
Hardware-Software Co-design for
Low-cost AI processing in Space

Processors
Master in Innovation and Research in Informatics

High Performance Computing

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech
Facultat d’informàtica de Barcelona (FIB)

Author: Marc Solé I Bonet
Email: marc.sole.bonet@estudiantat.upc.edu

Director: Dr. Leonidas Kosmidis
Department: Computer Architecture

Email: leonidas.kosmidis@bsc.es
Date: October 21, 2021

mailto:marc.sole.bonet@estudiantat.upc.edu
mailto:leonidas.kosmidis@bsc.es

Abstract

In the recent years there has been an increasing interest in artificial intelligence (AI) and
machine learning (ML). The advantages of such applications are widespread across many
areas and have drawn the attention of different sectors, such as aerospace. However, these
applications require much more performance than the one provided by space processors.
In space the environment is not ideal for high-performance cutting-edge processors, due to
radiation. For this reason, radiation hardened or radiation tolerant processors are required,
which use older technologies and redundant logic, reducing the available die resources that
can be exploited. In order to accelerate demanding AI applications in space processors, this
thesis presents SPARROW, a low-cost SIMD accelerator for AI operations.

SPARROW has been designed following a hardware-software co-design approach by ana-
lyzing the requirements of common AI applications in order to improve the efficiency of the
module. The design of such module does not use any existing vector extension and instead
has in its portability one of the key advantages over other implementations. Furthermore,
SPARROW reuses the integer register file of the processor avoiding complex managing of
the data while reducing significantly the hardware cost of the module, which is specially
interesting in the space domain due to the constraints in the processor area.

SPARROW operates with 8-bit integer vector components in two different stages, per-
forming parallel computations in the first and reduction operations in the second. This design
is integrated within the baseline processor not requiring any additional pipeline stage nor a
modification of the processor frequency. SPARROW also includes swizzling and masking
capabilities for the input vectors as well as saturation to work with 8 bits without overflow.

SPARROW has been integrated with the LEON3 and NOEL-V space-grade processors,
both distributed by Cobham Gaisler. Since each of the baseline processors has a different
architecture set, software support for SPARROW has been provided for both SPARC v8
and RISC-V ISAs, showing the portability of the design. Software support been developed
using two well established compilers, LLVM and GCC allowing for a comparison of the cost
of developing support for each of them. The modifications have included the SPARROW
instructions in the assembly language of each architecture and with the use of inline assembly
and macros allow a programming model similar to SIMD intrinsics.

LEON3 and NOEL-V extended with SPARROW have been simulated and later imple-
mented on a FPGA to evaluate the performance increase provided by our proposal. In order
to compare the performance with the scalar version of the processor, different AI related ap-
plications have been tested such as matrix multiplication and image filters, which are essential
building blocks for convolutional neural networks. With the use of SPARROW a speed-up
of 6× has been achieved for matrix multiplication rising over 15× speed-up if saturation is
enforced. Finally, SPARROW has been tested with a complex inference application from the
open source GPU4S Benchmarking suite, achieving a 5.3× speed-up.

Acronyms

AHB Advanced High-performance Bus

AI Artificial Intelligence

ALU Arithmetic Logic Unit

AMBA Advanced Memory Bus Access

APB Advanced Peripheral Bus

ASIC Application Specific Integrated Circuit

BCC Bare-metal Cross-Compilation

BRAM Block Random Access Memory

BUFG Global BUFfer

COTS Commercial Off-The-Shelf

DMA Direct Memory Access

DPU Data Processing Unit

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

ESA European Space Agency

ESTEC European Space Research and Technology Centre

FF Flip-Flop

FPGA Field-programmable Gate Array

FPU Floating Point Unit

GCC GNU Compiler Collection

GPL General Public License

HLS High Level Synthesis

IO Input/Output

IPC Instructions Per Cycle

IP Intellectual Propriety

ISA Instruction Set Architecture

IU Integer Unit

LEO Low-Earth Orbit

LUTRAM Look-Up Table Random Access Memory

LUT Look-Up Table

MEC MEmory Controller

ML Machine Learning

MMU Memory Management Unit

NASA National Aeronautics and Space Administration

PLL Phase-Locked Loop

PMP Physical Memory Protection

RTOS Real-Time Operating System

SCR SPARROW Control Register

SIMD Single Instruction Multiple Data

VFP Vector Floating Point

VHDL Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

XPP eXtreme Processing Platform

4

Acknowledgements

I would like to thank first and foremost my advisor, Dr. Leonidas Kosmidis, who helped
me to refine this project and provided me with support and directions during its development.
Also I would like to thank him for giving me the opportunity to participate in the GPU4S
project and work at the Barcelona Supercomputing Center in the CAOS group where I have
met great colleagues who have also helped me in this work.

Specially, I would like to thank Alejandro Serrano and Guillem Cabo, for helping me set-
ting up the FPGA and to work with it. At the same time I would like to express my gratitude
to Alvaro Jover and Ivan Rodriguez for providing me access to the GPU4S Benchmark and
for helping me to work with it.

I also have to thank Mr. Matthew Johns author of [1] for kindly providing me with the
benchmarks used for his project. Similarly, I express my gratitude, to Mr. David Steenari,
advisor of [2] and European Space Agency Technical Officer in the GPU4S project, for pro-
viding me with an example of LEON3 top-level entity for the Zynq Ultrascale+.

Finally, I thank my family for the support they have given me all this time and the
education that they provided me with which allowed me to be where I am today.

This work was partially supported by ESA under the GPU4S (GPU for Space) project
(ITT AO/1-9010/17/NL/AF), by the Spanish Ministry of Economy and Competitiveness
(MINECO) under grants PID2019-107255GB and FJCI-2017-34095. It received also support
by the European Commission’s Horizon 2020 programme under the UP2DATE project (grant
agreement 871465), the HiPEAC Network of Excellence and the Xilinx University Program
(XUP).

Table of Contents

1 Introduction
1.1 Motivation . 5
1.2 Objectives . 6
1.3 Thesis organization . 7

2 State of the Art
2.1 Vector Processing . 8
2.2 Space Processing . 10
2.3 GRLIB . 12

2.3.1 LEON3 . 13
2.3.2 NOEL-V . 14

3 SPARROW
3.1 Design overview . 19
3.2 First Stage: Parallel computing . 21

3.2.1 Multiplication logic . 22
3.3 Second Stage: Reduction operations . 24
3.4 Additional features: SPARROW Control Register 24
3.5 SPARROW instructions . 25

4 Software Support
4.1 SPARROW assembly . 29
4.2 SPARROW support in GCC . 30
4.3 SPARROW support in LLVM . 31
4.4 SPARROW intrinsics library . 32

5 Evaluation
5.1 Hardware Overhead . 35

5.1.1 LEON3-MINIMAL: Artix-7 FPGA 35
5.1.2 LEON3-ZCU102: Zynq Ultrascale+ FPGA 36
5.1.3 NOELV-ZCU102: Zynq Ultrascale+ FPGA 38

5.2 Performance . 39
5.2.1 LEON3 simulation . 39
5.2.2 LEON3 FPGA implementation . 42
5.2.3 NOEL-V simulation . 51

6 Lessons learnt
6.1 Hardware design and VHDL . 52
6.2 GCC vs LLVM . 52

7 Conclusions and future work
7.1 Conclusions . 54
7.2 Future work . 55

8 Related publications 56

References 60

List of Figures

1 T0 block diagram . 8
2 LEON block diagram . 11
3 Space processors performance comparison . 12
4 LEON3 block diagram . 13
5 LEON3 Integer Pipeline . 16
6 NOEL-V block diagram . 17
7 NOEL-V Integer Pipeline . 18
8 Outline of the SPARROW module . 20
9 Multiplication logic implementation in SPARROW 22
10 Algorithm for selecting the result of the multiplication 23
11 SPARROW Control Register encoding . 24
12 SPARROW instruction encoding . 25
13 SPARROW SCR write instruction encoding 27
14 SPARROW SCR read instruction encoding 27
15 Example of SPARROW programming with inline assembly 30
16 Example of SPARROW programming with the SPARROW library 34
17 Matrix multiplication speed-up . 44
18 Matrix multiplication with saturation speed-up 45
19 Grayscale conversion speed-up . 46
20 Edge detection filter speed-up . 47
21 Polynomial speed-up . 48
22 Saturated polynomial speed-up . 49
23 GCC and LLVM speed-up comparison . 50

List of Tables

1 SPARROW first stage operation codes . 26
2 SPARROW second stage operation codes . 27
3 SPARROW library functions . 33
4 LEON3 resource utilization comparison for the Artix-7 FPGA 35
5 LEON3 resource utilization comparison for the Zynq Ultrascale+ FPGA . . 36
6 LEON3 resource utilization for synthesis using LUT-RAM 37
7 NOEL-V resource utilization comparison for the Zynq Ultrascale+ FPGA . . 38
8 Simulation results for the LEON3 with 8KB cache 40
9 Simulation results for the LEON3 with cache disabled 40
10 FPGA results for the LEON3 with 8KB cache 42
11 FPGA results for the LEON3 with cache disabled 42
12 LEON3-ZCU102 matrix multiplication results 44
13 LEON3-ZCU102 matrix multiplication results with saturation 45
14 LEON3-ZCU102 grayscale conversion results 46
15 LEON3-ZCU102 edge detection filter results 47
16 LEON3-ZCU102 polynomial results . 48
17 LEON3-ZCU102 polynomial results with saturation 49
18 Simulation results for the NOEL-V . 51

1 Introduction

1.1 Motivation

Artificial intelligence (AI) and machine learning (ML) have become a trend during the
last decade. Needless to say that such popularity is well-justified, as they have revolutionised
many fields. However, AI and ML algorithms require significant computational power, which
is usually provided by accelerators such as GPUs or specialised ASICs.

Space processing has not been oblivious to such reality [3]; space, is an unsafe environment
for humans and is not ideal either for the devices that operate beyond the boundaries of earth.
Thus, such devices must behave as intelligently and reliably as possible. In many cases, due to
the long distances, remote control from earth is inefficient and autonomy becomes a required
feature for the missions to succeed. Recent missions by the European Space Agency (ESA)
and National Aeronautics and Space Administration (NASA), as well as other agencies, have
incorporated AI processing utilities such as for the navigation on NASA’s latest Mars Rover,
Perseverance [4].

Space processors, however, are constrained by the requirements of working in a harsh
environment. They require low power consumption and older fabrication technologies in
order to work reliably in space. Moreover, they are designed to comply with certain, strict
guidelines for hardware design and their software, so that they obtain space qualification,
which permits their use in space missions. Frequently, space processors such as Cobham
Gaisler’s LEON family of processors are used either implemented in ASIC or as soft-cores in
radiation-hardened FPGAs. However, these processors have very low performance compared
to processors used in consumer devices such as cell phones, and therefore cannot provide the
performance required for the execution of AI algorithms.

For this reason, commercial off-the-shelf (COTS) accelerators have been considered as
an alternative. For example, in ESA’s Φ-Sat-1 technology demonstration mission, an Intel
Movidius was used in an AI application for detecting clouds in satellite-earth images [5].
However, the drawback of COTS is their lack of radiation hardening which prevents their use
beyond low-earth orbit (LEO). Moreover, the software stacks used by COTS accelerators are
usually not developed for space nor for real-time operating systems (RTOS). For example
they depend on Linux or machine learning frameworks like TensorFlow, which prevents their
software qualification and makes their adoption in critical space missions even more challeng-
ing. This is the case also for widely FPGA-based AI accelerators used in numerous ground
applications such as Xilinx’s FINN [6] framework or Xilinx’s DPU core which however are
not designed subject to space qualification.

5

With all these considerations in mind, it is necessary to increase the performance for AI
applications in a established space processor with as few changes as possible. This can be
done by including an AI-centered SIMD unit. By targeting a processor already prepared
for the adversities of space it’s not necessary to take any other considerations regarding the
safety of the device which has been tested in critical systems. Additionally, by including a
small module we do not modify any of the characteristics that affect it’s safety, while adding
the computational power to execute more complex applications, especially AI related ones.

Furthermore, the addition of a module that does not modify the execution on the base
processor for non-AI applications, which is mandatory in order to retain backwards com-
patibility with existing space software which is verified and reused from mission to mission.
It would also be positive to not be limited to a single processor and instead be portable
among many designs, this would help reduce the cost of new implementations. Moreover, if
the programming part of the module is common regardless of the base processor architec-
ture, the high-level code can be reused not having to take into account the differences in the
microarchitecture details.

1.2 Objectives

With the considerations mentioned in the previous section, and in order to provide a
solution to the mentioned problem, the main goals of this Master’s thesis project are listed
below:

1. The design of a low-cost module for accelerating AI applications by analyzing
the requirements of said applications.

2. The design of the module for embedded and critical systems, specifically for the space
domain, taking into account the constrains in such systems.

3. The implementation of such module in at least one space processor and evaluate its
performance improvement. In this thesis we achieved this for two space processors, the
LEON3 and the NOEL-V enforcing the portability of the proposed design.

4. The creation of software support to take advantage of the hardware modifications
for at least one of the widely used compiler frameworks, GCC or LLVM. Again in this
thesis we achieved this goal for both compiler toolchains.

6

1.3 Thesis organization

This Master’s Thesis is organized as follows: In Section 2, the state of the art is presented
for vector processing units and space processor focusing on the space processors we have
targeted in this work. In Section 3, we describe SPARROW, the AI acceleration module,
with its design overview and characteristics. In Section 4, the software part of the project
is described with the modifications in GCC and LLVM and the generation of the code. In
Section 5, SPARROW is evaluated in terms of hardware overhead and performance speed-up
with respect to the baseline processor. In Section 6, we explain some of the lessons we have
learned when working on this project. Finally, the conclusions and future work are presented
in Section 7 and publications, workshops, competitions and talks were contents of this Thesis
were presented are listed in Section 8.

