
Characterization and Modeling of
Atomic Memory Operations in

Arm Based Architectures

Vı́ctor Soria Pardos

Director: Adrià Armejach (UPC, BSC-CNS)
Co-director: Daŕıo Suárez (UNIZAR)
Responsible: Miquel Moretó (UPC)

Master in Innovation and Research in Informatics: High
Performance Computing

FACULTAT D’INFORMÀTICA DE BARCELONA (FIB)

Universitat Politècnica de Catalunya
(UPC) BarcelonaTech January 2022

Abstract

Efficient fine-grain synchronization is a classic computer architecture
challenge that has been profusely addressed in the past. Load Link and
Store Conditional (LL/SC) became one of the few solutions to this
problem and today it is still part of the State-of-the-art. However, as the
core count keeps growing many Instruction Set Architectures (ISA) start
to support other synchronization instructions that scale better like
Atomic Memory Operations (AMO). In this work we present a
characterization of LL/SC and AMO instructions in two current
Arm-based server machines.

Furthermore, Arm has released its Network-on-Chip (NoC)
specification enabling different hardware implementations of how AMO
are executed in a multicore. Since the adoption of this new standard is
still in its first stages, we have modeled six different AMO policies to
explore the hardware design trade offs. We find out that there is no single
implementation that outperforms the rest. Therefore, we have designed a
hardware solution to dynamically select the best configuration obtaining
up to 1.15x speed-ups on relevant benchmarks from the Splash-3
benchmark suite.

2

Acknowledgements

First of all, I would like to thank Adrià Armejach, Daŕıo Suárez and
Miquel Moretó, for their support, patience and guidance. Thanks to all
my coworkers for solved doubts, their helpful tools and lunch talks. I have
to also thank my Friends for being there through thick and thin.

Finally, I would like to thank and dedicate this work to my parents for
their support and love.

The project has been carried out within the Computer Sciences - High
Performance Domain-Specific Architectures group of the BSC in
collaboration with the Computer Architecture group of the Universidad
of Zaragoza (gaZ).

3

Contents

1 Introduction 1

1.1 Context . 1

1.2 Contributions . 4

1.2.1 Characterization of Synchronization Instructions on
Arm-Based Architectures 4

1.2.2 Modeling of Atomic Memory Operations in
Arm-based systems 5

1.2.3 Dynamic Atomic Memory Operations Policy 6

1.3 Thesis Organization . 6

2 State of the Art 8

2.1 Problem Statement . 8

2.2 Load Link and Store Conditional 9

2.3 Atomic Memory Operations 10

2.4 Transactional Memory . 12

2.5 Related Work . 13

3 Experimental Framework 16

3.1 Methodology and Environment 16

3.1.1 Methodology . 16

3.1.2 Software Environment 17

3.1.3 Tools . 19

3.2 Workloads . 19

3.2.1 LockHammer . 20

3.2.2 Splash-3 . 22

3.3 Tests Machines . 24

3.3.1 Kunpeng 920 . 24

3.3.2 Graviton 2 . 25

3.4 The gem5 Simulator . 28

3.4.1 CPU Microarchitecture 28

4

3.4.2 Cache Hierarchy and NoC Configuration 29

4 Characterization of Sync. Primitives 31

4.1 LockHammer Characterization 31

4.1.1 Kunpeng 920 . 32

4.1.2 Graviton 2 . 36

4.1.3 Summary . 38

4.2 Splash-3 Characterization 39

4.2.1 Kunpeng 920 . 40

4.2.2 Graviton 2 . 43

4.2.3 Kunpeng 920 vs Graviton 2 44

4.2.4 Concluding Remarks 47

5 Modeling Atomic Memory Operations 48

5.1 AMBA 5 CHI . 48

5.1.1 Channels . 49

5.1.2 Cache States . 49

5.1.3 Supported AMO . 50

5.1.4 AMO Transactions in AMBA 5 CHI 52

5.1.5 Snoops . 53

5.1.6 Example Flowcharts 54

5.1.7 AMBA 5 CHI on Gem5 56

5.2 Design Space Exploration 57

5.3 Evaluation . 59

5.3.1 Static AMO Results with LockHammer Serialized . 59

5.3.2 Static AMO Results with LockHammer Unserialized 65

5.3.3 Static AMO Results with Splash-3 67

5.4 Concluding Remarks . 68

6 Dynamic AMO Policy Predictor 70

6.1 Choosing the Best Static Policy 70

6.2 Design Philosophy . 73

6.3 Dynamic AMO Predictor Heuristic 74

6.4 DynAMO Architecture . 75

6.5 Evaluation . 77

6.5.1 DynAMO Results with LockHammer 77

6.5.2 DynAMO Results with Splash-3 78
6.6 Concluding Remarks . 81

7 Conclusions and Future Work 82
7.1 Conclusions . 82
7.2 Future Work . 83
7.3 Publications . 84

6

Chapter 1

Introduction

This chapter describes the historic evolution of semiconductor chips
paying special attention to the emergence of multicore architectures. We
explain the main challenges of current processors when facing multicore
synchronization. Next, the main contributions of this thesis are
summarized. Finally, we outline the organization of this document.

1.1 Context

During the last 40 years, the microchip industry has experimented an
spectacular progress in microchip manufacturing. Every two years the top
microchip manufacturers have been able to halve the transistor size,
following what is known as the Moore’s Law [34]. These advances not
only improved transistor size, but also decreased their power consumption
and their switching time. Thus, new chips incremented the switching
frequency increasing performance [12]. However, this trend finished a few
years ago because of the power density reached by the new manufacturing
processes [9]. This effect was named as the ”power-wall”, which imposes
challenges on heat dissipation, precluding the adoption of higher
frequency chips.

Despite industry hitting the power-wall, Moore’s Law continued
delivering. However, instead of increasing frequency, new chips
incorporated more computing elements to exploit those extra available
transistors. In the High Performance Computing (HPC) area, which
solves scientific and engineering problems with high computing demands,
this extra computing elements translated into Central Processing Units
(CPU) with a higher core count and internal memory capacity.
Nevertheless, parallel computing is more complex to program than

1

2 CHAPTER 1. INTRODUCTION

sequential computing. Apart from breaking the problem into independent
parts or tasks to be executed concurrently, parallel computing requires
program correctness. Frequently, independent tasks have dependencies
that must be respected. Thus, parallel systems feature synchronization
mechanisms to orchestrate those tasks. These dependencies make
exploiting parallelism hard because they limit the maximum achieved
speed-up. Furthermore, parallel computing is limited by the portion of
code that is paralelizable, as stated by Amdahl’s law [2].

Besides, as the amount of cores integrated in a chip increases, the
interconnection delay to communicate them becomes a bottleneck. Whilst
transistor switching time improves on every new process technology, wires
have kept a constant delay and only small decreases have been achieved
thanks to new metal layers and design partitioning [7]. Short distance
wires have a controllable delay, but interconnections between different
spread components have an exorbitant cost, taking several cycles to
transverse these distances [7]. These limiting factors, have driven designer
efforts to create new scalable interconnection designs based on
Networks-on-Chip (NoC) [8]. The main idea behind NoC is that each
component in the system has its own router to send and receive messages.
Rather than using long and slow wires, connections are split using shorter
links connected through routers. Consequently, systems based on NoC
support higher frequencies, have higher bandwidth and are more scalable.

As the adoption of NoC spreads, new possible topologies are proposed
to connect the different components in a system. A plethora of topologies
exist, being the most popular the ring, the mesh, the crossbar, the
hypercube and the torus. The common approach when designing a NoC
chip is to distribute components in the network by placing one or several
cores at every NoC crosspoint, forming a cluster. Each core is connected
to one private first level of memory cache (L1). All the L1’s are connected
to a cluster-shared second level of memory cache (L2). Finally, it is
common to place one slice of the shared third level of cache (L3) close to
each cluster. Not all the NoC crosspoints have this structure, because
there are other kinds of components that need to be placed on the chip,
such as memory controllers, IO devices, DMAs, etc. Figure 1.1 depicts
such a solution for a torus interconnection.

Another two fields that have experimented changes with the adoption

1.1. CONTEXT 3

Register

Control
Logic

To
 C

ore

R
egister

C
ontrol

Logic

R
eg

is
te

r

C
on

tr
ol

Lo
gi

c
Register

Control
Logic

Core
L1I

L2

L1D

L3 Slice

Core
L1I L1D

To NoC

Figure 1.1: Torus 18-core diagram. Each crosspoint hosts a slice of shared L3
cache, private L2 and L1 caches and two cores.

of NoCs are Consistency and Cache Coherence. The former specifies how
the cores see the memory updates, while the latter guarantees that each
core reads the most recent version of the value stored in a given address.
In snoop based protocols, this two conditions are satisfied broadcasting
writes to all caches. In directory based protocols, all request are sent to
the directory which orders the memory requests and selectively sends
snoops to caches. NoCs have eased the transition from snoop-based to
directory-based cache coherence protocols. The directory is now a
distributed structure spread among the L3 slices. Thus, the centralization
of memory request is no more a bottleneck. Now two different request can
be processed in parallel in different directory slices. Moreover, NoCs
typically use different physical channels to send requests, responses,
snoops and data, enabling a higher message level parallelism between the
two endpoints of a link.

4 CHAPTER 1. INTRODUCTION

As we have seen, multicore architecture evolves with new technologies.
In this work, we aim to revisit the current foundations of parallel
synchronization relaying on the most recent developments.

1.2 Contributions

This thesis presents three contributions in the field of parallel
synchronization. First, it analyzes the current state-of-the-art of parallel
synchronization instructions doing a characterization. We limit the scope
of this characterization to Arm-based systems for simplicity and
availability. Second, we perform a design space exploration of modern
parallel synchronization directives based on Atomic Memory Operations
(AMOs) and evaluate them. We find that there is no single
implementation that suits all cases. Third, based on this observation, we
propose a mechanism to dynamically switch between implementations.

1.2.1 Characterization of Synchronization Instructions on
Arm-Based Architectures

Parallel synchronization received a lot of attention in the parallel
computing community back in the 80’s and 90’s [10] [18]. Nevertheless, as
solutions were developed and integrated into final products, the interest
on this topic has been relegated to academic discussion (parallel
synchronization history is reviewed in Chapter 2). However, as the
core-count of chips increases and new technologies like NoCs are adopted,
synchronization is again starting to gain relevance.

Our first contribution consists on characterizing the behavior of
available synchronization instructions on different Arm-based systems.
The goal of this characterization is to find which synchronization
instructions work better in different situations and what are their
bottlenecks. A secondary goal of these experiments is to gather insights
for the design and verification of a model that supports Atomic Memory
Operations (AMOs) used for the second contribution. This
characterization uses different experiments that include microkernels and
real world applications. We use two different machines to compare
possible different implementations, the Kunpeng 920 and the Graviton 2.

1.2. CONTRIBUTIONS 5

In our experiments, we find that both machines behave different because
of their specific implementations of LL/SC and AMOs. In the case of
Kunpeng 920, AMOs have a higher cost than LL/SC. This higher cost
makes that HPC applications scale better with LL/SC than with AMOs.
However, in those scenarios with high contention AMOs are more efficient
than LL/SC, despite their higher cost. In the case of Graviton 2, we find
out that AMOs perform always better than LL/SC because of these pair of
instructions frequently suffers from transient live locks. In the case of HPC
applications we see how AMOs can speed-up 1.25× the execution time.

1.2.2 Modeling of Atomic Memory Operations in
Arm-based systems

In last five years, Arm-based systems have expanded their market view
to new sectors such as desktop (Apple’s M1), server (AWS’s Graviton 2)
and HPC (Fujitsu’s A64FX). As part of this expansion strategy, Arm has
released an open standard for building large cache coherent systems based
on NoC architectures, named Advanced Microcontroller Bus Architecture 5
Coherent Hub Interface (AMBA 5 CHI). This new standard has been used
as the foundation of recent released many-core systems such as Graviton
2, Ampere Altra and Graviton 3.

One of the key features introduced in this new NoC architecture (with
respect to the previous AMBA specs) is the capability of performing remote
or far Atomic Memory Operations. In several architectures, AMOs are
performed only in the first level of cache next to the core. But in AMBA 5
CHI, AMOs can be sent inside a message to the cache coherence directory
to be performed there to reduce pollution and further invalidations. We
have followed AMBA 5 CHI specs to develop six different cache policies
that execute AMOs in six different ways. Then, we have evaluated all
six implementation using the same workloads of the characterization. In
our experiments, we find out that each application has a different pattern
access that fits different policies. Thus, we cannot use a single policy to
obtain the highest performance in all applications.

6 CHAPTER 1. INTRODUCTION

1.2.3 Dynamic Atomic Memory Operations Policy

The scenario opened by the second contribution gives us the opportunity to
develop a hardware mechanism that is able to adapt to each application to
select the best fitting AMO policy. In this third contribution we compute
what is the achievable speed-up using an ideal policy. Next, we describe
the design choices we have made to create an AMO policy predictor and
what insights have motivated this design. Then, we perform a sensitivity
study of the parameters of the predictor. Finally, we evaluate our predictor
in the same conditions as the static policies. With our predictor we are
able to some benchmarks significantly.

1.3 Thesis Organization

This document is structured in seven chapters that cover the following
topics:

• Chapter 1 presents the context in which this thesis has been made.
It also depicts briefly the contributions made in this work.

• Chapter 2 presents the challenges of parallel synchronization and
summarizes the current solutions that have been used to tackle
synchronization. It also describes some of the academic and
industry proposals to improve current designs.

• Chapter 3 describes the methodology, tools and procedures used to
perform the experiments presented in the thesis. It also explains the
modeling environment used to develop our proposals.

• Chapter 4 presents the performed characterization to two current
commercial multicore systems, focusing on the synchronization
directives.

• Chapter 5 describes how we have modeled AMO in gem5, a
well-known architectural simulator. It also explains the design space
exploration we have performed to find AMO policies within AMBA
5 CHI specs. Finally, it evaluates the model using the same
benchmarks used to characterize the real machines.

1.3. THESIS ORGANIZATION 7

• Chapter 6 presents our hardware mechanism to select dynamically
the best AMO policy. It contains an evaluation in which the dynamic
mechanism is compared against static policies.

• Chapter 7 closes this thesis summing up all the contributions and
publications.

Chapter 2

State of the Art

This chapter describes the main problems architects have to face when
designing multicore systems. Then the most common solutions adopted
by the industry to implement synchronization are explained. Finally, the
chapter summarizes some solutions proposed in prior academic works.

2.1 Problem Statement

With the adoption of multicores two major types of architectures arised
due to process intercommunication requirement. On one hand, Shared
Memory systems have multiple processors reading and writing to the
same shared data. On the other hand, Distributed Shared Memory
(DSM) systems use processors that have its own local memory and send
messages to communicate with other processors. Shared Memory
multicores are the most common type of single-chip multicores, because
Shared Memory offers a simple, fast and efficient method of
communication. DSM systems with hundreds of processors employ
Message Passing to communicate across nodes. The Message Passing
Interface (MPI) [36] is the preferred standard to implement Message
Passing.

Even though Shared Memory systems can provide efficient
communication, the correct use of these systems demands deep knowledge
by the programmer on different synchronization techniques.
Synchronization is used in modern multicore systems to orchestrate how
different threads execute in parallel (i.e. forcing a Critical Section (CS) in
which only one thread executes a part of the code, while other cores
execute other parts or wait [20]). There are many synchronization
directives that have been developed through the years, such as locks,

8

2.2. LOAD LINK AND STORE CONDITIONAL 9

barriers, semaphores and transactions, among many others.
All these synchronization directives require special support

implemented in hardware, usually through specific instructions. Most of
these instructions implement atomic Read-Modify-Write (RMW)
operations that read a memory location, perform an operation with the
read data and, finally write again the memory position with the result in
an indivisible way. As we will see in Section 2.5, numerous hardware
synchronization mechanisms have been proposed throughout the years,
but only a few of them have been adopted by real systems. The most
common solutions implemented are Load Link and Store Conditional (See
Section 2.2), Atomic Memory Operations (See Section 2.3), and
Transactional Memory (See Section 2.4).

2.2 Load Link and Store Conditional

In the past, the number of cores integrated on a single chip was low
enough to adopt simple solutions that did not required big changes in the
architecture. This is the case of Load-Link and Store-Conditional
(LL/SC), a pair of instructions that together achieve atomic RMW
semantics. First, the programmer uses a Load-Link (LL) to get the value
that will be modified atomically. This instruction not only returns the
current value of a memory location, but also flags the memory position as
accessed by a LL. Then, the programmer can modify the read value as
needed. Finally, to update the memory position a Store-Conditional (SC)
is issued. This SC only succeeds if the flag left by the LL has not been
removed. To ensure that no other core updates that memory position, the
system must clean the LL flag on every store performed.

LL/SC have been adopted by many Instruction Set Architectures (ISA)
like MIPS, Power, Arm and RISC-V. The most common implementation
of LL/SC is based on cache coherence invalidation protocols. When a
write operation is performed by a core, the cache coherence protocol sends
invalidations to other caches that hold the cache line to gain the exclusive
access to it. Therefore, when a LL brings the block to the cache in a Shared
state, if any other core writes to the same cache line, then the cache line will
be invalidated. Thus, on a SC the cache line will no longer be present and it
will fail. Other implementations, instead of issuing the invalidations when

10 CHAPTER 2. STATE OF THE ART

the SC is executed, issue the invalidations when the LL is executed. This
simplifies the execution of the SC because the block is already in exclusive
state on the L1 cache. However, this approach can generate live-locks when
several threads issue LLs that invalidate each other’s cache lines.

Arm defines in its architecture that the LL/SC handling mechanism
must be carried by Exclusive Monitors [22]. Each core has a local monitor
that is associated with it. The local monitor can be constructed to hold
the exclusive state for a particular address. Any exclusive store is treated
as if it matches the address of the previous exclusive load. Thus, only one
LL/SC pair can be handle at a time and other memory accesses are usually
forbidden or restricted in number.

As can be derived from the previous example, LL/SC do not guarantee
always forward progress for all cores, but for one of them. For example,
when two cores want to increment a shared counter, both would emit LL,
perform an addition and emit a SC. But only a single core can increment
the shared counter, while the others fail.

One of the key advantages of LL/SC is that performing the
computation associated with the RMW operation has free cost in
hardware, because the Arithmetic Logic Unit (ALU) of the core can be
reused. It also allows programmers to perform different sequences of
integer/float operations. However, as the computation between a LL and
a SC increases, the probability of failure for the SC also increases.
Moreover, as the core count increases the performance of LL/SC can
degrade as we will see in Chapter 4.

