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Abstract

An ongoing outbreak of coronavirus disease 2019 (COVID-19) emerged in
Wuhan since December 2019 and spread globally. Although since then the
situation has improved with respect to the number of initial deaths in Europe,
there is still a lack of knowledge about the behavior of the disease. In the light
of facts, we aimed to analyze the risk factors involved in hospital mortality, and
develop methods to predict it using statistical analysis and survival methods.

We selected data retrospectively regarding 1,140 critically ill adult patients
with laboratory-confirmed COVID-19 from 63 hospitals in Spain through Feb-
ruary 1 to July 31, 2020. Demographic data, symptoms, laboratory values,
comorbidities, treatments, and clinical outcomes were collected. The primary
outcome was in-hospital mortality. Data were compared between survivors
and non-survivors.

Of the 1,140 patients included in the study, the median age was 65 years
(IQR 56–71), and 816 (71.58%) were male. Among these patients, 443 (38.86%)
died, 585 (51.32%) were discharged, 74 (6.49%) were transferred to health cen-
ters and 38 (3.33%) were transferred to other hospitals. Important differences
between survivors and non-survivors are observed for chronic kidney disease,
heart chronic disease and pulmonary chronic disease.

Survival analysis has comprised two ways of proceeding, approach A models
the event of hospital death and approach B models ICU discharge. Standard-
Cox in approach A (C-index=0.84) showed that CRP (ICU, 3rd ICU day),
SOFA score (3rd ICU day), presence of symptoms and lymphocytes (ICU)
are associated with a higher risk of death, and platelets (ICU), glucose (ICU),
lactate (ICU) to a lesser extent. For approach B, subdistribution hazard model
shows as risk factors: age, glucose (3rd day), lynphocytes (ICU), acute kid-
ney failure, neuromusuclar blockers requirement and hemodynamic SOFA (3rd
day). In addition, the risk of dying is higher for patients who spent the same
time in ICU and IMV (equal ICU IMV times). As variables associated with
a good prognosis we find time spent in ICU, time spent in IMV, paFi (day3)
and leukocytes (day3) for StandardCox and the use of corticosteroids and
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platelets (3rd day) for subdistribution hazard model.
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Chapter 1

Introduction

This project aims to carrying out an in-depth, retrospective and multicen-
ter analysis on the distribution, correlations, missing values and survival of
covid-infected patients in Spain. Artificial intelligence (AI) has been used for
extracting information about the factors involved in mortality, for classifying
patients according to certain patterns, and for estimating the time for a group
of individuals to experience an event of interest (e.g., reach a critical condition
or require mechanical ventilation).

In May 2020, the CIBERES-UCI-COVID [1] project was awarded, funded
by ISCIII. CIBERESUCICOVID project gathers data from 69 different Span-
ish ICUs, including several specific sources such as Getafe hospitals and the
SEMICYUC consortium, within the period from February 1, 2020 to June
2021. Note this is the largest data gathering effort for ICU data in Spain.
For gathering, processing and exploiting such amount of information, the col-
laboration of experts from interdisciplinary fields is required. For this reason
the CIBERES-UCI-COVID consortium is composed by medical doctors, bioin-
formatics and AI researchers.

The author of this paper have the latter role and belongs to HPAI research
group at BSC. BSC was in charge of developing a complete and unified data-
base to store patient data, perform pre-processing, implemented the required
automation process tools to generate scientist reports and carry out statistical
and survival analyses. This thesis takes place in this context, focusing and
including a significant part on the contributions made by BSC and CIBERES-
UCI-COVID consortium.
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Chapter 2

Related work

The pandemic caused by the novel COVID-19, has become one of the
biggest health challenges worldwide. The SARS-CoV-2 virus is the seventh
known coronavirus to infect humans, its emergence makes it the third in recent
years to cause widespread infectious disease following the viruses responsible
for SARS and MERS. Common human coronaviruses typically cause mild
symptoms such as a cough or a cold, but the novel coronavirus SARS-CoV-2
has led to more severe respiratory illnesses and deaths worldwide.

Taking into account the registry of June 20, 2021, there are nearly 178
million confirmed cases and more than 3,86 thousand deaths. The countries
that register the highest cases are United States (33,537,95 cases) followed
by India (29,881,772 cases), Brazil (17,883,750 cases) and France (5,817,272
cases). However, if we take into account the percentage of deaths, we find
Yemen (19.7% death rate), Peru (9.4 % death rate) and Mexico (9.3 % death
rate). This makes the COVID-19 pandemic one of the public health problems
with a meaningful impact in the history of humanity since the appearance of
the last pandemics Influenza A (2009), HIV / AIDS (1980) and “Asian” flu
(1957-1958)

Efforts from a research point of view, apart from being directed in the first
place to the search for a cure, have focused on characterizing patients with
COVID-19 in different phases of the disease (commonly at hospital admission),
analyzing risk factors and implement mortality risk calculators or mortality
predictors.

Initial studies focus on describing the clinical characteristics and outcomes
of critically ill patients with COVID-19. One of the first published studies
was [2]. They report clinical characteristics and laboratory findings on the
first 799 people with the disease admitted to the isolation ward of a hospital
in Wuhan. It was observed that non-survivor patients were on average 17
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CHAPTER 2. RELATED WORK

years older (with no deaths among those aged under 40 and 16.8% of deaths
among those aged 40-60), more likely to be male, and more likely to have a
comorbidity such as hypertension, diabetes, cardiovascular disease, or chronic
lung disease. These results are largely consistent with European studies [3],
[4], [5]. The methods used include statistical analyzes comparing survivors
and non-survivors. Other analyzes are carried out with more specific cohorts
such as patients suffering from a particular disease. For instance, we find [6]
that use a cohort of patients with hematological malignancies and [7] patients
with lymphoma.

Patients with older age, hypertension, and high lactate dehydrogenase are
considered factors that increase the risk of severe disease [8]. These results
are similar to many other case series from China [9], [10], [11],[12]. Apart
form older age, in [2], the authors reported malignancies, high APACHE II
score, high D-dimer level, low paFi level, high creatinine, high hscTnI (high-
sensitivity troponin-I) and low albumin level as independent risk factors for
mortality.The presence of comorbidities, diabetes, obesity, and smoking are
also reported as factors that increase the risk of severe disease in some studies
[13], [14]. In particular, in Spain cardiovascular and renal condition appear as
risk factors as well [15]. It can be observed that characteristics of COVID-19
may vary depending on the demographic and epidemiological profiles of each
country. Commonly used methods seen in the literature comprise univari-
ate and multivariable Cox proportional hazards regression analysis along with
Kaplan-Meier curves.

To support decision making and logistical planning in healthcare systems,
there is a growing interest in developing machine learning models to pre-
dict prognosis and more specifically mortality. In [16], they predict mor-
tality risk using XGBoost algorithm over 3,062 patients with a population
of non-survivors of 26.84%. They identified increased age, decreased oxygen
saturation (<= 93%), elevated levels of C-reactive protein (>= 130mg/L),
blood urea nitrogen (>= 18mg/dL), and blood creatinine (>= 1.2mg/dL)
as primary risk factors. Another Chinese study revealed that lactic dehydro-
genase (LDH), lymphocyte and high-sensitivity C-reactive protein (hs-CRP)
seem to play a crucial role in distinguishing the vast majority of cases that
require immediate medical attention [17].
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Chapter 3

Data and requirements

This chapter includes all details regarding the design of the study, data
collection and the project requirements and design taking into account the
context. In the first place we discuss the details that concern the framework
in which the project is developed as well as the variables that are collected 3.1.
Later in 3.2 we review the tools that have been used for data collection. Finally
in 3.3, we briefly discuss the design of the infrastructure, security aspects and
the process of data cleaning and filtering.

3.1 Study design
The present study aims to carry out a retrospective multicenter study to

characterize patients admitted to the ICU during the first wave of COVID-19,
analyze the risk factors involved in hospital mortality, and develop methods
to predict it. Secondly, we have also included the pre-processing analysis
comprising the analysis of missing values, outliers, correlations and feature
selection that was done in the context of CIBERES-ICU-COVID.

For the study we selected those patients who required invasive mechanical
ventilation during the first day of admission to the ICU and who remained
ventilated 3 days later. This interest is motivated by the absence of pub-
lished studies analyzing the influence of laboratory and ventilatory variables
on the third ICU day. In addition, information about baseline (i.e., symp-
toms, comorbidities, previous medication, etc), outcome and gender must be
available. This information is required in order to avoid completely unfilled
patients. However, it is assumed that we may have missing data for the rest
of variables. This is not an issue since imputation can be attempted.

Patients were excluded if they had non-confirmed COVID-19, no data at
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CHAPTER 3. DATA AND REQUIREMENTS

baseline or at hospital discharge, or if they were admitted to ICU for other
reasons. In that case 64 patients were omitted. For these patients, hospital
discharge is motivated by the transfer to social-health centers and other hospit-
als, and we cannot ensure whether this is due to improvement or deterioration
in the evolution of the disease. Thus, the event of hospital death for these
patients is unknown.

3.2 Data collection
Patients were enrolled if they fulfilled at least the following criteria: ≥ 18

years old, admission to ICU and laboratory-confirmed diagnosis of COVID-19.
These data was anonymized, collected and stored via the REDCap [18] form-
based tool, hosted at the Centro de Investigación Biomédica en Red (CIBER),
Spain. REDCap is a web-based database for medical and biomedical research
support created by the REDCap Consortium [19]. Given the familiarity of
the medical partners with this technology, the CIBERES-UCI-COVID project
uses this database as single source of truth, which is filled by specialised data
entries hired by each hospital. Notice the data is collected and introduced
into the platform manually by these data entries. The considerable volume of
patients that Spanish hospitals have received since the onset of the pandemic
makes data collection a complex task and susceptible to errors.

REDCap is structured by entries that in turn contain a set of forms linked
to a patient. Although the use of forms can facilitate the registration of vari-
ables to medical professionals, they are nevertheless complex to process since
they do not follow a linear structure, there are fields that can have several
values or that may depend on others fields (i.e., duration of a treatment only
appears if a treatment is applied). The data is downloaded through calls to
the REDCap API. Since the API does not allow to return more than 1,000
entries at once, we request the data by chunks of N size being N the number of
unique patients divided the number of cores of the server. These downloads,
known as data migrations, are run periodically to keep our database up to
date. Given the number of patients and the amount of data for each one, this
process has been parallelized to reduce execution time. This work was contrib-
uted significantly by other members of HPAI research group as previous work
to set up and enable the rest of the contributions presented in this document.

The rigidity of this platform in the light of executing data analysis, as well
as the need for data pre-processing (cleaning and improving the data) led to
the creation of a complete and unified database derived from REDCap that
would constitute a comfortable framework to work with. This was then one of
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CHAPTER 3. DATA AND REQUIREMENTS

the first goals within CIBERES-UCI-COVID project and is further discussed
in 4.

Clinical features After the patient has been enrolled to the hospital, previ-
ous epidemiological data were collected, including demographic data, comor-
bidities, clinical symptoms, disease chronology, and treatment administered
at hospital admission. Among the collected data we find included vital signs,
respiratory support devices (i.e., oxygen mask, cannular high nasal flow, and
non-invasive and invasive mechanical ventilation), the use of complementary
therapies (i.e., neuromuscular block, prone position and maneuvers recruit-
ment), laboratory findings, arterial blood gases, and mechanical ventilation
settings.

Some of these variables contain different measurements, collected in each of
the phases that a patient may go through: ICU admission, start of mechanical
ventilation, 72–96 h after ICU admission, weaning, ICU discharge and hospital
discharge. In particular, for the ICU event, information about hemodynamic
parameters and organ dysfunction is also stored, such as the Sequential Or-
gan Assessment Failure Score (SOFA), an important scale for assessing patient
severity. Specific data regarding mechanical ventilation since the start of in-
tubation, as well as, at day 3 have been analyzed. Mechanical parameters
related to ventilation-induced lung injury (VILI) included tidal volume, res-
piratory rate, end-inspiratory plateau and peak inspiratory pressures, positive
end-expiratory pressure (PEEP), driving pressure, and static compliance of
the respiratory system (Crs).

3.3 Global technical requirements and design
In this section, the technical requirements that have conditioned CIBERES-

UCI-COVID are presented. In essence, these are related to the creation of
a complete, unified and reliable database, the implementation of data pre-
processing and filtering tools, and the reporting of results. The database and
the pre-processing pipeline will be implemented for the benefit of posterior
analysis, including the survival analysis conducted and presented in this work.
The latter filtering and reporting of results will be implemented for the benefit
of other partners in the project.

Database implementation As mentioned above, one of the main object-
ives of the project is to generate a database that could be used for any data
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CHAPTER 3. DATA AND REQUIREMENTS

analysis or AI purpose. The different entities of REDCap (i.e., comorbidit-
ies, previous medication, complications, etc) are represented in different tables
where we find one patient per row. For those variables that are taken peri-
odically (i.e., tests), several rows are added in addition with time bound. As
database model, a relational database using MariaDB [20] has been implemen-
ted. MariaDB comes with a wide range of safety measures and it is faster and
more efficient than mySQL.

Data cleaning Missing values and outliers need to be addressed to avoid
problems in statistical analyses. We were provided with a list of laboratory
and ventilation variables and their normal ranges. For those observations that
have variables outside its range, instead of removing the complete observation
we ignore these variables and later we treat them as missing values. For further
information about missing values visit 4.1.4.

Data filtering From clinical point of view, there is interest in filtering pa-
tients according to different factors. The system must be flexible and scalable.
It must be possible both to select a set of filters and to incorporate new filters
in the future. The following list shows the list of filters implemented in this
project:

• Filter initial population using a list of patient ids.

• Filters on filled in variables such as outcome and gender.

• Filters based on variable values (treatments, comorbidities, severity, events,
etc.)

• Exclusion filters by id. It is the case of those patients that are not
analyzable explained in 3.1.

Report generation The results must be presented in a clear and organized
way to facilitate their understanding. For that, we decided that using reports
would be the most appropriate way. Indeed, to avoid manually generating a
large quantity of very similar reports, those reports need to be generated in
a automated way. Thus, given the role it plays in the interaction with the
medical team, the generation of reports is of special interest.

The system can generate several types of reports: tables (csv files), cor-
relation reports (matplotlib plots) and text reports (docx files). The latter
is used to display results of the different analyses such as missing values and
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outlier analyses. It implements methods for description analysis as well. De-
scription analysis distinguishes between numerical and categorical variables.
For the first, it is able to generate boxplots, histograms and textual explana-
tions about central tendency measures. For categorical variables, it generates
frequency tables and bar plots.

The process for generating a report is composed of three main steps. In the
first place, the user instantiates a Configuration object. This class contains the
minimum variables required to generate reports such as the list of variables
and population filters but also contemplates the possibility of adding new fields
easily. As a result, the system builds a validated dataframe with the requested
variables and the restrictions already applied to it. The conducted analyses are
applied to these data and their results are saved in the corresponding report.

Security concerns Finally, considering the personal nature of all data being
handled, special focus has to be put onto security measures. All data is stored
in a private isolated – via virtualisation – server placed in the EU (Spain).
Only an automated GitLab CI/CD pipeline has access to this server unless
emergency access is needed, and in this case only authorised researchers can
access via SSH tunnelling using a private key. All private data is stored on
a MariaDB database. If data has to be uploaded or downloaded by third
parties, we use an encrypted – at rest and in transport – distributed S3-
compatible storage server. All credentials related to the project are stored
in a secure Hashicorp vault. Tokens to access this vault are only available to
specific code repositories and authorised researchers. By combining repository-
based authentication with a token-based vault, we enforce that the storage and
processing of data is carried out, in an automated fashion, by code reviewed
and pushed by the authorised researchers.

Target infrastructure The project data flow has been defined in accord-
ance with previously identified technical requirements. First, we seek to have
a single, reliable source of truth. This means that all the information comes
from REDCap. The other data sources were previously integrated with RED-
Cap. During the data analysis process, we have permission to modify that data
in our database. The data is cleaned and examined, both improvements and
errors are communicated to medical professionals. They then decide whether
to incorporate these modifications to the source of truth.

This results in the scheme shown in Figure 3.1. The two external sources
of data from SEMICYUC consortium and Getafe hospitals have a specific
parser, which makes them integrable into REDCap. This component also has
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CHAPTER 3. DATA AND REQUIREMENTS

another parser, which transforms it from and into our own exploitable database
(HPAI DB in the diagram). Finally, from this database, several data formats
are exported for enabling the posterior processing.

Figure 3.1: Dataflow implemented in CIBERES-UCI-COVID. As cylinders,
data sources. In green, data parsers implemented by the authors.
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Chapter 4

Analysis and learning methods

This chapter includes all details regarding the data processes implemen-
ted as a first step towards learning, as well as the methodologies used later
on for experimentation in Chapter 7. First we review and discuss the several
pre-processing steps necessary for preparing the data for any posterior ana-
lysis in 4.1. Then in chapter 5 we perform some statistical analysis to gain
some preliminary insight into the behavior of variables, which can be useful in
deciding how to deal with them. Finally, in chapter 6 we discuss the different
models we will be using for our particular machine learning goal, one based
on survival analysis in patients.

4.1 Data pre-processing

In this section we review the main pre-processing steps performed, prior to
any consequent analysis. As depicted in 4.1, the pre-processing is formed by
the data collection and filtering process, the definition and analysis of outliers,
the analysis of correlated data, a brief descriptive analysis to summarize and
see a first shape of population, the detection and handling of missing values
and the creation of new features.

Factors associated to mortality in patients of the first wave infected by
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CHAPTER 4. ANALYSIS AND LEARNING METHODS

Figure 4.1: Global pipeline

After the pre-processing, we find the statistical analysis and the survival
analysis. Given their importance for this work, these two will be discussed
later in 5 and 6. Due to their relevance, feature engineering 4.1.6 and error
handling 4.1.7 tasks have also been added in this section.

4.1.1 Data Filtering
The initial study population consisted of 2,043 patients to whom a set of

filters of interest were applied. In particular, patients were collected if:

• They were part of a previous selection of patients (population restric-
tion). The reason why a previous selection of patients was made was
mainly to compare the results of the study with other analyses based on
the same patient selection performed in the context of CIBERES-UCI-
COVID.

