a) Geometry Excavator Dipper Arm Mathworks
(b) Mesh and Interface Frames Excavator Dipper
Arm Mathworks

Figure 37: Matlab’s & Simulink’s Geometry
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(a) Geometry and Mesh Excavator Dipper Arm
GiD (b) Interface Frames Excavator Dipper Arm GiD

Figure 38: Kratos’ Geometry

11.2.1 Kratos’ static condensation process

An important step is to identify the interface frames of the flexible body (red, blue, and green)
and assign a master node usually localized in the center of the surface. Kratos Multiphysics
assigns the project parameters via a json file on which the static condensation process needs
to be called in the following way:

1 "processes" : {
2 "constraints_process_list" : [{
3 "python_module" : "static_condensation_process",

4 "kratos_module" : "KratosMultiphysics.StructuralMechanicsApplication

",

5 "Parameters" : {
6 "sub_model_part_list": ["Interface_frame_1","Interface_frame_2",

"Interface_frame_3"],

7 "list_of_master_coordinates": [[-0.5,0,0],[1.5,0,0],[0,-0.13,0]]

,

8 "eps_perturbation": 1e-5

9 }
10 }],
11 },

where the “sub model part list” contains the names of the interface frames, the coordinates of
the master nodes are contained in the “list of master coordinates” and the “eps perturbation”
is a user parameter that controls the perturbation of the displacements/rotations that the model
will be subjected during the static condensation process. This process as mentioned before,
will output a json file with the reduced stiffness matrix (size of 18x18 on this case) and the
coordinates of the master nodes.

To validate the results of the static condensation process, the flexible dipper arm was reduced
for different meshes with the Craig-Bampton PDE toolbox’s method without considering any
internal modes and with the static condensation process from Kratos. To show the conver-
gence, a color map of the 18x18 matrices are shown in figure 39, highlighting that as the mesh
is refined, the error decays, and specially in the diagonal terms.

11.2.2 Matlab interface

There are two ways of running the Kratos’ Python file from Matlab’s work-space. The first an
easier option for a unique call is:

1 system (" python MainKratos.py")
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(a) 2800 Nodes (b) 33000 Nodes (c) 118000 Nodes

Figure 39: Static Condensation Convergence Color Map

And for specific modules inside the “MainKratos.py” file:

1 pathToKratos = fileparts(which(" MainKratos.py"));

2 if count(py.sys.path ,pathToKratos) == 0

3 insert(py.sys.path ,int32 (0),pathToKratos);% Add python module ...
4 % to Matlab
5 end

6 py.MainKratos.RunKratos ();

For a linear small-displacement problem, it is only needed to provide a constant reduced order
stiffness matrix for the whole simulation, therefore, with the help of Matlab’s work-space inter-
face with Simulink’s, the Kratos’ stiffness matrix can be read as a .mat file and directly assign
it to the Simulink’s works-space by the following commands:

1 fname = 'Stiffness_Matrix.json '; % Read stiffness matrix json file ...
2 % created by Kratos' process
3 K = jsondecode(fileread(fname)); % Save stiffness matrix on ...
4 % current workspace
5 arm.K = K.StiffnessMatrix; % Replace Simscape's stiffness matrix ...
6 % with Kratos'
7

8 %% Modify Simscape model
9 model_name = "flexible_dipper_arm_kratos "; % Name of simulink project

10 mdlWks = get_param(model_name ,'ModelWorkspace '); % Save Simscape's ...
11 % Model Workspace
12 mdlWks.setVariablePart('arm.K',arm.K); % Replace Stiffness Matrix
13 mdlWks.setVariablePart('arm.P',arm.P); % Replace Interface Frame ...
14 % Origins (master nodes

coordinates)

Once the Kratos’ reduced stiffness matrix is replaced on the Simscape block, the Simulink
simulation can be run as:

1 %% Run Simscape model with new parameters
2 sim(model_name);

11.2.3 Simulink results

The results coming from Simulink can be transferred to Matlab’s work-space (see figure 40) to
show the displacements and rotations of the master nodes.
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Figure 40: Simulink’s results to Matlab’s work-space

In this case, the displacements and rotations (quaternions) of the Interface Frame 2 and 3
are obtained with respect to the reference Interface Frame 1 to denoise rigid body motion. This
transformation can be set in Matlab’s work-space as follows:

1 %% Set the translation of the Rigid Transform blocks appropriately
2 P12 = arm.P(1,:) - arm.P(2,:); % Compute the relative offset ...
3 % between the interface frames ...
4 P13 = arm.P(1,:) - arm.P(3,:); % and the common reference frame
5

6 % Use the following command to set the value of the Cartesian offset
7 % translation
8 set_param(model_name+'/Rigid Transform F1 -F2','

TranslationCartesianOffset ', ['[' num2str(P12) ']']);
9 set_param(model_name+'/Rigid Transform F1 -F3','

TranslationCartesianOffset ', ['[' num2str(P13) ']']);

The results can be plotted in graphs (see figure 41) and later saved as a Matlab structure in a
.mat file (“sim res.mat”). A proposed structure of the displacement’s results is shown in the
appendix G.

11.2.4 Results

Simulink provides many ways to visualize the results, via Simulink’s scope (Graphs and Tables)
and as mentioned before, the results can be exported to Matlab’s work-space and simply plot
them as in figure 41.
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Figure 41: Displacements and rotations of interface frames 2 and 3 with respect to reference
frame 1

When the multibody/control problem is solved, Simulink offers a visual demo of the dynamic
motion that you can export as a collection of images (see figure 42) and/or a video.

(a) Time 0 (b) Time 2 (c) Time 4 (d) Time 5

(e) Time 6 (f) Time 6.27 (g) Time 8 (h) Time 10

Figure 42: Flexible Dipper Arm Dynamic Motion

However, Mathworks does not let the user get a post-process of the displacement, stress,
and/or reaction field.

11.3 Post-process in Kratos

For a linear problem undergoing small displacements, the training stage for obtaining an static
condensation works perfectly to train an HROM. This implies that Kratos can offer a fast
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post-processing of the displacement, stress, and reaction field.

As proposed in appendix G, the results of the displacements and rotations can be saved in
a .mat file as an structure that later can be exported to Kratos, and with the help of a pro-
posed process “simulink postprocessing process” the boundary conditions on the master nodes
are applied for an specific time-step range (to avoid lack of memory for large simulations). The
additional steps to post-process the results are:

• Add “rom basis process” to project parameters: Saves the Snapshot Matrices for the
displacement, stress, and/or reaction field and creates the modal basis for a given tolerance
to reduce the flexible body solid.

• Add “Empirical Cubature” Kratos’ strategy to Main Kratos.py : Creates the hyper-reduced
model part with its respective weights.

• Create an HROM project parameters and include the “simulink postprocessing process”:
Applies the boundary conditions to the master nodes for an specific time-step range and
outputs the post-processing results.

The parameters for the “simulink postprocessing process” are:

1 "processes" : {
2 "constraints_process_list" : [{
3 "python_module" : "simulink_postprocessing_process",

4 "kratos_module" : "KratosMultiphysics.RomApplication",

5 "Parameters" : {
6 "model_part_list": ["Interface_frame_1","Interface_frame_2","

Interface_frame_3"],

7 "list_of_master_coordinates": [[-0.5,0,0],[1.5,0,0],[0,-0.13,0]]

,

8 "time_step_range": [start_time_step,end_time_step]

9 }
10 }]
11 }

The critical point of this simulation comes around time 6.27, where the Tip Ball hits the wall
producing a contact force and a deformation on the flexible body(contact in figure 42f). The
corresponding time-step range to capture moments before and after the contact force are from
5200 to 7200 (6.2585 to 6.3338 seconds). In figures 43, 44, and 45 the displacement, stress, and
reaction field are presented respectively for different times to show the oscillation of the dipper
arm as it hits the wall.
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(a) Time 6.2585 (b) Time 6.2737 (c) Time 6.2745 (d) Time 6.2763

(e) Time 6.2802 (f) Time 6.2814 (g) Time 6.2824 (h) Time 6.2846

Figure 43: Flexible Dipper Arm Displacement Field (x100) Post-process

(a) Time 6.2585 (b) Time 6.2737 (c) Time 6.2745 (d) Time 6.2763

(e) Time 6.2802 (f) Time 6.2814 (g) Time 6.2824 (h) Time 6.2846

Figure 44: Flexible Dipper Arm Stress Field (x100) Post-process
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(a) Time 6.2585 (b) Time 6.2737 (c) Time 6.2745 (d) Time 6.2763

(e) Time 6.2802 (f) Time 6.2814 (g) Time 6.2824 (h) Time 6.2846

Figure 45: Flexible Dipper Arm Reaction Field (x100) Post-process
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CONCLUSIONS AND FUTURE
WORK

12 Conclusions

Reduced order modeling techniques has been growing lately due to its multiple uses, such as
the solution of multibody/control problems, augmented and virtual reality, among many oth-
ers applications. The main objective of this paper was the reconstruction of the stress and
reaction field, which was successfully carried out via a combination of the proper orthogonal
decomposition 4.1 and the gappy data reconstruction methodology 4.3. The errors obtained
for the linear and non-linear analysis fulfilled the expected behaviour, being of similar order to
its corresponding basis tolerance. The validation of the results was carried out via 3D FOM,
ROM, and HROM linear and non-linear simulations with complex geometries, offering a visual
representation together with an error convergence analysis.