2.3 Atomic Memory Operations

Atomic Memory Operations (AMOs) are instructions that directly encode
a basic operation that is performed with RMW semantics. The main
difference with LL/SC is that the operation is done in an indivisible way.
Some AMOs such as a swap (exchanges two values) or fetch-and-add
(increment the value of a memory position) guarantee forward progress of
all threads or cores that execute those instructions. Following the
example seen in the previous subsection, two threads that want to
increment a shared counter would emit a fetch-and-add instruction and
both would succeed.

2.3. ATOMIC MEMORY OPERATIONS 11

AMOs are widely adopted by most ISAs such as Power, Arm, RISC-V
or x86. Analogously to LL/SC, AMOs can be implemented in such a way
that, they reuse the hardware that already exist on a core. During the
operation the core blocks the cache line, so invalidations are deferred until
the operation completes. This is the approach Intel took to implement its
instruction XCHG. This implementation, although correct and intuitive,
sacrifices performance because of the complex control required between
the core and the cache.

Another well known approach is to first obtain the cache block in
Modified (M) state and then perform the operation inside the first Level
of Cache. This requires an specific ALU and pipeline to perform AMOs.
This solution can be found in the Lowrisc L1 cache [33].

A more complex solution consist on executing AMOs on other
components of the chip, such as a memory controller or a shared cache
bank [18] [21] [14]. This remote execution of an AMO is known as Far
AMO. The idea is interesting when several cores access a specific cache
line and the block ”ping-pongs” from one core to another. Thus, instead
of bringing the data to the computation, the computation is sent where
the data resides.

Far AMOs were implemented in commercial projects like the Cray
T3D [24], T3E [40], and SGI Origin [27], in which Far AMOs were
implemented at the memory controllers. TilePro64 [43] and recent GPUs
[46] implemented Far AMOs in shared caches. While, this idea was deeply
explored in the past, it has not been used in mainstream processors until
recently. Power9 has adopted Far AMOs at the memory controllers, while
Arm supports different solutions in its Advanced Microcontroller Bus
Architecture (AMBA) 5 Coherent Hub Interface (CHI) specs.

Despite AMOs were designed to reduce the latency and NoC traffic,
they still cause significant global traffic since operations are sent to a
shared, fixed location. Serialization can be another problem because each
Far AMOs has both read and write semantics (they return the latest
value of the memory position they update). Therefore, consistency needs
to be preserved issuing the AMOs only at commit (like a store) and
waiting until the value returns (like a load). This is the reason why ISAs
like RISC-V, Arm and Power9 have included atomic-no-return
instructions, in which the previous data to the update is not fetch to the

12 CHAPTER 2. STATE OF THE ART

core. These instructions reduce the cost of AMOs, because cores are able
to commit AMOs earlier due to the weak consistency memory model.

2.4 Transactional Memory

Both LL/SC and AMOs are widely used to implement high level
directives like mutexes, spinlocks and barriers among others. However,
programming parallel applications using those directives can be complex
and requires experienced programmers. Transactional Memory (TM) [19]
aims to address the need for a simpler parallel programming model. TM
promises good parallel performance and easy-to-write parallel code. With
TM, programmers simply demarcate sections of code (called transactions)
where synchronization occurs. Then the Hardware Transactional Memory
(HTM) system executes those transactions guaranteeing the following
properties: atomicity, isolation, and serialisability.

To provide atomicity, the HTM system ensures that transactions are
executed under all-or-nothing semantics, either all the code in a
transaction is executed or none of it. Isolation is provided by ensuring
that no partial results are visible to the rest of the system, results are
made visible only when a transaction completes its execution successfully.
Finally, serialisability requires the execution order of concurrent
transactions to be equivalent to some sequential execution order of the
same transactions. To guarantee this properties all TM systems need to
perform two important tasks: conflict detection and version management
[6].

To detect conflicts, each transaction tracks the memory accesses into
two different sets the read-set and the write-set. Then, when the
transaction is committing read and write sets are compared to detect
fine-grain read-write and write-write conflicts. If a conflict is found, one
of the conflicting transactions has to be aborted, the execution state is
then rolled back to the point where the transaction started, and the
transaction is retried. Otherwise, if no conflicts are found, the transaction
commits successfully.

2.5. RELATED WORK 13

2.5 Related Work

Academic literature has profusely explored hardware and software
techniques that reduce the cost of updates to shared data. Apart from
the aforementioned solutions, there are other ideas that were not widely
implemented in real systems that are related with the topic that we will
cover in this section.

One of the first proposals made in 1995 is Dynamic Self-Invalidation
(DSI)[28]. DSI is a technique that tries to eliminate invalidation messages
by automatically invalidating private cache line copies. This must be
done before a conflicting access by another processor triggers an
invalidation message. The directory is the component that identifies
which blocks should use self-invalidation by maintaining a history of its
sharing pattern. When servicing a request for a cache block, the directory
uses an extra bit to signal if the block is likely to be invalidated in the
future. Then, the self-invalidation is triggered in two scenarios: when a
synchronization instruction is executed or when the tag of the cache line
is evicted from a FIFO queue. The main weakness of this idea is the
mechanism that triggers the auto-invalidation, because the FIFO queues
need to be sized properly for each workload and synchronization
instructions can evict blocks needed in the next cycles.

Active Memory Operations [50] explore the idea of fine grained
updates of AMOs. Unlike traditional Cache Coherent writes that require
to invalidate sharers to achieve one private copy with read-and-write
permission, the Active Memory Operations can modify the data without
obtaining exclusive state. To maintain coherence the updates are sent to
the directory which will forward the update to all the sharers with a local
copy. This approach substitutes invalidations by update messages and
reduces the writer-consumer latency. Although the approach is tested in
some microbenchmarks, the impact of the optimization is unclear for real
world applications.

Similarly, Sharing/Timing Adaptive Push [35] (STAP), is a complex
dynamic mechanism that preemptively sends data from producers to
consumers to minimize critical path communication latency. To do so, it
detects three types of data sharing patterns: Producer-Consumer,
Broadcast and Migratory Exclusive Ownership (a.k.a. cache-line

14 CHAPTER 2. STATE OF THE ART

ping-pong effect). These patterns are detected using additional and
expensive hardware at the L1 and L3 caches, and performing extra
communication between these two structures. The main advantage is that
updates can be forwarded directly to consumers.

Even though NoCs have been adopted by the industry, core to core
communication is transparent to programmers. A notable exception is
the SW26010 (the Sunway TaihuLight processor [15]), which exposes the
inter-core network to developers for better architecture scalability. pLock
[42] is a fast lock designed for architectures that support Explicit
inter-core Message Passing (EMP). pLock proposes two techniques:
chaining lock, and hierarchical lock, both to reduce message count and
mitigate network congestion. The chaining lock when a thread releases a
lock instead of freeing it, the thread passes the lock to the next waiting
client. The hierarchical lock removes slow long-distance communication
using intermediate cores as local servers to avoid long-distance
communication. Both ideas combined can reduce the amount of messages
and the average latency of messages. However, instead of using cache
coherent caches, EMP needs scratchpad caches, which are very complex
to program.

MiSAR [29], is a minimalistic synchronization accelerator that is added
to each L3 slice. The accelerator is designed to support the classic Pthread
directives Mutex Lock/Unlock, Barriers and Conditional Variables through
custom instructions. For example a LOCK instruction is always sent to the
corresponding accelerator. In case the lock is free it returns a free message
to the requester. If the lock is not available, the accelerator simply delays
the response until the lock is freed. This prevents the requesting core’s
LOCK instruction from being committed, stalling its core until the lock is
obtained. The biggest weakness apart from introducing extra instructions
on the ISA, is that MiSAR assumes that there is no thread oversuscription
or any other process running on the system and thus it can stall cores from
committing instructions.

Another high level directive that is targeted in Carbon [25] is task
scheduling. Carbon introduces hardware distributed task queues that
implement task stealing. In this scheme, each thread has its own queue,
where it enqueues a tasks. When the thread finishes executing a task and
needs a new task to execute, it first looks at its own queue. When there is

2.5. RELATED WORK 15

no task available in its own queue, it steals a task from one of the other
queues.

Multi-Address atomic operations (MAD atomics) [17] are a set of
individual instructions that achieve complexity-effective, non-speculative,
non-deadlocking, fine-grained locking for multiple addresses. These
instructions target the Dijkstra philosophers problem of taking several
locks, giving a predefined order of acquiring the locks to avoid deadlocks
based on the address of the variables.

Research has recently turn towards exploiting the capabilities of
RMW updates. For example, COUP [49] presents an aggressive
reordering of AMOs that exploit the commutativity of this type of
operations. However, this approach requires support for Floating Point
AMOs. RICH [13], presents a similar approach that targets OpenMP
reductions, where the runtime is supposed to delimit which code blocks
contain reduction functions, so the hardware is able to optimize them
using a hierarchical reduction module present in the different levels of
cache.

Chapter 3

Experimental Framework

This Chapter describes the methodology used to carry out our
experiments and the workloads used as representative code of real world
applications. It includes a short description of the machines we have used
in the experiments. Moreover, we describe the simulation infrastructure
used to model the different implementations of AMO and a discussion on
the microarchitecture that is being simulated.

3.1 Methodology and Environment

In order to run our native and simulated experiments, we have developed
a methodology that enables fair comparisons between machines and
experiments. In this section, we will describe how we have set-up and run
the experiments following that methodology. Moreover, to ensure the
software stack and OS environment does not introduce any artifact, we
have followed a rigorous set-up of the software environment, which is
described in the following subsection. Finally, we close this section listing
and describing the tools used in the characterization to understand the
behaviour of some applications.

3.1.1 Methodology

The first step to fairly execute a benchmark natively or on a simulated
machine is to define a Region-of-Interest (ROI). The ROI delimits which
part of the application is going to be captured by the time measuring
tools, tracing mechanisms or profiling tools. This way ROIs help us to
characterize exactly the execution patterns of applications. Moreover, a
good definition of the ROI is fundamental when we running an experiment

16

3.1. METHODOLOGY AND ENVIRONMENT 17

in a simulated machine because the cost of simulating extra cycles is very
expensive. This is specially important for full system simulations, in which
the system calls can generate noise in the results. Therefore, we have
excluded from the ROI all the file system calls, data initialization and
thread creation and destruction.

For the characterization of commercial multicore machines we have
developed an automatic framework to carry out the experiments. The
purpose of this framework is to launch all the experiments, pin the
threads to physical cores and repeat the experiments several times. Thus,
the results of the experiments are isolated from the noise of other
processes running on the same system. Using the standard deviation
obtained from the experiments we have fixed the amount of repetitions to
10 times. In the case of simulations we have conducted only one
repetition due to simulation time restrictions.

Finally, in order to ensure the same conditions for all the experiments
we have used the same binaries in all the experiments. This requirement
is essential to avoid possible differences on the libraries available in the
machines. Further details can be found in the next section.

3.1.2 Software Environment

Since our test machines have different Kernel versions, OS distributions,
library versions, and compilers installed, we have used a common
environment to compile our applications. This environment is the same
our simulator uses to run the applications along with the kernel and file
system. We use Kernel 4.15.0 and an Ubuntu image of version 16.04.9.

To compile our applications we have used the Arm HPC compiler
(version 20.1), a commercial compiler developed by Arm. We have opted
for this compiler instead of GCC or CLANG based on previous results
that demonstrate that the Arm HPC Compiler can generate well
optimized code [41]. We also tested the benchmarks to verify that this
premise is true.

For every benchmark we have compiled two binaries that contain two
different set of instructions. On one hand, we have binaries that use
exclusively LL/SC to implement locks, barriers, or atomic updates. On
the other hand, we have binaries that only use AMOs for the same

18 CHAPTER 3. EXPERIMENTAL FRAMEWORK

LL/SC -march=armv8-a+nolse -pthread -static

AMO -march=armv8-a+lse -lpthread -L/lib/aarch64-linux-gnu/atomics -static

Table 3.1: Compiler flags used to obtain LL/SC and AMO binaries

primitives. In the case of libraries like POSIX, by default they are
compiled to support only LL/SC. Therefore, we have recompiled those
libraries forcing the use of AMOs. The flags we have used to get these
binaries are listed on Table 3.1.

To verify that the generated code is free from instructions of the wrong
type, in each binary we have used a postprocessing over the binary to
disassembly it and then count the instructions of each type. We have
also checked manually the assembly of some primitives like the CAS (see
Listings 3.1 and 3.2).

#0: l d r x1 , [x4] # Load Lock
cbnz x1 , #0 # Lock != Zero

#1: ldxr x2 , [x4] # Load Lock
eor x3 , x2 , x1 # Lock unchanged
cbnz x3 , #3 #
stx r w3 , x5 , [x4] # Write 1 in Lock
cbnz w3 , #1 # STX != Fa i l

#3: cbnz x2 , #0 # LL = 0

Figure 3.1: CAS implemented with
LL/SC

#0: l d r x1 , [x4] # Load Lock
cbnz x1 , #0 # Lock != Zero

#1: mov x2 , x1 # x10 = expected
cas x2 , x5 , [x4] # CAS Lock by 1
cbnz x2 , #0 # CAS != Fa i l

‘

Figure 3.2: CAS implemented with
AMO

Listing 3.1 shows the implementation of a CAS using only LL/SC
instructions. Initially the code waits until the Lock variable is equal to 0
(lock is not busy) using a load and a conditional branch. When the Lock
is released by other thread writing a 0 on it the CAS builtin tries to
capture the lock. First, the thread reads with a LL (ldxr) the lock value,
then performs an Exclusive OR and a conditional branch to check that
the value did not change during the process. In case of a change, the
function comes back to waiting until the value is zero again. Otherwise,
the CAS builtin tries to write a 1 using a SC (stxr) instruction. Finally,
the builtin checks that the SC did not fail and that the read value was
zero with two conditional branches.

Listing 3.2 shows the same builtin using AMO instructions. Again, the

3.2. WORKLOADS 19

code starts waiting until the lock is released. Once the lock is free, the
thread performs a CAS instruction, but first it needs to set the expected
value in the destination register. This register is overwritten by the original
value of the Lock before issuing the CAS. Thus, after issuing a CAS, the
thread checks if the destination register contains a 0 that means that it
succeeded.

3.1.3 Tools

During our experiments, we have used several applications for different
purposes, one of them is thread pinning. Taskset [30] is a simple Linux
command that pins threads to physical cores. This is essential in our case
because our test machines have multiple sockets that are visible to the OS,
but we want to test only on a single chip.

Another tool we have used is time [31]. This tool apart from returning
the execution time, performs a break down of the amount of CPU time
spent in kernel mode, the percentage of the CPU used, the amount of
memory used and the number of swap out of the process and number of
page faults. This tool has been used as a sanity check, not as a time
measuring tool.

When performing a characterization just capturing the execution time
and scalability of applications is insufficient to understand and obtain useful
insights. Therefore, we have used extrae [11] tracing tool to dig into the
behavior of applications. This tool creates trace files from the execution
events captured during the execution. In this case we have used POSIX
events for our traces. In order to visualize the traces we have used the trace
visualization tool paraver [26]. We have used paraver also to visualize our
custom made traces generated from simulator events.

3.2 Workloads

Workloads are a major concern when performing experiments, because
the use of non representative applications can lead researchers to wrong
conclusions. Therefore, we have selected the workloads following this
criteria:

20 CHAPTER 3. EXPERIMENTAL FRAMEWORK

• Benchmarks should represent parallel and sequential patterns present
in common and HPC applications (such as consumer-producer, group
sync, etc).

• Benchmarks should allow a comparison of different synchronization
directives implemented across multiple systems.

• Benchmarks should present different scalability patterns to study the
effects of AMOs.

The best way accomplish these requirements was to use different
benchmarks suites. This way, we decided to use one suite of microkernels
named LockHammer [23] and Splash-3 [39] a popular parallel application
suite.

3.2.1 LockHammer

LockHammer [23] is a performance evaluation tool for locks, barriers and
read-write locks, which can be used to characterize the performance of
high core-count systems or compare different synchronization directives.
Several basic primitives and well known lock implementations are included
in the suite. Table 3.2 list the synchronization directives we have used in
our experiments. This list includes a short description of the implemented
directives we have tested.

The general structure of the micro-benchmark consists of a for loop that
all threads execute in parallel. In the loop each thread tries to capture
the lock, once acquired the thread executes a variable number of NOP
instructions that represent the Critical Section (CS) of a program and
then releases the lock. After releasing the lock the thread can execute
again a parameterized number of NOP instructions, which represent the
parallel section (PS). Thus, we can model different SC/PS ratios tweaking
the number of NOP operations executed inside and outside the critical
section. Note that the amount of CS increases with the number of threads
instantiated, therefore this is a weak scaling application.

We have selected two configurations to simulate two different high
contention scenarios. The first configuration named serialized because
each thread executes 500 NOP instructions in the CS, and 0 NOP

3.2. WORKLOADS 21

Synchronization Directive Abbreviation Description

Empty Empty Null implementation of lock that
simulates no synchronization cost

CAS Lockref CAS-Lock Basic spinlock implementation that
uses CAS instruction with 64 bit word

CAS RW Lock CAS-RW Basic multiple reader lock that uses
CAS instruction to increment lock

Incdec Refcount IncDec-RW Shared incrementable counter

Swap Mutex Swap-Lock Basic spinlock implementation that
uses SWAP instruction with 64 bit word

JVM Monitor JVM-Lock Java virtual machine implementation of
a monitor for shared objects. Initial
phase tries to acquire the lock with
a Spin within a maximum number of
iterations. In case of failure, the thread
adds itself in a list of waiting threads
and stops on a pthread conditional
variable

Hybrid Spinlock HS-Lock Behaves like a normal spinlock at first,
in case of contended lock uses a back-off
strategy. Similar to Queued Spinlock
from Linux. The MCS Lock is used to
provide fairness, since is equivalent to
FIFO queue

Hybrid Spinlock Fastdequeue HSF-Lock Same as as Hybrid Spinlock with
special fast path for thread that acquire
the lock after waiting

Optimistic Spin Queue Lock OSQ-Lock MCS like lock that uses spin relax
instead of sleeping

Queued Spinlock Queued-Lock Extracted from Linux 4.13
implementation. Is a complex version
of the MCS Lock with several slowpaths

Ticket Spinlock Ticket-Lock Linux 4.13 spinlock that uses a shared
counter to implement fair CS access

Event Mutex MySQL-Lock MySQL 5.7 implementation of mutex.
Uses CAS instruction to obtain the
lock, an uses delays as back-off method

TBB Spin RW Mutex TBB-RW Threading Building Block Reader-
Writer lock, that is fast, unfair, with
back-off and writer-preference

Table 3.2: Lock description of LockHammer Micro-benchmark Suite

22 CHAPTER 3. EXPERIMENTAL FRAMEWORK

instructions in the PS. Therefore, all the work is done in the CS and all
the work needs to be serialized (in the case of RW locks this is not true).
With this configuration, on each thread acquisition, all threads in the
system will fight to access the CS. However, one problem of this scenario
is that the latency between L1 and L2 is not 0. Therefore, threads that
release a lock will keep lock cache line in M state in the L1. Since the PS
is 0 instructions and invalidations need some cycles to arrive from L2 to
L1, threads that release a lock are able to gain the CS again. This
happens more frequently in locks that have pauses or sleep directives.