• They belong to the first wave within February 1 and July 31, 2020.

• They had outcome and sex with value as this implies minimal data avail-
ability.

• They had been positively diagnosed by COVID-19.

• They required mechanical ventilation on the same day of admission to
the ICU. The interest is due to the absence of published studies focused
on this population.

• They continued with IMV at least until the third day of ICU.This filter
is used for the same reason as the previous one.

12 Factors associated to mortality in patients of the first wave infected by
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This process is shown in Figure 4.2, as input and output of each filter, the
size of the dataset can be observed in terms of the number of patients.

Figure 4.2: Data filtering pipeline

4.1.2 Outliers Analysis
Before performing any statistical analysis, outliers have to be removed. To

identify outliers, medical expertise is of capital importance, as they can define
the data ranges that can be considered as feasible. There are variables that
must be carefully supervised due to their clinical importance. If outliers are
located in large numbers, the project coordination must consider the possibility
of contacting the hospital in question to understand and fix the source of
outliers. For this reason, an analysis of outliers by variable and by hospital
is carried out. Initially, extremely high values were found for lactate and
platelets. This was due to an error in the unit conversion.

4.1.3 Correlation Analysis
To interpret the relationships that may exist between features, a correl-

ation analysis is performed. Understanding these relationships is useful in
order to avoid multicollinearity and redundancy issues that may decrease the
performance of machine learning models. According to the types of variables,
their correlation can be computed using:

• Pearson for continuous-continuous relations: measure statistical relation-
ship between two continuous variables [21].

• Correlation ratio categorical-categorical: measure of the relationship
between the statistical dispersion within individual categories and the
dispersion across the whole population or sample [22].

• Cramer’s V categorical-continuous and viceversa: measure of association
based on Pearson’s chi-squared statistic between two nominal variables,
giving a value between 0 and +1 (inclusive) [23].
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Correlations are computed for all pairs of features in a dataframe and
reported to the medical team to decide which variables have higher clinical
relevance. Missing values need to be treated now, before moving on since
statistical methods cannot handle them. Two strategies to deal with missing
data have been implemented. The default strategy is to remove only the
missing data taking into account the columns of the current pair. Alternatively
we remove all data rows containing missing data. It is preferable to only delete
data in one of the two columns that are being treated since otherwise we would
be losing large amounts of data.

The current implementation is based on the Dython [24] library with the
difference in the treatment of missing values and the possibility to filter cor-
relations by a threshold. The main issue we observed when using Dython was
that they just allow to remove missing values dropping entire rows, columns
or replacing them. As it is mentioned previously, this causes a significant data
loss. For this reason we decided to implement our own library with the same
methods as Dython but restricting the missing values elimination only to the
pair of variables whose correlation we want to calculate.

Once missing values are ignored in some way or another, correlations are
computed and displayed as a heatmap with the value of the correlation coef-
ficient in each cell. In particular, correlations have been calculated for groups
of variables: variables related to duration and dates (10.13), demographic
data (10.14), comorbidities (10.15), previous medication (10.16), laboratory
variables (ICU) (10.17), laboratory variables (3rd ICU) (10.26), mechanical
ventilation variables (ICU) (10.35), mechanical ventilation variables (3rd ICU)
(10.36), treatments (10.37), complications (10.38) and outcomes (10.39).

Previous plots show in nude and orangish colors positive strong correlations
and in light blue negative strong correlations. Correlations can be taken into
account if they exceed 0.3 in absolute value. However, only those with high
correlation coefficients (> 0.6) will be discussed in this document.

In reference to the length of stay, time in hospital and time in ICU are
highly correlated each other as it was expected (10.13). Normally, those pa-
tients who spend long periods in the hospital also spent long periods in the
ICU. Regarding demographic data, male gender is correlated with female and
vice versa (10.14). In Figure 10.15, comorbidities are shown, and no correla-
tions are observed. The situation is similar for previous medication, only the
flu, streptococcus vaccine, and both vaccine are correlated. This may caused
by the fact that people who have received one vaccine could also received the
other and vice versa. Also two types of previous respiratory support are lightly
correlated (0.54).

For the laboratory and ventilation variables, several correlations have been
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found, these have been marked with rectangles and a zoomed in capture has
been added in the Appendix. Eight blocks of correlations have been identified
for both events numbered C1-C8. Block C1 (ICU) (10.18) shows us correlations
between the use of vasopressors and the hemodynamic sofa and sofa scores
0.68 and 0.96 respectively. These correlations are expected since the use of
vasopressors is a variable that is part of the calculation of both scores. In Block
C2 (ICU) (10.19) we can see the correlation of paCO2 with ventilatory ratio
modified. This is expected since the ventilatory ratio modified is calculated
from paCO2, regulated respiratory rate (FR), tidal volume and ideal body
weight. Figure C3 and C5 (ICU) (10.20, 10.22) show a fairly high correlation
between urea and creatinine. This may be due to increases in both variables
at the same time, these increases may indicate the appearance of diseases that
affect the liver or kidneys such as hypertension, kidney failure or cirrhosis.
Figure C4 and C6 (ICU) (10.21, 10.23) shows several correlations between
ferritin, AST, ALT, and troponin-T and lactate respectively. For the first case,
high values for ferritin, AST and ALT may indicate that there are patients
with liver disease. Lactate and troponin-T are different markers, the first is of
tissue perfusion and the other of myocardial damage. They may be correlated
in patients who are very critically ill. In Figure C7 (ICU) (10.24) we find
the same correlations described by C1 and C2. Finally, Figure C8 (ICU)
(10.25) shows several pairs of correlations, all of them expected: hemodynamic
SOFA and SOFA (0.71), troponins T and I (1.0), original ventilatory ratio and
its modified version (1.0), both enzymes transaminase (0.82) and to a lesser
extent APACHE and SOFA scores (0.56) both used to measure the severity
of a patient. These same correlations are also displayed for the third day of
ICU event. In addition, it is observed that prothrombin time is also related
to ferritin in C6 (3r day ICU) (10.32) and in Figure C7 (3r day ICU) (10.33)
NT-proBNP presents a high correlation with LDH (0.85) not observed in the
event of ICU.

Regarding the mechanical ventilation variables, at a general level in 10.35
and 10.36, it is observed that the negative correlations in the ICU event are
accentuated in the event of the third day and new negative correlations also
appear. The correlations between PaFi and blood oxygen saturation (from 0.44
to 0.35), and between plateau pressure and driving pressure (0.84 to 0.81) are
slightly strengthened. On the other hand, the correlation of RASS and SAS
increases (from 0.59 to 0.79). This change between correlations from one
event to another may be motivated by the fact that the data from the third
day act as a measure of the patient’s evolution. Thus, the improvement or
deterioration of the patients’ condition will be reflected in the variables on the
third day of ICU. Taking into account that COVID-19 is a respiratory disease,
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it is expected that these changes are observable for mechanical ventilation
variables and lose strength or are not observable at all for other variables such
as laboratory variables.

With regard to the rest of the variables, no correlations are observed
between treatments (10.37) and only one for complications (10.38), DIC (dis-
seminated intravascular coagulation) and coagulation disorder have a positive
correlation of 0.45. This is somehow expected since DIC is a coagulation dis-
order. Finally, Figure 10.39 shows the correlations between outcome variables
and complementary therapies. As expected, there are correlations between
the 4 types of outcomes: death, transfer to a social-health center, transfer to
another hospital and discharge due to improvement.

4.1.4 Missing Analysis
One of the most common situations when working with real data is the

existence of missing data. These missing values arise due to many reasons,
such as undefined values, data input errors, irrelevant information, mismatch
of variables between databases, etc. In the context of CIBERES-UCI-COVID,
where data is introduced by dozens of different data entries (each hospital
hiring its own), and where hundreds of medical variables are requested for each
sample/patient, missing data is frequent and must be addressed thoroughly.
Not handling missing data properly can have a negative impact on performance
of machine learning models. As the authors of [25] point out, missing values
can reduce statistical power and representativeness of samples, introduce bias
and reducing drastically the quality of the study.

In view of the considerations above, CIBERES-UCI-COVID have developed
a set of techniques that analyses missing data in depth in order to understand
its nature and address the issues mentioned before.

Global analysis of missing values In the first place, we analyze missing
values from a global perspective using missing maps. The generation of missing
maps offers an overview of the amount of existing missing values and their
location (both features and samples). Visualising patterns of missing data
can help understand the types of missings we are dealing with. In the 10.12
we can see for each variable (x-axis) and patient (y-axis) the variables that
are missing (in white). The more white horizontal stripes a column has, the
greater the number of missing values for that variable. According to that the
variables that have more missing values are:

• Mechanical ventilation variables: SAS (Sedation Agitation Scale) (ICU
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and 3th day), compliance (ICU and 3th day), driving pressure (ICU and
3th day), plateau pressure (ICU and 3th day).

• Laboratory variables: NTproBNP (ICU and 3th day), il6 (ICU, 3th day),
troponinI (ICU and 3th day), troponinT (ICU and 3th day), ferritin (ICU
and 3th day), procalcitonin (3th day).

• Previous medication variables: streptococcus vaccine.

All the previous variables has a missing values percentage equal or above 40%.

Missing values correlations In addition, we generate a correlation matrix
heatmap that shows which missing values are correlated with other missing
values. Analysing correlations between missing data can help us discover rela-
tionships between them (e.g., if the absence of a feature depends in turn on the
absence of another). In the Figure 10.1, the regions with strongest correlations
are captured using a red frame and a notation above. It has been considered
as high correlations those that are equal or greater than 0.5. According to
this, a total of 10 regions have been considered.

In 10.2, correlations can be observed between various treatments and pre-
vious medication. Specifically, we can realize that when the use of ECMO is
missing, so is the use of neuromuscular blockers at least 90% of the time. The
same situation is observed between streptococcus and flu vaccine and the stat-
ins and heparine. In Figure 10.3, the use of ECMO and neuromuscular blockers
appears again showing high correlations to corticosteroid and antibiotic treat-
ments. In turn, antibiotics seem to have a slight correlation with the use of
vasopressors and ECMO but only for the third day of ICU (10.9). Neuromus-
cular blockers also show a correlation with the use of non-invasive ventilation
methods (ICU) in 10.7, and with the use of vasopressors and ECMO (third
day of ICU) in 10.8. Most expected, in case that vasopressors and ECMO
have not been required in ICU they are not required for the third day either
(10.10).

According to comorbidities, in 10.4, we can see that there is a subset of
them for which if one is missing all the rest are missing as well. This may be
due to the fact that during the consultation with the patient, the doctor may
decide not to record some comorbidities if the subject does not present certain
symptoms. We observe the same behavior for the different types of previous
respiratory support depicted in Figure 10.5. In the case of laboratory variables,
we found high correlations for lymphocytes and platelets (Figure 10.6) for the
ICU event. The correlations for the third day of ICU are accentuated for those
variables commonly present in the laboratory tests (10.11).
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It may be possible that in some cases these missing data are the result of
a dependency relationship, so that if a subject is not measured or prescribed
A then neither is measured / prescribed B and therefore there is a correlation
between A and B.

Analysis of missing values per variable In more detail, the system ana-
lyses the percentage of missing values for each feature over the total samples.
It has been observed that the percentage of missing values per variable has
decreased as migrations have been carried out. This is because CIBERES-UCI-
COVID has given preference to completing existing patients on the REDCap
platform rather than adding new patients. The variables with the highest
number of missing values are those listed in 4.1.4.

To have an overview of how completed the variables are, apart from listing
the percentage of missings individually, we can group the variables according
to predefined intervals. We have established intervals between pairs 0, 25, 50,
75, 100%. The number of variables found in each interval is shown below.

• Variables with num. missing values < 25%: 143.

• Variables with num. missing values ≥ 25 and < 50%: 16.

• Variables with num. missing values ≥ 50 and < 75%: 11.

• Variables with num. missing values ≥ 75%: 8.

The vast majority of variables (143 out of 179) have a low percentatge of
missing values, and there are only 8 variables which are not completed at least
75%.

Analysis of completeness of samples Something relevant for clinical
studies is the amount of useful patients that are available. This allows to define
the sample size of the study and assess whether it is enough to continue, it is
necessary to request more samples or if the study must be reconsidered. The
degree of completeness of a sample is defined as the percentage of the features
that are not missing over the total number of features. This metric is also
observed in the right margin of Figure 10.12. As an acceptable limit, patients
completed at least 80% have been taken into account. These correspond to a
total of 1,019 patients, 121 patients less than at the beginning of the study.
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Analysis of missing values grouped by variable In cases where the
data is provided by different sources, it may be interesting to analyse the
missing data according to their source. In our case, it is useful to analyse
these values according to the hospital from which the patients come. In this
way, we generate a report where in each row that represents a hospital, the
missing data for each variable is detailed. Thus, we know who to turn to when
it is necessary to request new data or report an error.

Filtering methods prior to Missing Imputation Before carrying out
any imputation technique, we must verify that the current number of missings
is feasible as well as establish to what extent the samples must be completed.
[26] states that if the proportion of missings is too large it should be considered
to simply report the results of the full case analysis and then clearly discuss
the interpretive limitations resulting from the trial results. In this regard, we
provide methods to filter observations according to the level of completeness
and to filter features according to the percentage of missing values.

Patients completed below 80% and those variables with more than 40% of
missing values are excluded. At the end, the missing values related to complic-
ations, comorbidities, treatments, previous medication and immunodeficiency
, streptococcus + gripe vaccines, septic shock for ICU and third day of ICU
are filled up. For these cases, we assume that if the value is not known then
these treatments have not been administered. For comorbidities we assume
they have not taken place.

4.1.5 Missing Imputation
Multivariable imputation by chained equations (MICE) [27] is a particular

multiple imputation technique that has become in one of the main methods
to address missing data. In this process, missing values are imputed based
on the observed values for a given individual and the relations observed in
the data for other subjects, assuming the observed variables are included in
the imputation model. Intuitively, multiple imputation can also be seen as
a process that involves filling in the missing values multiple times, creating
multiple complete datasets.

It’s many advantages have made it more popular than other methods. In
the first place, MICE allows to handle variables of different types, and patterns
of varying complexities. In addition, it is very flexible allowing a broad range
of settings.Unlike other methods like single imputation (e.g mean or mode
imputation), MICE allows to take into account the statistical uncertainty in
those imputations. Maximum likelihood methods are also a viable approach
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but it is not always applicable since only works for certain models and finding
implementations for any system different to SPSS is quite difficult. In the case
of complete case analysis, it can only be applied under very specific circum-
stances (e.g. when there is less than 5% missingness and the missingness is
totally random and does not depend on observed or unobserved values).

MICE operates under the assumption that given the variables used in the
imputation procedure, the missing data are Missing At Random (MAR), which
means that the probability that a value is missing depends only on observed
values and not on unobserved values. Implementing MICE when data are not
MAR could result in biased estimates. In [27], they state that all relationships
that are going to be investigated in the analysis need to be included in the
imputation model. However, including additional variables that may be not
used in further analysis can improve the imputations. This is because they can
reduce bias and make MAR assumption, which is almost always impossible to
test, more probable.

In short, the chained equation process could be divided in seven steps. In a
first step, a single imputation is applied for each missing data. Subsequently,
the imputed variables return to their original missing value, the imputed value
is saved. For each variable with missing data, a regression is carried out where
the rest of the variables with value represent the independent variables and the
variable with missing values is the dependent variable. The missing values is
thus replaced by the result of the regression. When the variable with initially
missing values is later used as the independent variable in regression models
for other variables, both the observed and imputed values are used. This
process is repeated a predefined number of cycles. After one cycle, all the
missing values have been replaced once using regression results. The idea of
running several cycles is to stabilize the variables involved in the imputation
prediction (regression coefficients). Usually the number of cycles is set to
10. After executing all the cycles, the algorithm is repeated several times to
generate multiple datasets. In practice, 5-10 datasets are usually generated.
This parameter is also chosen by the user.

The implementation that has been used for this work is from the fancyim-
pute [28] library. To make sure imputations remain within the normal ranges
and thus not generate outliers, we pass as an argument a dictionary with the
minimum and maximum value of each feature. In Figures 10.49, 10.50, 10.51
the number to be imputed for each variable and the normal ranges considered
for each variable is shown sorted in descending order by those that have higher
number of missing values. For the cases in which normal ranges are undefined
we just set the minimum value to 0. Laboratory and ventilation variables are
observed indistinctly, being the highest number of MVs to be imputed 399
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(APACHE score for 3rd day) and 1 being the minimum. Furthermore, usually
we find the variable for both ICU events. See also that variables days between
symptoms appear until ICU admission and time in ICU have been added to
the imputation process. This has been the case since the number of patients
with MVs for these variables are 1 and 9 respectively, which represents less
than 9% of the population. For higher percentages, it may be considered to
ignore these patients. Note that the reason for which these patients do not
have values for them is because the dates needed to compute those features
are missing, symptoms start date and ICU leave date.

The imputations have been validated by comparing feature central tend-
ency measures before and after the imputation for each. Additionally, for
numerical features the density plots are compared before and after the imputa-
tion. A density plot is nothing else than a representation of the distribution
of a continuous variable. The idea is to check that the current distribution is
similar to the previous one with missing data without any sudden changes.

The Appendix shows the density plots for each continuous feature that
presented missing values. In general we can see that the distributions remain
intact before and after the imputation for most variables: creatinine, glucose,
HCO3, heart rate, days between symptoms appear and hospital admission,
leucocytes, lymphocytes, paCO2, paFi, positive pressure at the end of the ex-
piration date (PEEP), platelets, temperature, time in ICU, oxygen saturation
and ventilatory ratio.

The distributions remain with small changes in comparison to the original
ones for breathing rate, CRP, D-dimer, regulated respiratory rate (FR), Rich-
mond Agitation Sedation Scale (RASS), SOFA score, hemodynamic SOFA,
total bilirubin, urea, alanine transaminas (ALT), lactate dehydrogenas (LDH)
and ventilatory ratio modified.