7

2 State of the Art

2.1 Vector Processing

Vector architectures have been introduced decades ago in order to increase the perfor-
mance capabilities of computing systems, originally in the supercomputing domain, such as
ILLIAC IV [7]. These early vector architectures relied on long vectors which were used to
apply the same operation on each of the vector elements, effectively accelerating the proces-
sor’s front-end, since each instruction could be fetched and decoded only once. However, at
the time this was a very expensive technology since it required multiple chips.

With the improvements offered by Moore’s law, vector instructions started appearing in
commodity, single-chip microprocessors for the acceleration of multimedia applications. The
first single-chip vector architecture implementation was T0 (Torrent-0) [8] achieving an IPC
of 24 with an in-order single instruction issue per cycle. At the same time, the combination
of vector processing with superscalar, out-of-order and multi-threading execution had been
explored [9].

Address
Bus

Data
Bus

28
32

128

88

Scalar
Bus

Scan
Chains

1 KB
I-Cache

Vector
Memory
Pipeline

Vector
Registers

Conditional Move
Clip

Shift Right
Add

Multiply
Shift Left

Logic

Logic
Shift Left

Add
Shift Right

Clip
Conditional Move

TSIP

VP1

VP0

VMP

MIPS-II
CPU

Figure 1: T0 block diagram [8]

Soon after, Intel introduced their first short vector ISA extension, MMX [10] for the
Pentium and Pentium II processors. MMX instructions used the 64-bit lower bits of the
floating point registers, in order to avoid changes in the operating system. However, this
meant that only one of the MMX or floating point registers could be used at the same
time. Apart from floating point operations, MMX instructions provided the possibility to
use integer values of various component sizes, including 8-bits and support for saturation
arithmetic. MMX does not support swizzling (re-ordering the fields of a vector within an
instruction) in a native manner, but it offers instructions to pack and unpack values from
vector registers and shift instructions to obtain the desired values.

8

In the following years, all major microprocessor vendors introduced SIMD vector exten-
sions for multimedia processing. For example, SPARC introduced VIS [11], which similar to
MMX aliased vector registers with the floating point register file, while other vendors intro-
duced additional vector register files such as IBM for their AltiVec vector extension [12], and
full support for swizzling. Intel kept releasing updated versions of their SIMD instructions,
such as SSE, SSE2, SSE3, SSSE3, SSE4, AVX, AVX2 and AXV-512 and included hardware
support for swizzling.

In the embedded domain, the systems were more area constrained, however a couple of
years later the first embedded vector processor, VIRAM, appeared [13][14]. Several embedded
processors started employing SIMD extensions. ARM started with the VFP extension (Vector
Floating Point), sub-architecture of the ARM floating point architecture which is not a
mandatory requirement of the architecture. It was named as such because the early ARM
implementations featured some instructions with short vector functionality, which for area
reasons were using a single ALU. Similar to other early SIMD vector architectures mentioned
earlier, VFP was using the floating point register file. Currently this extension is known as
ARM Common VFP (ARMv7 floating point) and ARM strongly recommended all its floating
point functionality except for these short vector support to be implemented in hardware.

The ARMv7 specification [15] deprecated VFP and included it only for backwards com-
patibility while starting with the ARMv8 specification [16], it deprecated it completely and
suggest implementers to use Advanced SIMD instructions, also known as NEON, for this
functionality. Even after that, ARM retained the VFP naming for compatibility reasons.
In order to retain backwards compatibility without the cost of an additional register file,
Advanced SIMD registers and VFP registers are aliased, so they cannot be used simultane-
ously. NEON registers can support up to 8 single precision operations. ARM introduced the
Advanced SIMD instructions, also known as NEON. NEON registers are aliased with the
floating point registers in ARM CPUs, so they cannot be used simultaneously.

Recently, ARM introduced another vector architecture targeting IoT micro-controllers,
called Helium [16], which is also known as the M-Profile Vector Extension (MVE). Again,
in order to save area, Helium instructions alias with the floating point registers. Moreover,
they operate on 32-bit portions of the vector registers each cycle, due to the limited datapath
widths in these micro-controllers. Some Helium instructions such as multiplications access
both the vector register file and the scalar register file, in order to accumulate 64-bit values.

In addition to silicon implementations of embedded vector architectures, there are several
proposals for vector soft-cores on FPGAs. VESPA[17][18][19] uses a softcore accelerator
generator for for Intel’s (ex-Altera) NIOS II softcore (and the open source NIOS II-compatible
processor UTIIe) or MIPS together with VIRAM vector instructions. In order to achieve an
efficient design for FPGAs, it partitions the register file per vector lane.

Vegas is an evolution of VESPA [20] which relies on scratchpads instead of vector registers
and supports vector chaining i.e. start executing one vector instruction before finishing the
other, as well as heterogeneous lanes. While VESPA relies on scratchpads for holding the
data on which vector processing is applied, it has additional needs for address registers, used
for the DMA memory accesses between the scratchpad and the main memory.

9

VENICE [21] is a descendant of VESPA which removes the need of the extra address
registers, using regular registers instead. This is somewhat similar to ARM’s Helium and
our design. However, the big difference is with the programming model. VENICE follows an
accelerator programming model based on DMA transfers from a host processor.

VIPERS is another FPGA-oriented [22] vector soft-processor, which has been evolved
and commercialized from VectorBlox. Its principle relies on the generation of custom vector
processors for FPGAs supporting specialized instructions. This concept is similar to High-
Level Synthesis (HLS) solutions provided by almost any FPGA vendor nowadays. While
this is similar to our co-design, again it follows a different programming model compared
to the existing space software. Moreover, both VESPA and VIPERS families of FPGAs
vector processors and HLS solutions are only oriented to FPGAs, while our proposal is both
applicable to space based systems implemented not only in FPGAs but also in ASICs.

2.2 Space Processing

In 1990, the European Space Research and Technology Centre (ESTEC) begun the devel-
opment of the ERC32 [23], a 32-bit radiation-tolerant space processor. This CPU core was
based on the Cypress CY601 SPARC V7 processor and it was finally completed in 1997, when
it was used in various space missions, including the control computers of the International
Space Agency [24].

The ERC32 consisted of three devices, an integer unit (IU), a floating point unit (FPU)
and a memory controller (MEC) with all the required functions to host a real-time oper-
ating system. All three devices were provided with fault-tolerance logic by using a master
and checker approach, where a mismatch is indication of an error. Additionally, built-in fea-
tures for detecting transient and permanent errors, providing an almost 100% error-detection
coverage when used in conjunction with the master checker duplex.

As a successor of the ERC32 the LEON processor [24] was developed to satisfy the
requirements of the space missions after the year 2000. The new LEON was based on the also
recently developed SPARC v8 architecture which allowed to maintain software compatibility
with the ERC32 and also allowed the core to be open source. The core included on-chip
fault-tolerance to detect and remove errors avoiding the overhead of spare units and voting.
Even so, two LEON processors could work in duplex master/checker configuration.

In later years new versions of the LEON processor were released with different improve-
ments but all being based on the SPARC v8 architecture, in this work I decided to use
the LEON3 processor for which more details are provided in Section 2.3.1. However, later
releases of the LEON family reach up to the LEON5. Additionally, Cobham Gaisler, the
company in charge of developing the LEON processors, has also released a RISC-V compli-
ant fault-tolerant processor, the NOEL-V, which is also used for this project and presented
in Section 2.3.2.

10

Figure 2: LEON block diagram [24]

Aside from the LEON family, other processors incorporated radiation-hardening to be
suitable for use in space. An example of this is the RAD750 [25], a space processor that is
identical to the PowerPC 750 microprocessor, but adapted for the space environment. The
RAD750 processor was used in the Lunar Reconnaissance Orbiter in 2008, a NASA mission
to scout the lunar surface in order to prepare future manned missions.

Both the LEON and the RAD750 were general purpose processors, however, in many
situations and for certain tasks, the utilization of digital signal processors (DSP), like the
TSC21020, was preferred. It provided better performance in the signal processing and data
handling applications, but on the other hand lacked programmability and flexibility. Other
approaches incorporated parallel computing in the signal processing, such as the eXtreme
Processing Platform (XPP) [26]. XPP consisted of a number of Processing Array Elements
of 32-bit arithmetic elements. A key characteristic of XPP is that instead of being controlled
by the instruction flow, it uses a configuration flow replacing simple ALU operations with
complex functions. In Figure 3 we can see a comparison of performance against flexibility
for the presented space processors.

11

Data Processing

Data Handling

Control and Monitor

Flexibility and Programability

10

100

1

XPP

Performance
Instr./cycle

TSC21020

ERC32

LEON

RAD750

Figure 3: Space processors performance comparison [26]

As an alternative to fault-tolerant ASIC cores, FPGA implementations reduce the design
cost. In order to be used in space, and thanks to technology improvements, radiation hard-
ened designs are available at the market such as the Xilinx Virtex-5QV or the Microsemi
RTG 64. An example of recent use of radiation tolerant FPGA is the Perseverance Mars
rover, where Microsemi Rad-Tolerant FPGAs were used [27].

2.3 GRLIB

GRLIB is a collection of IP components distributed by Cobham Gaisler. The company,
is one of the world leaders in embedded computer systems for harsh environments, such as
space. In fact, Gaisler has a close partnership with the European Space Agency (ESA) for the
development and validation of space-grade microcontrollers, such as the LEON3FT (LEON3
Fault-Tolerant). The usage of the provided cores is not limited to space, as they are also used
in the automotive sector, for multimedia or as a general SOC platform specially in embedded
systems [28].

12

The GRLIB library is provided under a GNU GPL License, but can also be licensed for
commercial use. In the later case, different distributions are available with fault-tolerant
support and targeting FPGAs or ASICs. Even with the limitations on the free distribution,
GRLIB IP cores are written in VHDL and can be easily reused for different projects. Ad-
ditionally, full-processor designs are included which can be simulated or synthesised using
different tools depending on the requirements of the users. This top-level designs are specially
designed for a number of FPGAs and there is no additional support outside of these. How-
ever, there is a mailing list available for collaborative troubleshooting for the GPL version in
order to help with the utilisation of the library or porting it to new platforms [29].

The library includes cores for communication control such as AMBA AHB/APB, the
LEON3, LEON4 and LEON5 processors, the NOEL-V RISC-V processor, and a number of
different protocols, memory management and utility cores. The library is extensively docu-
mented either for the configuration and initialization of GRLIB [30] or for the documentation
of each of the provided IPs [31].

2.3.1 LEON3

The LEON3 [31] is a successor of the LEON processor mentioned in Section 2.1. As
such it keeps a few common characteristics while providing better performance and more
capabilities. It is a 32-bit processor conforming to the IEEE-1754 (SPARC v8) architecture,
it is considered a high-performance core for embedded systems and since it can be enhanced
with fault-tolerance, it is widely used in the space domain.

It has a Harvard architecture with a 7-stage pipeline, it can include high-configurable
cache for instructions and data which are independent one from the other. Also, it incorpo-
rates a hardware multiply and divide units, however, for this operations are costly as they
require additional cycles. The core also includes debug support, which allows to evaluate the
processor from outside and obtain results regarding the performance or cache utilization.

3-Port Register File

7-Stage
Integer pipeline

IEEE-754 FPU

Co-Processor

HW MUL/DIV

Trace Buffer

Debug port

Interrupt port

Debug support unit

Interrupt controller

I-Cache D-Cache

SRMMU

AHB I/F

AMBA AHB Master (32-bit)

Local DRAMLocal IRAM

ITLB DTLB

Figure 4: LEON3 block diagram [31]

13

There are different interface ports which allow communications with the outside, through
the AMBA AHB protocol. A block diagram for the LEON3 processor is depicted in Figure 4.

LEON3 has a dedicated cache for instructions and one for data, which are easily config-
urable with 1-4 ways, 1-256 KiB/way and 16 or 32 bytes per line. The number of register
windows, which are used in the SPARC standard for low latency function calls, is also con-
figurable, from 2 to 32 register windows. For the support of multiplication and division
operations hardware units are included.

An overview on the LEON3 integer pipeline which is the most relevant one for this project,
is shown in Figure 5. The 7 pipeline stages are described below:

• Instruction Fetch (FE): Fetch the instruction from the instruction cache if present,
otherwise fetch it from the AHB bus.

• Decode (DE): Decode the instruction and evaluate data dependencies setting the
bypass logic or stalling the pipeline, the target addresses of BRANCH and CALL are
generated.

• Register Access (RA): Prepare the operands for the instruction, whether from the
register file or from internal bypasses.

• Execute (EX): Perform the ALU, logic and shift operations. For memory operations,
JMPL and RETT compute the address.

• Memory (ME): Access the data cache if enabled, otherwise the access, read or write,
is forwarded to main memory.

• Exception (XC): Resolve traps and interrupts. For memory reads it aligns the data.

• Write-back (WR): The result obtained from the ALU or memory is written in the
corresponding register.

2.3.2 NOEL-V

In contrast to the SPARC based LEON family, Cobham Gaisler released on the Christmas
Day of 2020 a RISC-V processor, the NOEL-V [31]. Although there are differences in the
architecture, there are many similarities between both processors. Moreover, as it is the case
of LEON3, the NOEL-V is highly configurable. There are 4 basic configurations, from a tiny
one with minimal components to a high performance version. Furthermore, the processor can
be set for 32-bit (RV32) or 64-bit (RV64) and aside from the tiny and minimal configurations,
a double-issue pipeline is available. In Figure 6 an overview of the NOEL-V system is shown.

NOEL-V follows a Harvard architecture with separate data and instruction caches, too.
The integer unit is also divided in 7 stages and it is very similar with the LEON3 one, and
includes multiplication and division logic. In addition, the NOEL-V has late ALU and late
BRANCH support to perform said operations in the exception stage which allows to avoid
pipeline stalls because of dependencies.

