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Abstract—Using satellite constellations to provide global Inter-
net access services has recently drawn increasing attention. A low-
Earth orbit (LEO) satellite network with multiple satellites pro-
vides global coverage, low latency, and operates independently, by
which it effectively complements terrestrial IP networks. Satellite
gateways are located on the ground and can serve as data
exchange points between satellite networks and the Internet.
As the placement scheme can affect network performance,
finding appropriate sites for gateways constitutes a fundamental
problem. This paper proposes a gateway placement optimization
(GPO) method for LEO satellite networks in order to solve
this problem by modeling it as a combination optimization
problem. We aim to identify the best gateway locations that can
balance traffic loads while using as few gateways as possible. The
constraints to be satisfied concern the physical links between
gateways and satellites: specifically, link interference, satellite
bandwidth, and number of satellite antennas. We use a gravity
model to estimate the traffic matrix from/to gateways and
satellites, then we adopt and modify the discrete particle swarm
optimization (PSO) algorithm to solve this problem. Finally,
we apply the GPO method to numerical tests on real satellite
constellations. The results indicate that our method performs
well and effectively.

Index Terms—Gateway placement, satellite network, low-Earth
orbit, traffic estimation, discrete particle swarm optimization.

I. INTRODUCTION

DUE to the low latency, low cost, and high flexibility,
low-Earth orbit (LEO) satellites for communication net-

works are drawing more and more attention compared with
their traditional geostationary Earth orbit (GEO) counterparts.
Several LEO constellation network projects with hundreds or
even thousands of satellites are currently being proposed by
commercial organizations [1] such as OneWeb, SpaceX, and
Telesat, to name just a few. Some of these have even been
partially deployed on orbit. On the other hand, a satellite can
provide greater coverage and higher throughput than terrestrial
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fiber-optic and mobile network infrastructures, which is why
dramatic developments in satellite communication networks
have occurred in recent years. Furthermore, because new
network applications such as the Internet of Things (IoT)
are increasingly emerging, terrestrial networks like the cur-
rent 5G technology cannot exclusively fulfill these multiple
requirements. Therefore, researchers are commonly seeking
ways to merge the space and terrestrial networks [2] by
exploring several issues regarding network architecture [3],
resource management [4], and routing algorithms [5], among
others. Additionally, new methods are being proposed to
solve problems such as satellite load balance [6] and net-
work management [7] by means of machine learning [8] and
software-defined network (SDN). Nevertheless, these have not
been completely solved due to the intrinsic characteristics
of satellite networks, such as the dynamic topology. Other
challenges persist, thus requiring further investigation. Among
them stands the important gateway placement problem, which
has been rarely addressed in previous studies.

As integrated into terrestrial networks, satellite networks
provide Internet services that necessarily require a ground
infrastructure, i.e., the gateway, to connect to the Internet
backbone (data centers, servers, etc.). That is to say, gate-
ways act as edge routers between satellite and terrestrial
devices, forming part of the ground segment in the satellite
network. Therefore, gateways can affect network performance
and quality of service (QoS), which is why their placement
constitutes a significant problem. On the one hand, gateways
need to be deployed all around the Earth, because satellite
networks generally have global coverage and provide services
worldwide. However, the number of gateways needed in a
certain satellite network is undetermined. More gateways may
provide better access services but can also predictably generate
higher costs. On the other hand, gateways should be located
at appropriate sites to optimize system performance for a
given fixed satellite constellation [9]. More gateways can be
reasonably deployed in places with higher-demand for Internet
services while fewer can be justified in places like oceans and
deserts. It also makes sense to deploy gateways close to key
Internet exchange points where a huge proportion of Internet
traffic is exchanged.

Hence, we propose here the gateway placement optimization
(GPO) problem for LEO satellite networks, which is a new
method for obtaining the optimal gateway placement scheme
while minimizing investment, reducing implementation costs,
and maintaining the preset QoS. We first formulate a GPO
model with multiple objectives and constraints. One objective
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concerns the network performance, which is evaluated by the
load balancing index, since it can be estimated effectively and
is not susceptible to other factors such as routing algorithms
among satellites. The traffic load of a network’s nodes can
be estimated by several different methods [10], of which
a gravity model is an effective and simple approximation
method; thus, it is used to model commodity exchanges and
has been applied in network applications [11]. We adopt
this model to obtain the average traffic load of gateways
and satellites. Moreover, a satellite has a limited satellite-
ground bandwidth and a fixed number of antennas. Thus, the
satellite’s number of simultaneous gateway connections has
a maximum limit, which we regard here as constraints. We
also take into account the interference between gateway-to-
satellite links when gateways are close to each other. Finally,
as GPO constraints are nonlinear, it is difficult to use integer
linear programming methods. So, we instead adopt the discrete
version of the particle swarm optimization (PSO) algorithm,
which is widely used and has been verified as an effective
way for dealing with complex problems that have nonlinear
objectives and constraints.

The rest of the paper is organized as follows. Section II
briefly describes the state of the art in terms of three aspects:
network GPO, traffic estimation, and the PSO algorithm.
Section III illustrates the GPO problem by modeling it as
a nonlinear, multi-objective, and multi-constraint combination
optimization problem. Section IV describes the gravity model
we use to compute the traffic load of gateways and proposes
a method for calculating the constraints in the GPO model.
In Section V, we modify the original discrete PSO algorithm
in order to accelerate the GPO problem-solving process, and
we discuss the algorithm analysis of discrete PSO parameters.
Section VI presents case study on real satellite networks and
gives the optimization results. Finally, Section VII concludes
this paper.

II. RELATED WORKS

A. Gateway Placement

The gateway placement problem originally emerged in ter-
restrial networks such as wireless mesh and sensor networks.
Existing works mainly adopt the integer linear programming
model to find the optimal solution, with their objectives usually
being to minimize the number of gateways [12], maximize
network capacity [13], or minimize energy consumption [14].
In terms of constraints, QoS performance is sometimes con-
sidered in regard to parameters such as packet loss rate and
average delay [12], [15], [16]. In these studies, researchers
propose polynomial time algorithms to reduce computational
complexity when the network scale increases. However, the
problem is more complex when satellite mobility and handover
of communication links are involved. Hence, the methods
proposed above will not be effective in LEO satellite networks.

Previous studies on satellite networks seldom concern the
GPO problem. To the best of our knowledge, it was first
discussed in 2018 by Cao et al. [17], [18], who implemented
a scenario with one GEO satellite and several gateways. Their
aim was to find an optimal set of gateways from terrestrial

nodes that maximize the weighted average network reliability
or minimize network latency under capacity constraints. When
Liu et al. [19] proposed the gateway placement problem in
SDN-enabled 5G-satellite integrated networks, their objective
was the network latency, for which they used an approximate
method based on simulated annealing to solve the problem.
Yang et al. [20] proposed a 𝑘-means method to solve the joint
placement problem of controllers and gateways. In a word,
the optimization methods above are worth learning, but their
gateway placement models seem to be a little simple.

As far as we know, most existing works consider only GEO
satellites and neglect satellite mobility. For this reason, their
methods cannot be adopted in LEO constellations. Therefore,
the delay between satellite and gateways is constant, and
the GPO problem becomes irrelevant to satellites. Further-
more, the optimization objectives and constraints in existing
works rarely involve satellite communications characteristics
like bandwidth limitations; thus introducing more realistic
constraints could improve the gateway placement scheme.

B. Traffic Estimation

Previous researchers have investigated methods for estimat-
ing node-to-node Internet traffic. Roughan et al. [21] first
proposed the gravity model to derive an approximate traffic
matrix of the Internet backbone. Medina et al. [22] compared
three traffic estimation methods, namely linear programming,
Bayesian inference approach, and expectation maximization
algorithms. They further proposed a new method by introduc-
ing the choice model, whose form is similar to the gravity
model. Gunnar et al. [23] also compared different methods
of traffic estimation, including the gravity model, which they
emphasized should be combined with statistical approaches to
obtain better results.

