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Abstract 

Side channel analysis (SCA) is composed of a bunch of techniques employed to extract 

secret information from hardware operations through statistical analyses of execution 

data. For instance, the secret key of a crypto-algorithmic implementation could be 

targeted and its value could be retrieved. The data is obtained by measuring the power 

consumption or electromagnetic radiation of a device while performing an operation, due 

to the linear relationship between the currents flowing through the circuitry during the 

execution of chip operations. Side channel is one of the most widely used attack methods 

in cryptanalysis.  

In order to avoid such attacks, the algorithmic implementations can be protected from 
side channel leakage with the use of different countermeasures. These 
countermeasures can be built on either software or hardware. The objective is to reduce, 
or even completely eliminate, the leakage of the device related to confidential data. 
Generally speaking, there are two main approaches to do so. The first aims to reduce 
the side channel observability, while the second intends to undermine the predictability 
of the data. 

This project focuses on designing and implementing different countermeasures that 
protect cryptographic implementations from side channel attacks, and test and analyze 
them afterwards. The countermeasures will be implemented in software and then tested 
though Correlation Power Analysis in a hardware device. 

The Advanced Encryption Standard (AES) algorithm will be used as a base structure, in 
order to improve its cryptographic security with the different countermeasures designed. 
However, the election of AES does not reduce the scope of this project since the 
implemented countermeasures could be applied to other cryptographic algorithms as 
well. 
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1. Introduction 

1.1. Cybersecurity 

Together with the growth of computer based systems over the last century, security has 
become an essential part of the modern electronic world. A world in which data is being 
constantly generated and processed for many purposes. Often, this data carries 
sensitive or confidential information and, thus, its protection is required. Payment 
information or personal identification data are some of the many examples of this 
sensitive information.  

With the objective of securing this kind of information, the protection of the computer 
systems and networks is a must. This security scenario, known as cybersecurity, 
intends to protect users, systems and networks from the malicious intentions of an 
attacker willing to unveil confidential data.  

Cybersecurity is an increasingly challenging field since the amount of interconnected 
devices is growing from day to day. The exchange of data is also spreading, which is 
translated into multiple new opportunities for malicious attackers. Consequently, hacking 
methods are being improved and attackers are becoming wiser on how to hack devices. 
In parallel, developers are also improving their defenses against cyberattacks. 

For most of the people, cybersecurity is related to malicious malware known as “virus” 
or spam, or phishing though electronic mail. There has been some popular attacks along 
the last decades, driven to the massive filtering of sensitive user data from big servers; 
e.g. Yahoo (2013-2014), Facebook (2019) and LinkedIn (2021). However, the world of 
cybersecurity is much bigger than what is commonly thought. Cybersecurity includes 
hardware protection as well as software and network protection. For instance, additional 
related aspects to cybersecurity are the analyses of components and devices before 
reaching the market and the company departments for monitoring and responding to 
cyber-threats.  

While the various security threats increase, cybersecurity is also in constant change and 
development in order to fight them.  

 

1.2. Software, Hardware and Security 

Regarding modern computing systems, three main fields of software cybersecurity shall 
be considered. Network security focuses on the attacks on a network connecting 
multiple computer systems, and the mechanisms to ensure its availability, usability and 
integrity under potential attacks. Software security focuses on malicious attacks on 
software applications and operating systems, often exploiting different implementation 
bugs such as inconsistent error handling and buffer overflows. In addition, techniques to 
ensure reliable software operation in presence of potential security risks are also a part 
of this field. Information security focuses on the general practice of providing, among 
many other security attributes, confidentiality and integrity of information through 
protection against unauthorized access, use, modification, or destruction.   

Historically, data security has been an issue of paramount concern for system designers 
and end users. Consequently, protection of systems and networks against various forms 
of attacks, targeting corruption or leakage of critical information and unauthorized 
access, have been widely investigated over the years. Information security, primarily 
based on cryptographic measures, has been analyzed and deployed in a large variety of 
applications.  Software attacks in computer systems have also been extensively 
analyzed, and many diverse solutions have been proposed. 
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Study of hardware cybersecurity, on the other hand, has attracted little attention as 
opposed to network or software security, due to the higher complexity of protecting the 
hardware and the difficulty of breaking systems with attacks against hardware devices. 
In comparison with hacking devices through e.g. a buffer overflow vulnerability, a 
hardware attack requires a lot more effort and resources, i.e. expensive equipment 
capable of manipulating the hardware circuitry of the devices. Nevertheless, it is a field 
inside cybersecurity that has been considered since the early ‘90s when hardware 
attacks were used to hack payTV systems.  

Hardware security really became a trend when credit cards moved from magnetic stripe 
payment to chip payment. Based on chips specialized in security and authentication 
applications, these devices were considered impossible to crack until the first fault 
injection demonstrations in 1996.  

Hence, hardware security focuses on attacks and protection of hardware itself. More 
accurately, it deals with the security of electronic hardware, encompassing its design, 
architecture, implementation, and validation. It forms the foundation of system security, 
providing trust anchor for other components of a system that closely interact with it. 
Hardware should enable a secure and reliable operation of the software stack. If the 
hardware is not secure the full system can be vulnerable. 

Over the years, many hardware attacks have been crafted in order to steal or 
compromise sensitive information from implementations. The targets of these attacks, 
known as assets, are typically the secrets stored inside the hardware components, e.g. 
cryptographic keys, digital rights management (DRM) keys, sensitive user data, firmware 
code, configuration data etc. 

In order to ensure that hardware devices are secure, a set of security requirements and 
testing specifications must be defined, implemented by product developers, and tested 
by cybersecurity evaluation Labs.  

 

1.3. Security evaluations: White and black box approaches   

With the objective of evaluating the security of a hardware, the evaluation Labs must 
consider all the applicable attacks, their associated vulnerabilities, the root causes for 
these vulnerabilities, and the countermeasures implemented by developers in their 
devices.   

An evaluation can be “black box” or “white box” type. It is said to be a black box 
evaluation when the testing is made without any knowledge, or few knowledge, of what 
is happening inside the DUT (Device Under Test). An evaluation in these conditions is 
always complex and extensive, since the scope of security breaches that need to be 
covered is broad. A black box evaluation must consider every possible attack in order to 
assess the resistance of the DUT from all perspectives. In other words, if the Lab has no 
information about the DUT design, the only way to prove its resistance is by attacking. 

On the contrary, when the evaluation Lab has access to the design and implementation 
features of the DUT, it is said to be a white box evaluation scenario. The developers can 
facilitate, for instance, hardware design code (Verilog/VHDL), schematics, firmware 
code, or application code. This way, the evaluators are able to accurately analyze the 
security architecture of the DUT and conduct a complete vulnerability assessment for all 
the assets against all kind of attacks, thus, limiting the testing campaign only to the 
identified vulnerabilities. 
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Normally, when performing an evaluation of a hardware device in a white box scenario, 
the next steps are followed:  

 Firstly, a review of the hardware design and its security architecture is conducted. 

 Based on it, a vulnerability assessment is carried out. This analysis identifies 
what vulnerabilities endanger any security attribute related to the assets.  

 Next, an attack scenario is defined for each identified vulnerability. Depending on 
how feasible is to execute such attack, i.e. how easy is to exploit the vulnerability, 
the attack is executed or not. The attack is dismissed only when considered too 
complex for the given assurance level of the evaluation (some DUTs are 
evaluated in more depth and others with a more superficial assurance level). 

 Lastly, attacks results are analyzed in order to give a verdict whether the DUT is 
vulnerable or resistant to the attacks.   

Nowadays, security evaluations are always performed in a white box scenario due to the 
impracticability of performing the hundreds of existing hardware attacks in each 
evaluation. This scenario reduces the required effort for a security evaluation but, on the 
other hand, requires a deep knowledge on the effects of the countermeasures 
implemented on the DUT. In the end, the conclusions about the security of the DUT are 
based in the quality of the vulnerability assessment that the Lab performs. 

As far as the development of this project is concerned, the implemented 
countermeasures were evaluated following a white box approach since both, developer 
and evaluator figures, were carried by myself. In these circumstances, a thorough 
analysis on the protective features of the countermeasures could be done. The flexibility 
of modifying the different implementations offered many points of view about what is 
happening when a developer introduces these countermeasures into their 
implementations.  

 

1.4. Overview of hardware attacks 

The main difference between software and hardware attacks is that when performing a 

hardware attack, the attacker needs to interact physically with the device. This interaction 

is done through hardware tools and equipment, leading to a much more costly task in 

comparison with software attacks.  

For instance, hardware attack scenarios may require oscilloscopes, real-time pattern 

recognition devices, function generators, xyz-positioning stages, signal conditioning 

hardware, filters and data processing techniques, etc. All of these are specialized 

instruments, which require an accurate and precise performance.   

The most influential hardware attacks nowadays are grouped into three main types: 
Physical Attacks, Side Channel Attacks and Fault Injection Attacks. 

 

1.4.1. Physical Attacks 

An attacker that performs physical attacks will substantially manipulate the device aiming 
to access its information. Reverse engineering is the first technique that falls into this 
group. The attacker analyzes in depth the chip layout from high resolution images taken 
with a Scanning Electron Microscope (SEM), after an etching process of the chip. The 
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analysis follows with the layer interconnections, the physical distribution of the memories, 
the analog and logic parts of the circuitry etc. If the reverse engineering is done well 
enough, an attacker could even illegally reproduce the device. In addition, the attacker 
can probe the data buses and observe the information that is traveling through them.  

Another possibility is to introduce extra hardware to cause a malfunction of the device. 
This can be done by connecting some lines to ground or supply line in order to disable 
some security functionalities of the device. These tasks require high precision tools able 
to manipulate the chip’s circuitry at a nanometer scale. For example, Focused Ion Beam 
(FIB) equipment is used to mill or deposit material. The milling of e.g. a power line will 
leave open circuit the power source of a hardware module, while the deposition of a 
conducting material between a circuit line and ground will generate a short-circuit 
permanently disconnecting the target module. 

Alternatively, the attacker can focus directly on reading the memories from the high 
resolution images (SEM images). For instance, some ROM memories are often the 
easiest to read due to their physical construction that makes it possible to identify which 
cells are a ‘1’ and which ones are a ‘0’. The simplest ROM cells can be read merely by 
observation of the physical presence or absence of a transistor in the cell. For this 
reason, it is recommended not to store critical information in these memories. 

In general, Physical attacks are very powerful, allowing the physical tampering of the 
device and data in it. However, a great effort must be made and a deep knowledge on 
the chip is required in order to apply these techniques.  

 

1.4.2. Fault Injection Attacks 

Fault injection (FI) is an invasive attack technique where an operating device is perturbed 
in order to inject a fault along its normal execution. This fault intends to either introduce 
a temporary malfunction or modify certain data stored inside the hardware device.  

When the objective is to produce a malfunction of the device, an attacker usually targets 
the CPU. As the device operation continues, the fault can propagate to other locations 
and can generate a faulty chain effect in the execution of the device. For example, the 
objective of injecting a fault could be to jump a line of the firmware code of a device. 
Considering the case of a credit card, if a fault is injected exactly when the PIN number 
is verified, an attacker could proceed to purchase something with a stolen credit card, 
without actually knowing the PIN. 

Alternatively, a register or memory position can be targeted in order to modify its content, 
e.g. set a register all to ones (“1”) or all to zeros (“0”). As an example, it is known that UV 
light can be used to erase EEPROM cells. Hence, a target could be the memory position 
that stores the secret key of an algorithm which, after attacked with UV light, will be 
forced to be set all to zeros. If achieved, the attacker would know the value of the key. 

There are different energy sources that can be used to inject faults into a device. One of 
the most used fault injection sources are laser beams. The main advantage of the laser 
beam in comparison with other sources of perturbation is the ability to focus in very 
specific areas of the chip to inject the fault. 
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Electromagnetic fault injection (EM-FI) is another efficient source of perturbation. A coil 
that generates EM pulses can induce computational faults without any physical contact 
with the device.  

Another fault source is the voltage glitching. In this case, a transient voltage spike causes 
the malfunction of the system. This glitch is coupled to the device’s power supply and is 
enough to disrupt the normal cycle of a firmware execution, without causing permanent 
damage to the circuitry. This is one of the first sources of perturbation used to hack the 
old payTV cards. 

 

1.4.3. Side Channel Attacks  

Side channel analysis (SCA), unlike physical and fault injection attacks, is a non-invasive 
attack that uses statistical analyses of data in order to unveil sensitive information from 
a device. The analyzed data can be obtained through measurement of information that 
the device generates while operating, such as the variations of the power consumption, 
the signal propagation delay, and/or the electromagnetic emissions. 

In order to apply SCA, an attacker first needs to acquire the data samples. For the power 
consumption analysis, a small resistor is usually placed between the power supply line 
and the cryptographic device in order to measure the voltage drop across it.  In the case 
of EM radiation analysis, the signal is obtained using dedicated antennas. 

Once the power or EM signal is available to the attacker, it can be taken into an 
oscilloscope in order to sample and record it. The attacker needs to gather big amounts 
of data, all proceeding from the same operation performed by the hardware DUT. Once 
this is done, the recorded data can be analyzed. 

In order to infer useful information from the attack, the attacker will need to model the 
power consumption of the device and then apply statistics involving both measured and 
expected data. It is therefore, the relation between the measured data and the modelled 
data which establishes an analyzable and exploitable link for the attack. 

Countermeasures against SCA can be implemented aiming to break that link or at least 
intending to debilitate this relationship between the power consumed and the data 
processed by the hardware device. Since this is the attack method chosen to conduct 
the countermeasure testing of this project, the topic will be more deeply addressed later 
in section 2.2 of this document. 

 

1.5. Project definition  

1.5.1. Motivation 

Side cannel analysis is probably one of the most challenging attack methods nowadays. 

For this reason, it is widely-used against hardware devices. An increasing number of 

attack techniques are being developed and published every day and many crypto-

algorithmic implementations are shown to be vulnerable to such attacks.  

Together with the development of SCA, engineers are trying to introduce 

countermeasures into their implementations in order to compensate for their 

vulnerabilities. However, each countermeasure has a distinct protective effectivity, each 

of them introduces a different complexity level into the design, each of them requires a 

different memory allocation and each of them adds a different overhead into the firmware 
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execution time. In overall, every countermeasure has some positive and negative 

aspects and, hence, some of them can be more or less useful depending on the context. 

In order to be capable of providing assurance on the security of a device, a deep and 

thorough knowledge on the different aspects involving algorithmic implementations and 

its countermeasures is required.  

For the various countermeasures that exist nowadays, gaining knowledge about their 
fundamental effects is essential, including their protective effectivity and other 
improvable facets. 

 

1.5.2. Objectives, procedure and experimental set-up 

The objectives of this project are to design, implement, test, analyze and compare 
firmware secure cryptographic countermeasures against side channel attacks.  

The Advanced Encryption Standard (AES) algorithm is chosen as base structure to 
implement the countermeasures onto. The Correlation Power Analysis (CPA) is chosen 
as the side channel technique to test the various implementations developed. The results 
of the CPA are used as a metric to compare the effectiveness of the countermeasures.  

For the development of this project, theoretical and practical works were conducted.  

For the theoretical part, a brief description of the AES algorithm is given. Afterwards, 
SCA basics are introduced, in addition to the side channel attacks available nowadays. 
Lastly, an insight on side channel countermeasures is given to the reader. 

For the practical part, the next experimental steps were followed: 

 Chipwhisperer platform was chosen for the AES implementation and the 
development of the side channel countermeasures.  

 A leakage assessment was carried out on an unprotected implementation of 
AES, where a CPA was performed. The results were used as reference point for 
future comparisons with protected implementations of AES. 

 Different countermeasures were designed and implemented on the cryptographic 
algorithm. 

o Dummy round insertion 
o Shuffling 
o Random delay 
o Masking 

 For each countermeasure implemented, a new leakage analysis was done in 
order to assess its protective effectivity. 

 The different implementations were analyzed in terms added overhead (i.e. 
performance) with respect to the original unprotected AES. 

 Results were gathered and compared. 
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2. State of the art 

2.1. Advanced Encryption Standard 

The AES symmetric algorithm was chosen as base implementation for the development 
of this project. The Rijindael cypher, later renamed as Advanced Encryption Standard, is 
a specification for the encryption of electronic data established by the U.S. National 
Institute of Standards and Technology (NIST) in 2001 [1]. Two Belgian cryptographers, 
Vincent Rijmen and Joan Daemen, developed this algorithm that was used to replace 
the DES as the official encryption standard for protecting sensitive information.  

The AES encryption finds applications in Mobile Phones, Smart Cards, Intel Core 
Processors Family, Automated Teller Machines (ATM), WWW servers, SSD Devices, 
IPSec and SSL Protocols, etc. It is massively spread and can be found in practically all 
security cryptosystems nowadays. 

This cryptosystem is an iterative symmetric block cypher. It processes individual data 
blocks, having a fixed length of 128 bits, with a cipher key of variable lengths. The key 
length has to be chosen independently as 128, 192 or 256 bits. Hence, this algorithm 
can be used with three different key lengths, which result in three distinct formats referred 
to as AES-128, AES-192 and AES-256. It is an iterative cypher because the steps 
involved in this algorithm are repeated a fixed number of rounds The total number rounds 
of the cypher depends on the size of the key used. Table 1 shows the relation between 
key size and the total number of rounds for each AES format. 

AES format AES-128 AES-192 AES-256 

Number of rounds 10 12 14 

Table 1: Number of rounds for each AES format 

In order to encrypt data, the 128-bit data block is divided into 16 bytes and 
correspondingly mapped into an array of size 4x4 known as the State matrix. All the 
internal operations (SubBytes, ShifRows, MixColumns and AddRoundKey), repeated 
round by round, are performed on the State matrix (Figure 1). 

 

Figure 1. State matrix 

When using AES, and also with every other symmetric algorithm, we look for an 
avalanche effect, where one single bit change influences as many output bits as 
possible, offering high diffusion and confusion to the message encryption. The diffusion 
and confusion of the message are obtained through the round internal operations of the 
AES, that perform permutations and substitutions on the state matrix.  
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Figure 2. AES encryption and decryption 

As shown in Figure 2, the algorithm starts with an initial AddRoundKey step. It is then 
followed by each of the rounds with the next internal transformations, in the following 
order: SubBytes, ShifRows, MixColumns and AddRoundKey. Note that, there is no 
MixColumns step in the last round.  The same happens when decrypting that there is no 
InvMixColumns step in the last round. From a high-level perspective, each 
transformation step can be explained as: 

 SubBytes: non-linear substitution step where each byte is replaced by another 
according to a LUT (Look-Up Table).  

 ShiftRows: byte permutation step where the last three rows of the state are left-
shifted cyclically a certain number of positions. The shifting applied is equal to 
the row number (from 0 to 3). 

 MixColumns: linear algebraic mixing operation that operates on the columns of 
the state, combining the four bytes in each column through a multiplication with 
a constant matrix. 

 AddRoundKey: recombination step where each byte of the state is merged with 
a byte of the round key through a bitwise XOR operation 

In addition, AES uses a key schedule to expand the secret key into a number of separate 
round keys. The algorithm requires a separate 128-bit round key for each round plus one 
more, due to the initial AddRoundKey step. Thus, the key schedule produces all the 
required sub-keys from the initial cypher key.  

As far as the decryption is concerned, all the transformation steps are reversed 
(InvSubBytes, InvShiftRows and InvMixColumns) in order to modify the ciphertext back 
to plaintext. Note that AddRoundKey is just an XOR, so it is its own inverse. 

In case the reader was interested, a more detailed description of the AES algorithm and 
its internal operations is given in Appendix A, considering both mathematic and 
implementation aspects. 
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2.2. Side Channel Analysis (SCA)  

2.2.1. Side Channel basics  

Side channels are unintended sources of information that can be exploited by any 
attacker in order to extract secret data. Therefore, side-channel attacks take advantage 
of unexpected leakages of information. The designer of any implementation does not 
intentionally add this information sources into their design; however, the raw functionality 
of an electronic design carries, inevitably, analyzable side channels. For instance, an 
electronic circuit always generates a characteristic proportional to the power 
consumption and it always emanates electromagnetic radiation as the currents flow 
through the circuitry. 

It is important to remark that unlike other attack methods, side channel analysis only 
requires to “listen” to the target device while it operates. We are talking about a non-
invasive attack, where there is no need to influence or modify the target device in order 
to obtain information from it.  

The simplest side channel attack technique is the timing attack. Timing attacks are based 
on the idea of analyzing different operations that take different computation times. Every 
logical operation in a computer takes certain time to execute, and these times can differ 
based on the inputs for example. In 1996, Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems [2] was one of the first side channel based attack 
ever published. Paul Kocher described the methodology to compromise keys of RSA, 
DSS and other cryptosystems, by measuring the execution time for the overall 
cryptographic operations.  

In a similar way, sound can also be a useful side channel source. Acoustic emissions 
occur in coils and capacitors because of small movements when a current passes 
through them. Capacitors in particular change diameter slightly, generating sound, as 
their many layers experience electrostatic forces. One example is the first Side Channel 
attack performed in 1965 where the sound of a router was used to extract secret 
information [3]. 

Nevertheless, power consumption is the most widely used side channel source. As a 
general concept, it lays on the simple idea of some operations consuming more power 
than others. By measuring variations in the instantaneous power consumption of a 
device, it is possible to learn a considerable amount of information about the data being 
manipulated. For example, transistors, the most used elements in digital electronics, 
generate dynamic power consumption when changing from low to high state and vice-
versa.  

Therefore, power analysis attacks exploit the fact that the power consumption of a device 
depends on the operations it performs and on the data it processes. Usually, the total 

power consumption of the device is measured just by inserting a small resistor (1 - 

50) between the supply line and  the cryptographic device. The voltage drop across 
this resistor is then proportional to the current that is flowing trough the device. 

Electromagnetic radiation coming from the target device is another powerful side channel 
source. The analysis is equivalent to power consumption analysis with one main 
particularity: an EM prove (e.g. antenna) is used to receive the radiation, which can be 
placed accurately on the DUT surface (e.g. on top of the cryptographic co-processor to 
precisely acquire the targeted signal). 
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2.2.2. Power consumption and leakage models 

In CMOS circuits, the power consumption is derived from two parts, the static and 
dynamic power consumption. In the context of side channel attacks, the latter is generally 
the main source of exploitable power consumption as it is both operation and data 
dependent. It can be calculated as: 

          𝑃𝑑𝑦𝑛 =  𝛼 ∙ 𝐶 ∙ 𝑉𝑑𝑑
2 ∙ 𝑓              (1) 

The parameter   is the switching factor, 𝐶 is the load capacitance, 𝑉𝑑𝑑 is the supply 
voltage and 𝑓 denotes the clock frequency.  

Since the power consumption at a given point in time is related to the number of 
transistors that change state, it is also related to the data being processed. If the same 
point in time over many acquisitions of the same operation is targeted, any operation 
dependent power consumption can be viewed to be part of the static power consumption 
and, thus, can be ignored. 

Any side channel attack proceeds by using some statistical distinguisher, such as 
Pearson’s correlation coefficient, to compare the hypothetical leakage model and the 
acquired power traces. A power trace refers to a set of power consumption 
measurements 𝑠(𝑡) taken across the target operation. Considering this, the leakage 
model is constructed to estimate the power consumption of algorithmic intermediate 
values during the operation of a cryptosystem. In other words, the leakage model is a 
simplified model that describes the leaking signal (power consumption or EM radiation) 
in a workable manner, e.g.: 

            𝑠(𝑡) = 𝑓(𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, 𝑑𝑎𝑡𝑎, 𝑡𝑖𝑚𝑒)            (2) 

The simpler the model, the easier to work with, but more distant to reality. When enough 
traces are available, and the hypothetical leakage model is accurate enough, the secret 
can be retrieved from the acquired power consumption.  Therefore, the leakage model 
is required to approximate the actual power consumption as much as possible. When 
the acquisition of traces is limited by available equipment and limited access to the target 
device, a well-built leakage model can significantly enhance the performance of the 
attack method. 

In the case of a DPA attack, the simplest of the models is considered: it is a single bit 
model that relies on the elementary idea of ones (‘1’) consuming more than zeros (‘0’). 
However, the most commonly used models to estimate the power consumption are the 
linear models of Hamming weight and Hamming distance. 

The Hamming weight model corresponds to the number of bits set to 1 in a binary data 
element.  

                      𝐵 = {𝑏𝑚, 𝑏𝑚−1, 𝑏𝑚−2, 𝑏𝑚−3, , … , 𝑏0}2  →   𝐻𝑤(𝐵) ∈ [0,𝑚]                (3) 

For example, bytes considered, all the possible resulting Hamming weights range from 
0 to 8. The following equations show two byte examples and their related Hamming 
weight values:  

      𝐵1 = {10000100}2  →   𝐻𝑤(𝐵1) = 2            (4) 

      𝐵2 = {10110001}2  →   𝐻𝑤(𝐵2) = 4            (5) 

Therefore, the Hamming weight model states a linear relationship between the power 
consumption and the number of ones travelling through the circuitry: 
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                  𝑠(𝑡) = 𝑎(𝑡) ∙ 𝐻𝑤(𝐵) + 𝑏                        (6) 

𝑠 denotes our power estimate, while 𝑎 is the scalar gain between the Hamming weight 
and 𝑠. All the remaining aspects in the power consumption of a chip are assigned to a 

term denoted 𝑏 which is assumed independent from the other variables. 𝑏 encloses 
offsets, time dependent components and noise (typically Gaussian noise). 

However, the Hamming weight model has a limitation. As stated in [4]: “It is generally 
assumed that the data leakage through the power side channel depends on the number 
of bits switching from one state to the other at a given time. This seems relevant when 
looking at a logical elementary gate as implemented in CMOS technology. The current 
consumed is related to the energy required to flip the bits from one state to the next” [4].  

Consequently, it makes sense to define a leakage model as the Hamming distance. The 
basic power consumption model for the data dependency can be written as: 

           𝑠(𝑡) = 𝑎(𝑡) ∙ 𝐻𝑑(𝑅⨁𝑀) + 𝑏                (7) 

This model represents the transition from a reference state 𝑅 to a modified state 𝑀, 
where some bits, or all bits, have already been flipped. It is assumed that the switching 
of a bit from 0 to 1 or from 1 to 0 requires the same amount of energy and that all the 
machine bits handled at a given time are perfectly balanced and consume the same. 
This can be seen as a limitation, but considering a chip as a large set of elementary 
electrical components, this linear model fits reality quite well from a statistical point of 
view.  