For APACHE score, lactate, procalcitonin (ICU), aspartate transaminas
(AST) and prothrombin time, we find that the distribution with imputed
values presents a greater number of subjects with values that are in the median
of the variables.

4.1.6 Feature Engineering
After the collection and transformation of REDCap data, we compute

derived medical variables and the enrichment of other ones through domain
knowledge. It is the case of scoring systems such as APACHE or SOFA score
used to measure the critical state of a patient. Most derived variables are com-
puted and saved in the database after migration. There are others that are
used only in very particular studies, so it is not necessary for them to be saved
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permanently. For instance, the deltas of laboratory and ventilatory variables
between the first and the third day ICU are computed at execution time.

Some variables are enriched with knowledge from medical experts. This
includes variables that can change their value when some conditions are ful-
filled. Usually, these are variables that are involved in the calculation of other
more complex variables. This is the case for example of the Glasgow Coma
Scale (if it equals 15 for some medical event then the rest of the events take
this value), average pressure (if the average pressure read from REDCap is a
null value then it is computed using the systolic and diastolic pressures) and
modified ventilatory ratio that uses in turn a modified version of tidal volume
(if it is a null value, the expiatory volume is used in turn).

4.1.7 Error handling

The error handling is basically divided into two tasks: controlling the errors
that may occur in our system and those derived from the REDCap data. For
the former, as mentioned above, we perform unit and integration testing. This
allows us to quickly detect and resolve bugs, refactor and improve the code,
reduce complexity and ensure that all code meets quality standards before it
is deployed.

In the case of REDCap errors, our task is to inform the centers so that
they can be corrected in the platform. Among the errors found we distinguish
the following:

• Variables with wrong units: Although a unit is selected in REDCap, the
variable is filled using a different one.

• Variables with impossible values: The variable has a value that is very
far from the normal range. These errors are often not outliers but rather
typos, which makes them very difficult to correct unless reports or in-
formation on other platforms are available.

• Variables with inconsistent values: This happens in variables whose value
may be incorrect when observed in combination with others, either be-
cause they are part of a sequence or that depend on other variables.
Numerous consistency errors have been found regarding dates. For ex-
ample, some event dates are impossible, which means that some events
happen before others or do not refer to the name of the event (third day
of ICU does not correspond to the third day but to another).
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The risk that we encounter these types of errors is high when data is
entered manually, so we must be careful when processing it before conducting
any analysis.

4.1.8 Feature Analysis

The goal of carrying out feature selection analysis is to be able to determine
those variables that have a greater impact predicting the outcome in order to
rule out those that have no predictive force. In turn, this process reduces the
size of the problem which helps algorithms to work faster and make models
easier to interpret.

Additionally, it has also been investigated whether the fact of imputing
missing values causes changes in the relevance of the variables. Initially, dif-
ferent classification and regression algorithms were used and later survival
forests algorithm were explored, for which an entire chapter has been ded-
icated 6. The algorithms have been extracted from the SKlearn [29] and
survival models have been extracted from pySurvival [30]. It has been used
logistic regression, random forest and recursive feature elimination validated
using 10-fold cross validation for the same subset of features twice, once for im-
puted missing values by MICE and once for missing values replaced by 0. The
performance is evaluated in terms of both accuracy and f1-score (the harmonic
mean of the f1-scores obtained by each class is compared).On the sidelines, the
Information Value (IV), commonly used in marketing, has also been tested.

Before the analysis, continuous variables are standardized and date type
variables are ignored throughout the process. Variables that had been elimin-
ated due to a considerable number of missing values and those whose clinical
weight was not considered relevant were also ignored. However, the possibility
of adding the ones with less clinical weight in subsequent studies or models was
considered. Specially, the variables that have been ignored and have passed
the filters prior to imputation can be seen in Table 4.1.

Missing imputation and correlation analysis tasks have been carried out
with a larger set of features is for several reasons. First, for exploration pur-
poses. At the beginning of the study, there was no record of the list of variables
to be analyzed and the main objective was to analyze the data itself and carry
out a sanity check to see if expected correlations were obtained. Second, and
as mentioned above in 4.1.5, running the imputation on a larger set of features
helps to reduce bias of the imputations.

The features that have reached the greatest importance in predicting the
outcome are shown below for each algorithm.
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Topic Metrics
Patient characteristics -

Previous Medication

alpha blockers, reninInhibitors,
vasodilators, antimineralocorticoids,
adrenergic antagonists, AINE,
heparine

Comorbidities smoker

Laboratories
(only ICU and 3rd day ICU)

il6, vasopreossor requirement, ECMO
requirement, heart rate, temperature,
HCO3, prothrombin time, bilirubin,
aspartate transaminase (AST), alanine
transaminase (ALT), troponin-T,
troponin-I, NT-proBNP, APACHE
score

Mechanical Ventilation
(only ICU and 3rd day of ICU)

Richmond Agitation Sedation Scale
(RASS), regulated respiratory rate
(FR), Riker sedation agitation scale
(SAS), driving preassure, plateau
pressure, positive pressure at the end
of expiration date (PEEP), breathing
rate, ventilatory ratio modified

Hospital Course -

Complementary Therapies oxigenotherapy required, tracheos-
tomy required, ECMO required

Treatments -

Complications

viral pneumonia, heart attack,
coagulation disorder, sdra,
pancreatitis, skin manifestations,
rhabdomyolysis, convulsions
complications, cardiomyopathy,
meningitis, anemia

Outcomes -

Table 4.1: List of variables classified by topic ignored before performing feature
analysis
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Logistic regression The variables that are most important when predict-
ing the death event are time in the ICU, age, respiratory, coronary and renal
comorbidities (cardiac arrest, acute kidney failure, pulmonar chronic disease,
renal chronic disease), complementary treatments and therapies (corticoster-
oids and neuromuscular blockers). Regarding the ventilation variables, the
ventilatory ratio for both events is the one that receives the greatest import-
ance. when the missing values are replaced, it is observed that the importance
of the variables varies but without producing significant changes.

Random forests As can be seen in Figures 10.115 and 10.116, in both cases
the variables that receive the greatest importance are time in hospital, age,
time in ICU, and a whole list of laboratory variables corresponding to the third
day of ICU (paFi, platelets, paCO2, creatinine, LDH, urea and SOFA score).
This last pattern is clearer for the imputed data. As previously discussed, this
may be due to the fact that the third day variables constitute an indicator of
the evolution of the patient’s condition.

Recursive feature elimination The results for this algorithm are very
similar to those obtained when the estimator is used directly. This is expected,
although recursive feature elimination removes one or more features in each
iteration, the chosen estimator is the same.

Information Value (IV) Information value helps to rank variables on the
basis of their importance using the weight of evidence (WoE). Low information
value of a certain variable indicates that the predictive power of this variable
is low and thus it is not able to classify the target variable properly. The
weight of evidence measures the predictive power of an independent variable
in relation to the dependent variable. It has its roots in credit scoring world
and it tells the degree of the separation between subjects than can belong to
two different classes.

According to [31], by convention the values of the IV can be interpreted as
follows:

• Not useful for prediction: Less than 0.02.

• Weak predictive power: 0.02 to 0.1.

• Medium predictive power: 0.1 to 0.3.

• Strong predictive power: 0.3 to 0.5.
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method missing imputation
applied

missing values
replaced by zero

logistic regression (L1) 0.90 0.91
random forest 0.91 0.87
recursive feature elimination
with random forest 0.88 0.89

recursive feature elimination
with logistic regression 0.87 0.83

Table 4.2: Performance in terms of accuracy of each algorithm with missing
imputation and without imputation replacing missing values by zero

• Suspicious or too good predictive power: > 0.5.

Figures 10.121 and 10.122 show the predictive power of each variable. Note
that there is no variable that exceeds 0.05, which leads us to consider that IV
is not working correctly.

One of the causes that can explain this phenomenon is that there are
numerical variables incorrectly binned. WoE uses binned numerical variables
and on those bins the log odds ratio is calculated. Too few bins causes harsh
aggregation that loses much of the available information from that variables
while too many may cause overfitting.

In general terms, we can conclude that the selection of features varies from
one method to another, as is logical, but characteristics such as time in ICU,
age and certain comorbidities appear at the top of all the methods, ignoring
IV. It is also observed that the fact of replacing missing values by zeros does
not introduce significant changes in the predictive power of the variables.

To complement this work, Table 4.2 shows the levels of accuracy achieved
omitting IV. Again, the replacement of missings also has no effect on the
performance of the estimators.

Based on the results of the logistic regression, random forest and recursive
feature elimination and expert medical knowledge, those variables that are
considered to have the greatest clinical weight have been selected. Table 4.3
shows the final set of features.

26 Factors associated to mortality in patients of the first wave infected by
COVID-19 in Spain



CHAPTER 4. ANALYSIS AND LEARNING METHODS

Topic Metrics
Patient characteristics age
Previous Medication flu vaccine, statins, interferon beta, ARB, ACE-inhibitors

Comorbidities hiv, asthma, hypertension, heart chronic disease, pulmonar
chronic disease, renal chronic disease,

Laboratories
(only ICU and 3rd day ICU)

platelets, creatinine, LDH, D-dimer ICU, lymphocytes,
septic shock, lactate, urea, oxygen saturation. hemody-
namic SOFA score

Mechanical Ventilation
(only ICU and 3rd day ICU)

previous respiratory support, simple face mask (Hudson),
ventilatory ratio, paFi, paCO2

Hospital Course time in hospital, time in ICU, time IMV
Complementary Therapies neuromuscular blockers requirement
Treatments antibiotic, corticosteroid, tocilizumab

Complications
cardiac arrest, DIC, pulmonary embolism, ictus, organi-
zing pneumonia, bacteremia, lung infectious complications,
hypertension, acute kidney failure

Outcomes alive28Days

Table 4.3: Set of selected variables after feature selection using conventional
methods
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Chapter 5

Statistical Analysis

A statistical analysis has been performed prior to survival analysis in or-
der to interpret the data and discover patterns and trends. Specially, it has
consisted in the elaboration and interpretation of a total of seven tables in
which we examined: Characteristics of the patients according to age, gender,
previous medication and appearance of symptoms (10.40), comorbidities and
symptoms prior hospitalization (10.41, 10.42), characteristics on admission in
ICU first and third day (10.43, 10.44), characteristics at the beginning and end
of mechanical ventilation (10.45, 10.46), treatments and complications during
hospital stay (10.47), and outcome variables and complementary therapies
(10.48).

For each table, categorical variables are presented as frequency/percentage
of a group from which they were derived, and for continuous variables the
median [interquartile range (IQR)] is shown. Categorial variables were com-
pared with the use of Chi-square test or Fisher’s exact test, while continuous
variables were compared with the Student’s t test or Mann–Whitney U test.
Missing values for each feature are ignored.

During the study period, 1,140 critically ill patients with COVID-19 were
admitted to the ICUs under the conditions aforementioned. The median age
is 65 years (IQR 56–71), and 816 (71.58%) are male. Of these patients, 30.42%
received statins, 17.63% ACE inhibitors, 16.58% ARB and 14.82% diuretics
among common previous medication. The median duration from symptom
onset to hospitalization is 7 days (IQR 5–10). Compared with survivors, non-
survivors were more likely to be older [69 (IQR 62.5–74) vs. 61 (IQR 53–69),
P<0.05] and male (75.62% vs. 69.01%, P<0.05). The length of ICU stay was
significantly longer for survivors (10.40).

Hypertension (49.78%) appears as the most common comorbidity, followed
by obesity (33.66%) and diabetes (22.83%). Important differences between
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survivors and non-survivors are observed for chronic kidney disease [3.73%
vs. 7.69% P<0.05], heart chronic disease [8.61% vs. 17.87% P<0.05] and
pulmonary chronic disease [7.75% vs. 16.29% P<0.05] (10.41). Among the
most common symptoms we find fever (88.8%), dry cough (67.41%), shortness
of breath (71.44%), fatigue (33.84%) and muscle pain (25.88%). In general,
it is observed that the percentage of patients showing symptoms is higher in
survivors (10.42).

Laboratory findings suggest that leucocytes count, CRP, LDH, d-dimer,
NT-proBNP, urea are higher in non-survivors suggesting more severe systemic
inflammation, cell injury, coagulopathy, risk of cardiac failure and uremia.
As suggested by higher APACHE score, non-survivors were more severely ill
(10.43). These differences are maintained on the third day of ICU. The severity
scores APACHE and SOFA score are now more distant, being the values for
survivors equal or less than the first day of ICU. The use of vasopressors is
accentuated for non-survivors on the third day, however, for survivors, IL-6
levels fall. suggesting an improvement in the clinical prognosis (10.44).

Regarding the ventilation variables on the first day of mechanical vent-
ilation, no differentiating facts were observed between survivors and non-
survivors. Note only that paFi levels are slightly higher for survivors [118
vs. 112.5 P<0.05] (10.45).

At the end of the treatment, a general deterioration trend is seen for non-
survivors. Paused respiratory rate, driving pressure, plateau pressure, ventil-
atory ratio modified and not modified and paCO2 increase while compliance,
paFi, oxygen saturation decrease with respect to the first day of ICU. The
reversed trend is observed for survivors. This also reflected into low or no
sedation levels for survivors and very deep for non-survivors [RASS 0 (IQR
-1-0) vs. -5 (IQR -5–4), SAS 4 (IQR 4-4) vs. 2 (IQR 1-2)]. This general
deterioration is also reinforced by the differences between SOFA [3 (IQR 2-4)
vs. 8.5 (IQR 6-11)], hemodynamic SOFA [0 (IQR 0-0) vs. 4 (IQR 1-4)] and
APACHE score [9 (IQR 7-12) vs. 18 (IQR 14-22)] that increase considerably
between both groups (10.46).

Regarding complications, sdra (86,12%), anemia(72.81%), hyperglycemia
(72.63%), chronic kidney disease (43.77%), lung infection (42.46%), bacteremia
(40.28%) are the most common complications during hospitalization. In re-
sponse, the most used treatment has been antibiotics (99.12%) followed by cor-
ticosteroids (76.46%). Pneumothorax [8.32% vs. 14% P<0.05], cardiac arrest
[1.87% vs. 17.83% P<0.05], bacteremia [38.36% vs. 43.31% P¿0.05], coagu-
lation disorder [23.99% vs. 31.22% P<0.05], chronic kidney disease [34% vs.
59.14% P<0.05], hemorrhages [7.77% vs. 15.12% P<0.05] occur to a greater
extent for non-survivors. No differences are observed in the treatments for any

Factors associated to mortality in patients of the first wave infected by
COVID-19 in Spain

29



CHAPTER 5. STATISTICAL ANALYSIS

of the groups (10.47).
Of the 1,140 patients, 443 (38.86%) died, 585 (51.32%) were discharged,

74 (6.49%) were transferred to health centers and 38 (3.33%) were transferred
to other hospitals. It is ensured that these transfers are for follow-up purpose,
family request and other factors that do not include relapse of the patient.
The percentage of non-surviving patients who survive 28 days before dying is
only 17.46%, which indicates that the majority of non-survivors do not reach
one month of life. Specifically, non-survivors, despite receiving mechanical
ventilation for the same number of days as survivors, spend less time admitted
to the ICU [22% vs. 16% P < 0.05] and in the hospital in general [38% vs.
19% P < 0.05]. Non-survivors also tend to need reintubation more often
than survivors [89.41% vs. 95.31% P> 0.05]. According to complementary
therapies, the number of times a patient has been placed in the prone position,
has required recruitment maneuvers and neuromuscular blockers is higher for
non-survivors (10.48).

The results obtained do not differ from other studies done in other countries
such as France, Italy, China and those already existing in Spain. The current
analysis comprises 1,140 critically ill patients with COVID-19 whose median
age is 65 years [(IQR) 56-71] and 71.58% are male. The studies carried out
during the first wave by [3], [5], [4], and [32] show a similar mean age [69.4 (IQR
18-102)], [67.5 (IQR 10-94)], [66 (IQR 20-100)], [65 (IQR 56-73)]. Regarding
gender, there is a general trend that the percentage of men is always higher
than women’s 59% [3], 63.63% [5], 59% [4], and 65.1% [32].

It should also be noted that the set of comorbidities remains fairly stable
among the different countries. In first position we find hypertension as the
most common comorbidity 50.9% [3], 34.09% [5], 52.4% [4], and 42% [32].
Diabetes is the second most common for 39.7% [3], 25.3% [4], and 18.8% [32].
For [5] heart disease 25% was reported. Alternatively, [5], [4], [32] report
cardiac diseases and the last two report chronic kidney disease.

Also, the main symptoms do not change between countries. The most
common symptom is fever 84.2% [3], 78.1% [4], and 85.9% [32] and 90.90%
[5] followed by cough 73.5% [3], 68.4% [4], 75% [32] and 90.90% [5]. Third,
shortness breath is observed for 57.6% [3], 66.1% [4], and 60.7% [32] and
22.74% [5].

The main differences between these studies, leaving aside the number of
samples used, lies in the laboratory findings. [3] states high values of fer-
ritin (73.5%), lactate dehydrogenase (73.9%), and D-dimer (63.8%) as well as
lymphopenia (52.8%) were frequent. [5] also reports a low number of lymph-
ocytes, leucocytes and elevated LDH values in addition to thrombocytopenia.
[32] observe patterns similar to ours, laboratory tests show that leucoytes,
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CRP, LDH, hsc-TnI, and D-dimer are higher in non-survivors. After 14 days
in ICU, paFi and lymphocyte count steadily improve in survivors and remain
low in non-survivors. In comparison, hs-CRP and LDH levels significantly
decrease in survivors but remain higher in non-survivors. D-dimer and hsc-
TnI levels are relatively stable, but significantly higher in non-survivors than
survivors [32].

Regarding mechanical ventilation, [4] reports that 28.1% of patients used
IMV and 21.4% required vasopressors. However, the percentages shown in [32]
are higher, it is stated that 52.9% patients required NIMV, 41.9% IMV and
40.4% required vasopressors. These values are considerably lower than those
shown in this study. In our case, there is a higher tendency for patients to
receive IMV instead of NIMV for both events and require vasopressors (66.52%
for ICU and 68.76% for third day of ICU). As expected, the most common
treatments across the studies are antibiotics and antivirals.