Zhang et al. [11] combined the network tomography method
with the gravity model and proposed a new method named
tomogravity, which requires measuring link loads in order
to more accurately infer traffic matrices in IP networks. The
method consists of two steps: first, edge link load data is used
to obtain a reference solution; second, quadratic programming
finds the solution in the space of those admitted by the
tomography model closest to the gravity model’s reference
solution. Rahman et al. [10] compared the three methods of
tomogravity, entropy maximization and linear programming,
and they found that the tomogravity method performs best for
estimating the traffic matrix.

Although the tomogravity method provides the best traffic
matrix estimates, the unavailability of real traffic measure-
ments in satellite networks forces researchers to adopt the
basic gravity model. Chen et al. [24] used the gravity model
to estimate the inter-satellite traffic according to user density
and host density. Yang et al. [25] and Wu et al. [26] divided
the Earth’s surface into 288 areas, then used world population
density to represent the traffic demand within each area. They
adopted the gravity model to estimate the traffic between
two areas, then calculated the traffic demand of satellites by
attaching each area to the closest satellite. We will follow the
same approach and use the basic gravity model to estimate
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the traffic matrix in satellite networks. While using the more
accurate data derived from the tomogravity method could
obtain better results in future developments,this would incur
no change in any of the other steps in our proposal.

C. Discrete PSO Algorithm

The PSO algorithm is a stochastic population-based op-
timization method first proposed by Kennedy et al. [27].
With a strong global searching ability, PSO can deal with
complex nonlinear optimization problems. Since the original
PSO is designed for continuous space, discrete versions of
PSO have been developed to satisfy the special requirements
of discrete issues. One problem in discrete PSO concerns the
update process of the particle’s velocity and position. To solve
this problem, a discrete PSO method was also proposed by
Kennedy et al. [28], who used a sigmoid function strategy to
control the update process of the particle’s position in binary
PSO problems. Similarly, other strategies were also proposed,
like multi-phase [29] and angle modulation [30] .

Jarboui et al. [31] proposed a combination PSO algorithm
to solve a certain project scheduling problem. The core of the
algorithm is to define the distance between the current solution
and the particle’s best solution up to that point, as well as the
global best solution. Based on this definition, the particle’s
position and velocity are updated. Chen et al. [32] proposed
a set-based PSO algorithm, where they used a potential set
and the probabilities used to represent the particle’s velocity.
A particle can learn the possibility from each element of the
set and thus moves to a new position. Furthermore, Chen et
al. [33] provided a survey of the discrete PSO, especially
the set-based PSO algorithm. Shen et al. [34] used the bi-
velocity to represent the possibilities of being 0 and 1 in
the binary domain, then applied the algorithm to multicast
routing problems in communication networks. To sum up, all
the discrete PSO methods seem to be potentially effective for
the GPO problem, although the bi-velocity discrete PSO might
match the GPO problem best due to the velocity definition that
concerns possibilities.

III. GATEWAY PLACEMENT OPTIMIZATION PROBLEM

The architecture of a typical LEO satellite network is
depicted in Fig. 1, which includes a LEO constellation of hun-
dreds of satellites, several gateways, and telemetry, tracking
and control (TT&C) stations. LEO satellites, which usually
orbit at altitudes of hundreds to over a thousand kilometers,
are regarded as switches, and they forward data packets
from/to users and Internet servers. Users consist of mobile
devices using specific modems, vehicles, aircraft, sensors and
actuators, among others. The TT&C stations that are used for
satellite management and maintenance will not be discussed
further, since their locations are not necessarily optimized in
terms of traffic, which is another problem.

There are three kinds of communication links, namely inter-
satellite links (ISLs), user-satellite links (USLs) and gateway-
satellite links (GSLs). ISLs are established between two ad-
jacent satellites in either the same orbit or different orbits.
ISLs are often radio (and sometimes optical) links, and they

TT&C station
Internet

Source

Destination

User terminals

Gateway

GSL

USL

ISL

Fig. 1. Architecture of a typical satellite network.

do not necessarily exist in previous satellite networks. In
our model, however, we will take ISLs into consideration
and simply assume the use of high-rate laser ISLs with
enough transmission capacity, because we do not focus on
inter-satellite data forwarding. GSLs and USLs are nowadays
often designed in Ka and Ku band [35] in order to obtain
a high data transmission rate. Users and gateways can set
up connections with satellites within a line of sight through,
respectively, USLs and GSLs. These satellites are called source
or destination nodes, as shown in Fig. 1. Two users can
communicate with each other through one or several satellites
as well as USLs and ISLs, whereas communications between
a user and servers that do not connect to the satellite network
will involve gateways (i.e., the Internet backbone). With the
direct radiating array (DRA) forming multiple beams [1],
a satellite can provide Internet services through gateways
to multiple users within its coverage area. Meanwhile, each
satellite with several steerable gateway antennas can connect
to multiple gateways. It should be noted that the coverage
area of a satellite will change with time as it orbits around the
Earth, and thus gateways within the coverage will change too.

A. Design Variables

Our aim is to establish the best location and the minimum
number of gateways that will minimize investment and im-
plementation costs while maintaining the preset performance.
Therefore, the design variables are the gateway placement
scheme, and they are determined by an alternative set of
gateways. Assume a set of all possible gateway locations
in which any two elements are different, meaning that two
gateways cannot be in the same place. Thus, given a certain
gateway placement scheme, any gateway in the potential set
has only two states, (i.e., existence or non-existence), which
suggests that the design variables have a binary form.

Supposing that the total number of possible gateways is
𝑁 , we define an 𝑁-dimensional vector of 0-1 elements 𝒙 =
(𝑥1, 𝑥2, ..., 𝑥𝑁 ) as the design variables. If gateway 𝑗 (1 ≤ 𝑗 ≤
𝑁) exists, then 𝑥 𝑗 = 1; otherwise, 𝑥 𝑗 = 0. If 𝑚 gateways are
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Fig. 2. Satellite’s coverage area over gateways in Europe. Gateways are depicted as red circles, and each satellite has four
GSLs represented by red dashed lines.

chosen, we have
𝑁∑
𝑗=1
𝑥 𝑗 = 𝑚 (1)

where 𝑚 ∈ N, 0 ≤ 𝑚 ≤ 𝑁 . Therefore, an integer set 𝑰 can
be introduced to indicate the existence of gateways, i.e., 𝑰 =
{𝑖𝑘 ∈ 𝑁, 1 ≤ 𝑘 ≤ 𝑚 | 𝑥𝑖𝑘 = 1}.

B. Optimization Objectives

The optimization objectives can be derived from two as-
pects, namely the network performance and implementation
costs. The latter can be evaluated easily by the total number
of gateways; in other words, fewer gateways usually incur
less investment and implementation expenditure. Thus, this
objective can be the sum of the design variables as described
in (1). In contrast, network performance is more complex to
estimate, since it can be evaluated by multiple QoS parameters,
such as latency, throughput and load balancing. Due to the
highly dynamic topology of satellite networks, it is difficult
to obtain the real end-to-end delay and network throughput
without specifying the routing algorithm. furthermore, the
load balancing is a desirable property that can be estimated
effectively. Thus, we adopt it as an evaluation criterion for
the suitability of our approach. That is to say, the traffic load
of different satellites needs to be as balanced as possible to
avoid-or at least minimize-network congestion.