There are some lock implementations that constantly read the variable
to check if has been updated, like in spinlocks and RW locks. In these locks
the problem is attenuate, because a thread can receive an invalidation just
after gaining ownership of a cache line. So when releasing the lock, it might
lose the ownership of the block.

Therefore, we have designed a second configuration that tries to avoid
this problem. We named this configuration unserialized because it uses 250
NOP instructions in the CS and PS. Therefore, half of the work is now split
in a parallel region, which is short enough to have high contention when
using high number of threads. If we revisit the previous problem we see
now that a thread releasing a lock, needs to execute 250 NOP instructions
before trying to acquire again the lock. This creates a window of time
big enough to wake up a sleeping thread and send a lock acquire that
invalidates the cache line.

3.2.2 Splash-3

Splash-2 [47] is a benchmark suite that comprehends different scientific
applications. It was one of the first shared-address-space multiprocessing
benchmarks that were publicly available. Soon, it became a reference for
parallel application for two decades. Recently, an updated version (Splash-
3 [39] has ported this benchmark suite to a modern C-language memory
model and without data races. In Table 3.3 we can see all the applications
present in this suite, a short description of them and the check list of
synchronization directives used (barriers, mutexes or condition variables).
By default Splash-3 uses Mutex, Semaphore and Condition Variables of
the POSIX thread (pthread) library.

3.2. WORKLOADS 23

Application Description Barriers Locks Pauses

BARNES N-body method * * *

CHOLESKY Sparse matrix factorization * * *

FFT 1-D Fast Fourier Transform *

FMM Hierarchical N-body method * * *

LU-C Dense matrix factorization with
blocking

*

LU-NC Dense matrix factorization *

OCEAN-C Optimized large-scale ocean
movement partial differential
equation

*

OCEAN-NC Large-scale ocean movement
partial differential equation

*

RADIOSITIY Finite Element Method for scene
rendering

* *

RAYTRACE 3D raytracing scene rendering * *

VOLREND 3D raycasting scene rendering * *

WATER-NQ Water molecule force
computation using O(n2)
algorithm

* *

WATER-SP Water molecule force
computation using O(n)
algorithm

* *

Table 3.3: Application description and Synchronization directive list of the
Splash-3 Benchmark Suite

24 CHAPTER 3. EXPERIMENTAL FRAMEWORK

Splash-3 features different predefined inputs to be executed in
different scenarios. One of these default inputs consist on a big workload
mean to be executed on multicores with big core counts named NATIVE.
However, these inputs are not suitable for simulations since the CPU time
that they consume can be enormous. Therefore, we have use one of the
pre-defined inputs, which is several times smaller and it was mean to be
used in simulators.

When performing our simulations we have observed that the use of
Mutex locks from POSIX library can introduce variations in the
experiments due to the variable sleep times. Two experiments with the
same configuration, but some small changes in the kernel execution
environment can lead to completely different execution times. This
happens because we use a small computation time that is heavily affected
by kernel interruptions. In order to reduce this variability we have
decided to use POSIX spinlocks to implement locks in the simulations.

3.3 Tests Machines

To characterize the current synchronization instructions present in Arm
based multicores, we have selected a group of machines that is
representative of Server and HPC ecosystems: Huawei’s Kunpeng 920 and
AWS’s Graviton 2.

3.3.1 Kunpeng 920

Huawei’s Kunpeng 920-4826 is a 64-bit Armv8.2 server microprocessor
developed by HiSilicon on 7nm. The multicore features 48 TaiShan v110
cores, a 4-way OoO core based on the Cortex-A72 that runs at 2.6 GHz.
The chips uses a multi-die architecture to integrate such a big number of
cores. Each die uses an internal ring NoC to interconnect cores [48] (see
Figure 3.3 for the 64-core version diagram). Table 3.4 lists the cache
hierarchy of the Kunpeng 920.

Kunpeng 920 supports Atomic Memory Operations included in the LSE
extension of Armv8.2. Architectural details on how these instructions are
supported are not disclosed.

3.3. TESTS MACHINES 25

Figure 3.3: Kunpeng 920 64-core mesh and die diagram [44].

3.3.2 Graviton 2

Graviton 2 is a custom multicore developed by Annapurna Labs
exclusively for Amazon. Currently these multicores are used to power
EC2 instances for Amazon Web Services. Graviton 2 is a 64-bit Armv8.2
multicore SoC that features 64 custom Neoverse N1 cores running at
2.5GHz. Neoverse cores are identical to the A76 architecture, featuring
Out-of-Order(OoO or O3) execution with 11 stages, 4-way decode and
8-way issue. The 7nm multicore integrates these 64 cores through a
CMN-600 mesh interconnection, which implements AMBA 5 Coherent
Hub Interconnection (CHI) architecture at 2.0GHz (see Figure 3.4).
Table 3.5 lists the cache hierarchy parameters of the Graviton 2.

Neoverse N1 cores support Large System Extension (LSE) as part of
the Armv8.2 specs, which introduces AMOs in Armv8 ISA. As we have seen
in section 2.3, atomic instructions to cacheable memory can be performed
as either near atomics or far atomics, depending on where the cache line
containing the data resides. The Neoverse N1 manual states:

• When an instruction hits in the L1 data cache in a unique state, then

26 CHAPTER 3. EXPERIMENTAL FRAMEWORK

L1 Instruction Cache
Size 64KiB

Block Size 64-bytes

L1 Data Cache

Size 64KiB

Block size 64-bytes

Type Private

L2 Cache

Size 512KiB

Associativity 8-way

Type Private

L3 Cache
Size 48x1MiB

Type Shared and Sliced

Table 3.4: Kunpeng 920 cache hierarchy [48].

L1 Instruction Cache

Size 64KiB

Associativity 4-way

Block Size 64-bytes

L1 Data Cache

Size 64KiB

Associativity 4-way

Block Size 64-bytes

Type Private

Latency 4 cycles

L2 Cache

Size 1MiB

Associativity 8-way

Block Size 64-bytes

Type Private

Policy Inclusive (only L1D) MESI

Latency 9/11 cycles

L3 Cache

Size 32MiB

Associativity 16-way

Type Shared and Sliced

Table 3.5: Graviton 2 cache hierarchy [3].

3.3. TESTS MACHINES 27

Figure 3.4: Graviton 2 64-core mesh diagram [5]. N1 boxes represent cores

it is performed as a near atomic in the L1 memory system. If the
atomic operation misses in the L1 cache, or the line is shared with
another core, then the atomic is sent as a far atomic on the core CHI
interface.

• If the operation misses everywhere within the cluster, and the
interconnect supports far atomics, then the atomic is passed on to
the interconnect to perform the operation. When the operation hits
anywhere inside the cluster, or when an interconnect does not
support atomics, the L3 memory system performs the atomic
operation. If the line it is not already there, it allocates the line into
the L3 cache. This depends on whether the directory is configured
with an L3 cache.

Alternatively, the Neoverse N1 manual specifies that the CPUECTLR
system register can be programmed such that all atomic instructions
execute as a near atomic. However, the programming of this register is
restricted to firmware privilege level.

28 CHAPTER 3. EXPERIMENTAL FRAMEWORK

3.4 The gem5 Simulator

In order to model AMOs, we have selected gem5 [32] as our reference
simulator. gem5 is one of the most popular cycle-accurate simulators used
in computer architecture research. This simulation infrastructure allows
researchers to model modern computer hardware systems in detail. One
of the main features is its full-system mode that is capable of booting
unmodified Linux-based Operating Systems (OS) and run full applications
for multiple architectures including Armv8+.

However, the default gem5 package is not meant to simulate accurately
cache hierarchies, cache coherence or NoCs. Therefore, gem5 features the
Ruby cache model that specifically simulates these components. Ruby
uses a domain-specific language that enables new definitions of coherence
protocols. Recently Arm has published its CHI protocol for Ruby, partially
based on the AMBA 5 CHI specification. This protocol supports LL/SC
operations but does not support AMOs in any form. In Chapter 5 we
will explain how we have modified gem5 in order to support AMOs in
compliance with the AMBA 5 CHI protocol.

gem5 uses several configuration files to specify all the components that
will be simulated. In this section, we will describe how we have configured
all these parameters for our simulations.

3.4.1 CPU Microarchitecture

In gem5, the basic building block is the CPU. There are four CPU models
with different levels of detail and performance. For this work we have used
the detailed model of an out-of-order CPU (O3). This model has several
configuration files that can be tweak to model different architectures. In our
case we have configured the O3 model with the same parameters the Arm
Cortex X1 [45], a high performance core with wide and complex datapath
that enhances single thread performance. Since we target next generation
cores, we have introduce some modifications influenced by the recent Apple
M1 [4]. We have increased the amount of resources of internal structures
such as Reorder Buffer, Load-Store Queue, etc. These parameters are listed
in Table 3.6

3.4. THE GEM5 SIMULATOR 29

Pipeline Widths

Fetch 8-way

Decode 8-way

Issue 14-way

Writeback 14-way

Commit 8-way

Structure size

Instruction Window 472 entries

Reorder Buffer 630 entries

Load-queue 154 entries

Store-queue 106 entries

Branch Predictor

Type of predictor Tournament

Size 8192 entries

BTB size 8192 entries

RAS size 64 entries

Frequency 2.5 GHz

Table 3.6: X1 gem5 configuration.

3.4.2 Cache Hierarchy and NoC Configuration

The architecture of Graviton 2 has inspired the way we have configured
our multicore. The configuration file instantiates 64 cores with three levels
of cache. The NoC layout is a square mesh of 8x8 crosspoints that runs
at 2GHz. The latency of routing a packet and traversing a link is for both
cases one cycle. Figure 3.5 depicts the actual shape of the mesh.

In each crosspoint there are two X1 cores, each connected to three
private caches (Instruction L1, Data L1 and L2) and one slice of the
shared distributed cache (L3) that works as a directory. The details of
the caches are listed in Table 3.7. The L2 is fully inclusive with respect to
the L1 and total amount memory is 64 MiB (1MiB per core). Meanwhile,
the L3 is exclusive with a total of 64 MiB of memory (also 1 MiB per
core). We have placed one prefetcher on each private cache based on some
small tests done with the STREAM benchmark [37]. We have choosen
High Bandwidth Memory 3 (HBM3) as the main memory technology.
The chip has 8 channels of 64GB/s that sum up a total memory
bandwidth of 512GB/s.

30 CHAPTER 3. EXPERIMENTAL FRAMEWORK

Register

Control
Logic

To
 C

ore

R
egister

C
ontrol

Logic

R
eg

is
te

r

C
on

tr
ol

Lo
gi

c

Register

Control
Logic

Core
L1I

L2

L1D

L3 Slice

Core
L1I L1D

To NoC

CT CT CT

CT CT CT CT

CT CT CT CT

CT

CT

CT

CT CT CT CT CT

CT CT CT CT CT

CT CT CT CT

CT

CT

CT

CT

MT MT

MT

MT

DMA DMA

IO IO

MT MT

MT

MT L2

Figure 3.5: gem5 64-core mesh diagram. Boxes represent: Compute Tile (CT),
Memory Tile (MT), Input Output device (IO), Direct Memory Access (DMA)

Thread Count 1 - 8 - 16 - 32 - 64 threads

Private
Caches

L1I: 64KiB, 4-way, 2 cycles access

L1I Prefetcher: Next Line

L1D: 64KiB, 4-way, 3 cycles

L1D Prefetcher: Strided

L2: 1MiB, 8-way, 10 cycles

L2 Prefetcher: Best Offset Prefetcher

LLC and
HNF slice

2MiB, 8-way, 40-70 cycles

Cache Coherency: MOESI

Exclusive

NoC

8x8 mesh with 64 cores

2GHz

Main Memory 8 channels of 64GB/s each

Table 3.7: X1 Cache Hierarchy configuration.

Chapter 4

Characterization of
Synchronization Primitives

This chapter presents and analyzes the results of the experiments
performed in the tests machines. We employ the experimental
infrastructure and the methodology explained in Section 3.1.1. First, we
evaluate the LockHammer microbenchmark in which multiple locks and
Read-Writer locks are tested. Then, we run the Splash-3 benchmark suite
and analyze the scalability of the applications.

4.1 LockHammer Characterization

In this section we present and analyze the results obtained executing the
LockHammer microbenchmark on the Kunpeng 920 and the Graviton 2.
We present three case studies for each machine.

In the first one, we plot the single thread execution time of all the lock
implementations. The goal behind this experiment is to find out what is
the latency of LL/SC and AMO instructions. Since kernels are run with
a single thread pinned to a core, the memory block that contains the lock
will always be placed in the L1 of that core. Thus, the execution time
will be determined by how fast LL/SC or AMO instructions are executed.
We use the Empty kernel, which does not implement any synchronization
directive, to measure the overhead of each directive.

In the second one, the benchmark is executed with serialized
configuration. As explained in section 3.2.1, this configuration executes
each kernel maximizing the amount of cores that fight for capturing the
lock and removes the parallel execution. This way the shared lock is
highly contended. To run this experiment we have used one thread per

31

32 CHAPTER 4. CHARACTERIZATION OF SYNC. PRIMITIVES

core (48 threads in Kunpeng 920 and 64 threads in Graviton 2).
Finally, we execute a third scenario in which we use unserialized

configuration (see section 3.2.1 for further details). In this configuration
the size of the parallel region and the critical section (CS) is equal. In
this configuration the contention of the locks is lower, but we avoid that a
single thread could access several times in a row the critical section.

4.1.1 Kunpeng 920

First, we obtained the absolute execution time all the lock
implementations using only one thread (see Figure 4.1). The lowest
execution time corresponds to Empty microkernel, in which locks are
removed to check what is the ideal execution time. We have placed an
horizontal line that corresponds the execution time of Empty
microbenchmark. Thus, we can see what is the overhead of each lock with
respect to the ideal execution with no synchronization instructions. In
most LL/SC experiments, we see that the overhead is minimal except for
the OSQ and MySQL locks. However, in 8 out of 12 kernels the overhead
of AMO instructions is non negligible. We can conclude from these results
that the AMOs have a higher delay than the LL/SC in Kunpeng 920.

JV
M

-L
oc

k

C
AS

-L
oc

k
M

yS
Q

L-
Lo

ck
H

SF
-L

oc
k

H
S-

Lo
ck

O
SQ

-L
oc

k
Q

ue
ue

d-
Lo

ck
Sw

ap
-L

oc
k

TB
B-

RW

Ti
ck

et
-L

oc
k

C
AS

-R
W

In
cD

ec
-R

W

Em
pt

y

0.000

0.002

0.004

0.006

0.008

0.010

Ti
m

e
(s

ec
)

LL/SC AMO

Figure 4.1: Absolute execution time of LockHammer locks on Kunpeng 920 with
1 thread

Next, we obtained the absolute execution time all the lock
implementations using one thread per core (48 cores) and serialized
configuration (see Figure 4.2). We execute each benchmark 10 times and
represent the standard deviation using a vertical line on the top of each

4.1. LOCKHAMMER CHARACTERIZATION 33

bar. Locks are sorted by the best execution time among LL/SC and
AMOs versions. Thus, we know what is the best implementation of a lock
for this specific machine. For Read-Write locks we can conclude that
CAS-RW is the best implementation, while for classic locks JVM-Lock is
the fastest. We can see that in both locks using AMOs speeds-up the
execution of the benchmark. While 6 locks obtain speed-up when using
AMOs, there are 4 locks (Ticket-Lock, HS-Lock, HSF-Lock and
Queued-Lock) that are faster using LL/SC rather than AMOs.

Regarding the variability of the experiments we can see that AMO have
lower variability than LL/SC instructions. This observation is noticeable in
most RW locks (TBB-RW, CAS-RW, IncDec-RW) and some regular locks
(MySQL-Lock, JVM-Lock). This characteristic may be of interest in Real
Time systems to implement predictable synchronization mechanisms.

Sw
ap

-L
oc

k
M

yS
Q

L-
Lo

ck
Ti

ck
et

-L
oc

k

O
SQ

-L
oc

k

H
SF

-L
oc

k

TB
B-

RW

H
S-

Lo
ck

Q
ue

ue
d-

Lo
ck

C
AS

-L
oc

k

JV
M

-L
oc

k

C
AS

-R
W

In
cD

ec
-R

W

Em
pt

y

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ti
m

e
(s

ec
)

LL/SC AMO

Figure 4.2: Absolute execution time of LockHammer locks on Kunpeng 920 with
48 threads using serialized configuration

The performance difference between LL/SC and AMOs is different in
every lock implementation. In order to measure how big is the difference
between versions we have plotted Figure 4.3. This figure shows the relative
speed-up of AMO versions normalized to LL/SC version using again 48
threads. We have sorted each lock implementation from the lowest to the
highest speed-up. The highest speed-up is achieved when we implement
a shared counter using AMOs, reaching a 3.2×. Next, Intel TBB fair
RW-lock implementation achieves a 1.67×; however, CAS-RW is faster
in absolute execution time. Despite that both Swap-Lock and MySQL-
Lock obtain more than 1.15×, these lock implementations are the slowest

34 CHAPTER 4. CHARACTERIZATION OF SYNC. PRIMITIVES

compared to the rest. Finally, JVM-Lock has speed-ups of 1.3×, which
make it the fastest lock implementation.

Q
ue

ue
d-

Lo
ck

H
S-

Lo
ck

H
SF

-L
oc

k

C
AS

-L
oc

k

Ti
ck

et
-L

oc
k

O
SQ

-L
oc

k
M

yS
Q

L-
Lo

ck
Sw

ap
-L

oc
k

JV
M

-L
oc

k

C
AS

-R
W

TB
B-

RW

In
cD

ec
-R

W

G
eo

m
ea

n

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

S
pe

ed
-u

p

3.04
LL/SC AMO

Figure 4.3: Speed-up of LockHammer locks (w.r.t LL/SC version) on Kunpeng
920 with 48 threads using serialized configuration

Regarding slowdowns, all the Linux locks except OSQ-lock obtain
between 0.95× and 0.86× slowdowns. Despite these locks are not the
fastest implementations, they play an important role in the software
stack. Therefore, these slowdowns can affect many applications that use
the POSIX library. All these Linux locks use sleeps when they fail to
acquire a lock after a number of tries. This way they enable a context
switch of other threads that may free the requested lock. This also avoids
pooling accesses to the mutex address that produce noise in the cache
hierarchy. Hence, if the catch function is enhanced to execute faster, the
lock can put to sleep the thread faster because it consumes faster its
attempts.