With regard to mortality, the percentages change across countries taking
into account patients only from the first wave. In our study, the percentage
of non-survivors corresponds to 38.85% while [4] (carried out in the north of
France) reports 11% and [3] (carried out in Spain) reports 21%, being those
older than 80 years those who die in higher proportion (46.0%) followed by
those over 70-79 (26.9 %).

In conclusion, we can confirm that the most common comorbidities, symp-
toms and treatments remain the same between countries but there are dif-
ferences in the clinical biomarkers, the durations of IMV, NIMV, and the
resulting mortality rates.
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Chapter 6

Survival Analysis

Survival analysis can be defined as the methodologies used to explore the
time it takes for an event to take place. It involves the consideration of the
following variables:

• Time of origin: time at which patient follow-up begins.

• Time of event: time at which the event occurs.

• Time to event: difference between time of event and time of origin, also
called failure time, survival time, or event time.

• Event: e.g., death, failure, etc.

Unlike regression, in which we have a continuous outcome, and classifica-
tion in which we have a set of discrete labels, in survival analysis the outcome
is associated with both the event and the time value. The fact that the time to
event does not follow a normal distribution and that the time to event may be
unclear for some of the subjects, makes conventional methods unsuitable for
this type of data. The survival time response may be incompletely determined
for some subjects, those subjects are called censored subjects. Essentially, cen-
soring is present when we do not know the exact event time for that subject.
As it is pointed out in [33], there are three main reasons why this happens:
individual does not experience the event when the study is over (i.e., surviv-
ors), he/she is lost to follow-up during the study period. or withdrawn from
the study.

According to that, there are three types of censoring:

• Right censoring: the most common censoring, the survival time is in-
complete at the right side of the follow-up. In other words, it is known
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that patients survived up to the time they withdrew, but we do not know
the exact survival time. This happens for those subjects that did not
experience the event by the end of the study or that withdrew before
the study ended. The true patient survival time in right censoring will
be always equal or greater than the observed survival time.

• Left censoring: the subject experiences the event before the study starts
but we do not know when. In that case, patient survival time is less than
or equal to the observed survival time.

• Interval censoring: the subject experiences the event between two mo-
ments of time inside the study but we do not know exactly when the
interval starts or ends.

These phenomena are exemplified in Figure 6.1 in which we can observe two
patients left-censored (in green) and two right-censored (in blue).

Figure 6.1: Types of censoring [34]

Survival data is generally modelled in terms of two related functions: sur-
vival and hazard. In [33], the authors describe that the survival probability,
also called the survivor function S(t), as the probability that an individual
survives from the time origin (e.g. diagnosis of cancer) to a specified future
time t.

S(t)= P (T > t)
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The hazard is usually denoted by h(t) or l(t) and is the probability that an
individual who is under observation at a time t has an event at that time. In
other words, it represents the instantaneous event rate or potential risk for an
individual who has already survived to time t to experience the event in t.

h(t) = lim∆t→∞
P (t≤T<t+∆t|T≥t)

∆t = f(t)
S(t)

If we pay attention to the hazards formula, we can observe that if either
S(t) or h(t) is known, the other can be determined automatically. However,
there is no simple method to estimate h(t) directly. Instead, h(t) is estimated
using other measures such as the cumulative hazard H(t). This can be defined
as the integral of the hazard, or the area under the hazard function between
times 0 and t. According to [33], it could be interpreted as the cumulative
force of mortality, or the number of events that would be expected for each
individual by time t if the event were a repeatable process.

In summary, survival probabilities allow us to know the probability for an
observation to survive longer than a certain time t, which allow in turn to
describe the survival experience of a study cohort. In contrast to the survivor
function, the hazard function provides insight into the conditional failure rates
and provides a vehicle for specifying a survival model. Actually both have
opposite meanings, survivor function focuses on not having the event while
hazard function focuses on the event occurring.

6.0.1 Models
6.0.1.1 Kaplan-Meier Estimator

The Kaplan-Meier estimate is the simplest way of computing the survival
probabilities over time from observed survival times [35], for both censored
and uncensored observations. The survival curve is defined as the probability
of surviving in a given length of time while considering time in many small
intervals [36].

To properly use the Kaplan-Meier estimator three assumptions must be
met. In the first place, it is assumed that at any time patients who are censored
have the same survival prospects as those who continue to be followed. This
assumption cannot easily be tested and when it is, it may not be true for all
censored patients. In practice, if the percentage for those censored in which
the first assumption is not fulfilled is low, this violation will induce only a very
limited bias in the survival probability and thus a assumable bias. In [37] they
use Kaplan-Meier estimator to examine all-cause mortality in patients starting
renal replacement therapy (RRT) and in the context of patient censorship,
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patients were censored at the time of recovery of renal function. Since these
patients may be healthier, they may have better survival prospects than the
patients still in the study. However, as only 1.3% of the study participants
recovered renal function, this unfulfillment will induce a very small bias in the
survival probability on RRT estimates.

Another important assumption for censoring is that the survival probabil-
ities should be the same for patients who were recruited early and patients who
were recruited late during the study period. This assumption can be tested by
comparing the survival curves for patients who were recruited early and those
who were recruited late. If survival curves are similar then it can be concluded
that the assumption is fulfilled.

Thirdly, it is assumed that the event happens at the time specified. This
creates a problem in some conditions when the event would be detected at a
regular examination [35]. For this reason, survival can be better estimated if
the time intervals for which data are available are shorter.

As it is shown in the next formula, for each time interval, survival probab-
ility is calculated as the number of subjects surviving divided by the number
of patients at risk.

St = Number of subjects living at start−Number of subjects died
Number of subjects living at the start

Later, to compare survival curves between groups the log-rank test can
be used. This statistic allows to test whether those curves are statistically
different or not. However, it does not allow to test the effect of the other inde-
pendent variables reason for which is considered as an example of univariate
analysis. They describe the survival according to one factor under investiga-
tion, but ignore the impact of any others. Additionally, Kaplan-Meier curves
and logrank tests are useful only when the predictor variable is categorical but
they do not work easily for quantitative predictors such as gene expression,
weight, or age.

6.0.1.2 Cox’s proportional hazard regression (CoxPH)

An alternative method to Kaplan-Meier estimator is the Cox proportional
hazards regression analysis, developed in 1972, this model is still one of the
most important methods used for modelling survival analysis data. Unlike
the previous model, Cox regression model works for both quantitative pre-
dictor variables and for categorical variables. Furthermore, it extends survival
analysis methods to assess simultaneously the effect of several risk factors on
survival time.
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The purpose of this model is to evaluate simultaneously the effect of several
factors on survival. In other words, it allows us to examine how specified
factors influence the rate of a particular event happening (e.g., infection, death)
at a particular point in time. This rate is commonly referred as the hazard
rate and predictor variables called covariates.

The Cox model is expressed by the hazard function denoted by h(t). It
can be estimated as follow:

h(t) = h0(t) ∗ exp(b1x1 + b2x2 + ...+ bpxp)

where t represents the survival time, the coefficients (b1, b2, ..., bp) measure
the impact of covariates and the h0 that is the baseline hazard. It corresponds
to the value of the hazard if all the covariates xi are equal to zero. The
quantities exp(bi) are called hazard ratios (HR). If the value of the coefficient
is greater than zero, or equivalently a hazard ratio greater than one, this
indicates that as the value of the ith covariate increases, the event hazard
increases and thus the length of survival decreases. Put another way, a hazard
ratio above 1 indicates a covariate that is positively associated with the event
probability, and thus negatively associated with the length of survival. This
is why, usually a HR greater than 1 is called a bad prognostic factor.

A key assumption of the Cox model is that the hazard curves for the groups
of observations (or patients) should be proportional and cannot cross [38].
Consequently, the Cox model is a proportional-hazards model: the hazard of
the event in any group is a constant multiple of the hazard in any other. This
assumption implies that, as mentioned above, the hazard curves for the groups
should be proportional and cannot cross. If an individual has a risk of death
at some initial time that is twice as high as that of another individual, then
at all later times the risk of death remains twice as high.

These assumptions should be tested prior to application of Cox regression
analysis routinely. One possible way to test it by using the examination of the
Kaplan–Meier curves. If there is a crossing of the Kaplan–Meier curves of the
two groups or the curve of one arm drops down, while the other plateaus then
there is a violation of the assumption [39]. Another possible way is to use the
Scaled Schoenfeld residuals, statistical tests and graphical displays that check
the proportional hazard assumption [39].

The evaluation of the proportional hazards assumption is essential since its
violation raises questions regarding the validity of Cox model results which,
if unrecognized, could result in the publication of erroneous scientific findings
[40]. Although others argue that checking this assumption is only necessary
if your goal is inference or correlation. Lifelines documentation mentions that
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if your goal is prediction, checking model assumptions is less important since
your goal is to maximize an accuracy metric, and not learn about how the
model is making that prediction.

6.0.1.3 Cox’s time varying proportional hazard model

In [41], the authors defend that in those situations in which the proportional
hazards assumption of the Cox regression model does not hold, the effect of the
covariate is then time-varying. In other words, the fact that the null hypothesis
is rejected induces the use of time varying coefficient to describe the data. In
order to identify time-varying coefficients, we should test the proportional
hazards assumption after fitting a Cox proportional hazard model.

Having covariates that change over time during the follow-up period is a
common phenomenon in clinical research. For example, the effect of smoking
on cancer risk has been extensively studied. However, the smoking status
is ever changing during the follow up period [42]. Such a covariate can be
considered as a time-varying covariate.

Time-varying covariates can be classified as either internal or external. The
first to carry out this distinction were [43]. They define an external covariate
such as the one that is not directly related to the failure mechanism. For
instance, the age of an individual in a long-term follow-up study is considered
an external covariate. On the other hand, an internal covariate is a value over
time generated by the individual under study. An internal covariate is for
example the procedural history of a patient and the variables measured in a
test result. This classification is helpful in interpreting the regression models
and results for time-dependent covariates.

The key assumption of including time-varying covariates is that its effect
does not depend on time. Time-variant features should be used when it is
hypothesized that the predicted hazard depends significantly on later values
of the covariate than the value of the covariate at the baseline.To introduce
time-varying covariates, the Cox proportional hazard model is extended. The
general mathematical description is:

h(t|x) = h0(t)exp(∑n
i=1 βi(xi(t)− x̄i))

Note that now, covariates are described using a parametric time function
xi to indicate that they change over time. One way to indicate the different
values that a time-varying covariate may have during the follow-up is to use a
step function. The idea of this method is to split the analysis time into several
intervals. The most common approach to indicate the beginning and ending
of each interval in the dataset is to use two additional columns start and stop.
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This pre-processing step is also known as transforming the dataset into “long”
format.

6.0.1.4 NonLinear CoxPH: DeepSurv model

Cox’s proportional hazards model described above is a linear model. This
model estimates the log-risk function b1x1 + b2x2 + ... + bpxp, also known as
risk score as a linear combination of features, i.e., using a linear function.
This makes cox models unsuitable for analyzing high-dimensional data, low-
sample size data and highly non-linear relationship between covariates. The
high-dimensional data often result in, either training infeasible or overfitting
of the training dataset [44].

Deep learning-based survival analysis has been highlighted due to its cap-
ability to identify nonlinear prognostic factors, higher predictive performance
and flexible model design [45]. One of the common approaches to build deep
learning models for survival analysis is the adaptation of the Cox proportional
hazard assumption. For that, those models incorporate a standard Cox-PH
model as an output layer. This approach was originally proposed by [46] in
1995. Although, they focused their study on multilayer perceptrons, further
research is paying attention to more advanced architectures such as convolu-
tional neural networks and recurrent neural networks.

In the context of DeepSurv [47], the model consists of a deep feed-forward
neural network which predicts the log-risk function. This function is paramet-
erized by the weights of the network. The observed covariates are feed into the
model as input features. The hidden layers of the network consist of a fully
connected layer of nodes, followed by a dropout layer. Finally, the output layer
has one node with linear activation, which estimates the log-risk function in
the Cox model.

The promising results shown in [47] demonstrate that DeepSurv achieves
competitive performance, compared to standard Cox-PH alone and random
survival forests. With further research dedicated to this direction, deep learn-
ing survival approaches has the potential to substitute traditional survival
analysis methods for medical researchers to study and predict the effects of
patient’s covariates on their risk of failure.

6.0.1.5 Random Survival Forest

A random survival forest (RSF) is an assemble of trees method for analysis
of right censored time-to-event data.This method estimates cumulative hazard
function (CHF) by averaging the Nelson-Aalen cumulative hazard function of
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each tree [48]. The idea is based on the principle of conservation of events for
survival trees, this means that the sum of the estimated CHF over observed
time (both censored and uncensored) equals the total number of deaths in
fairly and general conditions. Under this principle, a new outcome variable
called ensemble mortality is defined. As mentioned before, ensemble mortality
is the expected total number of deaths computed by the forest predicted value
for the CHF. The principle of conservation of events is applied to a wide
collection of estimators, including the Nelson–Aalen estimator.

The algorithm draws in the first place, B bootstrap samples of the same size
from the original data. Note that each bootstrap sample excludes on average
37% of the data, called out-of-bag data (OOB data). Similar to CART, survival
trees are binary trees grown by recursive splitting of tree nodes. A good split
for a node maximizes survival difference between daughters. The best split for
a node is found by searching over all possible x variables and split values c, and
choosing that x∗ and c∗ that maximizes survival difference. By maximizing
survival difference, the tree pushes dissimilar cases apart. Eventually, as the
number of nodes increase, and dissimilar cases become separated, each node in
the tree becomes homogeneous and is populated by cases with similar survival.
Previous described impurity measure is known as the log-rank score split-rule.

This process is repeated until a stopping criterion is met. Eventually the
survival tree reaches a saturation point when no new daughters can be formed
because of the criterion that each node must contain a minimum of prespecified
number of deaths. The most extreme nodes in a saturated tree are called
terminal nodes.

Once the tree is built, a cumulative hazard function (CHF) is computed
for each tree using the Nelson-Aalen estimator.

Ĥh(t) = ∑
tl,h≤t

dl,h
Yl,h

where dl,h and Yl,h are the number of death and individuals at risk at time
point tl,h. Thus, all observations within the same node have the same CHF.
The ensemble CHF is computed averaging over all CHFs for the B trees. At
the end, the prediction error for the ensemble CHF is computed using OOB
data.

Clearly, it can be seen that this method is nothing else than an extension
of classification and regression trees and random forests (RF) for time-to-event
data. One of the main advantages of using random survival forest is flexibility
and ease of dealing of high dimensional covariate data. On the other hand,
it presents the common drawbacks of random forests including a bias towards
inclusion of variables with many split points. This effect leads to a bias in
resulting summary estimates such as variable importance [49].
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6.0.1.6 Conditional Survival Forest

The Conditional Survival Forest model was developed by [50] in 2017 to
improve the Random Survival Forest performance. As just mentioned in the
previous model, split variable selection of Random Survival Forests favors splits
for covariates with many possible split points. If the split variable selection is
biased, other parameter estimates, such as variable importance measures are
biased as well. Thus, predictions could also suffer from the underestimation of
important variables with few categories. This increases the need for unbiased
split variable selection.

An approach to avoid split variable selection bias are Conditional inference
forests (CIF) [51]. CIF are known to correct the bias in RSF models by
separating the procedurefor the best covariate to split on from that of the best
split point search for the selected covariate. To determine the optimal split
variable an association test is conducted. In particular, a linear rank test is
used based on the log-rank transformation (log-rank scores). If the association
is found to be significant, the covariate with minimal p-value is selected for
splitting. If no significant association is found, no split is conducted.

However, linear rank statistics cannot detect non-linear effects in the inde-
pendent variables. In [50], the authors present an alternative to use maximally
selected rank statistics for the split point selection instead of default linear
rank test to reduce split variable selection bias. Roughly, the skeleton of the
algorithm in general follows the same procedure as RSFs and uses the CIF
two-step procedure to split nodes with the difference that initially the optimal
binary split is determined as in standard random forests, but an adjustment
for multiple possible splits is performed through the use of maximally selected
rank statistics. In contrast to CIF, they use [?] approach to adjust for multiple
testing and to decide whether tree growing should be stopped.

6.0.1.7 Extremely Randomized (Extra) Survival Trees

The high variance of decision and regression tree splits of previous work
motivate the authors of [52] in 2005 to perform a bias/variance analysis to
investigate whether higher randomization levels could improve accuracy with
respect to existing ensemble methods.

The Extra Survival Trees model is an extension of the Extremely Ran-
domized trees model, introduced by [52]. They propose a new tree algorithm
that selects splits, both attribute and cut-point, total or partially at random
independently of the target variable. Unlike other ensemble methods, they use
the whole learning sample (rather than a bootstrap replica) to grow the trees.
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For a given numerical attribute x, selects its cut-point fully at random using
Nsplits values drawn from a uniform distribution over the interval [min(x),max(x)].
At each tree node, this is combined with a random choice of a certain number
of attributes among which the best one is determined. In the extreme case,
the method randomly picks a single attribute and cut-point at each node, and
hence builds totally randomized trees. Although they also propose a way to
select random splits for categorical attributes, the authors focus mainly on the
study of this randomization idea in the context of numerical attributes only.

6.0.1.8 Linear SVM

Survival Support Vector Machines are an extension of the standard Sup-
port Vector Machine applied to right-censored time-to-event data. Its main
advantage is that it can account for complex, non-linear relationships between
features and survival via the so-called kernel trick. A kernel function implicitly
maps the input features into high-dimensional feature spaces where survival
can be described by a hyperplane.

Initially, survival analysis in the context of Support Vector Machines was
described as a ranking problem. [53] developed the Rank Support Vector Ma-
chines (RankSVMs) in which the model learnt to assign samples with shorter
survival times a lower rank by considering all possible pairs of samples in the
training data. The idea behind formulating the survival problem as a rank-
ing problem is that in some applications, like clinical applications, one is only
interested in defining risks groups, and not the prediction of the survival time.