We denote 𝑇𝑗 as the average amount of traffic transported
through each gateway, where 1 ≤ 𝑗 ≤ 𝑁 , and 𝑇𝑗 is a function
of 𝒙. It is only if gateway 𝑗 exists that 𝑇𝑗 will have a non-zero
value. We set 𝐷𝑇 as the absolute deviation of gateway traffic,
which can be derived as

𝐷𝑇 =
1
𝑚

∑
𝑗∈𝑰

��𝑇𝑗 − 𝑇 �� (2)

where 𝑇 = 1
𝑚

∑𝑁
𝑗=1 𝑇𝑗 is the average traffic of all the gate-

ways. Therefore, the objective functions have the following
normalized form,

𝑓1 (𝒙) =
𝐷𝑇

𝑇
(3)

𝑓2 (𝒙) =
1
𝑁

𝑁∑
𝑗=1
𝑥 𝑗 (4)

C. Constraints

On the one hand, it is better to locate gateways at sites
where they can provide higher traffic bandwidth to users. On
the other hand, each satellite has a limited bandwidth and a
limited number of antennas in terms of GSLs, which imposes
restrictions on the maximum number and the total traffic load
of gateways that can simultaneously link to a satellite. In
addition, the GSL interference should be avoided by ensuring
that not too many gateways gather in a small region. We define
the minimum distance between two gateways as 𝐷min and
denote the distance between any two gateways 𝑖 and 𝑗 as 𝛿𝑖 𝑗 .
Since 𝛿𝑖 𝑗 should be as large as possible, the constraint can be
formulated as

𝑔1 (𝒙) = 𝐷min − 𝛿𝑖 𝑗 ≤ 0, (∀𝑖, 𝑗 ∈ 𝑰, 𝑖 ≠ 𝑗) (5)

Each satellite has a restricted coverage area with a diameter
of 𝐷𝑠 . We assume that the number of gateway antennas on
a satellite is 𝐶𝑠 and that the limited GSL bandwidth is 𝐵𝑠 .
An example of a satellite’s coverage area is depicted in Fig.
2, where a red circle represents a gateway, and a satellite can
cover several gateways in Europe. Thus, the total traffic load
of all the gateways within a satellite’s coverage area should
be less than 𝐵𝑠 , and the total number of them should be fewer
than 𝐶𝑠 under the hypothesis that one antenna can connect to
only one gateway.

Gateways within a certain satellite coverage area are a non-
zero subset of 𝑰, and it can be denoted as 𝑼 = {𝑢1, 𝑢2, ..., 𝑢𝑘 },
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where 𝑘 ≤ 𝑚. As a result, the constraints can be formulated
as follows

𝑔2 (𝒙) =
∑
𝑗∈𝑼

𝑇𝑗 − 𝐵𝑠 ≤ 0, (∀𝑼 ⊂ 𝑰,𝑼 ≠ ∅) (6)

𝑔3 (𝒙) =
∑
𝑗∈𝑼

𝑥 𝑗 − 𝐶𝑠 ≤ 0, (∀𝑼 ⊂ 𝑰,𝑼 ≠ ∅) (7)

It should be noted that 𝑼 in the two constraints may not be
the same set, as multiple gateways, as a whole, may have a
lower traffic load whilst a single gateway in some regions can
possibly surpass the satellite’s GSL bandwidth.

D. Formulation of the GPO Problem

As demonstrated above, the GPO problem can be summa-
rized as

find 𝒙 = (𝑥1, 𝑥2, ..., 𝑥𝑁 )

min

𝑓1 (𝒙) = 𝐷𝑇

�̄�

𝑓2 (𝒙) = 1
𝑁

𝑁∑
𝑗=1
𝑥 𝑗

s.t.


𝑔1 (𝒙) = 𝐷min − 𝛿𝑖 𝑗 ≤ 0, (∀𝑖, 𝑗 ∈ 𝑰, 𝑖 ≠ 𝑗)
𝑔2 (𝒙) =

∑
𝑗∈𝑼

𝑇𝑗 − 𝐵𝑠 ≤ 0, (∀𝑼 ⊂ 𝑰,𝑼 ≠ ∅)

𝑔3 (𝒙) =
∑
𝑗∈𝑼

𝑥 𝑗 − 𝐶𝑠 ≤ 0, (∀𝑼 ⊂ 𝑰,𝑼 ≠ ∅)

(8)

The formulation contains two objectives: 𝑓2 (𝒙) takes an
integer and can be fixed to a certain value for the sake of sim-
plification, if the GPO problem is too difficult to solve; thus,
only 𝑓1 (𝒙) will exist. We elaborate on this in detail in Section
V-C, but for consistency we will keep 𝑓2 (𝒙) here. Seemingly,
we need to traverse all the values of 𝑖, 𝑗 and 𝑼 to meet these
constraints, which is indeed inefficient for calculation. Hence,
we transform them into simpler formulations.

To modify 𝑔1 (𝒙), we define 𝑘𝑑 as the number of gateway
pairs that are closer than 𝐷min, the minimum distance. If 𝑘𝑑 =
0, the constraint function 𝑔1 (𝒙) will be satisfied. In order to
make the constraint gradient descent, we calculate the average
distance of the gateways pairs as 𝑑 = 1

2𝑘𝑑
∑
𝛿𝑖 𝑗 ≤𝐷min 𝛿𝑖 𝑗 , where

𝛿𝑖 𝑗 is the distance between gateway 𝑖 and 𝑗 , and the summation
is divided by 2 because 𝛿𝑖 𝑗 is counted twice. Thus, 𝑔1 (𝒙)
should decrease to 0, and the first constraint becomes

𝑔1 (𝒙) = 𝑘𝑑 (𝐷min − 𝑑) = 0 (9)

To simplify 𝑔2 (𝒙) and 𝑔3 (𝒙), we calculate the maximum of
the total traffic load and that of the number of gateways within
a satellite coverage area, and the constraints can be rewritten
as

𝑔2 (𝒙) = 𝑇max − 𝐵𝑠 ≤ 0 (10)
𝑔3 (𝒙) = 𝑈max − 𝐶𝑠 ≤ 0 (11)

where 𝑇max = max{∑ 𝑗∈𝑼 𝑇𝑗 } and 𝑈max = max{∑ 𝑗∈𝑼 𝑥 𝑗 } for
∀𝑼 ⊂ 𝑰.

Although various multi-objective optimization methods ex-
ist, it is still difficult to propose an effective and suitable algo-
rithm for a special case. Usually, this nonlinear combination
optimization problem with multiple objectives and complex

constraints can be transformed into a single-objective non-
constraint model by comprehensively utilizing the weighted
sum method and penalty function method.

Since 𝑔1 (𝒙) equals 0 when the first constraint is met, it will
have no effects on the overall objective. 𝑔2 (𝒙) and 𝑔3 (𝒙) will
be negative if these two constraints are met. In some cases,
𝑔2 (𝒙) should be as small as possible in order to reduce the
utilization rate of satellite bandwidth, even though 𝑔2 (𝒙) ≤ 0
is satisfied. Hence, 𝑔2 (𝒙) stays in the same form and will
be regarded as an objective. By contrast, 𝑔3 (𝒙) is more like
a real constraint, and it is enough to satisfy 𝑔3 (𝒙) ≤ 0
instead of reducing the utility of antennas. Here, we adopt
a dimensionless penalty function 𝜑(𝑥) described in [36] for
𝑔3 (𝒙), which is defined as

𝜑(𝑥) =
{
𝑎(𝑒𝑏𝑥 − 1), 𝑥 > 0
0, 𝑥 ≤ 0 (𝑎, 𝑏 > 0) (12)

where the coefficients 𝑎 and 𝑏 are used to accelerate the
decreasing process, and they will be given in the specific case.
Therefore, 𝑔3 (𝒙) takes the following form:

𝑔3 (𝒙) = 𝜑(𝑈max − 𝐶𝑠) (13)

Thereby, the optimization model is now elaborated as

find 𝒙 = (𝑥1, 𝑥2, ..., 𝑥𝑁 )

min 𝐹 (𝒙) = 𝑤𝑜1 𝑓1 (𝒙) + 𝑤
𝑜
2 𝑓2 (𝒙) +

3∑
𝑖=1

𝑤𝑜𝑖+2𝜆𝑖𝑔𝑖 (𝒙)
(14)

where 𝑤𝑜𝑖 is either the weight coefficient or penalty factor, and
𝜆𝑖 is the normalization factor, namely 𝜆1 = 1/𝐷min, 𝜆2 = 1/𝐵𝑠 ,
𝜆3 = 1.