The Hamming distance can be easily calculated as the Hamming weight of the XOR-ed 
values of both bytes, i.e. the reference byte and the modified one.  Applied to the example 
bytes of equations (4) and (5) and considering them, respectively, the reference and 
modified states: 

           𝐻𝑑(𝐵1, 𝐵2) = 𝐻𝑤(𝐵1⨁𝐵2) = 4           (8)  

Looking at the equation (8), it is easy to deduce that the Hamming weight is just a 
particular case of the Hamming distance where the reference state is set to 0.  

In many cases, the Hamming weight or Hamming distance models will not be an optimal 
leakage model for a given device. However, both linear models do provide an easily 
computable and robust approximation of the leakage, which is applicable in a wide range 
of scenarios.  

Non-linear models have also been widely investigated, trying to improve the 
approximation of the actual leakage. In [4], the authors proposed a switching distance 
leakage model to improve the attack performance. In their work they suggest a model 
where the transistor switching from 1 to 0 consumes less power than from 0 to 1, i.e. 
different power is consumed in the charging and discharging phases. The experimental 
results showed that the attack performance is improved for a particular setup; however, 
some sort of profiling of the specific DUT is required. 

In summary, a leakage model is always assumed in side channel attacks in order to 
estimate the relationship between the signal acquired with the oscilloscope and the data 
processed by the device. If the leakage model is accurate to reality, as Hamming weight 
and distance models are, we can find a linear relationship between the data processed 
by the device (sensitive data such as secret keys) and the power traces acquired. 
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2.2.3. Side Channel attacks  

Historically, many powerful side channel attacks are based on statistical methods 
pioneered by Paul Kocher. In 1995 Paul Kocher stated: “Chip power consumption is 
somehow clearly linked to the manipulated data”.  Later in 1999, an efficient side channel 
attack was introduced by himself: Differential Power Analysis [5]. The power 
consumption turned out to include deterministic data dependent parts, which could be 
exploited by simple and differential power analysis. Later, Eric Brier published 
Correlation Power Analysis with a Leakage Model [6], where correlations between power 
measurements and data were used to improve the previously introduced differential 
attacks through the Hamming distance leakage model.  

As an evolution of first order attacks, in which the power consumption is analyzed in a 
time-independent manner, the SCA attacks took a more general perspective that 
resulted in higher order SCA, as originally proposed by Messerges [9] and Chari et al. 
[10]. Higher order SCA considers various time instants within a power trace to combine 
and build more complex leakage models. 

Finally, one of the most powerful SCA techniques are the profiling attacks, in which the 
power consumption of a “twin” device is characterized creating templates that are later 
used against the victim’s device to extract sensitive data. Besides Template Attacks and 
its variants [11 ,12, 13], the SCA community started using machine learning (e.g. Artificial 
Neural Networks) to conduct profiling attacks [14] [15]. 

2.2.3.1. Simple Power Analysis (SPA) 

SPA, known as SEMA in the case of electromagnetic radiation analysis, is the side 
channel analysis that involves the visual inspection of one, or a few number, of power 
traces. SPA is based on the identification of recognizable patterns, which may 
correspond to the target operation to be analyzed (e.g. crypto-operation or the load of an 
asset from memory). The objective is to identify instructions, security mechanisms or 
countermeasures, or directly read sensitive data as proposed by Kocher in his original 
work.  

 

 

Figure 3. SPA on AES encryption  
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Figure 3 shows an example of SPA. The region of the initial AddRoundKey step in AES 
can be seen in the signal, followed by the power consumption of the first and second 
rounds of the algorithm. 

 

Figure 4. SPA on AES first round  

In Figure 4 the first round of AES encryption is shown from a closer view, were the 
different internal operations can be distinguished thanks to the distinguishable patterns 
that can be observed in the signal.  

Performing an SPA is always an interesting initial step for extracting relevant features of 
the algorithm, such as the position of the rounds or the power consumption and duration 
of the internal operations of each round. Note that apart from the power consumption, 
timing also gives us valuable information in a SPA. 

 

2.2.3.2. Differential power analysis (DPA) 

DPA is a statistical analysis that involves working with a high number of power traces. 
The attack focuses on those small power variations and follows a “divide and 
conquer” strategy: find a point in the algorithm that works with smaller pieces of the key 
to be able to compute all possible values of the key for that smaller pieces.  

If we consider an AES-128 that has a 128 bits key length, all the possible keys add up 
to 2128 possibilities. However, let’s consider the SubBytes operation as the target of the 
attack. The SubBytes operation is performed byte by byte 16 consecutive times, meaning 
that there will be different instants of time within the power consumption signal 
corresponding to the management of the 16 bytes independently. When attacking the 
SubBytes operation, instead of 2128 possibilities we only have 16 ˑ 28 possible key 
guesses to assess in the power traces. 

With this in mind, in order to carry out a DPA the next steps need to be followed: 

 Obtain an amount of power traces of a known cryptographic operation, where the 
related inputs or outputs (plaintext or ciphertext) are random and known, but not 
the key, which has to be fixed (this is the secret to guess). 

 Select the attack point in the algorithm where the differential attack will be carried 
out (e.g. the SubBytes operation of AES algorithm).  
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 Compute the reduced sub-key set and calculate the intermediate values at the 
attack point, for each sub-key, based on the inputs or outputs. In other words, 
guess the key is 0, then guess the key is 1, then guess it is 2, and so on, and for 
each possible key guess, calculate the data at the attack point. 

 Select a bit of that intermediate data and observe if it is a 1 or a 0 in each case. 
Then, classify the traces into two groups depending on the value of its related bit. 

 Lastly, obtain the difference among the averages of the two groups of traces. 

When a wrong key is guessed, wrong intermediate data are calculated, hence wrong 
classification of traces is performed. In plain words, the group of ‘1’s will contain traces 
related ‘1’ and also traces related to ‘0’, and the same for the group of ‘0’s. Therefore, 
the subtraction of the average traces of the two groups will be noise.  

However, when the correct key is guessed, the right intermediate data are calculated 
and traces are properly classified, meaning that in a specific instant of time, all traces in 
the group of ‘1’s work with data that have one bit to ‘1’ in all those traces (same for the 
group of ‘0’s and data having a ‘0’ in all traces). As a consequence, the average trace of 
the ones group will present a mean value higher than the average trace of the zeros 
group at the time instant that the tracked bit is handled in the power traces. The 
subtraction of the two averages will result in a peak in the differential signal.  

From the mathematical point of view, the DPA can be represented with equation (9). 

 ∆𝐷[𝑗] =
∑ 𝐷(𝐶𝑖,𝑏,𝐾𝑠)𝑻𝑖[𝑗]

𝑚
𝑖=1

∑ 𝐷(𝐶𝑖,𝑏,𝐾𝑠)
𝑚
𝑖=1

−
∑ (1−𝐷(𝐶𝑖,𝑏,𝐾𝑠))𝑻𝑖[𝑗]

𝑚
𝑖=1

∑ (1−𝐷(𝐶𝑖,𝑏,𝐾𝑠))
𝑚
𝑖=1

                  (9) 

𝑚 represents the total amount of encryption measurements and 𝑇𝑖[𝑗] denotes the sample 

𝑗 at each of the related power traces 𝑇𝑖 . The selection function 𝐷(𝐶𝑖, 𝑏, 𝐾𝑠) is defined as 

the computation, at the attack point, of the selected bit 𝑏 .This computation starts from 

the plaintext or ciphertext 𝐶𝑖 and considers the key guess 𝐾𝑠 .  

Note the differential signal has to be computed for each one of the key guesses. The 
highest peak among the differential signals per each key guess will be related to the right 
guess of the secret key. 

 

2.2.3.3. Correlation Power Analysis 

The main drawback of DPA is that it only focuses on one single bit of the whole data, 
while the power consumption of the device is not proportional to a single bit, but to the 
whole data manipulated by the device. So, despite DPA works, a more efficient attack 
results when analyzing the whole data and not a single bit. Continuing with the previous 
example in AES, a more efficient attack results when considering the whole byte value 
at the SubBytes operations rather than a single bit of this byte. 

2.2.3.3.1. The Pearson’s correlation coefficient 

Once we have a way to model our power consumption, we need a way to compare our 
power estimations to our measurements. A helpful tool to find this relationship is 
Pearson’s correlation coefficient, which is: 
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𝜌𝑋,𝑌 = 𝑐𝑜𝑣(𝑋,𝑌)
𝜎𝑋𝜎𝑌

= 𝐸[(𝑋−�̅�)(𝑌−�̅�)]

√𝐸[(𝑋−�̅�)
2
]𝐸[(𝑌−�̅�)

2
]

    ,     𝜌𝑋,𝑌 ∈ [−1,1]                (10) 

The covariance of two random variables, X and Y, divided by the multiplication of their 
respective standard deviations, gives us the linear correlation value between them. A 
coefficient of 1 represents direct proportionality between the random variables, while a 
coefficient of -1 denotes an inverse proportionality. Independency between the variables 
is, thus, represented with a coefficient value of 0. 

2.2.3.3.2. CPA attack 

CPA targets the correlation between the power traces and the estimated values of the 
handled data in the algorithm.   

Compared to the DPA, the CPA is better in terms of efficiency and robustness. On the 
one hand, DPA requires more sample curves since all the unpredicted data bits penalize 
the signal to noise ratio. CPA can use the Hamming weight or distance models, which 
consider bit groups as a whole.  

The procedure for CPA attack is equivalent to the one described for DPA. The only 
difference resides on the metric, being the Pearson’s coefficient in each sample the 
metric for the CPA. Each of the correlation factors, related to a key guess, can be 
obtained applying equation (11): 

𝜌𝑖,𝑗 =
∑ [(ℎ𝑑,𝑖−ℎ𝑖̅̅ ̅)(𝑡𝑑,𝑗−𝑡𝑑,𝑗̅̅ ̅̅ ̅)]𝐷

𝑑=1

√∑ (ℎ𝑑,𝑖−ℎ𝑖̅̅ ̅)2𝐷
𝑑=1 ∑ (𝑡𝑑,𝑗−𝑡𝑑,𝑗̅̅ ̅̅ ̅)2𝐷

𝑑=1

                                (11) 

After taking our measurements, we have a total of 𝐷 power traces and each of these 
𝑑 traces has 𝐽 data points. Using subscript notation  𝑇𝑑,𝑗 refers to the point 𝑗 in trace 𝑑. 

There are 𝐼 different key guesses that we have to try. Then, ℎ𝑑,𝑖 refers to our power 

estimate in trace d, for the subkey guess i. With these data we can calculate how well 
our model and measurements match for each subkey guess through time. This will be 
done by finding how t and h correlate over the D traces. 

In other words, for each key guess it is calculated the data at the attack point and, instead 
of looking at the value of one bit, we apply a leakage model, e.g. the Hamming weight 
model, and correlate the power consumption traces with the Hamming weight of the 
intermediate data calculated. The highest correlation peaks will be the ones related to 
the right key. For wrong keys, wrong intermediate data is calculated which will result in 
no correlation with the power traces.  

 

2.2.3.4. Higher order attacks 

In order to protect devices against DPA/CPA, one can break the correlation between 

power traces and calculated intermediate data by randomizing the data manipulated by 

the DUT. This is known as data masking. This topic will be addressed in more depth in 

section 2.3. The idea is to conceal intermediate data through addition or multiplication 

with random values [16], which might be impossible to predict for an attacker. However, 

the so-called first order masking countermeasure succumbs to second order DPA/CPA 

attacks as originally proposed in [9] and [10]. 

The mounting point for second order attacks is the fact that the side channel leakage of 

a masked value depends on a predictable value (the original data) and an unpredictable 
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one (the mask). The core idea is to jointly analyze the leakage of the masked value and 

the leakage of the mask to establish a relationship within the power consumption with 

the two values. These attacks are based on the joint statistical properties of multiple 

aspects of the signal, i.e. joint analysis of the power consumption at two (or more) points 

in time [17, 18, 19].  

Higher order attacks imply bigger costs in terms of number of samples and computational 

complexity. In addition, the identification of the points in time at which to take the signals 

is a hard problem.  

 

2.2.3.5. Profiling attacks 

Nowadays, profiling attacks are probably the most powerful and most widely used type 

of side channel attacks due to its high effectivity. The attack consists of two stages: the 

profiling stage and the extraction stage. The goal of the first is to fully characterize the 

operation of a given device with “profiles” for all the possible values that the operation 

can work with. A “profile” is essentially a set of probability distributions that describe how 

similar power or EM traces look for all different inputs.  

Once the characterization is made, the developed profiles can be applied to the same 

device or to executions of the same operation from other “twin” devices, in order to rapidly 

extract the sensitive data. This application is made by comparing the power consumption 

of the victim’s device with the obtained profiles. The maximum likelihood estimator is 

often used as a metric of similarity for this purpose. 

In order to succeed, an attacker needs to gather a huge quantity of data related to the 

target operation intended to characterize. We are talking about data sets reaching 

usually more than a million traces. On the other hand, when the template is applied to 

the victim’s device, only a few traces of the target operation are required to complete the 

attack. 

Taking our example of the AES128, 256 possible values exist per each byte of the 16 

that the AES master key has. Therefore, 4096 (256 × 16) profiles need to be created. 

Note that if the Hamming weight model is used, only 9 possible values exist per each 

byte (9 Hamming weights in a byte) and the profile amount required is reduced to 144.  

The classical technique for applying profiling attacks is known as Template Attacks (TA). 

This methodology, based on a Gaussian assumption [5] for the characterization of the 

templates, can offer robust and accurate results. 

Nevertheless, as machine learning keeps gaining strength in the modern era, profiling 

attacks are also turning into this field [14]. Profiling by deep learning using Artificial 

Neural Networks as analyzed in [15] and [22] has been reported to be a more a powerful 

tool that the others, with a huge potential still to be discovered. 

 

 

2.3. Countermeasures against side channel attacks 

Every algorithmic implementation can succumb to attacks by power analysis methods if 
it is not properly protected. In general, the solution is to re-implement cryptosystems 
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taking into account a wide range of countermeasures, even if the cost in terms of 
performance could be high. 

The followings are the two general approaches for cryptographic countermeasures 
against side channel:  

 Data hiding to reduce the side channel observability. 

 Data masking to undermine the intermediate variable predictability. 
 

2.3.1. Hiding Countermeasures 

Power analysis attacks work because the power consumption of cryptographic devices 
depends on intermediate values of the executed algorithm. Therefore, the goal of 
countermeasures is to avoid, or at least to reduce, these dependencies. In the case of 
data hiding, this is done by breaking the link between the power consumption of the 
devices and the processed data values. There are two options: one is to hide power 
consumption in amplitude and the other is to hide it in time.  

Hence, cryptographic devices that are protected by hiding execute cryptographic 
algorithms in the same way as unprotected devices. In particular, they calculate the same 
intermediate values. Yet, the hiding countermeasures make it difficult for an attacker to 
find exploitable information in power traces. 

2.3.1.1.  Amplitude hiding 

The objective is to directly change the power consumption characteristics of the 
performed operations. These techniques lower the leakage of a cryptographic device by 
lowering the SNR of the performed operations. It can be done in two ways: Increasing 
the noise or reducing the measured signal. 

On the one hand, the most obvious way of increasing the noise is introducing any kind 
of noise in parallel, either performing several operations in parallel or using dedicated 
noise engines. 

On the other hand, the most commonly used strategy for signal reduction is to employ 
dedicated logic styles for the cells of cryptographic devices. The overall power 
consumption of a cryptographic device is the sum of the power that is consumed by its 
cells. If each cell is built in such a way that its power consumption is constant, the overall 
power consumption will also be constant. 

For instance, a practical example of amplitude hiding is the replacing of critical assembler 
instructions with ones whose “consumption signature” is hard to analyze. Another 
example is the process of re-engineering the critical circuitry which performs arithmetic 
operations and memory transfers.  

In software, the options to alter the consumption of a cryptographic device are very 
limited. The power consumption characteristics of the instructions that are executed on 
a device are defined by the underlying hardware. Since this project is based on firmware 
implementations, this type of countermeasures were disregarded. 

2.3.1.2. Hiding in the time dimension 

An important characteristic of power analysis attacks is that they need to acquire power 
traces that are aligned in time. If single points between power measurements belong to 
different time moments (i.e. distinct operations of the device), the statistical analysis of 
this point cannot be performed efficiently. In case of a CPA attack, the better alignment, 
the higher correlations that could be obtained.  
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2.3.1.2.1. Dummy executions 

This technique is based on inserting dummy executions in a random basis. These 
dummy executions must use dummy inputs and must never act on the real data that the 
algorithm is working with. As a result the output of the algorithm will not be affected by 
the countermeasure.  

If any statistical analysis is applied to the measured traces, there will be random data 
that will obfuscate the results, while the real data will be displaced in the time axis. 

It is important to make sure that every added dummy operation is undistinguishable from 
the real operations. Otherwise the attacker could simply identify the pattern of the fake 
operation within the power signal and filter it out.  

In the case of an AES, dummy operations can be inserted in many formats, from high to 
low abstraction level. A full dummy encryption could be executed just before or after the 
real one. However, this option is usually not considered since it doubles the throughput. 
Alternatively, extra rounds could be added within a single AES execution, dummy 
operations can be inserted inside the rounds or individual dummy instructions, such as 
register data assignations, can be introduced into the algorithm. 

2.3.1.2.2. Randomizing or shuffling 

Another option is to randomize the order of execution inside the algorithm. Usually, there 
are some executions inside an algorithm that have no order dependency between them, 
which means they could be randomized without influencing the final result.  

Shuffling is a countermeasure that randomizes the power consumption in a similar way 
as the random insertion of dummy operations. However, shuffling does not affect the 
throughput as much as the insertion of dummy operations. The two countermeasures 
differ in the fact that the first one is adding extra data which enlarges the total execution 
time, while the other is only shuffling the data that is already there.  

In the case of an AES, the most obvious part to be shuffled is the AES SBOX, which 
performs 16 independent fetches from the LUT. In the same manner, the AddRoundKey 
function can be shuffled in the order that establishes to XOR the state bytes with the 
round key bytes. Apart from that, the ShiftRows function internally acts independently on 
three rows and the MixColumns performs its operations in each independent column as 
well. Therefore, either the row order or column order can be shuffled as well in each 
function.  

When an attacker tries to correlate data with the power traces, he will face difficulties 
because at the same instant of time, in different power traces it will be handled different 
data bytes. 

The disadvantage of shuffling is that it can only be applied to a certain extent. The 
number of operations that can be shuffled in a cryptographic algorithm are limited, e.g. 
we can only shuffle the 16 bytes of the SBOX or the 4 columns of the MixColumns 
operation in AES. This number depends on the algorithm and on the architecture of the 
implementation.  

In practice, both shuffling and the random dummy insertion are often combined. 

2.3.1.2.3. Random time delay 

One of the most common countermeasures against SCA is the introduction of random 
delays. Instead of executing all the operations sequentially, the CPU interleaves the 
code's execution with that of dummy instructions so that the corresponding operation 
cycles do not match between different power traces because of the time shifts. These 
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time delays must be randomly generated along each execution and their effect can be 
considered as additive noise that worsens the SNR. 

In general, random delays consist of a dummy loop where a random value is generated 
and then decremented until the accumulator reaches zero before executing any further 
code. Usually, the value generated and then decremented is uniformly distributed across 
all the values it can take. 

An example of three power consumption acquisitions that include random delays is 
shown in Figure 5. The three acquisitions belong to the first round of an AES and perform 
exactly the same operations, resulting in the exact same power profile. However, delays 
of 102 and 192 measured samples have been applied to trace 2 and trace 3, respect to 
the non-delayed trace 1. As a result, the acquisitions are no longer synchronous. 

 

Figure 5. Power acquisitions with random delays 

As the size of the random delay increases, an attacker is obliged to acquire more 
samples, so it is of interest to maximize the length of the delays, which on the contrary 
penalizes the performance of the execution in terms of added overhead. 

Delays are rarely used in one single place. A single delay is easy to identify for an 
attacker and, therefore, its effect is easy to correct. This can be seen in the previous 
image where the high frequency pattern in the middle of the signals is only shifted some 
positions to the right in the case of the red and green signals. Therefore an attacker 
simply needs to re-align the traces to make that pattern match again. This is why random 
delays are usually implemented with short lengths and placed at different points through 
the whole algorithm. The objective is to break the trace with relatively short delays in 
multiple places so that it is undistinguishable where the attack point is.  

Hence, it is usually the cumulative effect of several random delays what protects an 
implementation from a SCA attack. Following the Central Limit Theorem, when the sum 
of random delays is generated from uniformly distributed random variables, the 
sequence of themselves rapidly becomes binomial, which approximates to a normal 
Gaussian distribution. This is why the cumulative delays are usually measured in terms 

of the mean 𝜇, variance 𝜎 and standard deviation 𝜎2.  
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Figure 6. p.d.f.-s for the cumulative cases of 1,2,3,4 and 10 plain uniform delays 

Figure 6 displays the distribution for the cumulative effect of random delays when 1,2,3,4 
and 10 sums of uniformly distributed delays are considered. It can be seen how the sum 
of two delays is not enough for the approximation to a Gaussian curve to be acceptable. 
However, from three delays on, the p.d.f. shape resembles well enough that of the 
normal Gaussian distribution. 

From [26], we know that the variance and standard deviation are closely related to the 
protective effectivity of the random delays. The bigger the standard deviation is the better 
misalignment that will be obtained. On the other side, the lower the mean the lower the 
total overhead added by the random delays. Therefore, the cumulative effect of random 
delays is more efficient for high standard deviations and low mean values [25] [26] [27]. 

 

2.3.2. Masking countermeasures 

There is a different kind of countermeasure that must be always considered: data 
masking. Data masking intends to break all correlation between the power consumption 
and the actual intermediate data. In other words, masking allows making the power 
consumption independent from the intermediate data, even if the device has a data-
dependent power consumption. 

An advantage of this approach is that it can be implemented at the algorithmic level 
without changing the power consumption characteristics of the cryptographic device.  

Hence, a masked algorithm is an algorithm which with given inputs will produce the same 
output than the non-masked version, with the only difference that all intermediate 
computations will be masked with random values. The masks are internally generated 
by the device for each algorithmic execution. 

But what does masking mean? Data being masked means that the real value of the data 
is somehow mixed with more data. This mixing is usually done through XOR and AND 
operations. Since the data manipulated by the algorithm is not strictly the real data, the 
power consumption generated will not be the same and the leakage will be strongly 
reduced. If the masking is well implemented the leakage should disappear completely. 
In other words, if an attacker does not know to which values correlate the power traces 
(because the masking values are random and secret) the attack cannot be mounted. 

Typically, the masks are directly applied to the plaintext or the key. The implementation 
of the algorithm needs to be slightly modified in order to process the masked intermediate 
values and in order to keep track of the masks. The result of the encryption is also 
masked. Therefore, the masks need to be removed at the end of the computation in 
order to obtain the ciphertext. It is important to make sure that every intermediate value 
is masked all the time, otherwise correlations could be recovered between unmasked 
intermediate values and the power traces. 
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2.3.2.1. Boolean masking vs Multiplicative masking 

In Boolean masking schemes the intermediate value is always concealed by XOR-ing it 

with the mask, while multiplicative masking uses AND operations for the masking. 

Let’s consider only Boolean masking for now. Regarding most of the cryptographic 

algorithms, the masking has to be applied to both linear and non-linear transformations. 

A linear function 𝑓 always complies with the following equation, where 𝑚 stands for any 

mask and 𝑥 represents any intermediate value: 

𝑓(𝑥 ⊕ 𝑚) = 𝑓(𝑥) ⊕ 𝑓(𝑚)         (12) 

Boolean masking is suitable for linear operations since they modify the mask in an easily 

computable way. However, if a non-linear function 𝑔 is considered, the previous relation 

does not hold anymore: 

𝑓(𝑥 ⊕ 𝑚) ≠ 𝑓(𝑥) ⊕ 𝑓(𝑚)           (13) 

Since Boolean masking cannot properly suit how non-linear functions operate, more 

complex perspectives have to be contemplated in order to compute the mask 

modifications.  

Now, let’s consider the case of an AES algorithm. All the functions used in it are linear 

functions except for one, the SubBytes transformation. This function is based on 

computing the multiplicative inverse inside the Rijndael’s finite field, which is compatible 

to multiplicative masking since: 

        (𝑥 ⊗ 𝑚)  ⇒  𝑖𝑛𝑣𝑒𝑟𝑠𝑒  ⇒  (𝑥 ⊗ 𝑚)−1             (14) 

Note that instead of an XOR the above function operates with an AND. In order to 
implement this masked multiplicative inverse, the Boolean masking coming from the 
previous linear transformation has to be modified into a multiplicative masking. The 
opposite happens with the output of the inverse that has to be modified back into Boolean 
masking. As a result, a mix between Boolean and Multiplicative masking can be applied 
to solve the problem of the non-linear function in AES.  

Nevertheless, changing from one type of masking to the other is not trivial and often 
requires a significant amount of additional operations. 

2.3.2.2. Higher order masking 

Closely related to the higher order attacks discussed in section 2.2.3.4, higher order 

masking schemes can be implemented as a direct protection against HODPA/HOCPA. 

A hardware device with a first order masking scheme is vulnerable to second order 

attacks. If a second order masking is implemented in the device, this will become 

resistant to first and second order attacks, but it will still be vulnerable to third order 

attacks. Following this line of thought, the resistant-vulnerable relation between higher 

order masking schemes and higher order attacks could be, theoretically, escalated to 

any level. 

We already know that higher order attacks target multiple points in time for the side 

channel analyses. The question now is: how is the order of a masking increased? This 

is done by introducing more shares into the equation, i.e. for a first order masking we 

have: 
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𝑥𝑚 = 𝑥𝑖 ⊕  𝑚             (15) 

Where 𝑚 is the mask, 𝑥𝑖 is the intermediate value to be protected and 𝑥𝑚 is the masked 

intermediate value. Now, if a 𝑛𝑡ℎ order masking is considered: 

   𝑥𝑚 = 𝑥𝑖 ⊕ (𝑚𝑛−1 ⊕ …⊕ 𝑚2 ⊕ 𝑚1 ⊕ 𝑚0)         (16) 

As shown in (16), for higher order masking, the intermediate value is XOR-ed with more 

than one mask. Second order masking requires two masks, third order masking requires 

three masks and so on. 

