

1

Countermeasure implementation and effectiveness

analysis for AES resistance against side channel attacks

A Master's Thesis

Submitted to

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya

by

Asier Matias Zubeldia Otaegui

In partial fulfilment

of the requirements for the degree of

MASTER IN ELECTRONIC ENGINEERING

Advisors: David Hernández García & Isidro Martín García

Barcelona, June 2021

2

Title of the thesis: Countermeasure implementation and effectiveness analysis for

AES resistance against side channel attacks

Author: Asier Matias Zubeldia Otaegui

Advisor: David Hernández García, Isidro Martín García

Abstract

Side channel analysis (SCA) is composed of a bunch of techniques employed to extract

secret information from hardware operations through statistical analyses of execution

data. For instance, the secret key of a crypto-algorithmic implementation could be

targeted and its value could be retrieved. The data is obtained by measuring the power

consumption or electromagnetic radiation of a device while performing an operation, due

to the linear relationship between the currents flowing through the circuitry during the

execution of chip operations. Side channel is one of the most widely used attack methods

in cryptanalysis.

In order to avoid such attacks, the algorithmic implementations can be protected from
side channel leakage with the use of different countermeasures. These
countermeasures can be built on either software or hardware. The objective is to reduce,
or even completely eliminate, the leakage of the device related to confidential data.
Generally speaking, there are two main approaches to do so. The first aims to reduce
the side channel observability, while the second intends to undermine the predictability
of the data.

This project focuses on designing and implementing different countermeasures that
protect cryptographic implementations from side channel attacks, and test and analyze
them afterwards. The countermeasures will be implemented in software and then tested
though Correlation Power Analysis in a hardware device.

The Advanced Encryption Standard (AES) algorithm will be used as a base structure, in
order to improve its cryptographic security with the different countermeasures designed.
However, the election of AES does not reduce the scope of this project since the
implemented countermeasures could be applied to other cryptographic algorithms as
well.

3

4

Acknowledgements

First of all, I would like to thank David Hernandez, advisor of this project, for all his help

and support during the realization of this project. I would also like to thank the members

of the IT department of Applus+ Laboratories.

In addition, I would like to thank the many friends from my years in UPV/EHU, who were

part of my first steps in university. Thanks specially to Jon Martinez, who supported me

and stayed next to me along the road.

Regarding this last years in the UPC, I would also like to thank Isidro Martín García,

master coordinator, professor and advisor of this thesis, for his help and consideration.

Additionally, I would like to thank Marina Martí, Romà Macario and Marcel Palets for the

great moments we shared and for their support and patience as well.

Finally, I would like to thank my family, who have given me the opportunity to build my

future , who have given me the means to grow as a man, who have showed me how to

persevere in life and who have always stayed close to me.

5

Revision history and approval record

Revision Date Purpose

0 12/10/2021 Document creation

Written by: Asier Matias Zubeldia Otaegui Reviewed and approved by: David

Hernández García

Date 12/10/2021 Date 13/10/2021

Name Asier Matias Zubeldia Otaegui Name David Hernández

García

Position Project Author Position Project Supervisor

6

Table of contents

Abstract .. 2

Acknowledgements ... 4

Revision history and approval record .. 5

Table of contents .. 6

List of Figures ... 9

List of Tables .. 10

1. Introduction .. 11

1.1. Cybersecurity .. 11

1.2. Software, Hardware and Security ... 11

1.3. Security evaluations: White and black box approaches 12

1.4. Overview of hardware attacks ... 13

1.4.1. Physical Attacks .. 13

1.4.2. Fault Injection Attacks .. 14

1.4.3. Side Channel Attacks .. 15

1.5. Project definition ... 15

1.5.1. Motivation .. 15

1.5.2. Objectives, procedure and experimental set-up 16

2. State of the art ... 17

2.1. Advanced Encryption Standard ... 17

2.2. Side Channel Analysis (SCA) .. 19

2.2.1. Side Channel basics .. 19

2.2.2. Power consumption and leakage models ... 20

2.2.3. Side Channel attacks ... 22

2.2.3.1. Simple Power Analysis (SPA) .. 22

2.2.3.2. Differential power analysis (DPA) .. 23

2.2.3.3. Correlation Power Analysis .. 24

2.2.3.3.1. The Pearson’s correlation coefficient .. 24

2.2.3.3.2. CPA attack .. 25

2.2.3.4. Higher order attacks .. 25

2.2.3.5. Profiling attacks ... 26

2.3. Countermeasures against side channel attacks .. 26

2.3.1. Hiding Countermeasures ... 27

2.3.1.1. Amplitude hiding .. 27

7

2.3.1.2. Hiding in the time dimension .. 27

2.3.1.2.1. Dummy executions ... 28

2.3.1.2.2. Randomizing or shuffling ... 28

2.3.1.2.3. Random time delay ... 28

2.3.2. Masking countermeasures ... 30

2.3.2.1. Boolean masking vs Multiplicative masking ... 31

2.3.2.2. Higher order masking .. 31

2.3.3. Countermeasure effectivity .. 32

2.3.4. Importance of unpredictability in randomization 33

3. Methodology and project development .. 34

3.1. Experimental setup ... 34

3.1.1. Chipwhisperer - Lite ... 34

3.1.1.1. Capture configuration .. 35

3.1.2. Implementation environment .. 35

3.2. Analysis metrics .. 36

3.2.1. Attack point: SBOX output ... 36

3.2.2. Attack technique .. 37

3.2.3. Figures of merit and comparison metrics ... 38

3.3. Implementation development and analysis ... 38

3.3.1. AES without countermeasures ... 38

3.3.1.1. Implementation aspects ... 38

3.3.1.2. Leakage assessment of AES ... 39

SPA on AES ... 39

CPA on AES ... 41

3.3.2. AES with hiding countermeasures ... 45

3.3.2.1. Dummy rounds .. 45

SPA on dummy round implementations .. 46

CPA on dummy round implementations .. 48

3.3.2.2. Shuffling .. 50

SPA on shuffled implementation ... 50

CPA on shuffled SBOX and MixColumns .. 51

3.3.2.3. Random delays ... 52

3.3.2.3.1. Single delay analysis: plain uniform delay 53

SPA on desynchronized traces by a single random delay 53

CPA on desynchronized traces by a single random delay 54

8

3.3.2.3.2. Multiple delay analysis .. 56

CPA on desynchronized traces by multiple random delays 57

3.3.3. AES with Boolean masking .. 57

3.3.3.1. Boolean masking implementation .. 58

SPA on Boolean masking implementation .. 60

CPA on Boolean masking implementation .. 60

4. Conclusions and future work .. 64

4.1. Conclusions .. 64

4.2. Future work... 64

5. Budget ... 66

Bibiliography ... 67

Appendices ... 70

Appendix A: AES in depth ... 70

A.1 Rijndael’s finite field .. 70

A.2 AES round internal operations .. 71

A.2.1 SubBytes .. 71

A.2.2 ShiftRows ... 72

A.2.3 MixColumns .. 73

A.2.4 AddRoundKey .. 74

A.3 Key Schedule: .. 74

Appendix B: AES LUTs ... 75

B.1 AES SBOX and reverse SBOX.. 75

B.2 Galois multiply LUTs ... 76

Appendix C: Implementation codes ... 80

C.1 AES128 ... 80

C.2 AES128 with dummy round insertion (only encryption) 86

C.3 AES128 with randomization (only encryption) ... 94

C.4 Random delay implementation .. 99

C.5 AES128 with Boolean masking ... 100

Glossary ... 116

9

List of Figures

Figure 1. State matrix .. 19

Figure 2. AES encryption and decryption .. 20

Figure 3. SPA on AES encryption ... 24

Figure 4. SPA on AES first round .. 25

Figure 5. Power acquisitions with random delays .. 31

Figure 6. p.d.f.-s for the cumulative cases of 1,2,3,4 and 10 plain uniform delays 32

Figure 7. Chipwhisperer lite capture and target boards ... 36

Figure 8: Experimental set-up ... 38

Figure 9: Attack point: SBOX output ... 39

Figure 10. SPA on AES128 implementation .. 42

Figure 11. Correlation vs time for key byte 1 ... 44

Figure 12. Correlation vs time for all key bytes.. 45

Figure 13. Correlation evolution during the CPA for the key byte 1 46

Figure 14. Zoomed view of the divergence ... 46

Figure 15. SPA on the single dummy round implementation 48

Figure 16: SPA on double dummy round implementation ... 49

Figure 17. AES length comparison for the unprotected, single dummy and double

dummy .. 50

Figure 18: Correlation vs. time for key byte 1 on single dummy round implementation 51

Figure 19. SPA on randomized implementation .. 53

Figure 20. Correlation vs time for key byte 1 with randomized SBOX-es..................... 54

Figure 21: SPA on desynchronized traces by plain uniform delay 56

Figure 22: Correlation vs. Time for key byte 1 with normal leaking behavior 59

Figure 23. Correlation vs. Time for key byte 3 with abnormal leaking behavior 59

Figure 24. Simple Boolean masking scheme .. 62

Figure 25. SPA on Boolean masking implementation.. 63

Figure 26. Correlation vs. time for a perfectly masked key byte 1 64

Figure 27. Correlation vs. time for the only leaking key byte 11 65

Figure 28. Correlation evolution during the CPA for perfectly masked key byte 1 65

Figure 29. Correlation evolution during the CPA for leaking key byte 11 66

Figure 30. ShiftRows permutation ... 75

10

List of Tables

Table 1: Number of rounds for each AES key size .. 18

Table 2. Target MCU memory ... 36

Table 3. Capture configuration .. 36

Table 4. Time measurements on the unprotected AES ... 42

Table 5. CPA on first round results for unprotected AES128 42

Table 6. CPA results on first round for the unprotected AES 46

Table 7. CPA results on different operations of the unprotected AES 46

Table 8. Encryption length for unprotected, single dummy and double dummy 49

Table 9. CPA results for single dummy and double dummy implementations 50

Table 10. Encryption length for the unprotected and randomized implementations 53

Table 11. CPA results for the randomized SBOX-es ... 53

Table 12. CPA results for the randomized MixColumns .. 54

Table 13. Encryption length for AES128 with a single plain uniform delay 56

Table 14. CPA results for single plain uniform delay analysis 57

Table 15. Results for multiple plain uniform delay analysis ... 59

Table 16. Encryption length for the Boolean masked AES128 implementation 62

Table 17. CPA results for unprotected AES128 and Boolean masked AES128 63

Table 18. Overall results for hiding countermeasures ... 66

Table 19. Overall results for Boolean masking implementation 66

Table 20. Hours dedicated to the project ... 67

Table 21. Cost of the project ... 68

Table 22. Equivalent representations .. 72

Table 23. Round constant values .. 76

Table 24. AES SBOX LUT .. 77

Table 25. AES reverse SBOX LUT ... 78

Table 26. Galois LUT table for multiply by 2 .. 78

Table 27. Galois LUT table for multiply by 3 .. 79

Table 28. Galois LUT table for multiply by 9 .. 80

Table 29. Galois LUT table for multiply by 11 .. 80

Table 30. Galois LUT table for multiply by 13 .. 81

Table 31. Galois LUT table for multiply by 14 .. 81

11

1. Introduction

1.1. Cybersecurity

Together with the growth of computer based systems over the last century, security has
become an essential part of the modern electronic world. A world in which data is being
constantly generated and processed for many purposes. Often, this data carries
sensitive or confidential information and, thus, its protection is required. Payment
information or personal identification data are some of the many examples of this
sensitive information.

With the objective of securing this kind of information, the protection of the computer
systems and networks is a must. This security scenario, known as cybersecurity,
intends to protect users, systems and networks from the malicious intentions of an
attacker willing to unveil confidential data.

Cybersecurity is an increasingly challenging field since the amount of interconnected
devices is growing from day to day. The exchange of data is also spreading, which is
translated into multiple new opportunities for malicious attackers. Consequently, hacking
methods are being improved and attackers are becoming wiser on how to hack devices.
In parallel, developers are also improving their defenses against cyberattacks.

For most of the people, cybersecurity is related to malicious malware known as “virus”
or spam, or phishing though electronic mail. There has been some popular attacks along
the last decades, driven to the massive filtering of sensitive user data from big servers;
e.g. Yahoo (2013-2014), Facebook (2019) and LinkedIn (2021). However, the world of
cybersecurity is much bigger than what is commonly thought. Cybersecurity includes
hardware protection as well as software and network protection. For instance, additional
related aspects to cybersecurity are the analyses of components and devices before
reaching the market and the company departments for monitoring and responding to
cyber-threats.

While the various security threats increase, cybersecurity is also in constant change and
development in order to fight them.

1.2. Software, Hardware and Security

Regarding modern computing systems, three main fields of software cybersecurity shall
be considered. Network security focuses on the attacks on a network connecting
multiple computer systems, and the mechanisms to ensure its availability, usability and
integrity under potential attacks. Software security focuses on malicious attacks on
software applications and operating systems, often exploiting different implementation
bugs such as inconsistent error handling and buffer overflows. In addition, techniques to
ensure reliable software operation in presence of potential security risks are also a part
of this field. Information security focuses on the general practice of providing, among
many other security attributes, confidentiality and integrity of information through
protection against unauthorized access, use, modification, or destruction.

Historically, data security has been an issue of paramount concern for system designers
and end users. Consequently, protection of systems and networks against various forms
of attacks, targeting corruption or leakage of critical information and unauthorized
access, have been widely investigated over the years. Information security, primarily
based on cryptographic measures, has been analyzed and deployed in a large variety of
applications. Software attacks in computer systems have also been extensively
analyzed, and many diverse solutions have been proposed.

12

Study of hardware cybersecurity, on the other hand, has attracted little attention as
opposed to network or software security, due to the higher complexity of protecting the
hardware and the difficulty of breaking systems with attacks against hardware devices.
In comparison with hacking devices through e.g. a buffer overflow vulnerability, a
hardware attack requires a lot more effort and resources, i.e. expensive equipment
capable of manipulating the hardware circuitry of the devices. Nevertheless, it is a field
inside cybersecurity that has been considered since the early ‘90s when hardware
attacks were used to hack payTV systems.

Hardware security really became a trend when credit cards moved from magnetic stripe
payment to chip payment. Based on chips specialized in security and authentication
applications, these devices were considered impossible to crack until the first fault
injection demonstrations in 1996.

Hence, hardware security focuses on attacks and protection of hardware itself. More
accurately, it deals with the security of electronic hardware, encompassing its design,
architecture, implementation, and validation. It forms the foundation of system security,
providing trust anchor for other components of a system that closely interact with it.
Hardware should enable a secure and reliable operation of the software stack. If the
hardware is not secure the full system can be vulnerable.

Over the years, many hardware attacks have been crafted in order to steal or
compromise sensitive information from implementations. The targets of these attacks,
known as assets, are typically the secrets stored inside the hardware components, e.g.
cryptographic keys, digital rights management (DRM) keys, sensitive user data, firmware
code, configuration data etc.

In order to ensure that hardware devices are secure, a set of security requirements and
testing specifications must be defined, implemented by product developers, and tested
by cybersecurity evaluation Labs.

1.3. Security evaluations: White and black box approaches

With the objective of evaluating the security of a hardware, the evaluation Labs must
consider all the applicable attacks, their associated vulnerabilities, the root causes for
these vulnerabilities, and the countermeasures implemented by developers in their
devices.

An evaluation can be “black box” or “white box” type. It is said to be a black box
evaluation when the testing is made without any knowledge, or few knowledge, of what
is happening inside the DUT (Device Under Test). An evaluation in these conditions is
always complex and extensive, since the scope of security breaches that need to be
covered is broad. A black box evaluation must consider every possible attack in order to
assess the resistance of the DUT from all perspectives. In other words, if the Lab has no
information about the DUT design, the only way to prove its resistance is by attacking.

On the contrary, when the evaluation Lab has access to the design and implementation
features of the DUT, it is said to be a white box evaluation scenario. The developers can
facilitate, for instance, hardware design code (Verilog/VHDL), schematics, firmware
code, or application code. This way, the evaluators are able to accurately analyze the
security architecture of the DUT and conduct a complete vulnerability assessment for all
the assets against all kind of attacks, thus, limiting the testing campaign only to the
identified vulnerabilities.

13

Normally, when performing an evaluation of a hardware device in a white box scenario,
the next steps are followed:

 Firstly, a review of the hardware design and its security architecture is conducted.

 Based on it, a vulnerability assessment is carried out. This analysis identifies
what vulnerabilities endanger any security attribute related to the assets.

 Next, an attack scenario is defined for each identified vulnerability. Depending on
how feasible is to execute such attack, i.e. how easy is to exploit the vulnerability,
the attack is executed or not. The attack is dismissed only when considered too
complex for the given assurance level of the evaluation (some DUTs are
evaluated in more depth and others with a more superficial assurance level).

 Lastly, attacks results are analyzed in order to give a verdict whether the DUT is
vulnerable or resistant to the attacks.

Nowadays, security evaluations are always performed in a white box scenario due to the
impracticability of performing the hundreds of existing hardware attacks in each
evaluation. This scenario reduces the required effort for a security evaluation but, on the
other hand, requires a deep knowledge on the effects of the countermeasures
implemented on the DUT. In the end, the conclusions about the security of the DUT are
based in the quality of the vulnerability assessment that the Lab performs.

As far as the development of this project is concerned, the implemented
countermeasures were evaluated following a white box approach since both, developer
and evaluator figures, were carried by myself. In these circumstances, a thorough
analysis on the protective features of the countermeasures could be done. The flexibility
of modifying the different implementations offered many points of view about what is
happening when a developer introduces these countermeasures into their
implementations.

1.4. Overview of hardware attacks

The main difference between software and hardware attacks is that when performing a

hardware attack, the attacker needs to interact physically with the device. This interaction

is done through hardware tools and equipment, leading to a much more costly task in

comparison with software attacks.

For instance, hardware attack scenarios may require oscilloscopes, real-time pattern

recognition devices, function generators, xyz-positioning stages, signal conditioning

hardware, filters and data processing techniques, etc. All of these are specialized

instruments, which require an accurate and precise performance.

The most influential hardware attacks nowadays are grouped into three main types:
Physical Attacks, Side Channel Attacks and Fault Injection Attacks.

1.4.1. Physical Attacks

An attacker that performs physical attacks will substantially manipulate the device aiming
to access its information. Reverse engineering is the first technique that falls into this
group. The attacker analyzes in depth the chip layout from high resolution images taken
with a Scanning Electron Microscope (SEM), after an etching process of the chip. The

14

analysis follows with the layer interconnections, the physical distribution of the memories,
the analog and logic parts of the circuitry etc. If the reverse engineering is done well
enough, an attacker could even illegally reproduce the device. In addition, the attacker
can probe the data buses and observe the information that is traveling through them.

Another possibility is to introduce extra hardware to cause a malfunction of the device.
This can be done by connecting some lines to ground or supply line in order to disable
some security functionalities of the device. These tasks require high precision tools able
to manipulate the chip’s circuitry at a nanometer scale. For example, Focused Ion Beam
(FIB) equipment is used to mill or deposit material. The milling of e.g. a power line will
leave open circuit the power source of a hardware module, while the deposition of a
conducting material between a circuit line and ground will generate a short-circuit
permanently disconnecting the target module.

Alternatively, the attacker can focus directly on reading the memories from the high
resolution images (SEM images). For instance, some ROM memories are often the
easiest to read due to their physical construction that makes it possible to identify which
cells are a ‘1’ and which ones are a ‘0’. The simplest ROM cells can be read merely by
observation of the physical presence or absence of a transistor in the cell. For this
reason, it is recommended not to store critical information in these memories.

In general, Physical attacks are very powerful, allowing the physical tampering of the
device and data in it. However, a great effort must be made and a deep knowledge on
the chip is required in order to apply these techniques.

1.4.2. Fault Injection Attacks

Fault injection (FI) is an invasive attack technique where an operating device is perturbed
in order to inject a fault along its normal execution. This fault intends to either introduce
a temporary malfunction or modify certain data stored inside the hardware device.

When the objective is to produce a malfunction of the device, an attacker usually targets
the CPU. As the device operation continues, the fault can propagate to other locations
and can generate a faulty chain effect in the execution of the device. For example, the
objective of injecting a fault could be to jump a line of the firmware code of a device.
Considering the case of a credit card, if a fault is injected exactly when the PIN number
is verified, an attacker could proceed to purchase something with a stolen credit card,
without actually knowing the PIN.

Alternatively, a register or memory position can be targeted in order to modify its content,
e.g. set a register all to ones (“1”) or all to zeros (“0”). As an example, it is known that UV
light can be used to erase EEPROM cells. Hence, a target could be the memory position
that stores the secret key of an algorithm which, after attacked with UV light, will be
forced to be set all to zeros. If achieved, the attacker would know the value of the key.

There are different energy sources that can be used to inject faults into a device. One of
the most used fault injection sources are laser beams. The main advantage of the laser
beam in comparison with other sources of perturbation is the ability to focus in very
specific areas of the chip to inject the fault.

15

Electromagnetic fault injection (EM-FI) is another efficient source of perturbation. A coil
that generates EM pulses can induce computational faults without any physical contact
with the device.

Another fault source is the voltage glitching. In this case, a transient voltage spike causes
the malfunction of the system. This glitch is coupled to the device’s power supply and is
enough to disrupt the normal cycle of a firmware execution, without causing permanent
damage to the circuitry. This is one of the first sources of perturbation used to hack the
old payTV cards.

1.4.3. Side Channel Attacks

Side channel analysis (SCA), unlike physical and fault injection attacks, is a non-invasive
attack that uses statistical analyses of data in order to unveil sensitive information from
a device. The analyzed data can be obtained through measurement of information that
the device generates while operating, such as the variations of the power consumption,
the signal propagation delay, and/or the electromagnetic emissions.

In order to apply SCA, an attacker first needs to acquire the data samples. For the power
consumption analysis, a small resistor is usually placed between the power supply line
and the cryptographic device in order to measure the voltage drop across it. In the case
of EM radiation analysis, the signal is obtained using dedicated antennas.

Once the power or EM signal is available to the attacker, it can be taken into an
oscilloscope in order to sample and record it. The attacker needs to gather big amounts
of data, all proceeding from the same operation performed by the hardware DUT. Once
this is done, the recorded data can be analyzed.

In order to infer useful information from the attack, the attacker will need to model the
power consumption of the device and then apply statistics involving both measured and
expected data. It is therefore, the relation between the measured data and the modelled
data which establishes an analyzable and exploitable link for the attack.

Countermeasures against SCA can be implemented aiming to break that link or at least
intending to debilitate this relationship between the power consumed and the data
processed by the hardware device. Since this is the attack method chosen to conduct
the countermeasure testing of this project, the topic will be more deeply addressed later
in section 2.2 of this document.

1.5. Project definition

1.5.1. Motivation

Side cannel analysis is probably one of the most challenging attack methods nowadays.

For this reason, it is widely-used against hardware devices. An increasing number of

attack techniques are being developed and published every day and many crypto-

algorithmic implementations are shown to be vulnerable to such attacks.

Together with the development of SCA, engineers are trying to introduce

countermeasures into their implementations in order to compensate for their

vulnerabilities. However, each countermeasure has a distinct protective effectivity, each

of them introduces a different complexity level into the design, each of them requires a

different memory allocation and each of them adds a different overhead into the firmware

16

execution time. In overall, every countermeasure has some positive and negative

aspects and, hence, some of them can be more or less useful depending on the context.

In order to be capable of providing assurance on the security of a device, a deep and

thorough knowledge on the different aspects involving algorithmic implementations and

its countermeasures is required.

For the various countermeasures that exist nowadays, gaining knowledge about their
fundamental effects is essential, including their protective effectivity and other
improvable facets.

1.5.2. Objectives, procedure and experimental set-up

The objectives of this project are to design, implement, test, analyze and compare
firmware secure cryptographic countermeasures against side channel attacks.

The Advanced Encryption Standard (AES) algorithm is chosen as base structure to
implement the countermeasures onto. The Correlation Power Analysis (CPA) is chosen
as the side channel technique to test the various implementations developed. The results
of the CPA are used as a metric to compare the effectiveness of the countermeasures.

For the development of this project, theoretical and practical works were conducted.

For the theoretical part, a brief description of the AES algorithm is given. Afterwards,
SCA basics are introduced, in addition to the side channel attacks available nowadays.
Lastly, an insight on side channel countermeasures is given to the reader.

For the practical part, the next experimental steps were followed:

 Chipwhisperer platform was chosen for the AES implementation and the
development of the side channel countermeasures.

 A leakage assessment was carried out on an unprotected implementation of
AES, where a CPA was performed. The results were used as reference point for
future comparisons with protected implementations of AES.

 Different countermeasures were designed and implemented on the cryptographic
algorithm.

o Dummy round insertion
o Shuffling
o Random delay
o Masking

 For each countermeasure implemented, a new leakage analysis was done in
order to assess its protective effectivity.

 The different implementations were analyzed in terms added overhead (i.e.
performance) with respect to the original unprotected AES.

 Results were gathered and compared.

17

2. State of the art

2.1. Advanced Encryption Standard

The AES symmetric algorithm was chosen as base implementation for the development
of this project. The Rijindael cypher, later renamed as Advanced Encryption Standard, is
a specification for the encryption of electronic data established by the U.S. National
Institute of Standards and Technology (NIST) in 2001 [1]. Two Belgian cryptographers,
Vincent Rijmen and Joan Daemen, developed this algorithm that was used to replace
the DES as the official encryption standard for protecting sensitive information.

The AES encryption finds applications in Mobile Phones, Smart Cards, Intel Core
Processors Family, Automated Teller Machines (ATM), WWW servers, SSD Devices,
IPSec and SSL Protocols, etc. It is massively spread and can be found in practically all
security cryptosystems nowadays.

This cryptosystem is an iterative symmetric block cypher. It processes individual data
blocks, having a fixed length of 128 bits, with a cipher key of variable lengths. The key
length has to be chosen independently as 128, 192 or 256 bits. Hence, this algorithm
can be used with three different key lengths, which result in three distinct formats referred
to as AES-128, AES-192 and AES-256. It is an iterative cypher because the steps
involved in this algorithm are repeated a fixed number of rounds The total number rounds
of the cypher depends on the size of the key used. Table 1 shows the relation between
key size and the total number of rounds for each AES format.

AES format AES-128 AES-192 AES-256

Number of rounds 10 12 14

Table 1: Number of rounds for each AES format

In order to encrypt data, the 128-bit data block is divided into 16 bytes and
correspondingly mapped into an array of size 4x4 known as the State matrix. All the
internal operations (SubBytes, ShifRows, MixColumns and AddRoundKey), repeated
round by round, are performed on the State matrix (Figure 1).