14

In Figure 7 the integer pipeline of the NOEL-V is presented. Below the description of
each stage is provided:

• Instruction Fetch (FE): A 64-bit word is fetched from the instruction cache if en-
abled, otherwise it is fetched from the AHB bus. The 64-bit word contains two to four
instructions which are latched in the IU.

• Decode (DE): Decode two instructions and evaluate if dual-issue is possible and which
instruction goes to each lane. Also set the logic for handling the data dependencies.

• Register Access (RA): Prepare the operands for the instruction, whether from the
register file or from internal bypasses.

• Execute (EX): Perform the ALU, logic and shift operations. For memory operations,
JMPL and RETT compute the address.

• Memory (ME): Access the data cache if enabled, otherwise the access, read or write,
is forwarded to main memory.

• Exception (XC): Resolve traps and interrupts. Late ALU and BRANCH functional-
ities are available to allow delayed dependency resolution.

• Write-back (WR): The result obtained from the ALU or memory is written in the
corresponding register.

15

Figure 5: LEON3 Integer Pipeline [31]

16

Figure 6: NOEL-V block diagram [31]

17

Figure 7: NOEL-V Integer Pipeline [31]

18

3 SPARROW

3.1 Design overview

To satisfy the objectives introduced in Section 1.2 in this project we have designed SPAR-
ROW. The name, conveys the idea of its small size, similar to the small bird sparrow and
includes the word arrow as a reference to speed provided by the acceleration that module
offers. Additionally it starts with SP, which induces the idea of space.

SPARROW is an extension module for space processors and it is currently implemented
for both the LEON3 and NOEL-V processors and adapted to their ISAs, SPARC v8 and
RISC-V respectively. More precisely, it extends the integer pipeline with additional short
vector operations with focus on AI applications, without any performance cost in the rest
of the operations of the base processor. To guarantee this, the cycle time and the pipeline
depth is the same as of the unmodified baseline processor. To do so, the module is attached
at the execution stage and the result is returned at the exception stage. Since no instruction
operated in SPARROW requires to access memory nor it can generate any exception there
is no risk nor any additional consideration to be made. With this, not only the conditions
for the regular integer pipeline are kept but also for the new SIMD instructions.

A key design decision of SPARROW is the reuse of the integer register file to reduce the
area overhead of the design. We notice that in conventional architectures the vector register
file consumes a significant portion of the vector design. For example in T0 [8], the vector
register file is 3× larger than the baseline MIPS-II processor, and consumes 30% of the overall
vector unit area. In VIRAM-1 [13] the vector register file has the same size with the baseline
scalar core, and again it accounts for 30% of the total vector additions. In a similar way
the vector register file of Samsung’s M3 high performance embedded processor [32] consumes
an analogous share of the real-estate dedicated to the implementation of the NEON SIMD
extensions of the ARMv8 Specification [16]. Therefore, our decision results in a SIMD design
which is at least 20-30% smaller than any other vector design targeting embedded processors,
as is presented later in Section 5.

Another important element of SPARROW’s design is its hardware-software co-design for
AI processing. By analyzing the literature it is apparent that one of the most significant
operations in ML is the dot product [33], which is primarily used in the matrix multiplica-
tion implementation. Matrix multiplication is one of the most common operations in such
applications, because it is used both for the implementation of fully connected layers, as well
as for convolutions. Thus, the optimization of this operation was the starting point of the
design of SPARROW’s architecture, resulting in the two stage architecture design which is
explained in more detail in the following sections.

19

MASK 0

C3 C2 C1 C0

0 1 01010 1

 SWIZZLING NETWORK𝜒

A3 B3 A1 B1 A0 B0

0 10 10 10 1

C’0C’1C’2C’3

A’0A’1A’2A’3

MASK 1MASK 2MASK 3

0
0 1MASK

SELECT

0
0 1MASK

SELECT

0
0 1MASK

SELECT

0
0 1MASK

SELECT

A2 B2

Figure 8: Outline of the SPARROW module

In addition, recent studies have shown that reducing the precision of arithmetic opera-
tions involved in machine learning inference operations to 8-bit integers provides minimal
reduction in the inference accuracy. As consequence, almost every architecture designed for
inference workloads nowadays operate with 8-bit integers or even smaller bit widths [34].
This is compatible with the choice to reuse the integer register file, which consists of 32-bit
registers and therefore can accommodate 4 values which can be processed in a SIMD man-
ner. In order to avoid the possible overflow introduced when working with 8-bit values, the
different operations of SPARROW include a saturation option. Moreover, the decision to
work only with 8-bit widths allowed us to take implementation choices that would otherwise
be impossible to implement without a significant impact on the cycle time or the area of
SPARROW.

20

An outline of SPARROW is shown in Figure 8, where the clear division of the module
in two stages can be seen. In the first stage, the two input registers execute 4 operations in
parallel in a conventional SIMD fashion, whilst being subject to traditional vector modifiers,
such as swizzling or masking. The four components of the first stage result are either com-
bined in reduction operations to produce up to a 32-bit result or passed to the module output
without additional modifications. In addition, in both stages the result can be saturated.
Any of the two stages can be disabled acting as a nop, in case of the second stage, the value
can be bypassed directly to the integer pipeline saving a cycle in case of dependency.

As both baseline processors, SPARROW has been written in VHDL. Furthermore, in
order for the design to be consistent with the rest of the GRLIB library the structure of the
VHDL file follows the design method presented in [35].

3.2 First Stage: Parallel computing

In the first stage, the two source vectors are modified according to the swizzling configura-
tion, which is further explained in Section 3.4. The resulting reordered vectors, the operand
vectors, are computed one against the other at component level. For arithmetic operations
a saturation option is available, in which case the result is clipped between 0 and 255 for
unsigned data or between -128 and 127 for signed. Otherwise, the 8-bit operands can require
an extra bit to avoid overflow and in case of multiplication a 16-bit value is needed. For this
reason, the results of the first stage are stored in longer intermediate components, as can be
seen in Figure 8.

The result of the first stage operation is then masked. This introduces more versatility to
the module and can greatly simplify the management of the data. More details on the mask
behaviour are explained in Section 3.4.

With the described design, SPARROW can work with two input registers. Nonetheless,
in some cases it is necessary to work with constants which can be costly to set into a register,
especially if the higher bits must be set to work in all the register components. The alternative
is to use immediates, whose value is replicated in all the components. However, we would
require 8 free bits in the instruction to pass the value, but, as shown in Section 3.5 there
is not enough space to do so. Instead, we decided to encode in the 5 bits used for the
second operand the most common values for ML applications [36]. This is a result of the
hardware-software co-design approach which was fundamental for the implementation of this
project.

21

Bit 0

Bit 1

Bit 2

Bit 3

0 0 0 0

01

Bit 3 Bit 2 Bit 1 Bit 0 0

+

Bit 3 Bit 1 Bit 0Bit 2

01

01

Bit 3 Bit 2 Bit 1 Bit 0 0

+

0

01

Bit 3 Bit 2 Bit 1 Bit 0 0

+

0 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Multiplicant

M
ultiplier

Figure 9: Multiplication logic implementation in SPARROW with four bits for simplicity

3.2.1 Multiplication logic

One of the vital design characteristics of SPARROW is the implementation of multipli-
cation in the first stage. Multiplication is traditionally a costly operation which requires
multiple cycles to be executed and has a high area cost, as we have seen in the description of
the original LEON and NOEL processors in Section 2.3. Implementing a full 4-component
SIMD multiplication in a single pipeline stage would impact the frequency of the original
design or it would require to be split in multiple pipeline stages. However, since SPARROW
works on 8-bit operands the operation fits within a single cycle and does not cause any stall in
the pipeline. In fact, in the first implementations of the module we had to reduce the target
frequency this was not possible to achieve, since due to a more general implementation, the
design did not meet the timing constraints.

In order to solve this, we re-implemented the multiplication logic taking a more explicit
approach. Instead of letting the VHDL libraries perform the full multiplication, the logic
computes the result by applying a shift and addition for the 8-bits. A reduced version of this
design with 4-bit inputs is shown in Figure 9.

For the multiplication of signed numbers this approach is still valid, but only for the first
8 bits of the result. Due to the introduction of longer intermediate values the result cannot
be considered as valid and must be somehow fixed. The first alternative would be the sign
extension of the operands to 16 bits, however, the logic grows too big and it makes impossible
to fit the multiplication in a single processor cycle at the original processor frequency.

22

For this reason, we decided to operate always with positive values, and later fix the sign
of the result. That means that in case of signed multiplication, if the component first bit
is set, two’s complement inversion is performed. After computing the multiplication, if the
original operands had the same sign the result is left as is (positive) whereas if the sign was
different an inversion is performed again to produce a negative result. Including this logic
does not entail any significant overhead as sign evaluation was already present to compute
the saturation. The algorithm to perform the multiplication is as follows:

1. Invert the sign of the operands if they are negative (leftmost bit equal to 1) and the
operation is signed.

2. Perform the product.

3. Use a multiplexer to select a result as in the algorithm shown in Figure 10 where
overflow means that one of the 8 most significant bits is set (in case of signed, the 9th
most significant bit is also checked).

if saturation is enabled then
if operation is signed then

if Operand 1 sign = Operand 2 sign then
if overflow then

result is 0x7F
end

else
if overflow then

result is 0x80
else

result is sign inverted
end

end

else
if overflow then

result is 0xFF
end

end

else
if operation is signed then

if Operand 1 sign 6= Operand 2 sign then
result is sign inverted

end

end

end

Figure 10: Algorithm for selecting the result of the multiplication

23

3.3 Second Stage: Reduction operations

Second stage operations are those that compute a single result by combining all the
components of the intermediate vector. These reduction operations also have a saturated
and non-saturated version, however, due to limited bits in the instruction encoding the same
saturation option as in the first stage is used. Even with this restriction, using two consecutive
instructions it’s possible to have any result.

Since the result is a single 32-bit value, there is no precision loss in the second case, but
even with 32-bit results the saturation option is necessary to retain the validity of the data
inside the program. Furthermore, the intermediate operations are performed increasing the
data length to avoid overflow. In the saturated case, the clamping is performed only to the
final result, to avoid different results depending on the order of the components.

If there is no need for a reduction operation, a nop can be specified. In that case the
result will be the output of the first stage with no modification whatsoever. Moreover, in
this scenario, the first stage result is bypassed to the integer pipeline and can be immediately
used with no need to wait for an additional cycle.

3.4 Additional features: SPARROW Control Register

To provide SPARROW with more versatility, we have included additional features like
swizzling and masking which as we have mentioned in Section 2.1 are common in some SIMD
designs. In order to configure these characteristics, we added in the architecture a special
register, the SPARROW (or SIMD) Control Register (SCR).

Figure 11: SPARROW Control Register encoding

The encoding of the SCR is shown in Figure 11 where:

• Mask: Each of the four bits references one of the intermediate vector components, if
the bit is set the result from the first stage is applied, otherwise the mask is passed.

• Mask select (ms): Selects the mask to be applied. If one, the value is that of the
first operand respective component, previous to the swizzling. Otherwise, the passed
value is zero.

• Swizzling: Sets for operands A and B – first and second – the position of each com-
ponent. For each of the operands, the ith pair of bits identifies the vector component
in the ith position.

• Free (X): Empty bits available for future extensions.

24

3.5 SPARROW instructions

To instruct the processor to use SPARROW for the desired operations those must be
added in the ISA. Since SPARROW uses the integer register file, there is no significant
modifications required in the base processor, however, it is necessary to find free opcodes to
identify such instructions. Instead of using existing vector extensions, such as the RISC-V
Vector extension, we decided to take a custom approach as it allows for higher flexibility, like
reusing the integer register file, and also increased portability to different ISAs. Furthermore,
existing vector extensions include additional instructions for setting the vectors which is not
necessary for SPARROW again because of the reuse of the register file.

Although the module has been implemented for two different processors with different
architectures, the implementation of the instructions is not complex proving the portability of
the module. Therefore, we had just to decide on the opcodes for SPARC and RISC-V. Ideally
they would be the same to simplify the identification, nonetheless, this is impossible due to
the differences of the ISAs. However, in both cases we tried to use free opcodes similar to the
integer instructions of each respective architecture. In Figure 12a the SPARROW instruction
encoding for SPARC v8 is shown, in Figure 12b the same is shown for the RISC-V ISA.

i sd110 rs2 / imm[4:0]rs1 sd2rd 001001
31 30 25 24 19 18 14 13 12 10 9 5 4 029

(a) SPARROW SPARC v8 instruction

i sd1 X rs2 / imm[4:0] rs1 sd2 rd 0001011
31 30 26 25 24 20 19 15 14 12 11 7 6 0

(b) SPARROW RISC-V instruction

Figure 12: SPARROW instruction for the SPARC v8 and RISC-V architectures

In Figure 12 the specific opcodes for each of the architectures are shown in binary. The
rest of fields are described below:

• rd: Destination register

• rs1: First source register

• rs2: Second source register

• imm: 5-bit encoded immediate

• i: Use immediate instead of register for the second operand

• sd1: SPARROW first stage operation code (see Table 1)

• sd2: SPARROW second stage operation code (see Table 2)

25

sd1 Name Operation

00000 nop rd′ = rs1 rd′ ∈ N
00001 add rd′i = rs1i + rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z
00010 sub rd′i = rs1i − rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z
00011 mul rd′i = rs1i × rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z
00101 max rd′i = max(rs1i, rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z
00110 min rd′i = min(rs1i, rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z
00111 and rd′i = rs1i ∧ rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
01000 or rd′i = rs1i ∨ rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
01001 xor rd′i = rs1i ⊕ rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
01010 nand rd′i = ¬(rs1i ∧ rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
01011 nor rd′i = ¬(rs1i ∨ rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
01100 xnor rd′i = ¬(rs1i ⊕ rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
01101 sadd rd′i = max(−128,min(127, rs1i + rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z
01110 ssub rd′i = max(−128,min(127, rs1i − rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z
01111 smul rd′i = max(−128,min(127, rs1i × rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z
10000 merg rd′ = rs2 rd′ ∈ N
10001 shft rd′i = rs1i (� | �)1 rs2i/2 ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z
10011 umul rd′i = rs1i × rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
10101 umax rd′i = max(rs1i, rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
10110 umin rd′i = min(rs1i, rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
11001 sshft rd′i = max(−128,min(127, rs1i (� | �)1 rs2i/2)) ∀i ∈ {0, ..., 3} rs1 ∈ Z2

rd′i = max(0,min(255, rs1i (� | �)1 rs2i/2)) ∀i ∈ {0, ..., 3} rs1 ∈ N2

11101 usadd rd′i = max(0,min(255, rs1i + rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
11110 ussub rd′i = max(0,min(255, rs1i − rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
11111 usmul rd′i = max(0,min(255, rs1i × rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N
1. The second operand sign determines the direction of the shift. Also its last bit identifies whether the shift is logic or
arithmetic.