IV. METHODS FOR COMPUTING THE GPO MODEL

In order to solve the GPO model, we have to compute the
objective function 𝐹 (𝒙). According to equations from (8) to
(14), 𝐹 (𝒙) involves several quantities including 𝑇𝑗 , 𝐷min, 𝑇max,
and 𝑈max. In this section, we propose methods to compute
these quantities. Nevertheless, several steps still must be taken
before calculation. First, in order to guarantee the compu-
tational precision, we need to discretize the Earth’s surface
and determine a minimum resolution of positions. Second, a
potential location set of gateways should be determined. As
stated before, the gravity model is the most logical choice for
estimating the traffic matrix, so we adopt it to our case to
calculate the traffic matrix between users and gateways. This
allows us to obtain the traffic load of gateways, namely 𝑇𝑗 , and
then the traffic of a certain satellite by adding all the gateway
traffic within its coverage area. Finally, in order to compute
𝐷min, 𝑇max, and 𝑈max, we need to find the relationship between
a satellite coverage area and gateway positions, which is quite
complex due to satellite movements.

A. Zone Unit and Resolution on the Earth’s Surface

By discretizing the Earth’s surface and determining a min-
imum resolution of positions, we can define the zone unit in
order to avoid placement conflicts, which means that those
gateways in the same zone unit can be reduced to one.
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Fig. 3. Satellite coverage of different zone unit sizes. The sub-
satellite point can be anywhere within a certain zone unit.

Moreover, the coverage area of each satellite will also have a
clear boundary. Finally, because users are distributed around
the world, dividing them into discrete units will be helpful for
the computational process.

The Earth’s surface can be discretized by different reso-
lutions, thus resulting in different zone unit sizes. A high
resolution usually generates high computational complexity,
whilst a low resolution (or, in other words, a big zone unit)
makes the coverage area of a satellite ambiguous. Therefore,
it is reasonable to determine a relatively low but appropriate
resolution. A zone unit is regarded as being inside the coverage
area only if it is completely inside. In this way, a zone unit
lying at the edge of a satellite coverage area is not deemed to
be inside. As shown in Fig. 3, for the same satellite coverage
area, the bigger zone units in (a) and (b) can result in fewer
inside zone units compared with the smaller zone units in
(c) and (d). In order to determine the division resolution
and then the size of the zone unit, we need to evaluate the
covering effectiveness of a satellite coverage area. Assuming
that the coverage area of a certain satellite is 𝐶𝑎, we define
the coverage ratio as

𝜁 =
𝑧𝑖𝑛
𝑧𝑡𝑜𝑡

(15)

Here, 𝑧𝑖𝑛 is denoted as the number of zone units inside 𝐶𝑎,
and 𝑧𝑡𝑜𝑡 is the total number of zone units that are inside and
on the edge of 𝐶𝑎. Since 𝜁 might change when a satellite
is moving (as shown in Fig. 3), the satellite in (a) and (b)
can cover different numbers of zone units, similarly as in (c)
and (d). Thus, we use the average value of 𝜁 for each 𝐶𝑎
to evaluate its coverage ratio. As the zone units are identical,
we locate the sub-satellite point at different positions within
a certain zone unit and calculate each 𝜁 to obtain the average
value.

According to the geometric relation of the satellite coverage
area, 𝐶𝑎 is determined by the orbit altitude ℎ and the minimum
ground elevation angle 𝐸 . Thus, the diameter of the coverage
area, namely 𝐷𝑠 , is

𝐷𝑠 = 2 arccos[𝑅𝑒/(ℎ + 𝑅𝑒) cos 𝐸] − 2𝐸 (16)

Coverage ratio 

0.1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size of zone unit (°)

30

35

40

45

50

D
ia

m
et

er
 o

f c
ov

er
ag

e 
ar

ea
 D

s (
°)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Coverage ratio 𝜁 varies with the sizes of the satellite
coverage area and the size of zone units. The color represents
the value of 𝜁 .

where 𝐷𝑠 is measured in the geocentric angle, and 𝑅𝑒 is the
Earth’s equivalent radius. In general, the orbit altitude of LEO
satellites can vary from 500 km to 1500 km, and 𝐸 is often a
small angle.

The length of a zone unit is set equal in latitude and
longitude. We calculate the coverage ratio 𝜁 under different
coverage areas as well as different zone unit sizes ranging
from 0.1◦ to 15◦. Results are shown in Fig. 4, where 𝐸 is set
to 10◦, and thus 𝐷𝑠 will vary from 28◦ to 54◦. It can be seen
that 𝜁 can be more than 90% only when the size of the zone
unit is smaller than 1◦, regardless of 𝐷𝑠 , as it is shown on the
left x-axis. The color represents the value of 𝜁 . Therefore, the
size of a zone unit is set to 1◦ in this paper.

B. Potential Location Set of Gateways

There is no need to consider all the positions on Earth’s
surface. For instance, ocean regions are not very suitable for
gateway placement. Furthermore, as gateways are regarded as
edge routers between satellite networks and the Internet, it
is reasonable to locate them near sites of Internet exchange
points (IXPs) for lower latency, fewer bandwidth resources
and less cost. An IXP is a kind of Internet infrastructure that
offers a shared switching fabric where telecom and service
providers can exchange traffic with one another, once they
have established peering connections between them [37]. Thus,
a set of IXPs can be regarded as the potential location set of
gateways.

The worldwide dataset of IXPs obtained from Packet Clear-
ing House (PCH) [38], which is a global directory of IXPs,
is used as a potential location set of gateways. According to
PCH, there are originally 1022 IXPs in total around the world.
However, only 516 of them are different and we therefore use
these after eliminating the repetitive IXPs located at the same
sites. Moreover, given the aforementioned aspects of zone unit
resolution, multiple IXPs in the same zone unit should be
reduced to one. Nonetheless, the repeatability of gateways at
the same site is used as the weight factor 𝒘 = (𝑤1, 𝑤2, ..., 𝑤𝑁 ),
a 1×𝑁 vector. For instance, if the dataset indicates that 5 IXPs
are in Beijing, the weight of the IXP located in the Beijing’s
zone unit is 5. Ultimately, 471 IXPs are retained, as shown in
Fig. 5.
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Fig. 5. The distribution of potential gateway sites, 471 in total.
Gateways are indicated by red dots.

C. Traffic Estimation Methods

A traffic matrix is the point-to-point traffic of each pair
of nodes in a network. It can be estimated by the linear
relationship between each link and each pair of nodes. A
network with 𝑛 nodes and 𝑙 links has 𝑝 = 𝑛(𝑛 − 1) pairs
of distinct nodes that may communicate with each other. We
use 𝑡𝑖 𝑗 to denote the traffic from node 𝑖 to node 𝑗 directly or
through other nodes, and thus 𝑻 = [𝑡𝑖 𝑗 ]𝑛×(𝑛−1) is called the
traffic matrix, which is usually represented in a vector form,
namely 𝒕 = (𝑡1, ..., 𝑡𝑝)T. The traffic on 𝑙 links can be measured
and denoted as 𝒚 = (𝑦1, ..., 𝑦𝑙)T, so the relation between 𝑡 and
𝑦 is 𝒚 = 𝛀𝒕, where 𝛀 = [Ω𝑖 𝑗 ]𝑙×𝑝 represents the fraction of
traffic volume for node pair 𝑗 crossing link 𝑖. The aim of
network traffic matrix estimation is to determine the traffic
vector 𝒕, given the traffic link data 𝒚 [10].