Figure 1. State matrix

When using AES, and also with every other symmetric algorithm, we look for an
avalanche effect, where one single bit change influences as many output bits as
possible, offering high diffusion and confusion to the message encryption. The diffusion
and confusion of the message are obtained through the round internal operations of the
AES, that perform permutations and substitutions on the state matrix.

18

Figure 2. AES encryption and decryption

As shown in Figure 2, the algorithm starts with an initial AddRoundKey step. It is then
followed by each of the rounds with the next internal transformations, in the following
order: SubBytes, ShifRows, MixColumns and AddRoundKey. Note that, there is no
MixColumns step in the last round. The same happens when decrypting that there is no
InvMixColumns step in the last round. From a high-level perspective, each
transformation step can be explained as:

 SubBytes: non-linear substitution step where each byte is replaced by another
according to a LUT (Look-Up Table).

 ShiftRows: byte permutation step where the last three rows of the state are left-
shifted cyclically a certain number of positions. The shifting applied is equal to
the row number (from 0 to 3).

 MixColumns: linear algebraic mixing operation that operates on the columns of
the state, combining the four bytes in each column through a multiplication with
a constant matrix.

 AddRoundKey: recombination step where each byte of the state is merged with
a byte of the round key through a bitwise XOR operation

In addition, AES uses a key schedule to expand the secret key into a number of separate
round keys. The algorithm requires a separate 128-bit round key for each round plus one
more, due to the initial AddRoundKey step. Thus, the key schedule produces all the
required sub-keys from the initial cypher key.

As far as the decryption is concerned, all the transformation steps are reversed
(InvSubBytes, InvShiftRows and InvMixColumns) in order to modify the ciphertext back
to plaintext. Note that AddRoundKey is just an XOR, so it is its own inverse.

In case the reader was interested, a more detailed description of the AES algorithm and
its internal operations is given in Appendix A, considering both mathematic and
implementation aspects.

19

2.2. Side Channel Analysis (SCA)

2.2.1. Side Channel basics

Side channels are unintended sources of information that can be exploited by any
attacker in order to extract secret data. Therefore, side-channel attacks take advantage
of unexpected leakages of information. The designer of any implementation does not
intentionally add this information sources into their design; however, the raw functionality
of an electronic design carries, inevitably, analyzable side channels. For instance, an
electronic circuit always generates a characteristic proportional to the power
consumption and it always emanates electromagnetic radiation as the currents flow
through the circuitry.

It is important to remark that unlike other attack methods, side channel analysis only
requires to “listen” to the target device while it operates. We are talking about a non-
invasive attack, where there is no need to influence or modify the target device in order
to obtain information from it.

The simplest side channel attack technique is the timing attack. Timing attacks are based
on the idea of analyzing different operations that take different computation times. Every
logical operation in a computer takes certain time to execute, and these times can differ
based on the inputs for example. In 1996, Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems [2] was one of the first side channel based attack
ever published. Paul Kocher described the methodology to compromise keys of RSA,
DSS and other cryptosystems, by measuring the execution time for the overall
cryptographic operations.

In a similar way, sound can also be a useful side channel source. Acoustic emissions
occur in coils and capacitors because of small movements when a current passes
through them. Capacitors in particular change diameter slightly, generating sound, as
their many layers experience electrostatic forces. One example is the first Side Channel
attack performed in 1965 where the sound of a router was used to extract secret
information [3].

Nevertheless, power consumption is the most widely used side channel source. As a
general concept, it lays on the simple idea of some operations consuming more power
than others. By measuring variations in the instantaneous power consumption of a
device, it is possible to learn a considerable amount of information about the data being
manipulated. For example, transistors, the most used elements in digital electronics,
generate dynamic power consumption when changing from low to high state and vice-
versa.

Therefore, power analysis attacks exploit the fact that the power consumption of a device
depends on the operations it performs and on the data it processes. Usually, the total

power consumption of the device is measured just by inserting a small resistor (1 -

50) between the supply line and the cryptographic device. The voltage drop across
this resistor is then proportional to the current that is flowing trough the device.

Electromagnetic radiation coming from the target device is another powerful side channel
source. The analysis is equivalent to power consumption analysis with one main
particularity: an EM prove (e.g. antenna) is used to receive the radiation, which can be
placed accurately on the DUT surface (e.g. on top of the cryptographic co-processor to
precisely acquire the targeted signal).

20

2.2.2. Power consumption and leakage models

In CMOS circuits, the power consumption is derived from two parts, the static and
dynamic power consumption. In the context of side channel attacks, the latter is generally
the main source of exploitable power consumption as it is both operation and data
dependent. It can be calculated as:

 𝑃𝑑𝑦𝑛 = 𝛼 ∙ 𝐶 ∙ 𝑉𝑑𝑑
2 ∙ 𝑓 (1)

The parameter is the switching factor, 𝐶 is the load capacitance, 𝑉𝑑𝑑 is the supply
voltage and 𝑓 denotes the clock frequency.

Since the power consumption at a given point in time is related to the number of
transistors that change state, it is also related to the data being processed. If the same
point in time over many acquisitions of the same operation is targeted, any operation
dependent power consumption can be viewed to be part of the static power consumption
and, thus, can be ignored.

Any side channel attack proceeds by using some statistical distinguisher, such as
Pearson’s correlation coefficient, to compare the hypothetical leakage model and the
acquired power traces. A power trace refers to a set of power consumption
measurements 𝑠(𝑡) taken across the target operation. Considering this, the leakage
model is constructed to estimate the power consumption of algorithmic intermediate
values during the operation of a cryptosystem. In other words, the leakage model is a
simplified model that describes the leaking signal (power consumption or EM radiation)
in a workable manner, e.g.:

 𝑠(𝑡) = 𝑓(𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, 𝑑𝑎𝑡𝑎, 𝑡𝑖𝑚𝑒) (2)

The simpler the model, the easier to work with, but more distant to reality. When enough
traces are available, and the hypothetical leakage model is accurate enough, the secret
can be retrieved from the acquired power consumption. Therefore, the leakage model
is required to approximate the actual power consumption as much as possible. When
the acquisition of traces is limited by available equipment and limited access to the target
device, a well-built leakage model can significantly enhance the performance of the
attack method.

In the case of a DPA attack, the simplest of the models is considered: it is a single bit
model that relies on the elementary idea of ones (‘1’) consuming more than zeros (‘0’).
However, the most commonly used models to estimate the power consumption are the
linear models of Hamming weight and Hamming distance.

The Hamming weight model corresponds to the number of bits set to 1 in a binary data
element.

 𝐵 = {𝑏𝑚, 𝑏𝑚−1, 𝑏𝑚−2, 𝑏𝑚−3, , … , 𝑏0}2 → 𝐻𝑤(𝐵) ∈ [0,𝑚] (3)

For example, bytes considered, all the possible resulting Hamming weights range from
0 to 8. The following equations show two byte examples and their related Hamming
weight values:

 𝐵1 = {10000100}2 → 𝐻𝑤(𝐵1) = 2 (4)

 𝐵2 = {10110001}2 → 𝐻𝑤(𝐵2) = 4 (5)

Therefore, the Hamming weight model states a linear relationship between the power
consumption and the number of ones travelling through the circuitry:

21

 𝑠(𝑡) = 𝑎(𝑡) ∙ 𝐻𝑤(𝐵) + 𝑏 (6)

𝑠 denotes our power estimate, while 𝑎 is the scalar gain between the Hamming weight
and 𝑠. All the remaining aspects in the power consumption of a chip are assigned to a

term denoted 𝑏 which is assumed independent from the other variables. 𝑏 encloses
offsets, time dependent components and noise (typically Gaussian noise).

However, the Hamming weight model has a limitation. As stated in [4]: “It is generally
assumed that the data leakage through the power side channel depends on the number
of bits switching from one state to the other at a given time. This seems relevant when
looking at a logical elementary gate as implemented in CMOS technology. The current
consumed is related to the energy required to flip the bits from one state to the next” [4].

Consequently, it makes sense to define a leakage model as the Hamming distance. The
basic power consumption model for the data dependency can be written as:

 𝑠(𝑡) = 𝑎(𝑡) ∙ 𝐻𝑑(𝑅⨁𝑀) + 𝑏 (7)

This model represents the transition from a reference state 𝑅 to a modified state 𝑀,
where some bits, or all bits, have already been flipped. It is assumed that the switching
of a bit from 0 to 1 or from 1 to 0 requires the same amount of energy and that all the
machine bits handled at a given time are perfectly balanced and consume the same.
This can be seen as a limitation, but considering a chip as a large set of elementary
electrical components, this linear model fits reality quite well from a statistical point of
view.

The Hamming distance can be easily calculated as the Hamming weight of the XOR-ed
values of both bytes, i.e. the reference byte and the modified one. Applied to the example
bytes of equations (4) and (5) and considering them, respectively, the reference and
modified states:

 𝐻𝑑(𝐵1, 𝐵2) = 𝐻𝑤(𝐵1⨁𝐵2) = 4 (8)

Looking at the equation (8), it is easy to deduce that the Hamming weight is just a
particular case of the Hamming distance where the reference state is set to 0.

In many cases, the Hamming weight or Hamming distance models will not be an optimal
leakage model for a given device. However, both linear models do provide an easily
computable and robust approximation of the leakage, which is applicable in a wide range
of scenarios.

Non-linear models have also been widely investigated, trying to improve the
approximation of the actual leakage. In [4], the authors proposed a switching distance
leakage model to improve the attack performance. In their work they suggest a model
where the transistor switching from 1 to 0 consumes less power than from 0 to 1, i.e.
different power is consumed in the charging and discharging phases. The experimental
results showed that the attack performance is improved for a particular setup; however,
some sort of profiling of the specific DUT is required.

In summary, a leakage model is always assumed in side channel attacks in order to
estimate the relationship between the signal acquired with the oscilloscope and the data
processed by the device. If the leakage model is accurate to reality, as Hamming weight
and distance models are, we can find a linear relationship between the data processed
by the device (sensitive data such as secret keys) and the power traces acquired.

22

2.2.3. Side Channel attacks

Historically, many powerful side channel attacks are based on statistical methods
pioneered by Paul Kocher. In 1995 Paul Kocher stated: “Chip power consumption is
somehow clearly linked to the manipulated data”. Later in 1999, an efficient side channel
attack was introduced by himself: Differential Power Analysis [5]. The power
consumption turned out to include deterministic data dependent parts, which could be
exploited by simple and differential power analysis. Later, Eric Brier published
Correlation Power Analysis with a Leakage Model [6], where correlations between power
measurements and data were used to improve the previously introduced differential
attacks through the Hamming distance leakage model.

As an evolution of first order attacks, in which the power consumption is analyzed in a
time-independent manner, the SCA attacks took a more general perspective that
resulted in higher order SCA, as originally proposed by Messerges [9] and Chari et al.
[10]. Higher order SCA considers various time instants within a power trace to combine
and build more complex leakage models.

Finally, one of the most powerful SCA techniques are the profiling attacks, in which the
power consumption of a “twin” device is characterized creating templates that are later
used against the victim’s device to extract sensitive data. Besides Template Attacks and
its variants [11 ,12, 13], the SCA community started using machine learning (e.g. Artificial
Neural Networks) to conduct profiling attacks [14] [15].

2.2.3.1. Simple Power Analysis (SPA)

SPA, known as SEMA in the case of electromagnetic radiation analysis, is the side
channel analysis that involves the visual inspection of one, or a few number, of power
traces. SPA is based on the identification of recognizable patterns, which may
correspond to the target operation to be analyzed (e.g. crypto-operation or the load of an
asset from memory). The objective is to identify instructions, security mechanisms or
countermeasures, or directly read sensitive data as proposed by Kocher in his original
work.

Figure 3. SPA on AES encryption

23

Figure 3 shows an example of SPA. The region of the initial AddRoundKey step in AES
can be seen in the signal, followed by the power consumption of the first and second
rounds of the algorithm.

Figure 4. SPA on AES first round

In Figure 4 the first round of AES encryption is shown from a closer view, were the
different internal operations can be distinguished thanks to the distinguishable patterns
that can be observed in the signal.

Performing an SPA is always an interesting initial step for extracting relevant features of
the algorithm, such as the position of the rounds or the power consumption and duration
of the internal operations of each round. Note that apart from the power consumption,
timing also gives us valuable information in a SPA.

2.2.3.2. Differential power analysis (DPA)

DPA is a statistical analysis that involves working with a high number of power traces.
The attack focuses on those small power variations and follows a “divide and
conquer” strategy: find a point in the algorithm that works with smaller pieces of the key
to be able to compute all possible values of the key for that smaller pieces.

If we consider an AES-128 that has a 128 bits key length, all the possible keys add up
to 2128 possibilities. However, let’s consider the SubBytes operation as the target of the
attack. The SubBytes operation is performed byte by byte 16 consecutive times, meaning
that there will be different instants of time within the power consumption signal
corresponding to the management of the 16 bytes independently. When attacking the
SubBytes operation, instead of 2128 possibilities we only have 16 ˑ 28 possible key
guesses to assess in the power traces.

With this in mind, in order to carry out a DPA the next steps need to be followed:

 Obtain an amount of power traces of a known cryptographic operation, where the
related inputs or outputs (plaintext or ciphertext) are random and known, but not
the key, which has to be fixed (this is the secret to guess).

 Select the attack point in the algorithm where the differential attack will be carried
out (e.g. the SubBytes operation of AES algorithm).

24

 Compute the reduced sub-key set and calculate the intermediate values at the
attack point, for each sub-key, based on the inputs or outputs. In other words,
guess the key is 0, then guess the key is 1, then guess it is 2, and so on, and for
each possible key guess, calculate the data at the attack point.

 Select a bit of that intermediate data and observe if it is a 1 or a 0 in each case.
Then, classify the traces into two groups depending on the value of its related bit.

 Lastly, obtain the difference among the averages of the two groups of traces.

When a wrong key is guessed, wrong intermediate data are calculated, hence wrong
classification of traces is performed. In plain words, the group of ‘1’s will contain traces
related ‘1’ and also traces related to ‘0’, and the same for the group of ‘0’s. Therefore,
the subtraction of the average traces of the two groups will be noise.

However, when the correct key is guessed, the right intermediate data are calculated
and traces are properly classified, meaning that in a specific instant of time, all traces in
the group of ‘1’s work with data that have one bit to ‘1’ in all those traces (same for the
group of ‘0’s and data having a ‘0’ in all traces). As a consequence, the average trace of
the ones group will present a mean value higher than the average trace of the zeros
group at the time instant that the tracked bit is handled in the power traces. The
subtraction of the two averages will result in a peak in the differential signal.

From the mathematical point of view, the DPA can be represented with equation (9).

 ∆𝐷[𝑗] =
∑ 𝐷(𝐶𝑖,𝑏,𝐾𝑠)𝑻𝑖[𝑗]

𝑚
𝑖=1

∑ 𝐷(𝐶𝑖,𝑏,𝐾𝑠)
𝑚
𝑖=1

−
∑ (1−𝐷(𝐶𝑖,𝑏,𝐾𝑠))𝑻𝑖[𝑗]

𝑚
𝑖=1

∑ (1−𝐷(𝐶𝑖,𝑏,𝐾𝑠))
𝑚
𝑖=1

 (9)

𝑚 represents the total amount of encryption measurements and 𝑇𝑖[𝑗] denotes the sample

𝑗 at each of the related power traces 𝑇𝑖 . The selection function 𝐷(𝐶𝑖, 𝑏, 𝐾𝑠) is defined as

the computation, at the attack point, of the selected bit 𝑏 .This computation starts from

the plaintext or ciphertext 𝐶𝑖 and considers the key guess 𝐾𝑠 .

Note the differential signal has to be computed for each one of the key guesses. The
highest peak among the differential signals per each key guess will be related to the right
guess of the secret key.

2.2.3.3. Correlation Power Analysis

The main drawback of DPA is that it only focuses on one single bit of the whole data,
while the power consumption of the device is not proportional to a single bit, but to the
whole data manipulated by the device. So, despite DPA works, a more efficient attack
results when analyzing the whole data and not a single bit. Continuing with the previous
example in AES, a more efficient attack results when considering the whole byte value
at the SubBytes operations rather than a single bit of this byte.

2.2.3.3.1. The Pearson’s correlation coefficient

Once we have a way to model our power consumption, we need a way to compare our
power estimations to our measurements. A helpful tool to find this relationship is
Pearson’s correlation coefficient, which is:

25

𝜌𝑋,𝑌 = 𝑐𝑜𝑣(𝑋,𝑌)
𝜎𝑋𝜎𝑌

= 𝐸[(𝑋−�̅�)(𝑌−�̅�)]

√𝐸[(𝑋−�̅�)
2
]𝐸[(𝑌−�̅�)

2
]

 , 𝜌𝑋,𝑌 ∈ [−1,1] (10)

The covariance of two random variables, X and Y, divided by the multiplication of their
respective standard deviations, gives us the linear correlation value between them. A
coefficient of 1 represents direct proportionality between the random variables, while a
coefficient of -1 denotes an inverse proportionality. Independency between the variables
is, thus, represented with a coefficient value of 0.

2.2.3.3.2. CPA attack

CPA targets the correlation between the power traces and the estimated values of the
handled data in the algorithm.

Compared to the DPA, the CPA is better in terms of efficiency and robustness. On the
one hand, DPA requires more sample curves since all the unpredicted data bits penalize
the signal to noise ratio. CPA can use the Hamming weight or distance models, which
consider bit groups as a whole.

The procedure for CPA attack is equivalent to the one described for DPA. The only
difference resides on the metric, being the Pearson’s coefficient in each sample the
metric for the CPA. Each of the correlation factors, related to a key guess, can be
obtained applying equation (11):

𝜌𝑖,𝑗 =
∑ [(ℎ𝑑,𝑖−ℎ𝑖̅̅ ̅)(𝑡𝑑,𝑗−𝑡𝑑,𝑗̅̅ ̅̅ ̅)]𝐷

𝑑=1

√∑ (ℎ𝑑,𝑖−ℎ𝑖̅̅ ̅)2𝐷
𝑑=1 ∑ (𝑡𝑑,𝑗−𝑡𝑑,𝑗̅̅ ̅̅ ̅)2𝐷

𝑑=1

 (11)

After taking our measurements, we have a total of 𝐷 power traces and each of these
𝑑 traces has 𝐽 data points. Using subscript notation 𝑇𝑑,𝑗 refers to the point 𝑗 in trace 𝑑.

There are 𝐼 different key guesses that we have to try. Then, ℎ𝑑,𝑖 refers to our power

estimate in trace d, for the subkey guess i. With these data we can calculate how well
our model and measurements match for each subkey guess through time. This will be
done by finding how t and h correlate over the D traces.

In other words, for each key guess it is calculated the data at the attack point and, instead
of looking at the value of one bit, we apply a leakage model, e.g. the Hamming weight
model, and correlate the power consumption traces with the Hamming weight of the
intermediate data calculated. The highest correlation peaks will be the ones related to
the right key. For wrong keys, wrong intermediate data is calculated which will result in
no correlation with the power traces.

2.2.3.4. Higher order attacks

In order to protect devices against DPA/CPA, one can break the correlation between

power traces and calculated intermediate data by randomizing the data manipulated by

the DUT. This is known as data masking. This topic will be addressed in more depth in

section 2.3. The idea is to conceal intermediate data through addition or multiplication

with random values [16], which might be impossible to predict for an attacker. However,

the so-called first order masking countermeasure succumbs to second order DPA/CPA

attacks as originally proposed in [9] and [10].

The mounting point for second order attacks is the fact that the side channel leakage of

a masked value depends on a predictable value (the original data) and an unpredictable

26

one (the mask). The core idea is to jointly analyze the leakage of the masked value and

the leakage of the mask to establish a relationship within the power consumption with

the two values. These attacks are based on the joint statistical properties of multiple

aspects of the signal, i.e. joint analysis of the power consumption at two (or more) points

in time [17, 18, 19].

Higher order attacks imply bigger costs in terms of number of samples and computational

complexity. In addition, the identification of the points in time at which to take the signals

is a hard problem.

2.2.3.5. Profiling attacks

Nowadays, profiling attacks are probably the most powerful and most widely used type

of side channel attacks due to its high effectivity. The attack consists of two stages: the

profiling stage and the extraction stage. The goal of the first is to fully characterize the

operation of a given device with “profiles” for all the possible values that the operation

can work with. A “profile” is essentially a set of probability distributions that describe how

similar power or EM traces look for all different inputs.

Once the characterization is made, the developed profiles can be applied to the same

device or to executions of the same operation from other “twin” devices, in order to rapidly

extract the sensitive data. This application is made by comparing the power consumption

of the victim’s device with the obtained profiles. The maximum likelihood estimator is

often used as a metric of similarity for this purpose.

In order to succeed, an attacker needs to gather a huge quantity of data related to the

target operation intended to characterize. We are talking about data sets reaching

usually more than a million traces. On the other hand, when the template is applied to

the victim’s device, only a few traces of the target operation are required to complete the

attack.

Taking our example of the AES128, 256 possible values exist per each byte of the 16

that the AES master key has. Therefore, 4096 (256 × 16) profiles need to be created.

Note that if the Hamming weight model is used, only 9 possible values exist per each

byte (9 Hamming weights in a byte) and the profile amount required is reduced to 144.

The classical technique for applying profiling attacks is known as Template Attacks (TA).

This methodology, based on a Gaussian assumption [5] for the characterization of the

templates, can offer robust and accurate results.

Nevertheless, as machine learning keeps gaining strength in the modern era, profiling

attacks are also turning into this field [14]. Profiling by deep learning using Artificial

Neural Networks as analyzed in [15] and [22] has been reported to be a more a powerful

tool that the others, with a huge potential still to be discovered.

2.3. Countermeasures against side channel attacks

Every algorithmic implementation can succumb to attacks by power analysis methods if
it is not properly protected. In general, the solution is to re-implement cryptosystems

27

taking into account a wide range of countermeasures, even if the cost in terms of
performance could be high.

The followings are the two general approaches for cryptographic countermeasures
against side channel:

 Data hiding to reduce the side channel observability.

 Data masking to undermine the intermediate variable predictability.

2.3.1. Hiding Countermeasures

Power analysis attacks work because the power consumption of cryptographic devices
depends on intermediate values of the executed algorithm. Therefore, the goal of
countermeasures is to avoid, or at least to reduce, these dependencies. In the case of
data hiding, this is done by breaking the link between the power consumption of the
devices and the processed data values. There are two options: one is to hide power
consumption in amplitude and the other is to hide it in time.

Hence, cryptographic devices that are protected by hiding execute cryptographic
algorithms in the same way as unprotected devices. In particular, they calculate the same
intermediate values. Yet, the hiding countermeasures make it difficult for an attacker to
find exploitable information in power traces.

2.3.1.1. Amplitude hiding

The objective is to directly change the power consumption characteristics of the
performed operations. These techniques lower the leakage of a cryptographic device by
lowering the SNR of the performed operations. It can be done in two ways: Increasing
the noise or reducing the measured signal.

On the one hand, the most obvious way of increasing the noise is introducing any kind
of noise in parallel, either performing several operations in parallel or using dedicated
noise engines.

On the other hand, the most commonly used strategy for signal reduction is to employ
dedicated logic styles for the cells of cryptographic devices. The overall power
consumption of a cryptographic device is the sum of the power that is consumed by its
cells. If each cell is built in such a way that its power consumption is constant, the overall
power consumption will also be constant.

For instance, a practical example of amplitude hiding is the replacing of critical assembler
instructions with ones whose “consumption signature” is hard to analyze. Another
example is the process of re-engineering the critical circuitry which performs arithmetic
operations and memory transfers.

In software, the options to alter the consumption of a cryptographic device are very
limited. The power consumption characteristics of the instructions that are executed on
a device are defined by the underlying hardware. Since this project is based on firmware
implementations, this type of countermeasures were disregarded.

2.3.1.2. Hiding in the time dimension

An important characteristic of power analysis attacks is that they need to acquire power
traces that are aligned in time. If single points between power measurements belong to
different time moments (i.e. distinct operations of the device), the statistical analysis of
this point cannot be performed efficiently. In case of a CPA attack, the better alignment,
the higher correlations that could be obtained.

28

2.3.1.2.1. Dummy executions

This technique is based on inserting dummy executions in a random basis. These
dummy executions must use dummy inputs and must never act on the real data that the
algorithm is working with. As a result the output of the algorithm will not be affected by
the countermeasure.

If any statistical analysis is applied to the measured traces, there will be random data
that will obfuscate the results, while the real data will be displaced in the time axis.

It is important to make sure that every added dummy operation is undistinguishable from
the real operations. Otherwise the attacker could simply identify the pattern of the fake
operation within the power signal and filter it out.

In the case of an AES, dummy operations can be inserted in many formats, from high to
low abstraction level. A full dummy encryption could be executed just before or after the
real one. However, this option is usually not considered since it doubles the throughput.
Alternatively, extra rounds could be added within a single AES execution, dummy
operations can be inserted inside the rounds or individual dummy instructions, such as
register data assignations, can be introduced into the algorithm.

2.3.1.2.2. Randomizing or shuffling

Another option is to randomize the order of execution inside the algorithm. Usually, there
are some executions inside an algorithm that have no order dependency between them,
which means they could be randomized without influencing the final result.

Shuffling is a countermeasure that randomizes the power consumption in a similar way
as the random insertion of dummy operations. However, shuffling does not affect the
throughput as much as the insertion of dummy operations. The two countermeasures
differ in the fact that the first one is adding extra data which enlarges the total execution
time, while the other is only shuffling the data that is already there.

In the case of an AES, the most obvious part to be shuffled is the AES SBOX, which
performs 16 independent fetches from the LUT. In the same manner, the AddRoundKey
function can be shuffled in the order that establishes to XOR the state bytes with the
round key bytes. Apart from that, the ShiftRows function internally acts independently on
three rows and the MixColumns performs its operations in each independent column as
well. Therefore, either the row order or column order can be shuffled as well in each
function.

When an attacker tries to correlate data with the power traces, he will face difficulties
because at the same instant of time, in different power traces it will be handled different
data bytes.

The disadvantage of shuffling is that it can only be applied to a certain extent. The
number of operations that can be shuffled in a cryptographic algorithm are limited, e.g.
we can only shuffle the 16 bytes of the SBOX or the 4 columns of the MixColumns
operation in AES. This number depends on the algorithm and on the architecture of the
implementation.

In practice, both shuffling and the random dummy insertion are often combined.