The methodology employed for the reconstruction of the stress and reaction field is completely
extrusive, unlike the already implemented for the displacement field. This means that the re-
action and stress field doesn’t have any impact on the solution of the ROM and HROM, the
construction of these basis will only impact their own skin reconstruction (stress and reaction).
Being completely extrusive forces any other reconstructed field to be displacement dependent,
on the other hand, it has an strong advantage on reconstructing any field with similar method-
ology as the ones proposed, yielding an easy implementation.

Solving control and/or multibody problems represents a great engineering challenge, both due
to its complexity and the required memory size. Fortunately, Mathworks offers the ability
to design and simulate highly demanding systems, combining control tools with rigid and/or
flexible motion analysis blocks. However, as previously mentioned, flexible body blocks present
two counterpoints:

• The results from the PDE toolbox (simplified Craig-Bampton) analysis are low fidelity.

• It does not allow post-processing of displacements, forces, and reactions of the structural
elements.

Having a low fidelity analysis for the flexible block can have a great impact on the final behavior
of the control and/or multibody system since it has a direct dependence on all its connections.
In addition, the analysis of these systems regularly goes hand in hand with the structural design
of their components, so by not offering post-processing of deformations, stresses, and reactions,
it will not fulfill the analysis needs.

Kratos Multiphysics, is an extremely powerful and precise tool, allowing through its static
condensation process the reduction of a stiffness matrix with higher fidelity than the obtained
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with Mathworks’ PDE toolbox (simplified Craig-Bampton analysis of the method explained in
section 4.4.1). It also allows using the condensation process as the training base for a small-
displacements linear problem (i.e. flexible dipper arm) to build an HROM that properly and
quickly allows the user to carry out detailed post-processing (displacement, stress, and reaction
field) of a given range of critical time-steps for the design of structural elements.

Although the static condensation process allows obtaining the stiffness matrix, it is neces-
sary to add the possibility of obtaining a mass matrix with a modal analysis technique similar
to Craig-Bampton’s. The decision to carry out the static condensation process is to extend the
possibility of carrying out a nonlinear geometric and/or material analysis in the future.

13 Future work

13.1 HROM

The successful extrusive reconstruction of the stress and reaction field, potentially indicates that
most of the variables coming from the FOM analysis could be hyper-reduced, reconstructed,
and projected onto the skin (e.g. internal variables). Future work will be to reconstruct the
most important variables for the structural mechanics problem, followed by an expansion to
the fluids mechanics field.

One counterpoint of the applied methodology when reducing the models is that the user has
to define a training space good enough to succeed, being time-consuming and troublesome.
Therefore, a personal goal is to perform a Kratos’ process were given a training space, the
process would be capable to decide if its well defined or not by defining a test space similar to
the training space and add it whenever a threshold on the L2 error comparison is over-passed,
enriching the training the space.

13.2 Multibody systems

The next step to enrich the control/multibody Mathworks’ analysis is to provide an interface
process and surrogate model with Kratos Multiphysics that enables the geometric and material
non-linearity of the structural elements. The main difficulty towards this implementation is
building the data exchange interface that lets an efficient communication between both software
during run-time. Once this is established, the second challenge is to create an optimal threshold
inside either Kratos or Mathworks that indicates the need of updating the flexible body’s
stiffness matrix every time is needed throughout the control/multibody nonlinear analysis.