2.3.3. Countermeasure effectivity 

Hiding countermeasures reduce the effectivity of any side channel attack. These 
countermeasures introduce uncertainty into the attack and achieve to reduce the 
dependency between power consumption and intermediate values of the cryptographic 
algorithm. However, this dependency does not totally disappear. In other words, these 
countermeasures make the attack effort increase in order to obtain any useful result, but 
they do not avoid the attack. 

In this situation, the attacker needs to increase the number of power traces, resulting in 
an increase of employed time and resources. Alternatively, the attacker could try to 
improve the attack conditions by processing the measured power data to increase the 
SNR or by applying alignment data processing techniques [24]. Anyway, the attack effort 
still increases in many ways. 

In order to be able to measure how efficient hiding countermeasures are, it will be 
considered that the attacker does not have any further knowledge on how to process or 
align the acquired power traces. Therefore, the only available option is to increase the 
quantity of traces captured for the attack. 

In [7] they pointed out that the number of needed power traces grows quadratically with 
the number of randomized operations. In order to obtain the minimum trace quantity 
needed for a protected implementation, the minimum trace quantity of the unprotected 
implementation has to be multiplied by a factor that scales up quadratically: 

          𝑁′ = 𝑘2 ∙ 𝑁             (17) 

𝑁 is the minimum number or power measurements required for a successful CPA attack 
on an unprotected implementation, while 𝑁′ represents the same in the case of a 

protected implementation. 𝑘 will be denoted as protective effectiveness factor. This 
parameter is affected by many variables that correspond to the device and trace 
acquisition environment. Among these, we have the leakage characteristics of the 
device, its power consumption and electronic noise, in addition to the sampling rate and 
SNR of the acquired signal. 

In [8] Mangaard proposed an approximation of the protective effectiveness factor 𝑘 
based on the correlations obtainable for each implementation: 

  𝑁′ = (
𝜌𝑢𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑

𝜌𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑
)
2

∙ 𝑁                           (18) 

The factor can be approximated as the division of the correlations resulting from the 

attack on each of the implementations.  

Considering the hiding countermeasures implemented for this thesis, the protection level 

that they offer will be measured and compared using the 𝑘 factor defined in (17). For the 

unprotected implementation k will be of one. 
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Regarding the masking countermeasures, their effectivity is quite straightforward to 

measure. If there is still leakage, the masking is not effective. On the contrary, if the 

leakage is eliminated, the data dependency is not exploitable anymore, meaning that the 

masking scheme is efficient. 

2.3.4. Importance of unpredictability in randomization 

System designers are typically more concerned with the power consumption and bit 
generation speed, than with the actual randomness of the bits generated. 

This is strange, considering that in most, if not all, cryptographic systems, the quality of 
the employed random numbers directly determines the security strength of the system. 
In other words, the quality of the random number generator directly influences how 
difficult is to attack the cryptographic system. 

What happens if we start with key material that is partly predictable to the attacker? 
Immediately, the security of the system is weakened, regardless of the algorithm or 
protocol used. Take, for example, the effective strength of an AES128 key. If your 128-
bit key contains 16 predictable bits, using it in AES-128 does not give you a 128-bit 

protection (i.e. 2128 possibilities to cover by brute force), but only gives you 112 bits of 
protection, making the effective security of your system lower than the actual key length 
it uses. 

Now, if we think about the cryptographic countermeasures, all the countermeasures 
need randomness in order to be effective. Indeed, every countermeasure that has been 
introduced would be useless if they were applied deterministically, or if the attacker could 
guess the “random” values applied.  

Considering the approach of hiding in time, the attacker could unmake the trace 
desynchronizations. In the case of masking, it would be even easier to extract the real 
values of the intermediate variables. If the values of the random masks are known, the 
double unknown variable problem is reduced to a single unknown variable problem, 
making the implementation vulnerable to first order attacks again. 
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3. Methodology and project development 

3.1. Experimental setup 

3.1.1. Chipwhisperer - Lite 

After consideration of various possibilities, it was decided to work with a Chipwhisperer-
Lite board. Chipwhisperer is an open source platform for hardware embedded security 
research, specially designed for side channel analysis and glitching based fault injection. 
The Chipwhisperer kit typically comes with two main parts: a multi-purpose power 
analysis capture instrument, and a target board. The target board is the device under 
test (DUT), which is basically a standard microcontroller were you can implement 
algorithms onto. 

 

Figure 7. Chipwhisperer lite capture and target boards  

The capture board uses an ATSAM3U2CA-AU microcontroller, which is a 32-bit high 
performance MCU based on ARM cortex-M3 RISC processor, in addition to a FPGA that 
belongs to the SPARTAN-6 family. The microcontroller has a USB controller interface 
implemented in C and is mainly used for communication purposes between the capture 
board, target device and the computer at the other end of the USB (see Figure 8). The 
FPGA is employed for high-speed capture purposes, in addition to other useful features 
such as clock or voltage glitching and triggering. 

All communication with the capture board is done via USB through the Chipwhisperer’s 
Python API. However, any language that could talk to libusb (C library that provides 
access to usb devices) should be compatible.  

The communication between the target and capture board is done using the Simpleserial 
protocol based on the C library. The master-slave serial protocol begins every 
communication from the capture device sending data packets to the target. Whether the 
target device sends data back or not, it has to answer with an ACK to tell the capture 
board that the communication was successfully performed.   

Some of the main features of the Chipwhisperer capture board are: 

 10-bit ADC with a maximum sampling rate of 105MS/s for capturing power traces. 

 ADC clock that can work synchronously at target clock frequency (x1) or four 
times faster than the target clock (x4). 

 AC-coupled LNA with adjustable gain from -6.5dB to 55dB 

 Maximum sample buffer size of 24.573 

It should be noted that, both, capture and target devices work with the same clock 
offering synchronous capture features. This ensures sample points are directly related 
to the digital clock that generates the signals of interest. As a result, the power 
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consumption of the target DUT can be successfully analyzed, even if lower sampling 
rates are used compared to a regular oscilloscope. 

Regarding the target device, an ATXmega128D4-AU 8-bit RISC microcontroller of AVR 
architecture (Harvard modified architecture developed by ATMEL) is employed. The 
device is of low power performance at up to 32 MHz speed and has the following memory 
capabilities: 

Memory type Space (KB) 

Flash (program memory) 128  

EEPROM 2048  

SRAM 8 

Table 2. Target MCU memory  

3.1.1.1. Capture configuration 

A fixed capture configuration was set in order to perform the power measurements of the 
different implementations. These are gathered in Table 3. 

Parameter Value 

Gain 25dB  

𝑓 (target) 7.38MHz  

𝑓 (ADC) 29.53MHz 

Baud rate 38400 bits/s 

Table 3. Capture configuration 

Regarding the sampling rate, the chosen configuration uses a sampling frequency four 

times bigger than the target signal to be measured. This way, the resulting sampling rate 

doubles the minimum limit required by the Nyquist theorem, ensuring that the obtained 

signal can be completely reconstructed. 

3.1.2. Implementation environment  

The implementations were coded in C and programmed into the target XMEGA device. 

Eclipse IDE environment was employed for their development. The only libraries used 

were the standard C library, from which stdlib.h and stdint.h were included. 

All the Chipwhisperer firmware is bare-metal, meaning that no operating system is 

supporting it and the same path was followed for the development of the AES 

implementation and the countermeasures.  

Regarding the random number generation, the secrets built-in Python module was used, 
together with the rand() function of the standard library of C. Note that two independent 
random number generations were used in the experimental set-up, one external to the 
target DUT and the other internal.  

On the one hand, we have the Python code running on a windows computer that uses 
the secrets module. This module is based on a cryptographically secure PRNG that 
employs various OS data as randomness source (PRNG seeding).On the other hand, 
we have the C code implemented inside the DUT, that uses the rand() function and has 
to be internally seeded. 
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Figure 8: Experimental set-up 

Each plaintext input to encrypt was generated randomly using a python script and sent 
to the target DUT trough the capture board. Regarding the secret key, this was also sent 
through a python script, only that it was fixed to the following hexadecimal value.  

     𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦 = {𝐶𝐴𝐹𝐸 𝐴𝐵𝐵𝐴 𝐶𝐴𝐹𝐸 𝐴𝐵𝐵𝐴 𝐶𝐴𝐹𝐸 𝐴𝐵𝐵𝐴 𝐶𝐴𝐹𝐸 𝐴𝐵𝐵𝐴}𝐻𝐸𝑋         (19) 

Actually, the secret key is sent once and kept into the memory of the target device, unless 
a new key is sent to replace it. 

Apart from the plaintext and key, a random word of 32 bits is also sent before each 
encryption, which is used to seed the rand() function that will internally generate any 
needed random number for the implementation of the countermeasures.  

Once the AES encryption is done and its power consumption is acquired by the capture 
device, the data is sent to the windows computer where the traces can be saved in order 
to apply SCA on them. 

 

3.2. Analysis metrics 

In order to conduct the project and be able to fairly compare the effectiveness of the 

implemented countermeasures, different figures of merit and metrics will be used. 

Hereunder,  these figures of merit and metrics are introduced, before using them in the 

following sections of the document. 

3.2.1. Attack point: SBOX output 

First to define is the attack point within the AES encryption algorithm. The 

countermeasures developed in this project are meant to protect the DUT against side 

channel analysis. As side channel analysis can be done in different parts of the AES 

algorithm. It has been chosen, as attack point, the data output at the SBOX of the first 

round. 

The rationale behind this attack point is the following: the first operation conducted by 

AES algorithm is an XOR between the input data and the secret key. The second 

operation is the SBOX. Hence, the data at this SBOX output is the first point in the 

algorithm where we have a variable related to the secret key that is treated byte by byte. 

Hence, it is a nice target point for an attacker that would like to retrieve the value of the 

secret key by SCA. Note that after the first XOR operation we also have a variable related 

to the secret key, however, the XOR operation is bit-wise while the SBOX operation is 

performed byte-by-byte in sequential order. 

The following diagram shows a schema of the attack point. 
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Figure 9: Attack point: SBOX output 

The attack process is the following: 

 Acquire a set of power traces (hundreds or thousands depending on the 

experiment) with random input data, but fixed key. 

 For each key guess (from 0x00 to 0xFF) of the first byte of the AES key, calculate 

the values of the first byte at SBOX output. 

 Compute the Pearson coefficient between the power traces and that calculated 

values at SBOX output. This must be done for all key guesses in order to identify 

the one retrieving the highest Pearson coefficients (which will be the one 

corresponding to the correct key). 

 Repeat the process for all other key bytes. 

 

3.2.2. Attack technique 

In order to analyze how good the implemented countermeasures are, we are going to 

use correlation analyses (CPA as explained in section 2.2.3.3). The correlation analysis 

will compute the Pearson correlation coefficient between the power traces acquired from 

the DUT with the data at SBOX output, per each key guess, byte by byte. 

As explained in previous point, the data at SBOX output depends on the input data to 

the algorithm, which is known, and also on the secret key, which is unknown by an 

attacker. Therefore, in order to compute the Pearson coefficient at SBOX output, an 

attacker needs to make hypothesis of the value of the key. When the attacker correctly 

guesses the key value, the correlation analysis will correlate the correct data at SBOX 

output with the power traces, and correlation peaks will be seen as a result of the attack. 

On the other hand, when the guessed key value is incorrect, the attack will try to correlate 

the power traces with incorrect data and the Pearson correlation will be very low. 

Note the importance of choosing as attack point the output of the SBOX. If an attacker 

would target the XOR, he would need to compute 2128 key hypothesis (because AES 

key is 128 bits long, or 16 bytes equivalently). However, as the SBOX is conducted byte-

by-byte, the attacker only needs to compute 28 key hypothesis per each of the 16 key 

bytes independently. So in order to recover the full AES key, an attacker would need to 

repeat 16 times the CPA at SBOX output, one per each key byte, which is completely 

affordable because only 16 × 28 key guesses are required to recover the full key. 

Hence, as it can be observed, the objective of this project is to implement 

countermeasures that make the CPA retrieve nothing, even when the attacker correctly 

guesses the right key.  Accordingly, the obtained Pearson coefficients will be lower in all 

the protected cases. This way we can conclude that the countermeasures are efficiently 

protecting the AES algorithm against side channel attacks. 
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3.2.3. Figures of merit and comparison metrics 

In order to assess and compare the effectiveness of the different implemented 

countermeasures the following metrics will be used: 

 In an unprotected AES implementation, we are going to obtain which is the 

minimum number of traces required to retrieve the AES key by CPA, and which 

are the Pearson coefficients found. 

 Per each implemented countermeasure, we are going to, first, assess whether 

the correct key can be retrieved or not; and second, if can be retrieved, which is 

the minimum number of traces needed (which might be much higher than the 

ones from the unprotected implementation) and which are the Pearson 

coefficients (which might be much lower than for the unprotected 

implementation). 

 The protective factor 𝑘 is defined as the relationship between the number of 

traces 𝑁 required to retrieve the correct key in the protected implementation vs. 

the traces 𝑁′ needed for the unprotected implementation.  

        𝑁′ = 𝑘2 ∙ 𝑁             (19) 

Hence, if the countermeasure implemented is not effective, 𝑘 will be close to 1, 

while in case the countermeasure is really effective, 𝑘 will tend to ∞. 

Therefore, the main figures of merit used to assess the protective effectivity of the 

countermeasures are: 

 The amount of retrievable key bytes, if any. 

 The minimum trace quantity for the key retrieval. 

 The protective factor 𝑘. 

 The  maximum Pearson correlation coefficient. 

Besides, each countermeasure implementation will be analyzed in terms of duration of 

encryption (i.e. performance). Therefore, a secondary figure of merit is defined: 

 Time overhead respect to the duration of the unprotected AES (measured in clock 

cycles) 

 

 

3.3. Implementation development and analysis 

3.3.1. AES without countermeasures 

3.3.1.1. Implementation aspects 

When implementing an AES in software, there are various options to consider. In this 
section some of them will be introduced and some of their pros and cons will be 
discussed (The reader is encouraged to have a look at Appendix A for the better 
understanding of the following section, where AES is explained in more depth).  

Since the AES works strictly with bytes in an 8-bit platform, the employed data type was 
uint8_t (unsigned 8bit) in order to keep the implementation as light as possible. 

The developed implementation uses some variables defined as static and global, such 
as the state matrix, which is implemented as a two dimensional array, and a single 
dimensional array used to store all the keys derived from the key schedule. The static 
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variables remain in memory while the program is running, regardless of the functions 
that call or influence them. The round constants were defined as global, static and 
constant variables, since they are never modified through the program execution. The 
same was done for the SBOX and reverse SBOX LUTs. The rest of the variables used 
in the algorithm are instantiated locally inside the functions that require them. 

Regarding the SubBytes function, most of the times the AES SBOX and its reverse are 
implemented in form of LUTs of 256 components (Appendix B1). However, there is also 
the possibility of implementing them as the inverse function in the Rijndael’s finite field 
followed by an affine transformation (Appendix A.2.1). When no complexity is required, 
the LUT tables work perfectly, only that taking extra 512 bytes of memory space. 
Nevertheless, some data masking schemes prefer to implement the inverse and affine 
transformations in order to mix the intermediate values with random masks.  

The ShiftRows function, instead, offers no option at all. The bytes are shifted as required 
by the algorithm and that is all. However, since the shifting is done circularly some byte 
buffers are needed, which has a big impact on the leakage generated. 

The MixColumns function is probably the one that offers more implementation 
possibilities. As a first option, the Galois multiplications (Appendix A1 and A.2.3) for 
encryption, and decryption, can all be implemented in form of LUTs (Appendix B2). Then, 
equation (44) is applied and the transformation has concluded. This option is quite 
straightforward, but notice that a total of 1536 bytes of memory are required in order to 
store the six LUTs.  

A more efficient way is to implement the function based on the independent 

multiplications by 𝑥 that the MixColumns transformation performs in the Galois field. The 
multiplication by 𝑥 can be implemented in a function as follows: 

       𝑓(𝑥) = ((𝑥 ≪ 1) ^ ((𝑥 ≫ 7 & 1) ⊕  0𝑥1𝑏)) ,   𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝐺𝐹(28)      (21) 

These function reflects the equations shown in (46) and (47). Then equation (40) can be 
directly applied. 

As a last consideration, there is an implementation technique worth mentioning called bit 
slicing. Bit slicing considers single bits and not byte structures. A bit sliced algorithm can 

perform 𝑁 encryptions in parallel on a microprocessor with 𝑁-bit register width, resulting 
in a significant performance boost. Applied to the XMEGA target, 8 encryptions could be 
carried out in parallel. However, this was considered to be out of the scope of this project 
and, accordingly, it was not implemented. 

The final implementation of the AES128 can be found in Appendix C1. Even if both 
encryption and decryption were implemented, only encryption will be considered for 
future analyses on the countermeasures.   

 

3.3.1.2. Leakage assessment of AES 

SPA on AES 

Before analysing the effectiveness of any countermeasure, it is worth analysing the 

power consumption characteristics of the unprotected implementation of AES. A SPA 

was carried out in order to identify the power consumption patterns of the implementation 

and locate the first rounds of the AES.  

As can be seen in next figures, when we execute the programmed AES algorithm we 

obtain a trace where a repetitive pattern can be identified. The FPGA was triggered just 
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before executing the AES encryption process in order to start recording the samples just 

before computing the first step of the encryption. We can see that the power consumption 

corresponds to the AES-128 algorithm because each of the 10 rounds conforming it can 

be identified as a repetitive pattern. As expected, the last round was found to be shorter 

than the others due to the absence of the MixColumns function in it. 

 

Figure 10. SPA on AES128 implementation  

By zooming into one of these rounds, different patterns can also be observed, allowing 

for the identification of the different transformations that AES conducts within its rounds: 

AddRoundKey, SubBytes, ShiftRows and MixColumns. This is the sample space where 

the CPA will be performed. 

If we look at the power profile of each transformation, the power shapes are assembled 

in groups of four (except for ShiftRows), actually grouped row by row or column by 

column. This behaviour is a direct consequence of implementing the AES state as a two 

dimensional 4x4 matrix. Moreover, inside each row/column group, the smaller operations 

on the bytes can be differentiated (i.e. in the SubBytes region each of the four row 

processing regions can be differentiated and the power consumed by each of the SBOX 

look-ups can be observed inside them). 

The sample amount needed to capture all the encryption process was bigger than the 

buffer size of the capture tool. This is why a decimation of 2 had to be applied to the ADC 

clock, setting a sampling rate of 14.765MHz. For the zoomed view the decimation was 

undone, restoring the sampling rate to 29.53MHz, in order to offer the highest resolution 

possible (i.e. the samples between first and second graph of Figure 10 do not match 

because sampling rate was doubled for the augmented view).  

As the reader will see in the future analyses done, this sampling rate modifications were 

applied to most of the performed SPAs (with different decimations), because it was the 
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only option to overcome the sample buffer limit of the capture tool in order to obtain a 

good resolution. However, it had no impact in the analyses as this decimation was only 

done for SPA and undone before CPA was conducted. 

As a next step for the SPA, a timing analysis was done on the different distinguishable 

operations inside the encryption of the AES. The time spans were measured in samples 

in each case and, considering the sampling rate that was used, their related clock cycles 

were calculated. 

The next table gathers the measured time periods for the different operations of the AES: 

 Clock cycles (cc) Time 

Full encryption 9780 1.325ms 

Round 985 133.42μs 

Last round 635 86.01μs 

SubBytes 285 38.60μs 

ShiftRows 70 9,48μs 

MixColumns 350 47,41μs 

AddRoundKey 280 37,92μs 

Table 4. Time measurements on the unprotected AES 

The AES encryption had a duration of approximately 19.560 samples, which is to say 

that 9780 clock cycles or 1.327ms were required by the target DUT in order to compute 

the encryption of a plaintext.  

Since this was the first timing analysis that was done, the measurements were taken for 

all the internal operations of the AES. However, in the future analyses, only the full 

encryption length will be considered because this is the figure of merit chosen for the 

time overhead assessment of the countermeasures. 

 

CPA on AES 

After conducting a CPA with 200 traces on the unprotected AES implementation on the 

attack point identified in section 3.2.1, the secret key was recovered successfully. The 

correlation results obtained for the first 5 positions can be seen in Table 5: 

 

Table 5. CPA on first round results for unprotected AES 

As explained, the CPA attack is performed per each key byte, making 28 hypothesis of 

the value of this key byte. The Pearson correlation coefficient is computed for all key 

hypotheses and the one resulting in the highest correlation is the one that is correct. 

Therefore, as can be seen, the CPA returns a ranking of key values sorted by the value 

of the Pearson coefficient. Each column represents each of the 16 key bytes to be 
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guessed (this enumeration will be used from now on to reference each key byte) and the 

rows indicate the ranking position of the byte hypothesis. The correct key byte guesses 

are highlighted in red. 

If we observe the first byte (key byte 0), we can see that the first position is occupied by 

the value “0xCA” with a 0.745 Pearson correlation, and the second position is occupied 

by the value “0xC1” with a 0.239 Pearson correlation. With this numbers, it is clear that 

the value “0xCA” is the correct value for the first byte of the key. Note that the other bytes 

of the key are retrieved following the same procedure. 

Figure 11 shows the correlation value over time for the key byte 1:  

 

Figure 11. Correlation vs time for key byte 1 

In the figure above, the Pearson correlations obtained for the key byte 1 were plotted 

(column 1 of Table 5). The plotting was carried out drawing a curve, for each byte 

hypothesis, with the correlations obtained at each sample.  

Remember that the CPA performed correlates the measured power consumption to the 

power estimates at the attack point (i.e. Hamming weight of the SBOX output). When a 

correct byte hypothesis is made, the correlation curve shows peaks at the time instants 

where the power estimate matches the measured power. As a result, the correct byte 

hypothesis (blue) shows observable correlation peaks at three different time regions of 

the first AES round. On the contrary, when the wrong hypothesis are made, the power 

estimates do not approximate well enough to the real data and, therefore, the 

correlations for the wrong guesses (black) do not stand out.  

In relation to the time instants where the blue peaks were obtained (each double peak 

will be considered as one peak), the first one corresponds to the SBOX operation 

performed in the SubBytes transformation. The second was generated by the shifting of 

the same byte made in the ShiftRows transformation. The third spike was produced by 

the XOR-ing made in the MixColumns transformation (when C is traduced to machine 

code, the bytes are loaded from memory, leaking their value, before XOR-ing them). 

Hence, we can observe that the byte value at the SBOX output is processed by the 

algorithm at three different operations during the first round of the AES. 

Figure 12 shows the correlations obtained at the SubBytes transformation for all the key 

bytes: 
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Figure 12. Correlation vs time for all key bytes 

This time, the correlation results were plotted considering all of the key bytes, but only 

for the SubBytes transformation (not all the round like in Figure 11). The correct subkey 

guesses were highlighted in colours (i.e. 16 colours for 16 correct key bytes), while the 

wrong guesses were represented all in black. Each of the 16 spikes were generated due 

to the 16 SBOX substitutions, one for each key byte, performed sequentially by the 

implemented algorithm.  

We can see that all the key bytes show the same leaking behaviour. However, as a 

matter of fact, some key bytes show bigger peaks than others do. This indicates that not 

all the samples leak the same amount of information. This is probably due to the power 

consumption of the DUT not being deterministic.  

The important thing is that each correlation from each byte is found in a different time 

position. This is what makes the attack feasible because in each time position we can 

analyse a single byte making 28 hypothesis of the key value as explained before (now it 

is clearly seen graphically). 

As a next step, we will focus on the evolution of the correlations for the key bytes in 

function of the number of traces. As stated at the beginning of this section, the CPA was 

performed with 200 power consumption traces. The results shown in Table 5, Figure 11 

and Figure 12, correspond to the values obtained when all of the 200 traces were added 

into the CPA attack. However, the CPA can be performed trace by trace (i.e. adding one 

more trace to the attack in each iteration) in order to analyse the evolution of the attack. 

As a result, the correlations evolve each time a new trace is added into the analysis. 

Figure 13 shows the correlations obtained for the key byte 1 in function of the number of 

traces: 
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Figure 13. Correlation evolution during the CPA for the key byte 1 

Once again, the correlation for the correct key byte 1 was plotted in blue, while the 

maximum correlation for the wrong guesses was plotted in black. Looking at the graph, 

we can see that approximately for the first 25 traces, both curves show similar correlation 

values, meaning that the correlations of the correct key guess were similar to the ones 

of the wrong guesses at first. If the attack had stopped at this stage, it would be 

impossible to know which one is the right key guess since this would be mixed with the 

wrong ones. However, as the attack keeps on considering more traces, the correct key 

guess stands out respect to the incorrect ones. 

A divergence between both curves is generated slightly before adding the trace 25. 

Observe the more accurate view of the divergence shown in Figure 14. It can be seen 

that the divergence was generated when trace number 23 was added into the attack. 

After this divergence, the difference between both curves gets bigger, increasing the 

difference of correlations between the correct byte guess and the wrong ones. 

 

Figure 14. Zoomed view of the divergence 

As a result, it can be considered that 23 traces were needed in order to retrieve the 

correct value of key byte 1 (i.e. 23 traces were needed in order to rank the correct value 

of key byte 1 at first position). 

The analysis that was made for key byte 1, was equally made for all the other key bytes. 

The leaking behaviour is the same, or very similar at least, for all of them. The only 

difference resides in the exact correlation values obtained during the CPA in each case 

and the number of traces to rank the correct key value at first position. 
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Even if most of the key bytes were successfully retrieved with less than 30 traces, the 

key byte number 6 was the slowest (worst case key byte) needing a total of 46 traces to 

rank first. Remember that the objective of the attack was to extract the complete value 

of the secret key (all of the 16 key bytes). Consequently, it will be considered that a 

minimum quantity of 46 traces were needed in order to retrieve the secret key and break 

the AES for this initial unprotected implementation of the algorithm.  