2.3.1.2.3. Random time delay

One of the most common countermeasures against SCA is the introduction of random
delays. Instead of executing all the operations sequentially, the CPU interleaves the
code's execution with that of dummy instructions so that the corresponding operation
cycles do not match between different power traces because of the time shifts. These

29

time delays must be randomly generated along each execution and their effect can be
considered as additive noise that worsens the SNR.

In general, random delays consist of a dummy loop where a random value is generated
and then decremented until the accumulator reaches zero before executing any further
code. Usually, the value generated and then decremented is uniformly distributed across
all the values it can take.

An example of three power consumption acquisitions that include random delays is
shown in Figure 5. The three acquisitions belong to the first round of an AES and perform
exactly the same operations, resulting in the exact same power profile. However, delays
of 102 and 192 measured samples have been applied to trace 2 and trace 3, respect to
the non-delayed trace 1. As a result, the acquisitions are no longer synchronous.

Figure 5. Power acquisitions with random delays

As the size of the random delay increases, an attacker is obliged to acquire more
samples, so it is of interest to maximize the length of the delays, which on the contrary
penalizes the performance of the execution in terms of added overhead.

Delays are rarely used in one single place. A single delay is easy to identify for an
attacker and, therefore, its effect is easy to correct. This can be seen in the previous
image where the high frequency pattern in the middle of the signals is only shifted some
positions to the right in the case of the red and green signals. Therefore an attacker
simply needs to re-align the traces to make that pattern match again. This is why random
delays are usually implemented with short lengths and placed at different points through
the whole algorithm. The objective is to break the trace with relatively short delays in
multiple places so that it is undistinguishable where the attack point is.

Hence, it is usually the cumulative effect of several random delays what protects an
implementation from a SCA attack. Following the Central Limit Theorem, when the sum
of random delays is generated from uniformly distributed random variables, the
sequence of themselves rapidly becomes binomial, which approximates to a normal
Gaussian distribution. This is why the cumulative delays are usually measured in terms

of the mean 𝜇, variance 𝜎 and standard deviation 𝜎2.

30

Figure 6. p.d.f.-s for the cumulative cases of 1,2,3,4 and 10 plain uniform delays

Figure 6 displays the distribution for the cumulative effect of random delays when 1,2,3,4
and 10 sums of uniformly distributed delays are considered. It can be seen how the sum
of two delays is not enough for the approximation to a Gaussian curve to be acceptable.
However, from three delays on, the p.d.f. shape resembles well enough that of the
normal Gaussian distribution.

From [26], we know that the variance and standard deviation are closely related to the
protective effectivity of the random delays. The bigger the standard deviation is the better
misalignment that will be obtained. On the other side, the lower the mean the lower the
total overhead added by the random delays. Therefore, the cumulative effect of random
delays is more efficient for high standard deviations and low mean values [25] [26] [27].

2.3.2. Masking countermeasures

There is a different kind of countermeasure that must be always considered: data
masking. Data masking intends to break all correlation between the power consumption
and the actual intermediate data. In other words, masking allows making the power
consumption independent from the intermediate data, even if the device has a data-
dependent power consumption.

An advantage of this approach is that it can be implemented at the algorithmic level
without changing the power consumption characteristics of the cryptographic device.

Hence, a masked algorithm is an algorithm which with given inputs will produce the same
output than the non-masked version, with the only difference that all intermediate
computations will be masked with random values. The masks are internally generated
by the device for each algorithmic execution.

But what does masking mean? Data being masked means that the real value of the data
is somehow mixed with more data. This mixing is usually done through XOR and AND
operations. Since the data manipulated by the algorithm is not strictly the real data, the
power consumption generated will not be the same and the leakage will be strongly
reduced. If the masking is well implemented the leakage should disappear completely.
In other words, if an attacker does not know to which values correlate the power traces
(because the masking values are random and secret) the attack cannot be mounted.

Typically, the masks are directly applied to the plaintext or the key. The implementation
of the algorithm needs to be slightly modified in order to process the masked intermediate
values and in order to keep track of the masks. The result of the encryption is also
masked. Therefore, the masks need to be removed at the end of the computation in
order to obtain the ciphertext. It is important to make sure that every intermediate value
is masked all the time, otherwise correlations could be recovered between unmasked
intermediate values and the power traces.

31

2.3.2.1. Boolean masking vs Multiplicative masking

In Boolean masking schemes the intermediate value is always concealed by XOR-ing it

with the mask, while multiplicative masking uses AND operations for the masking.

Let’s consider only Boolean masking for now. Regarding most of the cryptographic

algorithms, the masking has to be applied to both linear and non-linear transformations.

A linear function 𝑓 always complies with the following equation, where 𝑚 stands for any

mask and 𝑥 represents any intermediate value:

𝑓(𝑥 ⊕ 𝑚) = 𝑓(𝑥) ⊕ 𝑓(𝑚) (12)

Boolean masking is suitable for linear operations since they modify the mask in an easily

computable way. However, if a non-linear function 𝑔 is considered, the previous relation

does not hold anymore:

𝑓(𝑥 ⊕ 𝑚) ≠ 𝑓(𝑥) ⊕ 𝑓(𝑚) (13)

Since Boolean masking cannot properly suit how non-linear functions operate, more

complex perspectives have to be contemplated in order to compute the mask

modifications.

Now, let’s consider the case of an AES algorithm. All the functions used in it are linear

functions except for one, the SubBytes transformation. This function is based on

computing the multiplicative inverse inside the Rijndael’s finite field, which is compatible

to multiplicative masking since:

 (𝑥 ⊗ 𝑚) ⇒ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 ⇒ (𝑥 ⊗ 𝑚)−1 (14)

Note that instead of an XOR the above function operates with an AND. In order to
implement this masked multiplicative inverse, the Boolean masking coming from the
previous linear transformation has to be modified into a multiplicative masking. The
opposite happens with the output of the inverse that has to be modified back into Boolean
masking. As a result, a mix between Boolean and Multiplicative masking can be applied
to solve the problem of the non-linear function in AES.

Nevertheless, changing from one type of masking to the other is not trivial and often
requires a significant amount of additional operations.

2.3.2.2. Higher order masking

Closely related to the higher order attacks discussed in section 2.2.3.4, higher order

masking schemes can be implemented as a direct protection against HODPA/HOCPA.

A hardware device with a first order masking scheme is vulnerable to second order

attacks. If a second order masking is implemented in the device, this will become

resistant to first and second order attacks, but it will still be vulnerable to third order

attacks. Following this line of thought, the resistant-vulnerable relation between higher

order masking schemes and higher order attacks could be, theoretically, escalated to

any level.

We already know that higher order attacks target multiple points in time for the side

channel analyses. The question now is: how is the order of a masking increased? This

is done by introducing more shares into the equation, i.e. for a first order masking we

have:

32

𝑥𝑚 = 𝑥𝑖 ⊕ 𝑚 (15)

Where 𝑚 is the mask, 𝑥𝑖 is the intermediate value to be protected and 𝑥𝑚 is the masked

intermediate value. Now, if a 𝑛𝑡ℎ order masking is considered:

 𝑥𝑚 = 𝑥𝑖 ⊕ (𝑚𝑛−1 ⊕ …⊕ 𝑚2 ⊕ 𝑚1 ⊕ 𝑚0) (16)

As shown in (16), for higher order masking, the intermediate value is XOR-ed with more

than one mask. Second order masking requires two masks, third order masking requires

three masks and so on.

2.3.3. Countermeasure effectivity

Hiding countermeasures reduce the effectivity of any side channel attack. These
countermeasures introduce uncertainty into the attack and achieve to reduce the
dependency between power consumption and intermediate values of the cryptographic
algorithm. However, this dependency does not totally disappear. In other words, these
countermeasures make the attack effort increase in order to obtain any useful result, but
they do not avoid the attack.

In this situation, the attacker needs to increase the number of power traces, resulting in
an increase of employed time and resources. Alternatively, the attacker could try to
improve the attack conditions by processing the measured power data to increase the
SNR or by applying alignment data processing techniques [24]. Anyway, the attack effort
still increases in many ways.

In order to be able to measure how efficient hiding countermeasures are, it will be
considered that the attacker does not have any further knowledge on how to process or
align the acquired power traces. Therefore, the only available option is to increase the
quantity of traces captured for the attack.

In [7] they pointed out that the number of needed power traces grows quadratically with
the number of randomized operations. In order to obtain the minimum trace quantity
needed for a protected implementation, the minimum trace quantity of the unprotected
implementation has to be multiplied by a factor that scales up quadratically:

 𝑁′ = 𝑘2 ∙ 𝑁 (17)

𝑁 is the minimum number or power measurements required for a successful CPA attack
on an unprotected implementation, while 𝑁′ represents the same in the case of a

protected implementation. 𝑘 will be denoted as protective effectiveness factor. This
parameter is affected by many variables that correspond to the device and trace
acquisition environment. Among these, we have the leakage characteristics of the
device, its power consumption and electronic noise, in addition to the sampling rate and
SNR of the acquired signal.

In [8] Mangaard proposed an approximation of the protective effectiveness factor 𝑘
based on the correlations obtainable for each implementation:

 𝑁′ = (
𝜌𝑢𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑

𝜌𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑
)
2

∙ 𝑁 (18)

The factor can be approximated as the division of the correlations resulting from the

attack on each of the implementations.

Considering the hiding countermeasures implemented for this thesis, the protection level

that they offer will be measured and compared using the 𝑘 factor defined in (17). For the

unprotected implementation k will be of one.

33

Regarding the masking countermeasures, their effectivity is quite straightforward to

measure. If there is still leakage, the masking is not effective. On the contrary, if the

leakage is eliminated, the data dependency is not exploitable anymore, meaning that the

masking scheme is efficient.

2.3.4. Importance of unpredictability in randomization

System designers are typically more concerned with the power consumption and bit
generation speed, than with the actual randomness of the bits generated.

This is strange, considering that in most, if not all, cryptographic systems, the quality of
the employed random numbers directly determines the security strength of the system.
In other words, the quality of the random number generator directly influences how
difficult is to attack the cryptographic system.

What happens if we start with key material that is partly predictable to the attacker?
Immediately, the security of the system is weakened, regardless of the algorithm or
protocol used. Take, for example, the effective strength of an AES128 key. If your 128-
bit key contains 16 predictable bits, using it in AES-128 does not give you a 128-bit

protection (i.e. 2128 possibilities to cover by brute force), but only gives you 112 bits of
protection, making the effective security of your system lower than the actual key length
it uses.

Now, if we think about the cryptographic countermeasures, all the countermeasures
need randomness in order to be effective. Indeed, every countermeasure that has been
introduced would be useless if they were applied deterministically, or if the attacker could
guess the “random” values applied.

Considering the approach of hiding in time, the attacker could unmake the trace
desynchronizations. In the case of masking, it would be even easier to extract the real
values of the intermediate variables. If the values of the random masks are known, the
double unknown variable problem is reduced to a single unknown variable problem,
making the implementation vulnerable to first order attacks again.

34

3. Methodology and project development

3.1. Experimental setup

3.1.1. Chipwhisperer - Lite

After consideration of various possibilities, it was decided to work with a Chipwhisperer-
Lite board. Chipwhisperer is an open source platform for hardware embedded security
research, specially designed for side channel analysis and glitching based fault injection.
The Chipwhisperer kit typically comes with two main parts: a multi-purpose power
analysis capture instrument, and a target board. The target board is the device under
test (DUT), which is basically a standard microcontroller were you can implement
algorithms onto.

Figure 7. Chipwhisperer lite capture and target boards

The capture board uses an ATSAM3U2CA-AU microcontroller, which is a 32-bit high
performance MCU based on ARM cortex-M3 RISC processor, in addition to a FPGA that
belongs to the SPARTAN-6 family. The microcontroller has a USB controller interface
implemented in C and is mainly used for communication purposes between the capture
board, target device and the computer at the other end of the USB (see Figure 8). The
FPGA is employed for high-speed capture purposes, in addition to other useful features
such as clock or voltage glitching and triggering.

All communication with the capture board is done via USB through the Chipwhisperer’s
Python API. However, any language that could talk to libusb (C library that provides
access to usb devices) should be compatible.

The communication between the target and capture board is done using the Simpleserial
protocol based on the C library. The master-slave serial protocol begins every
communication from the capture device sending data packets to the target. Whether the
target device sends data back or not, it has to answer with an ACK to tell the capture
board that the communication was successfully performed.

Some of the main features of the Chipwhisperer capture board are:

 10-bit ADC with a maximum sampling rate of 105MS/s for capturing power traces.

 ADC clock that can work synchronously at target clock frequency (x1) or four
times faster than the target clock (x4).

 AC-coupled LNA with adjustable gain from -6.5dB to 55dB

 Maximum sample buffer size of 24.573

It should be noted that, both, capture and target devices work with the same clock
offering synchronous capture features. This ensures sample points are directly related
to the digital clock that generates the signals of interest. As a result, the power

35

consumption of the target DUT can be successfully analyzed, even if lower sampling
rates are used compared to a regular oscilloscope.

Regarding the target device, an ATXmega128D4-AU 8-bit RISC microcontroller of AVR
architecture (Harvard modified architecture developed by ATMEL) is employed. The
device is of low power performance at up to 32 MHz speed and has the following memory
capabilities:

Memory type Space (KB)

Flash (program memory) 128

EEPROM 2048

SRAM 8

Table 2. Target MCU memory

3.1.1.1. Capture configuration

A fixed capture configuration was set in order to perform the power measurements of the
different implementations. These are gathered in Table 3.

Parameter Value

Gain 25dB

𝑓 (target) 7.38MHz

𝑓 (ADC) 29.53MHz

Baud rate 38400 bits/s

Table 3. Capture configuration

Regarding the sampling rate, the chosen configuration uses a sampling frequency four

times bigger than the target signal to be measured. This way, the resulting sampling rate

doubles the minimum limit required by the Nyquist theorem, ensuring that the obtained

signal can be completely reconstructed.

3.1.2. Implementation environment

The implementations were coded in C and programmed into the target XMEGA device.

Eclipse IDE environment was employed for their development. The only libraries used

were the standard C library, from which stdlib.h and stdint.h were included.

All the Chipwhisperer firmware is bare-metal, meaning that no operating system is

supporting it and the same path was followed for the development of the AES

implementation and the countermeasures.

Regarding the random number generation, the secrets built-in Python module was used,
together with the rand() function of the standard library of C. Note that two independent
random number generations were used in the experimental set-up, one external to the
target DUT and the other internal.

On the one hand, we have the Python code running on a windows computer that uses
the secrets module. This module is based on a cryptographically secure PRNG that
employs various OS data as randomness source (PRNG seeding).On the other hand,
we have the C code implemented inside the DUT, that uses the rand() function and has
to be internally seeded.

36

Figure 8: Experimental set-up

Each plaintext input to encrypt was generated randomly using a python script and sent
to the target DUT trough the capture board. Regarding the secret key, this was also sent
through a python script, only that it was fixed to the following hexadecimal value.

 𝑆𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦 = {𝐶𝐴𝐹𝐸 𝐴𝐵𝐵𝐴 𝐶𝐴𝐹𝐸 𝐴𝐵𝐵𝐴 𝐶𝐴𝐹𝐸 𝐴𝐵𝐵𝐴 𝐶𝐴𝐹𝐸 𝐴𝐵𝐵𝐴}𝐻𝐸𝑋 (19)

Actually, the secret key is sent once and kept into the memory of the target device, unless
a new key is sent to replace it.

Apart from the plaintext and key, a random word of 32 bits is also sent before each
encryption, which is used to seed the rand() function that will internally generate any
needed random number for the implementation of the countermeasures.

Once the AES encryption is done and its power consumption is acquired by the capture
device, the data is sent to the windows computer where the traces can be saved in order
to apply SCA on them.

3.2. Analysis metrics

In order to conduct the project and be able to fairly compare the effectiveness of the

implemented countermeasures, different figures of merit and metrics will be used.

Hereunder, these figures of merit and metrics are introduced, before using them in the

following sections of the document.

3.2.1. Attack point: SBOX output

First to define is the attack point within the AES encryption algorithm. The

countermeasures developed in this project are meant to protect the DUT against side

channel analysis. As side channel analysis can be done in different parts of the AES

algorithm. It has been chosen, as attack point, the data output at the SBOX of the first

round.

The rationale behind this attack point is the following: the first operation conducted by

AES algorithm is an XOR between the input data and the secret key. The second

operation is the SBOX. Hence, the data at this SBOX output is the first point in the

algorithm where we have a variable related to the secret key that is treated byte by byte.

Hence, it is a nice target point for an attacker that would like to retrieve the value of the

secret key by SCA. Note that after the first XOR operation we also have a variable related

to the secret key, however, the XOR operation is bit-wise while the SBOX operation is

performed byte-by-byte in sequential order.

The following diagram shows a schema of the attack point.

37

Figure 9: Attack point: SBOX output

The attack process is the following:

 Acquire a set of power traces (hundreds or thousands depending on the

experiment) with random input data, but fixed key.

 For each key guess (from 0x00 to 0xFF) of the first byte of the AES key, calculate

the values of the first byte at SBOX output.

 Compute the Pearson coefficient between the power traces and that calculated

values at SBOX output. This must be done for all key guesses in order to identify

the one retrieving the highest Pearson coefficients (which will be the one

corresponding to the correct key).

 Repeat the process for all other key bytes.

3.2.2. Attack technique

In order to analyze how good the implemented countermeasures are, we are going to

use correlation analyses (CPA as explained in section 2.2.3.3). The correlation analysis

will compute the Pearson correlation coefficient between the power traces acquired from

the DUT with the data at SBOX output, per each key guess, byte by byte.

As explained in previous point, the data at SBOX output depends on the input data to

the algorithm, which is known, and also on the secret key, which is unknown by an

attacker. Therefore, in order to compute the Pearson coefficient at SBOX output, an

attacker needs to make hypothesis of the value of the key. When the attacker correctly

guesses the key value, the correlation analysis will correlate the correct data at SBOX

output with the power traces, and correlation peaks will be seen as a result of the attack.

On the other hand, when the guessed key value is incorrect, the attack will try to correlate

the power traces with incorrect data and the Pearson correlation will be very low.

Note the importance of choosing as attack point the output of the SBOX. If an attacker

would target the XOR, he would need to compute 2128 key hypothesis (because AES

key is 128 bits long, or 16 bytes equivalently). However, as the SBOX is conducted byte-

by-byte, the attacker only needs to compute 28 key hypothesis per each of the 16 key

bytes independently. So in order to recover the full AES key, an attacker would need to

repeat 16 times the CPA at SBOX output, one per each key byte, which is completely

affordable because only 16 × 28 key guesses are required to recover the full key.

Hence, as it can be observed, the objective of this project is to implement

countermeasures that make the CPA retrieve nothing, even when the attacker correctly

guesses the right key. Accordingly, the obtained Pearson coefficients will be lower in all

the protected cases. This way we can conclude that the countermeasures are efficiently

protecting the AES algorithm against side channel attacks.

38

3.2.3. Figures of merit and comparison metrics

In order to assess and compare the effectiveness of the different implemented

countermeasures the following metrics will be used:

 In an unprotected AES implementation, we are going to obtain which is the

minimum number of traces required to retrieve the AES key by CPA, and which

are the Pearson coefficients found.

 Per each implemented countermeasure, we are going to, first, assess whether

the correct key can be retrieved or not; and second, if can be retrieved, which is

the minimum number of traces needed (which might be much higher than the

ones from the unprotected implementation) and which are the Pearson

coefficients (which might be much lower than for the unprotected

implementation).

 The protective factor 𝑘 is defined as the relationship between the number of

traces 𝑁 required to retrieve the correct key in the protected implementation vs.

the traces 𝑁′ needed for the unprotected implementation.

 𝑁′ = 𝑘2 ∙ 𝑁 (19)

Hence, if the countermeasure implemented is not effective, 𝑘 will be close to 1,

while in case the countermeasure is really effective, 𝑘 will tend to ∞.

Therefore, the main figures of merit used to assess the protective effectivity of the

countermeasures are:

 The amount of retrievable key bytes, if any.

 The minimum trace quantity for the key retrieval.

 The protective factor 𝑘.

 The maximum Pearson correlation coefficient.

Besides, each countermeasure implementation will be analyzed in terms of duration of

encryption (i.e. performance). Therefore, a secondary figure of merit is defined:

 Time overhead respect to the duration of the unprotected AES (measured in clock

cycles)

3.3. Implementation development and analysis

3.3.1. AES without countermeasures

3.3.1.1. Implementation aspects

When implementing an AES in software, there are various options to consider. In this
section some of them will be introduced and some of their pros and cons will be
discussed (The reader is encouraged to have a look at Appendix A for the better
understanding of the following section, where AES is explained in more depth).

Since the AES works strictly with bytes in an 8-bit platform, the employed data type was
uint8_t (unsigned 8bit) in order to keep the implementation as light as possible.

The developed implementation uses some variables defined as static and global, such
as the state matrix, which is implemented as a two dimensional array, and a single
dimensional array used to store all the keys derived from the key schedule. The static

39

variables remain in memory while the program is running, regardless of the functions
that call or influence them. The round constants were defined as global, static and
constant variables, since they are never modified through the program execution. The
same was done for the SBOX and reverse SBOX LUTs. The rest of the variables used
in the algorithm are instantiated locally inside the functions that require them.

Regarding the SubBytes function, most of the times the AES SBOX and its reverse are
implemented in form of LUTs of 256 components (Appendix B1). However, there is also
the possibility of implementing them as the inverse function in the Rijndael’s finite field
followed by an affine transformation (Appendix A.2.1). When no complexity is required,
the LUT tables work perfectly, only that taking extra 512 bytes of memory space.
Nevertheless, some data masking schemes prefer to implement the inverse and affine
transformations in order to mix the intermediate values with random masks.

The ShiftRows function, instead, offers no option at all. The bytes are shifted as required
by the algorithm and that is all. However, since the shifting is done circularly some byte
buffers are needed, which has a big impact on the leakage generated.

The MixColumns function is probably the one that offers more implementation
possibilities. As a first option, the Galois multiplications (Appendix A1 and A.2.3) for
encryption, and decryption, can all be implemented in form of LUTs (Appendix B2). Then,
equation (44) is applied and the transformation has concluded. This option is quite
straightforward, but notice that a total of 1536 bytes of memory are required in order to
store the six LUTs.

A more efficient way is to implement the function based on the independent

multiplications by 𝑥 that the MixColumns transformation performs in the Galois field. The
multiplication by 𝑥 can be implemented in a function as follows:

 𝑓(𝑥) = ((𝑥 ≪ 1) ^ ((𝑥 ≫ 7 & 1) ⊕ 0𝑥1𝑏)) , 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝐺𝐹(28) (21)

These function reflects the equations shown in (46) and (47). Then equation (40) can be
directly applied.

As a last consideration, there is an implementation technique worth mentioning called bit
slicing. Bit slicing considers single bits and not byte structures. A bit sliced algorithm can

perform 𝑁 encryptions in parallel on a microprocessor with 𝑁-bit register width, resulting
in a significant performance boost. Applied to the XMEGA target, 8 encryptions could be
carried out in parallel. However, this was considered to be out of the scope of this project
and, accordingly, it was not implemented.

The final implementation of the AES128 can be found in Appendix C1. Even if both
encryption and decryption were implemented, only encryption will be considered for
future analyses on the countermeasures.

3.3.1.2. Leakage assessment of AES

SPA on AES

Before analysing the effectiveness of any countermeasure, it is worth analysing the

power consumption characteristics of the unprotected implementation of AES. A SPA

was carried out in order to identify the power consumption patterns of the implementation

and locate the first rounds of the AES.

As can be seen in next figures, when we execute the programmed AES algorithm we

obtain a trace where a repetitive pattern can be identified. The FPGA was triggered just

40

before executing the AES encryption process in order to start recording the samples just

before computing the first step of the encryption. We can see that the power consumption

corresponds to the AES-128 algorithm because each of the 10 rounds conforming it can

be identified as a repetitive pattern. As expected, the last round was found to be shorter

than the others due to the absence of the MixColumns function in it.

Figure 10. SPA on AES128 implementation

By zooming into one of these rounds, different patterns can also be observed, allowing

for the identification of the different transformations that AES conducts within its rounds:

AddRoundKey, SubBytes, ShiftRows and MixColumns. This is the sample space where

the CPA will be performed.

If we look at the power profile of each transformation, the power shapes are assembled

in groups of four (except for ShiftRows), actually grouped row by row or column by

column. This behaviour is a direct consequence of implementing the AES state as a two

dimensional 4x4 matrix. Moreover, inside each row/column group, the smaller operations

on the bytes can be differentiated (i.e. in the SubBytes region each of the four row

processing regions can be differentiated and the power consumed by each of the SBOX

look-ups can be observed inside them).

The sample amount needed to capture all the encryption process was bigger than the

buffer size of the capture tool. This is why a decimation of 2 had to be applied to the ADC

clock, setting a sampling rate of 14.765MHz. For the zoomed view the decimation was

undone, restoring the sampling rate to 29.53MHz, in order to offer the highest resolution

possible (i.e. the samples between first and second graph of Figure 10 do not match

because sampling rate was doubled for the augmented view).

As the reader will see in the future analyses done, this sampling rate modifications were

applied to most of the performed SPAs (with different decimations), because it was the

41

only option to overcome the sample buffer limit of the capture tool in order to obtain a

good resolution. However, it had no impact in the analyses as this decimation was only

done for SPA and undone before CPA was conducted.

As a next step for the SPA, a timing analysis was done on the different distinguishable

operations inside the encryption of the AES. The time spans were measured in samples

in each case and, considering the sampling rate that was used, their related clock cycles

were calculated.

The next table gathers the measured time periods for the different operations of the AES:

 Clock cycles (cc) Time

Full encryption 9780 1.325ms

Round 985 133.42μs

Last round 635 86.01μs

SubBytes 285 38.60μs

ShiftRows 70 9,48μs

MixColumns 350 47,41μs

AddRoundKey 280 37,92μs

Table 4. Time measurements on the unprotected AES

The AES encryption had a duration of approximately 19.560 samples, which is to say

that 9780 clock cycles or 1.327ms were required by the target DUT in order to compute

the encryption of a plaintext.

Since this was the first timing analysis that was done, the measurements were taken for

all the internal operations of the AES. However, in the future analyses, only the full

encryption length will be considered because this is the figure of merit chosen for the

time overhead assessment of the countermeasures.