Several techniques exist for estimating the traffic matrix, of
which the previously mentioned gravity model is an effective
method in a topology-determined network. Derived from New-
ton’s law of gravitation, the gravity model is used to predict the
movement of people, information, and commodities between
cities and continents [21]. Accordingly, the traffic from node
𝑖 to node 𝑗 , namely 𝑡𝑖 𝑗 , can be estimated by the following
equation,

𝑡𝑖 𝑗 =
𝑅𝑖𝐴 𝑗

𝑓𝑖 𝑗
(17)

Here, 𝑅𝑖 represents the repulsive factors associated with
leaving from 𝑖 while 𝐴 𝑗 is the attractive factors associated
with coming to 𝑗 , and 𝑓𝑖 𝑗 is a friction factor associated with
nodes 𝑖 and 𝑗 . In terms of network traffic estimation, these
quantities are determined by the traffic data of nodes 𝑖 and 𝑗 .
The traffic matrix 𝑡𝑖 𝑗 can be described as a proportion of the
total traffic amount coming from node 𝑖, and the proportion
factor is related to the incoming traffic amount of node 𝑗
and the geographic distance between them. Thus, we have
the following equation:

𝑡𝑖 𝑗 =
1∑

𝑘≠𝑖 𝑡
𝐷
𝑘 /𝑑

𝛼
𝑖𝑘

·
𝑡𝑆𝑖 𝑡

𝐷
𝑗

𝑑𝛼𝑖 𝑗
(18)

where, 𝑡𝑆𝑖 is the total amount of traffic originating from node
𝑖, representing its repulsive factor, and 𝑡𝐷𝑗 is the total amount
of traffic sent to node 𝑗 , representing the attractive factor. 𝑑𝑖 𝑗

is the spherical distance between nodes 𝑖 and 𝑗 . 𝛼 is the index
factor affecting the attenuation rate of the attractive factor 𝑡𝐷𝑗
along with the distance 𝑑𝑖 𝑗 .

In our model, all the edge nodes in a satellite network are
divided into two independent parts, namely the users and the
gateways. This means that node 𝑖 and 𝑗 in the gravity model
are in two different sets. We use (18) to estimate the traffic
between users and gateways.

D. Determining the Repulsive and Attractive Factors

The repulsive factor 𝑡𝑆𝑖 , namely the traffic demand of users
in zone unit 𝑖, is proportional to the population density
there. Thus, it can easily be obtained by establishing a traffic
demand equation. However, the attractive factor 𝑡𝐷𝑗 , is more
complicated to calculate. On the one hand, it is difficult to
determine the effective region of gateways. Unlike a certain
zone unit with a specific area, which is associated with its
repulsive factor, gateways on the ground do not have clear
service boundaries. We use a Voronoi diagram to divide
the effective regions of gateways. On the other hand, the
attractive factor is not related only to the population within
the gateway’s effective region. As Internet traffic is more
likely drawn to areas with more data centers or servers, it is
reasonable to use the region’s number of IXPs for correcting
the gateway’s attractive factor. In this way, some regions with
high population densities like Africa and Southeast Asia might
have a relatively small attractive factor due to having fewer
IXPs compared with Europe and North America.

As a result, we need to obtain the population density,
the Voronoi division, the population, and the number of
IXPs within the gateway’s effective region. Then, the repul-
sive/attractive factor can be described as follows:{

𝑡𝑆𝑖 = 𝜖𝛾𝑝𝑆𝑖
𝑡𝐷𝑗 = 𝑤 𝑗 𝑝 𝑗𝑞 𝑗

(19)

where 𝜖 is the external traffic demand of a single user, 𝛾 is a
scale factor, and 𝑝𝑆𝑖 is the total population pertaining to zone
unit 𝑖. 𝑤 𝑗 is a component of the gateway’s weight factor 𝒘.
𝑝 𝑗 and 𝑞 𝑗 are, respectively, the total population quantity and
the number of IXPs within the effective region of gateway 𝑗 .
𝜖 often represents the average value of traffic, ranging

from 2.4 Kbps to 2 Mbps for satellite networks. 𝛾 is mainly
determined by three aspects, namely user ratio, traffic profile
and multiplexing gain. Generally, a satellite network has a
certain market share compared with terrestrial communication
operators, and the percentage of the total population using
satellite services in a certain region is predicted to be around
10%. The traffic of each user will be forwarded to either a
gateway (thus, the Internet backbone) or to another user that
is directly connected to the satellite network. Therefore, the
amount of the former kind of traffic takes up a fraction of
the total traffic, which is assumed to be from 1/5 to 1/10.
Since the traffic volume is not always entirely occupied, the
ratio between peak period and average period is about 2:1.
Furthermore, for the average period, only 1/5 of users take up
the channel capacity. Considering the multiplexing mechanism
in satellite networks, users can share channels without losing
the communication quality, and it is reasonable to set the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVT.2021.3065994

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

-180 -120 -60 0 60 120 180
Longitude (°)

-90

-60

-30

0

30

60

90
La

tit
ud

e 
(°

)

103

104

105

106

107

Fig. 6. The world population density distribution in 2020. The
color represents the population in an area of 1◦ by 1◦.
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Fig. 7. Planar Voronoi diagram of the Earth’s surface.

multiplexing gain from 5:1 to 10:1 for Internet data services.
Therefore, 𝛾 is assumed to be about 10−4 in this work.
The following paragraphs in this section will focus on the
calculation of 𝑝𝑆𝑖 , 𝑝 𝑗 and 𝑞 𝑗 .

1) World Population Density: The world population density
data with resolution of 1◦ are generated from [39], which is
the first version in 2020. We use a log scale map to illustrate
it as shown in Fig. 6. We denote 𝑷 as the world population
density matrix, and 𝑝𝑆𝑖 will be an element of 𝑷.

2) Voronoi Diagram: A Voronoi diagram is usually used to
divide a plane into several disjointed regions associated with
the objects of a given set. The objects, called seeds, are often
a finite number of points on the plane. In a Voronoi diagram,
points in a certain region are closer to the region’s seed than
to other seeds.

We calculate the planar Voronoi diagram of the Earth’s
surface, given a set of gateways, as shown in Fig. 7. Here, 21
IXPs with nearly the highest traffic are chosen as the reference
set for our simulation. Results suggest that the planar Voronoi
diagram cannot be adapted to the Earth’s surface, because of
the inconsecutive boundaries of the longitude at −180◦ and
−180◦, as well as in polar regions.

We adopt spherical Voronoi diagram, thus converting the
effective regions of gateways into spherical polygons. Each
edge of a spherical polygon is a great circle arc, often the
minor arc, determined by the two end vertices. Fig. 8 shows
an example of a spherical Voronoi diagram calculated by the
algorithm in [40], given the same set of gateways. As we
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Fig. 8. Spherical Voronoi diagram of the Earth’s surface.
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Fig. 9. Points inside or outside a spherical polygon.

can see, the boundaries of spherical polygons are much more
reasonable.

3) Points within a Spherical Polygon Region: To calculate
the attractive factor 𝑡𝐷𝑗 of gataway 𝑗 , we need the total
population and the number of IXPs within its effective region,
that is, a spherical polygon. This problem can be regarded as
locating points on a spherical surface relative to a spherical
polygon. [41] proposed a useful method for locating a single
point on a sphere. However, since we need to locate a large
number of points, especially for all the zone units inside the
spherical polygon, it would be inefficient to judge all the points
one-by-one. We modify the original method and propose the
positional range in spherical-polygon (PRIS) algorithm, as
illustrated in Algorithm 1, to determine massive points inside
or outside a certain spherical polygon.

Let us assume a spherical polygon 𝑆 with a set of vertices
𝑉𝑠 , and the inner region of it is confined by its vertices that
are sorted anti-clockwise from 𝑉1 to 𝑉7, as shown in Fig. 9.
Here, 𝑃 𝑗 ( 𝑗 = 1, 2, ...) is a point on the spherical surface,
and a reference point 𝑋 inside 𝑆 is also needed to determine
whether a point lies inside (including being on the edge) or
outside 𝑆. According to [41], the key to this problem is to
find how many times that 𝑋𝑃 𝑗 will cross the boundary of 𝑆,
where 𝑋𝑃 𝑗 is the minor arc joining 𝑋 and 𝑃 𝑗 . If 𝑃 𝑗 is inside
𝑆, 𝑋𝑃 𝑗 will cross the boundary of 𝑆 an even number of times;
otherwise, an odd number of times.