2. If the shift is logical it treats the data as unsigned whereas if it’s arithmetic as signed.

Table 1: SPARROW first stage operation codes

26

sd2 Name Operation

000 nop rd = rd′ rd′ ∈ N
001 sum rd =

∑
rd′i ∀i ∈ {0, ..., 3} rd′ ∈ Z

010 max rd = max(rd′0, rd
′
1, rd

′
2, rd

′
3) rd′ ∈ Z

011 min rd = min(rd′0, rd
′
1, rd

′
2, rd

′
3) rd′ ∈ Z

100 xor rd = rd′0 ⊕ rd′1 ⊕ rd′2 ⊕ rd′3 rd′ ∈ N
101 usum rd =

∑
rd′i ∀i ∈ {0, ..., 3} rd′ ∈ N

110 umax rd = max(rd′0, rd
′
1, rd

′
2, rd

′
3) rd′ ∈ N

111 umin rd = min(rd′0, rd
′
1, rd

′
2, rd

′
3) rd′ ∈ N

Table 2: SPARROW second stage operation codes

In Table 1 and Table 2 the different stage instructions are presented. For simplicity the
operation does not include the modifications introduced by the mask or the swizzling, but
the different sign and saturations options are shown. There are a total of 24 operations in the
first stage and 8 in the second, which can be combined to produce 200 unique instructions,
which can be further configured with the SCR. In both tables the intermediate vector register
is identified with rd’, and the data type, whether signed or unsigned (integer or natural)
indicates if sign extension is performed when storing the result. In some cases where the
same instruction is used for both data types, like add, the sign is deduced from the second
stage operation.

i10 rs2 / imm[4:0]rs1X 011001
31 30 25 24 19 18 14 13 12 5 4 029

imm[12:5]

(a) SPARROW SCR write SPARC v8 instruction

31 25 24 20 19
0000000 / imm[11:5] rs2 / imm[4:0] rs1 0 rd 0011111

15 14 12 11 7 6 0
i 1

13

(b) SPARROW SCR write RISC-V instruction

Figure 13: SPARROW SCR write instruction for the SPARC v8 and RISC-V architectures

10 Xrd 011001
31 30 25 24 19 18 029

(a) SPARROW SCR read SPARC v8 instruction

31 25 24
0000000 X 000 rd 0011111

15 14 12 11 7 6 0

(b) SPARROW SCR read RISC-V instruction

Figure 14: SPARROW SCR read instruction for the SPARC v8 and RISC-V architectures

27

In Figure 13 the instructions to set the SCR value are shown. The stored value is the
result of the xor of the two operands. This simplifies the writing of the value while keeping
the possibility of just writing the value of the register when setting the second operand as
zero. This operation is performed in the integer pipeline reusing the existing logic to do it.
This approach is in fact a common method for setting special registers as is for example the
case with SPARC v8. In Figure 14 the instructions shown are those for reading the SCR
value, in a more straightforward way, the value is stored in the destination register.

28

4 Software Support

4.1 SPARROW assembly

An important advantage of SPARROW compared to custom accelerators is the ability
to reuse the existing qualified software stack of LEON3 i.e. the RTEMS real-time operating
system or bare-metal space applications, which reduces both the cost and the effort of the
development of a new compiler from scratch as well as its qualification cost later. For this
reason we focused in adding the SPARROW instructions in the SPARC v8 and RISC-V
assembly. Although outside of the scope of this project, we plan to implement full compiler
support for SPARROW with automatic vectorization and different optimizations.

We added SPARROW support in the two most widely used compilers nowadays, GCC and
LLVM. To do so, we modified the binutils of Gaisler’s bcc-2.2.0 GCC-derivative compiler
and the base LLVM v13.0. Having software support for both compilers adds to the idea of
having increased portability. Furthermore, it will allow to compare the performance of both
approaches and will allow to also evaluate the effort required for working with each of them.

To identify the new instruction we decided to use an underscore as separator between the
instruction names, which are those depicted in Table 1 and Table 2. In the case of nop it
is omitted for the second stage, ending the instruction name with the underscore. Although
we would have liked to do the same in the first stage, it is not possible for an instruction to
start with an special character in the gnu assembler used by bcc/GCC. We also added aliases
such as the dot product, which can be both represented by mul_sum or dot. As with the
SPARROW instruction names an s and u prefix in the alias denotes saturation and unsigned
operation respectively, i.e. usmul_usum is usdot.

To access the SPARROW control register the instructions implemented differ between
SPARC v8 and RISC-V. In the former case, the SCR can be accessed using the wr, rd and
mov instructions already present on the ISA for accessing special registers. For the latter,
new scrwr and scrrd were added with the same behaviour as the SPARC v8 instructions.

The addition of assembly instructions allows to program SPARROW in C, using inline
assembly instructions as shown in the example of Figure 15 for a saturated vector addition
with unsigned 8-bit values using swizzling and masking. As it can be seen, SPARROW can
be programmed in a high level way, not very different than vector intrinsics for conventional
SIMD extensions such as SSE or NEON.

Another important advantage of reusing the integer register file is that we can use the
regular load and store instructions. Inline assembly (and code generation) is only required
for the SIMD operations. In order to read and write the four vector components with one
instruction, if these components are ordered and aligned in memory, they can be accessed
using an integer pointer (lines 14 and 19). Moreover, this means that it’s not necessary to
specify explicit registers in the inline assembly, nor to modify the compiler register allocator.
Notice that by passing the integer variable names to the inline assembly instruction (line 17),
the SIMD instruction accesses directly the register in which each of the variable is allocated
by the compiler.

29

1 unsigned char weights [3 2 ∗ 3 2] ;
2 unsigned char nex t l ay e r [3 2 ∗ 3 2] ;
3 unsigned int a , b , r e su l t , s c r ;
4

5 /∗ s e t the value o f the %sc r ∗/
6 s c r = 0x0D9D0E ; // sw i z z l i ng B = 1−2−3−0,
7 // sw i z z l i ng A = 3−2−2−0,
8 //mask se l e c t = 0 , mask = 1110
9

10 asm(”wr %0” , %%sc r : : ” r ” (s c r)) ;
11 /∗ i n i t i a l i s e a l l a components to 0 , i e a . xyzw=0 ∗/
12 a = 0 ;
13 /∗ b . xyzw = weights [0] . xyzw ∗/
14 b = ∗ ((unsigned int ∗) &weights [0]) ;
15 asm(”nop”) ; //wait f o r %s c r to commit the wr i t e
16 /∗ r e s u l t . xyz = a . xyy + b . zyx ∗/
17 asm(”usadd %1, %2, %0” : ”=r ” (r e s u l t) : ” r ” (a) , ” r ” (b)) ;
18 /∗ nex t l ay e r [0] . xyzw = r e s u l t . xyzw ∗/
19 ∗ ((unsigned int ∗) &nex t l ay e r [0])=r e s u l t ;
20

Figure 15: Example of SPARROW programming in C for SPARC v8 with inline assembly

4.2 SPARROW support in GCC

In order to include the GCC support for SPARROW we used Gaisler’s bcc-2.2.0 sources
which are available open-source in their website [28]. BCC is a GCC-derivative cross-compiler
for the LEON processors and the recommended tool for generating code for these processors
as it does not require any prior configuration. That been said, there is no support for RISC-
V, therefore, this section focuses on the SPARC v8 ISA. Although the GCC compiler is large,
in order to just include the assembly instructions for SPARROW only a few files need to be
modified. First of all, the encoding of the instructions must be set, and later if any new
parameter is used it must added in the machine-code generation and disassembler functions.

In order to set the encoding for the SPARROW instructions, or any that needs to be mod-
ified, the first step is to define each instruction fields if not already defined. To do so, in the
bcc-2.2.0/binutils/include/opcode/sparc.h file, a C-preprocessor macro is used to set the corre-
sponding bits in the instruction to one. For example: #define SD1(x) (((x) & 0x1f) << 5)

will set the bits in the sd1 field to the value x.

These definitions can be nested and, for the larger ones which encode all the instruction
fields, a negate version is required to validate the instruction generated. That means that
for the SPARROW instructions it is necessary to have:

#define AI(x, y, z) (OP (2) | OP3(0x09) | SD1(x) | SD2(y) | F3I(z))

and

#define NAI(x, y, z)(OP (~2) | OP3(~0x09) | SD1(x) | SD2(y) | F3I(z))

where OP corresponds to bits 30 and 31, OP3 to the bits 19-24 and F3I to the field i as
described in Figure 12a.

30

With the instruction fields defined, in file bcc-2.2.0/binutils/opcodes/sparc-opc.c the in-
structions are defined, in the sparc opcode struct. A new entry must be added for each new
instruction, for SPARROW that means to have one for each combination of the SPARROW
stages. Each of these entries require the assembly instruction name, the set bits and the
negated set bits as defined before, a string encoding the operands and destination, a flag
identifying the instruction as an alias or the preferred alias, two flags identifying the hard-
ware requirements, and one for the architecture version. For the hardware and version flags,
we have defined identification values for SPARROW, although with the same values as the
baseline LEON3 for simplicity.

For reference, the entries for the dot product, with second operand register and immediate,
are:

{"dot", AI(3, 1, 0), NAI(~3, ~1, ~0), "1,2,d", F_PREF_ALIAS, HWCAP_AISIMD, 0, v8ai}

{"dot", AI(3, 1, 1), NAI(~3, ~1, ~1), "1,X,d", F_PREF_ALIAS, HWCAP_AISIMD, 0, v8ai}

where in the 4th parameter, 1 and 2 represent the source registers, X a 5-bit immediate
and d the destination register. Internally, GCC already has defined the bit location of these
fields and the encoding for the registers, so there is no need to add those as done for the
other fields in the instruction.

Adding support for the SPARROW Control Register just required to copy existing wr

and rd instructions replacing the OP3 opcode value and using a new character to encode
the SCR in the 4th parameter string (’<’). This encoding needs later to be resolved in the
machine-code generation and disassembler for the compiler to be able to interpret the %scr

string. The same must be done for the 5-bit immediate as, as explained in Section 3.2, are
encoded with common values. This is done in bcc-2.2.0/binutils/gas/config/tc-sparc.c and
bcc-2.2.0/binutils/opcodes/sparc-dis.c files. Lastly, the SCR must be added in the reg names
list also in the sparc-dis.c file.

4.3 SPARROW support in LLVM

As well as with GCC, Gaisler provides a LLVM-based compiler, however in this case
only the binaries are available. Therefore, in order to have a LLVM implementation we used
the LLVM 13.0 distribution [37][38]. This allowed us to provide software support for both
SPARC v8 and RISC-V as both are present in the distribution. Since the organization and
required modifications for both architectures in LLVM is practically the same and for com-
parison reasons with the GCC section, we will describe only the SPARC v8 implementation.

However, with the general LLVM distribution we were unable to compile the code as
it failed in the linking step. Since all previous steps worked correctly and it was possi-
ble to generate an object file with the program, we had to link the object file using the
Gaisler-provided GCC, which allowed finally to generate a valid executable. For RISC-V, we
encountered an error which caused the program to enter an endless loop when trying to print
a value. Thanks to support by the GRLIB Community forum [29], adding a function called
bcc init70 to initialize a specific memory mapped address for the UART, solved the problem.

31

As at this point we just required to add the assembly instructions for SPARROW, all
the files that need to be modified are in the directory llvm-project/llvm/lib/Target/Sparc.
To keep the directory organized we created a SparcInstrSparrow.td file which is included in
the SparcInstrInfo.td as the name implies this file contains the definition of all the SPARC
instructions. Aside from adding the instructions, and as done for the GCC compiler, the
machine-code generation and disassembler are the only other functions that require a modi-
fication.

The instructions are described using TableGen format, in which definitions use classes,
that like functions, set the instructions bits according to the parameters. Also additional
information relevant to the compiler is passed. Classes can be called recursively each one
setting different instruction fields furthermore, a multiclass allows the definition of multiple
instructions. This multiclass allows to generate all second stage SPARROW instructions for
each of the first stage, avoiding to specifically write all combinations like we had to do in
GCC.

We have created two multiclasses, one that generates all the combination with the second
stage for each first stage definition, and another that generates the register and immediate
variations for each of these resulting instructions. Also, like in GCC, we have added aliases
for the dot product, however in this case they are not defined as a new instruction with an
alias flag, but instead the InstAlias class is used.

To include the SCR read and write instructions a new definition needs to be added for
each, but they can reuse the generic SPARC v8 class for the wr and rd. LLVM has a clause
option for the instructions, which allows to set what instructions use or define a register.
This is used for the SCR which must also be defined in the SparcRegisterInfo.td file. The
encoding for the 5-bit immediates are found in the MCTargetDesc/SparcMCCodeEmitter.cpp
and Disassembler/SparcDisassembler.cpp.