CPA on AES

After conducting a CPA with 200 traces on the unprotected AES implementation on the

attack point identified in section 3.2.1, the secret key was recovered successfully. The

correlation results obtained for the first 5 positions can be seen in Table 5:

Table 5. CPA on first round results for unprotected AES

As explained, the CPA attack is performed per each key byte, making 28 hypothesis of

the value of this key byte. The Pearson correlation coefficient is computed for all key

hypotheses and the one resulting in the highest correlation is the one that is correct.

Therefore, as can be seen, the CPA returns a ranking of key values sorted by the value

of the Pearson coefficient. Each column represents each of the 16 key bytes to be

42

guessed (this enumeration will be used from now on to reference each key byte) and the

rows indicate the ranking position of the byte hypothesis. The correct key byte guesses

are highlighted in red.

If we observe the first byte (key byte 0), we can see that the first position is occupied by

the value “0xCA” with a 0.745 Pearson correlation, and the second position is occupied

by the value “0xC1” with a 0.239 Pearson correlation. With this numbers, it is clear that

the value “0xCA” is the correct value for the first byte of the key. Note that the other bytes

of the key are retrieved following the same procedure.

Figure 11 shows the correlation value over time for the key byte 1:

Figure 11. Correlation vs time for key byte 1

In the figure above, the Pearson correlations obtained for the key byte 1 were plotted

(column 1 of Table 5). The plotting was carried out drawing a curve, for each byte

hypothesis, with the correlations obtained at each sample.

Remember that the CPA performed correlates the measured power consumption to the

power estimates at the attack point (i.e. Hamming weight of the SBOX output). When a

correct byte hypothesis is made, the correlation curve shows peaks at the time instants

where the power estimate matches the measured power. As a result, the correct byte

hypothesis (blue) shows observable correlation peaks at three different time regions of

the first AES round. On the contrary, when the wrong hypothesis are made, the power

estimates do not approximate well enough to the real data and, therefore, the

correlations for the wrong guesses (black) do not stand out.

In relation to the time instants where the blue peaks were obtained (each double peak

will be considered as one peak), the first one corresponds to the SBOX operation

performed in the SubBytes transformation. The second was generated by the shifting of

the same byte made in the ShiftRows transformation. The third spike was produced by

the XOR-ing made in the MixColumns transformation (when C is traduced to machine

code, the bytes are loaded from memory, leaking their value, before XOR-ing them).

Hence, we can observe that the byte value at the SBOX output is processed by the

algorithm at three different operations during the first round of the AES.

Figure 12 shows the correlations obtained at the SubBytes transformation for all the key

bytes:

43

Figure 12. Correlation vs time for all key bytes

This time, the correlation results were plotted considering all of the key bytes, but only

for the SubBytes transformation (not all the round like in Figure 11). The correct subkey

guesses were highlighted in colours (i.e. 16 colours for 16 correct key bytes), while the

wrong guesses were represented all in black. Each of the 16 spikes were generated due

to the 16 SBOX substitutions, one for each key byte, performed sequentially by the

implemented algorithm.

We can see that all the key bytes show the same leaking behaviour. However, as a

matter of fact, some key bytes show bigger peaks than others do. This indicates that not

all the samples leak the same amount of information. This is probably due to the power

consumption of the DUT not being deterministic.

The important thing is that each correlation from each byte is found in a different time

position. This is what makes the attack feasible because in each time position we can

analyse a single byte making 28 hypothesis of the key value as explained before (now it

is clearly seen graphically).

As a next step, we will focus on the evolution of the correlations for the key bytes in

function of the number of traces. As stated at the beginning of this section, the CPA was

performed with 200 power consumption traces. The results shown in Table 5, Figure 11

and Figure 12, correspond to the values obtained when all of the 200 traces were added

into the CPA attack. However, the CPA can be performed trace by trace (i.e. adding one

more trace to the attack in each iteration) in order to analyse the evolution of the attack.

As a result, the correlations evolve each time a new trace is added into the analysis.

Figure 13 shows the correlations obtained for the key byte 1 in function of the number of

traces:

44

Figure 13. Correlation evolution during the CPA for the key byte 1

Once again, the correlation for the correct key byte 1 was plotted in blue, while the

maximum correlation for the wrong guesses was plotted in black. Looking at the graph,

we can see that approximately for the first 25 traces, both curves show similar correlation

values, meaning that the correlations of the correct key guess were similar to the ones

of the wrong guesses at first. If the attack had stopped at this stage, it would be

impossible to know which one is the right key guess since this would be mixed with the

wrong ones. However, as the attack keeps on considering more traces, the correct key

guess stands out respect to the incorrect ones.

A divergence between both curves is generated slightly before adding the trace 25.

Observe the more accurate view of the divergence shown in Figure 14. It can be seen

that the divergence was generated when trace number 23 was added into the attack.

After this divergence, the difference between both curves gets bigger, increasing the

difference of correlations between the correct byte guess and the wrong ones.

Figure 14. Zoomed view of the divergence

As a result, it can be considered that 23 traces were needed in order to retrieve the

correct value of key byte 1 (i.e. 23 traces were needed in order to rank the correct value

of key byte 1 at first position).

The analysis that was made for key byte 1, was equally made for all the other key bytes.

The leaking behaviour is the same, or very similar at least, for all of them. The only

difference resides in the exact correlation values obtained during the CPA in each case

and the number of traces to rank the correct key value at first position.

45

Even if most of the key bytes were successfully retrieved with less than 30 traces, the

key byte number 6 was the slowest (worst case key byte) needing a total of 46 traces to

rank first. Remember that the objective of the attack was to extract the complete value

of the secret key (all of the 16 key bytes). Consequently, it will be considered that a

minimum quantity of 46 traces were needed in order to retrieve the secret key and break

the AES for this initial unprotected implementation of the algorithm.

In order to compare the performed attack and results with the future countermeasure

implementations, the reference figures (worst case considered) are gathered in Table 6:

CPA region Correlation Traces K Retrieved

First round 0.918 46 1 Full key

Table 6. CPA results on first round for the unprotected AES

Note that the maximum correlation obtained in the attack was included in the table

considering all operations conducted within the first round of the algorithm (i.e. 0.918 is

the maximum correlation obtained no matter whether it is found in the SubBytes,

MixColumns, AddRoundKey or ShiftRows transformations). Considering that the

countermeasures aim to reduce the correlations obtainable for this implementation, the

worst case will be the maximum correlation that could be obtained in comparison with

this one.

As a last step, two more CPA attacks were conducted with the same trace set, but

focusing only on the sample spaces of the SubBytes, and MixColumns transformations

(not all the first round like before). Table 7 gathers the results.

CPA region Correlation Traces K Retrieved

SubBytes 0.753 81 1 Full key

MixColumns 0.812 61 1 Full key

Table 7. CPA results on different operations of the unprotected AES

The values in Table 7 will be used to assess the protective effectivity of the randomized

SBOX-es and the randomized MixColumns analysed in section 3.3.2.2. Considering the

results in Table 7, it is clear that different operations leak the different amounts of

information.

3.3.2. AES with hiding countermeasures

3.3.2.1. Dummy rounds

The dummy rounds are additional rounds to the AES algorithm that operate on a dummy

state, with random inputs and random keys that are completely uncorrelated to the actual

encryption process, leaving the real state matrix untouched. Their objective is to create

confusion to the attacker who cannot distinguish which rounds of the algorithm work with

real data and real key, and which ones work with fake data and fake key.

The implementation developed has two variations. The first variation adds a dummy

round before or after each real round. The second variation adds two dummy executions

per each round, where both of them could come before or after the real round, or one

46

before and the other after. The positioning of the dummy rounds is done through random

bytes generated before each encryption process.

For the experimental process, CPA attacks were carried out for the single dummy round

implementation focusing on the first two rounds. Statistically, the probability of finding

real data in the first round of each trace is of 1/2. Every sample containing real data

improves the resulting correlation value, while the samples containing dummy data affect

negatively on the correlation results.

For the double dummy round implementation the CPA targeted the initial three rounds.

The probability of finding real data in the first round decreases to 1/3 in this case.

Before every CPA attack, a SPA was done in order to define the attack region (i.e. the

sample space targeted for the attack) and also to measure the length of the AES

encryption with the implemented countermeasures.

The dummy rounds implementation is shown in Appendix C2.

SPA on dummy round implementations

Figure 15. SPA on the single dummy round implementation

Figure 15 shows the SPA carried out on the single dummy round implementation. The

implementation executes 20 consecutive rounds, 10 of which are real and the rest are

dummy. As can be seen, the AES rounds were differentiated in the figure. Every two

rounds a real round and a dummy round is processed. In fact, an augmented view of the

first pair is offered, where the power consumption of the real round and the dummy round

47

are shown to be identical. This zoomed region is where the CPA will be carried out for

the single dummy round implementation.

Figure 16: SPA on double dummy round implementation

Figure 16 shows the SPA done for the double dummy round implementation. With the

double dummy round protection, a total of 30 rounds (20 dummy and 10 real) are

executed during each encryption. Every three rounds, two dummy executions are

processed, while the resting one contains real data. The zoomed view of the first three

rounds shows how the real round located in the middle has the same power profile

compared to the dummy rounds located before and after it. This is the sample space

where the corresponding CPA will be performed.

As a last step, the full encryption of the single and double dummy round implementations,

together with the encryption of the unprotected AES, were captured again. However, this

time the power acquisitions were made with a common ADC frequency of 4.92MHz. The

captures are shown in Figure 17:

48

Figure 17. AES length comparison for the unprotected, single dummy and double
dummy

As expected, compared to the unprotected AES case, the single dummy round

implementation roughly doubles the required time for encryption (if the initial

AddRoundKey had a dummy pair the duration would be exactly the double). In the case

of the double dummy round, the encryption length is almost triplicated. The measured

encryption lengths are gathered in Table 8, given in DUT clock cycles and milliseconds.

Implementation Clock cycles (cc) Time (ms)

Unprotected 9780 1.325

Single dummy 19280 2.612

Double dummy 28780 3.899

Table 8. Encryption length for unprotected, single dummy and double dummy

CPA on dummy round implementations

A CPA with 1000 traces was conducted for the single dummy implementation and

another with 3000 traces for the double dummy implementation.

49

Figure 18: Correlation vs. time for key byte 1 on single dummy round implementation

Figure 18 shows the correlations obtained for key byte 1 when the single dummy

implementation was attacked. In comparison with Figure 11, where the same data was

shown for the unprotected implementation case, the single dummy implementation

resulted in the double amount of peaks. As expected, the correlated data was found

both in the first and second rounds of the AES because the order of execution of the real

and fake rounds is mixed. The first three peaks correspond to the first round, while the

last three to the second.

For the double dummy round implementation, the leaking behavior was the same, but

extended to three rounds. Nine correlation peaks were found for the key byte 1, meaning

that the correlated data was found in all of the initial three rounds.

Table 9 gathers the figures of merit for the dummy round insertion implementations:

Implementation Correlation Traces K Retrieved

Unprotected (first round) 0.918 46 1 Full key

Single dummy 0.341 580 3.551 Full key

Double dummy 0.203 1670 6,025 Full key

Table 9. CPA results for single dummy and double dummy implementations

In comparison with the unprotected AES, the single dummy round required at least 13

times more traces for the key retrieval, while this number increased to 36 when two

dummy rounds were inserted. Moreover, seems that the value of the protective factor

obtained grows linearly with the amount of dummy rounds inserted. Following this line of

thought, if three dummy rounds were inserted per round, one could expect to obtain a 𝑘

value of approximately 9. Therefore, the number of traces needed to break the algorithm

with that countermeasure could be predicted.

Regarding the correlations obtained, there is a leakage reduction with the dummy rounds

respect to the unprotected implementation. Indeed, this is what makes the CPA attack

slower. The dummy data inserted obfuscates the correlation analysis results and

therefore, more traces are needed in order to differentiate the correlations of correct byte

hypothesis from the wrong ones. This leakage reduction is still bigger with the double

dummy round protection, resulting in a slower CPA attack (i.e. more traces).

50

Another thing to take under consideration is the sample amount used in each attack.

Since the attacker does not know where the real data is located, the single dummy and

double dummy implementations had to be attacked with two times and three times more

samples, compared to the unprotected case. Twice amount of samples, make the CPA

twice slower. While three times more samples, make the CPA three times slower.

3.3.2.2. Shuffling

As a first approach, the SBOX-es of the SubBytes function were randomized. Similarly
to the dummy round insertion, the SBOX shuffling is generated independently for each
encryption of the AES. The objective is to desynchronize the target attack point in each
trace and, thus, a higher number of traces will be required to correlate back the traces
with the correct key value.

The implementation uses a function that generates a shuffling array where the order of
the 16 SBOX executions is stored for each AES round. This array is precomputed before
each encryption process. As a result, the probability of two traces having the same SBOX

operation at the same instant of time is of 1/16.

As a next step, one more possibility of AES randomization was implemented following

the same rules: the column order on which MixColumns operates. The case of the

MixColumns randomization is similar to the one of the SBOX-es, only that with the

following two differences:

 The attack region for the CPA was limited to the MixColumns operation of the

first round, not SubBytes.

 The randomized feature was the column order in which the MixColumns function

operates. Therefore, the probability of the applied randomization is of 1/4,

instead of 1/16.

The final implementation can be found in Appendix B3. This implementation also

includes the shuffling of the AddRoundKey operation, applied identically respect to the

SBOX randomization.

SPA on shuffled implementation

In Figure 20, the total number of the 10 rounds of the algorithm can be seen, same as in

the case of the unprotected implementation. Considering that only shuffling was applied

(no dummy operations were added), one could expect to see a really similar power profile

compared to the unprotected AES implementation. However, in the zoomed view offered

of the first round, the power profile looks quite different to the ones obtained for previous

implementations.

The reason for this difference is that the function used for the shuffling required the state

matrix to be an unidimensional array of length 16, unlike the two dimensional 4x4 array

we had before. As a result, the power profile of the round operations, except for

ShiftRows (which is the same), is not grouped in rows or columns anymore. On the

contrary, the byte level operations, inside each transformation, now can be seen as 16

sequential patterns. Besides, this modification resulted in a slower processing of the

round operations.

51

Figure 20. SPA on randomized implementation

The duration of the encryption was measured and is shown in Table 10:

Implementation Clock cycles (cc) Time (ms)

Unprotected 9780 1.325

Shuffled 12705 1.721

Table 10. Encryption length for the unprotected and randomized implementations

CPA on shuffled SBOX and MixColumns

A CPA with 30.000 power traces was performed on the shuffled SBOX-es. The
correlations plot obtained for the key byte 1 can be seen in Figure 21:

Figure 21. Correlation vs time for key byte 1 with SBOX shuffling

52

Compared to the non-randomized case, the Pearson coefficients obtained are really
small indicating that the protection against SCA added by the shuffled SBOX is
considerable. Table 11 gathers the figures of merit obtained for the CPA on the
randomized SBOX-es, where the maximum correlation is given with a value of only 0.05:

Implementation Correlation Traces K Retrieved

Non-shuffled SBOX 0.753 81 1 Full key

Shuffled SBOX (1/16) 0.05 21110 16.14 Full key

Table 11. CPA results for the shuffled SBOX-es

A CPA with 2000 traces was conducted on the randomized MixColumns operation and
Table 12 gathers the results obtained:

Implementation Correlation Traces K Retrieved

Non-shuffled MixColumns 0.812 61 1 Full Key

Shuffled MixColumns (1/4) 0.229 940 3.92 Full Key

Table 12. CPA results for the shuffled MixColumns

From the obtained results, we can deduce that the factor 𝑘 is proportional to the inverse
probability of the applied randomization (i.e.1/𝑝). In the case of the shuffled SBOX-es
the probability of two traces having the same SBOX operation at the same time spot is
of 1/16 and 𝑘 approximates to 16. In the case of the MixColumns randomization, for a

probability of 1/4, 𝑘 approximates to 4.

Note that the shuffled countermeasure only protects the shuffled operation. If we only
randomized the SubBytes (SBOX-es) operation, but we attacked the entire first round,
the leakage from the ShiftRows and MixColumns operations would be the same,
resulting in the retrieval of the key in those operations as well as in the unprotected
implementation. On the contrary, the dummy round insertion analyzed before, offered
protection at round level of the AES.

3.3.2.3. Random delays

The random delay countermeasure aims at desynchronizing the time instant where data
is manipulated in each trace. This is done is by adding random “sleep()” functions in the
code. Note this is a countermeasure that adds less overhead to the AES execution in
comparison with the dummy rounds, as we only insert small delays instead of adding full
rounds to the execution.

The implemented delay function consists of a dummy loop where a random value is
introduced and then decremented until the accumulator reaches zero. No further code
of the AES encryption is executed until the sleep loop is done. Therefore, each delay
adds a variable time shift depending on the random values introduced into the function.

Regarding the specific time shifts generated by the delays, the function adds a constant
delay of two clock cycles, plus three cycles per each value decremented. This granularity
could not be further reduced for the target MCU (despite AVR assembly instructions were
used to optimize it).

For instance, if trace one had a delay where 4 is decremented to 0 and trace two had a
delay (introduced at the same point in time) were 8 is decremented to zero, both traces
would suffer a desynchronization of 12 clock cycles (3x4=12) between them. Hence, the
desynchronization between traces is proportional to the difference of the decremented
values.

53

Regarding the constant delay of two cycles added by the delay function, it does not
contribute with any misalignment between the traces because it is applied equally to all
of them. As a result, the constant part of the delay is just adding an unavoidable overhead
to the encryption duration (2 clock cycles per delay inserted).

The experimental analysis for this countermeasure was done in two steps:

 Analysis of the protection offered by a single uniformly distributed random delay.

 Analysis of the protection offered by multiple random delays.

The implementation for the random delays can be found in Appendix C4.

3.3.2.3.1. Single delay analysis: plain uniform delay

As far as the random value generation is concerned (i.e. random values that are
introduced in the delay function), the classical and straightforward method is to generate
individual delays independently with values uniformly distributed in the interval [0, 𝑎] for

some 𝑎 ∈ 𝑁. We refer to this method as plain uniform delays.

Considering the implemented delay function, the plain uniform delays are generated by
precomputing some random values 𝑥 ∈ [1, 𝑎] and then passing them one by one to the

delay function every time this is called. The bigger that 𝑎 is, the more desynchronization
that the power traces will suffer.

As a first step, one single random delay was placed before the initial AddRoundKey of
the AES encryption. In order to analyze its protective effectivity, increasing values of 𝑎
were fixed for the random variable generation (i.e enlarging the window of the uniform
distribution) and, for each case, a CPA was carried out on the first round.

For the following experiments, not all the key was possible to retrieve in many cases.
Therefore, in order to have a comparable minimum amount of traces, this quantity was
targeted for the key byte 10 (which could be retrieved in the majority of the experiments).

SPA on desynchronized traces by a single random delay

Figure 22 shows three overlapped power traces, corresponding to the first two rounds of

the AES128. The power profile is the same for of all three traces plotted. However, each

of them has a different delay length applied, making each of them to be desynchronized

respect to the others. When a CPA is conducted in this situation, the samples do not

match between traces, making it more difficult for the attacker to correlate the power

consumption.

54

Figure 22: SPA on desynchronized traces by plain uniform delay

Table 13 gathers the total overhead added:

Uniform distribution Clock cycles (cc) Time (ms)

No delay 9780 1.3252

[1,2] 9788 1.3262

[1,3] 9791 1.2366

[1,4] 9794 1.3271

[1,5] 9797 1.3275

[1,6] 9800 1.3279

[1,7] 9803 1.3283

[1,8] 9806 1.3287

[1,9] 9809 1.3291

[1,10] 9812 1.3295

[1,63] 9974 1.3514

[1,127] 10166 1.3775

[1,255] 10547 1.4291

Table 13. Encryption length for AES128 with a single plain uniform delay

It can be seen that the maximum overhead added by the random delay depends on

which is the distribution length used. However, in general, the total added overhead to

the encryption is quite small in all cases.

CPA on desynchronized traces by a single random delay

The CPA results for the single plain uniform random delay are shown in Table 14:

55

Uniform
distribution

Correlation Traces K Retrieved
Abnormal
behaviour

No delay 0.918 46 1 Full key None

[1,2] 0.534 280 2.467 Full key None

[1,3] 0.437 700 3.901 Full key None

[1,4] 0.242 1560 5.823 15 key bytes Key byte 3

[1,5] 0.218 2090 6.740 12 key bytes None

[1,6] 0.168 3500 8.723 11 key bytes Key byte 3

[1,7] 0.112 6600 11.978 12 key bytes None

[1,8] 0.088 7500 12.768 11 key bytes Key byte 3

[1,63] 0.016 100000 46.62 1 key byte Key byte 3

Table 14. CPA results for single plain uniform delay analysis

It can be observed that the random delay works really well even if only one delay is

inserted per encryption. Already for the [1,8] distribution, the amount of required power

traces is 163 times bigger than for the unprotected implementation and besides, not all

the key bytes could be retrieved with this amount.

When the [1,5] distribution was attacked, retrieving the key bytes related to the first row

of the AES started to be more and more difficult. This is why a maximum amount of 12

key bytes were retrieved in many cases. In each case, k was calculated for the last

retrieved key byte.

Apart from that, the experiment for the distribution [1,63] resulted in only one key byte

ranked at first position. Note that this CPA was performed with 100.000 traces, denoting

that the protective effectivity is huge for this countermeasure.

Moreover, the only key byte that was found at first position had a maximum correlation

of 0.016, while the wrong guesses had correlations of 0.015. In other words, the

correlations obtained for the wrong guesses were quite similar to the correlation of the

right guess. In this situation, an attacker that does not know which the value of the right

guess is (unlike in this project where the key is known), could not be sure of having

retrieved the correct key byte.

In overall, the protective power of random delays as hiding countermeasure surpasses

that of the dummy rounds or shuffling. In addition, with a correct positioning of the delays,

the encryption can be protected from its beginning to the end.

However, there is a problem related to this results. A single random delay placed at the

beginning of the encryption is easy to identify and, therefore, easy to correct. The

attacker can use pattern recognition techniques in order to resynchronize all the traces.

As explained in the following section 3.3.2.3.2, multiple delays can be placed at different

points in time in order to make the resynchronization of the traces more difficult.

Note that in Table 14, an extra column was added named “Abnormal behavior”. During

the different experiments made, an abnormal leaking behavior was observed for key byte

3. With this behavior, either for the correct and wrong guesses, the resultant correlations

were much higher than for the rest of the key bytes.

In Figure 22, the correlations obtained for key byte 1, with normal leaking behavior, can

be seen when a single plain uniform delay of distribution [1,63] was introduced:

56

Figure 22: Correlation vs. Time for key byte 1 with normal leaking behavior

In Figure 23, for the same delay experiment, the correlations obtained for key byte 3 with

abnormal leaking behavior can be seen:

Figure 23. Correlation vs. Time for key byte 3 with abnormal leaking behavior

It can be seen that the correlation values in the abnormal case are much higher than

those of the normal case. Most of the times, when the key byte showed this behavior, it

could not be retrieved, or was the last being retrieved at least. Consequently, it is possible

to say that, even if higher correlations are obtained, the abnormal behavior does not

bring any advantage to the attacker.

The behavior was related to key byte 3 in all the experiments; however, the reason

behind this conduct could not be cleared out.

3.3.2.3.2. Multiple delay analysis

We have seen that a single and large delay placed at the beginning of the encryption
works really well for the trace desynchronization. However, from an attacker’s point of
view, this protection is easy to unmake, since there is only one desynchronization point
to be considered. In other words, it is easy to identify the point where delays are
introduced and, as a result, its effect is easy to correct.

57

For this reason, delays are rarely used in one single place. Random delays are usually
implemented with short lengths and placed at different points of the algorithm. Therefore,
in each execution run, variable time shifts will be applied at all those points.

The objective is to break the trace with relatively short delays in multiple places. This
way it is more difficult for an attacker to resynchronize the traces, since the total
desynchronization is a combination generated by multiple desynchronization points.

Consequently, an attacker usually faces the sum of several random delays. The delays
that will affect the SCA attack are the ones placed between the triggering of the power
measurement (i.e. beginning of AES encryption) and the attack point (i.e. SBOX output).

CPA on desynchronized traces by multiple random delays

For the experiments carried out, the uniform distribution was fixed at [1,3]. The CPA
attacks were performed in the case-scenarios where 3, 4, 5, 6 and 7 delay functions
were added. The delay functions were inserted before, during and after the initial
AddRoundKey transformation.

Note that in a real implementation the delays would be placed strategically across all the
encryption of the AES. However, considering the attack point chosen and the analytic
purpose of this experiment the case-scenarios defined are adequate enough.

In each case, the CPA was conducted targeting the first round. The results are shown in
Table 15:

N Correlation Traces K Retrieved Abnormal beavior

0 (no delay) 0.918 46 1.00 Full key -

3 0.141 3200 8.34 15 key bytes Key byte 3

4 0.122 5600 11.03 11 key bytes Key byte 3

5 0.109 8200 13.35 11 key bytes Key byte 3

6 0.091 9700 14.52 11 key bytes Key byte 3

7 0.061 10500 15.108 11 key bytes Key byte 3

Table 15. Results for multiple plain uniform delay analysis

It can be seen how the the minimum amount of traces grows together with the number
𝑁 of delays in the cummulative sum. However, seems that the more delays that are
added into the sum, the less that the protective effectivity grows.

3.3.3. AES with Boolean masking

The masking countermeasure pursues a very different objective than previous ones. The

objective is not to desynchronize the manipulation of sensitive data among different

executions but to completely decorrelate them by modifying these sensitive data to

something which cannot be guessed by an attacker in a CPA.

As explained in the State of the Art section 2.3.2, a masking countermeasure consists

basically in XORing the input data of the algorithm with a random unknown value. Then,

the algorithm has to be modified to keep the same encryption process:

𝐴𝐸𝑆(𝑖𝑛𝑝𝑢𝑡, 𝑘𝑒𝑦) = 𝐴𝐸𝑆′(𝑖𝑛𝑝𝑢𝑡 ⊕ 𝑚𝑎𝑠𝑘, 𝑘𝑒𝑦) (22)

Now, in order to mount the CPA attack, the attacker has two unknown variables, the

mask and the key, and the first one is randomly changing in each execution so it cannot

be guessed. With this countermeasure, the power consumption of the AES’ at the attack

58

point is proportional to 𝑆𝐵𝑂𝑋(𝑖𝑛𝑝𝑢𝑡 ⊕ 𝑚𝑎𝑠𝑘 ⊕ 𝑘𝑒𝑦) and not to 𝑆𝐵𝑂𝑋(𝑖𝑛𝑝𝑢𝑡 ⊕ 𝑘𝑒𝑦) as

before. Since the mask value is random and unknown, the attacker does not know to

which data correlate the power traces.