Finally, we execute our third set of experiments using one thread per
core and the unserialized configuration (see Figure 4.4). In this case we
have kept the axis size and the ordering of the benchmarks we have used
in Figure 4.2. This way we can see how the execution time changes from
serialized to unserialized configurations. Since the latter uses a CS that
has half the workload, we observe a reduction in execution time for many
benchmarks: Swap-Lock (only for LL/SC version), OSQ-Lock, HSF-Lock
and TBB-RW (only for LL/SC version).

Nonetheless, three kernels increase their execution time because the
thread releasing the lock cannot take advantage of having the memory block

4.1. LOCKHAMMER CHARACTERIZATION 35

that contains the lock in the L1 to acquire it again. MySQL-Lock (specially
in LL/SC version) and CAS-Lock are two of these locks that experience
the slowdown. Both kernels have a fast path that tries to catch the lock
with a CAS, while those that failed in the fast path are waiting a signal
from the thread that releases the lock. Other lock implementations are not
affected by this because they use a data structure to hold the threads that
want to access the CS (like OSQ, HSF, HS, Queued or JVM). So, while the
releasing thread updates the structure receives an invalidation. The third
kernel that increases its execution time is Ticket-Lock. This kernel enforces
that fairness using a FIFO order ticket. The increase of the execution time
in this kernels is caused by the fight between the thread that is releasing
the lock and other previous threads that are modifying the lock to get a
new ticket.

With unserialized configuration, HSF-Lock is the fastest lock
implementation because AMO version is faster than in serialized. But,
the overall speed-up of AMOs over LL/SC is still 1.2×.

Sw
ap

-L
oc

k
M

yS
Q

L-
Lo

ck
Ti

ck
et

-L
oc

k

O
SQ

-L
oc

k

H
SF

-L
oc

k

TB
B-

RW

H
S-

Lo
ck

Q
ue

ue
d-

Lo
ck

C
AS

-L
oc

k

JV
M

-L
oc

k

C
AS

-R
W

In
cD

ec
-R

W

Em
pt

y

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ti
m

e
(s

ec
)

4.02
LL/SC AMO

Figure 4.4: Absolute execution time of LockHammer locks on Kunpeng 920 with
48 threads using unserialized configuration

Summarizing, AMOs obtain on average a 1.2× speed-up with respect
to LL/SC in both serialized and unserialized experiments with 48 threads.
Whilst, AMO seems to outperform LL/SC for most locks, AMOs have a
higher latency.

36 CHAPTER 4. CHARACTERIZATION OF SYNC. PRIMITIVES

4.1.2 Graviton 2

We perform the same experiments on the Graviton 2. We start with the
absolute execution time of the different lock implementations with only
one thread (see Figure 4.5). This time, we see how the trends reverse and
LL/SC are more expensive than AMOs. However, the differences between
these two versions are smaller. Moreover, Graviton 2 executes the
experiments almost 1.2× faster with respect to Kunpeng 920.

JV
M

-L
oc

k

C
AS

-L
oc

k
M

yS
Q

L-
Lo

ck
H

SF
-L

oc
k

H
S-

Lo
ck

O
SQ

-L
oc

k
Q

ue
ue

d-
Lo

ck
Sw

ap
-L

oc
k

TB
B-

RW

Ti
ck

et
-L

oc
k

C
AS

-R
W

In
cD

ec
-R

W

Em
pt

y

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007

Ti
m

e
(s

ec
)

LL/SC AMO

Figure 4.5: Absolute execution time of LockHammer locks on Graviton 2 with 1
thread

Figure 4.6 shows the absolute execution time of LockHammer
benchmark using one thread per core with configuration one. Note that
this time the number of threads used is 64. Again, locks are sorted using
the order used in Figure 4.2. We can see that the results change
dramatically from those observed in the Kunpeng 920. However, the
fastest implementation for locks and RW-lock are the same (JVM-Lock
and CAS-RW).

MySQL-Lock stands out due to the big execution time obtained with
LL/SC version. This big slowdown is caused by transient live-locks caused
by the higher amount of threads plus the overhead of traversing the NoC.
This is common in systems in which the access time to the directory is big
enough to receive an invalidation between the LL and the SC. Furthermore,
we see that OSQ-Lock, TBB-RW, CAS-RW and IncDec-RW suffer the live
locks for LL/SC versions. An AMO is faster than LL/SC in 7 out of 12
kernels (1 more than in Kunpeng 920), while in 3 benchmarks is slower
than LL/SC (1 less than in Kunpeng 920). Another interesting insight is

4.1. LOCKHAMMER CHARACTERIZATION 37

that, despite the Graviton 2 executes these experiments with 64 threads,
there are 6 kernels that using AMOs finish in less than one second. In
Kunpeng 920 with 48 threads, only three kernels were below one second.
Therefore, even that LL/SC may suffer from live-locks, Graviton AMOs
are faster than any of the versions in Kunpeng 920.

Regarding variability, we see again that LL/SC in Graviton 2 have
higher variability than in Kunpeng 920, and much higher than that of
AMOs. The case of OSQ-Lock is notably bad, reaching 30% of the total
execution time.

Sw
ap

-L
oc

k
M

yS
Q

L-
Lo

ck
Ti

ck
et

-L
oc

k

O
SQ

-L
oc

k

H
SF

-L
oc

k

TB
B-

RW

H
S-

Lo
ck

Q
ue

ue
d-

Lo
ck

C
AS

-L
oc

k

JV
M

-L
oc

k

C
AS

-R
W

In
cD

ec
-R

W

Em
pt

y

0
1
2
3
4
5
6
7

Ti
m

e
(s

ec
)

21.46
LL/SC AMO

Figure 4.6: Absolute execution time of LockHammer locks on Graviton 2 with
64 threads using serialized configuration

Again, we have computed the speed-up of the AMOs with respect to
the LL/SC for each kernel (See Figure 4.7). In these case, the order
followed to sort the lock implementations is the same as in Figure 4.3.
The AMO version of MySQL-Lock, CAS-RW, TBB-RW and IncDec-RW
outperforms the LL/SC version because of the live-locks. As a
consequence of these speed-ups, the AMOs are 2.1× faster than LL/SC
on average. Not everything is caused by the drop of performance of
LL/SC version. In Kunpeng 920 some locks experimented some
slowdowns when replacing LL/SC by AMOs (Queued-Lock, HS-Lock and
HSF-Lock), but in Graviton 2 the slowdowns are less than a 2%.
Therefore, we can say that in Graviton 2, AMOs perform always better or
equal to LL/SC, except for Swap-Lock.

Finally, we reproduce the previous experiments with unserialized
configuration (see Figure 4.8). The first thing we notice is that some of

38 CHAPTER 4. CHARACTERIZATION OF SYNC. PRIMITIVES

Q
ue

ue
d-

Lo
ck

H
S-

Lo
ck

H
SF

-L
oc

k

C
AS

-L
oc

k

Ti
ck

et
-L

oc
k

O
SQ

-L
oc

k
M

yS
Q

L-
Lo

ck
Sw

ap
-L

oc
k

JV
M

-L
oc

k

C
AS

-R
W

TB
B-

RW

In
cD

ec
-R

W

G
eo

m
ea

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0
S

pe
ed

-u
p

3.83 23.39 28.2 6.18 28.38

LL/SC AMO

Figure 4.7: Speed-up of LockHammer locks (w.r.t LL/SC version) on Graviton
2 with 64 threads using serialized configuration

the live-locks that affected OSQ-Lock, TBB-RW, CAS-RW and
IncDec-RW are reduced drastically. In the case of RW locks, we know
that the contention of the lock is higher than in regular locks because
more than one thread can access the CS in Read mode. So, the lock is
updated more frequently. LL/SC is very sensible to multiple Store
Conditional(SC) happening at the same time because only one SC can
succeed. Since the release and new acquire of the lock are done back to
back in serialized, all the RMW operations are executed consecutively
increasing the amount of SC being executed in parallel. Meanwhile, in
unserialized the RMW are distributed evenly in time, avoiding transient
live-locks caused by a burst of updates. In the case of OSQ-Lock, we see
the same behavior as in a RW lock because threads that are waiting are
constantly updating a shared linked list queue that is managed as a RW
lock.

4.1.3 Summary

The main take-aways we can derive from these experiments is that AMOs
are more efficient in both machines, even if the overhead of AMOs in
Kunpeng 920 is higher than LL/SC. We have observed that on high
contention scenarios LL/SC can suffer from live-locks while AMOs scale
without problems. We have seen that JVM-Lock and HSF-Lock are both
the most efficient implementations for a Lock, while CAS-RW is the best
implementation for RW-locks. Programmers should avoid using

4.2. SPLASH-3 CHARACTERIZATION 39

Sw
ap

-L
oc

k
M

yS
Q

L-
Lo

ck
Ti

ck
et

-L
oc

k

O
SQ

-L
oc

k

H
SF

-L
oc

k

TB
B-

RW

H
S-

Lo
ck

Q
ue

ue
d-

Lo
ck

C
AS

-L
oc

k

JV
M

-L
oc

k

C
AS

-R
W

In
cD

ec
-R

W

Em
pt

y

0
1
2
3
4
5
6
7

Ti
m

e
(s

ec
)

21.59
LL/SC AMO

Figure 4.8: Absolute execution time of LockHammer locks on Graviton 2 with
64 threads using unserialized configuration two

Swap-Lock, Ticket-Lock and MySQL-Locks to avoid performance
degradation in high contention scenarios.

4.2 Splash-3 Characterization

When evaluating Splash-3 we have used the execution time and scalability
to measure how LL/SC and AMO instructions affect the performance of the
parallel applications. First we evaluate Kunpeng 920, next the Graviton
2 and finally we compare both machines. When analyzing the Splash-
3 benchmarks on a specific machine, we first plot the scalability of the
LL/SC and AMO versions of all the applications. In order to obtain the
scalability, we execute the same workload with different thread counts and
compute the relative speed-up with respect to the single threaded version
using LL/SC version. Since some applications only scale in powers of 2, we
have used 1,2,4,8,16 and 32 threads in our experiments. Next, to measure
the real benefit of using AMOs over LL/SC, we compute the speed-up of
AMO version with respect to the LL/SC version. Instead of using the
execution times obtained using 32 threads, we have taken the experiment
with the number of threads that minimizes the execution time in each
version. Hence, we can for example compare a execution of AMOs with
32 threads again a version of LL/SC with 16 threads. We do this because
in some applications using a bigger number of threads can lead to higher
execution times.

40 CHAPTER 4. CHARACTERIZATION OF SYNC. PRIMITIVES

4.2.1 Kunpeng 920

Figures 4.9 and 4.10 show the relative speed-up of the LL/SC and AMO
binaries on Kunpeng 920 with 1, 2, 4, 8, 16 and 32 threads. The speed-up is
normalized to the execution time using one thread and the LL/SC version.
Benchmarks are sorted by the highest speed-up from left (the lowest speed-
up) to right. We split the results in two figures to ease readability.

In the first set of applications (see Figure 4.9) there are 4 applications
(Volrend, Raytrace, Barnes and Cholesky) that have a Parallel efficiency
below 25%, while the rest are below 50%. The second set of benchmarks
(see Figure 4.10) include the applications that have a parallel efficiency of
50% or more. The overall scalability of applications is bad, only Water
Spatial achieves ideal scalability.

1 2 4 8 16 32

VO
LR

EN
D

2

4

6

8

10

12

14

16
LLSC
AMO

1 2 4 8 16 32

R
AY

TR
AC

E

1 2 4 8 16 32

BA
R

N
ES

1 2 4 8 16 32

C
H

O
LE

SK
Y

1 2 4 8 16 32

R
AD

IO
SI

TY

1 2 4 8 16 32

O
C

EA
N

-C

1 2 4 8 16 32

LU
-N

C

1 2 4 8 16 32

FM
M

Figure 4.9: Splash-3 scalability on Kunpeng 920 (1/2)

Raytrace and Radiosity are the only applications that achieve lower
speed-ups when increasing thread count, and both are raytracing
applications. Raytrace uses a job stealing approach, in which each thread
after finishing its own tasks steals tasks from other cores. Job stealing in
scenarios with low amount of tasks can lead to load imbalance scenarios,
as we have seen in the traces obtain with extrae. In contrast, Radiosity
uses a shared queue approach to distribute the tasks between threads, so
when the number of threads used is high the contention does not allow
threads to get tasks from the queue.

4.2. SPLASH-3 CHARACTERIZATION 41

1 2 4 8 16 32

O
C

EA
N

-N
C

5

10

15

20

25

30 LLSC
AMO

1 2 4 8 16 32

FF
T

1 2 4 8 16 32

W
AT

ER
-N

Q

1 2 4 8 16 32

LU
-C

1 2 4 8 16 32

W
AT

ER
-S

P

Figure 4.10: Splash-3 scalability on Kunpeng 920 (2/2)

Regarding behavioural differences between LL/SC and AMOs, we can
see that Barnes, Radiosity and FMM have a significant better scaling
when using LL/SC over AMOs. These three benchmarks are the ones
with a higher ratio of synchronization instructions from the suite. We
have executed our applications measuring the amount of synchronization
instructions executed and the total instructions executed. With these two
numbers, one can obtain the number of synchronization instructions per
kilo instruction (SPKI). We can measure this value for different number
of threads, but as we increase the thread count the amount of sync
instructions can increase due to contention collision (i.e SC or CAS
operations, can fail). First, we focus on single thread executions, the
benchmark with the high ratio is Barnes with 1.98 SPKI, followed by
Radiosity 0.78, FMM 0.44 and Raytrace 0.44. The rest have ratios below
0.01. Raytrace seems to be an interesting case, although it has a big ratio
of synchronization instructions we cannot see such a big difference
between LL/SC and AMO executions. This could mean that many of
their synchronization operations are not in the critical path of the
application, and can be delayed, or that both AMOs and LL/SC behave
similarly.

However, the synchronization ratios obtained with single thread can

42 CHAPTER 4. CHARACTERIZATION OF SYNC. PRIMITIVES

be misleading. For example, Volrend divides the workload in blocks
depending on the amount of threads, and then synchronization is used to
communicate results between blocks. Therefore, with a single thread, the
problem is divided in one unic block, and no synchronization is needed.
Thus, we have measured the SPKI using 32 threads. Some benchmarks
like Barnes, FMM and Raytrace execute a similar number of sync
instructions. Radiosity increases the number of synchronization
instructions by 3× arriving to 2.95 SPKI. Cholesky goes from 0 to 0.84
SPKI, Ocean from 0.01 to 0.66, Water-Nsquared from 0.01 to 0.23 and
Volrend from 0.0 to 0.19. Despite increasing the weight of
synchronization primitives, we cannot see any difference between versions
in the overall execution time.

BA
R

N
ES

C
H

O
LE

SK
Y

FF
T

FM
M

LU
-C

LU
-N

C

O
C

EA
N

-C
O

C
EA

N
-N

C
R

AD
IO

SI
TY

R
AY

TR
AC

E
VO

LR
EN

D
W

AT
ER

-N
Q

W
AT

ER
-S

P

G
eo

m
ea

n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S
pe

ed
-u

p

LL/SC AMO

Figure 4.11: Speed-up of best AMO execution (normalized w.r.t best execution
of LL/SC) running Splash-3 on Kunpeng 920

Due to the large y-axis scale of scalability plots, it is hard to correctly
appreciate the exact magnitude of speed-ups in Figures 4.9 and 4.10. Thus,
we have computed the speed-up of LL/SC and AMO versions running with
32 threads normalizing the execution time with respect to LL/SC version
running with 32 threads (see Figure 4.11). In the figure, the AMO version of
Barnes, FMM and Radiosity have slow-downs of 20% compared to LL/SC.
AMOs only have a significant speed-up in Raytrace, outperforming LL/SC
by 1.1×. The remaining benchmarks have similar execution times when
using LL/SC and AMOs. When computing the geometric average we find
that AMOs are a 5% slower than LL/SC.

4.2. SPLASH-3 CHARACTERIZATION 43

4.2.2 Graviton 2

In the previous section we saw how AMO instructions do not offer any kind
of benefit with respect to LL/SC instructions in real-world applications. To
verify this premise we have re-executed the same experiments in Graviton
2. Again, we have plotted the scalability of the application in two Figures
4.12 and 4.13. Applications are sorted in the x-axis using the maximum
speed-up achieved by each application. The maximum speed-up achieved
by some applications changes from the Kunpeng 920 to the Graviton 2, so
these applications appear in a different position than in Figure 4.9. The
benchmarks that scale better in Graviton 2 than in the Kunpeng 920 are
Volrend, Barnes and Radiosity.

The most remarkable difference between these experiments and the
ones done in the previous section, is that AMO versions scale better than
LL/SC. There are five benchmarks (Volrend, Raytrace, Barnes, Radiosity
and FMM) in which the scalability of AMOs stands out over LL/SC. If
we compare the speed-up of AMOs over LL/SC version we see big
differences between Kunpeng 920 and Graviton 2. Whilst, Volrend
achieved a 2× speed-up in Kunpeng 920, in Graviton 2 it achieves a 14×
for AMOs and 8× for LL/SC. Barnes had 5× in Kunpeng 920, and in
Graviton 2 obtains 8× for AMOs and 6× for LL/SC. Radiosity has same
speed-up for LL/SC in both Kunpeng 920 and Graviton, but the AMO
version goes from 8× to 11×.

In contrast, Cholesky drops from 8× to 5×. The rest of the benchmarks
do not change or have some small speed-up that increment the scalability
of both versions.

Raytrace and Radiosity scale poorly when using LL/SC instruction
with more than 16 threads. The performance of 32 threads in both cases is
worse than with 4 threads. As we explained in the previous section, these
two raytracers depend on fine-grain synchronization to correctly execute
theirs tasks. Therefore, a possibly weak implementation of LL/SC has a
big impact on the performance, similar to what we see in Figure 4.12. It
is also remarkable that four benchmarks reach 80% of parallel efficiency,
whilst in Kunpeng 920 only two achieved that.

To conclude, we have computed the speed-up of AMO version with
respect to LL/SC. We have used the experiments with the tread count

44 CHAPTER 4. CHARACTERIZATION OF SYNC. PRIMITIVES

1 2 4 8 16 32

R
AY

TR
AC

E

2

4

6

8

10

12

14

16
LLSC
AMO

1 2 4 8 16 32

C
H

O
LE

SK
Y

1 2 4 8 16 32

BA
R

N
ES

1 2 4 8 16 32

O
C

EA
N

-C

1 2 4 8 16 32

R
AD

IO
SI

TY

1 2 4 8 16 32

LU
-N

C

1 2 4 8 16 32

VO
LR

EN
D

1 2 4 8 16 32

FM
M

Figure 4.12: Splash-3 scalability on Graviton 2 (1/2)

that minimize the overall execution time in each version. We can see in
Figure 4.14 that AMOs are faster or equal to LL/SC in all cases, and
on average a 1.05× faster. Only Barnes, Raytrace and Volrend achieve
significant speed-ups over 1.2×.