4.4 SPARROW intrinsics library

With the modifications in the compiler done, it is possible to write code for SPARROW,
however there are still some features, like the mask and swizzling which the programmer
needs to be aware of. In order to make the setting of the SPARROW Control Register
transparent, we have decided to create a library, which is in fact a header file, that contains
multiple definitions to simplify working with SPARROW in SIMD intrinsics fashion.

The file contains multiple C-preprocessor macros that convert function-like calls into the
inline assembly. For the SCR, a variable is declared which is modified when setting the mask
and swizzling and is used to write in the special register. One of the advantages of having a
library implemented like this is once again the portability and simplicity. Table 3 shows the
existing functions in the SPARROW library.

32

Function Description

__sparrow_readSCR(X) Stores the current value of the SPARROW Control Reg-
ister in the variable X

__sparrow_writeSCR() Writes in the SPARROW Control Register the value of
__sparrow_scr

__sparrow_set(X,Y) Writes in the SPARROW Control Register X xor Y

__sparrow_resetSCR() Resets the value of the SPARROW Control Register to
the default one with no swizzling nor mask

__sparrow_setMask(X) Sets the mask bits of __sparrow_scr to X

__sparrow_setMaskSel(X) Sets the mask selection bit of __sparrow_scr to X

__sparrow_setSwizzlingA(X,Y,Z,W) Sets the first operand swizzling order in __sparrow_scr

to X-Y-Z-W

__sparrow_setSwizzlingB(X,Y,Z,W) Sets the second operand swizzling order in
__sparrow_scr to X-Y-Z-W

__sparrow_(op1, op2, A, B, C) Performs the op2 reduction on A op1 B and stores the
value in C

__nop(C, op1, A, B) Computes C = A op1 B

__sum(C, op1, A, B) Computes a sum over A op1 B and stores the result in
C

__max(C, op1, A, B) Computes the maximum in A op1 B and stores the re-
sult in C

__min(C, op1, A, B) Computes the minimum in A op1 B and stores the result
in C

__xor(C, op1, A, B) Computes a xor reduction over A op1 B and stores the
result in C

__usum(C, op1, A, B) Computes an unsigned sum over A op1 B and stores the
result in C

__umax(C, op1, A, B) Computes the unsigned maximum in A op1 B and stores
the result in C

__umin(C, op1, A, B) Computes the unsigned minimum in A op1 B and stores
the result in C

Table 3: SPARROW library functions

33

In Figure 16 the same code shown in Figure 15 is represented using the SPARROW
library. Note that the setting of the SCR, which starts at line 6, requires more instructions,
however since those are C-preprocessor macros the compiler can reduce the number of actual
generated instructions. On the other hand, although the same behaviour as with the inline
assembly could be achieved by using __sparrow_setSCR(X,Y), with this approach the value
of each field is more clear and the programmer does not require any knowledge on the SCR
organization.

Also, in case of future modifications there is no need to update all the code as just the
library would need to be updated. In line 11 it is necessary to include the writing of the SCR
as the previous lines were just setting the library internal variable, this is done to reduce the
number of accesses which otherwise, would be necessary if each line did the actual write.

1 unsigned char weights [3 2 ∗ 3 2] ;
2 unsigned char nex t l ay e r [3 2 ∗ 3 2] ;
3 unsigned int a , b , r e su l t , s c r ;
4

5 /∗ s e t the value o f the %sc r ∗/
6 sparrow setMask (0 b1110) ;
7 spar row setMaskSe l (0) ;
8 spa r row se tSw i z z l i ngA (3 , 2 , 2 , 0) ;
9 spa r row se tSw i z z l i ngB (1 , 2 , 3 , 0) ;

10

11 sparrow writeSCR () ;
12 /∗ i n i t i a l i s e a l l a components to 0 , i e a . xyzw=0 ∗/
13 a = 0 ;
14 /∗ b . xyzw = weights [0] . xyzw ∗/
15 b = ∗ ((unsigned int ∗) &weights [0]) ;
16 asm(”nop”) ; //wait f o r %s c r to commit the wr i t e
17 /∗ r e s u l t . xyz = a . xyy + b . zyx ∗/
18 nop (r e su l t , a , ”usadd” , b) ;
19 /∗ nex t l ay e r [0] . xyzw = r e s u l t . xyzw ∗/
20 ∗ ((unsigned int ∗) &nex t l ay e r [0])=r e s u l t ;
21

Figure 16: Example of SPARROW programming in C for SPARC v8 with the SPARROW library

34

5 Evaluation

In this Chapter we evaluate SPARROW in multiple aspects. In Section 5.1 we assess the
hardware overhead of our design under various configurations of baseline processors, as well
as for different FPGAs. Moreover, we use different configurations in order to show that our
implementation has an area optimised benefit both for FPGA implementations, as well as
for ASICs. In Section 5.2, we evaluate the performance benefit of SPARROW using various
benchmarks and comparing it to a similar vector design for micro-controllers.

5.1 Hardware Overhead

5.1.1 LEON3-MINIMAL: Artix-7 FPGA

As mentioned in Section 2.3 there are different top-level designs for the LEON3 pro-
vided in the GRLIB library, of those, the LEON3-MINIMAL is designed for the Artix-7
(xc7a100tcsg324-2) FPGA. This design implements the smallest configuration of the LEON3
with 8KB direct-mapped instruction and data caches, clocked at 100MHz. Since at the mo-
ment this was the design we had managed to use in simulation, we synthesised the LEON3
with SPARROW for this FPGA in order to evaluate the hardware cost that the module
would have.

To do so we used Xilinx Vivado 2020.1, using different synthesis strategies, however, in
none of those the SPARROW managed to fit within the timing constraints. For this reason
we implemented the changes described in Section 3.2.1 as well as adapted the file structure
as explained in [35]. With such optimisations we did not require to reduce the processor
frequency and obtained meaningful data for the hardware overhead evaluation. To get more
information we also implemented the same design with cache disabled.

Artix-7 LEON3-minimal SPARROW

Available Cache enabled Cache disabled Cache enabled Cache disabled

LUT 63400 5743 (9.06%) 5333 (8.41%) 7739 (12.21%) 7197 (11.35%)

LUTRAM 19000 266 (1.4%) 266 (1.4%) 2 (0.01%) 2 (0.01%)

FF 126800 2649 (2.09%) 2568 (2.03%) 3082 (2.43%) 2998 (2.36%)

BRAM 135 9 (6.67%) 4 (2.96%) 11 (8.15%) 5 (3.7%)

DSP 240 1 (0.42%) 1 (0.42%) 1 (0.42%) 1 (0.42%)

IO 210 67 (31.9%) 67 (31.9%) 67 (31.9%) 67 (31.9%)

BUFG 32 1 (3.13%) 1 (3.13%) 2 (6.25%) 2 (6.25%)

PLL 6 0 (0%) 0 (0%) 1 (16.67%) 1 (16.67%)

Table 4: LEON3 resource utilization comparison for the Artix-7 FPGA

35

As we can see from Table 4, SPARROW has a very small relative increase over the original
LEON3 when it is implemented on the Artix-7. We notice an increment of only 35% over the
baseline LEON3-MINIMAL both implemented with caches and without caches. It is worth
noting that LEON3 uses block RAM modules available in FPGAs for the implementation
of caches and register files, that’s why the difference between the resources required with
caches enabled or disabled are small. In absolute terms, SPARROW uses only 2000 LUTs
and 450 FF, in comparison, Johns and Kazmierski [1] present a vector unit implementation
for a RISC-V embedded processor, which doubles the resource utilisation over its baseline.
However, unlike SPARROW they implement vectors operations up to 32-bit, not only 8-bit
ones. As another indication of the cost of SPARROW, the floating point unit (GRFPU)
for LEON3 from Gaisler’s GRLIB [39] costs 4600 LUTS and 2 BRAM blocks, and its area
optimised one (GRFPUlite) has comparable cost with ours (2000 LUTS and 2 BRAM blocks).

5.1.2 LEON3-ZCU102: Zynq Ultrascale+ FPGA

In order to have the LEON3 working on a FPGA we did not have an Artix-7 FPGA.
Instead we needed a design for the Xilinx Zynq Ultrascale+ ZCU102 Evaluation Board
(xczu9eg-ffvb1156-2-e) FPGA which is the board we had available at the CAOS research
group at Barcelona Supercomputing Center (BSC). Since there is no top design from Gaisler’s
GRLIB library for the Zynq Ultrascale+, we had to create a top-level design using the min-
imum components for a functional processor.

To do so we requested help from Mr. David Steenari, who serves as a Technical Officer in
the GPU4S project which we participate. Mr. Steenari has supervised the Master thesis [2],
in which they also implemented the LEON3 for the Zynq Ultrascale+. Due to confidential
IPs used in that thesis, the amount of help we could receive was limited, however with the
provided information we managed to have a working design. This design, which is based
on the LEON3-MINIMAL, also has 8KB direct-mapped instruction and data caches, and
is clocked at 100MHz. Similar to the Artix-7, we also evaluated the design in a cache-less
version to compare with.

Zynq Ultrascale+ LEON3 SPARROW

Available Cache enabled Cache disabled Cache enabled Cache disabled

LUT 274080 9333 (3.41%) 8709 (3.18%) 11792 (4.3%) 11251 (4.11%)

LUTRAM 144000 292 (0.2%) 292 (0.2%) 292 (0.2%) 292 (0.2%)

FF 548160 6346 (1.16%) 6145 (1.12%) 6553 (1.2%) 6353 (1.16%)

BRAM 912 9.5 (1.04%) 4 (0.44%) 9.5 (1.04%) 4 (0.44%)

DSP 2520 4 (0.16%) 4 (0.16%) 4 (0.16%) 4 (0.16%)

IO 328 31 (9.45%) 31 (9.45%) 31 (9.45%) 31 (9.45%)

BUFG 404 1 (0.25%) 1 (0.25%) 1 (0.25%) 1 (0.25%)

PLL 8 1 (12.5%) 1 (12.5%) 1 (12.5%) 1 (12.5%)

Table 5: LEON3 resource utilization comparison for the Zynq Ultrascale+ FPGA

36

As we can see from the resource utilization results in Table 5 when implemented in the
Zynq Ultrascale+ SPARROW has a small impact with respect to the baseline processor. In
this case the increment is only of 26% in the cached design and 30% in the cache-less one.
In absolute terms, SPARROW requires 2500 LUTs and 200 FF. As we see the percentage is
smaller than in the Artix-7 implementation, that is explained due to the increased resource
utilization in the ZCU102 board. The discrepancies in the absolute cost of sparrow between
the two FPGAs can be explained with the internal optimizations of the synthesis tool for
each board resources.

LEON3 SPARROW

Cache enabled Cache disabled Cache enabled Cache disabled

Single RF Extra RF Single RF Extra RF Single RF Extra RF Single RF Extra RF

LUT 15183 (5.54%) 15489 (5.65%) 10252 (3.74%) 10576 (3.86%) 17631 (6.43%) 17939 (6.55%) 12795 (6.67%) 13118 (4.79%)

LUTRAM 4916 (3.41%) 5156 (2.58%) 1572 (1.09%) 1812 (1.26%) 4916 (3.41%) 5156 (3.58%) 1572 (1.09%) 1812 (1.26%)

FF 6705 (1.22%) 6748 (1.23%) 6311 (1.15%) 6354 (1.16%) 6909 (1.26%) 6953 (1.27%) 6517 (1.19%) 6560 (1.20%)

BRAM 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Table 6: LEON3 resource utilization for synthesis using LUT-RAM blocks similar to [40] and with an
additional register file

However, radiation-hardened-by-design space FPGAs such as the Xilinx Virtex 5 XQR5V
FX130T FPGA (also known as V5QV) only offer radiation hardening for LUT-RAMs, while
BRAM blocks only have ECC protection. Therefore, implementing the cache and the register
files using LUT-RAMs instead of BRAMs can increase the LEON3 reliability [40]. In order
to validate SPARROW’s resource overhead in that scenario and to give a rough indication
of its relative area overhead in the case of an ASIC implementation, we have evaluated the
resource utilization of the same designs using LUT-RAMs in Table 6. In Tables 5 and 6 we
show the use of DRAM instead of BRAM for the RAM memory of the processor, to focus
on just the processor’s LUT-RAM utilization.

We can see that in this case the relative cost of SPARROW over the baseline LEON3 is
16% when the cache is present, and 25% otherwise. Note that our baseline processor is a
small LEON3 configuration, so with a larger one, our relative hardware overhead is expected
to be even smaller.

Moreover, in order to show the exact hardware savings of SPARROW thanks to the reuse
of the integer register file, we implemented a version of both the baseline LEON3 and LEON3
with SPARROW using an extra register file, indicated as ”Extra RF” in Table 6. According
to the results, the cost of the extra vector register file would be around 310 LUTs, 240
LUT-RAMs and 43 FFs. This cost corresponds to 12% of the SPARROW cost in LUTs and
21% in FFs. Therefore, the hardware savings thanks to this decision are consistent with the
overhead of the vector register file in ASIC implemented vector processors [8] [13].

37

5.1.3 NOELV-ZCU102: Zynq Ultrascale+ FPGA

The situation for the FPGA implementation of the NOEL-V was similar to the LEON3.
There was no default support for the Zynq Ultrascale+. In fact, due to the recent release and
the larger size of the NOEL-V with respect to the LEON3, there is only support for a few
number of high-end boards. Nonetheless, as done previously with the LEON3, and even with
a different top-level design and different structure we managed to successfully implement
the NOEL-V for the Zynq Ultrascale+ ZCU102. As in the previously shown results the
implementation is done using DRAM to focus on the core resource utilization.