In order to compare the performed attack and results with the future countermeasure 

implementations, the reference figures (worst case considered) are gathered in Table 6: 

CPA region Correlation  Traces K Retrieved 

First round 0.918 46 1 Full key 

Table 6. CPA results on first round for the unprotected AES 

Note that the maximum correlation obtained in the attack was included in the table 

considering all operations conducted within the first round of the algorithm (i.e. 0.918 is 

the maximum correlation obtained no matter whether it is found in the SubBytes, 

MixColumns, AddRoundKey or ShiftRows transformations). Considering that the 

countermeasures aim to reduce the correlations obtainable for this implementation, the 

worst case will be the maximum correlation that could be obtained in comparison with 

this one.  

As a last step, two more CPA attacks were conducted with the same trace set, but 

focusing only on the sample spaces of the SubBytes, and MixColumns transformations 

(not all the first round like before). Table 7 gathers the results. 

CPA region Correlation Traces K Retrieved 

SubBytes 0.753 81 1 Full key 

MixColumns 0.812 61 1 Full key 

Table 7. CPA results on different operations of the unprotected AES 

The values in Table 7  will be used to assess the protective effectivity of the randomized 

SBOX-es and the randomized MixColumns analysed in section 3.3.2.2. Considering the 

results in Table 7, it is clear that different operations leak the different amounts of 

information. 

 

3.3.2. AES with hiding countermeasures 

3.3.2.1. Dummy rounds 

The dummy rounds are additional rounds to the AES algorithm that operate on a dummy 

state, with random inputs and random keys that are completely uncorrelated to the actual 

encryption process, leaving the real state matrix untouched. Their objective is to create 

confusion to the attacker who cannot distinguish which rounds of the algorithm work with 

real data and real key, and which ones work with fake data and fake key.  

The implementation developed has two variations. The first variation adds a dummy 

round before or after each real round.  The second variation adds two dummy executions  

per each round, where both of them could come before or after the real round, or one 
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before and the other after. The positioning of the dummy rounds is done through random 

bytes generated before each encryption process. 

For the experimental process, CPA attacks were carried out for the single dummy round 

implementation focusing on the first two rounds. Statistically, the probability of finding 

real data in the first round of each trace is of 1/2. Every sample containing real data 

improves the resulting correlation value, while the samples containing dummy data affect 

negatively on the correlation results.  

For the double dummy round implementation the CPA targeted the initial three rounds. 

The probability of finding real data in the first round decreases to 1/3 in this case. 

Before every CPA attack, a SPA was done in order to define the attack region (i.e. the 

sample space targeted for the attack) and also to measure the length of the AES 

encryption with the implemented countermeasures. 

The dummy rounds implementation is shown in Appendix C2.  

 

SPA on dummy round implementations 

 

Figure 15. SPA on the single dummy round implementation 

Figure 15 shows the SPA carried out on the single dummy round implementation. The 

implementation executes 20 consecutive rounds, 10 of which are real and the rest are 

dummy. As can be seen, the AES rounds were differentiated in the figure. Every two 

rounds a real round and a dummy round is processed. In fact, an augmented view of the 

first pair is offered, where the power consumption of the real round and the dummy round 
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are shown to be identical. This zoomed region is where the CPA will be carried out for 

the single dummy round implementation. 

 

Figure 16: SPA on double dummy round implementation 

Figure 16 shows the SPA done for the double dummy round implementation. With the 

double dummy round protection, a total of 30 rounds (20 dummy and 10 real) are 

executed during each encryption. Every three rounds, two dummy executions are 

processed, while the resting one contains real data. The zoomed view of the first three 

rounds shows how the real round located in the middle has the same power profile 

compared to the dummy rounds located before and after it. This is the sample space 

where the corresponding CPA will be performed. 

As a last step, the full encryption of the single and double dummy round implementations, 

together with the encryption of the unprotected AES, were captured again. However, this 

time the power acquisitions were made with a common ADC frequency of 4.92MHz. The 

captures are shown in Figure 17: 
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Figure 17. AES length comparison for the unprotected, single dummy and double 
dummy  

As expected, compared to the unprotected AES case, the single dummy round 

implementation roughly doubles the required time for encryption (if the initial 

AddRoundKey had a dummy pair the duration would be exactly the double). In the case 

of the double dummy round, the encryption length is almost triplicated. The measured 

encryption lengths are gathered in Table 8, given in DUT clock cycles and milliseconds. 

Implementation Clock cycles (cc) Time (ms) 

Unprotected 9780 1.325 

Single dummy 19280 2.612 

Double dummy 28780 3.899 

Table 8. Encryption length for unprotected, single dummy and double dummy 

 

CPA on dummy round implementations 

A CPA with 1000 traces was conducted for the single dummy implementation and 

another with 3000 traces for the double dummy implementation. 
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Figure 18: Correlation vs. time for key byte 1 on single dummy round implementation 

Figure 18 shows the correlations obtained for key byte 1 when the single dummy 

implementation was attacked. In comparison with Figure 11, where the same data was 

shown for the unprotected implementation case, the single dummy implementation 

resulted in the double amount of peaks.  As expected, the correlated data was found 

both in the first and second rounds of the AES because the order of execution of the real 

and fake rounds is mixed. The first three peaks correspond to the first round, while the 

last three to the second. 

For the double dummy round implementation, the leaking behavior was the same, but 

extended to three rounds. Nine correlation peaks were found for the key byte 1, meaning 

that the correlated data was found in all of the initial three rounds.  

Table 9 gathers the figures of merit for the dummy round insertion implementations: 

Implementation Correlation  Traces K Retrieved 

Unprotected (first round) 0.918  46 1 Full key 

Single dummy 0.341  580 3.551 Full key 

Double dummy 0.203  1670 6,025 Full key 

Table 9. CPA results for single dummy and double dummy implementations 

In comparison with the unprotected AES, the single dummy round required at least 13 

times more traces for the key retrieval, while this number increased to 36 when two 

dummy rounds were inserted. Moreover, seems that the value of the protective factor 

obtained grows linearly with the amount of dummy rounds inserted. Following this line of 

thought, if three dummy rounds were inserted per round, one could expect to obtain a 𝑘 

value of approximately 9. Therefore, the number of traces needed to break the algorithm 

with that countermeasure could be predicted. 

Regarding the correlations obtained, there is a leakage reduction with the dummy rounds 

respect to the unprotected implementation. Indeed, this is what makes the CPA attack 

slower. The dummy data inserted obfuscates the correlation analysis results and 

therefore, more traces are needed in order to differentiate the correlations of correct byte 

hypothesis from the wrong ones. This leakage reduction is still bigger with the double 

dummy round protection, resulting in a slower CPA attack (i.e. more traces). 
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Another thing to take under consideration is the sample amount used in each attack. 

Since the attacker does not know where the real data is located, the single dummy and 

double dummy implementations had to be attacked with two times and three times more 

samples, compared to the unprotected case. Twice amount of samples, make the CPA 

twice slower. While three times more samples, make the CPA three times slower.  

 

3.3.2.2. Shuffling  

As a first approach, the SBOX-es of the SubBytes function were randomized. Similarly 
to the dummy round insertion, the SBOX shuffling is generated independently for each 
encryption of the AES. The objective is to desynchronize the target attack point in each 
trace and, thus, a higher number of traces will be required to correlate back the traces 
with the correct key value.  

The implementation uses a function that generates a shuffling array where the order of 
the 16 SBOX executions is stored for each AES round. This array is precomputed before 
each encryption process. As a result, the probability of two traces having the same SBOX 

operation at the same instant of time is of 1/16.  

As a next step, one more possibility of AES randomization was implemented following 

the same rules: the column order on which MixColumns operates. The case of the 

MixColumns randomization is similar to the one of the SBOX-es, only that with the 

following two differences: 

 The attack region for the CPA was limited to the MixColumns operation of the 

first round, not SubBytes. 

 The randomized feature was the column order in which the MixColumns function 

operates. Therefore, the probability of the applied randomization is of 1/4, 

instead of 1/16. 

The final implementation can be found in Appendix B3. This implementation also 

includes the shuffling of the AddRoundKey operation, applied identically respect to the 

SBOX randomization.  

 

SPA on shuffled implementation 

In Figure 20, the total number of the 10 rounds of the algorithm can be seen, same as in 

the case of the unprotected implementation. Considering that only shuffling was applied 

(no dummy operations were added), one could expect to see a really similar power profile 

compared to the unprotected AES implementation. However, in the zoomed view offered 

of the first round, the power profile looks quite different to the ones obtained for previous 

implementations.  

The reason for this difference is that the function used for the shuffling required the state 

matrix to be an unidimensional array of length 16, unlike the two dimensional  4x4  array 

we had before. As a result, the power profile of the round operations, except for 

ShiftRows (which is the same), is not grouped in rows or columns anymore. On the 

contrary, the byte level operations, inside each transformation, now can be seen as 16 

sequential patterns. Besides, this modification resulted in a slower processing of the 

round operations. 
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Figure 20. SPA on randomized implementation 

The duration of the encryption was measured and is shown in Table 10: 

Implementation Clock cycles (cc) Time (ms) 

Unprotected 9780 1.325 

Shuffled 12705 1.721 

Table 10. Encryption length for the unprotected and randomized implementations 

 

CPA on shuffled SBOX and MixColumns  

A CPA with 30.000 power traces was performed on the shuffled SBOX-es. The 
correlations plot obtained for the key byte 1 can be seen in Figure 21: 

 

Figure 21. Correlation vs time for key byte 1 with SBOX shuffling 
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Compared to the non-randomized case, the Pearson coefficients obtained are really 
small indicating that the protection against SCA added by the shuffled SBOX is 
considerable. Table 11 gathers the figures of merit obtained for the CPA on the 
randomized SBOX-es, where the maximum correlation is given with a value of only 0.05: 

Implementation Correlation  Traces K Retrieved 

Non-shuffled SBOX 0.753 81 1 Full key 

Shuffled SBOX (1/16) 0.05  21110 16.14 Full key 

Table 11. CPA results for the shuffled SBOX-es  

A CPA with 2000 traces was conducted on the randomized MixColumns operation and 
Table 12 gathers the results obtained: 

Implementation Correlation  Traces K Retrieved 

Non-shuffled MixColumns 0.812 61 1 Full Key 

Shuffled MixColumns (1/4) 0.229  940 3.92 Full Key 

Table 12. CPA results for the shuffled MixColumns 

From the obtained results, we can deduce that the factor 𝑘 is proportional to the inverse 
probability of the applied randomization (i.e.1/𝑝). In the case of the shuffled SBOX-es 
the probability of two traces having the same SBOX operation at the same time spot is 
of 1/16  and 𝑘 approximates to 16. In the case of the MixColumns randomization, for a 

probability of 1/4,  𝑘 approximates to 4.   

Note that the shuffled countermeasure only protects the shuffled operation. If we only 
randomized the SubBytes (SBOX-es) operation, but we attacked the entire first round, 
the leakage from the ShiftRows and MixColumns operations would be the same, 
resulting in the retrieval of the key in those operations as well as in the unprotected 
implementation. On the contrary, the dummy round insertion analyzed before, offered 
protection at round level of the AES. 

 

3.3.2.3. Random delays 

The random delay countermeasure aims at desynchronizing the time instant where data 
is manipulated in each trace. This is done is by adding random “sleep()” functions in the 
code. Note this is a countermeasure that adds less overhead to the AES execution in 
comparison with the dummy rounds, as we only insert small delays instead of adding full 
rounds to the execution. 

The implemented delay function consists of a dummy loop where a random value is 
introduced and then decremented until the accumulator reaches zero.  No further code 
of the AES encryption is executed until the sleep loop is done. Therefore, each delay 
adds a variable time shift depending on the random values introduced into the function.  

Regarding the specific time shifts generated by the delays, the function adds a constant 
delay of two clock cycles, plus three cycles per each value decremented. This granularity 
could not be further reduced for the target MCU (despite AVR assembly instructions were 
used to optimize it).  

For instance, if trace one had a delay where 4 is decremented to 0 and trace two had a 
delay (introduced at the same point in time) were 8 is decremented to zero, both traces 
would suffer a desynchronization of 12 clock cycles (3x4=12) between them. Hence, the 
desynchronization between traces is proportional to the difference of the decremented 
values. 
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Regarding the constant delay of two cycles added by the delay function, it does not 
contribute with any misalignment between the traces because it is applied equally to all 
of them. As a result, the constant part of the delay is just adding an unavoidable overhead 
to the encryption duration (2 clock cycles per delay inserted). 

The experimental analysis for this countermeasure was done in two steps: 

 Analysis of the protection offered by a single uniformly distributed random delay. 

 Analysis of the protection offered by multiple random delays. 

The implementation for the random delays can be found in Appendix C4. 

 

3.3.2.3.1. Single delay analysis: plain uniform delay 

As far as the random value generation is concerned (i.e. random values that are 
introduced in the delay function), the classical and straightforward method is to generate 
individual delays independently with values uniformly distributed in the interval [0, 𝑎] for 

some 𝑎 ∈ 𝑁. We refer to this method as plain uniform delays.  

Considering the implemented delay function, the plain uniform delays are generated by 
precomputing some random values 𝑥 ∈ [1, 𝑎]  and then passing them one by one to the 

delay function every time this is called. The bigger that 𝑎 is, the more desynchronization 
that the power traces will suffer. 

As a first step, one single random delay was placed before the initial AddRoundKey of 
the AES encryption. In order to analyze its protective effectivity, increasing values of 𝑎 
were fixed for the random variable generation (i.e enlarging the window of the uniform 
distribution) and, for each case, a CPA was carried out on the first round.  

For the following experiments, not all the key was possible to retrieve in many cases. 
Therefore, in order to have a comparable minimum amount of traces, this quantity was 
targeted for the key byte 10 (which could be retrieved in the majority of the experiments). 

 

SPA on desynchronized traces by a single random delay 

Figure 22 shows three overlapped power traces, corresponding to the first two rounds of 

the AES128. The power profile is the same for of all three traces plotted. However, each 

of them has a different delay length applied, making each of them to be desynchronized 

respect to the others. When a CPA is conducted in this situation, the samples do not 

match between traces, making it more difficult for the attacker to correlate the power 

consumption. 
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Figure 22: SPA on desynchronized traces by plain uniform delay  

Table 13 gathers the total overhead added: 

Uniform distribution Clock cycles (cc) Time (ms) 

No delay 9780 1.3252 

[1,2] 9788 1.3262 

[1,3] 9791 1.2366 

[1,4] 9794 1.3271 

[1,5] 9797 1.3275 

[1,6] 9800 1.3279 

[1,7] 9803 1.3283 

[1,8] 9806 1.3287 

[1,9] 9809 1.3291 

[1,10] 9812 1.3295 

[1,63] 9974 1.3514 

[1,127] 10166 1.3775 

[1,255] 10547 1.4291 

Table 13. Encryption length for AES128 with a single plain uniform delay 

It can be seen that the maximum overhead added by the random delay depends on 

which is the distribution length used. However, in general, the total added overhead to 

the encryption is quite small in all cases. 

 

CPA on desynchronized traces by a single random delay 

The CPA results for the single plain uniform random delay are shown in Table 14: 
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Uniform 
distribution 

Correlation  Traces K Retrieved 
Abnormal 
behaviour 

No delay 0.918  46 1 Full key None 

[1,2] 0.534 280 2.467 Full key None 

[1,3] 0.437 700 3.901 Full key None 

[1,4] 0.242 1560 5.823 15 key bytes Key byte 3 

[1,5] 0.218 2090 6.740 12 key bytes None 

[1,6] 0.168 3500 8.723 11 key bytes Key byte 3 

[1,7] 0.112 6600 11.978 12 key bytes None 

[1,8] 0.088 7500 12.768 11 key bytes Key byte 3 

[1,63] 0.016 100000 46.62 1 key byte Key byte 3 

Table 14. CPA results for single plain uniform delay analysis 

It can be observed that the random delay works really well even if only one delay is 

inserted per encryption. Already for the [1,8] distribution, the amount of required power 

traces is 163 times bigger than for the unprotected implementation and besides, not all 

the key bytes could be retrieved with this amount.  

When the [1,5] distribution was attacked, retrieving the key bytes related to the first row 

of the AES started to be more and more difficult. This is why a maximum amount of 12 

key bytes were retrieved in many cases. In each case, k was calculated for the last 

retrieved key byte. 

Apart from that, the experiment for the distribution [1,63] resulted in only one key byte 

ranked at first position. Note that this CPA was performed with 100.000 traces, denoting 

that the protective effectivity is huge for this countermeasure.  

Moreover, the only key byte that was found at first position had a maximum correlation 

of 0.016, while the wrong guesses had correlations of 0.015. In other words, the 

correlations obtained for the wrong guesses were quite similar to the correlation of the 

right guess. In this situation, an attacker that does not know which the value of the right 

guess is (unlike in this project where the key is known), could not be sure of having 

retrieved the correct key byte. 

In overall, the protective power of random delays as hiding countermeasure surpasses 

that of the dummy rounds or shuffling. In addition, with a correct positioning of the delays, 

the encryption can be protected from its beginning to the end.  

However, there is a problem related to this results. A single random delay placed at the 

beginning of the encryption is easy to identify and, therefore, easy to correct. The 

attacker can use pattern recognition techniques in order to resynchronize all the traces. 

As explained in the following section 3.3.2.3.2, multiple delays can be placed at different 

points in time in order to make the resynchronization of the traces more difficult. 

Note that in Table 14, an extra column was added named “Abnormal behavior”. During 

the different experiments made, an abnormal leaking behavior was observed for key byte 

3. With this behavior, either for the correct and wrong guesses, the resultant correlations 

were much higher than for the rest of the key bytes. 

In Figure 22, the correlations obtained for key byte 1, with normal leaking behavior, can 

be seen when a single plain uniform delay of distribution [1,63] was introduced:  
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Figure 22: Correlation vs. Time for key byte 1 with normal leaking behavior 

In Figure 23, for the same delay experiment, the correlations obtained for key byte 3 with 

abnormal leaking behavior can be seen: 

 

Figure 23. Correlation vs. Time for key byte 3 with abnormal leaking behavior 

It can be seen that the correlation values in the abnormal case are much higher than 

those of the normal case. Most of the times, when the key byte showed this behavior, it 

could not be retrieved, or was the last being retrieved at least. Consequently, it is possible 

to say that, even if higher correlations are obtained, the abnormal behavior does not 

bring any advantage to the attacker. 

The behavior was related to key byte 3 in all the experiments; however, the reason 

behind this conduct could not be cleared out. 

 

3.3.2.3.2. Multiple delay analysis 

We have seen that a single and large delay placed at the beginning of the encryption 
works really well for the trace desynchronization. However, from an attacker’s point of 
view, this protection is easy to unmake, since there is only one desynchronization point 
to be considered. In other words, it is easy to identify the point where delays are 
introduced and, as a result, its effect is easy to correct. 
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For this reason, delays are rarely used in one single place. Random delays are usually 
implemented with short lengths and placed at different points of the algorithm. Therefore, 
in each execution run, variable time shifts will be applied at all those points.  

The objective is to break the trace with relatively short delays in multiple places. This 
way it is more difficult for an attacker to resynchronize the traces, since the total 
desynchronization is a combination generated by multiple desynchronization points.  

Consequently, an attacker usually faces the sum of several random delays. The delays 
that will affect the SCA attack are the ones placed between the triggering of the power 
measurement (i.e. beginning of AES encryption) and the attack point (i.e. SBOX output). 

 

CPA on desynchronized traces by multiple random delays 

For the experiments carried out, the uniform distribution was fixed at [1,3]. The CPA 
attacks were performed in the case-scenarios where 3, 4, 5, 6 and 7 delay functions 
were added. The delay functions were inserted before, during and after the initial 
AddRoundKey transformation. 

Note that in a real implementation the delays would be placed strategically across all the 
encryption of the AES. However, considering the attack point chosen and the analytic 
purpose of this experiment the case-scenarios defined are adequate enough. 

In each case, the CPA was conducted targeting the first round. The results are shown in 
Table 15:  

N Correlation  Traces K Retrieved Abnormal beavior  

0 (no delay) 0.918  46 1.00 Full key - 

3 0.141 3200 8.34 15 key bytes Key byte 3 

4 0.122 5600 11.03 11 key bytes Key byte 3 

5 0.109 8200 13.35 11 key bytes Key byte 3 

6 0.091 9700 14.52 11 key bytes Key byte 3 

7 0.061 10500 15.108 11 key bytes Key byte 3 

Table 15. Results for multiple plain uniform delay analysis 

It can be seen how the the minimum amount of traces grows together with the number 
𝑁 of delays in the cummulative sum. However, seems that the more delays that are 
added into the sum, the less that the protective effectivity grows. 

 

3.3.3. AES with Boolean masking 

The masking countermeasure pursues a very different objective than previous ones. The 

objective is not to desynchronize the manipulation of sensitive data among different 

executions but to completely decorrelate them by modifying these sensitive data to 

something which cannot be guessed by an attacker in a CPA. 

As explained in the State of the Art section 2.3.2, a masking countermeasure consists 

basically in XORing the input data of the algorithm with a random unknown value. Then, 

the algorithm has to be modified to keep the same encryption process: 

𝐴𝐸𝑆(𝑖𝑛𝑝𝑢𝑡, 𝑘𝑒𝑦) = 𝐴𝐸𝑆′(𝑖𝑛𝑝𝑢𝑡 ⊕ 𝑚𝑎𝑠𝑘, 𝑘𝑒𝑦)               (22) 

Now, in order to mount the CPA attack, the attacker has two unknown variables, the 

mask and the key, and the first one is randomly changing in each execution so it cannot 

be guessed. With this countermeasure, the power consumption of the AES’ at the attack 
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point is proportional to 𝑆𝐵𝑂𝑋(𝑖𝑛𝑝𝑢𝑡 ⊕ 𝑚𝑎𝑠𝑘 ⊕ 𝑘𝑒𝑦) and not to 𝑆𝐵𝑂𝑋(𝑖𝑛𝑝𝑢𝑡 ⊕ 𝑘𝑒𝑦) as 

before. Since the mask value is random and unknown, the attacker does not know to 

which data correlate the power traces.  

Note that, as the attacker does not know the mask value, he simply will try to correlate 

the power traces with 𝑆𝐵𝑂𝑋(𝑖𝑛𝑝𝑢𝑡 ⊕ 𝑘𝑒𝑦), like before, and hope that the masking 

implementation is badly done so that the Pearson correlation could still be found and the 

secret key could still be recovered with some number of traces. Therefore, the objective 

of this part of the project is to implement correctly the masking process in order to 

completely hide the leakage. 

 

3.3.3.1. Boolean masking implementation 

The Boolean masking scheme that was implemented needs only 10 masks to work. 

There are 6 masks (𝑚1,𝑚2, 𝑚3 𝑚4, 𝑚5 and 𝑚6)  that are randomly generated before the 

encryption of the AES and four masks (𝑚1
′, 𝑚2,

′ 𝑚3
′ and 𝑚4

′) that derive from the first 

four.  

Regarding the random mask generation, each mask produced is a random value ranging 

from 0x01 to 0xFF. The mask 0x00 was avoided due to this value hacing no effect when 

XOR-ed with any byte. 

Since the masking is done row by row, the ShiftRows transformation does not have any 

effect on the masks. On the contrary, the MixColumns transformation combines the bytes 

from different rows and acts linearly on the masks. This is why, before the encryption, 

the MixColumns function is applied to four of the initial masks obtaining: 

            𝑀𝐶(𝑚1) = 𝑚1′          𝑀𝐶(𝑚2) = 𝑚2′          𝑀𝐶(𝑚3) = 𝑚3
′          𝑀𝐶(𝑚4) = 𝑚4′          (23) 

The two remaining masks (𝑚5 and 𝑚6) are used to compute the masking of the SubBytes 

transformation. A LUT of 256 components has to be constructed in order to store every 

byte value that meets equation (25): 

𝑆𝐵(𝑥 ⊕ 𝑚4) = 𝑆𝐵(𝑥) ⊕ 𝑆𝐵(𝑚5)        (24) 

The masking principle used for the implementation is quite simple, but has every 

intermediate value masked for all the encryption process. Remember that this is the 

indispensable requirement for a masking scheme to be effective. 

The implemented masking scheme is better explained in the block diagram of Figure 24 

where the mask modifications for each step of the AES encryption are shown. 
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Figure 24. Simple Boolean masking scheme 

In Figure 24, we can see how the AddRoundKey functions are used to transform the 

masks, in addition to their original function. Every round key is mixed with the 

corresponding masks before the encryption to achieve this. The masked round keys, 

except for the last one, remove the masks coming from the output of the MixColumns 

transformation and add the input mask for the SubBytes transformation. The last round 

key is the only one that is different from the others. This key unmakes the masking 

proceeding from the last round SubBytes function and thus, reveals the ciphertext. 

Moreover, two XOR-ing functions have been defined in order to manipulate the masks. 

The first XOR is used to mask the plaintext bytes, in each of the rows of the state, before 

starting the encryption process. The second XOR allows the proper tracking of the masks 

and the intermediate variables through the algorithmic process. With this purpose, it is 

used in each round driving the transition from the output of the SubBytes function into 

the MixColumns. 

The implementation for the Boolean masking is given in Appendix B5. 
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SPA on Boolean masking implementation 

 

Figure 25. SPA on Boolean masking implementation 

Figure 25 shows the SPA on the AES with Boolean masking implementation. The 

encryption is performed, like in the case of the unprotected AES, in 10 rounds. However, 

in the zoomed view, some differences can be found.  

Before the initial AddRoundKey operation, the power profile of the first XOR can be seen, 

where the plaintext data is mixed with the masks for the first time. Then, one more 

identical power profile can be seen corresponding to the second XOR, where the output 

masks of the SubBytes operation are modified into the input masks of the MixColumns 

operation. 

The encryption duration was measured and is given in Table 16: 

Implementation Clock cycles (cc) Time (ms) 

Unprotected AES128 9780 1.325 

AES128 with Boolean masking 9935 1.346 

Table 16. Encryption length for the Boolean masked AES128 implementation 

The performance cost for the masking countermeasure is minimal in comparison with 

some hiding countermeasures previously analyzed. 

 

CPA on Boolean masking implementation 

A CPA with 100.000 traces was conducted on the masked implementation. The CPA 

resulted in a non-successful attack for most of the key bytes, meaning that the masking 

was being effective in most cases. However, one key byte could be retrieved. Results 
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showed that the key byte 11 leaked information at some point of the encryption process. 