13.2.1 Methodology

The idea of building a run-time data exchange interface between Kratos and Mathworks can
be achieved with the help of MATLAB function blocks inside Simulink work-space (see figure
46), these blocks “generate binary code or C/C++ MATLAB executable (MEX) code from the
block and integrates this code with the model. The MATLAB Function block uses the same in-
frastructure as MATLAB Coder, which you use to generate C/C++ code from MATLAB code
outside of Simulink” (visit MATLAB Function Blocks for more information). This has some
limitations to the Matlab functions you can call, therefore, it is needed to create a Wrapper
that enables a Matlab function to explode all capabilities. A proposed block and corresponding
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wrapper are shown bellow:

Matlab Function Block

1 function [time_step , aux]= myBlock(time_step ,DXF2 ,DYF2 ,DZF2 ,QF2 ,DXF3 ,

DYF3 ,DZF3 ,QF3)

2 coder.extrinsic('myWrapper ')
3 threshold_flag = myWrapper(time_step ,DXF2 ,DYF2 ,DZF2 ,QF2 ,DXF3 ,DYF3 ,DZF3

,QF3);

Matlab Function Wrapper

1 function threshold_flag = myWrapper(varargin)

2 %% Run Kratos HROM
3 threshold_flag=py.MainKratos_HROM.RunKratosHROM(varargin {:});

4 %% Run Static Condensation for Non−linear analysis
5 if threshold_flag ==1

6 %%Stop simulation and save the dynamic states

Simulink’s solver doesn’t let the user modify the physical parameters simulation during run-time
to avoid instabilities, therefore it is necessary to stop the simulation and save the final dynamic
state. Once the simulation is stopped, the new nonlinear static condensation Kratos’ process
can be executed and the Simscape’s block parameters can be updated as usual. The simulation
can be restarted from the last saved dynamic state with the new modified parameters until a new
threshold is over-passed. The techniques to stop the simulation, save the dynamic states with
its corresponding useful variables is still on progress, only the main idea of the workflow was
explained before, in addition, the nonlinear static condensation process methodology follows
the steps:

1. Save the last master node’s displacements and rotations into a .mat structure file and
read them inside Kratos.

2. Set the displacements and rotations of the master node’s as initial condition to the HROM
model in Kratos.

3. Apply the static condensation process to the deformed state to obtain the new reduced
stiffness matrix.

4. Save the reduced stiffness matrix into a json file.

The implementation of this process in conjunction with the data exchange interface will allow
the user to carry out nonlinear geometric and material analysis of the structural components
of a control/multibody system under Simulink’s solver.
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Figure 46: Flexible Dipper Arm Simulink-Kratos Interface
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A Rom Basis Process

To create the modal basis for the different reconstructed fields, “rom basis process” needs to
be added to the project parameters’ processes list as follows:

1 "processes" : {
2 "list_other_processes" : [{
3 "python_module" : "rom_basis_process",

4 "kratos_module" : "KratosMultiphysics.RomApplication",

5 "Parameters" : {
6 "variables_to_create_basis" : ["DISPLACEMENT","REACTION", "

PK2_STRESS_VECTOR"],

7 "displacement_basis_tolerance" : 1e-8,

8 "reaction_basis_tolerance" : 1e-8,

9 "stress_basis_tolerance": 1e-6,

10 "restricted_model_part": "name_of_restricted_model_part"

11 }
12 }
13 ]

14 }

B Empirical Cubature Strategy

To select the elements that govern the HROM, the Rom Application’s Empirical Cubature
Strategy needs to be called in python after creating the ROM basis as follows:� �

1 ""

2 #####################################################

3 # TRAIN HROM #

4 #####################################################

5 with open ("ProjectParameters.json" , 'r' ) as parameter_file :
6 parameters= KratosMultiphysics . Parameters ( parameter_file . read ( ) )
7 model= KratosMultiphysics . Model ( )
8 simulation= StructuralMechanicsAnalysisROM ( model , parameters , "EmpiricalCubature" )
9 simulation . Run ( )� �

This will create a ElementsAndWeights.json and Hyper Reduced Model Part.mdpa files.

C HROM Simulation

To run an HROM simulation, it is needed to create the project parameters files that apply
the boundary conditions and parameters to the Hyper Reduced Model Part, and that sets the
corresponding weights to the HROM elements coming from the ElementsAndWeights.json file
as follows:� �

1 ""

2 class RunHROM ( StructuralMechanicsAnalysisROM ) :
3

4 def ModifyInitialGeometry ( self ) :
5 """Here is the place where the HROM_WEIGHTS are assigned to the selected

elements and conditions"""

6 super ( ) . ModifyInitialGeometry ( )
7 computing_model_part = self . _solver . GetComputingModelPart ( )
8 ## Adding the weights to the corresponding elements
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9 with open ('ElementsAndWeights.json' ) as f :
10 HR_data = json . load (f )
11 for key in HR_data [ "Elements" ] . keys ( ) :
12 computing_model_part . GetElement ( i n t ( key ) +1) . SetValue ( romapp .