Note that, as the attacker does not know the mask value, he simply will try to correlate

the power traces with 𝑆𝐵𝑂𝑋(𝑖𝑛𝑝𝑢𝑡 ⊕ 𝑘𝑒𝑦), like before, and hope that the masking

implementation is badly done so that the Pearson correlation could still be found and the

secret key could still be recovered with some number of traces. Therefore, the objective

of this part of the project is to implement correctly the masking process in order to

completely hide the leakage.

3.3.3.1. Boolean masking implementation

The Boolean masking scheme that was implemented needs only 10 masks to work.

There are 6 masks (𝑚1,𝑚2, 𝑚3 𝑚4, 𝑚5 and 𝑚6) that are randomly generated before the

encryption of the AES and four masks (𝑚1
′, 𝑚2,

′ 𝑚3
′ and 𝑚4

′) that derive from the first

four.

Regarding the random mask generation, each mask produced is a random value ranging

from 0x01 to 0xFF. The mask 0x00 was avoided due to this value hacing no effect when

XOR-ed with any byte.

Since the masking is done row by row, the ShiftRows transformation does not have any

effect on the masks. On the contrary, the MixColumns transformation combines the bytes

from different rows and acts linearly on the masks. This is why, before the encryption,

the MixColumns function is applied to four of the initial masks obtaining:

 𝑀𝐶(𝑚1) = 𝑚1′ 𝑀𝐶(𝑚2) = 𝑚2′ 𝑀𝐶(𝑚3) = 𝑚3
′ 𝑀𝐶(𝑚4) = 𝑚4′ (23)

The two remaining masks (𝑚5 and 𝑚6) are used to compute the masking of the SubBytes

transformation. A LUT of 256 components has to be constructed in order to store every

byte value that meets equation (25):

𝑆𝐵(𝑥 ⊕ 𝑚4) = 𝑆𝐵(𝑥) ⊕ 𝑆𝐵(𝑚5) (24)

The masking principle used for the implementation is quite simple, but has every

intermediate value masked for all the encryption process. Remember that this is the

indispensable requirement for a masking scheme to be effective.

The implemented masking scheme is better explained in the block diagram of Figure 24

where the mask modifications for each step of the AES encryption are shown.

59

Figure 24. Simple Boolean masking scheme

In Figure 24, we can see how the AddRoundKey functions are used to transform the

masks, in addition to their original function. Every round key is mixed with the

corresponding masks before the encryption to achieve this. The masked round keys,

except for the last one, remove the masks coming from the output of the MixColumns

transformation and add the input mask for the SubBytes transformation. The last round

key is the only one that is different from the others. This key unmakes the masking

proceeding from the last round SubBytes function and thus, reveals the ciphertext.

Moreover, two XOR-ing functions have been defined in order to manipulate the masks.

The first XOR is used to mask the plaintext bytes, in each of the rows of the state, before

starting the encryption process. The second XOR allows the proper tracking of the masks

and the intermediate variables through the algorithmic process. With this purpose, it is

used in each round driving the transition from the output of the SubBytes function into

the MixColumns.

The implementation for the Boolean masking is given in Appendix B5.

60

SPA on Boolean masking implementation

Figure 25. SPA on Boolean masking implementation

Figure 25 shows the SPA on the AES with Boolean masking implementation. The

encryption is performed, like in the case of the unprotected AES, in 10 rounds. However,

in the zoomed view, some differences can be found.

Before the initial AddRoundKey operation, the power profile of the first XOR can be seen,

where the plaintext data is mixed with the masks for the first time. Then, one more

identical power profile can be seen corresponding to the second XOR, where the output

masks of the SubBytes operation are modified into the input masks of the MixColumns

operation.

The encryption duration was measured and is given in Table 16:

Implementation Clock cycles (cc) Time (ms)

Unprotected AES128 9780 1.325

AES128 with Boolean masking 9935 1.346

Table 16. Encryption length for the Boolean masked AES128 implementation

The performance cost for the masking countermeasure is minimal in comparison with

some hiding countermeasures previously analyzed.

CPA on Boolean masking implementation

A CPA with 100.000 traces was conducted on the masked implementation. The CPA

resulted in a non-successful attack for most of the key bytes, meaning that the masking

was being effective in most cases. However, one key byte could be retrieved. Results

61

showed that the key byte 11 leaked information at some point of the encryption process.

The CPA results are gathered in Table 17:

Implementation Correlation Traces K Retrieved

Unprotected AES128 0.918 46 1 Full key

AES128 with Boolean masking 0.067 100000 ∞ 1 key byte

Table 17. CPA results for unprotected and Boolean masked implementations

Figure 26 shows the correlations plot for the perfectly masked key byte 1:

Figure 26. Correlation vs. time for a perfectly masked key byte 1

It can be seen how the correlations for the right guess (blue) never exceed the values of

the wrong guesses (black). Hence, no leakage was found for the correct byte guess

meaning that the masking is effective for this key byte.

Nevertheless, a black correlation peak (positive and negative) appeared for the wrong

guesses. These kind of peaks generated by wrong guesses were found for all the key

bytes during this experiment with the masked implementation. Maybe, for same reason,

adding the masks into the algorithm modified the power consumption of the device in

such a way that the CPA started to obtain peaks for the wrong guesses. However, there

is no evidence to support this theory from the experiments carried out.

Similarly to the abnormal behavior reported in section 3.3.2.3.1, the reason behind these

peaks could not be cleared out.

We have already seen the correlations obtained for a perfectly masked key byte in Figure

26. The following Figure 27 shows the correlation plot for the leaking key byte 11 (note

that the correlation peaks for the wrong guesses appear again):

62

Figure 27. Correlation vs. time for the only leaking key byte 11

In this case, the CPA for the key byte 11 resulted in a leakage peak for the correct guess

located around sample 4000. Seems that the key byte leaked information before the

MixColumns transformation when the masks 𝑚6 are exchanged for the masks 𝑚1, 𝑚2,

𝑚3 and 𝑚4 through an XOR operation. Nevertheless, if the problem was the XOR-ing

operation, this behavior should be seen for all the key bytes, which is not the case. The

implementation that was developed treats every key byte in the same way; however, for

some reason only the key byte 11 showed this leaking behavior.

One possibility is to consider that there is an intermediate value, or mask, of 0x00 that

falls more than once at the point in time where the information is leaked. However, the

plaintext values from which the intermediate values derive are random and the masks

generated are also random (no 0x00 mask produced).

Figure 28 and Figure 29 show the correlation evolution of key byte 1 and 11 during the

CPA:

Figure 28. Correlation evolution during the CPA for perfectly masked key byte 1

The correlations obtained for the perfectly masked value are always below the
correlations of the wrong guesses. This is what the masking achieves. It is not possible
to correlate the correct byte value to the power consumption anymore because of the
masks that were added. This same behavior (masked behavior) was observed for all key
bytes, except for the key byte 11 as seen below:

63

Figure 29. Correlation evolution during the CPA for leaking key byte 11

Key byte 11, on the contrary, already with 20000 traces resulted in correlations for the

right guess over those of the wrong guesses. Now, even if this is true, in comparison with

the unprotected implementation case, we can see that the correlations obtained are quite

small and the difference between the right and wrong guesses is small as well.

Consequently, the masking is not perfect for this key byte case, but it is still partially

protective.

Therefore, it can be stated that the Boolean masking scheme that was implemented

offers an almost perfect protection against first order SCA.

64

4. Conclusions and future work

4.1. Conclusions

Side Channel attacks have been proven as the most effective and powerful hardware
attacks nowadays. With the right equipment and knowledge, all type of confidential
information can be extracted from operating devices. However, if the underlying nature
of SCA is understood, diverse types of countermeasures can be designed in order to
thwart these attacks.

This work was focused on implementing and analyzing side channel countermeasures
in order to assess their protective effectivity. In addition, their related overhead drawback
was considered as well.

Implementation Correlation Traces K Retrieved Overhead

Unprotected AES 0.918 46 1 Full key +0%

Single dummy 0.341 580 3.05 Full key +97.12%

Double dummy 0.203 1680 6 Full key +294.26%

SBOX shuffling 0.05 21110 16.14 Full key +29.81%

MixColumns shuffling 0.229 940 3.92 Full key +29.81%

Random delay [1,63] 0.016 100000 46.62 1 key byte +1.96%

Boolean masking 0.067 100000 ∞ 1 key byte +1.58%

Table 18. Comparison of overall countermeasure results

Table 18 summarizes the most relevant results obtained in section 3. All the implemented
countermeasures improved the cryptographic security of the AES algorithm and all of
them showed a related performance cost.

The dummy round insertion offers a relatively low protection, in comparison with the big
performance overhead added to the execution of the device. The shuffling, otherwise,
can offer decent protective features with low performance costs; however, its protection
is limited to the shuffled operation.

The random delay insertion can offer a great protection, together with low performance
drawbacks. Either implementing large variable delays or short and multiple delays,
resulted in a noticeable desynchronization of the power traces. However, unlike the rest
of countermeasures, the effect of the random delays can be corrected through the
resynchronization of traces.

Lastly, the implemented Boolean masking scheme was shown to be a countermeasure
that offers an almost perfect protection against first order SCA. There was a single key
byte that could be retrieved, while the rest of the key bytes were perfectly masked.
Moreover, its related cost in performance is totally negligible considering the protection
offered.

4.2. Future work

Countermeasures are an essential tool for protection against Side Channel analysis
nowadays. In order to properly implement them, a developer must understand what is
exactly happening with his or her implementation, how is the countermeasure offering
protection and why does this protection avoid SCA from extracting sensitive information.
For this reasons, many lines of future work exist related to the work done.

65

As a direct consequence of the results obtained from the experiments with the random
delays, the investigation of the abnormal behavior that was reported is another possible
future line of work. In the same manner, the correlation peaks obtained for the wrong
guesses with the masked implementation could be investigated as well. Experienced
workers in Applus+ have reported this same behaviors in some products tested in the
Lab. However, none of them could tell what are the fundamental reasons behind them.

Regarding the shuffling, work could be done on finding an implementation that does not
require the state modification from a 4x4 matrix to a unidimensional array of 16 elements.
This way, the protective effectivity would be kept, while reducing the total time overhead
added by the countermeasure to zero.

As far as the masking implementation is concerned, this project has covered only first
order SCA attacks. Further implementations and experiments could be carried out in
order to investigate second order and higher order masking schemes able to thwart
higher-order CPA attacks.

Lastly, there is one more possibility for future work: hardware countermeasure
implementation and analysis. This would allow the investigation of countermeasures
dedicated to hide signal in amplitude dimension. The analysis done for software
countermeasures should be valid for hardware designs; however, there is still a wide
possibility of research in the field of hardware countermeasures that cannot be
implemented in software. For instance, the implementation of the 16 SBOX operations
in parallel could be done in hardware, for the processing of all bytes at once. This is a
countermeasure whose effectivity would be very interesting to analyze.

66

5. Budget

This project was developed in Applus+ IT Laboratories. The company has extensive

experience in the R&D sector in addition to a high budget for these activities. A research

project can be divided into staff hours and equipment hours. Staff hours count the time

that the employee has been carrying out research tasks and equipment hours are

counted those that the devices have been working on in the programmed experiments.

 Staff hour Equipment hours

Nº of hours 300 520

Total 820

Table 20. Hours dedicated to the project

Table 20 states the total amount of hours dedicated to this project. The company

considers that the costs per hour of research ascend to 45€/H. Here, only the Staff hours

are considered. In this price, the costs of energy, amortization of equipment’s and other

expenses are considered.

Nº of staff hours 300

Price/hour 45€/h

Chipwhisperer 280€

Total 1630€

Table 21. Cost of the project

Table 21 shows the total cost of this project. As can be seen, the price of the

Chipwhisperer board was included and as a result, a total of13.500€ has been invested

to develop this project.

67

Bibiliography

[1] FIPS 197, Advanced Encryption Standard (AES).
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf

[2] Kocher P.C. (1996) Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems. In: Koblitz N. (eds) Advances in Cryptology — CRYPTO

’96. CRYPTO 1996. Lecture Notes in Computer Science, vol 1109. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-68697-5_9

[3] P. Wright. Spy Catcher: The Candid Autobiography of a Senior Intelligence Officer.

Viking Press,1987

 [4] Q. Tian, M. O'neill and N. Hanley, "Can leakage models be more efficient? non-linear

models in side channel attacks," 2014 IEEE International Workshop on Information

Forensics and Security (WIFS), 2014, pp. 215-220, doi: 10.1109/WIFS.2014.7084330.

[5] Kocher P., Jaffe J., Jun B. (1999) Differential Power Analysis. In: Wiener M. (eds)

Advances in Cryptology — CRYPTO’ 99. CRYPTO 1999. Lecture Notes in Computer

Science, vol 1666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48405-

1_25

[6] Brier E., Clavier C., Olivier F. (2004) Correlation Power Analysis with a Leakage
Model. In: Joye M., Quisquater JJ. (eds) Cryptographic Hardware and Embedded
Systems - CHES 2004. CHES 2004. Lecture Notes in Computer Science, vol 3156.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28632-5_2

[7] Messerges, Thomas & Dabbish, Ezzy & Sloan, Robert. (1999). Investigations of
Power Analysis Attacks on Smartcards.

[8] Mangard, S., Oswald, E., & Popp, T. (2010). Power analysis attacks: Revealing the
secrets of smart cards. New York, NY: Springer.

[9] Messerges T.S. (2000) Using Second-Order Power Analysis to Attack DPA
Resistant Software. In: Koç Ç.K., Paar C. (eds) Cryptographic Hardware and
Embedded Systems — CHES 2000. CHES 2000. Lecture Notes in Computer
Science, vol 1965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44499-
8_19

[10] Chari S., Jutla C.S., Rao J.R., Rohatgi P. (1999) Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener M. (eds) Advances in Cryptology —
CRYPTO’ 99. CRYPTO 1999. Lecture Notes in Computer Science, vol 1666.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48405-1_26

[11] Chari S., Rao J.R., Rohatgi P. (2003) Template Attacks. In: Kaliski B.S., Koç .K.,
Paar C. (eds) Cryptographic Hardware and Embedded Systems - CHES 2002. CHES
2002. Lecture Notes in Computer Science, vol 2523. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-36400-5_3

[12] Schindler W., Lemke K., Paar C. (2005) A Stochastic Model for Differential Side
Channel Cryptanalysis. In: Rao J.R., Sunar B. (eds) Cryptographic Hardware and
Embedded Systems – CHES 2005. CHES 2005. Lecture Notes in Computer Science,
vol 3659. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11545262_3

[13] Choudary O., Kuhn M.G. (2014) Efficient Template Attacks. In: Francillon A.,
Rohatgi P. (eds) Smart Card Research and Advanced Applications. CARDIS 2013.
Lecture Notes in Computer Science, vol 8419. Springer, Cham.
https://doi.org/10.1007/978-3-319-08302-5_17

68

[14]Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Side-Channel Attacks: an
Approach Based on Machine Learning. In Second International Workshop on
Constructive Side-Channel Analysis and Secure Design, pages 29–41. Center for
Advanced Security Research Darmstadt, 2011.

[15] Zotkin, Y., Olivier, F., & Bourbao, E. (2018). Deep Learning vs Template Attacks in
front of fundamental targets: experimental study. IACR Cryptol. ePrint Arch., 2018, 1213.

[16] Coron JS., Goubin L. (2000) On Boolean and Arithmetic Masking against
Differential Power Analysis. In: Koç Ç.K., Paar C. (eds) Cryptographic Hardware and
Embedded Systems — CHES 2000. CHES 2000. Lecture Notes in Computer
Science, vol 1965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44499-
8_18

[17] Oswald E., Mangard S., Herbst C., Tillich S. (2006) Practical Second-Order DPA
Attacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval D.
(eds) Topics in Cryptology – CT-RSA 2006. CT-RSA 2006. Lecture Notes in
Computer Science, vol 3860. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11605805_13

[18] Joye M., Paillier P., Schoenmakers B. (2005) On Second-Order Differential
Power Analysis. In: Rao J.R., Sunar B. (eds) Cryptographic Hardware and Embedded
Systems – CHES 2005. CHES 2005. Lecture Notes in Computer Science, vol 3659.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/11545262_22

[19] Waddle J., Wagner D. (2004) Towards Efficient Second-Order Power Analysis.
In: Joye M., Quisquater JJ. (eds) Cryptographic Hardware and Embedded Systems -
CHES 2004. CHES 2004. Lecture Notes in Computer Science, vol 3156. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28632-5_1

[20] Gierlichs B., Batina L., Preneel B., Verbauwhede I. (2010) Revisiting Higher-
Order DPA Attacks:. In: Pieprzyk J. (eds) Topics in Cryptology - CT-RSA 2010. CT-
RSA 2010. Lecture Notes in Computer Science, vol 5985. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-11925-5_16

[21] Gierlichs B., Batina L., Tuyls P., Preneel B. (2008) Mutual Information Analysis.
In: Oswald E., Rohatgi P. (eds) Cryptographic Hardware and Embedded Systems –
CHES 2008. CHES 2008. Lecture Notes in Computer Science, vol 5154. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85053-3_27

[22]Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2019(3) (May 2019)
148–179

[23] Clavier C., Coron JS., Dabbous N. (2000) Differential Power Analysis in the
Presence of Hardware Countermeasures. In: Koç Ç.K., Paar C. (eds) Cryptographic
Hardware and Embedded Systems — CHES 2000. CHES 2000. Lecture Notes in
Computer Science, vol 1965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-
540-44499-8_20

[24] Homma N., Nagashima S., Imai Y., Aoki T., Satoh A. (2006) High-Resolution
Side-Channel Attack Using Phase-Based Waveform Matching. In: Goubin L., Matsui
M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES
2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11894063_15

[25] M. Tunstall and O. Benoit. Effcient use of random delays in embedded software. In
D. Sauveron, K. Markantonakis, A. Bilas, and J.-J. Quisquater, editors, WISTP 2007,
volume 4462 of LNCS, pages 27{38. Springer, Heidelberg, 2007.

69

[26] J.-S. Coron and I. Kizhvatov. An e_cient method for random delay generation in
embedded software. In C. Clavier and K. Gaj, editors, CHES 2009, volume 5747 of
LNCS, pages 156{170. Springer, Heidelberg, 2009.

[27] Coron JS., Kizhvatov I. (2010) Analysis and Improvement of the Random Delay
Countermeasure of CHES 2009. In: Mangard S., Standaert FX. (eds) Cryptographic
Hardware and Embedded Systems, CHES 2010. CHES 2010. Lecture Notes in
Computer Science, vol 6225. Springer, Berlin, Heidelberg.

70

Appendices

Appendix A: AES in depth

A.1 Rijndael’s finite field

In order to properly understand how each of the AES internal transformation steps are
performed, a little insight into Rijndael’s finite field is needed. AES performs its
mathematical operations in the characteristic 2 finite field with 256 elements, which can

also be named Galois Field or 𝐺𝐹 (28). As it may seem obvious, the field dimension order
of 8 makes it suitable for working with bytes (1 byte = 8 bits).

To get started, a generic Galois Field with 𝑝𝑛
 elements would be denoted as 𝐺𝐹(𝑝𝑛),

where 𝑝 is a prime number, meaning simply a ring of integers modulo 𝑝. As a result,
operations such as addition, subtraction and multiplication can be performed as usual,
followed by a reduction modulo p. For instance, in 𝐺𝐹(6), the result of adding 4 to 6
would be reduced to 4 modulo 6.

A particular case is 𝐺𝐹(2), where addition is performed through the exclusive OR (XOR)
and multiplication with an AND. Since the only invertible element is 1, division is
the identity function.

Elements of 𝐺𝐹(𝑝𝑛) may be represented as polynomials of degree strictly less

than 𝑛 over 𝐺𝐹(𝑝). Operations are then performed modulo 𝑅 where 𝑅 is an irreducible
polynomial of degree 𝑛 over 𝐺𝐹(𝑝). When the prime characteristic number is 2, it is

conventional to express elements of 𝐺𝐹(𝑝𝑛) as binary numbers, with each term in a
polynomial represented by one bit in the corresponding element's binary expression. An
example of equivalences is shown in:

Polynomial x7 + x4 + x3 + x + 1

Binary {10011011}2

Hexadecimal {9B}16

Table 22. Equivalent representations

The Rijndael’s finite field is represented as:

 𝐺𝐹(28) =
 𝐺𝐹(2)[𝑥]

 (𝑥8+𝑥4+𝑥3+𝑥+1)
 (25)

𝐺𝐹 (2)[𝑥] is the set of polynomials with coefficients in 𝐺𝐹 (2), which, as stated before,

has a binary quotient ring limited to {0,1}. The irreducible 𝑅 in 𝐺𝐹 (2)[𝑥] , is the
polynomial in the denominator making equation (25) a finite field. Every element inside
the field will have a binary representation, always between the possible values inside a
byte, e.g. ∈ [00𝐻 , 𝐹𝐹𝐻].

In every finite field with characteristic 2 happens that addition modulo 2, subtraction
modulo 2 and XOR are identical operations. Multiplication in any finite field is

multiplication modulo the irreducible polynomial 𝑅 used to define the finite field. In other

words, in 𝐺𝐹(28) polynomial multiplication is done as usual followed by a division, using

the irreducible polynomial 𝑅 as the divisor. The remainder of the division is the product.
The next example equations show how a multiplication between polynomials, 𝑃(𝑥) and

𝑄(𝑥) would work in 𝐺𝐹(28):

 𝑃(𝑥) = 𝑥7 + 𝑥5 + 𝑥4 + 1 ∈ 𝐺𝐹(28) (26)

71

 𝑄(𝑥) = 𝑥4 + 𝑥3 + 𝑥 + 1 ∈ 𝐺𝐹(28) (27)

 𝑃(𝑥) ∙ 𝑄(𝑥) = (𝑥7 + 𝑥5 + 𝑥4 + 1) ∙ (𝑥4 + 𝑥3 + 𝑥 + 1) (28)

𝑃(𝑥) ∙ 𝑄(𝑥) = 𝑥11 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥4 + 𝑥3 + 𝑥 + 1(29)

 𝑃(𝑥) ∙ 𝑄(𝑥) = 𝑥11 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥3 + 𝑥 + 1 𝑚𝑜𝑑(𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) (30)

 𝑃(𝑥) ∙ 𝑄(𝑥) = 𝑥7 + 𝑥6 + 𝑥4 + 𝑥 = {11010010}2 = {𝐷2}16 (31)

The division made from equation (30) to (31) can be demonstrated through long
polynomial division.

Therefore, to sum up, in the Rijndael’s finite field we can work with all values inside a
byte, represented with 8 bits, and we get to perform two operations: XOR (addition) and
AND (multiplication).

A.2 AES round internal operations

A.2.1 SubBytes

SubBytes is the function that provides confusion through non-linearity to the AES. This
function is a combination of two transformations: the inverse function in the Rijndael’s
finite field and an invertible affine transformation.

In the next examples, the single bit values will be represented with lowercase letters,
while uppercase letters refer to bytes.

Consider the polynomial 𝐵(𝑥) and its coefficients in vector 𝐵, as well as the polynomial

𝑉(𝑥) and its coefficients in vector 𝑉:

 𝐵(𝑥) = 𝑏7𝑥
7 + 𝑏6𝑥

6 + 𝑏5𝑥
5 + 𝑏4𝑥

4 + 𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0 (32)

𝐵 = 𝑏7 𝑏6 𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0 (33)

 𝑉(𝑥) = 𝑣7𝑥
7 + 𝑣6𝑥

6 + 𝑣5𝑥
5 + 𝑣4𝑥

4 + 𝑣3𝑥
3 + 𝑣2𝑥

2 + 𝑣1𝑥 + 𝑣0 (34)

 𝑉 = 𝑣7 𝑣6 𝑣5 𝑣4 𝑣3 𝑣2 𝑣1 𝑣0 (35)

Vector 𝑉 will be the invert of 𝐵 in 𝐺𝐹(28) if the next condition is satisfied:

 𝐵(𝑥) ∙ 𝑉(𝑥) ≡ 1 𝑚𝑜𝑑(𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1) (36)

Hence, the remainder of the polynomial division between 𝐵(𝑥) and the irreducible

polynomial will be the multiplicative inverse of 𝐵(𝑥), denoted as 𝑉(𝑥). Once the invert is

obtained, an affine transformation shown in equation (37) is applied to 𝑉:

72

[

𝑦0

𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦6

𝑦7]

=

[

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1]

∙

[

𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7]

+

[

1
1
0
0
0
1
1
0]

 (37)

Vector 𝑌 keeps the output byte of the SubBytes function, related to the input byte 𝐵.
Following this logic and computing the output for every possible value, the AES SBOX
is built (Appendix B1)

When deciphering, the inverse operation InvSubBytes is performed. Firstly, the inverse
affine transformation (38) is applied and then, the inverse of the result is computed as in
(36).

[

𝑦0

𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦6

𝑦7]

=

[

0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0]

∙

[

𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7]

+

[

1
0
1
0
0
0
0
0]

 (38)

Once again, computing every possible output the AES inverse SBOX is built (Appendix
B1)

A.2.2 ShiftRows

ShiftRows is, basically, a byte permutation inside the state matrix. The permutation is
done row by row shifting the bytes to the left in 0, 1, 2 or 3 positions respectively. The
first row is kept, no shifting is applied to it. The second row is shifted 1 position to the left,
the second is shifted 2 positions to the left and the last row is shifted 3 positions to the
left.

Figure 30. ShiftRows permutation

Regarding decryption flow, InvShiftRows works exactly the same way but shifting in the
opposite direction.

73

A.2.3 MixColumns

MixColumns is the step where the four bytes of each column are combined using an
invertible linear transformation. MixColumns, together with ShiftRows, provides diffusion
to the AES algorithm. Hence, at this step each column of the state is multiplied by a fixed
matrix as shown in the following equations. Remember that both multiplication and
addition are performed in the Rijndael’s finite field:

 [

𝑏0

𝑏1

𝑏2

𝑏3

] = [

𝑥 𝑥 + 1 1 1
1 𝑥 𝑥 + 1 1
1 1 𝑥 𝑥 + 1

𝑥 + 1 1 1 𝑥

] ∙ [

𝑎0

𝑎1

𝑎2

𝑎3

] (39)

 {

𝑏0 = 𝑥 ∙ 𝑎0 + (𝑥 + 1) ∙ 𝑎1 + 𝑎2 + 𝑎3

𝑏1 = 𝑎0 + 𝑥 ∙ 𝑎1 + (𝑥 + 1) ∙ 𝑎2 + 𝑎3

𝑏2 = 𝑎0 + 𝑎1 + 𝑥 ∙ 𝑎2 + (𝑥 + 1) ∙ 𝑎3

𝑏3 = (𝑥 + 1) ∙ 𝑎0 + 𝑎1 + 𝑎2 + 𝑥 ∙ 𝑎3

 (40)

𝑎0, 𝑎1, 𝑎2 and 𝑎3 represent the four input bytes of the same column of the state, while
𝑏0, 𝑏1, 𝑏2 and 𝑏3 are their corresponding outputs. Therefore, we only need to perform

multiplications by 1, 𝑥 and 𝑥 + 1.