Few years later, [54] design a straightforward algorithm to efficiently use
the primal formulation, by computing a convex quadratic loss function. In
that way, Newton optimization can be used it to minimize the loss function.
In addition, they extended the same optimization for non-linear models.

min Lp = 1
2‖w‖

2 −∑l
i=1 aiyi(xiůw + b) + ∑l

i=1 ai
s.t ∀i ai ≥ 0

6.0.1.9 Survival Analysis in the presence of competing events

A competing event is one that precludes the occurrence of the event of
interest. They compete with each other to deliver the event of interest, and
the occurrence of one type of event will prevent the occurrence of the others.

For example, in a survival study where primary outcome is death by car-
diovascular causes, death by noncardiovascular causes is a competing risk.
Regardless of how long the duration of follow-up is extended, a subject will
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not be observed to die of cardiovascular causes once he or she has died for
noncardiovascular causes [55].

Conventional statistical methods for the analysis of survival data assume
that competing risks are absent. In fact, if a patient experiences a competing
event, standard survival analysis methods treat that patient as censored for
the outcome of interest. The event time is unobserved for censored subjects,
hence the statistical analysis will proceed without knowledge of the event time
for those subjects. All that is known is that their event time occurred after
the time at which they were censored.

Conventional statistical methods for the analysis of survival data make the
important assumption of independent or noninformative censoring This means
that, at any given time, subjects who remain in follow-up have the same future
risk of the event occurring as subjects who are no longer followed either by
censoring or by dropping out of the study [55].

Censoring subjects which have experienced an competing event may be
problematic. In the first place, this may violate the assumption of noninform-
ative censoring. Those subjects that are still alive may not be able to represent
those subjects that have been censored. In addition, censoring subjects which
have experienced an competing event may lead to interpret incorrect event
probabilities (relevant in many practical applications.) since they were not
censored in the original environment.

As a result, conventional methods such as Kaplan-Meier estimator and
Cox proportional hazards model lead to biased results. In particular, in [56]
they observed that Kaplan-Meier curves overestimate the incidence of the out-
come over time and Cox models inflate the relative differences between groups,
resulting in biased hazard ratios in the presence of the competing events.

Cumulative Incidence Function (CIF) One of the most popular altern-
ative approaches to analyze competing event data is called the Cumulative
Incidence Function (CIF). This method estimates the incidence of each of the
different types of competing risks. The incidence for each competing event is
measured in terms of its marginal probability. Marginal probability is defined
as the probability of subjects who actually developed the event of interest, re-
gardless of whether they were censored or failed from other competing events.

CIFc(tf ) = ∑f
f ′=1 Îc(tf ) = ∑f

f ′=1 Ŝ(tf ′−1)× ĥc(tf ′)

where Ŝ(tf ′−1) denotes the estimate of overall probability of surviving at
previous time tf−1. Overall survival is taken into consideration because we
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need to ensure that a subject must have survived all other competing events
in order to fail from event type c at time tf .

ĥc(tf ′) = mcf
nf

represents the estimate of hazard at ordered failure time tf
for event-type of interest c also called cause-specific hazard. mcf denotes the
number of events for risk c at time tf and nf is the number of subjects at that
time.

Îc(tf ) denotes the probability of failing from the event type c at time tf
represented by the product of surviving the previous time periods and the
cause specific hazard at time tf . At the end, the CIF for event type c at time
tf is then the cumulative sum up of all the incidence probabilities of event
type c of all previous time until tf .

Cause-specific hazard model Cause-specific hazard models are used to
separately estimate the failure rate for each one of competing events. More
precisely, it denotes the instantaneous rate of occurrence of the c event in
subjects who are currently event free (i.e., in subjects who have not yet exper-
ienced any of the different types of events). The Cause-specific hazard function
for event type c can be expressed as:

hc(t) = lim∆t→0
P (t≤Tc<t+∆t|Tc≥t)

∆t

Tc indicates the time to failure from event type c. Each hazard ratio repres-
ents the instantaneous relative risk of an event of interest in the presence of the
covariate (e.g., the ratio of the hazard rates corresponding to the conditions
described by two different levels of an explanatory variable, all other covariates
being equal). However, this hazard ratio cannot be directly translated to the
cumulative incidence function which is clinically relevant and may provide use-
ful information to researchers. The Fine-Gray model addresses this issue and
has the advantage that the cumulative incidence of the event of interest has
a direct link with the estimated sub-distribution hazard, and thus regression
coefficients quantify the direct effects of covariates on the cumulative incid-
ence [41]. Instead, cause-specific hazard models may be more appropriate for
addressing questions about the causes or origins of a disease [55].

Fine-Gray Subdistribution hazard model Fine and Gray (1999) pro-
posed a proportional hazards model to estimate the effect of covariates on the
cumulative incidence function for the event of interest treating the CIF curve
as a subdistribution function. The Fine and Gray subdistribution hazard func-
tion for event type c can be expressed as:
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hc,CIF (t) = lim∆t→0
Pr(t<Tc<t+∆t|Tc>t ∪ Tc′≤t,c′ 6=c)

∆t

It denotes the instantaneous risk of failure from the c event in subjects
who have not yet experienced an event of type c. Note that this risk set
includes those who are currently event free as well as those who have previously
experienced a competing event. This differs from the risk set for the cause-
specific hazard function, which only includes those who are currently event
free.

Using the same example as above, the subdistribution hazard of cardiovas-
cular death denotes the instantaneous rate of cardiovascular death in subjects
who are still alive (i.e., who have not yet experienced either event) or who
have previously died of noncardiovascular causes.

6.0.2 Performance metrics
6.0.2.1 C-index

The concordance index or C-index is a goodness of fit measure to evaluate
the global discrimination power of a survival model. In other words, it meas-
ures the model’s ability to correctly provide a reliable ranking of the survival
times based on the individual risk scores where data may be censored. It is
computed from the risk scores and times-to-event data of pairs of subjects.
The intuition behind the formula is the following:

C-index = # concordant pairs
# concordant pairs + # discordant pairs

Given a pair of non-censored subjects (i, j), it is a concordant pair if:
ηi > ηj and Ti < Tj. It is consider a discordant pair if ηi > ηj and Ti > Tj.
If one of Ti and Tj is censored, the subject that is not censored is observed.
For instance, if Tj is censored, if Tj < Ti the pair is discarded since it can not
be established which subject got the disease first. Otherwise, if Tj > Ti, then
we can inspect risk score condition as before. In the case that both subjects
are censored, the pair is discarded. This logic is represented in the following
formula:

C-index =
∑

i,j
1Tj<Ti ·1ηj>ηi ·δj∑
i,j

1Tj<Ti ·δj

where ηi is the risk score of the subject i.

• 1Tj<Ti = 1 if Tj < Ti else 0
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• 1ηj>ηi = 1 if ηj > ηi else 0

A C-index=1 corresponds to the best model prediction, C-index=0.5 rep-
resents a random prediction and C-index=0 means that the model does not
have discrimination power at all.

6.0.2.2 Brier score

The Brier score is a measure used to evaluate the accuracy of a predicted
survival function at a given time t for binary outcome events. It is represented
by the average squared distances between the observed survival status and the
predicted survival probability.

BS = 1
N

∑N
t=1(ft − ot)2

where N is the total number of subjects, ft is the predicted probability
value for time t and ot is the value of the outcome event.

The output score is always a number between 0 and 1, with 0 being the
best possible value. In terms of benchmarks, a useful model will have a Brier
score below 0.25.

6.0.3 Approaches
Survival analysis has the purpose of analyzing in-hospital mortality in or-

der to estimate and interpret survival and hazard functions from the survival
data and to assess the relationship of explanatory variables to survival time.
In-hospital mortality is derived from general hospital mortality. Registered
mortality can have five values: hospital discharge alive, exitus lethalis, trans-
ferred to another hospital, transferred to a health center, or unknown (this
patients are discarded in the current study). For those patients that have
been transferred, they are consider alive if and only if the center to which
they have been transferred is less complex. In other words, the patient has
improved and does not need to stay in the hospital but should continue to be
under regular medical supervision. On the contrary, those patients for whom
this cannot be assured are considered non-analyzable and therefore excluded
from the study. Fortunately, this phenomenon is observed in less than 8% of
total patients.

Prior to the analysis, a feature analysis has been carried out using survival
forests. The results of the feature analysis can be seen in 7. Two ways to
proceed have been defined, they are named approach A and approach B and
are defined below:
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Approach A First, this approach classifies patients between survivors and
non-survivors through the use of linear classifiers. Then, survival models are
developed only with non-surviving patients (443) modeling the hospital death
event and using time in hospital as a time to event column. In this case,
the survival function is only examined for non-surviving patients. The whole
process is depicted in Figure 6.2.

Figure 6.2: Pipeline of approach A

Approach B This procedure works in reverse of the previous one. Survival
models are first defined with all patients using ICU discharge as event and
time in ICU as time to event column. Afterwards, it is determined whether
the ICU discharge was motivated by an improvement or by death using linear
classifiers. Those classifiers receive as input the survival probabilities com-
puted by survival models apart from receiving patient history. The reason
why it was decided to model the ICU discharge event is to be able to use the
information of all the patients instead of using only non-survivors. Since all
patients are discharged from ICU for one reason or another, we can use all of
them as input for the survival model. The pipeline of this approach can be
seen in Figure 6.3.
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Figure 6.3: Pipeline of approach B

In addition to traditional survival models, competitive risk models have
also been used. The fact that leaving ICU due to improvement constitutes a
competitive event since it makes it impossible to leave the ICU due to death,
makes the use of models for competitive risks convenient.

Figure 6.4: Pipeline of approach B using competing risk survival models

Other analyses and methods In a exploratory fashion, this research also
includes variantes of approaches A and B (excluding competitive risk models).
We ignore date and time variables in order to analyze whether it is possible
to obtain good performance using only variables available at the beginning of
ICU admission. Thus, variables such as alive28Days, time in ICU and time
in hospital are excluded when possible (they cannot be excluded if they act
as a time to event column). In contrast, variables that had not been used
in previous survival models but were used in the imputation of missing values
have been included. In addition, approaches A and B were replicated removing
correlated variables. For more information visit 7.

Additionally, previous work is also included using Cox’s proportional haz-
ards model, Cox’s time varying proportional hazards and non-linear Cox mod-
els. Nevertheless, they did not achieve clinically acceptable results. This led
us to consider the problem from another perspective.

The results of feature selection analysis along with those of survival ana-
lyses for each procedure are evaluated in depth in Chapter 7.
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Chapter 7

Results

In this section we present the results of the survival analysis. First we show
the results of the A (7.2) and B (7.3, 7.4) approaches and then previous and
complementary analyses. As mentioned in previous sections, before carrying
out any of these approaches, we have performed feature analysis using survival
forests. The importance of each feature is evaluated using Conditional Survival
Forest (CSF), Random Survival Forest (RSF) and Extra Survival Trees (EST).
The idea is to discover which set of features is better when describing the event
that we want to model as if it were dealing with a simple classification. The
importance of each variable is stored after training in a dictionary, that is a
default attribute of all survival forest models. The quality of the analysis is
then tested in the prediction task.

We decided to use survival forests in contrast to traditional machine learn-
ing techniques to be able to analyze survival with sets of features different
from those obtained in 4.1.8. In addition these methods designed especially
for survival data, have advantages over common problems such as overfitting,
inflated standard errors and convergence problems.

Although they have several attributes to customize, we have only experi-
mented with the number of features randomly chosen at each split (max features).
The reason for this is that inspecting the effect that each of the attributes have
on the quality of the feature selection is not part of the objectives of this pro-
ject.

To evaluate the results of feature and survival analysis, the concordance
index and brier score metrics previously presented in 6.0.2 are used on the test-
ing dataset. Linear classifiers have been assessed using 10-fold cross validation
and evaluated using the accuracy, precision, recall and f1-score metrics. As
linear classifiers we have used SVM (linear and kernel based when convenient),
logistic regression and perceptron.
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The implementations of these ensemble models and those used in survival
analysis have been extracted from the PySurvival [30] and lifelines [57] library
while Sklearn[29] library has been used to test the linear classifications.

7.1 Variable selection
Before the implementation of feature selection and approaches A and B, a

specific subset of variables was first defined from which later the final selec-
tion is then carried out using survival forests. In the tables 7.1, 7.2 the list
of variables from which the survival analysis starts is shown. This selection
has been chosen by medical professionals based on the clinical weight of the
variables and risk indicators demonstrated in other studies. Some variables
were eliminated becaus they were not clinically relevant or because they were
variables that were collected only in few hospitals.

Topic Metrics

Complications

pneumotorax, pleural effusion, organizing
pneumonia, pulmonary embolism, cardiac arrest,
bacteremia, ictus, dic, chronic kidney disease,
hepatic dysfunction, hemorrhage, hyperglycemia,
hypoglycemia, lung coinfection

Outcomes

outcome simplified (alive or death)
exitus date, outcome (hospital discharge
alive, exitus lethalis, transferred to another
hospital, transferred to a social health center,
unknown), alive28Days

Table 7.2: Initial features selected for survival analysis of adults admitted with
COVID-19 [1/2]
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Topic Metrics
Patient characteristics age, gender

Previous Medication
aceInhibitors, arb, beta blockers, calcium
channel blockers, diuretics, statins,
streptococcus vaccine, flu vaccine

Comorbidities

hypertension, obesity, diabetes, hema-
tological comorbidities, renal chronic
disease, asthma, hiv, heart chronic
disease, pulmonar chronic
disease, dementia, severe hepatic
disease

Laboratories
(only ICU and 3rd day ICU)

il6, requirement of vasopressors,
requirement of ECMO, breathing rate,
heart rate, temperature, HCO3, prothrombin
time, total bilirubin, ALT, AST, troponin-I,
troponin-T, NT-proBNP, paCO2, LDH,
leucocytes, creatinine, lymphocytes, CRP,
procalcitonin, lactate, D-dimer, ferritin,
urea, platelets, glucose, immunodeficiency

Mechanical Ventilation
(only ICU and 3rd day ICU)

ventilatory ratio, ventilatory ratio modified,
IMV requirement, NIMV requirement,
compliance, paFi, oxygen saturation,
previous respiratory support, RASS,
SAS, driving pressure, plateau pressure
PEEP pressure

Hospital Course

hospital, symptoms start date, hospital
admission date, discharge date, time in
hospital, ICU admission date, ICU discharge
date, time in ICU, start date of IMV end
date of IMV, time receiving IMV, time
between hospital admission, symptoms
start date

Complementary Therapies prono position needed, recruitment
manouvers, neuromuscular blockers

Treatments
corticosteroids, antibiotics, lopinavir/
ritonavir, hidroxicloroquina,
tocilizumab, interferon beta

Table 7.1: Initial features selected for survival analysis of adults admitted with
COVID-19 [2/2]
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7.2 Approach A
In this approach we use the time in hospital and the rest of the variables

to model in-hospital death. We have 433 non-surviving patients, 80% (348)
of which are used for training and the remaining 20% (88) for testing survival
forest models. In feature selection, for each survival forest we try three different
configurations for the variable max features where N is the total number of
variables, in each split we can consider taking into account:

√
N , log2(N) or

N features. Other parameters such as the number of trees (num trees = 100)
used or the split criterion (importance mode = impurity corrected) are kept
constant for all trees.

In Table 7.3, feature selection results are shown. For each survival forest
and classification performance, results are shown according to concordance
index and brier score. The methods are listed in ascending order according
to the concordance index. It is observed that C-index is higher than 0.5 for
all the trees. Recall that the higher the value of this index, the greater the
discriminatory power of the model, with 1 being the perfect discriminatory
power. Based on this, we can affirm that all models are good at differentiating
between high and low risk patients.

Brier score values are also acceptable: they are less than 0.25. A Brier
score of 0 reflects perfect accuracy (i.e., there is no difference between event
scores (in this case in-hospital death) and someone’s probabilistic predictions
for those events), and a Brier score of 1 reflects perfect inaccuracy (i.e., events
that not occur receives probabilities of 1 while events that do occur receives
probabilities of 0).

Generally, methods with max features = all perform better. This may be
due to the fact that all features are taken into account at the time of split while
using other settings, important features can be omitted. Regarding the selec-
tion of features for log2 or sqrt, no performance differences are observed. The
best results are achieved by CSF and RSF (C-index=0.90, Brier score=0.03).

The variables that appear in the top 5 of most methods are: time in IMV
(9/9) time in ICU (7/9), alive28days (7/9) infection complications lungs (6/9)
and bacteremia (5/9). The feature set provided by CSF (max features = all)
has been chosen for survival analysis, shown in Table 7.4. The variables in the
table do not follow any particular order. Among the variables with import-
ance, none belonging to patient characteristics, treatments or complementary
therapies have been selected. The hypothesis that is considered that could be
the cause of this phenomena is that the variables at the top are sufficiently
descriptive. This is the case of alive28Days, which indicates whether a patient
has remained 28 days alive. This variable has been removed from the selection
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method C-index brier score
CSF (max features = all) 0.90 0.03
RSF (max features = all) 0.90 0.03
EST (max features = all) 0.89 0.04
RSF (max features = sqrt) 0.86 0.06
RSF (max features = log 2) 0.85 0.06
CSF (max features = sqrt) 0.84 0.06
EST (max features = log 2) 0.80 0.07
EST (max features = sqrt) 0.79 0.06
CSF (max features = log 2) 0.79 0.07

Table 7.3: Feature selection results for approach A

because it has a high correlation with the in-hospital death event variable,
since excepting 17.46% of patients, the rest have not survived the 28 days.

7.2.0.1 Classification according to survival

Once the features have been selected, the next step is to train several linear
classifiers to predict whether a patient will survive or not based on the set of
features. From the 1,140 patients, four different classifiers have been trained
and subsequently validated using 10-fold cross validation. The best model
has been selected based on the f1-score. For each algorithm, in Table 7.5
we show the precision, recall, f1-score and accuracy metrics. Although the
four algorithms obtain similar accuracy-based performances, the sensitivity is
slightly worse for logistic regression and perceptron.

In order to fully understand the particularities of each classifier and to
know which features have been most relevant when classifying patients between
survivors and non-survivors, methods from the ELI5 library [58] have been
used for explainability purposes.