HROM_WEIGHT , HR_data [ "Elements" ] [ key ] )
13 for key in HR_data [ "Conditions" ] . keys ( ) :
14 computing_model_part . GetCondition ( i n t ( key ) +1) . SetValue ( romapp .

HROM_WEIGHT , HR_data [ "Conditions" ] [ key ] )
15

16 ###################################################

17 # RUN HROM #

18 ###################################################

19 with open ("ProjectParameters_HROM.json" , 'r' ) as parameter_file :
20 parameters = KratosMultiphysics . Parameters ( parameter_file . read ( ) )
21 model = KratosMultiphysics . Model ( )
22 simulation = RunHROM ( model , parameters )
23 simulation . Run ( )� �

D Stress Reconstruction Process

To visualize the reconstruction of the stress field on the skin of the HROM, the module
“stress reconstruction process” needs to be added to the HROM project parameters’ processes
list as follows:

1 "processes" : {

2 "list_other_processes" : [{

3 "python_module" : "stress_reconstruction_process",

4 "kratos_module" : "KratosMultiphysics.RomApplication",

5 "Parameters" : {

6 "variable_to_reconstruct" : "PK2_STRESS_VECTOR"

7 }

8 }]

9 }

E Reaction Reconstruction Process

To visualize the reconstruction of the reaction field on the skin of the HROM, the module “re-
action reconstruction process” needs to be added to the HROM project parameters’ processes
list as follows:

1 "processes" : {

2 "list_other_processes" : [{

3 "python_module" : "reaction_reconstruction_process",

4 "kratos_module" : "KratosMultiphysics.RomApplication",

5 "Parameters" : {

6 "variable_to_reconstruct" : "REACTION",

7 "restricted_model_part" : "name_of_restricted_model_part"

8 }

9 }]

10 }
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F Static condensation process

A simple geometry of a beam-like element is proposed with two surfaces that will be the in-
terface frames to be connected to another Simscape Multibody elements model, such as joints,
constraints, forces, and sensors. Each interface surface on the 3D model corresponds to a master
node that contributes six degrees of freedom to a reduced-order model (ROM). Therefore, the
need arises to implement a process in Kratos Multiphysics that allows to obtain the stiffness
matrix of multiple master nodes that are part of a structural element in 3 dimensions.

F.1 Problem type

To create the model part, the GiD pre-process and post-process interface is used, which will
allow to create a file with the extension .mdpa which contains the geometric information of
the Model Parts and Sub-model Parts mesh.

To set an Structural Mechanics problem it is first needed to load the Kratos GiD GUI. This
is done by doing the following sequence of commands Data → Problem type → Kratos
in the top toolbar. Then the Kratos application market will appear in where the Structural
application must be selected.

Figure 47: Application Market

After this, the structural mechanics dimension selection will appear. Among 2D or 3D dimen-
sions, select the 3D structural mechanics button.

Figure 48: Dimension selection

F.1.1 Define the Geometry and Material Properties of the Beam-like element

First, the geometry of the beam-like element that will be the Model Part must be defined:
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Figure 49: Beam-like Element Geometry

This solid was assigned with the properties listed below:

• Element: Solid small displacement

• Constitutive law: Linear Elastic

• Material: Steel

• Density: 7850 kg
m2

• Young Modulus: 206.9e9 Pa

• Poisson Ratio: 0.29

This will generate a file with the extension “Materials.json” that has the parameters of the
materials to be modeled.

F.1.2 Interface Frames

Once the properties of the Model Part have been assigned, the interface surfaces must be defined
as sub-model parts in order for GiD to include them in the “.mdpa” file:

(a) Interface frame 1 (b) Interface frame 2

F.1.3 Master node coordinates

It is worth mentioning that the coordinates of the master node are normally considered in
the respective center of the interface surfaces, however the process will allow to indicate any
coordinate as the master coordinate, either a coordinate of an existing node, or a node outside
of the model, as it is shown in the following figure:
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Figure 51: Master node 2

F.1.4 Create the finite element mesh

Finally, it is necessary to create the mesh that you want to use for modeling:

Figure 52: Mesh

F.1.5 Output files “.mdpa” and “.json”

Once the previous steps have been carried, GiD will generate the following files in the folder
where this model has been saved:

• *.mdpa: File containing the mesh geometry.