On the one hand, multiplying by 1 does nothing. On the other hand, multiplying by x+1
is done by multiplying by x, then by 1 and applying an XOR to both results. When

multiplying any byte by 𝑥 in 𝐺𝐹(28) we have two possibilities. Consider any byte 𝐵:

 𝐵 = 𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0 𝑤ℎ𝑒𝑟𝑒 𝑏𝑖 ∈ {0,1} (41)

If the MSB of 𝐵 is 0, the operation is a simple bit shift to the left:

 𝐵 ≪ 1 (42)

If the MSB of the byte is 1, the operation includes a shift plus an XOR with 0𝑥1𝐵:

 (𝐵 ≪ 1) ⨁ 0𝑥1𝐵 (43)

An interesting remark is that a bit shift to the left can be traduced as a multiplication by
2 in the Rijndael’s finite field. If this multiplication exceeds the limit value of 256 (FFH) the

result has to be XOR-ed with 0x1B (which works as the division by the irreducible
polynomial 0x11B in the particular case where the dividend is not greater than 1FFH)

Taking this under consideration, equation (39) and (40) can be written as:

 [

𝑏0

𝑏1

𝑏2

𝑏3

] = [

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

] ∙ [

𝑎0

𝑎1

𝑎2

𝑎3

] (44)

 {

𝑏0 = 2𝑎0 + 3𝑎1 + 𝑎2 + 𝑎3

𝑏1 = 𝑎0 + 2𝑎1 + 3𝑎2 + 𝑎3

𝑏2 = 𝑎0 + 𝑎1 + 2𝑎2 + 3𝑎3

𝑏3 = 3𝑎0 + 𝑎1 + 𝑎2 + 2𝑎3

 (45)

From this point of view, we get equation (42) and (43) translated to equation (46) and
(47):

74

2𝑎𝑖 = {
𝑎𝑖 ≪ 1 𝑖𝑓 𝑎 < 𝐹𝐹𝐻

(𝑎𝑖 ≪ 1) ⨁ 0𝑥1𝐵 𝑖𝑓 𝑎 ≥ 𝐹𝐹𝐻
 (46)

 3𝑎𝑖 = 2𝑎𝑖 ⨁ 𝑎𝑖 (47)

It is feasible to compute all the input-output possibilities for the 2𝑎 case multiplication and
the same can be done for the 3𝑎 case multiplication. This way, a look-up table can be
constructed for each multiplication as we did with the AES SBOX in the SubBytes step
(Appendix B2).

Regarding decryption, InvMixColumns works the same way, only that the multiplication
matrix is the inverse of (44) and can be written as:

 [

𝑏0

𝑏1

𝑏2

𝑏3

] = [

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

] ∙ [

𝑎0

𝑎1

𝑎2

𝑎3

] (48)

 {

𝑏0 = 14𝑎0 + 11𝑎1 + 13𝑎2 + 9𝑎3

𝑏1 = 9𝑎0 + 14𝑎1 + 11𝑎2 + 13𝑎3

𝑏2 = 13𝑎0 + 9𝑎1 + 14𝑎2 + 11𝑎3

𝑏3 = 11𝑎0 + 13𝑎1 + 9𝑎2 + 14𝑎3

 (49)

All possibilities for these four multiplication cases can also be gathered in four LUT tables
(Appendix B2).

A.2.4 AddRoundKey

AddRoundKey is performed once at the beginning of encryption and once more at the
end of each round. The initial AddRoundKey mixes the secret key with the plaintext by
XOR-ing them. Each of the AddRoundKey steps at the end of the rounds serve to XOR
the state with the corresponding round key.

For decryption purposes, the AddRoundKey steps work equally, only that the round key
order is the opposite.

A.3 Key Schedule:

The key schedule generates each sub-key, needed for each round of the algorithm. The
first round key is derived from the main secret key. Each of the following round keys are
derived from the previous ones and the algorithm applied is always the same.

The first step is to take the previous 128 bit key and divide it into four words of 32 bits
denoted as 𝜔𝑖.

 𝐾𝑒𝑦 = 𝑏127 𝑏126 𝑏125 … 𝑏2 𝑏1 𝑏0 = 𝐵15𝐵14𝐵13𝐵12𝐵11𝐵10𝐵9𝐵8𝐵7𝐵6𝐵5𝐵4𝐵3𝐵2𝐵1𝐵0 (50)

 𝜔0 = 𝐵15𝐵14𝐵13𝐵12 ; 𝜔1 = 𝐵11𝐵10𝐵9𝐵8 ; 𝜔2 = 𝐵7𝐵6𝐵5𝐵4 ; 𝜔3 = 𝐵3𝐵2𝐵1𝐵0 (51)

Once we have our separate words, the least significant word ω3 goes through a function
composed of three transformations:

1) Circular byte shift to the left 𝜔3
′ = 𝐵2𝐵1𝐵0𝐵3 (52)

75

2) Byte SBOX substitution 𝜔3
′′ = 𝑆𝐵(𝐵2)𝑆𝐵(𝐵1)𝑆𝐵(𝐵0)𝑆𝐵(𝐵3) (53)

3) Add (XOR) with round constant 𝑓(𝜔3) = 𝜔3
′′ ⨁ 𝑅𝐶 (54)

The round constant 𝑅𝐶 is a fixed 32-bit value for each round. These fixed values are
gathered in the following table:

Round RC

R1 01000000H

R2 02000000H

R3 04000000H

R4 08000000H

R5 10000000H

R6 20000000H

R7 40000000H

R8 80000000H

R9 1B000000H

R10 36000000H

Table 23. Round constant values

Then, each sub-key or round key 𝑆𝐾𝑛 is constructed word by word to be concatenated
as follows:

 𝑆𝐾0 = 𝑓(𝜔3) ⨁ 𝜔0 (55)

 𝑆𝐾1 = 𝑓(𝜔3) ⨁ 𝜔0 ⨁ 𝜔1 (56)

 𝑆𝐾2 = 𝑓(𝜔3) ⨁ 𝜔0 ⨁ 𝜔1 ⨁ 𝜔2 (57)

 𝑆𝐾3 = 𝑓(𝜔3) ⨁ 𝜔0 ⨁ 𝜔1 ⨁ 𝜔2 ⨁ 𝜔3 (58)

 SKn = {SK0, SK1, SK2, SK3} , n ∈ [1,10] (59)

Appendix B: AES LUTs

B.1 AES SBOX and reverse SBOX

AES SBOX

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

0X 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1X CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2X B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3X 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4X 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5X 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6X D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

76

7X 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8X CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9X 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

AX E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

BX E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

CX BA 78 25 2E AC A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

DX 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

EX E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

FX 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table 24. AES SBOX LUT

AES reverse SBOX

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

0X 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1X 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E7 CB

2X 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3X 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4X 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5X 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6X 90 D8 AB 00 8C BV D3 0A F7 E4 58 05 B8 B3 45 06

7X D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8X 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9X 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 AC 75 DF 6E

AX 47 F1 1A 71 AD 29 C5 89 6F B7 62 0E AA 18 BE 1B

BX FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

CX AF DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

DX 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

EX A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

FX 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Table 25. AES reverse SBOX LUT

B.2 Galois multiply LUTs

Galois multiply by 2

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

0X 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E

77

1X 20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E

2X 40 42 44 46 48 4A 4C 4E 50 52 54 56 58 5A 5C 5E

3X 60 62 64 66 68 6A 6C 6E 70 72 74 76 78 7A 7C 7E

4X 80 82 84 86 88 8A 8C 8E 90 92 94 96 98 9A 9C 9E

5X A0 A2 A4 A6 A8 AA AC AE B0 B2 B4 B6 B8 BA BC BE

6X C0 C2 C4 C6 C8 CA CC CE D0 D2 D4 D6 D8 DA DB DE

7X E0 E2 E4 E6 E8 EA EC EE F0 F2 F4 F6 F8 FA FB FE

8X 1B 19 1F 1D 13 11 17 15 0B 09 0F 0D 03 01 07 05

9X 3B 39 3F 3D 33 31 37 35 2B 29 2F 2D 23 21 27 25

AX 5B 59 5F 5D 53 51 57 55 4B 49 4F 4D 43 41 47 45

BX 7B 79 7F 7D 73 71 77 75 6B 69 6F 6D 63 61 67 65

CX 9B 99 9F 9D 93 91 97 95 8B 89 8F 8D 83 81 87 85

DX BB B9 BF BD B3 B1 B7 B5 AB A9 AF AD A3 A1 A7 A5

EX DB D9 DF DD D3 D1 D7 D5 CB C9 CF CD C3 C1 C7 C5

FX FB F9 FF FD F3 F1 F7 F5 EB E9 EF ED E3 E1 E7 E5

Table 26. Galois LUT for multiply by 2

Galois multiply by 3

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

0X 00 03 06 05 0C 0F 0A 09 18 1B 1E 1D 14 17 12 11

1X 30 33 36 35 3C 3F 3A 39 28 2B 2E 2D 24 27 22 21

2X 60 63 66 65 6C 6F 6A 69 78 7B 7E 7D 74 77 72 71

3X 50 53 56 55 5C 5F 5A 59 48 4B 4E 4D 44 47 42 41

4X C0 C3 C6 C5 CC CF CA C9 D8 DB DE DD D4 D7 D2 D1

5X F0 F3 F6 F5 FC FF FA F9 E8 EB EE ED E4 E7 E2 E1

6X A0 A3 A6 A5 AC AF AA A9 B8 BB BE BD B4 B7 B2 B1

7X 90 93 96 95 9C 9F 9A 99 88 8B 8E 8D 84 87 82 81

8X 9B 98 9D 9E 97 94 91 92 83 80 85 86 8F 8C 89 8A

9X AB A8 AD AE A7 A4 A1 A2 B3 B0 B5 B6 BF BC B9 BA

AX FB F8 FD FE F7 F4 F1 F2 E3 E0 E5 E6 EF EC E9 EA

BX CB C8 CD CE C7 C4 C1 C2 D3 D0 D5 D6 DF DC D9 DA

CX 5B 58 5D 5E 57 54 51 52 43 40 45 46 4F 4C 49 4A

DX 6B 68 6D 6E 67 64 61 62 73 70 75 76 7F 7C 79 7A

EX 3B 38 3D 3E 37 34 31 32 23 20 25 26 2F 2C 29 2A

FX 0B 08 0D 0E 07 04 01 02 13 10 15 16 1F 1C 19 1A

78

Table 27. Galois LUT for multiply by 3

Galois multiply by 9

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

0X 00 09 12 1B 24 2D 36 3F 48 41 5A 53 6C 65 7E 77

1X 90 99 82 8B B4 BD A6 AF D8 D1 CA C3 FC F5 EE E7

2X 3B 32 29 20 1F 16 0D 04 73 7A 61 68 57 5E 45 4C

3X AB A2 B9 B0 8F 86 9D 94 E3 EA F1 F8 C7 CE D5 DC

4X 76 7F 64 6D 52 5B 40 49 3E 37 2C 25 1A 13 08 01

5X E6 EF F4 FD C2 CB D0 D9 AE A7 BC B5 8A 83 98 91

6X 4D 44 5F 56 69 60 7B 72 05 0C 17 1E 21 28 33 3A

7X DD D4 CF C6 F9 F0 EB E2 95 9C 87 8E B1 B8 A3 AA

8X EC E5 FE F7 C8 C1 DA D3 A4 AD B6 BF 80 89 92 9B

9X 7C 75 6E 67 58 51 4A 43 34 3D 26 2F 10 19 02 0B

AX D7 DE C5 CC F3 FA E1 E8 9F 96 8D 84 BB B2 A9 A0

BX 47 4E 55 5C 63 3A 71 78 0F 06 AD 14 2B 22 39 30

CX 9A 93 88 82 BE B7 AC A5 D2 DB C0 C9 F6 FF E4 ED

DX 0A 03 18 11 2E 27 3C 35 42 4B 50 59 66 6F 74 7D

EX A1 A8 B3 BA 85 8C 97 9E E9 E0 FB F2 CD C4 DF D6

FX 31 38 23 2A 15 1C 07 0E 79 70 6B 62 5D 54 4F 46

Table 28. Galois LUT for multiply by 9

Galois multiply by 11

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

0X 00 0B 16 1D 2C 27 3A 31 58 53 4E 45 74 7F 62 69

1X B0 BB A6 AD 9C 97 8A 81 E8 E3 FE F5 C4 CF D2 D9

2X 7B 70 6D 66 57 5C 41 4A 23 28 35 3E 0F 04 19 12

3X CB C0 DD D6 E7 EC F1 FA 93 98 85 8E BF B4 A9 A2

4X F6 FD E0 EB DA D1 CC C7 AE A5 B8 B3 82 89 94 9F

5X 46 4D 50 5B 6A 61 7C 77 1E 15 08 03 32 39 24 2F

6X 8D 86 9B 90 A1 AA B7 BC D5 DE C3 C8 F9 F2 EF E4

7X 3D 36 2B 20 11 1A 07 0C 65 6E 73 78 49 42 5F 54

8X F7 FC E1 EA DB D0 CD C6 AF A4 B9 B2 83 88 95 9E

9X 47 4C 51 5A 6B 60 7D 76 1F 14 09 02 33 38 25 2E

AX 8C 87 9A 91 A0 AB B6 BD D4 DF C2 C9 F8 F3 EE E5

BX 3C 37 2A 21 10 AB 06 0D 64 6F 72 79 48 43 5E 55

79

CX 01 0A 17 1C 2D 26 3B 30 59 52 4F 44 75 7E 63 68

DX B1 BA A7 AC 9D 96 8B 80 E9 E2 FF F4 C5 CE D3 D8

EX 7A 71 6C 67 56 5D 40 4B 22 29 34 3F 0E 05 18 13

FX CA C1 DC D7 E6 ED F0 FB 92 99 84 8F BE B5 A8 A3

Table 29. Galois LUT for multiply by 11

Galois multiply by 13

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

0X 00 0D 1A 17 34 39 2E 23 68 65 72 7F 5C 51 46 4B

1X D0 DD CA C7 E4 E9 FE F3 B8 B5 A2 AF 8C 81 96 9B

2X BB B6 A1 AC 8F 82 95 98 D3 DE C9 C4 E7 EA FD F0

3X 6B 66 71 7C 5F 52 45 48 03 0E 19 14 37 3A 2D 20

4X 6D 60 77 7A 59 54 43 4E 05 08 AF 12 31 3C 2B 26

5X BD B0 A7 AA 89 84 93 9E D5 D8 CF C2 E1 EC FB F6

6X D6 DB CC C1 E2 EF F8 F5 BE B3 A4 A9 8A 87 90 9D

7X 06 0B 1C 11 32 3F 28 25 6E 63 74 79 5A 57 40 4D

8X DA D7 C0 CD EE E3 F4 F9 B2 BF A8 A5 86 8B 9C 91

9X 0A 07 10 1D 3E 33 24 29 62 6F 78 75 56 5B 4C 41

AX 61 6C 7B 76 55 58 4F 42 09 04 13 1E 3D 30 27 2A

BX B1 BC AB A6 85 88 9F 92 D9 D4 C3 CE ED E0 F7 FA

CX B7 BA AD A0 83 8E 99 94 DF D2 C5 C8 EB E6 F1 FC

DX 67 6A 16 1B 38 35 22 2F 64 69 7E 73 50 5D 4A 47

EX 0C 01 16 1B 38 35 22 2F 64 69 7E 73 50 5D 4A 47

FX DC D1 C6 CB E8 E5 F2 FF B4 B9 AE A3 80 8D 9A 97

Table 30. Galois LUT for multiply by 13

Galois multiply by 14

 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF

0X 00 0E 1C 12 38 36 24 2A 70 7E 6C 62 48 46 54 5A

1X E0 EE FC F2 D8 D6 C4 CA 90 9E 8C 82 A8 A6 B4 BA

2X DB D5 C7 C9 E3 ED FF F1 AB A5 B7 B9 93 9D 8F 81

3X 3B 35 27 29 03 0D 1F 11 4B 45 57 59 73 7D 6F 61

4X AD A3 B1 BF 95 9B 89 87 DD D3 C1 CF E5 EB F9 F7

5X 4D 43 51 5F 75 7B 69 67 3D 33 21 2F 05 0B 19 17

6X 76 78 6A 64 4E 40 52 5C 06 08 1A 14 3E 30 22 2C

7X 96 98 8A 84 AE A0 B2 BC E6 E8 FA F4 DE D0 C2 CC

80

8X 41 4F 5D 53 79 77 65 6B 31 3F 2D 23 09 07 15 1B

9X A1 AF BD B3 99 97 85 8B D1 DF CD C3 E9 E7 F5 FB

AX 9A 94 86 88 A2 AC BE B0 EA E4 F6 F8 D2 DC CE C0

BX 7A 74 66 68 42 4C 5E 50 0A 04 16 18 32 3C 2E 20

CX EC E2 F0 FE D4 DA C8 C6 9C 92 80 8E A4 AA B8 B6

DX 0C 02 10 1E 34 3A 28 26 7C 72 60 6E 44 4A 58 56

EX 37 39 2B 25 0F 01 13 1D 47 49 5B 55 7F 71 63 6D

FX D7 D9 CB C5 EF E1 F3 FD A7 A9 BB B5 9F 91 83 8D

Table 31. Galois LUT for multiply by 14

Appendix C: Implementation codes

C.1 AES128

/***/
/* Includes: */
/***/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "aes.h"

/***/
/* Defines: Fixed values of the AES128 implementation */
/***/
// Number of rows and columns of the AES state
#define Nb 4
// The number of rounds in AES128 cipher
#define Nr 10
// Key length in bytes [128 bit]
#define KEYLEN 16

/***/
/* Private variables: */
/***/
// state matrix holding the intermediate values during encryption
typedef uint8_t state_t[4][4];
static state_t* state;

// The array that stores the round keys (11keys x 16bytes = 176bytes).
static uint8_t RoundKey[176];

// The Key input to the AES algorithm
static uint8_t* Key;

// SBOX LUT
static const uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe,
0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c,
0xa4, 0x72, 0xc0,

81

0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71,
0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb,
0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a,
0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50,
0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10,
0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64,
0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde,
0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91,
0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65,
0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b,
0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86,
0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce,
0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
0x54, 0xbb, 0x16 };

// Reverse SBOX LUT
static const uint8_t rsbox[256] ={
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81,
0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4,
0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42,
0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d,
0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7,
0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8,
0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01,
0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0,
0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c,
0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa,
0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78,
0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27,
0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93,
0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83,
0x53, 0x99, 0x61,

82

0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
0x21, 0x0c, 0x7d };

// Round constant array
static const uint8_t Rcon[10] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x1b, 0x36 };

/***/
/* Private functions: */
/***/
// Returns the SBOX substitution of a byte
static uint8_t getSBoxValue(uint8_t num)
{
 return sbox[num];
}

// Returns the inverse SBOX substitution of a byte
static uint8_t getSBoxInvert(uint8_t num)
{
 return rsbox[num];
}

// Function used to multiply by x in MixColumns computation
static uint8_t xtime(uint8_t x)
{
 return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}

// Function used for InvMixColumns multiplications
static uint8_t Multiply(uint8_t x, uint8_t y)
{
 return (((y & 1) * x) ^
 ((y>>1 & 1) * xtime(x)) ^
 ((y>>2 & 1) * xtime(xtime(x))) ^
 ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
 ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
}

// This function implements the AES key schedule.
static void KeyExpansion(void)
{
 uint8_t i, j, k;
 uint8_t tempa[4]; // Used for the column/row operations

 // The first round key is derived from the input key.
 for(i = 0; i < Nb; ++i)
 {
 RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
 RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
 RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
 RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
 }

 // All other round keys are found from the previous round key.
 for(; (i < (Nb * (Nr + 1))); ++i)
 {
 for(j = 0; j < 4; ++j)
 {
 // Store previous key in tempa
 tempa[j]=RoundKey[(i-1) * 4 + j];
 }

83

 if (i % Nb == 0)
 {
 // Function RotWord()
 k = tempa[0];
 tempa[0] = tempa[1];
 tempa[1] = tempa[2];
 tempa[2] = tempa[3];
 tempa[3] = k;

 // Function Subword()
 tempa[0] = getSBoxValue(tempa[0]);
 tempa[1] = getSBoxValue(tempa[1]);
 tempa[2] = getSBoxValue(tempa[2]);
 tempa[3] = getSBoxValue(tempa[3]);

 // XOR with round constant
 tempa[0] = tempa[0] ^ Rcon[i/Nb - 1];
 }
 // Add the round key to the array
 RoundKey[i * 4 + 0] = RoundKey[(i - Nb) * 4 + 0] ^ tempa[0];
 RoundKey[i * 4 + 1] = RoundKey[(i - Nb) * 4 + 1] ^ tempa[1];
 RoundKey[i * 4 + 2] = RoundKey[(i - Nb) * 4 + 2] ^ tempa[2];
 RoundKey[i * 4 + 3] = RoundKey[(i - Nb) * 4 + 3] ^ tempa[3];
 }
}

// This function XORs the round key to state.
static void AddRoundKey(uint8_t round)
{
 uint8_t i,j;
 for(i=0;i<4;++i)
 {
 for(j = 0; j < 4; ++j)
 {
 (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
 }
 }
}

// The SubBytes function
static void SubBytes(void)
{
 uint8_t i, j;
 for(i = 0; i < 4; ++i)
 {
 for(j = 0; j < 4; ++j)
 {
 (*state)[i][j] = getSBoxValue((*state)[i][j]);
 }
 }
}

//Inverse SubBytes
static void InvSubBytes(void)
{
 uint8_t i,j;
 for(i=0;i<4;++i)
 {
 for(j=0;j<4;++j)
 {
 (*state)[i][j] = getSBoxInvert((*state)[i][j]);

84

 }
 }
}

// Shiftrows function. Offset = Row number (0,1,2,3).
static void ShiftRows(void)
{
 uint8_t temp;
 // Rotate first row 1 column to left
 temp = (*state)[0][1];
 (*state)[0][1] = (*state)[1][1];
 (*state)[1][1] = (*state)[2][1];
 (*state)[2][1] = (*state)[3][1];
 (*state)[3][1] = temp;

 // Rotate second row 2 columns to left
 temp = (*state)[0][2];
 (*state)[0][2] = (*state)[2][2];
 (*state)[2][2] = temp;

 temp = (*state)[1][2];
 (*state)[1][2] = (*state)[3][2];
 (*state)[3][2] = temp;

 // Rotate third row 3 columns to left
 temp = (*state)[0][3];
 (*state)[0][3] = (*state)[3][3];
 (*state)[3][3] = (*state)[2][3];
 (*state)[2][3] = (*state)[1][3];
 (*state)[1][3] = temp;
}

//Inverse ShiftRows
static void InvShiftRows(void)
{
 uint8_t temp;
 // Rotate first row 1 column to right
 temp=(*state)[3][1];
 (*state)[3][1]=(*state)[2][1];
 (*state)[2][1]=(*state)[1][1];
 (*state)[1][1]=(*state)[0][1];
 (*state)[0][1]=temp;

 // Rotate second row 2 columns to right
 temp=(*state)[0][2];
 (*state)[0][2]=(*state)[2][2];
 (*state)[2][2]=temp;
 temp=(*state)[1][2];
 (*state)[1][2]=(*state)[3][2];
 (*state)[3][2]=temp;

 // Rotate third row 3 columns to right
 temp=(*state)[0][3];
 (*state)[0][3]=(*state)[1][3];
 (*state)[1][3]=(*state)[2][3];
 (*state)[2][3]=(*state)[3][3];
 (*state)[3][3]=temp;
}

// MixColumns function mixes the columns of the state matrix
static void MixColumns(void)

85

{
 uint8_t i;
 uint8_t Tmp,Tm,t;
 for(i = 0; i < 4; ++i)
 {
 t = (*state)[i][0];
 Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
 Tm =(*state)[i][0]^(*state)[i][1]; Tm=xtime(Tm); (*state)[i][0]^=Tm^Tmp;
 Tm =(*state)[i][1]^(*state)[i][2]; Tm=xtime(Tm); (*state)[i][1]^=Tm^Tmp;
 Tm =(*state)[i][2]^(*state)[i][3]; Tm=xtime(Tm); (*state)[i][2]^=Tm^Tmp;
 Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp;
 }
}
// Inerse MixColumns
static void InvMixColumns(void)
{
 uint8_t i;
 uint8_t a,b,c,d;
 for(i=0;i<4;++i)
 {
 a = (*state)[i][0];
 b = (*state)[i][1];
 c = (*state)[i][2];
 d = (*state)[i][3];

 (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^
Multiply(d, 0x09);
 (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^
Multiply(d, 0x0d);
 (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^
Multiply(d, 0x0b);
 (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^
Multiply(d, 0x0e);
 }
}

static void Round(uint8_t round)
{
 SubBytes();
 ShiftRows();
 MixColumns();
 AddRoundKey(round);
}

static void LastRound()
{
 SubBytes();
 ShiftRows();
 AddRoundKey(Nr);
}

static void InvRound(uint8_t round)
{
 InvShiftRows();
 InvSubBytes();
 InvMixColumns();
 AddRoundKey(round);
}

static void InvLastRound()
{

86

 InvShiftRows();
 InvSubBytes();
 AddRoundKey(0);
}

// Encryption function
static void Cipher(void)
{
 uint8_t round;
 AddRoundKey(0); // Initial AddRoundKey.

 for(round = 1; round < Nr; ++round) //From round 1 to 9
 {Round(round);}

 LastRound(); //Last round
}

// Decryption function
static void InvCipher(void)
{
 uint8_t round;
 AddRoundKey(Nr);

 for(round=Nr-1; round>0; --round)
 {InvRound(round);} //From round 10 to 2

 InvLastRound();
}

/** /
/* Public functions: */
/***/
void AES128_ECB_indp_setkey(uint8_t* key)
{
 Key = key;
 KeyExpansion();
}

void AES128_ECB_indp_crypto(uint8_t* input)
{
 state = (state_t*)input;
 Cipher();
}

void AES128_ECB_indp_inv_crypto(uint8_t* input)
{
 state = (state_t*)input;
 InvCipher();
}