The methods available for lineal classifiers consist of explaining the weights
of the variables in the algorithm and in specific predictions. Figures 10.123,
10.125 and 10.124 show the resulting weights for lineal SVM, logistic regres-
sion and perceptron respectively. Weights can be either positive or negative
according to it’s sign. Positive values correlate with growing chance of classify-
ing as positive class (non-survivors), and negative ones with chance becoming
negative samples (survivors). In other words, the sign of the feature shows
towards which class a feature is more correlated to. The feature that appears
as ¡BIAS¿ refers to the intercept term. It determines where the separation line
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Topic Metrics
Patient characteristics -

Previous Medication
statins, flu vaccine, beta blockers,
interferon beta, diuretics, ACE
inhibitors

Comorbidities hematological disease, obesity, renal chronic
disease

Laboratories
(only ICU and 3rd day ICU)

CRP (ICU, 3r day), septic shock (ICU),
platelets (ICU), SOFA (3r day), glucose
(ICU), leucocytes (3r day), lymphocytes
(ICU), lactate (ICU), creatinine
(ICU, 3r day), procalcitonin (ICU)

Mechanical Ventilation
(only ICU and 3rd day ICU)

ventilatory ratio (ICU, 3rd day), previous
respiratory support (non-invasive venti-
lation helmet), paFi (3r day), oxygen
saturation (ICU)

Hospital Course

time in ICU, time in IVM, days between
hospital admission and symptoms started,
ICU and IMV
times equal

Complementary Therapies -
Treatments -

Complications bacteremia, pneumotorax, infectious
complications: lungs, hemorrhage

Outcomes alive28Days

Table 7.4: Feature set provided by CSF (max features = all)
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method class precision recall f1-score accuracy

SVM linear kernel no-survivor 0.97 0.94 0.95 0.96survivor 0.95 0.98 0.96

SVM RBF kernel no-survivor 0.95 0.93 0.94 0.95survivor 0.95 0.96 0.96

logistic regression no-survivor 0.97 0.89 0.93 0.95survivor 0.94 0.98 0.96

perceptron no-survivor 0.93 0.88 0.91 0.94survivor 0.95 0.97 0.96

Table 7.5: Performance of lineal classifiers in approach A

intercepts the y-axis, although it can also be seen as the offset that is added to
all predictions (reason for which is called bias in the machine learning field).

In general, we observe that the features showing higher correlations for non-
survivors are equal ICU IMV times, complications (renal chronic disease,
hemorrhage, pneumothorax, bacteremia), patient prognostic scores (SOFA
score on the 3rd day) and previous medication (statins). While for surviv-
ors we find laboratory variables (platelets, oxygen saturation and creatinine
for ICU event), obesity and BIAS.

These results show some behaviors already detected in the statistical ana-
lysis. The times in ICU and IMV are much longer for the survivors, the
complications reported by the classifiers present differences in important per-
centages and the sofa on the third day is higher for non-survivors. However, it
is not clear why statins appear at the top and another medication such as the
flu vaccine does not (also with a large percentage difference). Regarding the
survivors, obesity appears with a high correlation just after the BIAS. This
may be caused by the nature of the samples since it was observed that 36.49%
of the survivors were obese compared to 20.19% of non-survivors.

7.2.0.2 Survival analysis

Once we know if the patient in question is going to be part of the group of
non-survivors, the next thing we want to know is when that patient is going
to die. That is, the time that will elapse until the hospital death event takes
place.

Kaplan-Meier is one of the simplest methods for describing survival of a
study population and to compare two study populations. Together with the
Cox model, they constitute the conventional methods of survival analysis. Fig-
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ure 7.1 shows the percentage of survivor patients in each time step. This curve
indicates that after 16-18 days, the 50% of population has already experienced
the outcome event (in-hospital death) and that after 60 days the number of
survivors is close to 0. Time t0 represents the chance in survival right on the
first day of hospital admission.

Figure 7.1: Kaplan Meier survival curve for approach A

Apart from using Kaplan-Meier, we have used other survival models such
as Conditional Survival Forest (CSF), neural SVM, Cox Proportional Hazards
model (Standard CoxPH) and non-linear Cox. For non-linear Cox, we per-
formed several experiments with different hyperparameters (mainly activation
function, number of units and dropouts). However, the best performance was
achieved by a two-layer architecture with ReLu, 128 units per layer.

They were trained only with data from non-survivor patients, i.e., 348
patients for training and 88 for testing. In Table 7.6 we present the perform-
ance results of these models based on Concordance index and Brier score. All
the models present a fairly similar performance although the CSF once again
stands out with the best as we saw in the feature selection process.

The following 7.2, 7.3 and 7.4 Figures show the inferred survival curves
of the CSF, non-linear cox and Standard CoxPH models respectively for a
specific sample. The sample corresponds to a patient who died 20 days after
being admitted to the ICU. This is indicated by a vertical line at 20 days on
all charts.

The survival curves show for each time interval, in our case the number of
days hospitalized, the probability of survival. Although all curves may appear
to be the same at first glance, there are notable differences between them.
The CSF and non-linear Cox curves begin to decrease from approximately
the tenth day, while the Cox curve decreases already on the first day. This
places the patient at risk in advance. On the other hand, the slope of the
curve is much steeper for non-linear Cox, which leads to a much shorter life
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method C-index brier score

CSF (max features=’all’, num trees=200) 0.89 0.05

neural SVM 0.89 -

Standard CoxPH 0.87 0.04

non-linear Cox 0.86 0.04

Table 7.6: Performance of survival models in approach A

expectancy than in the other models. For CSF and Cox we observe that the
models stabilize from approximately 30-35 days while for non-linear this occurs
after 20 days. Taking this into account, the probabilities of survival for this
patient on day 20 are approximately 0.5 (CSF), 0.0 (non-linear Cox) and 0.25
(Standard CoxPH).

Figure 7.2: Sample survival curve produced by CSF
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Figure 7.3: Sample survival curve produced by non-linear Cox

Figure 7.4: Sample survival curve produced by CoxPH

In addition, the Cox model performs a multivariate regression shown in
Figures 7.5 and 7.6. For each feature, the Cox model computes the stat-
istical significance (z), the regression coefficients (coeff), the standard error
(std.err), upper and lower confidence intervals (lower ci, upper ci) and p-
values (chi squared test). The hazard ratios are shown in Table 7.7, significant
variables are in bold.
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Figure 7.5: Multivariable Cox [1/2]
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Figure 7.6: Multivariable Cox [2/2]

Among the statistically significant variables, we find CRP (ICU, 3rd ICU
day), SOFA score (3rd ICU day), presence of symptoms and lymphocytes
(ICU) associated with a higher risk of death, and platelets (ICU), glucose
(ICU), lactate (ICU) to a lesser extent. As variables associated with a good
prognosis we find timeInICU , timeInIMV , paFi (day3) and leukocytes (day3).
Longer times of hospitalization or IMV does not have a negative impact on
life expectancy and as paFi increases, it can be considered that the quality of
the patient’s breathing improves.

Recall that with a continuous variable, the hazard ratio indicates the
change in the risk of death if the parameter in question rises by one unit.
For example, for our model lymphocytes (ICU) has associated a HR of 1.228
and leukocytes (3rd ICU day) a HR of 0.872. For lymphocytes (ICU), given
one patient in the ICU for each unit that the lymphocytes increase, the higher
the risk of death is considered (HR > 1), specifically the risk is 22.8 %. While
for leukocytes (3rd ICU day) for each unit the risk of death decreases 12.8 %
(HR < 1). However, this phenomena is not actually observed in real situation,
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and statistical analysis showed that the number of leukocytes for non-survivors
is higher 5. Although leukocytes always show a non-linear behavior, u-shaped
to be exact, these values are not commonly seen. For this reason, in the future
we consider to build a restricted cubic spline to model the relationship between
leukocytes and the outcome variable and discover what is currently happening
with leukocytes at 3rd day of ICU.
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Variable coeff exp(coeff)
timeInICU -1.237 0.290
timeInIMV -0.666 0.513
crp ICU 0.084 1.087
septic shock ICU -0.187 0.829
ventilatoryRatio ICU -0.121 0.886
equal ICU IMV times 0.265 1.30
bacteremia -0.063 0.938
ventilatoryRatio day3 -0.038 0.962
platelets ICU 0.006 1.006
Hospital Admission-Start Symptoms 0.233 1.262
sofa day3 0.313 1.367
pneumotorax 0.082 1.085
glucose ICU 0.046 1.047
statins 0.019 1.019
fluVaccine 0.009 1.009
betaBlockers 0.014 1.014
paFi day3 -0.122 0.885
Infectious complications: lungs -0.031 0.969
Interferon beta 0.105 1.11
hematological -2.231 0.107
obesity 0.134 1.143
renalChronic 0.045 1.046
diuretics 0.105 1.110
leucocytes day3 -0.136 0.872
hemorrhage -0.015 0.985
lymphocytes ICU 0.206 1.228
crp day3 0.208 1.231
aceinhibitors -0.028 0.972
lactate ICU 0.078 1.081
creatinine day3 0.022 1.022
creatinine ICU -0.03 0.970
procalcitonin ICU -0.007 0.993
variablesOxigenSaturation ICU -0.033 0.967
previousRespiratorySupport,
casco de ventilación no invasiva -0.03 0.970

Table 7.7: Coefficient and hazard ratios for Cox model in approach A
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7.3 Approach B

In this approach we use as column time the time spent in ICU and the event
ICU discharge to model death in ICU. Since all the patients were admitted
in ICU, we can feed the models using the whole dataset. However, patients
that did not have specified time in ICU or admission and discharge dates were
ignored in survival analysis. In total, we obtained 1129 patients.

The analysis of features is analogous to the analysis of approach A. The
same models and configurations have been used. Results are shown in 7.8.
The results are sorted according to the C-index. Again we observe that the
methods with max features = all have better performances. Although both
C-index and Brier score present acceptable values at the clinical level, the
C-index is slightly lower compared to the previous approach.

The variables that appear in the top 5 of most methods are the ones seen in
previous approach. These variables influence both ICU discharge and hospital
discharge, either due to death or improvement. The feature set provided by
RSF (max features = all) has been chosen for survival analysis, shown in
Table 7.9.

In this case, we see that new variables appear. In patient characteristics
we have now the age. The number of prior medication variables is reduced
and tocilizumab is included. The set of comorbidities is completely different.
The laboratory variables are quite similar but more importance is given to the
3rd day at ICU event and the set of ventilation variables is reduced. We also
found treatment and complementary therapies variables. The hospital course
variables remain the same. For outcomes, alive28Days reappears but is not
taken into account in the survival analysis.

7.3.0.1 Survival analysis

Firt of all, we compute the Kaplan-Meier estimator for the population of
1,129 patients. Figure 7.7 shows the survival function for the population of
which the ICU discharge event was recorded. The curve is very similar to
previous one obtained in approach A. After 16-18 days, half of the patients
have already left the ICU and after 80 days all have been discharged.

Factors associated to mortality in patients of the first wave infected by
COVID-19 in Spain

63



CHAPTER 7. RESULTS

method C-index brier score
RSF(max features=”all”) 0.85 0.04
CSF (max features=”all”) 0.83 0.04
EST (max features=”all”) 0.83 0.04
RSF (max features=”sqrt”) 0.82 0.05
CSF (max features=”sqrt”) 0.80 0.06
EST (max features=”sqrt”) 0.79 0.06
CSF (max features=”log 2”) 0.79 0.07
RSF (max features=”log 2”) 0.78 0.06
EST (max features=”log 2”) 0.76 0.06

Table 7.8: Feature selection results for approach B

Topic Metrics
Patient characteristics age
Previous Medication statins, interferon beta, tocilizumab

Comorbidities hepatic dysfunction, acute kidney
failure, diabetes, flu vaccine

Laboratories
(only ICU and 3rd day ICU)

urea (3r day), glucose (ICU, 3r day),
CRP (ICU, 3r day), lymphocytes (ICU),
creatinine (ICU, 3r day), septic shock
(3r day), platelets (ICU, 3r day), hemo-
dynamic SOFA(ICU, 3r day), leucocytes
(3r day), LDH (ICU), procalcitonin
(ICU)

Mechanical Ventilation
(only ICU and 3rd day of ICU)

paFi (ICU), ventilatoryRatio (3r day),
previous respiratory support oxygen mask
with reservoir bag

Hospital Course
time in ICU, time in IVM, days between
hospital admission and symptoms started,
ICU and IMV times equal

Complementary Therapies neuromuscular blockers, recruitment
manouvers

Treatments corticosteroids, lopinavir/ritonavir
Complications infectious complications: lungs, bacteremia
Outcomes alive28Days

Table 7.9: Feature set provided by RSF (max features = all)
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approach C-index brier score
non-linear Cox 0.86 0.04
neural SVM 0.84 -
standard CoxPH 0.80 0.04
CSF (max features=’all’,
num trees=200) 0.69 0.06

Table 7.10: Performance of survival models in approach B

Figure 7.7: Kaplan Meier survival curve for approach B

Afterwards, we have used other survival methods to model survival prob-
abilities. The same models as in approach A have been used, the results can
be seen in Table 7.10.

This time we see that the performances are reversed. The method that
obtains a higher C-index is the non-linear Cox while the CSF obtains an index
lower than 0.70. The corresponding survival curves for a specific patient are
shown in Figures 7.8, 7.9 and 7.10. The sample corresponds to a patient who
was discharged after 34 days in ICU. Although CSF has quite low yields, the
curve is more representative than the one shown by non-linear Cox. This last
curve is advanced and confirms that the patient is discharged earlier, approx-
imately at the 25th day. The Cox curve is similar to CSF’s curve but with
a smoother slope, at 34th day the patient has a probability of approximately
25% of remaining in the ICU.
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Figure 7.8: Survival curve produced by CSF

Figure 7.9: Survival curve produced by non-linear Cox
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Figure 7.10: Survival curve produced by CoxPH

The resulting survival probabilities of each patient are included in the data-
set of the 1,129 patients to train several classifiers and determine if the ICU
discharged is caused by an improvement or death. The performance results
are shown in Figure 7.11. The models used are again SVM, logistic regression
and perceptron. For exploratory purposes, this time we have tested SVM with
polynomic, sigmoid and RBF kernel.

Sorted according to accuracy, the models achieving higher C-index are
SVM with linear and polynomial kernel. In third place we find the logistic
regression, the level of accuracy is penalized by slightly low precision when
classifying non-survivors. The following models stand out for having a fairly
poor precision classifying survivors and quite low sensitivity levels for classi-
fying non-survivors.

Next, we analyze the weights of the models in Figures 10.128, 10.129
and 10.130. SVM with polynomic, sigmoid and RBF are ignore since ELI5
only has methods for linear SVM. At a general level, it can be seen that
equal ICU IMV times, timeInIMV are highly correlated with ICU dis-
charge in all the models. We also find comorbidities (acute kidney failure),
treatments (corticosteroids), complications (bacteremia, lung infectious com-
plications), laboratory variables for 3rd day (CRP and leucocytes) and age.
Age appears as the feature with the greatest weight in the perceptron.
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method class precision recall f1-score accuracy

SVM linear kernel no-survivor 0.96 0.93 0.95 0.97survivor 0.97 0.98 0.98

SVM polynomic kernel no-survivor 0.97 0.89 0.93 0.95survivor 0.94 0.98 0.96

logistic regression no-survivor 0.87 0.91 0.89 0.91survivor 0.93 0.90 0.92

perceptron no-survivor 0.84 0.36 0.50 0.72survivor 0.69 0.95 0.80

SVM RBF kernel no-survivor 0.84 0.26 0.40 0.71survivor 0.70 0.97 0.81

SVM sigmoid kernel no-survivor 0.67 0.44 0.53 0.68survivor 0.68 0.84 0.75

Table 7.11: Performance of lineal classifiers in approach B

7.4 Competing risk survival models

In this section we model the ICU discharge event with competitive risk
models. As previously stated, the ICU discharge event due to improvement is
a competitive event since it prevents us from observing the ICU death event
for that patient. The methods that have been used are: CIF for estimating
the percentage of survivors in each time unit, cause-specific hazard model
and subdistribution hazard model for estimating influence of covariates on the
event according to each type of risk. However, recall that for this purpose
is better to use subdistribution hazard model. Cause-specific hazard models
are more appropriate for addressing questions about the causes or origins of a
disease.

All these methods are implemented in R [59]. CIFs can be estimated using
the cuminc function in the cmprsk package. Cause-specific hazard models
can be fit using the coxph function in the survival package treating those
subjects who experience a competing risk as being censored at the time of the
occurrence of the competing event. Subdistribution hazard models can be fit
in R by using the crr function in the cmprsk package as well.

The same features have been used as in approach B (1,129 patients). In
addition, a new variable called ICU discharge by death has been added to
distinguish if ICU discharge has been due to improvement or death. Cumulat-
ive incidences of ICU discharge by improvement and by death in the overall
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sample are described in Figure 7.11. The proportion of subjects who experience
the event of death is lower than those who leave the ICU due to improvement.
In the statistical analysis we saw that 38.86% of the patients died, in this case
our sample is 1,129 so this percentage is slightly lower. After approximately
50 days, almost all patients in the non-survivors cohort have died. While for
the survivors, they tend to spend more time in the ICU. After 100 days almost
all the surviving patients have been discharged.

Figure 7.11: Crude incidence of ICU discharge by improvement and by death

We fit cause-specific and subdistribution hazard models for both ICU dis-
charge improvement and death. The estimated hazard ratios, along with their
statistical significance are reported in Tables 7.12, 7.13 for Subdistribution
hazard model and 7.14, 7.15 for Cause-specific hazard model when patients
are discharged by death.

Hazard ratios above 1 indicates that the covariate is positively associated
with the event probability, that is ICU discharge by death. This is why co-
variates with hazard ratios > 1 are called bad prognostic factors. Among
the statistically significant variables, we observed with positive hazard ratios
in 7.12, 7.13: equal ICU IMV times, age, glucose (3rd day), lynphocytes
(ICU), acute kidney failure, neuromusuclar blockers requirement, hemody-
namic SOFA (3rd day). These variables act as risk factors that favor the death
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event in ICU. While the variables the use of corticosteroids and platelets (3rd
day) are associated with a longer survival.