• ProjectParameters.json: File containing the problem settings and BCs.

• MainKratos.py: Main script to run the simulation.

• *Materials.json: File containing the material properties.

F.2 Kratos Multiphysics

F.2.1 MainKratos.py

The main file of a Kratos simulation is a python script. It is responsible to load the required
Kratos applications and to call the main Kratos functionalities as desired by the user.

� �
1 ""

2 import KratosMultiphysics

3 from KratosMultiphysics . StructuralMechanicsApplication .
structural_mechanics_analysis import StructuralMechanicsAnalysis
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4

5 if __name__ == "__main__" :
6

7 with open ("ProjectParameters.json" ,'r' ) as parameter_file :
8 parameters = KratosMultiphysics . Parameters ( parameter_file . read ( ) )
9

10 model = KratosMultiphysics . Model ( )
11 simulation = StructuralMechanicsAnalysis ( model , parameters )
12 simulation . Run ( )� �

In the first lines, Kratos and the structural analysis are imported. Then the settings are read
from the .json file and used to create an object of the structural analysis. In the last line, the
structural simulation is executed.

F.2.2 ProjectParameters.json

The settings for a Kratos simulation are stored in a .json file. JSON is an open-standard for-
mat that uses human-readable text to transmit data objects consisting of attribute–value pairs.
Kratos uses a thin wrapper around this syntax, the Parameters object.

The structure of this parameters file is the following:

• problem data: General settings for the Kratos run

• solver settings: Settings for the solvers, like analysis type, linear solver, etc.

• processes: Processes to apply.

• output processes: Settings for the output.

F.2.3 Solver settings

Inside the solver settings, define the material properties and the model part by calling the
respective Materials.json and ProjectName.mdpa file in the following way:

1 "solver_settings" : {
2 "model_import_settings" : {
3 "input_type" : "mdpa",

4 "input_filename" : "ProjectName"

5 "material_import_settings" : {
6 "materials_filename" : "Materials.json"

7 }
8 },

F.2.4 Processes

To run process “static condensation process”, it is needed to give the respective parameters
inside the PorjectParameters.json file.
The process is constructed by providing a “Parameters” object, initialized by a string in json
format. The input parameters of this process are simply the following:

• List of interface frames (“sub model part list”).

• Coordinates of master nodes of the interface frames (“list of master coordinates”).
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• Perturbation parameter for infinitesimal translational displacement (“eps perturbation”).

Here is an example of how the parameters should be delivered:

1 "processes" : {
2 "constraints_process_list" : [{
3 "python_module" : "static_condensation_process",

4 "kratos_module" : "KratosMultiphysics.StructuralMechanicsApplication

",

5 "Parameters" : {
6 "sub_model_part_list": ["Interface_frame_1","Interface_frame_2"]

,

7 "list_of_master_coordinates": [[0.15,0.1,0.025],[0.55,0.1,0.025]

],

8 "eps_perturbation": 1e-5

9 }
10 }],
11 },

F.2.5 Run Simulation

Once the model parameters have been correctly defined, the simulation is ready to run.
For this, just call the MainKratos.py file from the console:

1 $ python MainKratos.py

The result of the process is written in “json” format and can be found as “Master Stiffness.json”.

G Simulink’s Results Structure

1 %% Export data to Kratos
2 sim_res.Time = DXF2.time; % Obtain time steps array
3 sim_res.Num_of_frames = length(arm.P);

4 sim_res.Kratos_Interface_Frame_Origins = K.InterfaceFrameOrigins;

5 sim_res.Kratos_Displacement = K.Displacement; % Displacement of Kratos
' process

6 sim_res.Kratos_Rotation = K.Rotation; % Rotation of Kratos' process in
radians

7 for i=2: sim_res.Num_of_frames

8 temp_name = strcat( 'Interface_ ',num2str(i)); % Dynamic Field−
Names

9 sim_res .( temp_name).Disp_x = eval(strcat('DXF',num2str(i))).data;
% Obtain displacements on x array

10 sim_res .( temp_name).Disp_y = eval(strcat('DYF',num2str(i))).data;
% Obtain displacements on y array

11 sim_res .( temp_name).Disp_z = eval(strcat('DZF',num2str(i))).data;
% Obtain displacements on z array

12 sim_res .( temp_name).Quaternion = eval(strcat('QF',num2str(i))).
data; % Obtain quaternions array

13 end

14 save('sim_res.mat','-struct ','sim_res ') % Create a .mat file with the
results structure
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