The CPA results are gathered in Table 17: 

Implementation Correlation  Traces K Retrieved 

Unprotected AES128 0.918  46 1 Full key 

AES128 with Boolean masking 0.067  100000 ∞ 1 key byte 

Table 17. CPA results for unprotected and Boolean masked implementations 

Figure 26 shows the correlations plot for the perfectly masked key byte 1: 

 

Figure 26. Correlation vs. time for a perfectly masked key byte 1 

It can be seen how the correlations for the right guess (blue) never exceed the values of 

the wrong guesses (black). Hence, no leakage was found for the correct byte guess 

meaning that the masking is effective for this key byte. 

Nevertheless, a black correlation peak (positive and negative) appeared for the wrong 

guesses. These kind of peaks generated by wrong guesses were found for all the key 

bytes during this experiment with the masked implementation. Maybe, for same reason, 

adding the masks into the algorithm modified the power consumption of the device in 

such a way that the CPA started to obtain peaks for the wrong guesses. However, there 

is no evidence to support this theory from the experiments carried out. 

Similarly to the abnormal behavior reported in section 3.3.2.3.1, the reason behind these 

peaks could not be cleared out. 

We have already seen the correlations obtained for a perfectly masked key byte in Figure 

26.  The following Figure 27 shows the correlation plot for the leaking key byte 11 (note 

that the correlation peaks for the wrong guesses appear again): 
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Figure 27. Correlation vs. time for the only leaking key byte 11  

In this case, the CPA for the key byte 11 resulted in a leakage peak for the correct guess 

located around sample 4000. Seems that the key byte leaked information before the 

MixColumns transformation when the masks 𝑚6 are exchanged for the masks 𝑚1, 𝑚2, 

𝑚3 and 𝑚4 through an XOR operation. Nevertheless, if the problem was the XOR-ing 

operation, this behavior should be seen for all the key bytes, which is not the case. The 

implementation that was developed treats every key byte in the same way; however, for 

some reason only the key byte 11 showed this leaking behavior. 

One possibility is to consider that there is an intermediate value, or mask, of 0x00 that 

falls more than once at the point in time where the information is leaked. However, the 

plaintext values from which the intermediate values derive are random and the masks 

generated are also random (no 0x00 mask produced).  

Figure 28 and Figure 29 show the correlation evolution of key byte 1 and 11 during the 

CPA: 

 

Figure 28. Correlation evolution during the CPA for perfectly masked key byte 1 

The correlations obtained for the perfectly masked value are always below the 
correlations of the wrong guesses. This is what the masking achieves. It is not possible 
to correlate the correct byte value to the power consumption anymore because of the 
masks that were added. This same behavior (masked behavior) was observed for all key 
bytes, except for the key byte 11 as seen below: 
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Figure 29. Correlation evolution during the CPA for leaking key byte 11 

Key byte 11, on the contrary, already with 20000 traces resulted in correlations for the 

right guess over those of the wrong guesses. Now, even if this is true, in comparison with 

the unprotected implementation case, we can see that the correlations obtained are quite 

small and the difference between the right and wrong guesses is small as well. 

Consequently, the masking is not perfect for this key byte case, but it is still partially 

protective.  

Therefore, it can be stated that the Boolean masking scheme that was implemented 

offers an almost perfect protection against first order SCA. 
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4. Conclusions and future work 

4.1. Conclusions 

Side Channel attacks have been proven as the most effective and powerful hardware 
attacks nowadays. With the right equipment and knowledge, all type of confidential 
information can be extracted from operating devices. However, if the underlying nature 
of SCA is understood, diverse types of countermeasures can be designed in order to 
thwart these attacks. 

This work was focused on implementing and analyzing side channel countermeasures 
in order to assess their protective effectivity. In addition, their related overhead drawback 
was considered as well.  

Implementation Correlation Traces K Retrieved  Overhead  

Unprotected AES 0.918 46 1 Full key +0% 

Single dummy 0.341 580 3.05 Full key +97.12% 

Double dummy 0.203 1680 6 Full key +294.26% 

SBOX shuffling  0.05 21110 16.14 Full key +29.81% 

MixColumns shuffling 0.229 940 3.92 Full key +29.81% 

Random delay [1,63] 0.016 100000 46.62 1 key byte +1.96% 

Boolean masking 0.067 100000 ∞ 1 key byte +1.58% 

Table 18. Comparison of overall countermeasure results  

Table 18 summarizes the most relevant results obtained in section 3. All the implemented 
countermeasures improved the cryptographic security of the AES algorithm and all of 
them showed a related performance cost. 

The dummy round insertion offers a relatively low protection, in comparison with the big 
performance overhead added to the execution of the device. The shuffling, otherwise, 
can offer decent protective features with low performance costs; however, its protection 
is limited to the shuffled operation.  

The random delay insertion can offer a great protection, together with low performance 
drawbacks. Either implementing large variable delays or short and multiple delays, 
resulted in a noticeable desynchronization of the power traces. However, unlike the rest 
of countermeasures, the effect of the random delays can be corrected through the 
resynchronization of traces. 

Lastly, the implemented Boolean masking scheme was shown to be a countermeasure 
that offers an almost perfect protection against first order SCA. There was a single key 
byte that could be retrieved, while the rest of the key bytes were perfectly masked. 
Moreover, its related cost in performance is totally negligible considering the protection 
offered. 

 

4.2. Future work 

Countermeasures are an essential tool for protection against Side Channel analysis 
nowadays. In order to properly implement them, a developer must understand what is 
exactly happening with his or her implementation, how is the countermeasure offering 
protection and why does this protection avoid SCA from extracting sensitive information. 
For this reasons, many lines of future work exist related to the work done. 
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As a direct consequence of the results obtained from the experiments with the random 
delays, the investigation of the abnormal behavior that was reported is another possible 
future line of work. In the same manner, the correlation peaks obtained for the wrong 
guesses with the masked implementation could be investigated as well. Experienced 
workers in Applus+ have reported this same behaviors in some products tested in the 
Lab. However, none of them could tell what are the fundamental reasons behind them.  

Regarding the shuffling, work could be done on finding an implementation that does not 
require the state modification from a 4x4 matrix to a unidimensional array of 16 elements. 
This way, the protective effectivity would be kept, while reducing the total time overhead 
added by the countermeasure to zero.  

As far as the masking implementation is concerned, this project has covered only first 
order SCA attacks. Further implementations and experiments could be carried out in 
order to investigate second order and higher order masking schemes able to thwart 
higher-order CPA attacks. 

Lastly, there is one more possibility for future work: hardware countermeasure 
implementation and analysis. This would allow the investigation of countermeasures 
dedicated to hide signal in amplitude dimension. The analysis done for software 
countermeasures should be valid for hardware designs; however, there is still a wide 
possibility of research in the field of hardware countermeasures that cannot be 
implemented in software. For instance, the implementation of the 16 SBOX operations 
in parallel could be done in hardware, for the processing of all bytes at once.  This is a 
countermeasure whose effectivity would be very interesting to analyze. 
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5. Budget 

This project was developed in Applus+ IT Laboratories. The company has extensive 

experience in the R&D sector in addition to a high budget for these activities. A research 

project can be divided into staff hours and equipment hours. Staff hours count the time 

that the employee has been carrying out research tasks and equipment hours are 

counted those that the devices have been working on in the programmed experiments. 

 Staff hour Equipment hours 

Nº of hours 300 520 

Total 820 

Table 20. Hours dedicated to the project 

Table 20 states the total amount of hours dedicated to this project. The company 

considers that the costs per hour of research ascend to 45€/H. Here, only the Staff hours 

are considered. In this price, the costs of energy, amortization of equipment’s and other 

expenses are considered. 

Nº of staff hours 300 

Price/hour 45€/h 

Chipwhisperer 280€ 

Total 1630€ 

Table 21. Cost of the project 

Table 21 shows the total cost of this project. As can be seen, the price of the 

Chipwhisperer board was included and as a result, a total of13.500€ has been invested 

to develop this project. 
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Appendices 

Appendix A: AES in depth 

A.1 Rijndael’s finite field 

In order to properly understand how each of the AES internal transformation steps are 
performed, a little insight into Rijndael’s finite field is needed. AES performs its 
mathematical operations in the characteristic 2 finite field with 256 elements, which can 

also be named Galois Field or 𝐺𝐹 (28). As it may seem obvious, the field dimension order 
of 8 makes it suitable for working with bytes (1 byte = 8 bits). 

To get started, a generic Galois Field with 𝑝𝑛
 elements would be denoted as 𝐺𝐹(𝑝𝑛), 

where 𝑝 is a prime number, meaning simply a ring of integers modulo 𝑝. As a result, 
operations such as addition, subtraction and multiplication can be performed as usual, 
followed by a reduction modulo p. For instance, in 𝐺𝐹(6), the result of adding 4 to 6 
would be reduced to 4 modulo 6. 

A particular case is 𝐺𝐹(2), where addition is performed through the exclusive OR (XOR) 
and multiplication with an AND. Since the only invertible element is 1, division is 
the identity function. 

Elements of 𝐺𝐹(𝑝𝑛) may be represented as polynomials of degree strictly less 

than 𝑛 over 𝐺𝐹(𝑝). Operations are then performed modulo 𝑅 where 𝑅 is an irreducible 
polynomial of degree 𝑛 over 𝐺𝐹(𝑝).  When the prime characteristic number is 2, it is 

conventional to express elements of 𝐺𝐹(𝑝𝑛) as binary numbers, with each term in a 
polynomial represented by one bit in the corresponding element's binary expression. An 
example of equivalences is shown in: 

Polynomial x7 + x4 + x3 + x + 1 

Binary {10011011}2 

Hexadecimal {9B}16 

Table 22. Equivalent representations  

The Rijndael’s finite field is represented as: 

                                𝐺𝐹(28 ) =
    𝐺𝐹(2)[𝑥]

 (𝑥8+𝑥4+𝑥3+𝑥+1)
                            (25) 

𝐺𝐹 (2)[𝑥] is the set of polynomials with coefficients in 𝐺𝐹 (2), which, as stated before, 

has a binary quotient ring limited to {0,1}. The irreducible 𝑅 in  𝐺𝐹 (2)[𝑥] , is the 
polynomial in the denominator making equation (25) a finite field. Every element inside 
the field will have a binary representation, always between the possible values inside a 
byte, e.g. ∈ [00𝐻 , 𝐹𝐹𝐻]. 

In every finite field with characteristic 2 happens that addition modulo 2, subtraction 
modulo 2 and XOR are identical operations. Multiplication in any finite field is 

multiplication modulo the irreducible polynomial 𝑅 used to define the finite field. In other 

words, in 𝐺𝐹(28) polynomial multiplication is done as usual followed by a division, using 

the irreducible polynomial 𝑅 as the divisor. The remainder of the division is the product. 
The next example equations show how a multiplication between polynomials, 𝑃(𝑥) and 

𝑄(𝑥) would work in 𝐺𝐹(28): 

      𝑃(𝑥) =  𝑥7 + 𝑥5 + 𝑥4 + 1 ∈ 𝐺𝐹(28)          (26) 
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      𝑄(𝑥) =  𝑥4 + 𝑥3 + 𝑥 + 1 ∈ 𝐺𝐹(28)          (27) 

     𝑃(𝑥) ∙ 𝑄(𝑥) = (𝑥7 + 𝑥5 + 𝑥4 + 1 ) ∙ (𝑥4 + 𝑥3 + 𝑥 + 1 )             (28) 

𝑃(𝑥) ∙ 𝑄(𝑥) = 𝑥11 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥4 + 𝑥3 + 𝑥 + 1(29) 

     𝑃(𝑥) ∙ 𝑄(𝑥) = 𝑥11 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥3 + 𝑥 + 1 𝑚𝑜𝑑(𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1)  (30) 

    𝑃(𝑥) ∙ 𝑄(𝑥) = 𝑥7 + 𝑥6 + 𝑥4 + 𝑥 =  {11010010}2 = {𝐷2}16      (31) 

The division made from equation (30) to (31) can be demonstrated through long 
polynomial division. 

Therefore, to sum up, in the Rijndael’s finite field we can work with all values inside a 
byte, represented with 8 bits, and we get to perform two operations: XOR (addition) and 
AND (multiplication). 

 

A.2 AES round internal operations 

A.2.1 SubBytes 

SubBytes is the function that provides confusion through non-linearity to the AES. This 
function is a combination of two transformations: the inverse function in the Rijndael’s 
finite field and an invertible affine transformation. 

In the next examples, the single bit values will be represented with lowercase letters, 
while uppercase letters refer to bytes. 

Consider the polynomial 𝐵(𝑥) and its coefficients in vector 𝐵, as well as the polynomial 

𝑉(𝑥) and its coefficients in vector 𝑉: 

         𝐵(𝑥) = 𝑏7𝑥
7 + 𝑏6𝑥

6 + 𝑏5𝑥
5 + 𝑏4𝑥

4 + 𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0                 (32) 

𝐵 = 𝑏7 𝑏6 𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0                           (33) 

         𝑉(𝑥) = 𝑣7𝑥
7 + 𝑣6𝑥

6 + 𝑣5𝑥
5 + 𝑣4𝑥

4 + 𝑣3𝑥
3 + 𝑣2𝑥

2 + 𝑣1𝑥 + 𝑣0                (34) 

                                               𝑉 = 𝑣7 𝑣6 𝑣5 𝑣4 𝑣3 𝑣2 𝑣1 𝑣0                  (35) 

Vector 𝑉 will be the invert of 𝐵 in 𝐺𝐹(28) if the next condition is satisfied: 

                                    𝐵(𝑥) ∙ 𝑉(𝑥) ≡ 1 𝑚𝑜𝑑(𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1)                             (36) 

Hence, the remainder of the polynomial division between 𝐵(𝑥) and the irreducible 

polynomial will be the multiplicative inverse of 𝐵(𝑥), denoted as 𝑉(𝑥). Once the invert is 

obtained, an affine transformation shown in equation (37) is applied to 𝑉: 
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[
 
 
 
 
 
 
 
𝑦0

𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦6

𝑦7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1]

 
 
 
 
 
 
 

∙

[
 
 
 
 
 
 
 
𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

                                     (37) 

Vector 𝑌 keeps the output byte of the SubBytes function, related to the input byte 𝐵. 
Following this logic and computing the output for every possible value, the AES SBOX 
is built (Appendix B1) 

When deciphering, the inverse operation InvSubBytes is performed. Firstly, the inverse 
affine transformation (38) is applied and then, the inverse of the result is computed as in 
(36). 

                                            

[
 
 
 
 
 
 
 
𝑦0

𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦6

𝑦7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0]

 
 
 
 
 
 
 

∙

[
 
 
 
 
 
 
 
𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
1
0
1
0
0
0
0
0]
 
 
 
 
 
 
 

                                            (38) 

Once again, computing every possible output  the AES inverse SBOX is built (Appendix 
B1) 

 

A.2.2 ShiftRows 

ShiftRows is, basically, a byte permutation inside the state matrix. The permutation is 
done row by row shifting the bytes to the left in 0, 1, 2 or 3 positions respectively. The 
first row is kept, no shifting is applied to it. The second row is shifted 1 position to the left, 
the second is shifted 2 positions to the left and the last row is shifted 3 positions to the 
left. 

 

Figure 30. ShiftRows permutation 

Regarding decryption flow, InvShiftRows works exactly the same way but shifting in the 
opposite direction. 
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A.2.3 MixColumns 

MixColumns is the step where the four bytes of each column are combined using an 
invertible linear transformation.  MixColumns, together with ShiftRows, provides diffusion 
to the AES algorithm. Hence, at this step each column of the state is multiplied by a fixed 
matrix as shown in the following equations. Remember that both multiplication and 
addition are performed in the Rijndael’s finite field: 

                                   [

𝑏0

𝑏1

𝑏2

𝑏3

] = [

𝑥 𝑥 + 1 1 1
1 𝑥 𝑥 + 1 1
1 1 𝑥 𝑥 + 1

𝑥 + 1 1 1 𝑥

] ∙ [

𝑎0

𝑎1

𝑎2

𝑎3

]                                    (39) 

                                          {

𝑏0 = 𝑥 ∙ 𝑎0 + (𝑥 + 1) ∙ 𝑎1 + 𝑎2 + 𝑎3

𝑏1 = 𝑎0 + 𝑥 ∙ 𝑎1 + (𝑥 + 1) ∙ 𝑎2 + 𝑎3

𝑏2 = 𝑎0 + 𝑎1 + 𝑥 ∙ 𝑎2 + (𝑥 + 1) ∙ 𝑎3

𝑏3 = (𝑥 + 1) ∙ 𝑎0 + 𝑎1 + 𝑎2 + 𝑥 ∙ 𝑎3

                                  (40) 

𝑎0,  𝑎1, 𝑎2 and 𝑎3 represent the four input bytes of the same column of the state, while 
𝑏0,  𝑏1, 𝑏2  and 𝑏3 are their corresponding outputs. Therefore, we only need to perform 

multiplications by 1, 𝑥 and 𝑥 + 1.  

On the one hand, multiplying by 1 does nothing. On the other hand, multiplying by x+1 
is done by multiplying by x, then by 1 and applying an XOR to both results. When 

multiplying any byte by 𝑥 in 𝐺𝐹(28) we have two possibilities. Consider any byte 𝐵: 

           𝐵 =  𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0  𝑤ℎ𝑒𝑟𝑒  𝑏𝑖 ∈ {0,1}                              (41) 

If the MSB of 𝐵 is 0, the operation is a simple bit shift to the left: 

                                                               𝐵 ≪ 1             (42) 

If the MSB of the byte is 1, the operation includes a shift plus an XOR with 0𝑥1𝐵: 

        (𝐵 ≪ 1) ⨁ 0𝑥1𝐵              (43) 

An interesting remark is that a bit shift to the left can be traduced as a multiplication by 
2 in the Rijndael’s finite field. If this multiplication exceeds the limit value of 256 (FFH) the 

result has to be XOR-ed with 0x1B (which works as the division by the irreducible 
polynomial 0x11B in the particular case where the dividend is not greater than 1FFH) 

Taking this under consideration, equation (39) and (40) can be written as: 

          [

𝑏0

𝑏1

𝑏2

𝑏3

] = [

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

] ∙ [

𝑎0

𝑎1

𝑎2

𝑎3

]                                 (44) 

            {

𝑏0 = 2𝑎0 + 3𝑎1 + 𝑎2 + 𝑎3

𝑏1 = 𝑎0 + 2𝑎1 + 3𝑎2 + 𝑎3

𝑏2 = 𝑎0 + 𝑎1 + 2𝑎2 + 3𝑎3

𝑏3 = 3𝑎0 + 𝑎1 + 𝑎2 + 2𝑎3

                    (45) 

From this point of view, we get equation (42) and (43) translated to equation (46) and 
(47): 
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2𝑎𝑖 = {
𝑎𝑖 ≪ 1 𝑖𝑓 𝑎 < 𝐹𝐹𝐻

(𝑎𝑖 ≪ 1) ⨁ 0𝑥1𝐵 𝑖𝑓 𝑎 ≥ 𝐹𝐹𝐻
            (46) 

         3𝑎𝑖 = 2𝑎𝑖 ⨁ 𝑎𝑖               (47) 

It is feasible to compute all the input-output possibilities for the 2𝑎 case multiplication and 
the same can be done for the 3𝑎 case multiplication. This way, a look-up table can be 
constructed for each multiplication as we did with the AES SBOX in the SubBytes step 
(Appendix B2). 

Regarding decryption, InvMixColumns works the same way, only that the multiplication 
matrix is the inverse of (44) and can be written as: 

         [

𝑏0

𝑏1

𝑏2

𝑏3

] = [

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

] ∙ [

𝑎0

𝑎1

𝑎2

𝑎3

]                 (48) 

          {

𝑏0 = 14𝑎0 + 11𝑎1 + 13𝑎2 + 9𝑎3

𝑏1 = 9𝑎0 + 14𝑎1 + 11𝑎2 + 13𝑎3

𝑏2 = 13𝑎0 + 9𝑎1 + 14𝑎2 + 11𝑎3

𝑏3 = 11𝑎0 + 13𝑎1 + 9𝑎2 + 14𝑎3

            (49) 

All possibilities for these four multiplication cases can also be gathered in four LUT tables 
(Appendix B2). 

 

A.2.4 AddRoundKey 

AddRoundKey is performed once at the beginning of encryption and once more at the 
end of each round. The initial AddRoundKey mixes the secret key with the plaintext by 
XOR-ing them. Each of the AddRoundKey steps at the end of the rounds serve to XOR 
the state with the corresponding round key. 

For decryption purposes, the AddRoundKey steps work equally, only that the round key 
order is the opposite. 

 

A.3 Key Schedule: 

The key schedule generates each sub-key, needed for each round of the algorithm. The 
first round key is derived from the main secret key. Each of the following round keys are 
derived from the previous ones and the algorithm applied is always the same. 

The first step is to take the previous 128 bit key and divide it into four words of 32 bits 
denoted as 𝜔𝑖. 

     𝐾𝑒𝑦 = 𝑏127 𝑏126 𝑏125 … 𝑏2 𝑏1 𝑏0 = 𝐵15𝐵14𝐵13𝐵12𝐵11𝐵10𝐵9𝐵8𝐵7𝐵6𝐵5𝐵4𝐵3𝐵2𝐵1𝐵0   (50) 

       𝜔0 = 𝐵15𝐵14𝐵13𝐵12    ;   𝜔1 = 𝐵11𝐵10𝐵9𝐵8   ;   𝜔2 = 𝐵7𝐵6𝐵5𝐵4   ;   𝜔3 = 𝐵3𝐵2𝐵1𝐵0    (51) 

Once we have our separate words, the least significant word ω3 goes through a function 
composed of three transformations: 

1) Circular byte shift to the left            𝜔3
′ = 𝐵2𝐵1𝐵0𝐵3          (52) 
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2) Byte SBOX substitution                  𝜔3
′′ = 𝑆𝐵(𝐵2)𝑆𝐵(𝐵1)𝑆𝐵(𝐵0)𝑆𝐵(𝐵3)      (53) 

3) Add (XOR) with round constant      𝑓(𝜔3) =  𝜔3
′′  ⨁  𝑅𝐶                              (54) 

The round constant 𝑅𝐶 is a fixed 32-bit value for each round. These fixed values are 
gathered in the following table: 

Round RC 

R1 01000000H 

R2 02000000H 

R3 04000000H 

R4 08000000H 

R5 10000000H 

R6 20000000H 

R7 40000000H 

R8 80000000H 

R9 1B000000H 

R10 36000000H 

Table 23. Round constant values 

Then, each sub-key or round key 𝑆𝐾𝑛 is constructed word by word to be concatenated 
as follows: 

   𝑆𝐾0 = 𝑓(𝜔3)  ⨁ 𝜔0            (55) 

          𝑆𝐾1 = 𝑓(𝜔3)  ⨁ 𝜔0  ⨁ 𝜔1          (56) 

        𝑆𝐾2 = 𝑓(𝜔3)  ⨁ 𝜔0  ⨁ 𝜔1  ⨁ 𝜔2            (57) 

                𝑆𝐾3 = 𝑓(𝜔3)  ⨁ 𝜔0  ⨁ 𝜔1  ⨁ 𝜔2  ⨁ 𝜔3          (58) 

         SKn = {SK0, SK1, SK2, SK3}    ,    n ∈ [1,10]          (59) 

 

Appendix B: AES LUTs 

B.1  AES SBOX and reverse SBOX 

AES SBOX 

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF 

0X 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 

1X CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 

2X B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 

3X 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75 

4X 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84 

5X 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF 

6X D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 
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7X 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 

8X CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73 

9X 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB 

AX E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79 

BX E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 

CX BA 78 25 2E AC A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A 

DX 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E 

EX E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 

FX 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 

Table 24. AES SBOX LUT 

AES reverse SBOX 

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF 

0X 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB 

1X 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E7 CB 

2X 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E 

3X 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25 

4X 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92 

5X 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84 

6X 90 D8 AB 00 8C BV D3 0A F7 E4 58 05 B8 B3 45 06 

7X D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B 

8X 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73 

9X 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 AC 75 DF 6E 

AX 47 F1 1A 71 AD 29 C5 89 6F B7 62 0E AA 18 BE 1B 

BX FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4 

CX AF DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F 

DX 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF 

EX A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61 

FX 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D 

Table 25. AES reverse SBOX LUT 

B.2  Galois multiply LUTs 

Galois multiply by 2 

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF 

0X 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E 
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1X 20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E 

2X 40 42 44 46 48 4A 4C 4E 50 52 54 56 58 5A 5C 5E 

3X 60 62 64 66 68 6A 6C 6E 70 72 74 76 78 7A 7C 7E 

4X 80 82 84 86 88 8A 8C 8E 90 92 94 96 98 9A 9C 9E 

5X A0 A2 A4 A6 A8 AA AC AE B0 B2 B4 B6 B8 BA BC BE 

6X C0 C2 C4 C6 C8 CA CC CE D0 D2 D4 D6 D8 DA DB DE 

7X E0 E2 E4 E6 E8 EA EC EE F0 F2 F4 F6 F8 FA FB FE 

8X 1B 19 1F 1D 13 11 17 15 0B 09 0F 0D 03 01 07 05 

9X 3B 39 3F 3D 33 31 37 35 2B 29 2F 2D 23 21 27 25 

AX 5B 59 5F 5D 53 51 57 55 4B 49 4F 4D 43 41 47 45 

BX 7B 79 7F 7D 73 71 77 75 6B 69 6F 6D 63 61 67 65 

CX 9B 99 9F 9D 93 91 97 95 8B 89 8F 8D 83 81 87 85 

DX BB B9 BF BD B3 B1 B7 B5 AB A9 AF AD A3 A1 A7 A5 

EX DB D9 DF DD D3 D1 D7 D5 CB C9 CF CD C3 C1 C7 C5 

FX FB F9 FF FD F3 F1 F7 F5 EB E9 EF ED E3 E1 E7 E5 

Table 26. Galois LUT for multiply by 2 

Galois multiply by 3 

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF 

0X 00 03 06 05 0C 0F 0A 09 18 1B 1E 1D 14 17 12 11 

1X 30 33 36 35 3C 3F 3A 39 28 2B 2E 2D 24 27 22 21 

2X 60 63 66 65 6C 6F 6A 69 78 7B 7E 7D 74 77 72 71 

3X 50 53 56 55 5C 5F 5A 59 48 4B 4E 4D 44 47 42 41 

4X C0 C3 C6 C5 CC CF CA C9 D8 DB DE DD D4 D7 D2 D1 

5X F0 F3 F6 F5 FC FF FA F9 E8 EB EE ED E4 E7 E2 E1 

6X A0 A3 A6 A5 AC AF AA A9 B8 BB BE BD B4 B7 B2 B1 

7X 90 93 96 95 9C 9F 9A 99 88 8B 8E 8D 84 87 82 81 

8X 9B 98 9D 9E 97 94 91 92 83 80 85 86 8F 8C 89 8A 

9X AB A8 AD AE A7 A4 A1 A2 B3 B0 B5 B6 BF BC B9 BA 

AX FB F8 FD FE F7 F4 F1 F2 E3 E0 E5 E6 EF EC E9 EA 

BX CB C8 CD CE C7 C4 C1 C2 D3 D0 D5 D6 DF DC D9 DA 

CX 5B 58 5D 5E 57 54 51 52 43 40 45 46 4F 4C 49 4A 

DX 6B 68 6D 6E 67 64 61 62 73 70 75 76 7F 7C 79 7A 

EX 3B 38 3D 3E 37 34 31 32 23 20 25 26 2F 2C 29 2A 

FX 0B 08 0D 0E 07 04 01 02 13 10 15 16 1F 1C 19 1A 
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Table 27. Galois LUT for multiply by 3 