Once we determine whether an arbitrary point is inside or
outside a spherical polygon, we can deal with massive points
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by the PRIS algorithm. The core function of the algorithm is to
calculate the latitude range of the spherical polygon for a given
longitude. The PRIS algorithm first generates the longitude
range of the spherical polygon 𝑆, and traverses the entire
longitude to obtain its latitude range. For a certain longitude
as shown in Fig. 9, the PRIS algorithm regards the north pole
(or south pole, if calculating for the southern hemisphere) as
the reference point 𝑋 , and calculates the cross points 𝐴 and 𝐵
of 𝑆. If the north pole (or south pole) is outside 𝑆, there will
be an even number of cross points. Otherwise, the longitude
range will be from −180◦ to 180◦, and only one cross point
will exist for each line of longitude. Besides, if 𝑆 crosses the
180◦ longitude, the longitude range will be different. As a
result, the latitude range can be obtained from the coordinates
of cross points.

Algorithm 1 Positional Range In Spherical-polygon.

Input: Spherical polygon vertices 𝑉𝑠 , reference point 𝑋
Output: Latitude range, 𝑅𝑙𝑎𝑡

1: if 𝑆 consists of the north pole or south pole then
2: The longitude range of 𝑆 is 𝑅𝑙𝑜𝑛 = [−180, 180]
3: else
4: Generate the longitude range of 𝑆, 𝑅𝑙𝑜𝑛
5: end if
6: for all 𝑖 ∈ 𝑅𝑙𝑜𝑛 do
7: Calculate the cross points between 𝑖 and 𝑆, 𝐶𝑝 (𝑖)
8: end for
9: Obtain the latitude range vector 𝑅𝑙𝑎𝑡 by using 𝐶𝑝

E. Estimate the Traffic Load of Gateways

As indicated above, we can calculate the traffic load of
gateways based on several hypotheses. First, the gateways are
located at IXP sites. Second, the traffic demand of a zone
unit on the Earth is related to the population density in that
location. Third, the traffic between two nodes in a network
can be estimated according to the gravity model. Finally, the
Voronoi diagram can be used to divide the effective region
relative to a certain gateway.

The data traffic 𝑡𝑖 𝑗 between user 𝑖 and gateway 𝑗 is illus-
trated in Fig. 10. Here, three or more satellites are involved
in this process, with one covering the user and another the
gateway. The traffic load of gateway 𝑗 is then the sum of 𝑡𝑖 𝑗
by index 𝑖,

𝑇𝑗 =
∑
𝑖

𝑡𝑖 𝑗 (20)

The computing procedure of 𝑇𝑗 is depicted in Fig. 11. The
input variable is an 𝑁-dimensional vector of 0-1 elements
𝒙 = (𝑥1, 𝑥2, ..., 𝑥𝑁 ), indicating the existence of each gateway.
The constant parameters required for the calculation procedure
are summarized as follows. 𝑮 is a 2×𝑁 matrix of gateway po-
sitions, where the first and second rows represent, respectively,
latitude and longitude. 𝒘 is the weight factor of gateways. 𝑷
is a 180×360 matrix of world population density distribution.
𝜖 is a scalar of the user’s previously defined external traffic
demand that has been defined before. As it is shown in Fig.
11, the computing process has the following steps.

User i

Gateway j

Gateway
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Communication 
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Satellite
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Fig. 10. Data forwarding process between user 𝑖 and gateway
𝑗 through satellites.
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Fig. 11. Computing procedure of the traffic load of gateways.

1) Calculate the total traffic 𝑡𝑆𝑖 from zone unit 𝑖 by 𝜖𝛾𝑷.
2) Use the spherical Voronoi diagram to obtain the Voronoi

division 𝑆𝑃 , a set of spherical polygons corresponding to each
potential gateway.

3) Use the PRIS algorithm with input variables 𝑆𝑃 to
calculate all the zone units inside each spherical polygon of
𝑆𝑃 , and then obtain the total population 𝑝 𝑗 as well as the total
number of IXPs 𝑞 𝑗 within each spherical polygon associated
with gateway 𝑗 .

4) Calculate the attractive factor 𝑡𝐷𝑗 of gateway 𝑗 by (19).
5) Calculate the spherical distance 𝑑𝑖 𝑗 between zone unit 𝑖

and gateway 𝑗 .
6) Calculate the user-to-gateway traffic 𝑡𝑖 𝑗 by (18), and then

the load of each gateway (i.e., 𝑇𝑗 ), can be calculated with (20).
We still take the reference set of 21 IXPs as an example

to compute their traffic load. The result is shown in Fig. 12,
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Fig. 12. Traffic load of the test gateways.

where 𝜖 = 100 Kbps, and the index factor of distance in (18)
is 𝛼 = 1.

F. Calculate the Constraints

As a satellite orbits around the Earth, its coverage area and
gateways underneath it will change, which makes constraints
𝑔2 (𝒙) and 𝑔3 (𝒙) complex to calculate. We use an example
to illustrate the relation between satellite coverage area and
gateways, as depicted in Fig. 13. Here, gateways can be simul-
taneously in different coverage areas of several satellites or that
of the same satellite at different times. Gateways numbered 1
to 5 are within one satellite coverage area; gateways 4 to 8
and 6 to 10 are covered, respectively, by different satellites.

Evidently, we need to traverse first the position of sub-
satellite points to calculate the total traffic within a coverage
area, and then the constraints, which may cost huge compu-
tational resources. Nevertheless, we can simplify this problem
using the number of gateways that a satellite can cover, which
is denoted as 𝑘 . Assume the total number of existing gateways
is 𝑚, so a satellite can cover at most 𝑚 gateways. We traverse
𝑘 from 1 to 𝑚 and calculate the traffic load of satellites, since
this is unnecessary to calculate when 𝑘 = 0. Therefore, the
problem becomes how to find all the gateways within a satellite
coverage area given a fixed 𝑘 .

As described before, the integer set 𝑰 indicates the existence
of gateways, and a group of gateways within a certain satellite
coverage area is denoted as 𝑼, which is a none-zero subset of
𝑰. Therefore, any elements of 𝑼 must satisfy

𝛿𝑖 𝑗 ≤ 𝐷𝑠 ,∀𝑖, 𝑗 ∈ 𝑼 (21)

where 𝛿𝑖 𝑗 is the distance between gateway 𝑖 and 𝑗 .
Thus, given an integer set 𝑰, we define a symmetric matrix

𝑹 = [𝑟𝑖 𝑗 ]𝑚×𝑚 as

𝑟𝑖 𝑗 =


1, 𝑖 ≠ 𝑗 and 𝛿𝑖 𝑗 ≤ 𝐷𝑠
0, 𝑖 ≠ 𝑗 and 𝛿𝑖 𝑗 > 𝐷𝑠
0, 𝑖 = 𝑗

(22)

2
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5 6
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9

Gateway j

Satellite coverage

10

Fig. 13. The satellite can cover an area with different gateways.

Assume 𝑼 = {𝑢1, 𝑢2, ..., 𝑢𝑘 }, where 𝑘 ≤ 𝑚, so for any 𝑼 ⊂ 𝑰
we will have a principal minor of 𝑹 associated with 𝑼, namely

𝑹𝑼 =

©«
𝑅𝑢1𝑢1 𝑅𝑢1𝑢2 · · · 𝑅𝑢1𝑢𝑘

𝑅𝑢2𝑢1 𝑅𝑢2𝑢2 · · · 𝑅𝑢2𝑢𝑘
...

...
. . .

...
𝑅𝑢𝑘𝑢1 𝑅𝑢𝑘𝑢2 · · · 𝑅𝑢𝑘𝑢𝑘

ª®®®®¬
(23)

At the same time, a reference matrix 𝑹𝒆𝒇 is defined as

𝑹𝒆𝒇 =

©«
0 1 · · · 1

1 0
. . .

...
...