As explained in Section 2.3.2 there are four basic configurations available. We decided
to test the tiny and general-purpose implementations, both with 32-bits and single-issue.
The tiny configuration (TIN32) is forced to have a single-issue pipeline and has the cache
disabled, on the other hand, the general-purpose implementation (GPP32) has an optional
dual-issue pipeline, which in this case was disabled, and 16KB instruction and data caches.
Furthermore the GPP32 configuration includes a memory management unit (MMU), physical
memory protection (PMP) and a floating point unit (FPU), which are missing in the TIN32.

Zynq Ultrascale+ NOEL-V SPARROW

Available TIN32 GPP32 TIN32 GPP32

LUT 274080 22360 (8.16%) 46293 (16.89%) 25258 (9.22%) 48533 (17.71%)

LUTRAM 144000 1591 (1.1%) 1959 (1.36%) 1591 (1.1%) 1959 (1.36%)

FF 548160 19538 (3.56%) 28826 (5.26%) 19815 (3.61%) 28694 (5.23%)

BRAM 912 25.5 (2.8%) 34.5 (3.78%) 25.5 (2.8%) 34.5 (3.78%)

DSP 2520 7 (0.28%) 9 (0.36%) 7 (0.28%) 9 (0.36%)

IO 328 55 (16.77%) 55 (16.77%) 55 (16.77%) 55 (16.77%)

BUFG 404 8 (1.98%) 9 (2.23%) 9 (2.23%) 8 (1.98%)

PLL 8 1 (12.5%) 1 (12.5%) 1 (12.5%) 1 (12.5%)

Table 7: NOEL-V resource utilization comparison for the Zynq Ultrascale+ FPGA

The results presented in Table 7 compare the NOEL-V implementation with SPARROW
for both configurations with the baseline NOEL-V. The first important consideration when
looking at the results is the base difference between the TIN32 and GPP32 configurations,
having the GPP32 approximately twice the number of LUTs and a considerable amount of
other resources like FF.

Regarding the overhead induced by SPARROW, the absolute cost of the module is con-
sistent with the results obtained for the LEON3, with a 2500 cost in LUTs for both con-
figurations and 300 in FF in the TIN32 implementation. Note that the GPP32 baseline
implementation has a higher number of flip-flops than the SPARROW counterpart. This
can be explained by the inner optimizations of the synthesis tool. As can be expected, this
increment for the TIN32 represents a 13% utilization increase, which due to the baseline size
difference is reduced to 5% in the GPP32 implementation.

38

This results further validate the decision making when designing SPARROW, as the mod-
ule has a small impact on hardware overhead of the processor. As expected when comparing
with larger configurations the relative impact of SPARROW is minimal while still providing
the same advantages.

5.2 Performance

5.2.1 LEON3 simulation

During the first stages of the project, all evaluation of SPARROW was done in simula-
tion. Before the addition of the software support, the generation of tests had to be done
by manipulating the instruction bits in the memory dump file. This was done by adding a
dummy instruction which later with a script would be substituted by the correct one. As can
be expected, this approach has many drawbacks as the new instruction needs to encoded by
hand with each modification of the code as the compiler could change the used registers.

Even so, at this stage we had no access to an FPGA nor successfully implemented any of
the FPGA top level designs. Furthermore, it is simpler to run a simulation than having to
program the FPGA and generate the bitstream after each modification, making simulation
a great tool for debugging in the earlier stages. On the other hand, simulation is slower and
not as accurate as the execution on a real board, therefore, tests executed had to be limited
in length and the obtained results had to be later validated in the FPGA implementation.

In order to perform the bigger tests in simulation we used a remote server at the CAOS
group at BSC to run the program. This way we could leave the simulation during days and
later get the results. Even so, if the print option was set to view the results the execution
time was even larger, reason for which the validation of the output was not possible for the
bigger sizes. That being said, we could verify that for the smaller versions the program run
without issues and provided the expected output.

GRLIB supports different simulation tools and provides a Makefile to easily run each
of these. However, some of the simulators require a paid license and many of the design
require proprietary IPs which caused a lot of errors. The only working design we were able
to simulate without requiring additional modifications was the LEON3-MINIMAL design.
We used GHDL for simulation as I had prior experience with it. With GHDL a waveform
can be generated to view the signals at each time unit, there are different options: -vcd, -ghw
or -fst. Of those we found that the fst file is the most compressed one, a necessary condition
for viewing the larger tests waveforms. Additionally, we used the -read-wave-opt=filename
option to specify the signals we wanted to view, thus reducing greatly the size of the waveform.

For the evaluation of the proposal, we compared the results with similar approaches in the
literature targeting resource constrained embedded systems. Since to our knowledge there
are no implementations in the literature of other vector accelerator proposals for AI and in
particular for space that we can compare against, we compare SPARROW with [1] which is
the vector processor design in the literature which is closer to ours.

39

Although their design supports vector operations up to 32-bit per element (one 32-bit,
2 16-bit or 4 8-bit operations in a single cycle), they only evaluated their proposal with
8-bit programs: matrix multiplication, Greyscale conversion of an RGB image and an edge
detection filter. From these operations matrix multiplication and the convolution filter are AI-
related, while the greyscale conversion could be an operation that could be applied as a part
of an inference processing. This makes their design ideal for comparison with SPARROW.

The authors were kind enough to provide me with information and their software imple-
mentations in RISC-V assembly using vector extensions in order to perform a fair comparison.
Their design runs at 50MHz which is half of SPARROW’s and does not feature a cache. In or-
der to perform a fair comparison, we run the experiments with a LEON3-MINIMAL baseline
and a SPARROW implementation without cache.

Program Data size LEON3 SPARROW Speedup

Matrix Mult. 120×120 69.457.937 13.731.096 5.1×
Greyscale 256×256 1.405.970 799.006 1.8×
Filter 256×256 15.945.897 4.993.320 3.2×
Cifar-10 32×32 1.682.684 291.240 5.8×
Polynomial 2048 51.442 13.041 3.94×

Table 8: Simulation results for the LEON3 with 8KB cache

Program Data size LEON3 SPARROW Speedup

Matrix Mult. 120×120 709.738.072 138.909.319 5.1×
Greyscale 256×256 15.236.721 4.425.816 3.4×
Filter 256×256 207.739.142 67.870.004 3×
Polynomial 2048 350.265 79.417 4.4×

Table 9: Simulation results for the LEON3 with cache disabled

The results are shown in the Table 9. For each experiment we report the number of
processor cycles, as well as the obtained speed-up compared to the LEON3-MINIMAL base-
line. The resulting speed-ups are similar to those shown in [1] (Matrix multiplication 5.8×,
Greyscale 2.7× and Filter 3.2×). The small differences can be explained from the fact that
the baseline processors use different ISAs and different implementations. However, SPAR-
ROW obtains the same performance boost over these 8-bit workloads using only a fraction
of the hardware cost of [1] and it is able to operate at double frequency.

40

Table 8 shows the speed-ups obtained when using a cache. As expected, the use of the
cache reduces almost an order of magnitude the execution time. However, the speed-up com-
pared to the original design remained the same or increased slightly for the two applications
that exhibit some data reuse such as the convolution filter and the matrix multiplication.
On the other hand, a streaming program such as greyscale benefits more by the introduction
of the cache, which prefetches the next 9 pixels of the image in its 32 bit cache lines, than
SPARROW’s SIMD vector processing unit, in which case it is processing the 3 components
of the pixel together.

To have an approximate comparison of our speed-ups with the performance benefit pro-
vided by other vector architectures such as ARM’s NEON over their scalar baselines, we have
computed the 2nd degree polynomial equation presented in [41]. Jie and Kapre [41] mention
that this operation executed with NEON with high loop trip counts over uncached 8-bit data
provides a speed-up of 3.7× over the ARM scalar code. SPARROW provides a speed-up of
4.4× with respect to the baseline when regular 8-bit instructions are used and 8.32× when
saturation arithmetic is used for both designs.

If the cache is enabled, the speed-up drops slightly to 3.94×, similar to the cache of
the greyscale. Again probably the reason in this case is that the benefit provided by the
instruction cache, which prefetches and retains 4 instructions in each cache-line, and can
hold the instructions of this small loop, is slightly higher than the benefit provided by the
vector unit, which operates in 4 computations at the time. However, in both cases we obtain
a speed-up similar to the one provided by a SIMD vector extensions implemented on an ASIC
design, for only a fraction of its relative area over the baseline design.

Finally, although the previously presented benchmarks from [1] can be already considered
good examples of ML applications, they don’t exhibit any data reuse, which can further
show the benefit of SPARROW, nor are relevant for space. For this reason we have ported
a complex space relevant inference application based on CIFAR-10 from the open source
GPU4S Bench benchmark suite [42] which was recently released [43][44] and which is done at
the BSC CAOS group. Interestingly, part of the code for the matrix multiplication and the
convolution filter tests that were developed to compare with [1] has been reused to elaborate
the layers of this application

Its neural network layers include convolution, relu, max pooling and matrix multiplication
over an initial 32×32 input matrix. All of the layers are a good fit for SPARROW as the
obtained speed-up is of 5.8×. This impressive result is higher than the individual speed-ups
obtained with single layers, thanks to the data reuse from one layer to the other.

41

5.2.2 LEON3 FPGA implementation

With the Zynq Ultrascale+ available and the compiler support allowing for the generation
of SPARROW executable programs we were able to obtain more detailed results and for larger
sizes. To be able to measure the performance in the FPGA we used GRMON [45], a tool
provided by Cobham Gaisler which allows to connect to the LEON3 core and debug it. The
L3STAT module can be used to set counters and breakpoints allowing the measurement of
the program execution time among other utilities such as cache misses.

As mentioned in the previous section one of the limitations of simulation was the real
time cost of each execution. In the FPGA that is no longer the case, instead the limit is set
by the available RAM. We were not able to use the board DRAM and was for this reason
we were forced to use BRAM. The maximum BRAM we could fit in the design was 3MB.
With the FPGA implementation we were also able to print the output of the larger tests and
verify the correctness of their output.

Program Data size LEON3 SPARROW Speedup

Matrix Mult. 120×120 31.550.354 3.653.057 8.64×
Greyscale 256×256 924.204 301.103 3.07×
Filter 256×256 10.242.140 3.033.531 3.37×
Cifar-10 32×32 1.063.695 190.391 5.58×
Polynomial 2048 27.298 6.307 4.33×

Table 10: FPGA results for the LEON3 with 8KB cache

Program Data size LEON3 SPARROW Speedup

Matrix Mult. 120×120 117.310.797 12.632.882 9.3×
Greyscale 256×256 3.221.620 876.633 3.67×
Filter 256×256 39.019.342 11.855.218 3.3×
Cifar-10 32×32 3.784.906 649.618 5.83×
Polynomial 2048 88.145 19.537 4.5×

Table 11: FPGA results for the LEON3 with cache disabled

With the same experiments as with the simulation, we have achieved the speed-ups shown
in Table 10 and Table 11 for the cache and no-cache versions of the processor. In general
the results are similar to those obtained before, however are slightly better in the FPGA
implementation. More specifically, the matrix multiplication has increased to 9.3× speed-up
with cache disabled. Thus further demonstrates the correctness of the AI-targeted design of
SPARROW as it demonstrates high benefits, even more when considering the low-cost of its
implementation.

42

Although due to SPARROW’s design it would seem that the maximum speed-up is 7×
(4 parallel computations in the first stage and three reduction operations in the second)
the actual speed-up is higher than this threshold. This can be easily explained thanks to
the saturation: in the SPARROW version is not necessary to have any additional cycles to
avoid the possible overflow while in the baseline processor this has to be achieved by using
conditionals and altering the program flow.

On the other hand, the speed-up of the CIFAR-10 inference application is slightly smaller
compared with the simulation, nonetheless the achieved speed-up is still considerable as it
is over 5.5×. Also in the FPGA version we were able to compute the speed-up with the
disabled cache, which was not possible in simulation, and the resulting speed-up is on pair
of what could be expected.

Since the time to perform a test in the FPGA is much smaller than in simulation, we were
able to launch different configurations to have more data to work with. We also compared
the speed-up when using GCC, which was the compiler used for all previous presented tests,
with LLVM. The results are shown in the Tables from 12 to 17, and a summary of these
experiments are plotted in Figures from 17 to 22. The charts compare the speed-up for each
input data size with GCC and with LLVM, and include also the geometric mean which is
shown in the Geomean bar.