Galois multiply by 9 

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF 

0X 00 09 12 1B 24 2D 36 3F 48 41 5A 53 6C 65 7E 77 

1X 90 99 82 8B B4 BD A6 AF D8 D1 CA C3 FC F5 EE E7 

2X 3B 32 29 20 1F 16 0D 04 73 7A 61 68 57 5E 45 4C 

3X AB A2 B9 B0 8F 86 9D 94 E3 EA F1 F8 C7 CE D5 DC 

4X 76 7F 64 6D 52 5B 40 49 3E 37 2C 25 1A 13 08 01 

5X E6 EF F4 FD C2 CB D0 D9 AE A7 BC B5 8A 83 98 91 

6X 4D 44 5F 56 69 60 7B 72 05 0C 17 1E 21 28 33 3A 

7X DD D4 CF C6 F9 F0 EB E2 95 9C 87 8E B1 B8 A3 AA 

8X EC E5 FE F7 C8 C1 DA D3 A4 AD B6 BF 80 89 92 9B 

9X 7C 75 6E 67 58 51 4A 43 34 3D 26 2F 10 19 02 0B 

AX D7 DE C5 CC F3 FA E1 E8 9F 96 8D 84 BB B2 A9 A0 

BX 47 4E 55 5C 63 3A 71 78 0F 06 AD 14 2B 22 39 30 

CX 9A 93 88 82 BE B7 AC A5 D2 DB C0 C9 F6 FF E4 ED 

DX 0A 03 18 11 2E 27 3C 35 42 4B 50 59 66 6F 74 7D 

EX A1 A8 B3 BA 85 8C 97 9E E9 E0 FB F2 CD C4 DF D6 

FX 31 38 23 2A 15 1C 07 0E 79 70 6B 62 5D 54 4F 46 

Table 28. Galois LUT for multiply by 9 

Galois multiply by 11 

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF 

0X 00 0B 16 1D 2C 27 3A 31 58 53 4E 45 74 7F 62 69 

1X B0 BB A6 AD 9C 97 8A 81 E8 E3 FE F5 C4 CF D2 D9 

2X 7B 70 6D 66 57 5C 41 4A 23 28 35 3E 0F 04 19 12 

3X CB C0 DD D6 E7 EC F1 FA 93 98 85 8E BF B4 A9 A2 

4X F6 FD E0 EB DA D1 CC C7 AE A5 B8 B3 82 89 94 9F 

5X 46 4D 50 5B 6A 61 7C 77 1E 15 08 03 32 39 24 2F 

6X 8D 86 9B 90 A1 AA B7 BC D5 DE C3 C8 F9 F2 EF E4 

7X 3D 36 2B 20 11 1A 07 0C 65 6E 73 78 49 42 5F 54 

8X F7 FC E1 EA DB D0 CD C6 AF A4 B9 B2 83 88 95 9E 

9X 47 4C 51 5A 6B 60 7D 76 1F 14 09 02 33 38 25 2E 

AX 8C 87 9A 91 A0 AB B6 BD D4 DF C2 C9 F8 F3 EE E5 

BX 3C 37 2A 21 10 AB 06 0D 64 6F 72 79 48 43 5E 55 
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CX 01 0A 17 1C 2D 26 3B 30 59 52 4F 44 75 7E 63 68 

DX B1 BA A7 AC 9D 96 8B 80 E9 E2 FF F4 C5 CE D3 D8 

EX 7A 71 6C 67 56 5D 40 4B 22 29 34 3F 0E 05 18 13 

FX CA C1 DC D7 E6 ED F0 FB 92 99 84 8F BE B5 A8 A3 

Table 29. Galois LUT for multiply by 11 

Galois multiply by 13 

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF 

0X 00 0D 1A 17 34 39 2E 23 68 65 72 7F 5C 51 46 4B 

1X D0 DD CA C7 E4 E9 FE F3 B8 B5 A2 AF 8C 81 96 9B 

2X BB B6 A1 AC 8F 82 95 98 D3 DE C9 C4 E7 EA FD F0 

3X 6B 66 71 7C 5F 52 45 48 03 0E 19 14 37 3A 2D 20 

4X 6D 60 77 7A 59 54 43 4E 05 08 AF 12 31 3C 2B 26 

5X BD B0 A7 AA 89 84 93 9E D5 D8 CF C2 E1 EC FB F6 

6X D6 DB CC C1 E2 EF F8 F5 BE B3 A4 A9 8A 87 90 9D 

7X 06 0B 1C 11 32 3F 28 25 6E 63 74 79 5A 57 40 4D 

8X DA D7 C0 CD EE E3 F4 F9 B2 BF A8 A5 86 8B 9C 91 

9X 0A 07 10 1D 3E 33 24 29 62 6F 78 75 56 5B 4C 41 

AX 61 6C 7B 76 55 58 4F 42 09 04 13 1E 3D 30 27 2A 

BX B1 BC AB A6 85 88 9F 92 D9 D4 C3 CE ED E0 F7 FA 

CX B7 BA AD A0 83 8E 99 94 DF D2 C5 C8 EB E6 F1 FC 

DX 67 6A 16 1B 38 35 22 2F 64 69 7E 73 50 5D 4A 47 

EX 0C 01 16 1B 38 35 22 2F 64 69 7E 73 50 5D 4A 47 

FX DC D1 C6 CB E8 E5 F2 FF B4 B9 AE A3 80 8D 9A 97 

Table 30. Galois LUT for multiply by 13 

Galois multiply by 14 

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF 

0X 00 0E 1C 12 38 36 24 2A 70 7E 6C 62 48 46 54 5A 

1X E0 EE FC F2 D8 D6 C4 CA 90 9E 8C 82 A8 A6 B4 BA 

2X DB D5 C7 C9 E3 ED FF F1 AB A5 B7 B9 93 9D 8F 81 

3X 3B 35 27 29 03 0D 1F 11 4B 45 57 59 73 7D 6F 61 

4X AD A3 B1 BF 95 9B 89 87 DD D3 C1 CF E5 EB F9 F7 

5X 4D 43 51 5F 75 7B 69 67 3D 33 21 2F 05 0B 19 17 

6X 76 78 6A 64 4E 40 52 5C 06 08 1A 14 3E 30 22 2C 

7X 96 98 8A 84 AE A0 B2 BC E6 E8 FA F4 DE D0 C2 CC 
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8X 41 4F 5D 53 79 77 65 6B 31 3F 2D 23 09 07 15 1B 

9X A1 AF BD B3 99 97 85 8B D1 DF CD C3 E9 E7 F5 FB 

AX 9A 94 86 88 A2 AC BE B0 EA E4 F6 F8 D2 DC CE C0 

BX 7A 74 66 68 42 4C 5E 50 0A 04 16 18 32 3C 2E 20 

CX EC E2 F0 FE D4 DA C8 C6 9C 92 80 8E A4 AA B8 B6 

DX 0C 02 10 1E 34 3A 28 26 7C 72 60 6E 44 4A 58 56 

EX 37 39 2B 25 0F 01 13 1D 47 49 5B 55 7F 71 63 6D 

FX D7 D9 CB C5 EF E1 F3 FD A7 A9 BB B5 9F 91 83 8D 

Table 31. Galois LUT for multiply by 14 

 

Appendix C: Implementation codes 

C.1  AES128  

/***************************************************************************/ 
/* Includes:                                                               */ 
/***************************************************************************/ 
#include <stdint.h> 
#include <string.h> 
#include <stdlib.h> 
#include "aes.h" 
 
/***************************************************************************/ 
/* Defines: Fixed values of the AES128 implementation                      */ 
/***************************************************************************/ 
// Number of rows and columns of the AES state 
#define Nb 4 
// The number of rounds in AES128 cipher 
#define Nr 10 
// Key length in bytes [128 bit] 
#define KEYLEN 16 
 
/***************************************************************************/ 
/* Private variables:                                                      */ 
/***************************************************************************/ 
// state matrix holding the intermediate values during encryption 
typedef uint8_t state_t[4][4]; 
static state_t* state; 
 
// The array that stores the round keys (11keys x 16bytes = 176bytes). 
static uint8_t RoundKey[176]; 
 
// The Key input to the AES algorithm 
static uint8_t* Key; 
 
// SBOX LUT 
static const uint8_t sbox[256] =   { 
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 
0xd7, 0xab, 0x76, 
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 
0xa4, 0x72, 0xc0, 
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0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 
0xd8, 0x31, 0x15, 
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 
0x27, 0xb2, 0x75, 
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 
0xe3, 0x2f, 0x84, 
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 
0x4c, 0x58, 0xcf, 
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 
0x3c, 0x9f, 0xa8, 
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 
0xff, 0xf3, 0xd2, 
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 
0x5d, 0x19, 0x73, 
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 
0x5e, 0x0b, 0xdb, 
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 
0x95, 0xe4, 0x79, 
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 
0x7a, 0xae, 0x08, 
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 
0xbd, 0x8b, 0x8a, 
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 
0xc1, 0x1d, 0x9e, 
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 
0x55, 0x28, 0xdf, 
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 
0x54, 0xbb, 0x16 }; 
 
// Reverse SBOX LUT 
static const uint8_t rsbox[256] ={  
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 
0xf3, 0xd7, 0xfb, 
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 
0xde, 0xe9, 0xcb, 
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 
0xfa, 0xc3, 0x4e, 
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 
0x8b, 0xd1, 0x25, 
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 
0x65, 0xb6, 0x92, 
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 
0x8d, 0x9d, 0x84, 
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 
0xb3, 0x45, 0x06, 
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 
0x13, 0x8a, 0x6b, 
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 
0xb4, 0xe6, 0x73, 
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 
0x75, 0xdf, 0x6e, 
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 
0x18, 0xbe, 0x1b, 
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 
0xcd, 0x5a, 0xf4, 
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 
0x80, 0xec, 0x5f, 
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 
0xc9, 0x9c, 0xef, 
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 
0x53, 0x99, 0x61, 
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0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 
0x21, 0x0c, 0x7d }; 
 
// Round constant array 
static const uint8_t Rcon[10] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 
0x1b, 0x36 }; 
 
/***************************************************************************/ 
/* Private functions:                                                      */ 
/***************************************************************************/ 
// Returns the SBOX substitution of a byte 
static uint8_t getSBoxValue(uint8_t num) 
{ 
  return sbox[num]; 
} 
 
// Returns the inverse SBOX substitution of a byte 
static uint8_t getSBoxInvert(uint8_t num) 
{ 
  return rsbox[num]; 
} 
 
// Function used to multiply by x in MixColumns computation 
static uint8_t xtime(uint8_t x) 
{ 
  return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); 
} 
 
// Function used for InvMixColumns multiplications 
static uint8_t Multiply(uint8_t x, uint8_t y) 
{ 
  return (((y & 1) * x) ^ 
       ((y>>1 & 1) * xtime(x)) ^ 
       ((y>>2 & 1) * xtime(xtime(x))) ^ 
       ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ 
       ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); 
} 
 
// This function implements the AES key schedule. 
static void KeyExpansion(void) 
{ 
  uint8_t i, j, k; 
  uint8_t tempa[4]; // Used for the column/row operations 
 
  // The first round key is derived from the input key. 
  for(i = 0; i < Nb; ++i) 
  { 
    RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; 
    RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; 
    RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; 
    RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; 
  } 
 
  // All other round keys are found from the previous round key. 
  for(; (i < (Nb * (Nr + 1))); ++i) 
  { 
    for(j = 0; j < 4; ++j) 
    { 
      // Store previous key in tempa 
      tempa[j]=RoundKey[(i-1) * 4 + j]; 
    } 
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    if (i % Nb == 0) 
    { 
      // Function RotWord() 
      k = tempa[0]; 
      tempa[0] = tempa[1]; 
      tempa[1] = tempa[2]; 
      tempa[2] = tempa[3]; 
      tempa[3] = k; 
 
      // Function Subword() 
      tempa[0] = getSBoxValue(tempa[0]); 
      tempa[1] = getSBoxValue(tempa[1]); 
      tempa[2] = getSBoxValue(tempa[2]); 
      tempa[3] = getSBoxValue(tempa[3]); 
 
      // XOR with round constant 
      tempa[0] =  tempa[0] ^ Rcon[i/Nb - 1]; 
    } 
    // Add the round key to the array 
    RoundKey[i * 4 + 0] = RoundKey[(i - Nb) * 4 + 0] ^ tempa[0]; 
    RoundKey[i * 4 + 1] = RoundKey[(i - Nb) * 4 + 1] ^ tempa[1]; 
    RoundKey[i * 4 + 2] = RoundKey[(i - Nb) * 4 + 2] ^ tempa[2]; 
    RoundKey[i * 4 + 3] = RoundKey[(i - Nb) * 4 + 3] ^ tempa[3]; 
  } 
} 
 
// This function XORs the round key to state. 
static void AddRoundKey(uint8_t round) 
{ 
  uint8_t i,j; 
  for(i=0;i<4;++i) 
  { 
    for(j = 0; j < 4; ++j) 
    { 
      (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j]; 
    } 
  } 
} 
 
// The SubBytes function  
static void SubBytes(void) 
{ 
  uint8_t i, j; 
  for(i = 0; i < 4; ++i) 
  { 
    for(j = 0; j < 4; ++j) 
    { 
      (*state)[i][j] = getSBoxValue((*state)[i][j]); 
    } 
  } 
} 
 
//Inverse SubBytes 
static void InvSubBytes(void) 
{ 
  uint8_t i,j; 
  for(i=0;i<4;++i) 
  { 
    for(j=0;j<4;++j) 
    { 
      (*state)[i][j] = getSBoxInvert((*state)[i][j]); 
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    } 
  } 
} 
 
// Shiftrows function. Offset = Row number (0,1,2,3). 
static void ShiftRows(void) 
{ 
  uint8_t temp; 
  // Rotate first row 1 column to left 
  temp           = (*state)[0][1]; 
  (*state)[0][1] = (*state)[1][1]; 
  (*state)[1][1] = (*state)[2][1]; 
  (*state)[2][1] = (*state)[3][1]; 
  (*state)[3][1] = temp; 
 
  // Rotate second row 2 columns to left 
  temp           = (*state)[0][2]; 
  (*state)[0][2] = (*state)[2][2]; 
  (*state)[2][2] = temp; 
 
  temp       = (*state)[1][2]; 
  (*state)[1][2] = (*state)[3][2]; 
  (*state)[3][2] = temp; 
 
  // Rotate third row 3 columns to left 
  temp       = (*state)[0][3]; 
  (*state)[0][3] = (*state)[3][3]; 
  (*state)[3][3] = (*state)[2][3]; 
  (*state)[2][3] = (*state)[1][3]; 
  (*state)[1][3] = temp; 
} 
 
//Inverse ShiftRows 
static void InvShiftRows(void) 
{ 
  uint8_t temp; 
  // Rotate first row 1 column to right 
  temp=(*state)[3][1]; 
  (*state)[3][1]=(*state)[2][1]; 
  (*state)[2][1]=(*state)[1][1]; 
  (*state)[1][1]=(*state)[0][1]; 
  (*state)[0][1]=temp; 
 
  // Rotate second row 2 columns to right 
  temp=(*state)[0][2]; 
  (*state)[0][2]=(*state)[2][2]; 
  (*state)[2][2]=temp; 
  temp=(*state)[1][2]; 
  (*state)[1][2]=(*state)[3][2]; 
  (*state)[3][2]=temp; 
 
  // Rotate third row 3 columns to right 
  temp=(*state)[0][3]; 
  (*state)[0][3]=(*state)[1][3]; 
  (*state)[1][3]=(*state)[2][3]; 
  (*state)[2][3]=(*state)[3][3]; 
  (*state)[3][3]=temp; 
} 
 
// MixColumns function mixes the columns of the state matrix 
static void MixColumns(void) 
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{ 
  uint8_t i; 
  uint8_t Tmp,Tm,t; 
  for(i = 0; i < 4; ++i) 
  { 
    t = (*state)[i][0]; 
    Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3]; 
    Tm =(*state)[i][0]^(*state)[i][1]; Tm=xtime(Tm); (*state)[i][0]^=Tm^Tmp; 
    Tm =(*state)[i][1]^(*state)[i][2]; Tm=xtime(Tm); (*state)[i][1]^=Tm^Tmp; 
    Tm =(*state)[i][2]^(*state)[i][3]; Tm=xtime(Tm); (*state)[i][2]^=Tm^Tmp; 
    Tm  = (*state)[i][3] ^ t ;  Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp; 
  } 
} 
// Inerse MixColumns 
static void InvMixColumns(void) 
{ 
  uint8_t i; 
  uint8_t a,b,c,d; 
  for(i=0;i<4;++i) 
  { 
    a = (*state)[i][0]; 
    b = (*state)[i][1]; 
    c = (*state)[i][2]; 
    d = (*state)[i][3]; 
 
    (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ 
Multiply(d, 0x09); 
    (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ 
Multiply(d, 0x0d); 
    (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ 
Multiply(d, 0x0b); 
    (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ 
Multiply(d, 0x0e); 
  } 
} 
 
static void Round(uint8_t round) 
{ 
  SubBytes(); 
  ShiftRows(); 
  MixColumns(); 
  AddRoundKey(round); 
} 
 
static void LastRound() 
{ 
  SubBytes(); 
  ShiftRows(); 
  AddRoundKey(Nr); 
} 
 
static void InvRound(uint8_t round) 
{ 
  InvShiftRows(); 
  InvSubBytes(); 
  InvMixColumns(); 
  AddRoundKey(round); 
} 
 
static void InvLastRound() 
{ 
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  InvShiftRows(); 
  InvSubBytes(); 
  AddRoundKey(0); 
} 
 
// Encryption function 
static void Cipher(void) 
{ 
  uint8_t round; 
  AddRoundKey(0);  // Initial AddRoundKey. 
 
  for(round = 1; round < Nr; ++round)   //From round 1 to 9 
    {Round(round);}     
 
  LastRound();         //Last round 
} 
 
// Decryption function 
static void InvCipher(void) 
{ 
  uint8_t round; 
  AddRoundKey(Nr);   
 
  for(round=Nr-1; round>0; --round) 
    {InvRound(round);}    //From round 10 to 2 
   
  InvLastRound();          
} 
 
/************************************************************************** / 
/* Public functions:                                                       */ 
/***************************************************************************/ 
void AES128_ECB_indp_setkey(uint8_t* key) 
{ 
  Key = key; 
  KeyExpansion(); 
} 
 
void AES128_ECB_indp_crypto(uint8_t* input) 
{ 
  state = (state_t*)input; 
  Cipher(); 
} 
 
void AES128_ECB_indp_inv_crypto(uint8_t* input) 
{ 
  state = (state_t*)input; 
  InvCipher(); 
} 
 

C.2  AES128 with dummy round insertion (only encryption) 

/***************************************************************************/ 
/* Includes:                                                               */ 
/***************************************************************************/ 
#include "aes.h" 
#include <stdint.h> 
#include <string.h> 
#include <stdlib.h> 
 
/***************************************************************************/ 
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/*         Defines: Fixed values of the AES128 implementation              */ 
/***************************************************************************/ 
// Number of rows and columns 
#define Nb 4 
// The number of rounds in AES128 cipher. 
#define Nr 10 
// Key length in bytes [128 bit] 
#define KEYLEN 16 
 
/***************************************************************************/ 
/*        COMMENT/UNCOMMENT THE COUNTERMEASURES YOU WANT TO ACTIVATE       */ 
/***************************************************************************/ 
//     #define OneDummy 
     #define TwoDummies 
 
/***************************************************************************/ 
/* Private variables:                                                      */ 
/***************************************************************************/ 
// state matrix holding the intermediate results during encryption 
typedef uint8_t state_t[4][4]; 
static state_t* state; 
 
// The array that stores the round keys (11keys x 16bytes = 176bytes). 
static uint8_t RoundKey[176]; 
 
// The Key input to the AES Program 
static uint8_t* Key; 
 
// Dummy state matrix1 for dummy round operations 
static uint8_t dummy_state_t1[4][4]; 
static state_t* dummy_state1 = &dummy_state_t1; 
 
#ifdef TwoDummies 
// Dummy state matrix2 for dummy round operations 
static uint8_t dummy_state_t2[4][4]; 
static state_t* dummy_state2 = &dummy_state_t2; 
#endif 
 
// This vector will store the needed random selection values for each round 
static uint8_t RandomVector[10]; 
 
//10 dummy keys needed for single dummy 
#ifdef OneDummy 
#define DummyKeyNum 10 
static uint8_t DummyKeys[DummyKeyNum*KEYLEN]; 
#endif 
 
//20 dummy keys needed for double dummy 
#ifdef TwoDummies 
#define DummyKeyNum 20 
static uint8_t DummyKeys[DummyKeyNum*KEYLEN]; 
#endif 
 
//AES SBOX LUT 
static const uint8_t sbox[256] =   { 
  0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 
0xd7, 0xab, 0x76, 
  0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 
0xa4, 0x72, 0xc0, 
  0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 
0xd8, 0x31, 0x15, 



   
 

88 
 

  0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 
0x27, 0xb2, 0x75, 
  0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 
0xe3, 0x2f, 0x84, 
  0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 
0x4c, 0x58, 0xcf, 
  0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 
0x3c, 0x9f, 0xa8, 
  0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 
0xff, 0xf3, 0xd2, 
  0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 
0x5d, 0x19, 0x73, 
  0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 
0x5e, 0x0b, 0xdb, 
  0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 
0x95, 0xe4, 0x79, 
  0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 
0x7a, 0xae, 0x08, 
  0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 
0xbd, 0x8b, 0x8a, 
  0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 
0xc1, 0x1d, 0x9e, 
  0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 
0x55, 0x28, 0xdf, 
  0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 
0x54, 0xbb, 0x16 }; 
 
// The round constant array 
static const uint8_t Rcon[11] = 
{0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36}; 
 
/***************************************************************************/ 
/* Private functions:                                                      */ 
/***************************************************************************/ 
static uint8_t getSBoxValue(uint8_t num) 
{ 
  return sbox[num]; 
} 
 
static uint8_t xtime(uint8_t x) 
{ 
  return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); 
} 
 
static uint8_t getByte(void) 
{ 
  return rand() % 256; 
} 
 
static void RandomGeneration(void) 
{ 
  //Fill the dummy state 1 with random values 
  for (uint8_t i = 0; i<Nb; i++) 
  { 
    for(uint8_t j = 0; j<Nb; j++) 
    { 
      (*dummy_state1)[i][j] = getByte(); 
    } 
  } 
  #ifdef TwoDummies 
  //Fill the dummy state 2 with random values 
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  for (uint8_t i = 0; i<Nb; i++) 
  { 
    for(uint8_t j = 0; j<Nb; j++) 
    { 
      (*dummy_state2)[i][j] = getByte(); 
    } 
  } 
  #endif 
  // Generate all needed dummy keys 
  for (uint16_t i = 0; i<KEYLEN*DummyKeyNum; i++) 
  { 
    DummyKeys[i] = getByte(); 
  } 
 
  #ifdef OneDummy 
  for (uint8_t i = 0; i<10 ; i++) 
  { 
    RandomVector[i] = rand() % 2; 
  } 
  #endif 
  #ifdef TwoDummies 
  for (uint8_t i = 0; i<10 ; i++) 
  { 
    RandomVector[i] = rand() % 3; 
  } 
  #endif 
} 
 
static void KeyExpansion(void) 
{ 
  uint8_t i, j, k; 
  uint8_t tempa[4]; // Used for the column/row operations 
 
  // The first round key is the key itself. 
  for(i = 0; i < Nb; ++i) 
  { 
    RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; 
    RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; 
    RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; 
    RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; 
  } 
 
  // All other round keys are found from the previous round keys. 
  for(; (i < (Nb * (Nr + 1))); ++i) 
  { 
    for(j = 0; j < 4; ++j) 
    { 
      // Store previous key in tempa 
      tempa[j]=RoundKey[(i-1) * 4 + j]; 
    } 
    if (i % Nb == 0) 
    { 
      // Function RotWord() 
      k = tempa[0]; 
      tempa[0] = tempa[1]; 
      tempa[1] = tempa[2]; 
      tempa[2] = tempa[3]; 
      tempa[3] = k; 
 
      // Function Subword() 
      tempa[0] = getSBoxValue(tempa[0]); 
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      tempa[1] = getSBoxValue(tempa[1]); 
      tempa[2] = getSBoxValue(tempa[2]); 
      tempa[3] = getSBoxValue(tempa[3]); 
 
      // XOR with round constant 
      tempa[0] =  tempa[0] ^ Rcon[i/Nb]; 
    } 
    // Add the round key the array 
    RoundKey[i * 4 + 0] = RoundKey[(i - Nb) * 4 + 0] ^ tempa[0]; 
    RoundKey[i * 4 + 1] = RoundKey[(i - Nb) * 4 + 1] ^ tempa[1]; 
    RoundKey[i * 4 + 2] = RoundKey[(i - Nb) * 4 + 2] ^ tempa[2]; 
    RoundKey[i * 4 + 3] = RoundKey[(i - Nb) * 4 + 3] ^ tempa[3]; 
  } 
} 
 