. . .
. . . 1

1 · · · 1 0

ª®®®®®¬𝑘×𝑘
(24)

Therefore, if 𝑹𝑼 = 𝑹𝒆𝒇 , then gateways defined by 𝑼 are
within a satellite coverage area. For each 𝑘 , we obtain all
the 𝑼 satisfying 𝑹𝑼 = 𝑹𝒆𝒇 , and find the maximum value of∑
𝑗∈𝑼 𝑇𝑗 . Then the constraint function 𝑔2 (𝒙) can be calculated.

Similarly, 𝑔3 (𝒙) can also be calculated.

V. MODIFIED DISCRETE PSO ALGORITHM

The GPO model described in (14) is a nonlinear com-
bination optimization problem with multiple objectives that
include several transformed constraints, for which integer
linear programming algorithms are not appropriate. Therefore,
we use heuristic methods including PSO algorithm to solve
this optimization problem. Here, we adopt the discrete PSO
algorithm to obtain the optimal gateway placement solution.

A. PSO Algorithm

At first, we elaborate on the mechanism of the general
PSO algorithm according to [31]. In an 𝑁-dimensional PSO
problem with a population size of 𝐾 , particle 𝑖 (1 ≤ 𝑖 ≤ 𝐾)
has a position vector 𝒙𝒊 = (𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑁 ) and a velocity
vector 𝒗𝒊 = (𝑣𝑖1, 𝑣𝑖2, ..., 𝑣𝑖𝑁 ). During the optimization process,
each particle updates its position and velocity in an iteration
according to three aspects: the particle’s inertia, its own
experience (self-cognition), and the whole swarm’s experience
(social-influence). Therefore, the position and velocity are
iterated as follows:

𝑣𝑖 𝑗 ← 𝜔𝑣𝑖 𝑗 + 𝑐1𝑟1 𝑗 (𝑝𝑖 𝑗 − 𝑥𝑖 𝑗 ) + 𝑐2𝑟2 𝑗 (𝑔 𝑗 − 𝑥𝑖 𝑗 )
𝑥𝑖 𝑗 ← 𝑥𝑖 𝑗 + 𝑣𝑖 𝑗

(25)

Here, 𝑥𝑖 𝑗 is the 𝑗 th dimension of 𝒙𝒊 , and we denote the
maximum number of iterations as 𝑇 . The historical best
position of particle 𝑖 is recorded as 𝒑𝒃𝒆𝒔𝒕𝒊 = (𝑝𝑖1, 𝑝𝑖2, ..., 𝑝𝑖𝑁 ),
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and the global best position so far among the population is also
kept as 𝒈𝒃𝒆𝒔𝒕 = (𝑔1, 𝑔2, ..., 𝑔𝑁 ). 𝜔 represents the inertia weight
and often linearly decreases with the number of iterations;
therefore, we denote the value range of 𝜔 as [Ω𝑠𝑡𝑎𝑟𝑡 ,Ω𝑒𝑛𝑑].
𝑐1 and 𝑐2 are acceleration coefficients associated with self-
cognition and social-influence, respectively. 𝑟1 𝑗 and 𝑟2 𝑗 are
random numbers uniformly distributed in [0, 1].

If the independent variable 𝒙𝒊 has a lower bound 𝐵𝐿
and an upper bound 𝐵𝑈 , there should be a procedure for
verifying boundary conditions after the position and velocity
are updated.

B. Discrete PSO Algorithm

As the independent variables in our model are binary inte-
gers for indicating the existence or non-existence of gateways,
i.e., either 1 or 0, we introduce the bi-velocity discrete PSO
algorithm proposed in [34]. The position vector of particle
𝑖 (1 ≤ 𝑖 ≤ 𝐾), namely 𝒙𝒊 , has the same form as the general
case:

𝒙𝒊 = (𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑁 ), where 𝑥𝑖 𝑗 = 0 or 1 (26)

Its velocity has a bi-velocity form:

𝒗𝒊 =

(
𝒗0
𝒊
𝒗1
𝒊

)
=

(
𝑣0
𝑖1 𝑣0

𝑖2 · · · 𝑣0
𝑖𝑁

𝑣1
𝑖1 𝑣1

𝑖2 · · · 𝑣1
𝑖𝑁

)
(27)

Here, 𝑣0
𝑖 𝑗 ,𝑣

1
𝑖 𝑗 ∈ [0, 1]. 𝑣0

𝑖 𝑗 is the possibility of 𝑥𝑖 𝑗 = 0, whilst
𝑣1
𝑖 𝑗 is the possibility of 𝑥𝑖 𝑗 = 1. The velocity updating rule is

described as follows.
Assuming that 𝒙2 is a better position than 𝒙1 in terms of the

fitness function, 𝒙1 should learn from 𝒙2. We need to calculate
Δ𝒗 = 𝒙2 − 𝒙1 as the updated increment. If 𝑥2 𝑗 = 𝑥1 𝑗 , then 𝑥1 𝑗
does not need to learn from 𝑥2 𝑗 , which means that Δ𝑣0

𝑗 = 0,
Δ𝑣1

𝑗 = 0; or else 𝑥1 𝑗 needs to learn from 𝑥2 𝑗 , for which there
are two possibilities: if 𝑥2 𝑗 = 1, then Δ𝑣0

𝑗 = 0 and Δ𝑣1
𝑗 = 1; if

𝑥2 𝑗 = 0, then Δ𝑣0
𝑗 = 1 and Δ𝑣1

𝑗 = 0. Furthermore, the linear
operation rules of the velocity are

𝒗1 + 𝒗2 =

(
max{𝑣0

11, 𝑣
0
21} · · · max{𝑣0

1 𝑗 , 𝑣
0
2 𝑗 } · · ·

max{𝑣1
11, 𝑣

1
21} · · · max{𝑣1

1 𝑗 , 𝑣
1
2 𝑗 } · · ·

)
(28)

𝜆𝒗 =

(
𝜆𝒗0

𝜆𝒗1

)
=

(
𝜆𝑣0
𝑖1 𝜆𝑣0

𝑖2 · · · 𝜆𝑣0
𝑖𝑁

𝜆𝑣1
𝑖1 𝜆𝑣1

𝑖2 · · · 𝜆𝑣1
𝑖𝑁

)
(29)

where max{∗} means to take the maximum value for a certain
element in a matrix.

When multiplying a coefficient by the velocity or adding
two velocities, the result might exceed the value range. To
meet the boundary conditions, we regulate that any element
of Δ𝒗 that is bigger than 1 should be set to 1. We define 𝛽 as
a critical coefficient for determining the change of positions.
So, 𝒗𝒊 and 𝒙𝒊 are determined as follows:

𝑣𝑖 𝑗 = max{𝜔𝑣𝑖 𝑗 , 𝑐1𝑟1 𝑗Δ𝑣
𝑝
𝑖 𝑗 , 𝑐2𝑟2 𝑗Δ𝑣

𝑔
𝑖 𝑗 } (30)

𝑥𝑖 𝑗 =


rand{0, 1}, if(𝑣0

𝑖 𝑗 > 𝛽 and 𝑣1
𝑖 𝑗 > 𝛽)

0, if(𝑣0
𝑖 𝑗 > 𝛽 and 𝑣1

𝑖 𝑗 ≤ 𝛽)
1, if(𝑣0

𝑖 𝑗 ≤ 𝛽 and 𝑣1
𝑖 𝑗 > 𝛽)

𝑥𝑖 𝑗 , if(𝑣0
𝑖 𝑗 ≤ 𝛽 and 𝑣1

𝑖 𝑗 ≤ 𝛽)

(31)

where Δ𝑣𝑝𝑖 𝑗 = 𝑝𝑖 𝑗 − 𝑥𝑖 𝑗 and Δ𝑣𝑔𝑖 𝑗 = 𝑔 𝑗 − 𝑥𝑖 𝑗 .