For the case of Cause-specific hazard model, the model considers that all
the variables are significant. The variables that are associated with a higher
risk of death in ICU are: equal ICU IMV times, age, lympocytes (ICU),
creatinine (ICU, day3), acute kidney failure, use of statins or interferon beta,
neuromusuclar blockers, hemodynamic SOFA (ICU), diabetes and flu vaccine.
While corticosteroids and flu vaccine are associated with increased survival.
In any case, these values are biased since the subjects who experience the
competitive event (leaving the ICU due to improvement) are censored at the
time of the occurrence of the competing event.
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variable coeff exp(coeff) z p-value

equal ICU IMV times 4.24e+0 69.417 15.341 0.0e+00

age 2.05e-02 1.021 3.243 1.2e-03

hepaticDysfunction -9.41e-02 0.910 -0.945 3.4e-01
urea day3 2.23e-03 1.002 1.328 1.8e-01
timeInIMV -6.83e-02 0.934 -4.403 1.1e-05
glucose day3 1.78e-03 1.002 2.206 2.7e-02
crp day3 6.70e-03 1.007 1.530 1.3e-01
lymphocytes ICU 6.26e-02 1.065 1.998 4.6e-02
crp ICU -3.89e-03 0.996 -0.872 3.8e-01
creatinine day3 4.21e-02 1.043 0.762 4.5e-01
acuteKidneyFailure 4.98e-01 1.645 4.964 6.9e-07
PaFi ICU -1.01e-03 0.999 -1.339 1.8e-01
ventilatoryRatio day3 5.36e-02 1.055 0.917 3.6e-01
corticosteroid -3.73e-01 0.689 -3.048 2.3e-03
statins 1.86e-01 1.204 1.772 7.6e-01
Interferon beta 5.24e-03 1.005 0.050 9.6e-01
Tocilizumab -5.05e-02 0.951 -0.442 6.6e-01
NeuroblockNeeded 4.71e-01 1.601 2.298 2.2e-02
septic shock day3 1.32e-02 1.013 0.123 9.0e-01
diabetes 6.08e-02 1.063 0.531 6.0e-01
fluVaccine -1.80e-01 0.835 -1.300 1.9e-01
Infectious complications Lungs -3.53e-02 0.965 -0.370 7.1e-01
platelets day3 -2.41e-03 0.998 -3.594 3.3e-04
bacteremia -7.86e-02 0.924 -0.712 4.8e-01
sofa hemo ICU 2.22e-02 1.022 0.821 4.1e-01

Table 7.12: Subdistribution hazard model [1/2]
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variable coeff exp(coeff) z p-value
platelets ICU -2.76e-04 1.000 -0.552 5.8e-01
previousRespiratorySupport
Mascarilla de ox́ıgeno con
bolsa reservorio

9.53e-02 1.100 0.994 3.2e-01

sofa hemo day3 5.67e-02 1.058 1.834 6.7e-02
leucocytes day3 -7.13e-03 0.993 -0.644 5.2e-01
Lopinavir ritonavir 4.91e-02 1.050 0.386 7.0e-01
recruitmentManouvers -6.00e-02 0.942 -0.552 5.8e-01
creatinine ICU -5.10e-02 0.950 -0.641 5.2e-01
glucose ICU -2.60e-04 1.000 -0.403 6.9e-01
variablesLdh ICU 2.66e-05 1.000 0.206 8.4e-01
procalcitonin ICU -6.74e-04 0.999 -0.083 9.3e-01
Hospital Admission
Start Symptoms -7.67e-03 0.992 -0.775 4.4e-01

Num. cases = 1129
Pseudo Log-likelihood = -2338
Pseudo likelihood ratio test = 1277
on 37 df

Table 7.13: Subdistribution hazard model [2/2]
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variable coeff exp(coeff) z p-value

equal ICU IMV times 5.629e+00 2.784e+02 18.740 0.0

age 7.763e-03 1.008e+00 1.286 0.0

hepaticDysfunction -2.602e-02 9.743e-01 -0.228 0.0
urea day3 1.865e-03 1.002e+00 1.080 0.0
timeInIMV -1.592e-01 8.528e-01 -18.885 0.0
glucose day3 8.285e-04 1.001e+00 0.891 0.0
crp day3 4.950e-03 1.005e+00 1.085 0.0
lymphocytes ICU 5.247e-02 1.054e+00 1.566 0.0
crp ICU -6.432e-04 9.994e-01 -0.136 0.0
creatinine day3 3.877e-02 1.040e+00 0.605 0.0
acuteKidneyFailure 1.006e-01 1.106e+00 0.842 0.0
PaFi ICU -6.754e-05 9.999e-01 -0.098 0.0
ventilatoryRatio day3 2.659e-03 1.003e+00 0.043 0.0
corticosteroid -3.636e-01 6.952e-01 -2.842 0.001
statins 2.178e-01 1.243e+00 1.972 0.01
Interferon beta 6.654e-02 1.069e+00 0.575 0.01
Tocilizumab -8.951e-02 9.144e-01 -0.783 0.01
NeuroblockNeeded 7.012e-01 2.016e+00 3.339 0.01
septic shock day3 -2.706e-02 9.733e-01 -0.209 0.0
diabetes 5.527e-02 1.057e+00 0.395 0.0
fluVaccine 5.664e-02 1.058e+00 0.406 0.0
Infectious complications Lungs -2.278e-01 7.963e-01 -2.032 0.01
platelets day3 7.165e-05 1.000e+00 0.113 0.01
bacteremia -3.273e-01 7.209e-01 -2.866 0.001
sofa hemo ICU 5.274e-04 1.001e+00 0.018 0.001

Table 7.14: Cause-specific hazard model [1/2]
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variable coeff exp(coeff) z p-value
platelets ICU -2.127e-04 9.998e-01 -0.376 0.001
previousRespiratorySupport
Mascarilla de ox́ıgeno con
bolsa reservorio

1.875e-03 1.002e+00 0.017 0.001

sofa hemo day3 -2.072e-03 9.979e-01 -0.063 0.001
leucocytes day3 7.513e-03 1.008e+00 0.743 0.001
Lopinavir ritonavir -1.864e-02 9.815e-01 -0.140 0.001
recruitmentManouvers -1.446e-01 8.653e-01 -1.273 0.001
creatinine ICU 6.057e-02 1.062e+00 0.662 0.001
glucose ICU -3.601e-04 9.996e-01 -0.469 0.001
variablesLdh ICU 1.665e-04 1.000e+00 1.014 0.001
procalcitonin ICU -2.592e-03 9.974e-01 -0.283 0.001
Hospital Admission
Start Symptoms -1.629e-03 9.984e-01 -0.177 0.001

Concordance= 0.949 (se = 0.006 )
Likelihood ratio test= 1509 on 36 df, p=<2e-16
Wald test = 520.9 on 36 df, p=<2e-16
Score (logrank) test = 1231 on 36 df, p=<2e-16

Table 7.15: Cause-specific hazard model [2/2]
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7.5 Other analyses and methods
This section shows the results of survival analyses prior to approaches A

and B (7.5.0.3, 7.5.0.4) and variants of the analyses A and B (7.5.0.1, 7.5.0.2),
used as sanity checks and as a ablation study.

7.5.0.1 Approaches A and B without certain correlated features

Approaches A and B have been replicated removing highly correlated vari-
ables. However, correlations corresponding to the same variable for different
events have not been removed. If both features are clinically important, they
are not removed either. Then time variables, urea, lactate, septic shock and
hemodynamic SOFA have been remove. Figures 10.126, 10.127 show the res-
ulting correlations for approach A and 10.131, 10.132, 10.133 the resulting
correlations for approach B. Significant correlations are framed in red.

The results show that removing these variables the performance decreases
both for feature selection and for survival analysis. We believe that this may be
due to the fact that these variables can be indicators of the patient’s evolution
when they are taken into account together with other variables. For this
reason, the option of including correlations is preferable.

7.5.0.2 Approaches A and B without time and dates features

Approaches A and B have also been replicated by removing variables for
which we would have no information in a real situation during the first three
days of ICU. That is, timeInIMV and equal ICU IMV times are removed.
The column timeInHospital is kept to model the event of in-hospital death in
approach A but removed in approach B, while timeInICU is kept in approach
B but removed in approach A. It is known that these variables are relevant
in the prediction of both events hospital death and ICU discharge. In order
to prevent a negative impact on performance, we add new variables that had
not been included in approaches A and B but that were taken into account
in the initial selection feature documented in 4.1.8. The variables that have
been added for both approaches are shown in Table 4.1. The performances of
the models that achieve higher C-index in feature selection are shown in Table
7.16. C-indexes oscillate between 0.72-0.79 for approach A and 0.67-0.77 for
approach B. The brier scores tend to be higher than in the previous approaches,
with the maximum value being 0.09 (approach A) and 0.08 (approach B).

The following Table 7.17 shows the models that have obtained the highest
accuracy in the classification and in Table 7.18 those that have obtained the
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approach method C-index Brier score
approach A CSF (max features = sqrt) 0.79 0.09
approach B RSF (max features = sqrt) 0.77 0.07

Table 7.16: Feature selection models with higher C-index for approach A and
B

approach method class precision recall f1-score accuracy

approach A SVM lineal
kernel

non-
survivor 0.82 0.90 0.86 0.82
survivor 0.81 0.68 0.74

approach B logistic
regression

non-
survivor 0.81 0.88 0.85 0.81
survivor 0.80 0.70 0.75

Table 7.17: Linear classifiers with higher accuracy for approaches A and B

highest C-index in the survival analysis. As expected, C-index remains lower
than the ones obtained using time variables. For approach A, there was not
much difference between models, the values ranged between 0.74-0.75. While
for Brier score, the maximum value was reached by CSF (0.11) and the min-
imum by nonlinear Cox (0.03). For approach B, the returns are much lower
than expected. There is not a single model that reaches a C-index of 0.6.
These results are not acceptable thus approach B, with this feature selection,
would be discarded.

7.5.0.3 Multivariable Cox Proportional Hazards

Before performing approaches A and B, we implemented a multivariable
Cox with three models: baseline model (include comorbidities, laboratory and

approach method C-index Brier score
approach A non-linear Cox 0.75 0.03
approach B standard CoxPH 0.54 0.07

Table 7.18: Survival analysis models with higher C-index for approaches A
and B
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ventilation variables for ICU, previous medication and complementary ther-
apies),a second model for 3rd ICU day with laboratory variables and ventila-
tion and third model with complications.

The features shown in 7.12, 7.13 and 7.14 were chosen through the fea-
ture selection with the methods described in 4.1.8 in combination with those
selected by clinical experts. Previously, some variables were removed in the
correlation analysis. Below each model, the Concordance index, the partial
AIC and the result of the log-likelihood ratio test and -log2 (p) of ll-ratio test
are also shown.

Figure 7.12: Baseline model for multivariable Cox Proportional Hazards

Among the statistically significant variables we find heart chronic, pulmon-
ary chronic, the use of neuromuscular blockers and LDH (ICU) stand out as
risk factors for the event of hospital death. For the 3rd day at ICU event,
LDH and septic shock are associated with a higher risk while paFi is associ-
ated with a longer survival. Regarding complications, pulmonary coinfections
and hypertension also appear as risk factors.
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Figure 7.13: 3r ICU day model for multivariable Cox Proportional Hazards

Figure 7.14: Complications model for multivariable Cox Proportional Hazards

The training concordance index of the models are 0.62 (baseline), 0.60 (3r
ICU day, complications). Those discriminative powers are not good enough.
For this reason these models (taking into account each selected feature set),
were discarded.

7.5.0.4 Cox’s time varying proportional hazard

This model was developed after the Cox multivariate in order to improve C-
index. For this purpose, the dataset was transformed, and two rows were added
per patient to indicate ICU and 3rd ICU day variables. Data from antibiotics,
antivirals (tocilizumab and interferon beta), corticosteroids, neuromuscular
blockers, and positive bacterial tests for lung infections were transformed as
well. In Figures 7.15 and 7.16 results for multivariable Cox’s time varying
proportional hazard are shown.

The variables that appear associated with worse survival are: creatinine,
age, chronic heart, chronic pulmonary, use of neuromuscular blockers, cardiac
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arrest and platelets, paFi and LDH appear with HR = 1 which means that they
have no effect on survival. The use of corticosteroids appears as an indicator of
good prognosis. Organizing pneumonia and positive tests in lung coinfection
also have a HR lower than one, however, these variables are not associated with
a positive prognosis. These variables are considered variables with a protective
effect (variables in which survival increases). This phenomena can occur when
patients die before developing the disease, although in our case this does not
happen. In the statistical analysis, we saw that 3.73% of patients develop
organizing pneumonia and 41.99% experience pulmonary coinfections. It is
therefore concluded that the inference process of the model is not sufficiently
precise.

Figure 7.15: Multivariable Cox’s time varying proportional hazard [1/2]
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Figure 7.16: Multivariable Cox’s time varying proportional hazard [2/2]

7.6 Summary
This section has been included as a summary to show the performances at

metric and selected features level of all survival models implemented within
this project. Performance of survival models has been evaluated using two
metrics: C-index and Brier score 6.0.2.

Multivariable Cox Proportional Hazards 7.5.0.3 and Cox time varying Pro-
portional Hazards 7.5.0.4 were the first models that we implemented. Among
the statistically significant variables, Multivariable Cox Proportional Hazards
showed that heart chronic, pulmonary chronic, the use of neuromuscular block-
ers and LDH (ICU) stand out as risk factors for the event of hospital death.
For the 3rd day at ICU event, LDH and septic shock are associated with a
higher risk while paFi is associated with a longer survival. Regarding complic-
ations, pulmonary coinfections and hypertension also appear as risk factors.
Multivariable Cox Proportional Hazards was developed over three models for
which we obtained the following C-indexes: 0.62 (baseline model), 0.60 (3r
ICU day, complications models).

For Cox time varying Proportional Hazards, the variables that appear asso-
ciated with worse survival are: creatinine, age, chronic heart, chronic pulmon-
ary, use of neuromuscular blockers, cardiac arrest and platelets, paFi and LDH
appear with HR = 1 which means that they have no effect on survival. The use
of corticosteroids appears as an indicator of good prognosis. Organizing pneu-
monia and positive tests in lung coinfection also have a HR lower than one,
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however, these variables are not associated with a positive prognosis. These
variables are considered variables with a protective effect (variables in which
survival increases). In the statistical analysis, we saw that 3.73% of patients
develop organizing pneumonia and 41.99% experience pulmonary coinfections.
It is therefore concluded that the inference process of the model is not suffi-
ciently precise.

Approaches A and B 6.0.3 were subsequently implemented motivated by
the low performances of Multivariable Cox Proportional Hazards and Cox
time varying Proportional Hazards. We believe that these results were caused
firstly by using an inaccurate feature selection and secondly by having too high
a percentage of censored data (i.e., survivors). For this reason we decided to
use other feature selection such as survival forests: Conditional Survival Forest,
Random Survival Forest and Extra-Randomized Survival Forest were used for
the selection of new variables for both approaches. CSF (0.90 C-index, 0.03
bs) and RSF(0.85 C-index, 0.04 bs) were the models that achieved the highest
C-index for approach A and B respectively.

Regarding the linear classifiers, we observed that the best performances
were achieved by SVM linear (0.94 accuracy approach A, 0.97 accuracy ap-
proach B). Finally, CSF (0.89 C-index, 0.05 bs) and non-linear Cox (0.86
C-index, 0.04) stood out as the best survival models.

Regarding risk factors, approach A found that CRP (ICU, 3rd ICU day),
SOFA score (3rd ICU day), presence of symptoms and lymphocytes (ICU) are
associated with a higher risk of death, and platelets (ICU), glucose (ICU),
lactate (ICU) to a lesser extent. As variables associated with a good prognosis
we find timeInICU , timeInIMV , paFi (day3) and leukocytes (day3). Longer
times of hospitalization or IMV does not have a negative impact on life ex-
pectancy and as paFi increases, it can be considered that the quality of the
patient’s breathing improves.

Risk factors for approach B were analyzed by using models for competitive
events, suitable for the treatment of data with competitive events (such as leav-
ing the ICU due to improvement). It considered that equal ICU IMV times,
age, glucose (3rd day), lynphocytes (ICU), acute kidney failure, neuromusuclar
blockers requirement, hemodynamic SOFA (3rd day) as risk factors . While
the variables the use of corticosteroids and platelets (3rd day) were associated
with a longer survival.

At the end, approaches A and B were replicated removing highly correlated
variables 7.5.0.1 and time data variables 7.5.0.2. For the first case, we observed
that performance decreased both for feature selection and for survival analysis.
We believe that this may be due to the fact that these variables can be in-
dicators of the patient’s evolution when they are taken into account together
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with other variables. For this reason, the option of including correlations was
preferable. Removing data time variables performance decreased as well. C-
indexes oscillated between 0.72-0.79 for approach A and 0.67-0.77 for approach
B. The brier scores tended to be higher than in the previous approaches, with
the maximum value being 0.09 (approach A) and 0.08 (approach B).
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Conclusions

This thesis has first performed a retrospective multicenter analysis to char-
acterize patients admitted to the ICU during the first wave of COVID-19
(considering from February 1 to July 31), analyze the risk factors involved in
hospital mortality, and develop methods to predict it using statistical analysis
and survival methods.

The present study is based on the work carried out in the context of
CIBERES-UCI-COVID. CIBERES-UCI-COVID project was awarded in may,
2020, funded by ISCIII. This project gathers data from 69 different Span-
ish ICUs, including several specific sources such as Getafe hospitals and the
SEMICYUC consortium thus becoming the largest data collection effort for
ICU data in Spain.In this context, we were also interested in developing a
complete and unified database to store data from those hospitals and perform
pre-processing analysis comprising the analysis of missing values, outliers, cor-
relations and feature selection.