// This function XORs the round key to state. 
static void AddRoundKey(state_t *state, uint8_t round) 
{ 
  uint8_t i,j; 
  for(i=0;i<4;++i) 
  { 
    for(j = 0; j < 4; ++j) 
    { 
      (*state)[i][j] ^= RoundKey[round * KEYLEN + i * Nb + j]; 
    } 
  } 
} 
 
// This function XORs the dummy key to the dummy state. 
static void DummyAddRoundKey(state_t *state, uint8_t round) 
{ 
  uint8_t i,j; 
  for(i=0;i<4;++i) 
  { 
    for(j = 0; j < 4; ++j) 
    { 
      (*state)[i][j] ^= DummyKeys[round * KEYLEN + i * Nb + j]; 
    } 
  } 
} 
 
 
// The SubBytes function 
static void SubBytes(state_t *state) 
{ 
  uint8_t i, j; 
  for(i = 0; i < 4; ++i) 
  { 
    for(j = 0; j < 4; ++j) 
    { 
      (*state)[i][j] = getSBoxValue((*state)[i][j]); 
    } 
  } 
} 
 
// The ShiftRows function. Offset = Row number (0,1,2,3). 
static void ShiftRows(state_t *state) 
{ 
  uint8_t temp; 
 
  // Rotate first row 1 columns to left 
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  temp           = (*state)[0][1]; 
  (*state)[0][1] = (*state)[1][1]; 
  (*state)[1][1] = (*state)[2][1]; 
  (*state)[2][1] = (*state)[3][1]; 
  (*state)[3][1] = temp; 
 
  // Rotate second row 2 columns to left 
  temp           = (*state)[0][2]; 
  (*state)[0][2] = (*state)[2][2]; 
  (*state)[2][2] = temp; 
 
  temp       = (*state)[1][2]; 
  (*state)[1][2] = (*state)[3][2]; 
  (*state)[3][2] = temp; 
 
  // Rotate third row 3 columns to left 
  temp       = (*state)[0][3]; 
  (*state)[0][3] = (*state)[3][3]; 
  (*state)[3][3] = (*state)[2][3]; 
  (*state)[2][3] = (*state)[1][3]; 
  (*state)[1][3] = temp; 
} 
 
// MixColumns function 
static void MixColumns(state_t *state) 
{ 
  uint8_t i; 
  uint8_t Tmp,Tm,t; 
  for(i = 0; i < 4; ++i) 
  { 
    t = (*state)[i][0]; 
    Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3]; 
    Tm =(*state)[i][0]^(*state)[i][1]; Tm=xtime(Tm); (*state)[i][0]^=Tm^Tmp; 
    Tm =(*state)[i][1]^(*state)[i][2]; Tm=xtime(Tm); (*state)[i][1]^=Tm^Tmp; 
    Tm =(*state)[i][2]^(*state)[i][3]; Tm=xtime(Tm); (*state)[i][2]^=Tm^Tmp; 
    Tm  = (*state)[i][3] ^ t ;  Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp; 
  } 
} 
 
static void Round(state_t *state, uint8_t round) 
{ 
  SubBytes(state); 
  ShiftRows(state); 
  MixColumns(state); 
  AddRoundKey(state, round); 
} 
 
static void LastRound(state_t *state, uint8_t round) 
{ 
  SubBytes(state); 
  ShiftRows(state); 
  AddRoundKey(state, round); 
} 
 
static void DummyRound(state_t *state, uint8_t round) 
{ 
  SubBytes(state); 
  ShiftRows(state); 
  MixColumns(state); 
  DummyAddRoundKey(state, round); 
} 
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static void DummyLastRound(state_t *state, uint8_t round) 
{ 
  SubBytes(state); 
  ShiftRows(state); 
  DummyAddRoundKey(state, round); 
} 
 
#ifdef OneDummy 
static void CipherWithDummies(void) 
{ 
  uint8_t round; 
  uint8_t DummyKeyCounter = 0; 
  AddRoundKey(state,0); 
 
  //From round 1 to 9 a dummy per round is added in random order 
  for(round = 1; round < Nr; ++round) 
  { 
 if (RandomVector[round-1]==0) 
    { 
     Round(state, round); 
     DummyRound(dummy_state1, DummyKeyCounter);DummyKeyCounter++; 
    } 
    else 
    { 
      DummyRound(dummy_state1, DummyKeyCounter);DummyKeyCounter++; 
     Round(state, round); 
    } 
  } 
 
  //Last round will also have a dummy added in random order 
  if (RandomVector[round-1]==0) 
  { 
 LastRound(state, round); 
 DummyLastRound(dummy_state1, DummyKeyCounter); 
  } 
  else 
  { 
 DummyLastRound(dummy_state1, DummyKeyCounter); 
 LastRound(state, round); 
  } 
} 
#endif 
 
#ifdef TwoDummies 
static void CipherWithDummies(void) 
{ 
  uint8_t round; 
  uint8_t DummyKeyCounter = 0; 
  AddRoundKey(state, 0); 
 
  //From round 1 to 9 two dummies per round are added in random order 
  for(round=1; round < Nr; ++round) 
    { 
   if (RandomVector[round-1] == 0) 
   { 
  Round(state, round); 
  DummyRound(dummy_state1,DummyKeyCounter);DummyKeyCounter++; 
  DummyRound(dummy_state2,DummyKeyCounter);DummyKeyCounter++; 
   } 
   else if (RandomVector[round-1] == 1) 
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   { 
  DummyRound(dummy_state1,DummyKeyCounter);DummyKeyCounter++; 
  Round(state, round); 
  DummyRound(dummy_state2,DummyKeyCounter);DummyKeyCounter++; 
   } 
   else 
   { 
  DummyRound(dummy_state1,DummyKeyCounter);DummyKeyCounter++; 
  DummyRound(dummy_state2,DummyKeyCounter);DummyKeyCounter++; 
  Round(state, round); 
   } 
    } 
 
  //Last round will also have two dummies added in random order 
  if (RandomVector[round-1] == 0) 
  { 
 LastRound(state, round); 
 DummyLastRound(dummy_state1, DummyKeyCounter);DummyKeyCounter++; 
 DummyLastRound(dummy_state2, DummyKeyCounter); 
  } 
  else if (RandomVector[round-1] == 1) 
  { 
 DummyLastRound(dummy_state1, DummyKeyCounter);DummyKeyCounter++; 
 LastRound(state, round); 
 DummyLastRound(dummy_state2, DummyKeyCounter); 
  } 
  else 
  { 
 DummyLastRound(dummy_state1, DummyKeyCounter);DummyKeyCounter++; 
 DummyLastRound(dummy_state2, DummyKeyCounter); 
 LastRound(state, round); 
  } 
} 
#endif 
 
/***************************************************************************/ 
/* Public functions:                                                       */ 
/***************************************************************************/ 
void AES128_ECB_indp_setkey(uint8_t* key) 
{ 
  Key = key; 
  KeyExpansion(); 
} 
 
void AES128_ECB_indp_crypto(uint8_t* input) 
{ 
  state = (state_t*)input; 
  CipherWithDummies(); 
} 
 
void AES128_ECB_indp_precompute_randoms(uint8_t* seed) 
{ 
  uint32_t seed1 = seed[0]; 
  uint32_t seed2 = seed[1]; 
  uint32_t seed3 = seed[2]; 
  uint32_t seed4 = seed[3]; 
  uint32_t mySeed = (seed1 << 24) ^ (seed2 << 16) ^ (seed3 << 8) ^  seed4; 
  srand(mySeed); 
  RandomGeneration(); 
} 
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C.3  AES128 with randomization (only encryption) 

/***************************************************************************/ 
/* Includes:                                                               */ 
/***************************************************************************/ 
#include "aes.h" 
#include <stdint.h> 
#include <string.h> 
#include <stdlib.h> 
 
/***************************************************************************/ 
/*         Defines: Fixed values of the AES128 implementation              */ 
/***************************************************************************/ 
// Number of rows and columns 
#define Nb 4 
// The number of rounds in AES128 cipher. 
#define Nr 10 
// Key length in bytes [128 bit] 
#define KEYLEN 16 
 
/***************************************************************************/ 
/*        COMMENT/UNCOMMENT THE COUNTERMEASURES YOU WANT TO ACTIVATE       */ 
/***************************************************************************/ 
#define Random_SBOX 
#define Random_MixColumns 
#define Random_AddRoundKey 
 
/***************************************************************************/ 
/* Private variables:                                                      */ 
/***************************************************************************/ 
// state matrix holding the intermediate results during encryption 
typedef uint8_t state_t[16]; 
static state_t* state; 
 
// The array that stores the round keys (11keys x 16bytes = 176bytes). 
static uint8_t RoundKey[176]; 
 
// The Key input to the AES Program 
static uint8_t* Key; 
 
// Depending on which randomization features were chosen, the corresponding 
arrays will be generated 
#if defined Random_SBOX || defined Random_AddRoundKey 
static uint8_t random_sequence[160]; 
#endif 
#ifdef Random_MixColumns 
static uint8_t random_columns[40]; 
#endif 
 
//AES SBOX 
static const uint8_t sbox[256] =   { 
  0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 
0xd7, 0xab, 0x76, 
  0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 
0xa4, 0x72, 0xc0, 
  0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 
0xd8, 0x31, 0x15, 
  0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 
0x27, 0xb2, 0x75, 
  0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 
0xe3, 0x2f, 0x84, 
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  0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 
0x4c, 0x58, 0xcf, 
  0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 
0x3c, 0x9f, 0xa8, 
  0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 
0xff, 0xf3, 0xd2, 
  0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 
0x5d, 0x19, 0x73, 
  0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 
0x5e, 0x0b, 0xdb, 
  0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 
0x95, 0xe4, 0x79, 
  0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 
0x7a, 0xae, 0x08, 
  0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 
0xbd, 0x8b, 0x8a, 
  0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 
0xc1, 0x1d, 0x9e, 
  0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 
0x55, 0x28, 0xdf, 
  0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 
0x54, 0xbb, 0x16}; 
 
// The round constant array 
static const uint8_t Rcon[11] = 
{0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36}; 
 
/***************************************************************************/ 
/* Private functions:                                                      */ 
/***************************************************************************/ 
static uint8_t getSBoxValue(uint8_t num) 
{ 
  return sbox[num]; 
} 
 
// Function used for MixColumns computation 
static uint8_t xtime(uint8_t x) 
{ 
  return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); 
} 
 
// Depending on which randomization features were chosen, the corresponding 
functions will be generated 
#if defined Random_SBOX || defined Random_AddRoundKey 
void GenerateSBOXnAddRoundKeyRandomizationVector(void) 
{ 
  for (int round=0; round<10; round++) 
  { 
 uint8_t random_vector[KEYLEN]; 
 uint8_t values[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; 
 uint8_t val; 
 for (int i = 15; i >= 0 ;i--){ 
   val = rand() % (i+1); 
   random_vector[i] = values[val]; 
   for( int j = val; j < i ; j++){ 
     values[j] = values[j+1]; 
   } 
 } 
 memcpy(random_sequence + round*16, random_vector, 16); 
  } 
} 
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#endif 
 
#ifdef Random_MixColumns 
void GenerateMixColumnRandomizationVector(void) 
{ 
  for (int round=0; round<10; round++) 
  { 
 uint8_t random_vector[Nb]; 
 uint8_t values[4] = {0,1,2,3}; 
 uint8_t val; 
 for (int i = 3; i >= 0 ;i--){ 
   val = rand() % (i+1); 
   random_vector[i] = values[val]; 
   //shift all remaining values: 
   for( int j = val; j < i ; j++){ 
     values[j] = values[j+1]; 
   } 
 } 
 memcpy(random_columns + round*4, random_vector, 4); 
  } 
} 
#endif 
 
//This function produces 11 round keys. 
static void KeyExpansion(void) 
{ 
  uint32_t i, j, k; 
  uint8_t tempa[4]; // Used for the column/row operations 
 
  // The first round key is the key itself. 
  for(i = 0; i < Nb; ++i) 
  { 
    RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; 
    RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; 
    RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; 
    RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; 
  } 
 
  // All other round keys are found from the previous round keys. 
  for(; (i < (Nb * (Nr + 1))); ++i) 
  { 
    for(j = 0; j < 4; ++j) 
    { 
      // Store previous key in tempa 
      tempa[j]=RoundKey[(i-1) * 4 + j]; 
    } 
    if (i % Nb == 0) 
    { 
      // Function RotWord() 
      k = tempa[0]; 
      tempa[0] = tempa[1]; 
      tempa[1] = tempa[2]; 
      tempa[2] = tempa[3]; 
      tempa[3] = k; 
 
      // Function Subword() 
      tempa[0] = getSBoxValue(tempa[0]); 
      tempa[1] = getSBoxValue(tempa[1]); 
      tempa[2] = getSBoxValue(tempa[2]); 
      tempa[3] = getSBoxValue(tempa[3]); 
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      // XOR with round constant 
      tempa[0] =  tempa[0] ^ Rcon[i/Nb - 1]; 
    } 
    // Add the round key to the array 
    RoundKey[i * 4 + 0] = RoundKey[(i - Nb) * 4 + 0] ^ tempa[0]; 
    RoundKey[i * 4 + 1] = RoundKey[(i - Nb) * 4 + 1] ^ tempa[1]; 
    RoundKey[i * 4 + 2] = RoundKey[(i - Nb) * 4 + 2] ^ tempa[2]; 
    RoundKey[i * 4 + 3] = RoundKey[(i - Nb) * 4 + 3] ^ tempa[3]; 
  } 
} 
 
 
#ifndef Random_AddRoundKey 
static void AddRoundKey(uint8_t round) 
{ 
  for(uint8_t i=0; i<16; ++i) 
  { 
    (*state)[i] ^= RoundKey[round * KEYLEN + i]; 
  } 
} 
#endif 
 
#ifdef Random_AddRoundKey 
static void AddRoundKey(uint8_t round) 
{ 
  for(uint8_t i=0; i<16; ++i) 
  { 
    (*state)[random_sequence[i]]^=RoundKey[round*KEYLEN+random_sequence[i]]; 
  } 
} 
#endif 
 
#ifndef Random_SBOX 
static void SubBytes(uint8_t round) 
{ 
  uint8_t i; 
  for(i=0;i<16;++i) 
  { 
    (*state)[i] = getSBoxValue((*state)[i]); 
  } 
} 
#endif 
 
#ifdef Random_SBOX 
static void SubBytes(uint8_t round) 
{ 
 for (uint8_t i=0; i<16; i++) 
 { 
   (*state)[random_sequence[(round-1)*KEYLEN + i]] =   
   getSBoxValue((*state)[random_sequence[(round-1)*KEYLEN + i]]); 
 } 
} 
#endif 
 
static void ShiftRows(uint8_t round) 
{ 
  uint8_t temp; 
 
  temp           = (*state)[1]; 
  (*state)[1] = (*state)[5]; 
  (*state)[5] = (*state)[9]; 
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  (*state)[9] = (*state)[13]; 
  (*state)[13] = temp; 
 
  temp           = (*state)[2]; 
  (*state)[2] = (*state)[10]; 
  (*state)[10] = temp; 
 
  temp       = (*state)[6]; 
  (*state)[6] = (*state)[14]; 
  (*state)[14] = temp; 
 
  temp       = (*state)[3]; 
  (*state)[3] = (*state)[15]; 
  (*state)[15] = (*state)[11]; 
  (*state)[11] = (*state)[7]; 
  (*state)[7] = temp; 
} 
 
 
#ifndef Random_MixColumns 
static void MixColumns(uint8_t round) 
{ 
  uint8_t i; 
  uint8_t Tmp,Tm,t; 
  for(i = 0; i < 4; ++i) 
  { 
    t = (*state)[i][0]; 
    Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3]; 
    Tm =(*state)[i][0]^(*state)[i][1]; Tm=xtime(Tm); (*state)[i][0]^=Tm^Tmp; 
    Tm =(*state)[i][1]^(*state)[i][2]; Tm=xtime(Tm); (*state)[i][1]^=Tm^Tmp; 
    Tm =(*state)[i][2]^(*state)[i][3]; Tm=xtime(Tm); (*state)[i][2]^=Tm^Tmp; 
    Tm  = (*state)[i][3] ^ t ;  Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp; 
  } 
} 
#endif 
 
#ifdef Random_MixColumns 
static void MixColumns(uint8_t round) 
{ 
  uint8_t i, j; 
  uint8_t Tmp,Tm,t; 
  for(i = 0; i < 4; ++i) 
  { 
    j = random_columns[(round-1)*4 + i]; 
    t = (*state)[0 + j*4]; 
    Tmp=(*state)[0+j*4]^(*state)[1 + j*4]^(*state)[2 + j*4]^(*state)[3+j*4]; 
    Tm=(*state)[0+j*4]^(*state)[1+j*4];Tm=xtime(Tm);(*state)[0+j*4]^=Tm^Tmp; 
    Tm=(*state)[1+j*4]^(*state)[2+j*4];Tm=xtime(Tm);(*state)[1+j*4]^=Tm^Tmp; 
    Tm=(*state)[2+j*4]^(*state)[3+j*4];Tm=xtime(Tm);(*state)[2+j*4]^=Tm^Tmp; 
    Tm=(*state)[3+j*4]^t;              Tm=xtime(Tm);(*state)[3+j*4]^=Tm^Tmp; 
  } 
} 
#endif 
 
static void Round(uint8_t round) 
{ 
    SubBytes(round); 
    ShiftRows(round); 
    MixColumns(round); 
    AddRoundKey(round); 
} 
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static void LastRound(void) 
{ 
    SubBytes(Nr); 
    ShiftRows(Nr); 
    AddRoundKey(Nr); 
} 
 
// Normal encryption function 
static void Cipher(void) 
{ 
  uint8_t round = 0; 
  AddRoundKey(round);   
 
  for(round = 1; round < Nr; ++round) 
    {Round(round);}     
  LastRound();          
} 
 
/***************************************************************************/ 
/* Public functions:                                                       */ 
/***************************************************************************/ 
 
void AES128_ECB_indp_setkey(uint8_t* key) 
{ 
  Key = key; 
  KeyExpansion(); 
} 
 
void AES128_ECB_indp_crypto(uint8_t* input) 
{ 
  state = (state_t*)input; 
  Cipher(); 
} 
 
void AES128_ECB_indp_precompute_randoms(uint8_t* seed) 
{ 
  #if defined Random_SBOX || defined Random_AddRoundKey || defined    
Random_MixColumns  
  uint32_t seed1 = seed[0]; 
  uint32_t seed2 = seed[1]; 
  uint32_t seed3 = seed[2]; 
  uint32_t seed4 = seed[3]; 
  uint32_t mySeed = (seed1 << 24) ^ (seed2 << 16) ^ (seed3 << 8) ^  seed4; 
  srand(mySeed); 
  #endif 
 
  #if defined Random_SBOX || defined Random_AddRoundKey 
  GenerateSBOXnAddRoundKeyRandomizationVector(); 
  #endif 
  #ifdef Random_MixColumns 
  GenerateMixColumnRandomizationVector(); 
  #endif 
} 
 

C.4  Random delay implementation 

// This vector stores the random values used in the delay function 
#define RandomVectorLength 10 
static uint8_t RandomVector[RandomVectorLength]; 
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// Generation of random values for the delay function. Max argument sets the top 
limit of the uniform distribution 
static void UniformRandom(uint8_t Max) 
{ 
  for (uint8_t i = 0; i<RandomVectorLength ; i++) 
 { 
  RandomVector[i] = (rand() % Max)+1; 
 } 
} 
 

// This is the optimized delay function (dummy loop) 
static void Delay(uint8_t DelayLenght) 
{ 
  asm volatile("MOV R16, %0" : "=r" (DelayLenght) : "0" (DelayLenght)); 
  asm volatile("LOOP:             \n" 
               "DEC R16           \n" 
               "BRNE LOOP           "); 
} 

 

C.5  AES128 with Boolean masking 

/***************************************************************************/ 
/* Includes:                                                               */ 
/***************************************************************************/ 
#include <string.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include "aes.h" 
 
/***************************************************************************/ 
/* Defines:                                                                */ 
/***************************************************************************/ 
// Number of rows and columns 
#define Nb 4 
// The number of rounds in AES128 cipher. 
#define Nr 10 
// Key length in bytes [128 bit] 
#define KEYLEN 16 
 
/***************************************************************************/ 
/* Masked = 1 (apply masking) ; Masked = 0 (no masking applied)            */ 
/***************************************************************************/ 
#define MASKED 1 
 
/***************************************************************************/ 
/* Private variables:                                                      */ 
/***************************************************************************/ 
typedef uint8_t state_t[4][4]; 
static state_t* state; 
 
//For debugging purposes uncomment 
//static uint8_t state_debbug_t[4][4]; 
//static state_t* state_debbug = &state_debbug_t; 
 
// The array that stores the round keys (11keys x 16bytes = 176bytes). 
static uint8_t RoundKey[11*KEYLEN]; 
 
// The Key input to the AES Program 
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static uint8_t* Key; 
 
// Vector to store the masked round keys 
static uint8_t RoundKeyMasked[11*KEYLEN]; 
 
// Vector to store the masks 
static uint8_t mask[10]; 
 
static uint8_t round; 
 
// AES SBOX 
static const uint8_t sbox[256] = { 
    //0     1    2      3     4    5     6     7      8    9     A      B    C     
D     E     F 
    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 
0xd7, 0xab, 0x76, 
    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 
0xa4, 0x72, 0xc0, 
    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 
0xd8, 0x31, 0x15, 
    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 
0x27, 0xb2, 0x75, 
    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 
0xe3, 0x2f, 0x84, 
    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 
0x4c, 0x58, 0xcf, 
    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 
0x3c, 0x9f, 0xa8, 
    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 
0xff, 0xf3, 0xd2, 
    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 
0x5d, 0x19, 0x73, 
    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 
0x5e, 0x0b, 0xdb, 
    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 
0x95, 0xe4, 0x79, 
    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 
0x7a, 0xae, 0x08, 
    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 
0xbd, 0x8b, 0x8a, 
    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 
0xc1, 0x1d, 0x9e, 
    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 
0x55, 0x28, 0xdf, 
    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 
0x54, 0xbb, 0x16}; 
 
// AES reverse SBOX 
static const uint8_t rsbox[256] = { 
    0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 
0xf3, 0xd7, 0xfb, 
    0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 
0xde, 0xe9, 0xcb, 
    0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 
0xfa, 0xc3, 0x4e, 
    0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 
0x8b, 0xd1, 0x25, 
    0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 
0x65, 0xb6, 0x92, 
    0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 
0x8d, 0x9d, 0x84, 
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    0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 
0xb3, 0x45, 0x06, 
    0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 
0x13, 0x8a, 0x6b, 
    0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 
0xb4, 0xe6, 0x73, 
    0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 
0x75, 0xdf, 0x6e, 
    0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 
0x18, 0xbe, 0x1b, 
    0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 
0xcd, 0x5a, 0xf4, 
    0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 
0x80, 0xec, 0x5f, 
    0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 
0xc9, 0x9c, 0xef, 
    0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 
0x53, 0x99, 0x61, 
    0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 
0x21, 0x0c, 0x7d}; 
 