4.2.3 Kunpeng 920 vs Graviton 2

Because we saw big differences between the experiments of Kunpeng 920
and Graviton 2, we cannot conclude what are the benefits of using
AMOs. One could thing that either AMOs are poorly implemented
Kunpeng 920, or that Graviton 2 uses a LL/SC implementation that is
slower than Kunpeng 920. To fairly compare both results we have plot
the scalability with respect to the same experiments in Figures 4.15 and
4.16. We have normalized the speed-ups with respect to the Kunpeng 920
with LL/SC. Note that the figures have the y-axis is in logarithmic scale.
This kind of plots are fair because both multicores execute the exact same
binaries, both have a similar frequency, and we execute with the same
number of threads.

As we can see, in most benchmarks Graviton 2 outperforms Kunpeng
920. There are several factors that make these performance differences,
but the factor that is present in all benchmarks is the difference between
the architecture of both machines. Graviton 2 uses an advanced

4.2. SPLASH-3 CHARACTERIZATION 45

1 2 4 8 16 32

O
C

EA
N

-N
C

1.0

2.0

4.0

8.0

16.0

32.0
LLSC
AMO

1 2 4 8 16 32

FF
T

1 2 4 8 16 32

W
AT

ER
-N

Q

1 2 4 8 16 32

LU
-C

1 2 4 8 16 32

W
AT

ER
-S

P

Figure 4.13: Splash-3 scalability on Graviton 2 (2/2)

B
A

R
N

E
S

C
H

O
LE

S
K

Y

FF
T

FM
M

LU
-C

LU
-N

C

O
C

E
A

N
-N

C

O
C

E
A

N
-C

R
A

D
IO

S
IT

Y

R
AY

TR
AC

E

VO
LR

E
N

D

W
AT

E
R

-N
Q

W
AT

E
R

-S
P

G
eo

m
ea

n

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25

S
pe

ed
-u

p

LL/SC AMO

Figure 4.14: Speed-up of Splash-3 (normalized w.r.t. LL/SC) in Graviton 2

out-of-order core that devotes more resources to the different
microarchitectural structures than Kunpeng 920. For example,
Ocean-Contig is a memory bounded benchmark (0.33 Flops/Byte) that
benefits from the extra memory ports available in the Graviton 2.
However, in some of the experiments there are factors that have a bigger
impact that the microarchitecture of the cores.

Volrend is an application that carries on a projection of a
three-dimensional volume onto a two-dimensional image plane. One of
the tasks performed by the application is to read from a 3D model stored
in a file and then write the resulting image to another file. Kunpeng 920

46 CHAPTER 4. CHARACTERIZATION OF SYNC. PRIMITIVES

1 2 4 8 16 32

VO
LR

EN
D

1.0

2.0

4.0

8.0

16.0

32.0

64.0
KUNPENG-LL/SC KUNPENG-AMO GRAVITON-LL/SC GRAVITON-AMO

1 2 4 8 16 32

R
AY

TR
AC

E

1 2 4 8 16 32

BA
R

N
ES

1 2 4 8 16 32

C
H

O
LE

SK
Y

1 2 4 8 16 32

R
AD

IO
SI

TY

1 2 4 8 16 32

O
C

EA
N

-C

Figure 4.15: Splash-3 scalability on Kunpeng 920 and Graviton 2 (1/2)

uses a traditional hard-disc drive, while Graviton 2 uses a faster SSD for
permanent storage. Therefore, Graviton 2 achieves more than 3× just on
single thread performance. Despite this big difference on the storage
technology, Graviton 2 still achieves a better scalability than Kunpeng
920.

In Raytrace, although LL/SC version is faster on Graviton 2 than
Kunpeng 920 from 1 to 8 threads, from 16 to 32 threads we see that the
performance of LL/SC drops below both versions on Kunpeng 920. This
drop of performance is caused by transient live-locks in some global
shared locks. Meanwhile, the AMO version running on Graviton 2 scales
up to 5× with 8 threads but keeps this speed-up from 16 to 32 threads.
We find another example of this behavior in Radiosity, in which we see
that LL/SC version scales up to 8× with 8 threads. Then, the
performance of LL/SC on Graviton 2 drops below the performance of
both LL/SC and AMOs on the Kunpeng 920.

Cholesky is only application in which all four experiments have the
exact same execution time. In this application the scalability is limited by
the synchronization directives rather than the computation or the memory
bound. However, the effect of replacing LL/SC by the AMOs does not
affect the final performance.

4.2. SPLASH-3 CHARACTERIZATION 47

1 2 4 8 16 32

LU
-N

C

1.0

2.0

4.0

8.0

16.0

32.0

64.0
KUNPENG-LL/SC KUNPENG-AMO GRAVITON-LL/SC GRAVITON-AMO

1 2 4 8 16 32

FM
M

1 2 4 8 16 32

O
C

EA
N

-N
C

1 2 4 8 16 32

FF
T

1 2 4 8 16 32

W
AT

ER
-N

Q

1 2 4 8 16 32

LU
-C

1 2 4 8 16 32

W
AT

ER
-S

P

Figure 4.16: Splash-3 scalability on Kunpeng 920 and Graviton 2 (2/2)

4.2.4 Concluding Remarks

We have seen that the LL/SC instructions outperform AMO instructions
in the Kunpeng 920. However, on the Graviton 2, the opposite is true.
From the comparison between both machines we have learnt that Graviton
2 is much faster than Kunpeng 920. Moreover, we know that LL/SC do
not scale well in Graviton 2 because they suffer from transient live-locks.
On the top of that, we have observed how AMOs in Graviton 2 outperform
all the other experiments.

Chapter 5

Modeling Atomic Memory
Operations

In this chapter we introduce the specification of AMO transactions in
AMBA 5 Coherent Hub Interconnect (CHI). Then, we explain how we
have implemented AMOs in gem5. Since the specs enable multiple
implementations of AMOs, we have performed a design space exploration
study. Finally, we evaluate our implementations using the same
benchmarks we used to characterize the test machines.

5.1 Advanced Microcontroller Bus Architecture
5 Coherent Hub Interface

Arm’s Advanced Microcontroller Bus Architecture (AMBA) is an open
standard for connection of components in a System-on-Chip (SoC). The
fifth generation of the standard introduces the Coherent Hub Interface
(CHI) specification, which was designed to be the standard of future high
performance NoCs. The protocol describes the channels, type of messages
and transaction flows to implement a directory based cache coherent system
that supports MESI and MOESI protocols.

In a directory based system, all transactions are handled by a Home
Node (HN or Directory) that co-ordinates snoops, cache, and memory
accesses. Optionally, every HN can have attached a slice of the Shared
Last Level Cache (LLC), which is usually the Third Level (L3). The core
and its private caches (usually L1 and L2) are treated as the Request
Node (RN). Main memory and other off-chip storage are the Slave Nodes
(SN).

48

5.1. AMBA 5 CHI 49

Since AMBA 5 CHI is a highly complex protocol, in the following
subsections we are going to describe some fundamental concepts to
understand how the protocol works and how AMOs are implemented.

5.1.1 Channels

Communication between components is channel based, which means that
each type of message is associated with a specific channel. This design
decision targets possible resource deadlocks in the NoC (i.e. chains of
request blocked by a pending response). Channels and its functionality are
described below:

• REQ Channel to send request from a RN to a HN

• RESP Channel to receive responses from a HN or RN

• DATA Channel to receive data from a HN or RN

• SNOOP Channel to receive snoops from a HN

Every channel has a list of fields that are used to send codified
information. Since this description is only used by the real
implementation and is not necessary to model the protocol, we have
omitted this information.

5.1.2 Cache States

To determine which action is required on a cache line accesses or snoop, the
protocol defines the cache states that encode important information about
the cache line. Each possible cache state is derived from three different
characteristics:

• Valid / Invalid When Valid, the cache line is present in the cache.
When Invalid, the cache line is not present in the cache.

• Unique / Shared When Unique, the cache line exists only in this
cache. When Shared, the cache line might exist in more than one
cache, but this is not guaranteed.

50 CHAPTER 5. MODELING ATOMIC MEMORY OPERATIONS

• Clean / Dirty When Clean, the cache does not have responsibility
for updating main memory. When Dirty, the cache line has been
modified with respect to main memory, and this cache must ensure
that main memory is eventually updated.

All the possible combinations of these characteristics result in five
different states, summarized in Figure 5.1.

I
UC SC

UD SD

Clean

Dirty

Valid Invalid

Unique Shared

Figure 5.1: AMBA 5 CHI Cache States

5.1.3 Supported AMO

One of the key features of the protocol is the support for far AMOs that can
be executed in the HN. When a RN wants the corresponding HN to execute
the AMO remotely it issues an Atomic Transaction to the interconnection.
These Atomic transactions can be classified in two categories based on their
transaction structure:

• Transactions that return only a completion response

– AtomicStore

5.1. AMBA 5 CHI 51

• Transactions that return Data with a completion response

– AtomicLoad

– AtomicSwap

– AtomicCompare

AtomicSwap exchanges a data value stored in a register by the value
stored in a memory position. AtomicCompare uses two data values, the
first one is a value of reference to be compared, while the second value is
the data value to be swapped. When the AMO is executed, the original
value stored in the target address is compared against the reference value.
If they match, the swap value is stored at the address location. The
transaction returns the original value that was previously stored at the
memory position.

Then AtomicStores and AtomicLoads perform different kind of
operations on a memory position using the original data stored
(InitialData) and an operand (OperandData). AtomicLoads return
always the InitialData into a register. The operations supported are:

• ADD: unsigned integer increment operation. Update location with
(InitialData + OperandData)

• CLR: bitwise clear operation. Update location with
(InitialData AND (NOT OperandData))

• EOR: bitwise exclusive operation. Update location with
(InitialData XOR OperandData)

• SET: bitwise or operation. Update location with
(InitialData OR OperandData)

• SMAX: signed integer maximum accumulator. Update location if
(OperandData–InitialData) > 0 with OperandData

• SMIN: signed integer minimum accumulator. Update location if
(OperandData–InitialData) < 0 with OperandData

• MAX: unsigned integer maximum accumulator. Update location if
(OperandData–InitialData) > 0 with OperandData

52 CHAPTER 5. MODELING ATOMIC MEMORY OPERATIONS

• MIN: unsigned integer minimum accumulator. Update location if
(OperandData–InitialData) < 0 with OperandData

5.1.4 AMO Transactions in AMBA 5 CHI

AMBA 5 CHI specifies a basic subset of transactions that all NoCs that
are complaint must support. These transactions describe how the NoC
must send the different messages through the virtual channels to ensure
deadlock free communication. There are two types of atomic transactions
used by AMOs, those that expect to receive the data and those that not.
The former type uses the sequence of messages described below:

1. The Requester sends a request with the Atomic transaction opcode
on the REQ channel.

2. The HN sends a DBIDResp response on the RESP channel. And
returns the Read data using a CompData message on the DATA
channel.

3. The Requester sends the Operands with the NonCopyBackWrData
message on the DATA channel.

Those requests that do not expect any data coming from the HN
(AtomicStores) have the next structure:

1. The Requester sends a request with the Atomic transaction opcode
on the REQ channel.

2. The HN sends a CompDBIDResp response on the RESP channel.

3. The Requester sends the Operands with the NonCopyBackWrData
message on the DATA channel.

Both kinds of transactions are summarized in Figure 5.2.

5.1. AMBA 5 CHI 53

RN HN

AtomicStore

CompDBIDResp

WriteData

REQ

RESP

DATA

RN HN

AtomicLoad
AtomicSwap

AtomicCompare

DBIDResp

CompData

WriteData

REQ

RESP

DATA

Completion without data Completion with data

Figure 5.2: Atomic Transaction diagram

5.1.5 Snoops

Invalidation-based protocols enforce the single-writer, multiple-reader
invariant : at a given point in time, a cache line may either have at most
one sharer with read-and-write permission, or multiple sharers with
read-only permission. In order to follow the invariant, when an AMO
occurs it needs read-and-write permission. Therefore, the
Point-of-Coherence (PoC) must send snoop messages to invalidate the
private copies of the cache line. The AMBA 5 CHI protocol specifies
many different types of snoops that not only invalidate cache lines in
private caches, but can also make the snoopee forward data, force
writebacks, etc. The AMBA 5 CHI specifies a unique type of snoop for
AMO, the SnpUnique. This snoop request is sent to the snoopee to
obtain a copy of the cache line in Unique state while invalidating any
cached copies. This snoop is also used by stores to obtain Unique state
cache lines.

54 CHAPTER 5. MODELING ATOMIC MEMORY OPERATIONS

5.1.6 Example Flowcharts

Summing up all the previous elements we can understand in detail how the
protocol works. We have taken some examples drawn in a flowchart format
from the AMBA 5 CHI manual to illustrate how the protocol would act in
some cases.

RN-0 RN-1
I

HN

UD
AtomicStore

CompDBIDResp

I

WriteData

I

SnpUnique

SnpRespData

Executes
Atomic Operation

Figure 5.3: Example 1 flowchart

For the first example (see Figure 5.3), we assume that there is a cache
line that is mapped to an specific HN. At same time, there are two different
RN, one has already fetched the target cache line, so it is present in the L1
with UC state (RN-1). Meanwhile, the RN-0 does not have the cache line
in any of its private caches. The latter issues an AtomicStore (i.e STADD)
to the HN, in order to perform a far AMO. To perform the AMO, HN-0
needs the most recent value of the cache line and no other copy of the
block can exist to keep consistency and coherency. Therefore, the HN
issues an invalidation message (SnpUnique) to the owner of the cache line,
so RN-1 returns the latest value and invalidates its local copy. Once the
HN receives the most updated data (SnpRespData), a completion message
(CompDBIDResp) is sent to the original requester to notify that its request

5.1. AMBA 5 CHI 55

has been processed. Then RN sends the operand data to complete the
operation (WriteData).

Note that once the WriteDate message is sent, the core attached to the
RN does not need to keep waiting until the operation is finished. The head
of the Reorder Buffer that was waiting until the completion of the operation
is freed. New instructions can be committed, even store operations. This is
possible because any new read or write operation targeting the cache lined
modified by the AMO will be ordered after the AMO.

The second example (Figure 5.4) illustrates the other kind of operation,
the AMO with return data. This time the requested cache line is not
present either in any RN or the HN. Thus, the block is only present in the
SN (main memory). Once the HN receives the AtomicSwap request it issues
two messages, one to the SN requesting the memory block and other to the
RN acknowledging the request. Once the HN receives the corresponding
cache line, it sends the value that corresponds to the memory address sent
in the original request. Note, that the HN does not need to wait until
the write data has arrived because the request has already been serialized.
Once this messages arrives to the RN, the RN can mark the transaction as
finished and issue new requests to the same address.

RN-0 HN
I

SN

AtomicSwap

DBIDResp

UCWriteData

I

Read

Executes
Atomic Operation

I

CompData

CompData UD

Figure 5.4: Example 2 flowchart

56 CHAPTER 5. MODELING ATOMIC MEMORY OPERATIONS

Meanwhile, the RN sends the missing operand needed to perform the
AMO to the HN. The HN uses this data to perform the AMO. Once the
result is stored in the cache, the HN can process the next request.

5.1.7 AMBA 5 CHI on Gem5

Arm Research has recently integrated its own implementation of the AMBA
5 CHI protocol in gem5-21.0 (named as CHI [16]). The CHI ruby protocol
provides a single cache controller that can be reused at multiple levels of
the cache hierarchy, which means that the same state machine is able to
model L1, L2 or the HN. The protocol can be configured to model multiple
instances of MESI and MOESI cache coherency protocols. Although the
CHI protocol is based in the AMBA 5 CHI protocol, it does not follow
all the features and technical details (i.e. partial writes, QoS and Error
handling are not implemented).

The CHI gem5 protocol does not support any AMOs by default.
Therefore, we have modified it to enable the execution of near and far
AMOs. We have followed the AMBA 5 CHI manual in order to keep the
original specification. We have limited the execution of the AMOs to the
L1 and the L3, and we have excluded the L2. We haven taken this
decision due to the recursive design of the protocol. One of the possible
implementations of the AMBA 5 CHI protocol is performing the AMO
near whenever the block is present with write permissions (UC or UD
states), and far if the block is not present or with only Read permissions
(I, SC or SD states). We name this policy Unique Near. In a real
machine, the RN comprehends the L1 and the L2 (as it is explained in
the specs). When an AMO is executed near the block could be located
any of the two levels. In case that the block was present in the L2, it is
relocated to the L1 to perform the AMO.

However, in CHI protocol L1 and L2 are two separate instances
connected through the interconnect. The problem appears if an AMO
misses in the L1, so a far AMO is issued to the L2 and then the AMO
hits in the L2 with UC or UD states. In this case we are not able to
relocate the block in the L1 (We would need to rewrite the whole
protocol). The solution we have taken is to forward the operation to the
L3, and invalidate the copy present in the L2.

5.2. DESIGN SPACE EXPLORATION 57

Another solution, that we would have wanted to explore is placing an
Arithmetic Logic Unit in the L2. Hence, in case of hitting the L2 the
AMO is directly executed there without relocation of the block. We have
discarded this option because it implies consuming some area of the L2 that
could be devoted to the prefetchers, second level TLB or extra entries. But
we do not discard the idea for future works.

5.2 Design Space Exploration

The specs do not enforce how atomics must be sent. However, the
specification gives some hints about what options are available when
implementing this decision.

If the cache line is Shared but not Dirty, it can either:

• Generate a ReadUnique or CleanUnique to gain ownership of the
cache line and perform the atomic operation locally.

• Invalidate the local copy and send the Atomic transaction to the
interconnect.

If the cache line is Shared Dirty, it can either:

• Generate a CleanUnique or ReadUnique, gain ownership of the cache
line, and perform the operation locally.

• WriteBack and Invalidate the local copy and then send the Atomic
transaction to the interconnect.

Thus, there are two possible decisions for Shared Clean and Shared
Dirty: perform the operation in the directory or gain write permissions to
perform the operation in the L1. But, instead of applying this decision
only to two states, we go further and assume that this decision can be
done for every cache line state. From this scheme one can derive up to 32
different static policy implementations. However, many of the possible
implementations do not have any rationale behind and seem
counter-intuitive. From the 32 possible policies we have selected 6
implementations listed in Table 5.1.