C.2 AES128 with dummy round insertion (only encryption)

/***/
/* Includes: */
/***/
#include "aes.h"
#include <stdint.h>
#include <string.h>
#include <stdlib.h>

/***/

87

/* Defines: Fixed values of the AES128 implementation */
/***/
// Number of rows and columns
#define Nb 4
// The number of rounds in AES128 cipher.
#define Nr 10
// Key length in bytes [128 bit]
#define KEYLEN 16

/***/
/* COMMENT/UNCOMMENT THE COUNTERMEASURES YOU WANT TO ACTIVATE */
/***/
// #define OneDummy
 #define TwoDummies

/***/
/* Private variables: */
/***/
// state matrix holding the intermediate results during encryption
typedef uint8_t state_t[4][4];
static state_t* state;

// The array that stores the round keys (11keys x 16bytes = 176bytes).
static uint8_t RoundKey[176];

// The Key input to the AES Program
static uint8_t* Key;

// Dummy state matrix1 for dummy round operations
static uint8_t dummy_state_t1[4][4];
static state_t* dummy_state1 = &dummy_state_t1;

#ifdef TwoDummies
// Dummy state matrix2 for dummy round operations
static uint8_t dummy_state_t2[4][4];
static state_t* dummy_state2 = &dummy_state_t2;
#endif

// This vector will store the needed random selection values for each round
static uint8_t RandomVector[10];

//10 dummy keys needed for single dummy
#ifdef OneDummy
#define DummyKeyNum 10
static uint8_t DummyKeys[DummyKeyNum*KEYLEN];
#endif

//20 dummy keys needed for double dummy
#ifdef TwoDummies
#define DummyKeyNum 20
static uint8_t DummyKeys[DummyKeyNum*KEYLEN];
#endif

//AES SBOX LUT
static const uint8_t sbox[256] = {
 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe,
0xd7, 0xab, 0x76,
 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c,
0xa4, 0x72, 0xc0,
 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71,
0xd8, 0x31, 0x15,

88

 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb,
0x27, 0xb2, 0x75,
 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
0xe3, 0x2f, 0x84,
 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a,
0x4c, 0x58, 0xcf,
 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50,
0x3c, 0x9f, 0xa8,
 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10,
0xff, 0xf3, 0xd2,
 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64,
0x5d, 0x19, 0x73,
 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde,
0x5e, 0x0b, 0xdb,
 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91,
0x95, 0xe4, 0x79,
 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65,
0x7a, 0xae, 0x08,
 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b,
0xbd, 0x8b, 0x8a,
 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86,
0xc1, 0x1d, 0x9e,
 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce,
0x55, 0x28, 0xdf,
 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
0x54, 0xbb, 0x16 };

// The round constant array
static const uint8_t Rcon[11] =
{0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36};

/***/
/* Private functions: */
/***/
static uint8_t getSBoxValue(uint8_t num)
{
 return sbox[num];
}

static uint8_t xtime(uint8_t x)
{
 return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}

static uint8_t getByte(void)
{
 return rand() % 256;
}

static void RandomGeneration(void)
{
 //Fill the dummy state 1 with random values
 for (uint8_t i = 0; i<Nb; i++)
 {
 for(uint8_t j = 0; j<Nb; j++)
 {
 (*dummy_state1)[i][j] = getByte();
 }
 }
 #ifdef TwoDummies
 //Fill the dummy state 2 with random values

89

 for (uint8_t i = 0; i<Nb; i++)
 {
 for(uint8_t j = 0; j<Nb; j++)
 {
 (*dummy_state2)[i][j] = getByte();
 }
 }
 #endif
 // Generate all needed dummy keys
 for (uint16_t i = 0; i<KEYLEN*DummyKeyNum; i++)
 {
 DummyKeys[i] = getByte();
 }

 #ifdef OneDummy
 for (uint8_t i = 0; i<10 ; i++)
 {
 RandomVector[i] = rand() % 2;
 }
 #endif
 #ifdef TwoDummies
 for (uint8_t i = 0; i<10 ; i++)
 {
 RandomVector[i] = rand() % 3;
 }
 #endif
}

static void KeyExpansion(void)
{
 uint8_t i, j, k;
 uint8_t tempa[4]; // Used for the column/row operations

 // The first round key is the key itself.
 for(i = 0; i < Nb; ++i)
 {
 RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
 RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
 RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
 RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
 }

 // All other round keys are found from the previous round keys.
 for(; (i < (Nb * (Nr + 1))); ++i)
 {
 for(j = 0; j < 4; ++j)
 {
 // Store previous key in tempa
 tempa[j]=RoundKey[(i-1) * 4 + j];
 }
 if (i % Nb == 0)
 {
 // Function RotWord()
 k = tempa[0];
 tempa[0] = tempa[1];
 tempa[1] = tempa[2];
 tempa[2] = tempa[3];
 tempa[3] = k;

 // Function Subword()
 tempa[0] = getSBoxValue(tempa[0]);

90

 tempa[1] = getSBoxValue(tempa[1]);
 tempa[2] = getSBoxValue(tempa[2]);
 tempa[3] = getSBoxValue(tempa[3]);

 // XOR with round constant
 tempa[0] = tempa[0] ^ Rcon[i/Nb];
 }
 // Add the round key the array
 RoundKey[i * 4 + 0] = RoundKey[(i - Nb) * 4 + 0] ^ tempa[0];
 RoundKey[i * 4 + 1] = RoundKey[(i - Nb) * 4 + 1] ^ tempa[1];
 RoundKey[i * 4 + 2] = RoundKey[(i - Nb) * 4 + 2] ^ tempa[2];
 RoundKey[i * 4 + 3] = RoundKey[(i - Nb) * 4 + 3] ^ tempa[3];
 }
}

// This function XORs the round key to state.
static void AddRoundKey(state_t *state, uint8_t round)
{
 uint8_t i,j;
 for(i=0;i<4;++i)
 {
 for(j = 0; j < 4; ++j)
 {
 (*state)[i][j] ^= RoundKey[round * KEYLEN + i * Nb + j];
 }
 }
}

// This function XORs the dummy key to the dummy state.
static void DummyAddRoundKey(state_t *state, uint8_t round)
{
 uint8_t i,j;
 for(i=0;i<4;++i)
 {
 for(j = 0; j < 4; ++j)
 {
 (*state)[i][j] ^= DummyKeys[round * KEYLEN + i * Nb + j];
 }
 }
}

// The SubBytes function
static void SubBytes(state_t *state)
{
 uint8_t i, j;
 for(i = 0; i < 4; ++i)
 {
 for(j = 0; j < 4; ++j)
 {
 (*state)[i][j] = getSBoxValue((*state)[i][j]);
 }
 }
}

// The ShiftRows function. Offset = Row number (0,1,2,3).
static void ShiftRows(state_t *state)
{
 uint8_t temp;

 // Rotate first row 1 columns to left

91

 temp = (*state)[0][1];
 (*state)[0][1] = (*state)[1][1];
 (*state)[1][1] = (*state)[2][1];
 (*state)[2][1] = (*state)[3][1];
 (*state)[3][1] = temp;

 // Rotate second row 2 columns to left
 temp = (*state)[0][2];
 (*state)[0][2] = (*state)[2][2];
 (*state)[2][2] = temp;

 temp = (*state)[1][2];
 (*state)[1][2] = (*state)[3][2];
 (*state)[3][2] = temp;

 // Rotate third row 3 columns to left
 temp = (*state)[0][3];
 (*state)[0][3] = (*state)[3][3];
 (*state)[3][3] = (*state)[2][3];
 (*state)[2][3] = (*state)[1][3];
 (*state)[1][3] = temp;
}

// MixColumns function
static void MixColumns(state_t *state)
{
 uint8_t i;
 uint8_t Tmp,Tm,t;
 for(i = 0; i < 4; ++i)
 {
 t = (*state)[i][0];
 Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
 Tm =(*state)[i][0]^(*state)[i][1]; Tm=xtime(Tm); (*state)[i][0]^=Tm^Tmp;
 Tm =(*state)[i][1]^(*state)[i][2]; Tm=xtime(Tm); (*state)[i][1]^=Tm^Tmp;
 Tm =(*state)[i][2]^(*state)[i][3]; Tm=xtime(Tm); (*state)[i][2]^=Tm^Tmp;
 Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp;
 }
}

static void Round(state_t *state, uint8_t round)
{
 SubBytes(state);
 ShiftRows(state);
 MixColumns(state);
 AddRoundKey(state, round);
}

static void LastRound(state_t *state, uint8_t round)
{
 SubBytes(state);
 ShiftRows(state);
 AddRoundKey(state, round);
}

static void DummyRound(state_t *state, uint8_t round)
{
 SubBytes(state);
 ShiftRows(state);
 MixColumns(state);
 DummyAddRoundKey(state, round);
}

92

static void DummyLastRound(state_t *state, uint8_t round)
{
 SubBytes(state);
 ShiftRows(state);
 DummyAddRoundKey(state, round);
}

#ifdef OneDummy
static void CipherWithDummies(void)
{
 uint8_t round;
 uint8_t DummyKeyCounter = 0;
 AddRoundKey(state,0);

 //From round 1 to 9 a dummy per round is added in random order
 for(round = 1; round < Nr; ++round)
 {
 if (RandomVector[round-1]==0)
 {
 Round(state, round);
 DummyRound(dummy_state1, DummyKeyCounter);DummyKeyCounter++;
 }
 else
 {
 DummyRound(dummy_state1, DummyKeyCounter);DummyKeyCounter++;
 Round(state, round);
 }
 }

 //Last round will also have a dummy added in random order
 if (RandomVector[round-1]==0)
 {
 LastRound(state, round);
 DummyLastRound(dummy_state1, DummyKeyCounter);
 }
 else
 {
 DummyLastRound(dummy_state1, DummyKeyCounter);
 LastRound(state, round);
 }
}
#endif

#ifdef TwoDummies
static void CipherWithDummies(void)
{
 uint8_t round;
 uint8_t DummyKeyCounter = 0;
 AddRoundKey(state, 0);

 //From round 1 to 9 two dummies per round are added in random order
 for(round=1; round < Nr; ++round)
 {
 if (RandomVector[round-1] == 0)
 {
 Round(state, round);
 DummyRound(dummy_state1,DummyKeyCounter);DummyKeyCounter++;
 DummyRound(dummy_state2,DummyKeyCounter);DummyKeyCounter++;
 }
 else if (RandomVector[round-1] == 1)

93

 {
 DummyRound(dummy_state1,DummyKeyCounter);DummyKeyCounter++;
 Round(state, round);
 DummyRound(dummy_state2,DummyKeyCounter);DummyKeyCounter++;
 }
 else
 {
 DummyRound(dummy_state1,DummyKeyCounter);DummyKeyCounter++;
 DummyRound(dummy_state2,DummyKeyCounter);DummyKeyCounter++;
 Round(state, round);
 }
 }

 //Last round will also have two dummies added in random order
 if (RandomVector[round-1] == 0)
 {
 LastRound(state, round);
 DummyLastRound(dummy_state1, DummyKeyCounter);DummyKeyCounter++;
 DummyLastRound(dummy_state2, DummyKeyCounter);
 }
 else if (RandomVector[round-1] == 1)
 {
 DummyLastRound(dummy_state1, DummyKeyCounter);DummyKeyCounter++;
 LastRound(state, round);
 DummyLastRound(dummy_state2, DummyKeyCounter);
 }
 else
 {
 DummyLastRound(dummy_state1, DummyKeyCounter);DummyKeyCounter++;
 DummyLastRound(dummy_state2, DummyKeyCounter);
 LastRound(state, round);
 }
}
#endif

/***/
/* Public functions: */
/***/
void AES128_ECB_indp_setkey(uint8_t* key)
{
 Key = key;
 KeyExpansion();
}

void AES128_ECB_indp_crypto(uint8_t* input)
{
 state = (state_t*)input;
 CipherWithDummies();
}

void AES128_ECB_indp_precompute_randoms(uint8_t* seed)
{
 uint32_t seed1 = seed[0];
 uint32_t seed2 = seed[1];
 uint32_t seed3 = seed[2];
 uint32_t seed4 = seed[3];
 uint32_t mySeed = (seed1 << 24) ^ (seed2 << 16) ^ (seed3 << 8) ^ seed4;
 srand(mySeed);
 RandomGeneration();
}

94

C.3 AES128 with randomization (only encryption)

/***/
/* Includes: */
/***/
#include "aes.h"
#include <stdint.h>
#include <string.h>
#include <stdlib.h>

/***/
/* Defines: Fixed values of the AES128 implementation */
/***/
// Number of rows and columns
#define Nb 4
// The number of rounds in AES128 cipher.
#define Nr 10
// Key length in bytes [128 bit]
#define KEYLEN 16

/***/
/* COMMENT/UNCOMMENT THE COUNTERMEASURES YOU WANT TO ACTIVATE */
/***/
#define Random_SBOX
#define Random_MixColumns
#define Random_AddRoundKey

/***/
/* Private variables: */
/***/
// state matrix holding the intermediate results during encryption
typedef uint8_t state_t[16];
static state_t* state;

// The array that stores the round keys (11keys x 16bytes = 176bytes).
static uint8_t RoundKey[176];

// The Key input to the AES Program
static uint8_t* Key;

// Depending on which randomization features were chosen, the corresponding
arrays will be generated
#if defined Random_SBOX || defined Random_AddRoundKey
static uint8_t random_sequence[160];
#endif
#ifdef Random_MixColumns
static uint8_t random_columns[40];
#endif

//AES SBOX
static const uint8_t sbox[256] = {
 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe,
0xd7, 0xab, 0x76,
 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c,
0xa4, 0x72, 0xc0,
 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71,
0xd8, 0x31, 0x15,
 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb,
0x27, 0xb2, 0x75,
 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
0xe3, 0x2f, 0x84,

95

 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a,
0x4c, 0x58, 0xcf,
 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50,
0x3c, 0x9f, 0xa8,
 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10,
0xff, 0xf3, 0xd2,
 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64,
0x5d, 0x19, 0x73,
 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde,
0x5e, 0x0b, 0xdb,
 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91,
0x95, 0xe4, 0x79,
 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65,
0x7a, 0xae, 0x08,
 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b,
0xbd, 0x8b, 0x8a,
 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86,
0xc1, 0x1d, 0x9e,
 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce,
0x55, 0x28, 0xdf,
 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
0x54, 0xbb, 0x16};

// The round constant array
static const uint8_t Rcon[11] =
{0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36};

/***/
/* Private functions: */
/***/
static uint8_t getSBoxValue(uint8_t num)
{
 return sbox[num];
}

// Function used for MixColumns computation
static uint8_t xtime(uint8_t x)
{
 return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}

// Depending on which randomization features were chosen, the corresponding
functions will be generated
#if defined Random_SBOX || defined Random_AddRoundKey
void GenerateSBOXnAddRoundKeyRandomizationVector(void)
{
 for (int round=0; round<10; round++)
 {
 uint8_t random_vector[KEYLEN];
 uint8_t values[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
 uint8_t val;
 for (int i = 15; i >= 0 ;i--){
 val = rand() % (i+1);
 random_vector[i] = values[val];
 for(int j = val; j < i ; j++){
 values[j] = values[j+1];
 }
 }
 memcpy(random_sequence + round*16, random_vector, 16);
 }
}

96

#endif

#ifdef Random_MixColumns
void GenerateMixColumnRandomizationVector(void)
{
 for (int round=0; round<10; round++)
 {
 uint8_t random_vector[Nb];
 uint8_t values[4] = {0,1,2,3};
 uint8_t val;
 for (int i = 3; i >= 0 ;i--){
 val = rand() % (i+1);
 random_vector[i] = values[val];
 //shift all remaining values:
 for(int j = val; j < i ; j++){
 values[j] = values[j+1];
 }
 }
 memcpy(random_columns + round*4, random_vector, 4);
 }
}
#endif

//This function produces 11 round keys.
static void KeyExpansion(void)
{
 uint32_t i, j, k;
 uint8_t tempa[4]; // Used for the column/row operations

 // The first round key is the key itself.
 for(i = 0; i < Nb; ++i)
 {
 RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
 RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
 RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
 RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
 }

 // All other round keys are found from the previous round keys.
 for(; (i < (Nb * (Nr + 1))); ++i)
 {
 for(j = 0; j < 4; ++j)
 {
 // Store previous key in tempa
 tempa[j]=RoundKey[(i-1) * 4 + j];
 }
 if (i % Nb == 0)
 {
 // Function RotWord()
 k = tempa[0];
 tempa[0] = tempa[1];
 tempa[1] = tempa[2];
 tempa[2] = tempa[3];
 tempa[3] = k;

 // Function Subword()
 tempa[0] = getSBoxValue(tempa[0]);
 tempa[1] = getSBoxValue(tempa[1]);
 tempa[2] = getSBoxValue(tempa[2]);
 tempa[3] = getSBoxValue(tempa[3]);

97

 // XOR with round constant
 tempa[0] = tempa[0] ^ Rcon[i/Nb - 1];
 }
 // Add the round key to the array
 RoundKey[i * 4 + 0] = RoundKey[(i - Nb) * 4 + 0] ^ tempa[0];
 RoundKey[i * 4 + 1] = RoundKey[(i - Nb) * 4 + 1] ^ tempa[1];
 RoundKey[i * 4 + 2] = RoundKey[(i - Nb) * 4 + 2] ^ tempa[2];
 RoundKey[i * 4 + 3] = RoundKey[(i - Nb) * 4 + 3] ^ tempa[3];
 }
}

#ifndef Random_AddRoundKey
static void AddRoundKey(uint8_t round)
{
 for(uint8_t i=0; i<16; ++i)
 {
 (*state)[i] ^= RoundKey[round * KEYLEN + i];
 }
}
#endif

#ifdef Random_AddRoundKey
static void AddRoundKey(uint8_t round)
{
 for(uint8_t i=0; i<16; ++i)
 {
 (*state)[random_sequence[i]]^=RoundKey[round*KEYLEN+random_sequence[i]];
 }
}
#endif

#ifndef Random_SBOX
static void SubBytes(uint8_t round)
{
 uint8_t i;
 for(i=0;i<16;++i)
 {
 (*state)[i] = getSBoxValue((*state)[i]);
 }
}
#endif

#ifdef Random_SBOX
static void SubBytes(uint8_t round)
{
 for (uint8_t i=0; i<16; i++)
 {
 (*state)[random_sequence[(round-1)*KEYLEN + i]] =
 getSBoxValue((*state)[random_sequence[(round-1)*KEYLEN + i]]);
 }
}
#endif

static void ShiftRows(uint8_t round)
{
 uint8_t temp;

 temp = (*state)[1];
 (*state)[1] = (*state)[5];
 (*state)[5] = (*state)[9];

98

 (*state)[9] = (*state)[13];
 (*state)[13] = temp;

 temp = (*state)[2];
 (*state)[2] = (*state)[10];
 (*state)[10] = temp;

 temp = (*state)[6];
 (*state)[6] = (*state)[14];
 (*state)[14] = temp;

 temp = (*state)[3];
 (*state)[3] = (*state)[15];
 (*state)[15] = (*state)[11];
 (*state)[11] = (*state)[7];
 (*state)[7] = temp;
}

#ifndef Random_MixColumns
static void MixColumns(uint8_t round)
{
 uint8_t i;
 uint8_t Tmp,Tm,t;
 for(i = 0; i < 4; ++i)
 {
 t = (*state)[i][0];
 Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
 Tm =(*state)[i][0]^(*state)[i][1]; Tm=xtime(Tm); (*state)[i][0]^=Tm^Tmp;
 Tm =(*state)[i][1]^(*state)[i][2]; Tm=xtime(Tm); (*state)[i][1]^=Tm^Tmp;
 Tm =(*state)[i][2]^(*state)[i][3]; Tm=xtime(Tm); (*state)[i][2]^=Tm^Tmp;
 Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp;
 }
}
#endif

#ifdef Random_MixColumns
static void MixColumns(uint8_t round)
{
 uint8_t i, j;
 uint8_t Tmp,Tm,t;
 for(i = 0; i < 4; ++i)
 {
 j = random_columns[(round-1)*4 + i];
 t = (*state)[0 + j*4];
 Tmp=(*state)[0+j*4]^(*state)[1 + j*4]^(*state)[2 + j*4]^(*state)[3+j*4];
 Tm=(*state)[0+j*4]^(*state)[1+j*4];Tm=xtime(Tm);(*state)[0+j*4]^=Tm^Tmp;
 Tm=(*state)[1+j*4]^(*state)[2+j*4];Tm=xtime(Tm);(*state)[1+j*4]^=Tm^Tmp;
 Tm=(*state)[2+j*4]^(*state)[3+j*4];Tm=xtime(Tm);(*state)[2+j*4]^=Tm^Tmp;
 Tm=(*state)[3+j*4]^t; Tm=xtime(Tm);(*state)[3+j*4]^=Tm^Tmp;
 }
}
#endif

static void Round(uint8_t round)
{
 SubBytes(round);
 ShiftRows(round);
 MixColumns(round);
 AddRoundKey(round);
}

99

static void LastRound(void)
{
 SubBytes(Nr);
 ShiftRows(Nr);
 AddRoundKey(Nr);
}

// Normal encryption function
static void Cipher(void)
{
 uint8_t round = 0;
 AddRoundKey(round);

 for(round = 1; round < Nr; ++round)
 {Round(round);}
 LastRound();
}

/***/
/* Public functions: */
/***/

void AES128_ECB_indp_setkey(uint8_t* key)
{
 Key = key;
 KeyExpansion();
}

void AES128_ECB_indp_crypto(uint8_t* input)
{
 state = (state_t*)input;
 Cipher();
}

void AES128_ECB_indp_precompute_randoms(uint8_t* seed)
{
 #if defined Random_SBOX || defined Random_AddRoundKey || defined
Random_MixColumns
 uint32_t seed1 = seed[0];
 uint32_t seed2 = seed[1];
 uint32_t seed3 = seed[2];
 uint32_t seed4 = seed[3];
 uint32_t mySeed = (seed1 << 24) ^ (seed2 << 16) ^ (seed3 << 8) ^ seed4;
 srand(mySeed);
 #endif

 #if defined Random_SBOX || defined Random_AddRoundKey
 GenerateSBOXnAddRoundKeyRandomizationVector();
 #endif
 #ifdef Random_MixColumns
 GenerateMixColumnRandomizationVector();
 #endif
}

C.4 Random delay implementation

// This vector stores the random values used in the delay function
#define RandomVectorLength 10
static uint8_t RandomVector[RandomVectorLength];

100

// Generation of random values for the delay function. Max argument sets the top
limit of the uniform distribution
static void UniformRandom(uint8_t Max)
{
 for (uint8_t i = 0; i<RandomVectorLength ; i++)
 {
 RandomVector[i] = (rand() % Max)+1;
 }
}

// This is the optimized delay function (dummy loop)
static void Delay(uint8_t DelayLenght)
{
 asm volatile("MOV R16, %0" : "=r" (DelayLenght) : "0" (DelayLenght));
 asm volatile("LOOP: \n"
 "DEC R16 \n"
 "BRNE LOOP ");
}

C.5 AES128 with Boolean masking

/***/
/* Includes: */
/***/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "aes.h"

/***/
/* Defines: */
/***/
// Number of rows and columns
#define Nb 4
// The number of rounds in AES128 cipher.
#define Nr 10
// Key length in bytes [128 bit]
#define KEYLEN 16

/***/
/* Masked = 1 (apply masking) ; Masked = 0 (no masking applied) */
/***/
#define MASKED 1

/***/
/* Private variables: */
/***/
typedef uint8_t state_t[4][4];
static state_t* state;

//For debugging purposes uncomment
//static uint8_t state_debbug_t[4][4];
//static state_t* state_debbug = &state_debbug_t;

// The array that stores the round keys (11keys x 16bytes = 176bytes).
static uint8_t RoundKey[11*KEYLEN];

// The Key input to the AES Program

101

static uint8_t* Key;

// Vector to store the masked round keys
static uint8_t RoundKeyMasked[11*KEYLEN];

// Vector to store the masks
static uint8_t mask[10];

static uint8_t round;

// AES SBOX
static const uint8_t sbox[256] = {
 //0 1 2 3 4 5 6 7 8 9 A B C
D E F
 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe,
0xd7, 0xab, 0x76,
 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c,
0xa4, 0x72, 0xc0,
 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71,
0xd8, 0x31, 0x15,
 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb,
0x27, 0xb2, 0x75,
 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
0xe3, 0x2f, 0x84,
 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a,
0x4c, 0x58, 0xcf,
 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50,
0x3c, 0x9f, 0xa8,
 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10,
0xff, 0xf3, 0xd2,
 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64,
0x5d, 0x19, 0x73,
 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde,
0x5e, 0x0b, 0xdb,
 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91,
0x95, 0xe4, 0x79,
 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65,
0x7a, 0xae, 0x08,
 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b,
0xbd, 0x8b, 0x8a,
 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86,
0xc1, 0x1d, 0x9e,
 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce,
0x55, 0x28, 0xdf,
 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
0x54, 0xbb, 0x16};

// AES reverse SBOX
static const uint8_t rsbox[256] = {
 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81,
0xf3, 0xd7, 0xfb,
 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4,
0xde, 0xe9, 0xcb,
 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42,
0xfa, 0xc3, 0x4e,
 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d,
0x8b, 0xd1, 0x25,
 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
0x65, 0xb6, 0x92,
 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7,
0x8d, 0x9d, 0x84,

102

 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8,
0xb3, 0x45, 0x06,
 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01,
0x13, 0x8a, 0x6b,
 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0,
0xb4, 0xe6, 0x73,
 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c,
0x75, 0xdf, 0x6e,
 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa,
0x18, 0xbe, 0x1b,
 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78,
0xcd, 0x5a, 0xf4,
 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27,
0x80, 0xec, 0x5f,
 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93,
0xc9, 0x9c, 0xef,
 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83,
0x53, 0x99, 0x61,
 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
0x21, 0x0c, 0x7d};