// Galois multiplication LUTs for MixColumns and InvMixColumns 
static const uint8_t mul_02[256] = { 
    0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 
0x1a, 0x1c, 0x1e, 
    0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 
0x3a, 0x3c, 0x3e, 
    0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 
0x5a, 0x5c, 0x5e, 
    0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 
0x7a, 0x7c, 0x7e, 
    0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 
0x9a, 0x9c, 0x9e, 
    0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 
0xba, 0xbc, 0xbe, 
    0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 
0xda, 0xdc, 0xde, 
    0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 
0xfa, 0xfc, 0xfe, 
    0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f, 0x0d, 0x03, 
0x01, 0x07, 0x05, 
    0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23, 
0x21, 0x27, 0x25, 
    0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49, 0x4f, 0x4d, 0x43, 
0x41, 0x47, 0x45, 
    0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63, 
0x61, 0x67, 0x65, 
    0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95, 0x8b, 0x89, 0x8f, 0x8d, 0x83, 
0x81, 0x87, 0x85, 
    0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad, 0xa3, 
0xa1, 0xa7, 0xa5, 
    0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 
0xc1, 0xc7, 0xc5, 
    0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 0xeb, 0xe9, 0xef, 0xed, 0xe3, 
0xe1, 0xe7, 0xe5}; 
 
static const uint8_t mul_03[256] = { 
    0x00, 0x03, 0x06, 0x05, 0x0c, 0x0f, 0x0a, 0x09, 0x18, 0x1b, 0x1e, 0x1d, 0x14, 
0x17, 0x12, 0x11, 
    0x30, 0x33, 0x36, 0x35, 0x3c, 0x3f, 0x3a, 0x39, 0x28, 0x2b, 0x2e, 0x2d, 0x24, 
0x27, 0x22, 0x21, 
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    0x60, 0x63, 0x66, 0x65, 0x6c, 0x6f, 0x6a, 0x69, 0x78, 0x7b, 0x7e, 0x7d, 0x74, 
0x77, 0x72, 0x71, 
    0x50, 0x53, 0x56, 0x55, 0x5c, 0x5f, 0x5a, 0x59, 0x48, 0x4b, 0x4e, 0x4d, 0x44, 
0x47, 0x42, 0x41, 
    0xc0, 0xc3, 0xc6, 0xc5, 0xcc, 0xcf, 0xca, 0xc9, 0xd8, 0xdb, 0xde, 0xdd, 0xd4, 
0xd7, 0xd2, 0xd1, 
    0xf0, 0xf3, 0xf6, 0xf5, 0xfc, 0xff, 0xfa, 0xf9, 0xe8, 0xeb, 0xee, 0xed, 0xe4, 
0xe7, 0xe2, 0xe1, 
    0xa0, 0xa3, 0xa6, 0xa5, 0xac, 0xaf, 0xaa, 0xa9, 0xb8, 0xbb, 0xbe, 0xbd, 0xb4, 
0xb7, 0xb2, 0xb1, 
    0x90, 0x93, 0x96, 0x95, 0x9c, 0x9f, 0x9a, 0x99, 0x88, 0x8b, 0x8e, 0x8d, 0x84, 
0x87, 0x82, 0x81, 
    0x9b, 0x98, 0x9d, 0x9e, 0x97, 0x94, 0x91, 0x92, 0x83, 0x80, 0x85, 0x86, 0x8f, 
0x8c, 0x89, 0x8a, 
    0xab, 0xa8, 0xad, 0xae, 0xa7, 0xa4, 0xa1, 0xa2, 0xb3, 0xb0, 0xb5, 0xb6, 0xbf, 
0xbc, 0xb9, 0xba, 
    0xfb, 0xf8, 0xfd, 0xfe, 0xf7, 0xf4, 0xf1, 0xf2, 0xe3, 0xe0, 0xe5, 0xe6, 0xef, 
0xec, 0xe9, 0xea, 
    0xcb, 0xc8, 0xcd, 0xce, 0xc7, 0xc4, 0xc1, 0xc2, 0xd3, 0xd0, 0xd5, 0xd6, 0xdf, 
0xdc, 0xd9, 0xda, 
    0x5b, 0x58, 0x5d, 0x5e, 0x57, 0x54, 0x51, 0x52, 0x43, 0x40, 0x45, 0x46, 0x4f, 
0x4c, 0x49, 0x4a, 
    0x6b, 0x68, 0x6d, 0x6e, 0x67, 0x64, 0x61, 0x62, 0x73, 0x70, 0x75, 0x76, 0x7f, 
0x7c, 0x79, 0x7a, 
    0x3b, 0x38, 0x3d, 0x3e, 0x37, 0x34, 0x31, 0x32, 0x23, 0x20, 0x25, 0x26, 0x2f, 
0x2c, 0x29, 0x2a, 
    0x0b, 0x08, 0x0d, 0x0e, 0x07, 0x04, 0x01, 0x02, 0x13, 0x10, 0x15, 0x16, 0x1f, 
0x1c, 0x19, 0x1a}; 
 
static const uint8_t mul_09[256]={ 
 0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e
,0x77, 
 0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee
,0xe7, 
 0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,0x73,0x7a,0x61,0x68,0x57,0x5e,0x45
,0x4c, 
 0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5
,0xdc, 
 0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08
,0x01, 
 0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98
,0x91, 
 0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,0x05,0x0c,0x17,0x1e,0x21,0x28,0x33
,0x3a, 
 0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3
,0xaa, 
 0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92
,0x9b, 
 0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,0x34,0x3d,0x26,0x2f,0x10,0x19,0x02
,0x0b, 
 0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9
,0xa0, 
 0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39
,0x30, 
 0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4
,0xed, 
 0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,0x42,0x4b,0x50,0x59,0x66,0x6f,0x74
,0x7d, 
 0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf
,0xd6, 
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 0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f
,0x46 
}; 
 
static const uint8_t mul_11[256]={ 
 0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,0x58,0x53,0x4e,0x45,0x74,0x7f,0x62
,0x69, 
 0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2
,0xd9, 
 0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,0x23,0x28,0x35,0x3e,0x0f,0x04,0x19
,0x12, 
 0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9
,0xa2, 
 0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94
,0x9f, 
 0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,0x1e,0x15,0x08,0x03,0x32,0x39,0x24
,0x2f, 
 0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef
,0xe4, 
 0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,0x65,0x6e,0x73,0x78,0x49,0x42,0x5f
,0x54, 
 0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95
,0x9e, 
 0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,0x1f,0x14,0x09,0x02,0x33,0x38,0x25
,0x2e, 
 0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee
,0xe5, 
 0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,0x64,0x6f,0x72,0x79,0x48,0x43,0x5e
,0x55, 
 0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,0x59,0x52,0x4f,0x44,0x75,0x7e,0x63
,0x68, 
 0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3
,0xd8, 
 0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,0x22,0x29,0x34,0x3f,0x0e,0x05,0x18
,0x13, 
 0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8
,0xa3 
}; 
 
static const uint8_t mul_13[256]={ 
 0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,0x68,0x65,0x72,0x7f,0x5c,0x51,0x46
,0x4b, 
 0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96
,0x9b, 
 0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd
,0xf0, 
 0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d
,0x20, 
 0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b
,0x26, 
 0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb
,0xf6, 
 0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90
,0x9d, 
 0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,0x6e,0x63,0x74,0x79,0x5a,0x57,0x40
,0x4d, 
 0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c
,0x91, 
 0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c
,0x41, 
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 0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,0x09,0x04,0x13,0x1e,0x3d,0x30,0x27
,0x2a, 
 0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7
,0xfa, 
 0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1
,0xfc, 
 0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,0x0f,0x02,0x15,0x18,0x3b,0x36,0x21
,0x2c, 
 0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a
,0x47, 
 0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a
,0x97 
}; 
 
static const uint8_t mul_14[256]={ 
 0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,0x70,0x7e,0x6c,0x62,0x48,0x46,0x54
,0x5a, 
 0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4
,0xba, 
 0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f
,0x81, 
 0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f
,0x61, 
 0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9
,0xf7, 
 0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19
,0x17, 
 0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,0x06,0x08,0x1a,0x14,0x3e,0x30,0x22
,0x2c, 
 0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2
,0xcc, 
 0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,0x31,0x3f,0x2d,0x23,0x09,0x07,0x15
,0x1b, 
 0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5
,0xfb, 
 0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce
,0xc0, 
 0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e
,0x20, 
 0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8
,0xb6, 
 0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58
,0x56, 
 0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,0x47,0x49,0x5b,0x55,0x7f,0x71,0x63
,0x6d, 
 0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83
,0x8d 
}; 
 
// The round constant array 
static const uint8_t Rcon[10] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 
0x1b, 0x36}; 
 
// Arrays to store the computed masked AES SBOX and reverse SBOX LUTs 
static uint8_t SboxMasked[256]; 
static uint8_t rSboxMasked[256]; 
 
/***************************************************************************/ 
/* Private functions:                                                      */ 
/***************************************************************************/ 
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/* For debugging purposes 
static void BlockCopy(uint8_t* output, const uint8_t* input) 
{ 
  for (uint8_t i=0; i<AES_KEYLEN; ++i) 
  { 
    output[i] = input[i]; 
  } 
} 
*/ 
 
/* Normal Mix Columns: 
* [w]      [2  3  1  1]    [a] 
* [x]  =   [1  2  3  1]  * [b] 
* [y]      [1  1  2  3]    [c] 
* [z]      [3  1  1  2]    [d] 
// Transform m0, m1, m2 and m3 into m6, m7, m8 and m9 
static void calcMixColmask(uint8_t mask[10]) 
{ 
  mask[6] = mul_02[mask[0]] ^ mul_03[mask[1]] ^ mask[2]         ^ mask[3]; 
  mask[7] = mask[0]         ^ mul_02[mask[1]] ^ mul_03[mask[2]] ^ mask[3]; 
  mask[8] = mask[0]         ^ mask[1]    ^ mul_02[mask[2]] ^ mul_03[mask[3]]; 
  mask[9] = mul_03[mask[0]] ^ mask[1]    ^ mask[2]         ^ mul_02[mask[3]]; 
} 
 
/* Normal Inverse Mix Columns: 
* [w]      [0E  0B  0D  09]    [a] 
* [x]  =   [09  0E  0B  0D]  * [b] 
* [y]      [0D  09  0E  0B]    [c] 
* [z]      [0B  0D  09  0E]    [d] 
// Transform m0, m1, m2 and m3 into m6, m7, m8 and m9 for inverse cypher 
static void calcInvMixColmask(uint8_t mask[10]) 
{ 
mask[6]=mul_14[mask[0]]^ mul_11[mask[1]]^ mul_13[mask[2]]^ mul_09[mask[3]]; 
mask[7]=mul_09[mask[0]]^ mul_14[mask[1]]^ mul_11[mask[2]]^ mul_13[mask[3]]; 
mask[8]=mul_13[mask[0]]^ mul_09[mask[1]]^ mul_14[mask[2]]^ mul_11[mask[3]]; 
mask[9]=mul_11[mask[0]]^ mul_13[mask[1]]^ mul_09[mask[2]]^ mul_14[mask[3]]; 
} 
 
//XOR-ing function for mask manipulation 
static void remask(state_t * s, uint8_t m1, uint8_t m2, uint8_t m3, uint8_t m4, 
uint8_t m5, uint8_t m6, uint8_t m7, uint8_t m8) 
{ 
  for (int i = 0; i < 4; i++) 
  { 
    (*s)[i][0] = (*s)[i][0] ^ (m1); 
    (*s)[i][0] = (*s)[i][0] ^ (m5); 
    (*s)[i][1] = (*s)[i][1] ^ (m2); 
    (*s)[i][1] = (*s)[i][1] ^ (m6); 
    (*s)[i][2] = (*s)[i][2] ^ (m3); 
    (*s)[i][2] = (*s)[i][2] ^ (m7); 
    (*s)[i][3] = (*s)[i][3] ^ (m4); 
    (*s)[i][3] = (*s)[i][3] ^ (m8); 
  } 
} 
 
//Calculate the Sbox to change from m4 to m5 
static void calcSboxMasked(uint8_t mask[10]) 
{ 
  for (int i = 0; i < 256; i++){ 
    SboxMasked[i ^ mask[4]] = sbox[i] ^ mask[5]; 
  } 
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} 
 
//Calculate the ReverseSbox to change from m4 to m5 
static void calcrSboxMasked(uint8_t mask[10]) 
{ 
  for (int i = 0; i < 256; i++){ 
    rSboxMasked[i ^ mask[4]] = rsbox[i] ^ mask[5]; 
  } 
} 
 
//Precompute all the masks, masked round keys and masked SBOX 
static void InitMaskingEncrypt(void) 
{ 
  memcpy(RoundKeyMasked, RoundKey, AES_keyExpSize); 
 
  //Randomly generate the masks: m0 m1 m2 m3 m4 and m5 
  for (uint8_t i = 0; i < 6; i++){ 
    mask[i] = (rand() % 255)+1; 
  } 
 
  //Calculate m6, m7, m8 and m9 
  calcMixColmask(mask); 
 
  //Calculate the masked Sbox 
  calcSboxMasked(mask);  
 
   
  //Mask the last round key in order to unmake masking at the end of cypher 
  remask((state_t *) &RoundKeyMasked[(Nr * Nb * 4)], 0, 0, 0, 0, mask[5], 
mask[5], mask[5], mask[5]); 
 
  //Mask the rest of round keys change from m6, m7, m8 and m9 to m4 
  for (int i = 0; i < Nr; i++) 
  { 
    remask((state_t *) &RoundKeyMasked[(i * Nb * 4)], mask[6], mask[7], mask[8], 
mask[9], mask[4], mask[4], mask[4], mask[4]); 
  } 
} 
 
//Precompute all the masks, masked round keys and masked reverse SBOX 
static void InitMaskingDecrypt(void) 
{ 
  memcpy(RoundKeyMasked, RoundKey, AES_keyExpSize); 
 
  //Randomly generate the masks: m0 m1 m2 m3 m4 and m5 
  for (uint8_t i = 0; i < 6; i++){ 
    mask[i] = rand() % 0xFF; 
  } 
 
  //Calculate m6, m7, m8 and m9 
  calcInvMixColmask(mask); 
 
  //Calculate the masked reverse Sbox 
  calcrSboxMasked(mask);  
 
  //Mask the last round key in order to unmake masking at the end of decypher 
  remask((state_t *) &RoundKeyMasked[(Nr * Nb * 4)], 0, 0, 0, 0, mask[4], 
mask[4], mask[4], mask[4]); 
 
  //Mask the rest of round keys change from m6, m7, m8 and m9 to m4 
  for (int i = 0; i < Nr; i++) 
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  { 
    remask((state_t *) &RoundKeyMasked[(i * Nb * 4)], mask[0], mask[1], mask[2], 
mask[3], mask[5], mask[5], mask[5], mask[5]); 
  } 
} 
 
 
#define getSBoxValue(num) (sbox[(num)]) 
#define getSBoxInvert(num) (rsbox[(num)]) 
 
// The SubBytesMasked Function Substitutes the values in the state matrix with 
values in the masked S-box. 
static void SubBytesMasked(state_t *state) 
{ 
  uint8_t i, j; 
  for (i = 0; i < 4; ++i) 
  { 
    for (j = 0; j < 4; ++j) 
    { 
      (*state)[i][j] = SboxMasked[(*state)[i][j]]; 
    } 
  } 
} 
 
// This function adds the masked round key to state. 
static void AddRoundKeyMasked(uint8_t round, state_t *state, const uint8_t * 
RoundKeyMasked) //, const uint8_t* RoundKey) 
{ 
  uint8_t i, j; 
  for(i = 0; i < 4; i++){ 
    for (j = 0; j < 4; ++j) 
    { 
      (*state)[i][j] ^= RoundKeyMasked[(round * Nb * Nb) + (i * Nb) + j]; 
    } 
  } 
} 
 
//Key schedule 
static void KeyExpansion() 
{ 
  unsigned i, j, k; 
  uint8_t tempa[4]; // Used for the column/row operations 
 
  // The first round key is the key itself. 
  for (i = 0; i < Nk; ++i) 
  { 
    RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; 
    RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; 
    RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; 
    RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; 
  } 
 
  // All other round keys are found from the previous round keys. 
  for (i = Nk; i < Nb * (Nr + 1); ++i) 
  { 
    { 
      k = (i - 1) * 4; 
      tempa[0] = RoundKey[k + 0]; 
      tempa[1] = RoundKey[k + 1]; 
      tempa[2] = RoundKey[k + 2]; 
      tempa[3] = RoundKey[k + 3]; 
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    } 
 
    if (i % Nk == 0) 
    { 
      // This function shifts the 4 bytes in a word to the left once. 
      // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] 
 
      // Function RotWord() 
      { 
        const uint8_t u8tmp = tempa[0]; 
        tempa[0] = tempa[1]; 
        tempa[1] = tempa[2]; 
        tempa[2] = tempa[3]; 
        tempa[3] = u8tmp; 
      } 
 
      // SubWord() is a function that takes a four-byte input word and 
      // applies the S-box to each of the four bytes to produce an output word. 
 
      // Function Subword() 
      { 
        tempa[0] = getSBoxValue(tempa[0]); 
        tempa[1] = getSBoxValue(tempa[1]); 
        tempa[2] = getSBoxValue(tempa[2]); 
        tempa[3] = getSBoxValue(tempa[3]); 
      } 
 
      tempa[0] = tempa[0] ^ Rcon[i / Nk - 1]; 
    } 
 
    j = i * 4; 
    k = (i - Nk) * 4; 
    RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0]; 
    RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1]; 
    RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2]; 
    RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3]; 
  } 
} 
 
 
// This function adds the round key to state. 
static void AddRoundKey(uint8_t round, state_t *state, const uint8_t *RoundKey) 
{ 
  uint8_t i, j; 
  for (i = 0; i < 4; ++i) 
  { 
    for (j = 0; j < 4; ++j) 
    { 
      (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j]; 
    } 
  } 
} 
 
// The SubBytes function 
static void SubBytes(state_t *state) 
{ 
  uint8_t i, j; 
  for (i = 0; i < 4; ++i) 
  { 
    for (j = 0; j < 4; ++j) 
    { 
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      (*state)[j][i] = getSBoxValue((*state)[j][i]); 
    } 
  } 
} 
 
// The ShiftRows function 
static void ShiftRows(state_t *state) 
{ 
  uint8_t temp; 
 
  // Rotate first row 1 columns to left 
  temp = (*state)[0][1]; 
  (*state)[0][1] = (*state)[1][1]; 
  (*state)[1][1] = (*state)[2][1]; 
  (*state)[2][1] = (*state)[3][1]; 
  (*state)[3][1] = temp; 
 
  // Rotate second row 2 columns to left 
  temp = (*state)[0][2]; 
  (*state)[0][2] = (*state)[2][2]; 
  (*state)[2][2] = temp; 
 
  temp = (*state)[1][2]; 
  (*state)[1][2] = (*state)[3][2]; 
  (*state)[3][2] = temp; 
 
  // Rotate third row 3 columns to left 
  temp = (*state)[0][3]; 
  (*state)[0][3] = (*state)[3][3]; 
  (*state)[3][3] = (*state)[2][3]; 
  (*state)[2][3] = (*state)[1][3]; 
  (*state)[1][3] = temp; 
} 
 
static uint8_t xtime(uint8_t x) 
{ 
  return ((x << 1) ^ (((x >> 7) & 1) * 0x1b)); 
} 
 
// MixColumns function 
static void MixColumns(state_t *state) 
{ 
  uint8_t i; 
  uint8_t Tmp,Tm,t; 
  for(i = 0; i < 4; ++i) 
  { 
    t = (*state)[i][0]; 
    Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3]; 
    Tm =(*state)[i][0]^(*state)[i][1]; Tm=xtime(Tm); (*state)[i][0]^=Tm^Tmp; 
    Tm =(*state)[i][1]^(*state)[i][2]; Tm=xtime(Tm); (*state)[i][1]^=Tm^Tmp; 
    Tm =(*state)[i][2]^(*state)[i][3]; Tm=xtime(Tm); (*state)[i][2]^=Tm^Tmp; 
    Tm  = (*state)[i][3] ^ t ;  Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp; 
  } 
} 
 
#define Multiply(x, y)                       \ 
  (((y & 1) * x) ^                           \ 
   ((y >> 1 & 1) * xtime(x)) ^               \ 
   ((y >> 2 & 1) * xtime(xtime(x))) ^        \ 
   ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ \ 
   ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x)))))) 
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#endif 
 
// InvMixColumns function 
static void InvMixColumns() 
{ 
  int i; 
  uint8_t a, b, c, d; 
  for (i = 0; i < 4; ++i) 
  { 
    a = (*state)[i][0]; 
    b = (*state)[i][1]; 
    c = (*state)[i][2]; 
    d = (*state)[i][3]; 
 
    (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ 
Multiply(d, 0x09); 
    (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ 
Multiply(d, 0x0d); 
    (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ 
Multiply(d, 0x0b); 
    (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ 
Multiply(d, 0x0e); 
  } 
} 
 
// The InvSubBytes function 
static void InvSubBytes() 
{ 
  uint8_t i, j; 
  for (i = 0; i < 4; ++i) 
  { 
    for (j = 0; j < 4; ++j) 
    { 
      (*state)[j][i] = getSBoxInvert((*state)[j][i]); 
    } 
  } 
} 
 
// The masked InvSubBytes  
static void InvSubBytesMasked() 
{ 
  uint8_t i, j; 
  for (i = 0; i < 4; ++i) 
  { 
    for (j = 0; j < 4; ++j) 
    { 
      (*state)[j][i] = rSboxMasked[(*state)[j][i]]; 
    } 
  } 
} 
 
// InvShiftRows function 
static void InvShiftRows() 
{ 
  uint8_t temp; 
 
  // Rotate first row 1 columns to right 
  temp = (*state)[3][1]; 
  (*state)[3][1] = (*state)[2][1]; 
  (*state)[2][1] = (*state)[1][1]; 



   
 

112 
 

  (*state)[1][1] = (*state)[0][1]; 
  (*state)[0][1] = temp; 
 
  // Rotate second row 2 columns to right 
  temp = (*state)[0][2]; 
  (*state)[0][2] = (*state)[2][2]; 
  (*state)[2][2] = temp; 
 
  temp = (*state)[1][2]; 
  (*state)[1][2] = (*state)[3][2]; 
  (*state)[3][2] = temp; 
 
  // Rotate third row 3 columns to right 
  temp = (*state)[0][3]; 
  (*state)[0][3] = (*state)[1][3]; 
  (*state)[1][3] = (*state)[2][3]; 
  (*state)[2][3] = (*state)[3][3]; 
  (*state)[3][3] = temp; 
} 
 
// Masked cyher function 
static void CipherMasked() 
{ 
  //Plain text masked with m6,m7,m8,m9 
  remask(state, mask[6], mask[7], mask[8], mask[9], 0, 0, 0, 0); 
 
  // Masks change from m6,m7,m8,m9 to m4 
  AddRoundKeyMasked(0, state, RoundKeyMasked); 
//  AddRoundKey(0, state_debbug, RoundKey); 
 
  // All rounds, but last one without MixColumns() 
  for (round = 1;; round++) 
  { 
    // Mask changes from m4 to m5 
    SubBytesMasked(state); 
 //   SubBytes(state_debbug); 
 
    //No impact on mask 
    ShiftRows(state); 
//    ShiftRows(state_debbug); 
    if (round == Nr) 
    { 
      break; 
    } 
    //Change mask from m5 to m0,m1,m2,m3 
    remask(state, mask[0], mask[1], mask[2], mask[3], mask[5], mask[5], mask[5], 
mask[5]); 
 
    // Masks change from m0,m1,m2,m3 to m6,m7,m8,m9 
    MixColumns(state); 
 //   MixColumns(state_debbug); 
 
     
    // Masks change from m6,m7,m8,m9 to m4 
    AddRoundKeyMasked(round, state, RoundKeyMasked); 
//    AddRoundKey(round, state_debbug, RoundKey); 
  } 
 
  // Mask are removed by the last addroundkey 
  // From m6 to 0 
  AddRoundKeyMasked(Nr, state, RoundKeyMasked); 
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//  AddRoundKeyMasked(Nr, state_debbug, RoundKey); 
} 
 
// Normal cypher function. 
static void Cipher() 
{ 
  uint8_t round = 0; 
 
  AddRoundKey(0, state, RoundKey); 
 
  for (round = 1;; ++round) 
  { 
    SubBytes(state); 
    ShiftRows(state); 
    if (round == Nr) 
    { 
      break; 
    } 
    MixColumns(state); 
    AddRoundKey(round, state, RoundKey); 
  } 
  // Add round key to last round 
  AddRoundKey(Nr, state, RoundKey); 
} 
 
// Masked deciphering function 
static void InvCipherMasked() 
{ 
  AddRoundKeyMasked(Nr, state, RoundKeyMasked); 
 
  for (round = (Nr - 1);; --round) 
  { 
    InvShiftRows(state); 
 
    InvSubBytesMasked(state); 
 
    AddRoundKeyMasked(round, state, RoundKeyMasked); 
 
    if (round == 0) 
    { 
      break; 
    } 
 
    InvMixColumns(state); 
 
    remask(state, mask[6], mask[7], mask[8], mask[9], mask[4], mask[4], mask[4], 
mask[4]); 
  } 
 
  remask(state, mask[0], mask[1], mask[2], mask[3], 0, 0, 0, 0); 
} 
 
// Normal decipher function 
static void InvCipher() 
{ 
  uint8_t round = 0; 
 
  AddRoundKey(Nr, state, RoundKey); 
 
  for (round = (Nr - 1);; --round) 
  { 
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    InvShiftRows(state); 
    InvSubBytes(state); 
    AddRoundKey(round, state, RoundKey); 
    if (round == 0) 
    { 
      break; 
    } 
    InvMixColumns(state); 
  } 
} 
 
 
/***************************************************************************/ 
/* Public functions:                                                       */ 
/***************************************************************************/ 
void AES128_ECB_indp_setkey(uint8_t* key) 
{ 
  Key = key; 
  KeyExpansion(); 
} 
 
void AES128_ECB_indp_crypto(uint8_t* input) 
{ 
  state = (state_t*)input; 
//  uint8_t debbug[16]; 
//  BlockCopy(debbug, input); 
//  state_debbug = (state_t*)debbug; 
 
#if defined(MASKED) && (MASKED == 1) 
  CipherMasked(); 
#else 
  Cipher(); 
#endif 
} 
 
void AES128_ECB_indp_inv_crypto(uint8_t* input) 
{ 
  state = (state_t*)input; 
 
#if defined(MASKED) && (MASKED == 1) 
  InvCipherMasked(); 
#else 
  InvCipher(); 
#endif 
} 
 
 

void AES128_ECB_indp_precompute_randoms(uint8_t* seed) 
{ 
  uint32_t seed1 = seed[0]; 
  uint32_t seed2 = seed[1]; 
  uint32_t seed3 = seed[2]; 
  uint32_t seed4 = seed[3]; 
  uint32_t mySeed = (seed1 << 24) ^ (seed2 << 16) ^ (seed3 << 8) ^  seed4; 
  srand(mySeed); 
  InitMaskingEncrypt(); 
} 
 

void AES128_ECB_indp_precompute_inv_randoms(uint8_t* seed) 
{ 
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  uint32_t seed1 = seed[0]; 
  uint32_t seed2 = seed[1]; 
  uint32_t seed3 = seed[2]; 
  uint32_t seed4 = seed[3]; 
  uint32_t mySeed = (seed1 << 24) ^ (seed2 << 16) ^ (seed3 << 8) ^  seed4; 
  srand(mySeed); 
  InitMaskingDecrypt(); 
} 
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Glossary 

AES: Advanced Encryption Standard 

ATM: Automated Teller Machine 

ATMEL: Advanced Technology for Memory and Logic 

API: Aplication Programming Interface 

ARM: Advanced RISC Machines 

AVR: Alf-Egil Bogen Vegard Wollan RISC microcontroller 

CMOS: Complementary Metal-Oxide Semiconductor 

CPA: Correlation Power Analysis 

CPU: Central Processing Unit 

DES: Data Encryption Standard 

DPA: Differential Power Analysis 

DRM: Digital Right Management 

DSS: Digital Signature Standard 

DUT: Device Under Test 

EM: Electro Magnetic 

EMA: Electro Magnetic Analysis 

EMV: Europay, Mastercard, and Visa  

FI: Fault Injection 

FIB: Focused Ion Beam 

FPGA: Field Programmable Gate Array 

GF: Galois Field 

GND: Ground (Electronics) 

Hd: Hamming distance 

HODPA: High Order Differential Power Analysis 

HOCPA: High Order Correlation Power Analysis 

Hw: Hamming weight 

IEC: International Electrotechnical Commission  

IPsec: Internet Protocol security 

ISO: International Organization for Standardization 

IT: Information Technology 
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MCU: MicroController Unit 

NIST: National Institute of Standards and Technology  

OS: Operating System 

PIN: Personal identification Number 

RISC: Reduced Instruction Set Computer 

RSA: Rivest, Shamir and Adleman (Cryptographic Algorithm) 

ROM: Read Only Memory 

SBOX: Substitution Box 

SCA: Side Channel Analysis 

SEM: Scanning Electron Microscope 

SNR: Signal to Noise Ratio 

SPA: Simple Power Analysis 

SSD: Solid State Drive 

SSL: Secure Sockets Layer 

TA: Template Attacks 

USB: Universal Serial Bus 

WWW: World Wide Web 

 