58 CHAPTER 5. MODELING ATOMIC MEMORY OPERATIONS

Policy Name UC UD SC SD I

All Near N N N N N

Present Near N N N N F

Dirty Near N N F N F

Shared Far N N F F N

Unique Near N N F F F

All Far F F F F F

Table 5.1: Comparison table of policy Design Choices. Near (N), Far (F)

The first policy is All Near, it is the most simple policy
implementation because it always executes AMOs in the L1. With All
Near, AMOs behave as regular Writes, the L1 requests write and read
permission for the accessed cache line using a Read Unique Transaction.
Once the block is in L1 in UC or UD states it performs the AMO.
Similarly, Present Near performs the AMO near if the cache line is
already present in the L1. If the cache line is invalid Present Near
performs a far AMO request to the L3. The heuristic behind the protocol
is that if the block is already on the cache is better to gain write access to
it, than invalidate the block.

On the other extreme of the design space, All Far policy assumes that
the best way to execute an AMO is sending it to the L3. This way we avoid
bringing it to the L1 and prevent future invalidations. However, when the
block is in UC or UD state, the L1 needs to perform a writeback because
there is no other copy in the other caches (L3 is exclusive from L1 and L2).
Unique Near policy is more conservative and assumes that if the block is
already present in the L1 with Write permissions, it is not necessary to
pay extra cycles to writeback the cache line. It also assumes that if the
block was already present there may be locality of reference that can be
exploited.

Between these two extremes we have Dirty Near and Shared Far policies.
The former policy assumes the same premise as Unique Near, but also that
if the block is in Shared Dirty state it means that the L1 was the last writer
of the cache line and it may be the next writer in the future. In contrast,

5.3. EVALUATION 59

Shared Far policy assumes that if the block is in Shared state there are
other cores that generate invalidations to read the data, and is better to
perform atomics at the L3. Furthermore, if the block is invalid it may be
because it was evicted from L1 to L2, and the best choice is to bring it
back to the L1.

For now on, we will refer to these policies as static policies because they
perform always the same choices based only on the cache line state.

5.3 Evaluation

In this section, we evaluate the performance of the different AMBA5 5 CHI
implementations in gem5 resulting from the design space exploration done
above. The evaluation follows the same structure as chapter 4.1. First, we
present the characterization of the static AMO policies with LockHammer
microkernels. We evaluate two scenarios using serialized and unserialized
configurations. Then, we execute the Splash-3 benchmarks to analyze how
applications scale with the different static policies.

5.3.1 Static AMO Results with LockHammer Serialized

First, we obtained the absolute execution time of LockHammer benchmarks
using serialized configuration and 64 threads in gem5 (see Figure 5.5). For
each kernel there are 6 bars, each one represents the execution time of a
different static AMO policy. Bars are sorted from right to left, being the
bar on the right the policy executes all AMOs in the L1 (All-Near) and the
left bar the policy that executes all AMOs in the L3 (All Far).

As we have seen in Section 4.1 with the commercial machines, the
best RW Lock implementation is CAS-RW, in this case with All Near
policy. The fastest lock implementation is MySQL-Lock, while on the
physical machines the fastest were JVM-Lock or HSF-Lock. If we look at
the general picture we observe some resemblances with bars that correspond
with AMO experiments in Figure 4.6. For example, the three slowest lock
implementations in both figures are the Ticket-Lock, Swap-Lock and CAS-
Lock. While the three fastest in both figures are JVM-Lock, Queued-Lock
and MySQL-Lock.

60 CHAPTER 5. MODELING ATOMIC MEMORY OPERATIONS

Sw
ap

-L
oc

k
M

yS
Q

L-
Lo

ck
Ti

ck
et

-L
oc

k
O

SQ
-L

oc
k

H
SF

-L
oc

k

TB
B-

RW

H
S-

Lo
ck

Q
ue

ue
d-

Lo
ck

C
AS

-L
oc

k

JV
M

-L
oc

k

C
AS

-R
W

In
cD

ec
-R

W

Em
pt

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Ti

m
e

(s
ec

)
all-near
present-near

dirty-near
shared-far

unique-near
all-far

Figure 5.5: Absolute execution time of LockHammer locks with 64 threads on
serialized configuration in gem5

By looking at Figure 5.5 we cannot extract many insights due to the
big amount of information and the scale of the bars. Overall, we can see
that All Far policy is the slowest policy in most kernels. The reason of this
low efficiency is cause by the design of the static policy itself. The main
fault of All Far policy is that when the target cache line of the AMO is
present in the L1, the protocol first needs to evict the block from the L1 to
issue then the remote AMO. This way the latency of an AMO is increased
without necessity.

Among all static AMO policies we have chosen All Near as the
baseline. Now, we can compute the speed-up of each version with respect
to our baseline in order compare all policies in a simple way. Since we
already know that All Far policy perform always worse than the rest we
have omitted the results from the plots. In Figure 5.6 we can see the
speed-ups of all the static AMO policies.

On one hand, there are several kernels that are not sensible to the
AMO policy used, such as OSQ-Lock, HSF-Lock, HS-Lock, Queued-Lock
and CAS-Lock. Because the variation with respect to the baseline is 10%
at most, which is small for a synchronization microkernel. On the other
hand, the AMO policy can have a big impact in Swap-Lock, MySQL-Lock,
Ticket-Lock, TBB-Lock, CAS-RW and IncDec-RW.

On average, All Near policy outperforms all other policies. Present
Near and Shared Far are almost as fast as All Near (8% slowdown). In the
case of Dirty Near and Unique Near, we see a slowdown of 30%, caused by

5.3. EVALUATION 61

Sw
ap

-L
oc

k
M

yS
Q

L-
Lo

ck
Ti

ck
et

-L
oc

k
O

SQ
-L

oc
k

H
SF

-L
oc

k

TB
B-

RW

H
S-

Lo
ck

Q
ue

ue
d-

Lo
ck

C
AS

-L
oc

k

JV
M

-L
oc

k

C
AS

-R
W

In
cD

ec
-R

W

G
eo

m
ea

n

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

S
pe

ed
-u

p

all-near
present-near

dirty-near
shared-far

unique-near

Figure 5.6: Speed-up of LockHammer locks (w.r.t All Near policy) with 64
threads on serialized configuration

a poor performance on CAS-RW and MySQL-Lock.
We have used our tracing mechanism to understand how policies

work. So, in the following subsections we will explain the reasons why
some policies are more efficient than others for those kernels that are
sensible to the AMO policy used.

Swap-Lock

Swap-Lock is a lock that benefits from far AMOs. When threads try to
acquire the lock, they constantly issue SWP instructions to exchange the
be lock value to locked, even if the lock is already locked (see Listing 5.1).
This creates a lot of pressure in the HN that holds the lock cache line.
Issuing a far AMO instead of fetching the cache line to perform a Near
AMO, can help to reduce the congestion in the HN controller. The total
latency of invalidating the previous owner of the cache line plus fetching
the cache block to the new owner is higher than just issuing the AMO to
the HN and performing the operation there.

Listing 5.1: Swap-Lock implementation

u i n t 6 4 t l o c k a c q u i r e (u i n t 6 4 t ∗ l o ck) {
u i n t 6 4 t va l = 1 ;
while (va l) {

va l = swap64 (lock , 1) ;

62 CHAPTER 5. MODELING ATOMIC MEMORY OPERATIONS

}
return 0 ;

}

void l o c k r e l e a s e (u i n t 6 4 t ∗ l o ck) {
l o ck = 0 ;

}

Present-Near, Dirty-Near and Unique Near outperform both All Near
and Shared Far. The key to understand this behavior is to analyze what are
the cache states the lock goes through. As we have said there are no load
instructions but only writes and AMOs. Therefore, the states that the lock
cache line visits are always UC, UD and I. We see that the fastest policies
apply near AMO for the UC and UD and far AMO for the I. Meanwhile, All
Near and Shared Far fetch the cache line block when is Invalid. Therefore,
issuing far AMO when the block is invalid state reduces the pressure at the
HN.

MySQL-Lock

MySQL-Lock is an optimistically Swap-based lock implementation. First,
the acquire function tries to capture the lock with a SWP instruction.
Second, a second SWP instruction is issued to release the lock. If the thread
fails to acquire the lock, it is penalized to execute a random amount of
NOPs that range from 50 to 30000 as a back-off mechanism. Therefore, the
thread that is able to acquire the lock will easily execute several CS, while
the other threads execute NOPs. When the threads that were executing
the back-off function finish their penalty, they try again to capture the
lock with a SWP instruction. These threads fail in most cases because the
owner of the lock only releases it for a small fraction of time. Therefore,
threads in this kernel perform all their workload sequentially, so fetching
the cache line that contains the lock is always beneficial.

To illustrate this behavior we have plotted Figure 5.7, which shows a
trace obtained with gem5 simulator using All Near policy. X-axis
represents time, and Y-axis represents the thread number. Colors
represent the actions made by each thread. While purple represents the
time lapse a thread is blocked performing a near AMO (fetch +

5.3. EVALUATION 63

operation), white represents the amount of time that a thread is
performing any other kind of task (i.e. computation, regular memory
access, branching, etc.). In this trace, we can see in that thread 27 is
performing several AMOs, some of them take thousands of cycles. Since
we know that AMOs are used to capture and release the lock we can see
that threads 27 is iterating in the CS while the other threads wait. We
see that threads 5, 16, 19 and 22 issue some SWP AMOs. We know that
these threads do not acquire the lock because the execute a single AMO
(try to capture) instead of two consecutive AMOs (capture and release).
Meanwhile, thread 27 is able to perform 24 pairs of AMOs that mean 24
CS.

486000 488000 490000 492000 494000 496000 498000 500000
Timestamp (cycle)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Th
re

ad

Figure 5.7: Trace of 32 threads executing MySQL-Lock kernel with All Near
policy. Each rectangle represents the amount of time spent executing an AMO

Ticket-Lock

Two global shared 16-bit counters are used in Ticket-Lock to guarantee that
only one thread executes the CS. One counter is stored in the highest 16-
bits of a 32-bit word in memory and the other counter is stored in the lowest

64 CHAPTER 5. MODELING ATOMIC MEMORY OPERATIONS

16-bits. We refer to this 32-bit memory word as the Lock. Placing counters
in the same memory word guarantees that both counters are always fetched
at the same cache line, and the higher and lower parts cannot be updated
at the same time by two threads. The first counter is used by threads to
obtain a ticket through a fetch-and-add (LDADD) instruction. This AMO
increments the upper 16-bits of the Lock and returns the previous value
which is the thread ticket. Then, threads compare their ticket against the
lowest 16-bits of the Lock that encode the second shared counter. When
the ticket matches this counter, the thread can access the CS. To release
the lock, threads atomically update the lowest 16-bit of the Lock with a
STADD instruction. Notice, that instead of a LDADD, the directive uses a
STADD instruction is used because threads releasing the lock do not care
about the value of this counter.

When threads check if their ticket is equal to the lowest 16-bit of the
Lock, they fetch the cache block in SC. Therefore, when a thread enters
and finishes the CS, the block is still in SC state. In Dirty Near, Shared Far
and Unique Near policies the thread executing the STADD instruction will
issue a far AMO, while in All Far and Present Near they will fetch again
the block. The problem of issuing a Far AMO is that soon after releasing
the lock, the thread updates again the highest 16-bit of the Lock to get a
new ticket. In this case, having already the block in the L1 reduces the
latency of the second AMO.

TBB-RW, CAS-RW and IncDec-RW

These three kernels implement a RW lock through a thread shared counter.
In TBB-lock we have multiple functions that enable the acquire and release
of the lock. In the CAS-RW and IncDec-RW we have a much simpler
mechanism, the shared counter is incremented at the beginning of the CS
and decremented at the end. In the case of IncDec-RW, two LDADD
instructions are used, one with positive value and the others with negative
value. In CAS-RW, since there is a maximum amount of threads that can
enter the CS in parallel, the function that acquires the lock uses a CAS
instruction to avoid a possible underflow of the counter, while the release
function uses a LDADD instruction.

The reason why fetching always the block is beneficial in RW locks is

5.3. EVALUATION 65

that the parallel section of the kernels is zero and the CS is just 500 NOPS.
Thus, when a thread fetches the cache line that contains the lock, it is able
to complete several CS before being invalidated.

5.3.2 Static AMO Results with LockHammer Unserialized

The next step in our evaluation is to execute again LockHammer kernels
using unserialized configuration. Figure 5.8 shows the absolute execution
time of the kernels running with 32 threads. We can see that the global
picture is very similar to serialized configuration. However, there are
three experiments that change from one configuration to another. All
Near policy increases the execution time in MySQL-Lock. Present Near
policy now outperforms all other policies in Ticket-Lock. Shared Far
policy experiments a big performance degradation in CAS-RW kernel.

Sw
ap

-L
oc

k
M

yS
Q

L-
Lo

ck
Ti

ck
et

-L
oc

k
O

SQ
-L

oc
k

H
SF

-L
oc

k

TB
B-

RW

H
S-

Lo
ck

Q
ue

ue
d-

Lo
ck

C
AS

-L
oc

k

JV
M

-L
oc

k

C
AS

-R
W

In
cD

ec
-R

W

Em
pt

y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
(s

ec
)

all-near
present-near

dirty-near
shared-far

unique-near

Figure 5.8: Absolute execution time of LockHammer locks on with 64 threads
unserialized configuration in gem5

Figure 5.9 shows the speed-up of all policies with respect to All Near
policy. We can see that Present Near and Unique Near mitigate the
slowdowns from 60% to 42%. Moreover, Present Near improves its 40%
slowdown to 20%. As we mentioned in the previous section, All Near
policy is more suitable in MySQL-Lock with Serialized configuration. A
single thread can constantly enter and exit the CS while the other threads
perform back-off functions because it always have the lock cache block in
the L1. However, using unserialized configuration reduces this advantage
because after releasing the lock is more probable that other threads

66 CHAPTER 5. MODELING ATOMIC MEMORY OPERATIONS

acquire the lock.
Sw

ap
-L

oc
k

M
yS

Q
L-

Lo
ck

Ti
ck

et
-L

oc
k

O
SQ

-L
oc

k

H
SF

-L
oc

k

TB
B-

RW

H
S-

Lo
ck

Q
ue

ue
d-

Lo
ck

C
AS

-L
oc

k

JV
M

-L
oc

k

C
AS

-R
W

In
cD

ec
-R

W

G
eo

m
ea

n

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

S
pe

ed
-u

p

all-near
present-near

dirty-near
shared-far

unique-near

Figure 5.9: Speed-up of LockHammer locks (w.r.t All Near policy) on with 64
threads using serialized configuration

In Ticket-Lock we see a similar behavior. Now, the thread that releases
the lock needs to wait to get a new ticket. During this period is probable
that another thread enters the CS. If the thread in the CS releases the
lock before the previous owner gets a new ticket, the former will invalidate
the local copy of the latter. After invalidated, with All Near policy this
thread will fetch again the block despite it will not modify again the block
in the near future. This action invalidates the local copy hold by the thread
releasing the CS, which is going to modify the lock again to get a new ticket.
This action increases the overall execution time of both threads. With
Present Near policy the thread that has been invalidated issues a far AMO
that does not fetch the cache line. Thus, avoiding future invalidations.

As we have mentioned before, CAS-RW has an acquire function that
increments a shared counter through a CAS instruction. This kind of
approach has low efficiency in high contention scenarios because CAS
instructions fail several times. In this case, we have found in our
experiments that fetching the cache line to perform the AMO is better
than issuing a far AMO. The reason is that the if the first AMO fails, the
subsequent AMOs can have higher probability to succeed if the block is in
the L1.

Thanks to computing the speed-up, we can notice some differences in
IncDec-RW kernel. Present Near and Unique Near reduce their

5.3. EVALUATION 67

slowdowns from 20% to zero slowdown. Meanwhile, Dirty Near policy
goes from a 5% slowdown to a 8% speed-up. The explanation to these
speed-ups is a big slowdown on All Near policy, rather than an
improvement in the execution time of these policies. As happened with
MySQL-Lock, All Near policy benefits from having the lock cache line in
the L1 with serialized configuration. But, when we change to unserialized
configuration the chances to receive an invalidation are higher.

5.3.3 Static AMO Results with Splash-3

In this section we present the evaluation of the static AMO policies with
the Splash-3 benchmark suite. We have executed the whole benchmark
suite, but we will only show the results of those applications that present
some sensitivity to changing the AMO policy, namely: Barnes, Radiosity,
Volrend, FMM and Water-Nsquared. Despite Raytrace has a big
interaction with AMOs we have discarded the application because it
suffers heavily from load imbalance. This load imbalance leads to
misleading results because depending in how tasks are randomly
scheduled we obtain different execution times. Thus, we cannot
differentiate from real speed-ups and variations in task scheduling
decisions.

Figure 5.10 shows the relative speed-up of each Static AMO policy with
respect to All Near policy. We have selected the amount of threads that
minimize the execution time for each benchmark. Note that the speed-
up scale starts at 0.5 for better readability. We are going to analyze the
performance of the Static AMO policies from right to left. Starting with
Barnes, we can see that the best policy is Present Near, followed by Shared
Far. In this benchmark we have a big array of locks that controls the
access to a shared data structure. Since locks are allocated contiguously in
memory we observe a false sharing pattern as stated in other papers [38].
The use of Present Near and Shared Far seems to partially alleviate this
effect.

Dirty Near and Unique Near policies perform better than the rest in
Radiosity. In this benchmark we have used the traces to understand
where these speed-ups come from. We have observed that there is a
global lock that is shared among all threads and it is used very frequently.

68 CHAPTER 5. MODELING ATOMIC MEMORY OPERATIONS

BA
R

N
ES

R
AD

IO
SI

TY

VO
LR

EN
D

FM
M

W
AT

ER
-N

Q

G
eo

m
ea

n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S
pe

ed
-u

p
All Near
Present Near

Dirty Near
Shared Far

Unique Near
All Far

Figure 5.10: Speed-up of Static AMO policies (w.r.t. All Near) simulating Splash-
3 benchmarks on gem5.

Meanwhile, there are other addresses that are accessed by a single thread
frequently. Therefore, we observe different lock sharing patterns. Dirty
Near and Unique Near policies adapt better to both patterns. In the case
of the highly shared lock the AMOs are performed far, while those
addresses that are accessed by a single thread are executed always near.

For Volrend, FMM and Water-NQ, we see that All Near policy
outperforms all other policies. As more AMOs are executed remotely the
performance degrades. There are many different locks being used during
the execution of these applications, so the probability of two threads
fighting for the ownership of the same lock is low. Since, these locks have
big reuse patterns, bringing a lock block to the L1 is beneficial due to
subsequent accesses.

On average, we can see that the policies are performing similarly, and
the performance difference is below 4%. The only exception is All Far
policy. As we have seen in LockHammer this policy has a poor performance
caused by its higher latency executing AMOs.