43

GCC

Size LEON3 SPARROW Speed-up

4×4 498 243 2.04×
8×8 2420 905 2.67×

16×16 27455 6028 4.55×
32×32 240631 41027 5.86×
64×64 1879345 328034 5.72×

128×128 15856659 4576240 3.46×
256×256 128968634 36562425 3.52×
512×512 1073844043 299990787 3.57×

LLVM

Size LEON3 SPARROW Speed-up

4×4 553 234 2.36×
8×8 2674 932 2.86×

16×16 21023 6809 3.08×
32×32 190960 45371 4.20×
64×64 2153746 346750 6.21×

128×128 18002989 5641198 3.19×
256×256 145942541 45016602 3.24×
512×512 1208848790 367362081 3.29×

Table 12: Results in cycles for the matrix multiplication program in the LEON3 implemented in the Zynq
Ultrascale+

4x4 8x8
16x16

32x32
64x64

128x128

256x256

512x512

Geomean
0

1

2

3

4

5

6

7

Matrix multiplication speed-up

GCC

LLVM

S
pe

ed
-u

p

Figure 17: Matrix multiplication speed-up for the LEON3 implemented in the Zynq Ultrascale+

44

GCC

Size LEON3 SPARROW Speed-up

4×4 1181 243 4.86×
8×8 8397 905 9.27×

16×16 66033 6028 10.9×
32×32 628409 41027 15.3×
64×64 4815898 328034 14.6×

128×128 38656531 4576233 8.44×
256×256 308400023 36562437 8.43×
512×512 2498336539 299990829 8.32×

LLVM

Size LEON3 SPARROW Speed-up

4×4 1246 234 5.32×
8×8 6988 932 7.49×

16×16 51940 6809 7.62×
32×32 695384 45371 15.3×
64×64 6160357 346750 17.7×

128×128 52905988 5641198 9.37×
256×256 436788127 45016615 9.70×
512×512 3579246299 367362116 9.74×

Table 13: Results in cycles for the matrix multiplication program in the LEON3 implemented in the Zynq
Ultrascale+ with saturation enabled

4x4 8x8
16x16

32x32
64x64

128x128

256x256

512x512

Geomean
0

2

4

6

8

10

12

14

16

18

20

Matrix multiplication with saturation speed-up

GCC

LLVM

S
pe

ed
-u

p

Figure 18: Matrix multiplication with saturation speed-up for the LEON3 implemented in the Zynq Ultra-
scale+

45

GCC

Size LEON3 SPARROW Speed-up

4×4 304 106 2.86×
8×8 808 351 2.30×

16×16 3010 1005 2.99×
32×32 14752 3852 3.82×
64×64 58284 15000 3.88×

128×128 231724 75823 3.05×
256×256 924206 301103 3.06×
512×512 3691564 1200176 3.07×

LLVM

Size LEON3 SPARROW Speed-up

4×4 302 91 3.31×
8×8 832 296 2.81×

16×16 3032 1023 2.96×
32×32 16735 3886 4.30×
64×64 66341 20139 3.29×

128×128 264229 79659 3.31×
256×256 1054757 316973 3.32×
512×512 4214827 1264684 3.33×

Table 14: Results in cycles for the grayscale conversion program in the LEON3 implemented in the Zynq
Ultrascale+

4x4 8x8
16x16

32x32
64x64

128x128

256x256

512x512

Geomean
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Grayscale conversion speed-up

GCC

LLVM

S
pe

ed
-u

p

Figure 19: Grayscale conversion speed-up for the LEON3 implemented in the Zynq Ultrascale+

46

GCC

Size LEON3 SPARROW Speed-up

4×4 1531 837 1.82×
8×8 7952 3183 2.49×

16×16 36545 11929 3.06×
32×32 152517 47392 3.21×
64×64 625255 189434 3.30×

128×128 2541092 758075 3.35×
256×256 10242140 3033531 3.37×
512×512 41126135 12137151 3.38×

1024×1024 164818653 48555196 3.39×

LLVM

Size LEON3 SPARROW Speed-up

4×4 1825 786 2.32×
8×8 8814 3778 2.33×

16×16 39821 14869 2.67×
32×32 169741 59471 2.85×
64×64 704193 238261 2.95×

128×128 2866301 954130 3.00×
256×256 11567599 3818898 3.02×
512×512 46475231 15280787 3.04×

1024×1024 186300343 61133989 3.04×

Table 15: Results in cycles for the edge detection filter program in the LEON3 implemented in the Zynq
Ultrascale+

4x4 8x8
16x16

32x32
64x64

128x128

256x256

512x512

1024x1024

Geomean
0

0.5

1

1.5

2

2.5

3

3.5

4

Edge detection filter speed-up

GCC

LLVM

S
pe

ed
-u

p

Figure 20: Edge detection filter speed-up for the LEON3 implemented in the Zynq Ultrascale+

47

GCC

Size LEON3 SPARROW Speed-up

4×4 91 35 2.60×
8×8 157 48 3.27×

16×16 293 75 3.90×
32×32 460 143 3.21×
64×64 876 259 3.38×

128×128 1728 417 4.14×
256×256 3432 809 4.24×
512×512 6850 1603 4.27×

1024×1024 13666 3171 4.30×

LLVM

Size LEON3 SPARROW Speed-up

4×4 96 36 2.66×
8×8 166 57 2.91×

16×16 295 82 3.59×
32×32 569 133 4.27×
64×64 941 256 3.67×

128×128 1857 447 4.15×
256×256 3679 862 4.26×
512×512 7338 1705 4.30×

1024×1024 14666 3401 4.31×

Table 16: Results in cycles for the polynomial program in the LEON3 implemented in the Zynq Ultrascale+

4x4 8x8
16x16

32x32
64x64

128x128

256x256

512x512

1024x1024

Geomean
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Polynomial speed-up

GCC

LLVM

S
pe

ed
-u

p

Figure 21: Polynomial speed-up for the LEON3 implemented in the Zynq Ultrascale+

48

GCC

Size LEON3 SPARROW Speed-up

4×4 301 35 8.6×
8×8 586 48 12.2×

16×16 1156 75 15.4×
32×32 1494 143 10.4×
64×64 2907 259 11.2×

128×128 5759 417 13.8×
256×256 11463 809 14.2×
512×512 22863 1603 14.3×

1024×1024 45637 3171 14.4×

LLVM

Size LEON3 SPARROW Speed-up

4×4 326 36 9.1×
8×8 621 57 10.8×

16×16 1192 82 14.5×
32×32 1148 133 8.6×
64×64 2198 256 8.6×

128×128 4309 447 9.6×
256×256 8531 862 9.9×
512×512 16979 1705 10.0×

1024×1024 33893 3401 10.0×

Table 17: Results in cycles for the polynomial program in the LEON3 implemented in the Zynq Ultrascale+
with saturation enabled

4x4 8x8
16x16

32x32
64x64

128x128

256x256

512x512

1024x1024

Geomean
0

2

4

6

8

10

12

14

16

18

Saturated polynomial speed-up

GCC

LLVM

S
pe

ed
-u

p

Figure 22: Saturated polynomial results for the LEON3 implemented in the Zynq Ultrascale+

49

The results depicted in Table 13 and Table 17, for matrix multiplication and polynomial
computation respectively, evaluate the impact of saturation. We observe that the saturation
results in speed-ups over 10× and 10× on overage for various sizes. If the focus is shifted
to the matrix multiplication in Tables 12 and 13, it is clear that the highest speed-up is
achieved for the 32×32 and 64×64 matrices. Furthermore, the results are close to 6× when
no saturation is involved, which is close to the theoretical maximum of 7×.

In order to compare the speed-up from GCC and LLVM, in Figure 23 the geometric
means for each program are presented as normalized results. This simplifies the comparison
regardless of the actual speed-up. A larger percentage of the blue bar means that GCC
provides better performance than LLVM and vice versa. In the majority of the programs
both GCC and LLVM have similar speed-ups as they are close to the center. The only
notable exception is the saturated polynomial. However, the total geometric mean across
the different programs proves that the speed-ups obtained with GCC are marginally better.
Furthermore, if the absolute number of cycles is evaluated in the presented tables, it is shown
that GCC, both for the baseline LEON3 as with SPARROW, has better performance than
LLVM.

Matrix
 multip

lication

Edge detection filt
er

Grayscale conversion

Polynomial

Saturated Matrix
 multip

lication

Saturated Polynomial

Total geometric
 mean

GCC and LLVM speed-up comparison

LLVM

GCC

50%
60%
70%

40%
30%
20%
10%

80%
90%

100%

Figure 23: Comparison of the speed-ups for all the programs in GCC and LLVM

50

With the geometric means we have computed the speed-ups of SPARROW, which provides
a total 4.96× speed-up in GCC and 4.73× in LLVM. This value, however, includes both
saturated and non-saturated programs. For a more meaningful results, the non-saturated
programs have a geometric mean of 3.35× in GCC and 3.29× in LLVM. On the other hand,
for the two saturated programs the geometric mean is 10.9× and 9.8× for GCC and LLVM
respectively.

5.2.3 NOEL-V simulation

As explained before, the NOEL-V design is relatively recent and there are few implemen-
tations in the GRLIB library. We decided to use the NOELV-GENERIC design, which is the
entity used for all the available FPGA implementations, and therefore it is independent on
the proprietary libraries of any FPGA manufacturer.

However, since the design is recent the simulation with GHDL had not been fully sup-
ported or at least not in the GPL GRLIB 2021.2 distribution. When trying to execute the
simulation in the default GRLIB a list of errors occur, some of them related to missing
components that are part of the commercial distribution. Fortunately, none of them is ac-
tually mandatory as they can be disabled. By solving all the existing errors we were able to
successfully simulate the NOEL-V with GHDL.

For the NOEL-V we decided to execute the simulations in the GPP32 single-issue config-
uration. The performed tests are the same for the LEON3 in order to compare with [1]. In
Table 18 the speed-up for each program is shown. The results demonstrate similar speed-ups
as with the LEON3, the edge detection filter has, however, a lower speed-up than expected.

Program Data size LEON3 SPARROW Speedup

Matrix Mult. 120×120 27.945.510 5.529.004 5.05×
Greyscale 256×256 742.721 293.152 2.8×
Filter 256×256 5.099.629 3.841.966 1.33×

Table 18: Simulation results for the NOEL-V

In absolute terms, it is notable that NOEL-V has higher performance with respect to the
LEON3. This can be explained easily by the architectural differences of both processors such
as the late ALU and late BRANCH or the bigger cache which are present in the NOEL-V.
Being able to provide similar results in both cases proves the advantage of SPARROW which
is the acceleration speed-up relative to the processor performance, therefore providing good
speed-ups even to already higher-performant processors.

51

6 Lessons learnt

In this Chapter we briefly provide our lessons learnt from our experience in the develop-
ment of this Master thesis from hardware design approaches, as well as by adding software
support for SPARROW to two different compiler toolchains.

6.1 Hardware design and VHDL

As the SPARROW module has progressed during the development of the Thesis, in the
latter stages new functionalities were added. However, during the implementation of the
LEON3 in the FPGA, with the objective of meeting the timing constrains within a cycle, we
were forced to re-do part of the module using lower-level descriptions in order to reduce the
logic of the functionalities.

However, the results did not improve for the timing analysis, in some cases the critical
path was even longer. This made evident one of the most important points we have learned
during the development of this project, which is that the synthesis tool has already great
logic optimizations. Having a more complex design in order to reduce the resulting logic or
number of gates, does not, in general, improve the post-synthesis results. Instead, and as
presented in [35] having a clear and organized design is better.

In many cases we were hesitant to use the integer type for signals and instead used
std_logic_vector, but when performing arithmetic operations there is no performance im-
provement and instead the code becomes unintelligible. Nonetheless, there are exceptions
to this rule, as shown in Section 3.2.1, when the computation can be included in already
existing logic or when not the full result is required, so that a custom approach can provide
more benefits. The same is true if a specific resource is available which the synthesis tool is
unaware of.

6.2 GCC vs LLVM

Having worked with both GCC and LLVM for the development of the software support
for SPARROW has allowed us to compare, not only the performance, but also the experience
when working with each one. It is worth noting that we had no prior experience on working
on either of the two toolchains prior to this project. In Section 5.2.2 we already presented a
brief performance comparison between the two compilers, a detailed analysis would require
more experimentation and the evaluation in different scenarios, which lays outside of the
scope of this Thesis. In general, however, it is shown that GCC-compiled executables have
lower execution times, at least for the SPARC v8 architecture.

52

When working to include the SPARROW assembly instructions one of the key advantages
of LLVM over GCC was the possibility of defining the instructions in a nested way. This,
as is explained in the Section 4.3, simplifies the addition of two-stage instructions allowing a
simpler combination of them. However, a new line for each combination must be manually
added. On the other hand, the code for adding these instructions is easier to understand in
GCC, which can be easily deduced from the existing instructions. Fortunately, LLVM has a
great documentation and a large number of tutorials can be found on how to modify it [38].

All in all, both compilers had advantages and disadvantages compared to one another,
however they both offer good facilities to implement the required functionality in order to
add software support in new hardware designs.

53

7 Conclusions and future work

7.1 Conclusions

High-performance AI and ML related computing in space is unattainable with the cur-
rent technologies, and this constrains the performance of the required applications to im-
prove the quality of space missions. In this Master thesis we have introduced SPARROW, a
SIMD low-cost accelerator module for artificial intelligence applications. The pivotal point
of SPARROW is its hardware/software co-design by analyzing the literature and AI software
characteristics, in order to achieve an efficient implementation and obtain a performance
improvement with low cost.

We have presented the architecture of SPARROW and the justification behind each design
decision, which have later been supported by an extensive set of results. For example, the
benefits of reusing the register file have been demonstrated both in terms of decreasing the
hardware overhead and the simplification of the programming, since additional load and store
instructions were not required.

The presented results show that SPARROW’s implementation has up to a 30% relative
cost with respect of a small base processor, which is a fraction of conventional SIMD and
vector processors. For a larger one, like the NOEL-V this relative increase is down to a 5%.
Furthermore, the dual implementation of SPARROW for the LEON3 and the NOEL-V act
as a demonstration of the portability of the module with minimal architectural modifications,
even for two different ISAs.

In regards to the performance provided by SPARROW, the obtained results confirm the
significant speed-up provided by using SPARROW in machine learning workloads with over
5× speed-up in a complex inference application. However, we have also presented the results
for other algorithmic building blocks related to the artificial intelligence where a speed-up of
over 15× is achieved for specific matrix sizes.

Such results are presented for both GCC and LLVM, the two base compilers we have
adapted to include support for the SPARROW module. The programming model is similar
to the SIMD intrinsics and is achieved by using inline assembly in C, nonetheless, with a
custom library the programming of SPARROW applications is simplified making the module
architecture transparent to the programmer.

54

7.2 Future work

The presented project has not only has met with original objectives, but also exceeded
them, since it showcased the project with multiple space processors and compiler toolchains.
At the same time, the implementation achieved good performance results. However, there
is still work to be done in order to improve the results or provide new approaches, such as
the development of full compiler support for the code generation, in order not to need to
resort to the inline assembly or our SIMD-like library for programming SPARROW. The
support for the compiler could even include auto-vectorization, feature that could later be
compared with the manual programming. Support for SPARROW could even be extended
to established interfaces and libraries such as TensorFlow.

We would also like to test the module with space-relevant ML benchmarks which are
currently in development at BSC in collaboration with ESA in the context of the GPU4S
project and the OBPMark open source benchmarking suite, which is built on top of the
GPU4S Bench benchcmarking suite. Furthermore, it would interesting to tests our design
in orbit using the European Space Agency OPS-SAT FPGA platform, and use actual space
ML case studies provided by ESA.