// Galois multiplication LUTs for MixColumns and InvMixColumns
static const uint8_t mul_02[256] = {
 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18,
0x1a, 0x1c, 0x1e,
 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38,
0x3a, 0x3c, 0x3e,
 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58,
0x5a, 0x5c, 0x5e,
 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78,
0x7a, 0x7c, 0x7e,
 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98,
0x9a, 0x9c, 0x9e,
 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8,
0xba, 0xbc, 0xbe,
 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8,
0xda, 0xdc, 0xde,
 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8,
0xfa, 0xfc, 0xfe,
 0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f, 0x0d, 0x03,
0x01, 0x07, 0x05,
 0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23,
0x21, 0x27, 0x25,
 0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49, 0x4f, 0x4d, 0x43,
0x41, 0x47, 0x45,
 0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63,
0x61, 0x67, 0x65,
 0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95, 0x8b, 0x89, 0x8f, 0x8d, 0x83,
0x81, 0x87, 0x85,
 0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad, 0xa3,
0xa1, 0xa7, 0xa5,
 0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3,
0xc1, 0xc7, 0xc5,
 0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 0xeb, 0xe9, 0xef, 0xed, 0xe3,
0xe1, 0xe7, 0xe5};

static const uint8_t mul_03[256] = {
 0x00, 0x03, 0x06, 0x05, 0x0c, 0x0f, 0x0a, 0x09, 0x18, 0x1b, 0x1e, 0x1d, 0x14,
0x17, 0x12, 0x11,
 0x30, 0x33, 0x36, 0x35, 0x3c, 0x3f, 0x3a, 0x39, 0x28, 0x2b, 0x2e, 0x2d, 0x24,
0x27, 0x22, 0x21,

103

 0x60, 0x63, 0x66, 0x65, 0x6c, 0x6f, 0x6a, 0x69, 0x78, 0x7b, 0x7e, 0x7d, 0x74,
0x77, 0x72, 0x71,
 0x50, 0x53, 0x56, 0x55, 0x5c, 0x5f, 0x5a, 0x59, 0x48, 0x4b, 0x4e, 0x4d, 0x44,
0x47, 0x42, 0x41,
 0xc0, 0xc3, 0xc6, 0xc5, 0xcc, 0xcf, 0xca, 0xc9, 0xd8, 0xdb, 0xde, 0xdd, 0xd4,
0xd7, 0xd2, 0xd1,
 0xf0, 0xf3, 0xf6, 0xf5, 0xfc, 0xff, 0xfa, 0xf9, 0xe8, 0xeb, 0xee, 0xed, 0xe4,
0xe7, 0xe2, 0xe1,
 0xa0, 0xa3, 0xa6, 0xa5, 0xac, 0xaf, 0xaa, 0xa9, 0xb8, 0xbb, 0xbe, 0xbd, 0xb4,
0xb7, 0xb2, 0xb1,
 0x90, 0x93, 0x96, 0x95, 0x9c, 0x9f, 0x9a, 0x99, 0x88, 0x8b, 0x8e, 0x8d, 0x84,
0x87, 0x82, 0x81,
 0x9b, 0x98, 0x9d, 0x9e, 0x97, 0x94, 0x91, 0x92, 0x83, 0x80, 0x85, 0x86, 0x8f,
0x8c, 0x89, 0x8a,
 0xab, 0xa8, 0xad, 0xae, 0xa7, 0xa4, 0xa1, 0xa2, 0xb3, 0xb0, 0xb5, 0xb6, 0xbf,
0xbc, 0xb9, 0xba,
 0xfb, 0xf8, 0xfd, 0xfe, 0xf7, 0xf4, 0xf1, 0xf2, 0xe3, 0xe0, 0xe5, 0xe6, 0xef,
0xec, 0xe9, 0xea,
 0xcb, 0xc8, 0xcd, 0xce, 0xc7, 0xc4, 0xc1, 0xc2, 0xd3, 0xd0, 0xd5, 0xd6, 0xdf,
0xdc, 0xd9, 0xda,
 0x5b, 0x58, 0x5d, 0x5e, 0x57, 0x54, 0x51, 0x52, 0x43, 0x40, 0x45, 0x46, 0x4f,
0x4c, 0x49, 0x4a,
 0x6b, 0x68, 0x6d, 0x6e, 0x67, 0x64, 0x61, 0x62, 0x73, 0x70, 0x75, 0x76, 0x7f,
0x7c, 0x79, 0x7a,
 0x3b, 0x38, 0x3d, 0x3e, 0x37, 0x34, 0x31, 0x32, 0x23, 0x20, 0x25, 0x26, 0x2f,
0x2c, 0x29, 0x2a,
 0x0b, 0x08, 0x0d, 0x0e, 0x07, 0x04, 0x01, 0x02, 0x13, 0x10, 0x15, 0x16, 0x1f,
0x1c, 0x19, 0x1a};

static const uint8_t mul_09[256]={
 0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e
,0x77,
 0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee
,0xe7,
 0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,0x73,0x7a,0x61,0x68,0x57,0x5e,0x45
,0x4c,
 0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5
,0xdc,
 0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08
,0x01,
 0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98
,0x91,
 0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,0x05,0x0c,0x17,0x1e,0x21,0x28,0x33
,0x3a,
 0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3
,0xaa,
 0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92
,0x9b,
 0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,0x34,0x3d,0x26,0x2f,0x10,0x19,0x02
,0x0b,
 0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9
,0xa0,
 0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39
,0x30,
 0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4
,0xed,
 0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,0x42,0x4b,0x50,0x59,0x66,0x6f,0x74
,0x7d,
 0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf
,0xd6,

104

 0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f
,0x46
};

static const uint8_t mul_11[256]={
 0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,0x58,0x53,0x4e,0x45,0x74,0x7f,0x62
,0x69,
 0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2
,0xd9,
 0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,0x23,0x28,0x35,0x3e,0x0f,0x04,0x19
,0x12,
 0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9
,0xa2,
 0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94
,0x9f,
 0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,0x1e,0x15,0x08,0x03,0x32,0x39,0x24
,0x2f,
 0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef
,0xe4,
 0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,0x65,0x6e,0x73,0x78,0x49,0x42,0x5f
,0x54,
 0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95
,0x9e,
 0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,0x1f,0x14,0x09,0x02,0x33,0x38,0x25
,0x2e,
 0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee
,0xe5,
 0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,0x64,0x6f,0x72,0x79,0x48,0x43,0x5e
,0x55,
 0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,0x59,0x52,0x4f,0x44,0x75,0x7e,0x63
,0x68,
 0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3
,0xd8,
 0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,0x22,0x29,0x34,0x3f,0x0e,0x05,0x18
,0x13,
 0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8
,0xa3
};

static const uint8_t mul_13[256]={
 0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,0x68,0x65,0x72,0x7f,0x5c,0x51,0x46
,0x4b,
 0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96
,0x9b,
 0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd
,0xf0,
 0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d
,0x20,
 0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b
,0x26,
 0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb
,0xf6,
 0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90
,0x9d,
 0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,0x6e,0x63,0x74,0x79,0x5a,0x57,0x40
,0x4d,
 0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c
,0x91,
 0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c
,0x41,

105

 0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,0x09,0x04,0x13,0x1e,0x3d,0x30,0x27
,0x2a,
 0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7
,0xfa,
 0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1
,0xfc,
 0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,0x0f,0x02,0x15,0x18,0x3b,0x36,0x21
,0x2c,
 0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a
,0x47,
 0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a
,0x97
};

static const uint8_t mul_14[256]={
 0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,0x70,0x7e,0x6c,0x62,0x48,0x46,0x54
,0x5a,
 0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4
,0xba,
 0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f
,0x81,
 0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f
,0x61,
 0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9
,0xf7,
 0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19
,0x17,
 0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,0x06,0x08,0x1a,0x14,0x3e,0x30,0x22
,0x2c,
 0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2
,0xcc,
 0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,0x31,0x3f,0x2d,0x23,0x09,0x07,0x15
,0x1b,
 0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5
,0xfb,
 0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce
,0xc0,
 0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e
,0x20,
 0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8
,0xb6,
 0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58
,0x56,
 0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,0x47,0x49,0x5b,0x55,0x7f,0x71,0x63
,0x6d,
 0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83
,0x8d
};

// The round constant array
static const uint8_t Rcon[10] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x1b, 0x36};

// Arrays to store the computed masked AES SBOX and reverse SBOX LUTs
static uint8_t SboxMasked[256];
static uint8_t rSboxMasked[256];

/***/
/* Private functions: */
/***/

106

/* For debugging purposes
static void BlockCopy(uint8_t* output, const uint8_t* input)
{
 for (uint8_t i=0; i<AES_KEYLEN; ++i)
 {
 output[i] = input[i];
 }
}
*/

/* Normal Mix Columns:
* [w] [2 3 1 1] [a]
* [x] = [1 2 3 1] * [b]
* [y] [1 1 2 3] [c]
* [z] [3 1 1 2] [d]
// Transform m0, m1, m2 and m3 into m6, m7, m8 and m9
static void calcMixColmask(uint8_t mask[10])
{
 mask[6] = mul_02[mask[0]] ^ mul_03[mask[1]] ^ mask[2] ^ mask[3];
 mask[7] = mask[0] ^ mul_02[mask[1]] ^ mul_03[mask[2]] ^ mask[3];
 mask[8] = mask[0] ^ mask[1] ^ mul_02[mask[2]] ^ mul_03[mask[3]];
 mask[9] = mul_03[mask[0]] ^ mask[1] ^ mask[2] ^ mul_02[mask[3]];
}

/* Normal Inverse Mix Columns:
* [w] [0E 0B 0D 09] [a]
* [x] = [09 0E 0B 0D] * [b]
* [y] [0D 09 0E 0B] [c]
* [z] [0B 0D 09 0E] [d]
// Transform m0, m1, m2 and m3 into m6, m7, m8 and m9 for inverse cypher
static void calcInvMixColmask(uint8_t mask[10])
{
mask[6]=mul_14[mask[0]]^ mul_11[mask[1]]^ mul_13[mask[2]]^ mul_09[mask[3]];
mask[7]=mul_09[mask[0]]^ mul_14[mask[1]]^ mul_11[mask[2]]^ mul_13[mask[3]];
mask[8]=mul_13[mask[0]]^ mul_09[mask[1]]^ mul_14[mask[2]]^ mul_11[mask[3]];
mask[9]=mul_11[mask[0]]^ mul_13[mask[1]]^ mul_09[mask[2]]^ mul_14[mask[3]];
}

//XOR-ing function for mask manipulation
static void remask(state_t * s, uint8_t m1, uint8_t m2, uint8_t m3, uint8_t m4,
uint8_t m5, uint8_t m6, uint8_t m7, uint8_t m8)
{
 for (int i = 0; i < 4; i++)
 {
 (*s)[i][0] = (*s)[i][0] ^ (m1);
 (*s)[i][0] = (*s)[i][0] ^ (m5);
 (*s)[i][1] = (*s)[i][1] ^ (m2);
 (*s)[i][1] = (*s)[i][1] ^ (m6);
 (*s)[i][2] = (*s)[i][2] ^ (m3);
 (*s)[i][2] = (*s)[i][2] ^ (m7);
 (*s)[i][3] = (*s)[i][3] ^ (m4);
 (*s)[i][3] = (*s)[i][3] ^ (m8);
 }
}

//Calculate the Sbox to change from m4 to m5
static void calcSboxMasked(uint8_t mask[10])
{
 for (int i = 0; i < 256; i++){
 SboxMasked[i ^ mask[4]] = sbox[i] ^ mask[5];
 }

107

}

//Calculate the ReverseSbox to change from m4 to m5
static void calcrSboxMasked(uint8_t mask[10])
{
 for (int i = 0; i < 256; i++){
 rSboxMasked[i ^ mask[4]] = rsbox[i] ^ mask[5];
 }
}

//Precompute all the masks, masked round keys and masked SBOX
static void InitMaskingEncrypt(void)
{
 memcpy(RoundKeyMasked, RoundKey, AES_keyExpSize);

 //Randomly generate the masks: m0 m1 m2 m3 m4 and m5
 for (uint8_t i = 0; i < 6; i++){
 mask[i] = (rand() % 255)+1;
 }

 //Calculate m6, m7, m8 and m9
 calcMixColmask(mask);

 //Calculate the masked Sbox
 calcSboxMasked(mask);

 //Mask the last round key in order to unmake masking at the end of cypher
 remask((state_t *) &RoundKeyMasked[(Nr * Nb * 4)], 0, 0, 0, 0, mask[5],
mask[5], mask[5], mask[5]);

 //Mask the rest of round keys change from m6, m7, m8 and m9 to m4
 for (int i = 0; i < Nr; i++)
 {
 remask((state_t *) &RoundKeyMasked[(i * Nb * 4)], mask[6], mask[7], mask[8],
mask[9], mask[4], mask[4], mask[4], mask[4]);
 }
}

//Precompute all the masks, masked round keys and masked reverse SBOX
static void InitMaskingDecrypt(void)
{
 memcpy(RoundKeyMasked, RoundKey, AES_keyExpSize);

 //Randomly generate the masks: m0 m1 m2 m3 m4 and m5
 for (uint8_t i = 0; i < 6; i++){
 mask[i] = rand() % 0xFF;
 }

 //Calculate m6, m7, m8 and m9
 calcInvMixColmask(mask);

 //Calculate the masked reverse Sbox
 calcrSboxMasked(mask);

 //Mask the last round key in order to unmake masking at the end of decypher
 remask((state_t *) &RoundKeyMasked[(Nr * Nb * 4)], 0, 0, 0, 0, mask[4],
mask[4], mask[4], mask[4]);

 //Mask the rest of round keys change from m6, m7, m8 and m9 to m4
 for (int i = 0; i < Nr; i++)

108

 {
 remask((state_t *) &RoundKeyMasked[(i * Nb * 4)], mask[0], mask[1], mask[2],
mask[3], mask[5], mask[5], mask[5], mask[5]);
 }
}

#define getSBoxValue(num) (sbox[(num)])
#define getSBoxInvert(num) (rsbox[(num)])

// The SubBytesMasked Function Substitutes the values in the state matrix with
values in the masked S-box.
static void SubBytesMasked(state_t *state)
{
 uint8_t i, j;
 for (i = 0; i < 4; ++i)
 {
 for (j = 0; j < 4; ++j)
 {
 (*state)[i][j] = SboxMasked[(*state)[i][j]];
 }
 }
}

// This function adds the masked round key to state.
static void AddRoundKeyMasked(uint8_t round, state_t *state, const uint8_t *
RoundKeyMasked) //, const uint8_t* RoundKey)
{
 uint8_t i, j;
 for(i = 0; i < 4; i++){
 for (j = 0; j < 4; ++j)
 {
 (*state)[i][j] ^= RoundKeyMasked[(round * Nb * Nb) + (i * Nb) + j];
 }
 }
}

//Key schedule
static void KeyExpansion()
{
 unsigned i, j, k;
 uint8_t tempa[4]; // Used for the column/row operations

 // The first round key is the key itself.
 for (i = 0; i < Nk; ++i)
 {
 RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
 RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
 RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
 RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
 }

 // All other round keys are found from the previous round keys.
 for (i = Nk; i < Nb * (Nr + 1); ++i)
 {
 {
 k = (i - 1) * 4;
 tempa[0] = RoundKey[k + 0];
 tempa[1] = RoundKey[k + 1];
 tempa[2] = RoundKey[k + 2];
 tempa[3] = RoundKey[k + 3];

109

 }

 if (i % Nk == 0)
 {
 // This function shifts the 4 bytes in a word to the left once.
 // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]

 // Function RotWord()
 {
 const uint8_t u8tmp = tempa[0];
 tempa[0] = tempa[1];
 tempa[1] = tempa[2];
 tempa[2] = tempa[3];
 tempa[3] = u8tmp;
 }

 // SubWord() is a function that takes a four-byte input word and
 // applies the S-box to each of the four bytes to produce an output word.

 // Function Subword()
 {
 tempa[0] = getSBoxValue(tempa[0]);
 tempa[1] = getSBoxValue(tempa[1]);
 tempa[2] = getSBoxValue(tempa[2]);
 tempa[3] = getSBoxValue(tempa[3]);
 }

 tempa[0] = tempa[0] ^ Rcon[i / Nk - 1];
 }

 j = i * 4;
 k = (i - Nk) * 4;
 RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
 RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
 RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
 RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
 }
}

// This function adds the round key to state.
static void AddRoundKey(uint8_t round, state_t *state, const uint8_t *RoundKey)
{
 uint8_t i, j;
 for (i = 0; i < 4; ++i)
 {
 for (j = 0; j < 4; ++j)
 {
 (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
 }
 }
}

// The SubBytes function
static void SubBytes(state_t *state)
{
 uint8_t i, j;
 for (i = 0; i < 4; ++i)
 {
 for (j = 0; j < 4; ++j)
 {

110

 (*state)[j][i] = getSBoxValue((*state)[j][i]);
 }
 }
}

// The ShiftRows function
static void ShiftRows(state_t *state)
{
 uint8_t temp;

 // Rotate first row 1 columns to left
 temp = (*state)[0][1];
 (*state)[0][1] = (*state)[1][1];
 (*state)[1][1] = (*state)[2][1];
 (*state)[2][1] = (*state)[3][1];
 (*state)[3][1] = temp;

 // Rotate second row 2 columns to left
 temp = (*state)[0][2];
 (*state)[0][2] = (*state)[2][2];
 (*state)[2][2] = temp;

 temp = (*state)[1][2];
 (*state)[1][2] = (*state)[3][2];
 (*state)[3][2] = temp;

 // Rotate third row 3 columns to left
 temp = (*state)[0][3];
 (*state)[0][3] = (*state)[3][3];
 (*state)[3][3] = (*state)[2][3];
 (*state)[2][3] = (*state)[1][3];
 (*state)[1][3] = temp;
}

static uint8_t xtime(uint8_t x)
{
 return ((x << 1) ^ (((x >> 7) & 1) * 0x1b));
}

// MixColumns function
static void MixColumns(state_t *state)
{
 uint8_t i;
 uint8_t Tmp,Tm,t;
 for(i = 0; i < 4; ++i)
 {
 t = (*state)[i][0];
 Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
 Tm =(*state)[i][0]^(*state)[i][1]; Tm=xtime(Tm); (*state)[i][0]^=Tm^Tmp;
 Tm =(*state)[i][1]^(*state)[i][2]; Tm=xtime(Tm); (*state)[i][1]^=Tm^Tmp;
 Tm =(*state)[i][2]^(*state)[i][3]; Tm=xtime(Tm); (*state)[i][2]^=Tm^Tmp;
 Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp;
 }
}

#define Multiply(x, y) \
 (((y & 1) * x) ^ \
 ((y >> 1 & 1) * xtime(x)) ^ \
 ((y >> 2 & 1) * xtime(xtime(x))) ^ \
 ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ \
 ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x))))))

111

#endif

// InvMixColumns function
static void InvMixColumns()
{
 int i;
 uint8_t a, b, c, d;
 for (i = 0; i < 4; ++i)
 {
 a = (*state)[i][0];
 b = (*state)[i][1];
 c = (*state)[i][2];
 d = (*state)[i][3];

 (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^
Multiply(d, 0x09);
 (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^
Multiply(d, 0x0d);
 (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^
Multiply(d, 0x0b);
 (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^
Multiply(d, 0x0e);
 }
}

// The InvSubBytes function
static void InvSubBytes()
{
 uint8_t i, j;
 for (i = 0; i < 4; ++i)
 {
 for (j = 0; j < 4; ++j)
 {
 (*state)[j][i] = getSBoxInvert((*state)[j][i]);
 }
 }
}

// The masked InvSubBytes
static void InvSubBytesMasked()
{
 uint8_t i, j;
 for (i = 0; i < 4; ++i)
 {
 for (j = 0; j < 4; ++j)
 {
 (*state)[j][i] = rSboxMasked[(*state)[j][i]];
 }
 }
}

// InvShiftRows function
static void InvShiftRows()
{
 uint8_t temp;

 // Rotate first row 1 columns to right
 temp = (*state)[3][1];
 (*state)[3][1] = (*state)[2][1];
 (*state)[2][1] = (*state)[1][1];

112

 (*state)[1][1] = (*state)[0][1];
 (*state)[0][1] = temp;

 // Rotate second row 2 columns to right
 temp = (*state)[0][2];
 (*state)[0][2] = (*state)[2][2];
 (*state)[2][2] = temp;

 temp = (*state)[1][2];
 (*state)[1][2] = (*state)[3][2];
 (*state)[3][2] = temp;

 // Rotate third row 3 columns to right
 temp = (*state)[0][3];
 (*state)[0][3] = (*state)[1][3];
 (*state)[1][3] = (*state)[2][3];
 (*state)[2][3] = (*state)[3][3];
 (*state)[3][3] = temp;
}

// Masked cyher function
static void CipherMasked()
{
 //Plain text masked with m6,m7,m8,m9
 remask(state, mask[6], mask[7], mask[8], mask[9], 0, 0, 0, 0);

 // Masks change from m6,m7,m8,m9 to m4
 AddRoundKeyMasked(0, state, RoundKeyMasked);
// AddRoundKey(0, state_debbug, RoundKey);

 // All rounds, but last one without MixColumns()
 for (round = 1;; round++)
 {
 // Mask changes from m4 to m5
 SubBytesMasked(state);
 // SubBytes(state_debbug);

 //No impact on mask
 ShiftRows(state);
// ShiftRows(state_debbug);
 if (round == Nr)
 {
 break;
 }
 //Change mask from m5 to m0,m1,m2,m3
 remask(state, mask[0], mask[1], mask[2], mask[3], mask[5], mask[5], mask[5],
mask[5]);

 // Masks change from m0,m1,m2,m3 to m6,m7,m8,m9
 MixColumns(state);
 // MixColumns(state_debbug);

 // Masks change from m6,m7,m8,m9 to m4
 AddRoundKeyMasked(round, state, RoundKeyMasked);
// AddRoundKey(round, state_debbug, RoundKey);
 }

 // Mask are removed by the last addroundkey
 // From m6 to 0
 AddRoundKeyMasked(Nr, state, RoundKeyMasked);

113

// AddRoundKeyMasked(Nr, state_debbug, RoundKey);
}

// Normal cypher function.
static void Cipher()
{
 uint8_t round = 0;

 AddRoundKey(0, state, RoundKey);

 for (round = 1;; ++round)
 {
 SubBytes(state);
 ShiftRows(state);
 if (round == Nr)
 {
 break;
 }
 MixColumns(state);
 AddRoundKey(round, state, RoundKey);
 }
 // Add round key to last round
 AddRoundKey(Nr, state, RoundKey);
}

// Masked deciphering function
static void InvCipherMasked()
{
 AddRoundKeyMasked(Nr, state, RoundKeyMasked);

 for (round = (Nr - 1);; --round)
 {
 InvShiftRows(state);

 InvSubBytesMasked(state);

 AddRoundKeyMasked(round, state, RoundKeyMasked);

 if (round == 0)
 {
 break;
 }

 InvMixColumns(state);

 remask(state, mask[6], mask[7], mask[8], mask[9], mask[4], mask[4], mask[4],
mask[4]);
 }

 remask(state, mask[0], mask[1], mask[2], mask[3], 0, 0, 0, 0);
}

// Normal decipher function
static void InvCipher()
{
 uint8_t round = 0;

 AddRoundKey(Nr, state, RoundKey);

 for (round = (Nr - 1);; --round)
 {

114

 InvShiftRows(state);
 InvSubBytes(state);
 AddRoundKey(round, state, RoundKey);
 if (round == 0)
 {
 break;
 }
 InvMixColumns(state);
 }
}

/***/
/* Public functions: */
/***/
void AES128_ECB_indp_setkey(uint8_t* key)
{
 Key = key;
 KeyExpansion();
}

void AES128_ECB_indp_crypto(uint8_t* input)
{
 state = (state_t*)input;
// uint8_t debbug[16];
// BlockCopy(debbug, input);
// state_debbug = (state_t*)debbug;

#if defined(MASKED) && (MASKED == 1)
 CipherMasked();
#else
 Cipher();
#endif
}

void AES128_ECB_indp_inv_crypto(uint8_t* input)
{
 state = (state_t*)input;

#if defined(MASKED) && (MASKED == 1)
 InvCipherMasked();
#else
 InvCipher();
#endif
}

void AES128_ECB_indp_precompute_randoms(uint8_t* seed)
{
 uint32_t seed1 = seed[0];
 uint32_t seed2 = seed[1];
 uint32_t seed3 = seed[2];
 uint32_t seed4 = seed[3];
 uint32_t mySeed = (seed1 << 24) ^ (seed2 << 16) ^ (seed3 << 8) ^ seed4;
 srand(mySeed);
 InitMaskingEncrypt();
}

void AES128_ECB_indp_precompute_inv_randoms(uint8_t* seed)
{

115

 uint32_t seed1 = seed[0];
 uint32_t seed2 = seed[1];
 uint32_t seed3 = seed[2];
 uint32_t seed4 = seed[3];
 uint32_t mySeed = (seed1 << 24) ^ (seed2 << 16) ^ (seed3 << 8) ^ seed4;
 srand(mySeed);
 InitMaskingDecrypt();
}

116

Glossary

AES: Advanced Encryption Standard

ATM: Automated Teller Machine

ATMEL: Advanced Technology for Memory and Logic

API: Aplication Programming Interface

ARM: Advanced RISC Machines

AVR: Alf-Egil Bogen Vegard Wollan RISC microcontroller

CMOS: Complementary Metal-Oxide Semiconductor

CPA: Correlation Power Analysis

CPU: Central Processing Unit

DES: Data Encryption Standard

DPA: Differential Power Analysis

DRM: Digital Right Management

DSS: Digital Signature Standard

DUT: Device Under Test

EM: Electro Magnetic

EMA: Electro Magnetic Analysis

EMV: Europay, Mastercard, and Visa

FI: Fault Injection

FIB: Focused Ion Beam

FPGA: Field Programmable Gate Array

GF: Galois Field

GND: Ground (Electronics)

Hd: Hamming distance

HODPA: High Order Differential Power Analysis

HOCPA: High Order Correlation Power Analysis

Hw: Hamming weight

IEC: International Electrotechnical Commission

IPsec: Internet Protocol security

ISO: International Organization for Standardization

IT: Information Technology

117

MCU: MicroController Unit

NIST: National Institute of Standards and Technology

OS: Operating System

PIN: Personal identification Number

RISC: Reduced Instruction Set Computer

RSA: Rivest, Shamir and Adleman (Cryptographic Algorithm)

ROM: Read Only Memory

SBOX: Substitution Box

SCA: Side Channel Analysis

SEM: Scanning Electron Microscope

SNR: Signal to Noise Ratio

SPA: Simple Power Analysis

SSD: Solid State Drive

SSL: Secure Sockets Layer

TA: Template Attacks

USB: Universal Serial Bus

WWW: World Wide Web