5.4 Concluding Remarks

In this chapter, we have described how AMBA 5 CHI implements near and
far AMOs. Moreover, we have implemented six different policies following
the specs in our cycle accurate simulator (gem5). We have evaluated these

5.4. CONCLUDING REMARKS 69

policies and we have identified several different behaviours.
In the case of LockHammer, there are many kernels in which the AMO

policy used does not have a large impact. In those cases in which we see
some differences between policies, All Near policy outperforms the rest.
The advantage of this policy is based on the capability of the thread to
reuse the block that has been fetched into the first level of cache.

We have seen a different picture in Splash-3 benchmarks. In this suite,
Static AMO policies have a bigger impact on the final execution time.
From the six static policies we have tested we have not found one that
outperforms the rest. Therefore, different sharing and access patterns
benefit from different AMO polices.

Chapter 6

Dynamic AMO Policy
Predictor

Based on the insights we have obtained in previous chapters, we introduce
the DynAMO, a microarchitectural predictor that dynamically selects the
most suitable AMO policy. Through this chapter, we will introduce the
architecture of the predictor, a sensitivity study of the parameters of the
predictor, and a performance evaluation of our solution.

6.1 Choosing the Best Static Policy

As we have seen in Section 5.3, no single static policy outperforms the
rest for all benchmarks. Therefore, having a single static policy does not
guarantee always the best performance and opens a challenge to find better
policies. The naive approach to solve this problem is building a predictor
to dynamically predict which static policy must be used, in the same way
Tournament Branch Predictor is able to select the best branch predictor
for each branch.

Before starting to develop a policy predictor, we have computed the
maximum speed-up achievable choosing for each workload the best policy.
Figure 6.1 shows the speed-up achieved selecting the best policy with
respect to All Near policy executing LockHammer suite with serialized
configuration. We can see that on average we can only gain a 1.05× with
respect to All Near policy. As we have already seen in Section 5.3, many
locks are not sensible to the AMO policy used. And those kernels in
which there are some significant variation, All Near policy tends to
dominate over the other policies. Since the differences in behavior
between serialized and unserialized configurations are small we have

70

6.1. CHOOSING THE BEST STATIC POLICY 71

Sw
ap

-L
oc

k
M

yS
Q

L-
Lo

ck
Ti

ck
et

-L
oc

k
O

SQ
-L

oc
k

H
SF

-L
oc

k

TB
B-

RW

H
S-

Lo
ck

Q
ue

ue
d-

Lo
ck

C
AS

-L
oc

k

JV
M

-L
oc

k

C
AS

-R
W

In
cD

ec
-R

W

G
eo

m
ea

n

0.900
0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100

S
pe

ed
-u

p

1.62

All Near Best Static Policy

Figure 6.1: Speed-up of best AMO policies (w.r.t All Near) running LockHammer
with 64 threads using serialized configuration.

omitted the results with unserialized configuration.

Next, we have repeated the process with the benchmarks from the
Splash-3 suite. Figure 6.2 shows the maximum available speed-up we can
obtain selecting one policy for each benchmark with respect to All Near
policy. Note that we have removed All Far policy due to its low
performance and the y-axis scale starts at 0.85 for clarity. The achievable
speed-up selecting the best policy compared to All Near policy seems to
be small, we can only achieve a 1.07× in Barnes and 1.03× in Radiosity.
Therefore, the achievable speed-up gained on average is only 2%

BA
R

N
ES

R
AD

IO
SI

TY

VO
LR

EN
D

FM
M

W
AT

ER
-N

Q

G
eo

m
ea

n

0.85

0.90

0.95

1.00

1.05

1.10

S
pe

ed
-u

p

All Near
Present Near

Dirty Near
Shared Far

Unique Near
Best Static

Figure 6.2: Speed-up of best AMO policies (w.r.t All Near) running Splash-3
benchmarks.

72 CHAPTER 6. DYNAMIC AMO POLICY PREDICTOR

However, we have to note that with this approach we can obtain only
a limited speed-up. Since we are applying a single policy to all addresses,
we may be using the wrong policy in some of the addresses. Thus, we
could take advantage of a finer granularity in the selection of policies to
speed-up applications. However, before shorting to implement a predictor
we want to understand what is the upper-bound of the speed-up we can
achieve. This way, we can avoid investing any effort into a mechanism that
obtains a negligible speed-ups. Thus, we have developed a new Ideal policy
that simulates an unrealistic scenario in which all AMOs are executed in
three cycles. With this new model we have obtained the results shown in
Figure 6.3.

BA
R

N
ES

R
AD

IO
SI

TY

VO
LR

EN
D

FM
M

W
AT

ER
-N

Q

G
eo

m
ea

n

0.8

0.9

1.0

1.1

1.2

1.3

1.4

S
pe

ed
-u

p

All Near
Present Near

Dirty Near
Shared Far

Unique Near
Ideal

Figure 6.3: Speed-up of Ideal (always 3 cycles AMO) AMO policy (w.r.t All
Near) running Splash-3 benchmarks.

Thanks to this Ideal model, we know that we cannot obtain speed-ups
over 1.1× in Volrend, FMM and Water-Nsquared benchmarks. However,
in Barnes and Radiosity we can achieve speed-ups of up to 1.42× and
1.22× respectively. On average, the maximum speed-up we can achieve
optimizing AMOs is 1.15×. We have also tested this ideal model with
the LockHammer but the results obtained are not significantly better than
those obtained with the Best Static policy. All in all, we have considered
that Splash-3 speed-ups are good enough to design and develop a dynamic
AMO policy predictor.

6.2. DESIGN PHILOSOPHY 73

6.2 Design Philosophy

One of the most studied fields in Computer Architecture is Branch
Prediction (BP). We can see that there are several similarities between
selecting near or far AMOs and Branch Prediction. In both cases we have
to apply a binary decision. In both cases we have an instruction that has
a target address (in the case of BP is the address to jump). We can be
attracted to the idea of applying the same mechanisms that have been
applied to branches for AMOs. One could replace Taken and Not Taken
decision by Near and Far. However, in the case of branches, after some
cycles we end up knowing the correct answer to update the predictor.
With this information predictors learn and improve their future
predictions. However, in AMOs we do not know what is the right
prediction. We could consider right prediction if a block brought to the
L1 with an AMO is reused afterwards, and a bad prediction if the block is
evicted without being used.

Although this idea is attractive, it does not cover the problem of labeling
the prediction of far AMOs. Once we have issued a far AMO, we do not
know if the prediction was right or not. If we tracked subsequent accesses
to detect missed opportunity to fetch the cache line, we would need to
track the AMO meta data indefinitely, which can be expensive. And even
with the required hardware, we cannot know if the block would have been
invalidated by other cores.

In addition, we only know local information with respect to a single
core (i.e. if the block is present in L1, subsequent AMOs executed, etc.),
but the actions of a single core can affect third parties. A core that instead
of issuing a far AMO, fetches the cache line can increase the access time of
another cores. Once the block is in a L1 in UC/UD, when the HN receives
a request needs to first send an invalidation to the current owner. Which
increases the overall latency of the transaction.

Another possible perspective to consider is from a data prefetching
point of view. The prefetchers place data blocks in the caches so the thread
that needs to access that data only needs to wait few cycles. Timeliness
prefetching is a desired property to get the maximum performance of a
prefetch, as bringing the data too early can increase the miss ratio of caches
and requesting the data too late can lead to sub-optimal performance. In

74 CHAPTER 6. DYNAMIC AMO POLICY PREDICTOR

the same way, Timeliness prefetching can be applied to AMOs, so threads
can perform near AMOs without invalidating other threads copies too early.
Nevertheless, we left the design of a AMO prefetching mechanism for a
future work and we focus on selecting the ideal policy.

6.3 Dynamic AMO Predictor Heuristic

Inspired by the profuse use of heuristics in the field of Prefetching (i.e. Next
Line, Stream, etc.) and Branch Prediction (i.e. Local Branch History), we
have created our own heuristic to select the best policy. We have considered
several insights we have obtained from the evaluation of the static policies.

In LockHammer, we have seen the behavior of the static policies when
a thread wants to perform several AMOs to the same address in a short
period of time. In these cases, threads that fetch the cache line and perform
the AMOs in the L1 cache are more efficient than those that issue far AMO
transactions. The cost of a single far AMO is similar to the cost of a cache
miss, so assuming the cost of one cache miss to perform several AMO is
lower that issuing several far AMOs. Therefore, when a thread fetches a
cache line we want to count subsequent near AMO accesses that hit in the
L1 cache. We can use an online algorithm to compute the average number
of uses of a cache line on the fly. But for the final heuristic we will simply
count the total amount of near AMOs.

In Splash-3, we observe different access patterns inside a single
application. Some highly shared locks are updated only once every
several cycles. In those cases, bringing the cache line does not pay off
because the thread does not reuse the cache line. If the target cache line
of an AMO is present in the HN, issuing an AMO is slightly cheaper than
fetching the block. Because the data sent is smaller (quad word instead of
a cache line). Moreover, if all threads issue far AMOs to a block instead
of fetching it, we can save those invalidation messages required to move a
block between caches. Therefore, in those cases in which a thread has the
same amount of near AMOs to a cache line than invalidation messages,
we know that the thread is not reusing the fetched block.

Next, we decide the static AMO policies to be considered in our
predictor.We have discarded All Far policy because we have seen
previously that it has the lowest performance always. All Near policy

6.4. DYNAMO ARCHITECTURE 75

performs well in most scenarios, so we have decided to select this policy
for those addresses that have some reuse patterns. We also know that
Present Near, Shared Far or Unique Near can work in those cases in
which we want to perform far AMOs. However, Present Near and Shared
Far are very similar to All Near policy. Thus, we have selected Unique
Near policy because it has more states in which a far AMO is issued
instead of a fetch request to perform the near AMO.

Consequently, we already have two policies that are represented as
two states in a Finite State Machine (FSM). We have decided that the
initial state is All Near, because we know that this policy outperforms
Unique Near policy in single thread experiments. Next, we have to create
the transitions between these two states. We know that counting for the
amount of near AMOs and invalidations of a cache line can help us decide
between near and far AMOs. We have opted for a simple design in which
a we use a single metric computed as:

Ratio =
NumNearAMO

NumInvalidations

If the rate is below one we know we have executed less near AMOs
than received invalidations. Thus, we are not taking advantage of the
cache line being in the L1 cache. Note, that we can have higher number
of invalidations than near AMOs because a store that fetches the block in
UC/UD state can receive latter an invalidation. When the ratio is higher
than one, the thread executes more near AMOs than received invalidations.
So, in some cases after fetching a cache line the thread executes a near
AMO.

Therefore, we will use this ratio to transit between All Near and Unique
Near states. Figure 6.4 illustrates the FSM used in the predictor. We have
two states and two transitions. We transit from All Near state if the ratio
is below a given threshold. We will transit from Unique Near to All Near
if the ratio is higher than the same threshold.

6.4 DynAMO Architecture

Once we have defined our heuristic to select the best policy, we have to
develop the hardware to apply the heuristic to addresses accessed by AMOs.

76 CHAPTER 6. DYNAMIC AMO POLICY PREDICTOR

All
Near

Unique
Near

Ratio < Threshold

Ratio > Threshold

Init

Figure 6.4: Dynamic AMO predictor Finite State Machine.

Inspired again by Branch Predictors we have opted for a look-up table to
store the FSM metadata because we only want to apply the heuristic to a
small set of addresses. The size of the look-up table is limited to a small
amount of entries to limit its hardware cost. We have measured the amount
of different cache lines that are accessed by AMO instructions in Splash-3
benchmarks and we have found that 90% of AMO accesses target less than
256 different addresses. Therefore, we have sized our look-up table with
1024 entries.

Since the amount of entries is smaller than the whole address space, we
can address the table with the lower bits of the address. To ensure that
the accessed entry matches the whole address we have to store a TAG field
that contains the remaining bits of the address. We have also implemented
a parametric associativity in the look-up table to avoid possible conflicts
between addresses that are indexed in the same entry/set. The final design
is shown in Figure 6.5.

To figure out which associativity achieves the highest performance we
have executed our model with different associativity levels: 1, 2, 4, 8 and
16, keeping constant the total amount of entries. We have evaluated these

6.5. EVALUATION 77

Logic=

TAG (24 bit) Meta Data

0x8020CD

0x4040AB

TAG (24 bit) Meta Data

0x8020CD

0x4040AB

TAG (24 bit) Meta Data

0x8020CD

0x4040AB

TAG Metadata

0x8020CD0
0x44400B8

Addr

=

0x6060D00
0x4245AB8

0x2940AB8

Logic

N-Ways

Hit/Miss Policy

Figure 6.5: Block diagram of the Dynamic AMO Policy Predictor based on a
look-up table

models in the next section.

6.5 Evaluation

In this section we evaluate the Dynamic AMO Predictor (DynAMO) we
have designed. We have evaluated the predictor in the same environment
we tested the static AMO policies and with the same benchmarks
(LockHammer and Splash-3).

6.5.1 DynAMO Results with LockHammer

Figure 6.6 compares the performance of the Dynamic AMO Policy
Predictor compared against the other static AMO policies. We have
computed the speed-ups with respect the execution times with of All

78 CHAPTER 6. DYNAMIC AMO POLICY PREDICTOR

Near policy. All versions execute the benchmark with 64 threads and
serialized configuration. We have not tested the different associativities
because in this benchmark there is a single address that is accessed by
AMOs. We can see that our predictor in most cases has the same
performance of the Unique Near policy. Only in HSF-Lock we can see
that the predictor behaves like the All Near policy. On average the
predictor is a 25% slower than All Near Policy.

Sw
ap

-L
oc

k
M

yS
Q

L-
Lo

ck
Ti

ck
et

-L
oc

k
O

SQ
-L

oc
k

H
SF

-L
oc

k

TB
B-

RW

H
S-

Lo
ck

Q
ue

ue
d-

Lo
ck

C
AS

-L
oc

k

JV
M

-L
oc

k

C
AS

-R
W

In
cD

ec
-R

W

G
eo

m
ea

n

0.00
0.25
0.50
0.75
1.00
1.25
1.50

S
pe

ed
-u

p

All Near
Present Near

Dirty Near
Shared Far

Unique Near
DynAMO Predictor

Figure 6.6: Speed-up of LockHammer locks (w.r.t LL/SC version) on with 64
threads using serialized configuration

We have investigated why the predictor in most cases behaves like
Unique Near, instead of adapting to the kernels that benefit more from
All Near policy. We have concluded that in the first stages of the
experiments there is high contention that makes the predictor select the
Unique Near policy. This contention happens because threads use the
fastpath of the lock implementations that just try to capture the lock
before checking its value. Once the predictor has selected Unique Near
state, the predictor is unable to transition back to All Near state. This
may happen because three out of five states choose to execute far AMOs
(I, SC and SD). So, the amount of near AMOs observed by the predictor
is low. Thus, we still have some room for improvement in future designs.

6.5.2 DynAMO Results with Splash-3

Next, we have tested our predictor with the different levels of associativity
on Splash-3. Figure 6.7 shows the relative performance of our predictor

6.5. EVALUATION 79

with five different associativities: 1, 2, 4, 8 and 16. In the figure, we have
computed the speed-up with respect to All Near policy.

BA
R

N
ES

R
AD

IO
SI

TY

VO
LR

EN
D

FM
M

W
AT

ER
-N

Q

G
eo

m
ea

n

0.85

0.90

0.95

1.00

1.05

1.10

1.15

S
pe

ed
-u

p

All Near
DynAMO 1-way

DynAMO 2-way
DynAMO 4-way

DynAMO 8-way
DynAMO 16-way

Figure 6.7: Speed-up of Dynamic AMO Policy Predictor running Splash
benchmarks with assocciativities 1, 2, 4, 8 and 16 (w.r.t All Near)

We can see that our predictor beats All Near policy in Barnes and
Radiosity benchmarks with a 1.11× and 1.3× speed-ups respectively.
However, in Volrend and FMM we have a slowdown of 3%. In the case of
Water-Nsquared, we have a minimal slowdown in the direct map and
2-way associativity predictors and a speed-up of 1% for higher levels of
associativity. The best configuration for our predictor is surprisingly the
direct mapped. We obtain with this configuration a 3% speed-up on
average and up to 14% speed-up in Barnes. The case in which direct
mapped configuration obtains the highest difference against the other
predictor configurations is Radiosity, in which this configuration achieves
a 7% speed-up while the other configurations achieve a 3.5%. The only
case in which higher levels of associativty achieve higher speed-ups is
Water-Nsquared.

This kind of behavior is rare because traditionally higher levels of
associativity in caches and other structures translate into speed-ups. The
main reason to use higher levels of associativity is the reduction of
collisions that allow a better track of unique addresses. But in this case, a
higher amount of collisions means a higher performance. After studying
the traces of the predictor we have been able to determine that this
improvement in performance is caused by a better adaptation to the

80 CHAPTER 6. DYNAMIC AMO POLICY PREDICTOR

different phases of the applications.

We have observed that most applications have different parallel regions
that have different data sharing pattern for the locks. In these cases, we
can experience a degradation in performance when changing from a phase
to another. The reason why the predictor cannot adapt to the new phases
fast is that the counters we use to compute the heuristic ratio have such
big values that it takes a big amount of cycles to transition to a new state.

In direct mapped configuration, it is easier that a new address evicts an
already existing entry. This way, by allocating a new entry for the evicted
block we have effectively reset the counters used to compute the heuristic
ratio. Therefore, the collisions help us to achieve a higher speed-up by
resetting the stats of the old entries. We can take advantage of this insight
implementing some mechanism that performs this reset in a controlled way.
However, we leave this new task for future work.

BA
R

N
ES

R
AD

IO
SI

TY

VO
LR

EN
D

FM
M

W
AT

ER
-N

Q

G
eo

m
ea

n
0.85

0.90

0.95

1.00

1.05

1.10

1.15

S
pe

ed
-u

p

All Near
Present Near

Dirty Near
Shared Far

Unique Near
DynAMO 1-way

Figure 6.8: Speed-up of Dynamic AMO Policy Predictor (Direct Mapped)
running Splash-3 benchmarks (w.r.t All Near)

Finally, we compare the best predictor configuration we have found
(Direct Mapped) against all other static AMO policies (see Figure 6.8).
Again we have computed the speed-up with respect to All Near policy.
We can see that our predictor outperforms all other policies on Barnes
and Radiosity. Moreover, the predictor is on average the fastest among all
models.

6.6. CONCLUDING REMARKS 81

6.6 Concluding Remarks

We have designed, developed and evaluated a policy predictor to select
dynamically the best AMO policy. With our simple design we have
obtained a speed-up of 3% on Splash-3 applications, with up to 1.15× in
one benchmark. These results encourage us to develop a better AMO
policy predictor that can also take advantage of prefetching and stashing
mechanisms to speed-up AMOs.

Chapter 7

Conclusions and Future
Work

7.1 Conclusions

In the first part of this work we have presented an exhaustive analysis of
two State-of-the-Art synchronization directives: Load Link / Store
Conditional and Atomic Memory Operations. This analysis has covered
two benchmarks suites (LockHammer and Splash-3) in two commercial
machines (Kunpeng 920 and Graviton 2).