For the study we selected those patients who required invasive mechanical
ventilation during the first day of admission to the ICU and who remained
ventilated 3 days later. This interest is motivated by the absence of published
studies analyzing the influence of laboratory and ventilatory variables on the
third ICU day. In addition, information about baseline (i.e., symptoms, co-
morbidities, previous medication, etc), outcome and gender must be available.
This information is required in order to avoid completely unfilled patients. In
retrospect, this decision was not enough to ensure the completeness of the
data; a review and correction by the data entries of each hospital was neces-
sary to complete information regarding the dates of admission to the ICU,
IMV, etc.

Before performing the statistical analysis and survival analysis, the data
went through a filtering process that allowed us to define the population of
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interest. The final population consisted of 1,140 patients. This amount of
patients represents a considerable and acceptable number for conducting sci-
entific research. The size of a sample influences the precision of our estimates
and the power of the study to draw conclusions. Using a small sample size
may have a negative impact over both of these aspects.

Afterwards, outliers were omitted and then imputed together with the
other missing data. Multiple Imputation by Chained Equations (MICE) was
used as imputation technique obtaining successful results. At the end of pre-
processing, a correlation analysis and a feature selection analysis were per-
formed to remove correlated variables that could impact the performance of
machine learning models. However, some of our experiments show that the
elimination of correlated variables had a negative impact on the subsequent
performance of the survival models. Among the methods for feature selection,
traditional methods (logistic regression, random forest and recursive feature
elimination) were initially used, but finally survival forests were chosen. This
decision was motivated by the results obtained from the first survival models.
We hypothesize that the selection of features was not adequate since we ob-
tained successful results with a different set of features while maintaining the
same survival models, in this case StandardCox.

The statistical analysis was divided into 7 parts according to the group of
variables to be analyzed. Missing values for each feature are ignored. Of the
1,140 patients we observed that compared with survivors, non-survivors were
more likely to be older and male (10.40).

Hypertension appears as the most common comorbidity, followed by obesity
and diabetes (10.41). Among the most common symptoms we find fever, dry
cough, shortness of breath, fatigue and muscle pain (10.42). Important dif-
ferences between survivors and non-survivors are observed for chronic kidney
disease, heart chronic disease and pulmonary chronic disease (10.41). These
values are in agreement with those reported by other studies detailed in 5.

Laboratory findings suggest that leukocytes count, CRP, LDH, d-dimer,
NT-proBNP, urea are higher in non-survivors suggesting more severe systemic
inflammation, cell injury, coagulopathy, risk of cardiac failure and uremia.
Regarding the ventilation variables on the first day of mechanical ventilation,
no differentiating facts were observed between survivors and non-survivors.
However, at the end of ventilation a trend of improvement is observed in
survivors and a deterioration for non-survivors. This is reflected as an increase
showing signs of respiratory failure (i.e., increase in paused respiratory rate,
driving pressure, plateau pressure, paCO2) and a decrease in variables related
to oxygen level and correct physiology of lungs (i.e., paFi, oxygen saturation,
compliance) for non-survivors.
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Comparing these results with those of studies performed in Europe and
China, we come to the conclusion that most common comorbidities, symptoms
and treatments remain the same between countries but there are differences
in the clinical biomarkers, the durations of IMV, NIMV, and the resulting
mortality rates.

Part of the statistical analysis results are reflected in the survival analysis.
Two ways of proceeding have been employed, on the one hand we use the event
of hospital death and length of hospital stay (procedure named approach A)
and on the other hand ICU discharge and length of ICU stay as event and
time columns respectively (named approach B).

In order to analyze both events, we decided to employ several survival
models: Conditional Survival Forest, Neural SVM, Cox’s proportional hazard
regression and non-linear Cox. Due to the presence of competitive events in ap-
proach B, we decided to use models that take them into account: Cumulative
Incidence Function (CIF), Cause-specific hazard model and Fine-Gray Subdis-
tribution hazard model. Linear classifiers have been used to classify patients
according to death or improvement. SVM, logistic regression and perceptron
have been used and have been validated using 10-fold cross validation.

From a metrics perspective, survival models with the highest C-index cor-
respond to Conditional Survival Forest (num trees=200, max features=all) for
approach A and non-linear Cox for approach B obtaining a C-index of 0.89
and 0.86 respectively. Regarding the linear classifiers we find that linear SVM
appears as the model that achieves higher values for accuracy and f1-score.
The accuracies obtained are 0.96 for approach A and 0.97 for approach B.
For approach A, higher accuracies translate into better prediction of survival
curves while for approach B it corresponds to the percentage of patients for
which the exact day of death is correctly predicted,

In terms of feature relevance with regards to death, StandardCox in ap-
proach A (C-index=0.84) shows that CRP (ICU, 3rd ICU day), SOFA score
(3rd ICU day), presence of symptoms and lymphocytes (ICU) are associated
with a higher risk of death, and platelets (ICU), glucose (ICU), lactate (ICU)
to a lesser extent. For approach B, subdistribution hazard model shows as
risk factors: age, glucose (3rd day), lynphocytes (ICU), acute kidney failure,
neuromusuclar blockers requirement and hemodynamic SOFA (3rd day). In
addition, the risk of dying is higher for patients who spent the same time in
ICU and IMV (equal ICU IMV times). As variables associated with a good
prognosis we find time spent in ICU, time spent in IMV, paFi (day3) and
leukocytes (day3) for StandardCox and the use of corticosteroids and platelets
(3rd day) for subdistribution hazard model.

CIF demonstrate that after approximately 50 days, almost all patients in
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non-survivors cohort have died. While for the survivors, they tend to spend
more time in the ICU. After 100 days almost all surviving patients have been
discharged. This aspect is also observed in approach A and earlier in the
statistical analysis. Specifically, for approach A, for each unit increase in ICU
and IMV time, the risk of death decreases by 71% and 48%, respectively. For
the competing risk models, we find that with respect to IMV time, the risk
decreases by 6%.

Prior to the present survival analysis, other survival studies were also de-
veloped with the Cox Proportional Hazards model (or StandardCox as men-
tioned above) and Cox’s time varying Proportional Hazard model; however,
these models did not achieve the expected results and were therefore discarded.
We maintain that the causes that induced poor performance were too high
percentage of censored patients due to the presence of competing risks (i.e.,
survivors) and an inaccurate selection of features. The reasons why tradi-
tional models do not work well when the number of censored is high due to
competitive events is explained in 6.0.1.9.

Subsequent survival studies include variants of approaches A and B taking
into account a different selection of features, without taking into account time
or length of stay variables and without highly correlated variables. The fact
of removing time variables does not affect the linear classifiers too much in
practice (accuracies of 0.82 for approach A and 0.81 for approach B) but it
does affect survival models. This is due to the strong relevance that time
variables have in predicting the death event and the ICU discharge event.

Current results contribute to a better understanding of the behavior of the
disease and may guide the implementation of public health measures aiming
to improve the management of patients at risk and thus limiting the impact of
this pandemic on vulnerable populations. Relevant variables in the prediction
of mortality are easily obtainable through blood analysis and PCR tests, thus
the reported survival models could be used on a non-profit basis by the vast
majority of hospitals internationally.

86 Factors associated to mortality in patients of the first wave infected by
COVID-19 in Spain



Chapter 9

Future work

Two lines of action are envisaged for future work. On the one hand, we
would like to perform a deeper understanding of current models. Here, the
application of explanatory techniques to survival models should be taken into
account. An exploration of the state of the art should be carried out and
applied interpretability techniques if it is possible. It should also include an
analysis of variables that appear as risk factors or factors associated with a
better prognosis which indeed are not consistent with real situation. For ex-
ample, it is the case of leukocytes (3rd ICU day) that appears with a HR above
1 for StandardCox in approach A. This is an indication that a higher num-
ber of leukocytes at 3rd ICU day carries lower mortality risk. However, this
phenomena is not actually observed in real situation, and statistical analysis
showed that the number of leukocytes for non-survivors is higher 5. Although
leukocytes always show a non-linear behavior, u-shaped to be exact, these val-
ues are not commonly seen. For this reason, one of the future goals is to build
a restricted cubic spline that will allow us to model the relationship between
leukocytes and the outcome variable.

On the other hand, we are interested in extending both approaches. We
would like to combine linear classifiers to competitive risk models and to ex-
plore the idea of using ensemble methods to combines all approaches into one.
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Chapter 10

Appendix

Figure 10.1: Missing correlation plot with captures where the highest correla-
tions are observed
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Figure 10.2: Capture R1 of the missing correlation plot

Figure 10.3: Capture R2 of the missing correlation plot

Factors associated to mortality in patients of the first wave infected by
COVID-19 in Spain

91



CHAPTER 10. APPENDIX

Figure 10.4: Capture R3 of the missing correlation plot

Figure 10.5: Capture R4 of the missing correlation plot
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Figure 10.6: Capture R5 of the missing correlation plot

Figure 10.7: Capture R6 of the missing correlation plot

Figure 10.8: Capture R7 of the missing correlation plot
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Figure 10.9: Capture R8 of the missing correlation plot

Figure 10.10: Capture R9 of the missing correlation plot
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Figure 10.11: Capture R10 of the missing correlation plot

Figure 10.12: Missing values map
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Figure 10.13: Correlation plot of dates and times based variables
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Figure 10.14: Correlation plot for demographic variables
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Figure 10.15: Correlation plot for comorbidity variables
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Figure 10.16: Correlation plot for previous medication variables
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Figure 10.17: Correlation plot for laboratory variables in the first day of ICU

100 Factors associated to mortality in patients of the first wave infected by
COVID-19 in Spain



CHAPTER 10. APPENDIX

Figure 10.18: Capture C1 of laboratory variables for ICU correlation plot

Figure 10.19: Capture C2 of laboratory variables for ICU correlation plot
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Figure 10.20: Capture C3 of laboratory variables for ICU correlation plot

Figure 10.21: Capture C4 of laboratory variables for ICU correlation plot

102 Factors associated to mortality in patients of the first wave infected by
COVID-19 in Spain



CHAPTER 10. APPENDIX

Figure 10.22: Capture C5 of laboratory variables for ICU correlation plot

Figure 10.23: Capture C6 of laboratory variables for ICU correlation plot
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Figure 10.24: Capture C7 of laboratory variables for ICU correlation plot
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Figure 10.25: Capture C8 of laboratory variables for ICU correlation plot
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Figure 10.26: Correlation plot for laboratory variables in the third day of ICU
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Figure 10.27: Capture C1 of laboratory variables for 3rd correlation plot

Figure 10.28: Capture C2 of laboratory variables for 3rd correlation plot
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Figure 10.29: Capture C3 of laboratory variables for 3rd correlation plot

Figure 10.30: Capture C4 of laboratory variables for 3rd correlation plot
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Figure 10.31: Capture C5 of laboratory variables for 3rd correlation plot
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Figure 10.32: Capture C6 of laboratory variables for 3rd correlation plot
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Figure 10.33: Capture C7 of laboratory variables for 3rd correlation plot
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Figure 10.34: Capture C8 of laboratory variables for 3rd correlation plot
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Figure 10.35: Correlation plot for mechanical ventilation variables in the first
day of ICU
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Figure 10.36: Correlation plot for mechanical ventilation variables in the third
day of ICU
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Figure 10.37: Correlation plot for treatment variables
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Figure 10.38: Correlation plot for complication variables
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Figure 10.39: Correlation plot for outcome variables
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Figure 10.40: Characteristics of the population according to gender, age and
previous medication at hospital admission

Figure 10.41: Characteristics of the population according to comorbidities

118 Factors associated to mortality in patients of the first wave infected by
COVID-19 in Spain



CHAPTER 10. APPENDIX

Figure 10.42: Characteristics of the population according to symptoms
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Figure 10.43: Characteristics of the population at ICU admission
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Figure 10.44: Characteristics of the population at 3rd of ICU admission
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Figure 10.45: Characteristics of the population at the beginning of mechanical
ventilation phase

Figure 10.46: Characteristics of the population at the end of mechanical vent-
ilation phase
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Figure 10.47: Characteristics of the population according to treatments and
complications during hospital stay
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Figure 10.48: Characteristics of the population according to complementary
therapies and outcome
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Figure 10.49: Number of missing values to be imputed per variable [1/3]
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Figure 10.50: Number of missing values to be imputed per variable [2/3]
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Figure 10.51: Number of missing values to be imputed per variable [3/3]
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Figure 10.52: Apache score (ICU) density plot

Figure 10.53: Apache score (3rd day ICU) density plot
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Figure 10.54: Breathing rate (ICU) density plot

Figure 10.55: Breathing rate (3rd day ICU) density plot
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Figure 10.56: Creatinine (ICU) density plot

Figure 10.57: Creatinine (3rd day ICU) density plot
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Figure 10.58: CRP (ICU) density plot

Figure 10.59: CRP (3rd day ICU) density plot
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Figure 10.60: D-dimer (ICU) density plot

Figure 10.61: D-dimer (3rd day ICU) density plot
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Figure 10.62: Regulated respiratory rate (FR) (ICU) density plot

Figure 10.63: Regulated respiratory rate (FR) (3rd day ICU) density plot
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Figure 10.64: Glucose (ICU) density plot

Figure 10.65: Glucose (3rd day ICU) density plot
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Figure 10.66: HCO3 (ICU) density plot

Figure 10.67: HCO3 (3rd day ICU) density plot
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Figure 10.68: Heart rate (ICU) density plot

Figure 10.69: Heart rate (3rd day ICU) density plot
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Figure 10.70: Time between symptoms appear until hospital admission density
plot

Figure 10.71: Lactate (ICU) density plot
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Figure 10.72: Lactate (3rd day ICU) density plot

Figure 10.73: Leucocytes (ICU) density plot
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Figure 10.74: Leucocytes (3rd day ICU) density plot

Figure 10.75: Lymphocytes (ICU) density plot
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Figure 10.76: Lymphocytes (3rd day ICU) density plot

Figure 10.77: Carbon dioxide blood pressure (PaCO2) (ICU) density plot
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Figure 10.78: Carbon dioxide blood pressure (PaCO2) (3rd day ICU) density
plot

Figure 10.79: Platelet-aggregation factor inhibitor (PaFi) (ICU) density plot
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Figure 10.80: Platelet-aggregation factor inhibitor (PaFi) (3rd day ICU) dens-
ity plot

Figure 10.81: Positive pressure at the end of the expiration date (PEEP) (ICU)
density plot
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Figure 10.82: Positive pressure at the end of the expiration date (PEEP) (3rd
day ICU) density plot

Figure 10.83: Platelets (ICU) density plot
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Figure 10.84: platelets (3rd day ICU) density plot

Figure 10.85: Procalcitonin (ICU) density plot
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Figure 10.86: Richmond Agitation Sedation Scale (RASS)(ICU) density plot

Figure 10.87: Richmond Agitation Sedation Scale (RASS) (3rd day ICU) dens-
ity plot
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Figure 10.88: Sequential Organ Failure Assessment score (SOFA) (ICU) dens-
ity plot

Figure 10.89: Sequential Organ Failure Assessment score (SOFA) (3rd day
ICU) density plot
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Figure 10.90: Hemodynamic Sequential Organ Failure Assessment score
(hemodynamic SOFA) (ICU) density plot

Figure 10.91: Hemodynamic Sequential Organ Failure Assessment score
(hemodynamic SOFA) (3rd day ICU) density plot
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Figure 10.92: Temperature (ICU) density plot

Figure 10.93: Temperature (3rd day ICU) density plot
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Figure 10.94: Time in ICU density plot

Figure 10.95: Total bilirubin (ICU) density plot
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Figure 10.96: Total bilirubin (3rd day ICU) density plot

Figure 10.97: Urea (ICU) density plot
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Figure 10.98: Urea (3rd day ICU) density plot

Figure 10.99: Alanine transaminase (ALT) (ICU) density plot
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Figure 10.100: Alanine transaminase (ALT) (3rd day ICU) density plot

Figure 10.101: Aspartate transaminase (AST) (ICU) density plot
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Figure 10.102: Aspartate transaminase (AST) (3rd day ICU) density plot

Figure 10.103: Lactate dehydrogenase (LDH) (ICU) density plot
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Figure 10.104: Lactate dehydrogenase (LDH) (3rd day ICU) density plot

Figure 10.105: Oxygen saturation (ICU) density plot
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Figure 10.106: Oxygen saturation (3rd day ICU) density plot

Figure 10.107: Prothrombin time (PT) (ICU) density plot
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Figure 10.108: Prothrombin time (PT) (3rd day ICU) density plot

Figure 10.109: Ventilatory ratio (ICU) density plot
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Figure 10.110: Ventilatory ratio (3rd day ICU) density plot

Figure 10.111: Ventilatory ratio modified (ICU) density plot
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Figure 10.112: Ventilatory ratio modified (3rd day ICU) density plot
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Figure 10.113: Logistic regression feature selection
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Figure 10.114: Logistic regression feature selection with imputed features
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Figure 10.115: Random forest feature selection with imputed features
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Figure 10.116: Random forest feature selection
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Figure 10.117: Recursive feature elimination with random forest with imputed
features

Factors associated to mortality in patients of the first wave infected by
COVID-19 in Spain

163



CHAPTER 10. APPENDIX

Figure 10.118: Recursive feature elimination with random forest
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Figure 10.119: Recursive feature elimination with logistic regression with im-
puted features
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Figure 10.120: Recursive feature elimination with logistic regression
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Figure 10.121: Information value feature selection with imputed features

Factors associated to mortality in patients of the first wave infected by
COVID-19 in Spain

167



CHAPTER 10. APPENDIX

Figure 10.122: Information value feature selection
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Figure 10.123: Resulting weights for SVM linear kernel in approach A

Figure 10.124: Resulting weights for perceptron in approach A

Figure 10.125: Resulting weights for logistic regression in approach A
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Figure 10.126: Correlated variables in approach A [1/2]
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Figure 10.127: Correlated variables in approach A [2/2]

Figure 10.128: Resulting weights for SVM linear kernel in approach B
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Figure 10.129: Resulting weights for perceptron in approach B

Figure 10.130: Resulting weights for logistic regression in approach B
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Figure 10.131: Correlated variables in approach B [1/3]
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Figure 10.132: Correlated variables in approach B [2/3]

Figure 10.133: Correlated variables in approach B [3/3]
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