55

8 Related publications

An early version of the work performed in this thesis was published and presented in the
following workshop organised by the European Space Agency.

• Marc Solé, Jannis Wolf, Leonidas Kosmidis. Reliable Machine Learning Accelera-
tion for Future Space Processors and FPGAs: LEON, NOEL-V and TASTE, ESA/C-
NES/DLR European Workshop on On-Board Data Processing (OBDP) 2021

Moreover, the various parts of the project have been presented in the following events:

• Marc Solé, Leonidas Kosmidis. Low-Cost SIMD Module for ML Acceleration, RISC-V
Forum: Vector and Machine Learning, September 15, 2021

• Marc Solé, Leonidas Kosmidis. Hardware-Software Co-design for Low-cost AI pro-
cessing in Space Processors, Open Hardware 2021 Awards, Xilinx Dublin, Ireland,
September 22, 2021

• Marc Solé, Leonidas Kosmidis. Low-cost Hardware/Software co-designed SIMD Unit
for AI Acceleration in a Qualified Space Processor, ACM Student Research Competition
(SRC) at International Conference On Computer-Aided Design (ICCAD) 2021

• Marc Solé, Leonidas Kosmidis. Navigating Exotic SIMD Lands with an LLVM Guide,
Student Technical Talk, LLVM Developers’ Meeting 2021.

The LEON3 part of the work of this Thesis was submitted in the Xilinx Open Hardware
2021 competition in the Student Category, where it was awarded with the 1st place [46].
Both the hardware design and the compiler work have been released as open-source at [47].

56

References

[1] M. Johns and T. J. Kazmierski. A Minimal RISC-V Vector Processor for Embedded
Systems. Forum for specification and Design Languages (FDL), 2020. doi: 10.1109/
FDL50818.2020.9232940.

[2] B. Revuelta Fernández. Study of Scalable Architectures on FPGA for Space Data Pro-
cessors. Master’s thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2018.

[3] J. Meß, F. Dannemann, and F. Greif. Techniques of Artificial Intelligence for Space
Applications - A Survey. European Workshop on On-Board Data Processing (OBDP),
2019.

[4] N. Potter. NASA’s Mars Perseverance Rover Should Leave Past Space Probes in
the Dust; New mission uses AI to navigate Martian surface three times as quickly,
2021. URL https://spectrum.ieee.org/nasa-mars-perseverance-rover-should-

leave-past-space-probes-in-dust. [Visited 21/10/2021].

[5] Intel. Intel Powers First Satellite with AI on Board. URL https://www.

intel.com/content/www/us/en/newsroom/news/first-satellite-ai.html. [Vis-
ited 21/10/2021].

[6] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vis-
sers. FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. In-
ternational Symposium on Field-Programmable Gate Arrays (FPGA), page 65–74, 2017.
doi: 10.1145/3020078.3021744.

[7] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes. The
ILLIAC IV Computer. IEEE Transactions on Computers (TC), 100(8):746–757, 1968.

[8] K. Asanović. Vector Microprocessors. PhD thesis, University of California at Berkeley,
1997.

[9] R. Espasa. Advanced Vector Architectures. PhD thesis, Universitat Politècnica de
Catalunya, 1997.

[10] M. Mittal, A. Peleg, and U. Weiser. MMX Technology Architecture Overview. Intel
Technology Journal, 1(3), 1997.

[11] L. Kohn, G. Maturana, M. Tremblay, A. Prabhu, and G. Zyner. The Visual Instruc-
tion Set (VIS) in UltraSPARC. In COMPCON’95. Technologies for the Information
Superhighway, pages 462–469. IEEE, 1995.

[12] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scale. AltiVec extension to PowerPC
accelerates media processing. IEEE Micro, 20(2):85–95, 2000.

[13] C. Kozyrakis. Scalable Vector Media Processors for Embedded Systems. PhD thesis,
University of California at Berkeley, 2002.

57

https://spectrum.ieee.org/nasa-mars-perseverance-rover-should-leave-past-space-probes-in-dust
https://spectrum.ieee.org/nasa-mars-perseverance-rover-should-leave-past-space-probes-in-dust
https://www.intel.com/content/www/us/en/newsroom/news/first-satellite-ai.html
https://www.intel.com/content/www/us/en/newsroom/news/first-satellite-ai.html

[14] C.E. Kozyrakis and D.A. Patterson. Scalable, Vector Processors for Embedded Systems.
IEEE Micro, 23(6):36–45, 2003. doi: 10.1109/MM.2003.1261385.

[15] ARM Holdings, LTD. ARM Architecture Reference Manual, ARM-v7A and ARMv7-R
edition. Technical Report ARM DDI 0406C.d (ID040418), ARM, 2018.

[16] ARM Holdings, LTD. ARM Architecture Reference Manual, ARM-v8, for ARMv8-A
architecture profile. Technical Report ARM DDI 0487G.a (ID0411921), ARM, 2021.

[17] P. Yiannacouras, J. G. Steffan, and J. Rose. VESPA: Portable, Scalable, and Flexible
FPGA-Based Vector Processors. International Conference on Compilers, Architectures
and Synthesis for Embedded Systems (CASES), page 61–70, 2008. doi: 10.1145/1450095.
1450107.

[18] P. Yiannacouras, J. G. Steffan, and J. Rose. Fine-Grain Performance Scaling of Soft
Vector Processors. International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), page 97–106, 2009. doi: 10.1145/1629395.1629411.

[19] P. Yiannacouras, J. G. Steffan, and J. Rose. Portable, Flexible, and Scalable Soft Vector
Processors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(8):
1429–1442, 2012. doi: 10.1109/TVLSI.2011.2160463.

[20] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. Lemieux. VEGAS:
Soft Vector Processor with Scratchpad Memory. International Symposium on Field
Programmable Gate Arrays (FPGA), page 15–24, 2011. doi: 10.1145/1950413.1950420.

[21] A. Severance and G. Lemieux. VENICE: A Compact Vector Processor for FPGA Ap-
plications. International Conference on Field-Programmable Technology (FPT), pages
261–268, 2012. doi: 10.1109/FPT.2012.6412146.

[22] J. Yu, C. Eagleston, C. H. Chou, M. Perreault, and G. Lemieux. Vector Processing
as a Soft Processor Accelerator. ACM Transactions on Reconfigurable Technology and
Systems, 2(2), 2009. ISSN 1936-7406. doi: 10.1145/1534916.1534922.

[23] J. Gaisler. Concurrent error-detection and modular fault-tolerance in a 32-bit processing
core for embedded space flight applications. International Symposium on Fault-Tolerant
Computing (FTCS), pages 128–130, 1994.

[24] J. Gaisler. A portable and fault-tolerant microprocessor based on the SPARC v8 archi-
tecture. International Conference on Dependable Systems and Networks (DSN), pages
409–415, 2002.

[25] D. Rea, D. Bayles, P. Kapcio, S. Doyle, and D. Stanley. PowerPC™ RAD750™-A Micro-
processor for Now and the Future. IEEE Aerospace Conference (AeroConf), pages 1–5,
2005.

58

[26] E. Schueler, M. Syed, and T. Helfers. XPP A High Performance Parallel Signal Pro-
cessing Platform for Space Applications. Data Systems In Aerospace (DASIA), 532,
2003.

[27] J. N. Maki, D. Gruel, C. McKinney, M. Morales, D. Lee, R. Willson, D. Copley-Woods,
M. Valvo, T. Goodsall, J. McGuire, R. G. Sellar, A. E. Johnson, H. Ansari, K. Singh, T.
Litwin, R. Deen, A. Culver, N. Ruoff, D. Petrizzo, D. Kessler, C. Basset, T. Estlin, F.
Alibay, A. Nelessen, S. Algermissen, M. A. Ravine, J. A. Schaffner, M. A. Caplinger and
J. M. Shamah. The Mars 2020 Engineering Cameras and microphone on the perseverance
rover: A next-generation imaging system for Mars exploration. Space Science Reviews,
216(8):1–48, 2020.

[28] Cobham Gaisler, AB. Gaisler Web, 2021. URL https://www.gaisler.com. [Visited
29/09/2021].

[29] Discourse. GRLIB Community, 2021. URL https://discourse.grlib.community.
[Visited 29/09/2021].

[30] Cobham Gaisler, AB. GRLIB User’s Manual, 2021. URL https://www.gaisler.com/

products/grlib/grlib.pdf. [Visited 29/09/2021].

[31] J. Gaisler, E. Catovic, M. Isomaki, K. Glembo, and S. Habinc. GRLIB IP core user’s
manual, Version 2021.1, 2021. URL https://www.gaisler.com/products/grlib/

grip.pdf. [Visited 29/09/2021].

[32] J. Rupley. Samsung M3 Processor. HotChips 2018, 2018.

[33] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and Y. Chen.
PuDianNao: A Polyvalent Machine Learning Accelerator. International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2015. doi: 10.1145/2694344.2694358.

[34] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bha-
tia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hag-
mann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Ma-
hony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omer-
nick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. In-
Datacenter Performance Analysis of a Tensor Processing Unit. International Symposium
on Computer Architecture (ISCA), 2017. doi: 10.1145/3079856.3080246.

[35] J. Gaisler. A structured VHDL design method. Fault-tolerant microprocessors for space
applications, pages 41–50, 2011.

59

https://www.gaisler.com
https://discourse.grlib.community
https://www.gaisler.com/products/grlib/grlib.pdf
https://www.gaisler.com/products/grlib/grlib.pdf
https://www.gaisler.com/products/grlib/grip.pdf
https://www.gaisler.com/products/grlib/grip.pdf

[36] M. M. Trompouki and L. Kosmidis. Towards general purpose computations on low-
end mobile GPUs. Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2016. doi: 10.3850/9783981537079 0165.

[37] LLVM. llvm-project, 2021. URL https://github.com/llvm/llvm-project. [Visited
18/10/2021].

[38] LLVM. About – LLVM 13 documentation, 2021. URL https://llvm.org/docs/index.

html. [Visited 18/10/2021].

[39] Cobham Gaisler, AB. GRLIB IP Core Performance and Resource Utilization. URL
https://www.gaisler.com/products/grlib/grlib_area.xls. [Visited 09/10/2021].

[40] M. W. Learn. Evaluation of the Leon3 Soft-Core Processor Within a Xilinx Radiation-
Hardened Field-Programmable Gate Array. Technical Report SAND2012-0454, Sandia
National Labs, April 2011.

[41] S. J. Jie and N. Kapre. Comparing Soft and Hard Vector Processing in FPGA-based
Embedded Systems. Conference on Fiel Programmable Logic and Applications (FPL),
2014.

[42] I. Rodriguez, L. Kosmidis, J. Lachaize, O. Notebaert, and D. Steenari. GPU4S
Bench: Design and Implementation of an Open GPU Benchmarking Suite
for Space On-board Processing. Technical report, Universitat Politecnica de
Catalunya, 2019. URL https://www.ac.upc.edu/app/research-reports/public/

html/research_center_index-CAP-2019,en.html. [Visited 11/10/21].

[43] L. Kosmidis, I. Rodriguez, A. Jover, G. Cabo, S. Alcaide, J. Lachaize, O. Notebaert,
A. Certain, and D. Steenari. GPU4S (GPUs for Space): Are we there yet? European
Workshop on On-Board Data Processing (OBDP), 2021.

[44] D. Steenari, L. Kosmidis, I. Rodrigez, A. Jover, and K. Forster. OBPMark (On-Board
Processing Benchmarks) - Open Source Computational Performance Benchmarks for
Space Applications. ESA/DLR/CNES European Workshop on On-Board Data Process-
ing (OBDP), 2021.

[45] Cobham Gaisler, AB. Grmon3 user’s manual, 2021. URL https://www.gaisler.com/

doc/grmon3.pdf. [Visited 11/10/21].

[46] Xilinx University Program. OPEN HARDWARE - 2021 Results, 2021. URL http:

//www.openhw.eu/2021. [Visited 20/10/2021].

[47] M. Solé Bonet. XOHW GRLIB AI extension, 2021. URL https://gitlab.bsc.es/

msolebon/XOHW_GRLIB_AI_extension. [Visited 20/10/2021].

60

https://github.com/llvm/llvm-project
https://llvm.org/docs/index.html
https://llvm.org/docs/index.html
https://www.gaisler.com/products/grlib/grlib_area.xls
https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019,en.html
https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019,en.html
https://www.gaisler.com/doc/grmon3.pdf
https://www.gaisler.com/doc/grmon3.pdf
http://www.openhw.eu/2021
http://www.openhw.eu/2021
https://gitlab.bsc.es/msolebon/XOHW_GRLIB_AI_extension
https://gitlab.bsc.es/msolebon/XOHW_GRLIB_AI_extension

	Introduction
	Motivation
	Objectives
	Thesis organization

	State of the Art
	Vector Processing
	Space Processing
	GRLIB
	LEON3
	NOEL-V

	SPARROW
	Design overview
	First Stage: Parallel computing
	Multiplication logic

	Second Stage: Reduction operations
	Additional features: SPARROW Control Register
	SPARROW instructions

	Software Support
	SPARROW assembly
	SPARROW support in GCC
	SPARROW support in LLVM
	SPARROW intrinsics library

	Evaluation
	Hardware Overhead
	LEON3-MINIMAL: Artix-7 FPGA
	LEON3-ZCU102: Zynq Ultrascale+ FPGA
	NOELV-ZCU102: Zynq Ultrascale+ FPGA

	Performance
	LEON3 simulation
	LEON3 FPGA implementation
	NOEL-V simulation

	Lessons learnt
	Hardware design and VHDL
	GCC vs LLVM

	Conclusions and future work
	Conclusions
	Future work

	Related publications
	References