We have observed that most kernels in LockHammer benchmark
reduce their execution time when replacing LL/SC by AMOs. We observe
this behavior in both machines, AMOs outperform LL/SC by 1.2× in
Kunpeng 920 and a 3× in Graviton 2. AMOs work better than LL/SC in
high contention scenarios like this microbenchmark suite. During these
experiments we have detected that AMOs have a higher cost than LL/SC
in Kunpeng 920 architecture.

We have observed with Splash-3 applications that each machine
behaves differently in terms of performance scaling for these
synchronization instructions. Kunpeng 920 usually scales better using
LL/SC instructions. Binaries using AMOs slowdown applications by up
to a 20% and a 5% in average compared to binaries compiled with
LL/SC. However, AMOs outperform LL/SC in Graviton 2 achieving a
25% speed-up in some applications and an average speed-up of 5%.

In the second part of this thesis we have followed AMBA 5 CHI
specifications to develop six different multicore models in gem5. Each
model follows a different static AMO policy that executes AMOs in the
L1 cache or in the L3 cache for different cache states. We evaluated these

82

7.2. FUTURE WORK 83

six policies with LockHammer finding that the All Near policy (policy
that always executes AMOs in the L1 cache) is the most efficient policy.
However, when executing Splash-3 benchmarks we have observed that
there are other policies like Present Near or Unique Near that can execute
faster some applications. These policies in some cases can issue a far
AMO to execute the operation in the L3 without fetching the catch block
into the L1 cache of the requester. All in all, we cannot find a static
policy that outperforms the rest for all Splash-3 applications

In the third and final part we design, develop and evaluate a simple
Dynamic AMO Policy predictor. This predictor selects between All Near
and Unique Near policies using a simple heuristic based on the amount of
near AMOs performed in the past and the number of invalidation messages
received. With this predictor, we are able to achieve speed-ups of 15% in
Barnes and 6% in Radiosity. Although average speed-up are modest (3%
on average), we believe there is room for improvement.

7.2 Future Work

In a near future we plan to expand this work following the next steps:

• Extending our experiments to some domain specific applications
that use AMOs extensively. Graphs analytic applications have an
important role in many industrial and research areas. Many of the
graph analytic frameworks use AMOs to update sparse data
structures. Therefore, studying the pattern accesses of graph
applications and devloping a specific AMO policy can speed-up
these important applications.

• Improve our predictor design to capture better the different phases
of the programs. As we have seen in our experiments the direct
mapped predictor outperforms all other models that use associativity.
We know that collisions in the AMO policy predictor trigger the
eviction of some entries. These evictions act as a reset mechanism and
help the predictor to adapt to the different phases of the application.
Therefore, we plan to implement a reset mechanism to improve the
performance of our predictor.

84 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

• Explore the use of prefetchers and other kind of prediction mechanism
to improve AMOs execution. As we have discused in Chapter 6,
selecting wheter the AMOs execute in the L1 cache or in the L3
cache has an effect similar to prefetching. Each cache block has a
different reuse pattern and fetching the block to the L1 caches can
have a big impact in performance. Therefore, we want to develop a
AMO friendly prefetcher in the future.

7.3 Publications

Our goal is to publish the results obtained in this Master Thesis in a
relevant computer architecture conference. We plan to enhance the
DynAMO policy and submit a paper in the next few months.

In addition, during the life span of this project I have been involved in
other publications:

• J. Abella, C. Bulla, G. Cabo, F. J. Cazorla, A. Cristal, M. Doblas,
R. Figueras, A. González, C. Hernández, C. Hernández, V. Jiménez,
L. Kosmidis, V. Kostalabros, R. Langarita, N. Leyva, G.
López-Parad́ıs, J. Marimon, R. Mart́ınez, J. Mendoza, F. Moll, M.
Moretó, J. Pavón, C. Ramı́rez, M. A. Ramı́rez, C. Rojas, A. Rubio,
A. Ruiz, N. Sonmez, V. Soria, L. Terés. O. Unsal, M. Valero, I.
Vargas, L. Villa, “An Academic RISC-V Silicon Implementation
Based on Open-Source Components.” Conference on Design of
Circuits and Integrated Systems (DCIS), 1-6 2020. Paper accepted
[1].

• V. Soria Pardos, A. Armejach, D. Suárez Gracia, M. Moretó, ”On
the use of many-core Marvell ThunderX2 processor for HPC
workloads. Journal of Supercomputing, 77(2):3315–3338, 2021.
Paper accepted [41].

Bibliography

[1] J. Abella, C. Bulla, G. Cabo, F. J. Cazorla, A. Cristal, M. Doblas,
R. Figueras, A. González, C. Hernández, C. Hernández, V. Jiménez,
L. Kosmidis, V. Kostalabros, R. Langarita, N. Leyva, G. López-
Parad́ıs, J. Marimon, R.o Mart́ınez, J. Mendoza, F. Moll, M. Moretó,
J. Pavón, C. Ramı́rez, M. A. Ramı́rez, C. Rojas, A. Rubio, A. Ruiz,
N. Sonmez, V. Soria, L. Terés, O. Unsal, M. Valero, I. Vargas, L. Villa,
and C. Ramı́́ıez. An academic risc-v silicon implementation based on
open-source components. In 2020 XXXV Conference on Design of
Circuits and Integrated Systems (DCIS), pages 1–6, 2020.

[2] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-
20, 1967, Spring Joint Computer Conference, AFIPS ’67 (Spring),
page 483–485, New York, NY, USA, 1967. Association for Computing
Machinery.

[3] Anandtech. Graviton 2 architecture details.
https://www.anandtech.com/show/15578/

cloud-clash-amazon-graviton2-arm-against-intel-and-amd,
2019. [Online; accessed 2-December-2021].

[4] Anandtech. Apple m1 architecture. https://www.anandtech.com/

show/16226/apple-silicon-m1-a14-deep-dive/2, 2021. [Online;
accessed 2-December-2021].

[5] The Next Platform Arm Holding. Graviton 2 module
diagram. https://www.nextplatform.com/2021/03/17/

can-graviton-win-a-three-way-compute-race-at-aws/, 2019.
[Online; accessed 2-December-2021].

[6] A. Armejach, R. Titos-Gil, A. Negi, O. S. Unsal, and A. Cristal.
Techniques to improve performance in requester-wins hardware
transactional memory. 10(4), dec 2013.

85

https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://www.nextplatform.com/2021/03/17/can-graviton-win-a-three-way-compute-race-at-aws/
https://www.nextplatform.com/2021/03/17/can-graviton-win-a-three-way-compute-race-at-aws/

86 BIBLIOGRAPHY

[7] H.B. Bakoglu and J.D. Meindl. Optimal interconnection circuits for
vlsi. IEEE Transactions on Electron Devices, 32(5):903–909, 1985.

[8] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm.
Computer, 35(1):70–78, 2002.

[9] M. Bohr. A 30 year retrospective on dennard’s mosfet scaling paper.
IEEE Solid-State Circuits Society Newsletter, 12(1):11–13, 2007.

[10] J. M. Broughton, P. M. Farmwald, and T. M. McWilliams. S-1
Multiprocessor System. In Joel Trimble, editor, Real-Time Signal
Processing V, volume 0341, pages 327 – 332. International Society
for Optics and Photonics, SPIE, 1982.

[11] BSC. Extrae: Paraver trace-files generator. https://tools.bsc.es/
extrae, 2019. [Online; accessed 2-December-2021].

[12] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout,
E. Bassous, and A.R. LeBlanc. Design of ion-implanted mosfet’s with
very small physical dimensions. IEEE Journal of Solid-State Circuits,
9(5):256–268, 1974.

[13] V. Dimić, M. Moretó, M. Casas, J. Ciesko, and M. Valero. RICH:
Implementing reductions in the cache hierarchy. In Proceedings of the
34th ACM International Conference on Supercomputing, ICS ’20, New
York, NY, USA, 2020. Association for Computing Machinery.

[14] Z. Fang, L. Zhang, J. B. Carter, A. Ibrahim, and M. A. Parker. Active
memory operations. ICS ’07, page 232–241, New York, NY, USA, 2007.
Association for Computing Machinery.

[15] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang,
W. Xue, F. Liu, F. Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge,
J. Zhang, Y. Wang, C. Zhou, and G. Yang. The sunway taihulight
supercomputer: system and applications. 59(7), 2016.

[16] gem5 and Arm Holdings. gem5 chi protocol. https://www.gem5.org/
documentation/general_docs/ruby/CHI/, 2021. [Online; accessed
30-December-2021].

https://tools.bsc.es/extrae
https://tools.bsc.es/extrae
https://www.gem5.org/documentation/general_docs/ruby/CHI/
https://www.gem5.org/documentation/general_docs/ruby/CHI/

BIBLIOGRAPHY 87

[17] E. J. Gómez-Hernández, J. M. Cebrian, R. Titos-Gil, S. Kaxiras,
and A. Ros. Efficient, distributed, and non-speculative multi-
address atomic operations. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’21, page
337–349, New York, NY, USA, 2021. Association for Computing
Machinery.

[18] Gottlieb, Grishman, Kruskal, McAuliffe, Rudolph, and Snir. The nyu
ultracomputer—designing an mimd shared memory parallel computer.
IEEE Transactions on Computers, C-32(2):175–189, 1983.

[19] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, ISCA ’93, page
289–300, New York, NY, USA, 1993. Association for Computing
Machinery.

[20] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming,
Revised Reprint. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition, 2012.

[21] H. Hoffmann, D. Wentzlaff, and A. Agarwal. Remote store
programming. In High Performance Embedded Architectures and
Compilers, pages 3–17, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[22] Arm Holdings. Exlusive monitors. https://developer.arm.com/

documentation/100934/0100/Exclusive-monitors?lang=en, 2021.
[Online; accessed 2-December-2021].

[23] Arm Holdings. Lock hammer. https://github.com/ARM-software/
synchronization-benchmarks/tree/master/benchmarks/

lockhammer, 2021. [Online; accessed 2-December-2021].

[24] R.E. Kessler and J.L. Schwarzmeier. Cray t3d: a new dimension for
cray research. In Digest of Papers. Compcon Spring, pages 176–182,
1993.

https://developer.arm.com/documentation/100934/0100/Exclusive-monitors?lang=en
https://developer.arm.com/documentation/100934/0100/Exclusive-monitors?lang=en
 https://github.com/ARM-software/synchronization-benchmarks/tree/master/benchmarks/lockhammer
 https://github.com/ARM-software/synchronization-benchmarks/tree/master/benchmarks/lockhammer
 https://github.com/ARM-software/synchronization-benchmarks/tree/master/benchmarks/lockhammer

88 BIBLIOGRAPHY

[25] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: Architectural
support for fine-grained parallelism on chip multiprocessors. In
Proceedings of the 34th Annual International Symposium on Computer
Architecture, ISCA ’07, page 162–173, New York, NY, USA, 2007.
Association for Computing Machinery.

[26] J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris. Dip:
A parallel program development environment. In Luc Bougé, Pierre
Fraigniaud, Anne Mignotte, and Yves Robert, editors, Euro-Par’96
Parallel Processing, pages 665–674, 1996.

[27] J. Laudon and D. Lenoski. The sgi origin: A ccnuma highly scalable
server. In Proceedings of the 24th Annual International Symposium
on Computer Architecture, ISCA ’97, page 241–251, New York, NY,
USA, 1997. Association for Computing Machinery.

[28] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation:
Reducing coherence overhead in shared-memory multiprocessors.
In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, ISCA ’95, page 48–59, New York, NY, USA,
1995. Association for Computing Machinery.

[29] C. Liang and M. Prvulovic. Misar: Minimalistic synchronization
accelerator with resource overflow management. In Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
ISCA ’15, page 414–426, New York, NY, USA, 2015. Association for
Computing Machinery.

[30] Linux. Taskset command. https://man7.org/linux/man-pages/

man1/taskset.1.html, 2021. [Online; accessed 2-December-2021].

[31] Linux. Time command. https://man7.org/linux/man-pages/man1/
time.1.html, 2021. [Online; accessed 2-December-2021].

[32] J. Lowe-Power, A. Mutaal Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann,
S. Bharadwaj, G. Black, G. Bloom, B. R. Bruce, D. Rodrigues
Carvalho, J. Castrillon, L. Chen, N. Derumigny, S. Diestelhorst,
W. Elsasser, C. Escuin, M. Fariborz, A. Farmahini-Farahani,

https://man7.org/linux/man-pages/man1/taskset.1.html
https://man7.org/linux/man-pages/man1/taskset.1.html
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/time.1.html

BIBLIOGRAPHY 89

P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass, A. Gutierrez,
B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera,
M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul,
T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama,
T. Krishna, T. Marinelli, C. Menard, A. Mondelli, M. Moreto,
T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E. Olson,
M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani,
A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair, T. Ta,
R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas,
W. Wang, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and
É. F. Zulian. The gem5 simulator: Version 20.0+, 2020.

[33] lowRISC. lowrisc untethered project. http://www.lowrisc.org/

docs/untether-v0.2/, 2015. [Online; accessed 2-December-2021].

[34] G.E. Moore. Cramming more components onto integrated circuits.
Proceedings of the IEEE, 86(1):82–85, 1998.

[35] M. Musleh and V. S. Pai. Automatic sharing classification and timely
push for cache-coherent systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’15, New York, NY, USA, 2015. Association for
Computing Machinery.

[36] D. Nagle. Mpi – the complete reference, vol. 1, the mpi core, 2nd ed.,
scientific and engineering computation series, by marc snir, steve otto,
steven huss-lederman, david walker and jack dongarra. Sci. Program.,
13(1):57–63, jan 2005.

[37] University of Virginia. Stream2 home page. http://www.cs.

virginia.edu/stream/stream2/, 2020. [Online; accessed 30-
December-2021].

[38] B. Sahelices, P. Ibáñez, V. Viñals, and J. M. Llabeŕıa. A methodology
to characterize critical section bottlenecks in dsm multiprocessors. In
Euro-Par 2009 Parallel Processing, pages 149–161, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

http://www.lowrisc.org/docs/untether-v0.2/
http://www.lowrisc.org/docs/untether-v0.2/
http://www.cs.virginia.edu/stream/stream2/
http://www.cs.virginia.edu/stream/stream2/

90 BIBLIOGRAPHY

[39] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros. Splash-3: A
properly synchronized benchmark suite for contemporary research.
In 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 101–111, 2016.

[40] S. L. Scott. Synchronization and communication in the t3e
multiprocessor. In Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS VII, page 26–36, New York, NY, USA, 1996.
Association for Computing Machinery.

[41] V. Soria-Pardos, A. Armejach, D. Suárez, and Moretó. M. On the
use of many-core marvell thunderx2 processor for hpc workloads. The
Journal of Supercomputing, 77(2):3315–3338, 2021.

[42] X. Tang, J. Zhai, X. Qian, and W. Chen. Plock: A fast lock for
architectures with explicit inter-core message passing. In Proceedings
of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’19, page 765–778, New York, NY, USA, 2019. Association for
Computing Machinery.

[43] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. Miao, J. F. Brown III, and A. Agarwal. On-
chip interconnection architecture of the tile processor. IEEE Micro,
27(5):15–31, 2007.

[44] Wikichip. Kunpeng 920 module diagram. https://en.wikichip.

org/wiki/hisilicon/microarchitectures/taishan_v110, 2019.
[Online; accessed 2-December-2021].

[45] Wikichip. Arm cortex x1 architecture. https://en.wikichip.

org/wiki/arm_holdings/microarchitectures/cortex-x1, 2020.
[Online; accessed 2-December-2021].

[46] C. M. Wittenbrink, Emmett K., and A. Prabhu. Fermi gf100 gpu
architecture. IEEE Micro, 31(2):50–59, 2011.

https://en.wikichip.org/wiki/hisilicon/microarchitectures/taishan_v110
https://en.wikichip.org/wiki/hisilicon/microarchitectures/taishan_v110
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-x1
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-x1

BIBLIOGRAPHY 91

[47] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The splash-
2 programs: characterization and methodological considerations.
In Proceedings 22nd Annual International Symposium on Computer
Architecture, pages 24–36, 1995.

[48] J. Xia, C. Cheng, X. Zhou, Y. Hu, and P. Chun. Kunpeng 920: The
first 7-nm chiplet-based 64-core arm soc for cloud services. IEEE
Micro, 41(5):67–75, 2021.

[49] G. Zhang, W. Horn, and D. Sanchez. Exploiting commutativity to
reduce the cost of updates to shared data in cache-coherent systems. In
Proceedings of the 48th International Symposium on Microarchitecture,
MICRO-48, page 13–25, New York, NY, USA, 2015. Association for
Computing Machinery.

[50] L. Zhang, Z. Fang, and J.B. Carter. Highly efficient synchronization
based on active memory operations. In 18th International Parallel
and Distributed Processing Symposium, 2004. Proceedings., pages 58–,
2004.

	Introduction
	Context
	Contributions
	Characterization of Synchronization Instructions on Arm-Based Architectures
	Modeling of Atomic Memory Operations in Arm-based systems
	Dynamic Atomic Memory Operations Policy

	Thesis Organization

	State of the Art
	Problem Statement
	Load Link and Store Conditional
	Atomic Memory Operations
	Transactional Memory
	Related Work

	Experimental Framework
	Methodology and Environment
	Methodology
	Software Environment
	Tools

	Workloads
	LockHammer
	Splash-3

	Tests Machines
	Kunpeng 920
	Graviton 2

	The gem5 Simulator
	CPU Microarchitecture
	Cache Hierarchy and NoC Configuration

	Characterization of Sync. Primitives
	LockHammer Characterization
	Kunpeng 920
	Graviton 2
	Summary

	Splash-3 Characterization
	Kunpeng 920
	Graviton 2
	Kunpeng 920 vs Graviton 2
	Concluding Remarks

	Modeling Atomic Memory Operations
	AMBA 5 CHI
	Channels
	Cache States
	Supported AMO
	AMO Transactions in AMBA 5 CHI
	Snoops
	Example Flowcharts
	AMBA 5 CHI on Gem5

	Design Space Exploration
	Evaluation
	Static AMO Results with LockHammer Serialized
	Static AMO Results with LockHammer Unserialized
	Static AMO Results with Splash-3

	Concluding Remarks

	Dynamic AMO Policy Predictor
	Choosing the Best Static Policy
	Design Philosophy
	Dynamic AMO Predictor Heuristic
	DynAMO Architecture
	Evaluation
	DynAMO Results with LockHammer
	DynAMO Results with Splash-3

	Concluding Remarks

	Conclusions and Future Work
	Conclusions
	Future Work
	Publications