C. Modified Discrete PSO Algorithm

Since the independent variable 𝒙 has a very high dimen-
sion, the solution domain is thus too large. Furthermore, the
constraints are nonlinear and complex, which makes it difficult
for the discrete PSO algorithm to explore the optimal solution.
To this end, we propose using the modified discrete PSO
(MD-PSO) algorithm. With this, we try to fix the number
of gateways chosen randomly from the 𝑁-dimensional set,
which means that 𝑚 =

∑𝑁
𝑗=1 𝑥 𝑗 is constant, and then 𝑚 should

be traversed. The 𝑚 gateways should be unique, i.e., 𝑖 ≠ 𝑗 ,
∀𝑖, 𝑗 ∈ 𝑰. Therefore, the objective function 𝑓2 (𝒙) can be
reduced and a new constraint should be imposed on the fixed
number of chosen gateways, namely 𝐺 (𝒙). Thus, the GPO
model becomes

find 𝒙 = (𝑥1, 𝑥2, ..., 𝑥𝑁 )

min 𝐹 (𝒙) = 𝑤𝑜1 𝑓1 (𝒙) +
3∑
𝑖=1

𝑤𝑜𝑖+2𝜆𝑖𝑔𝑖 (𝒙)

s.t. 𝐺 (𝒙) =
𝑁∑
𝑗=1
𝑥 𝑗 − 𝑚 = 0

(32)

The MD-PSO algorithm is illustrated in Algorithm 2, which
is quite similar to the general PSO algorithm except for the
verification process of the constraint 𝐺 (𝒙). Among the inputs,
𝑁 is the dimension of 𝒙, 𝑚 is the number of existing gateways,
𝐾 is the population size, and 𝑇 is the maximum number of
iterations.

Algorithm 2 Modified discrete PSO algorithm.

Input: 𝑁 , 𝑚, 𝐾 , 𝑇
Output: Best individuals 𝑋𝑏𝑒𝑠𝑡 , fitness function of elite indi-

viduals 𝑌𝑏𝑒𝑠𝑡
1: Define parameters: 𝑐1, 𝑐2, Ω𝑠𝑡𝑎𝑟𝑡 , Ω𝑒𝑛𝑑 , 𝛽
2: Initialize 𝒙 and 𝒗 of the particle population
3: Calculate 𝒑𝒃𝒆𝒔𝒕𝒊 and 𝒈𝒃𝒆𝒔𝒕

4: 𝑖 = 1
5: while 𝑖 ≤ 𝑇 do
6: for 𝑗 = 1 to 𝑁 do
7: Update 𝒙 and 𝒗
8: if 𝐺 (𝒙) ≠ 0 then
9: Modify 𝒙 and 𝒗

10: end if
11: Calculate 𝒑𝒃𝒆𝒔𝒕𝒊 and 𝒈𝒃𝒆𝒔𝒕

12: Update 𝑋𝑏𝑒𝑠𝑡 and 𝑌𝑏𝑒𝑠𝑡
13: end for
14: 𝑖 = 𝑖 + 1
15: end while

We should check whether the constraint is satisfied after the
position and velocity of particles are updated in each iteration,
and then modify 𝒙 and 𝒗 if 𝐺 (𝒙) is not satisfied. If 𝐺 (𝒙) < 0,
we randomly choose 𝐺 (𝒙) elements in 𝒙 that are originally
0, and set them to 1. If 𝐺 (𝒙) > 0, we also randomly choose
𝐺 (𝒙) elements in 𝒙 that are originally 1, and set them to 0. At
the same time, the velocity 𝒗 on those positions should also
be set randomly.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVT.2021.3065994

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

TABLE I
Parameters of the MD-PSO Algorithm

Symbol Description Reference Range

𝐾 Population size 80 [10, 120]
𝑇 Maximum iteration number 500 [200, 1000]

Ω𝑠𝑡𝑎𝑟𝑡 Maximum inertia weight 0.9 [0.1, 0.9]
Ω𝑒𝑛𝑑 Minimum inertia weight 0.4 [0.1, 0.9]
𝑐1 Cognition factor 2 [0.1, 3]
𝑐2 Cognition factor 2 [0.1, 3]
𝛽 Critical coefficient 0.5 [0.1, 0.9]

D. Algorithm Analysis

The parameters of the MD-PSO algorithm as listed in
Table I can affect the algorithm’s performance in terms of
the fitness function value and convergence rate, namely the
number of iterations. Thus, we first carry out the sensitivity
and convergence analyses on those parameters. Furthermore,
as 𝐾 and 𝑇 can also affect the computational burden, we
evaluate the CPU time for computation instead of the number
of iterations. Finally, we provide a complexity analysis of the
algorithm.

The reference value and range of each parameter (also
shown in Table I) are presumed to be potentially good, based
on the experiences of previous studies. When we analyze
one certain parameter, we fix the others and set them to
the reference parameters. In particular, when we analyze the
influence of 𝜔, we set it to be a constant value ranging from
0.1 to 0.9, in contrast to 𝜔 decreasing linearly from Ω𝑠𝑡𝑎𝑟𝑡
to Ω𝑒𝑛𝑑 throughout the iterations. When we analyze other
parameters, 𝜔 is set to linearly decrease as the reference.
Besides, parameters 𝑐1 and 𝑐2 are set to be identical, as
the self-cognition and social-influence are regarded as equally
important in our problem.

With the parameters in Table II, we run the algorithm 10
times independently in MATLAB on a Linux server with 8-
core 2.2 GHz Xeon CPU and 32 GB memory. The function
weight coefficients or penalty factors are kept constant during
our simulation, as in Table III. Here, 𝑤𝑜3 and 𝑤𝑜5 are set to
100 in order to punish the fitness function when 𝑔1 (𝒙) and
𝑔3 (𝒙) are not satisfied. We use two quantities to reflect the
algorithm’s performance, namely the average values of the
fitness function 𝐹 (𝒙) and the number of iterations when the
best solution is found.

The results of 𝛽 are shown in Fig. 14, from which we can
see that a smaller 𝛽 can have a better solution for the GPO
problem, but it can also increase the times of iterations for
reaching the optimal solution, while a bigger 𝛽 cannot help
the algorithm explore the solution domain deeply. It seems that
when 𝛽 = 0.3, the algorithm can have a good performance
with a relatively small number of iterations. The results of
cognition factors 𝑐1 and 𝑐2 are depicted in Fig. 15. When 𝑐1
and 𝑐2 are set to less than 1, the fitness function is much bigger
and is not plotted here. When their value varies from 1.5 to
2.5, the algorithm has relatively good performance. Moreover,
the number of iterations does not change too much when the
cognition factors vary from 1 to 3.

TABLE II
Parameters of the GPO Model

Symbol Description Value

𝜖 Traffic demand per user 100 Kbps
𝐷𝑠 Satellite coverage diameter 30◦

𝐶𝑠 Number of gateway antennas 4
𝐵𝑠 Satellite GSL bandwidth 30 Gbps
𝐷min Minimum distance 3◦

𝛼 Index factor of distance 1
𝑚 Number of existing gateways 30
𝑁 Total number of potential gateways 471

TABLE III
Other Parameters in GPO Model

𝑤𝑜
1 𝑤𝑜

3 𝑤𝑜
4 𝑤𝑜

5 𝑎 𝑏

1 102 1 102 1 1
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Fig. 14. Sensitivity analysis of the critical coefficient 𝛽.
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Fig. 15. Sensitivity analysis of cognition factors 𝑐1 and 𝑐2.

When it comes to the inertia weight 𝜔, we can see from
Fig. 16 that as 𝜔 varies from 0.1 to 0.7, the fitness function is
much poorer and the number of iterations is around 50, which
means that the algorithm does not have good performance.
Compared with the reference case where 𝜔 decreases linearly
from 0.9 to 0.4, if 𝜔 = 0.9, a better solution can be obtained
at the expense of doubling the number of iterations.

The impacts of population size 𝐾 and total number of
iterations 𝑇 are shown in Fig. 17 and 18, where the red dots on
the left side represent the fitness function of each independent
run, and the black circles are their average values. Fig. 17
shows that even though the average fitness function decreases
as the population size increases, the best result for each 𝐾
has similar value especially when 𝐾 is more than 80, thus
suggesting that 𝐾 ≥ 80 is enough. On the other hand, the total
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Fig. 16. Sensitivity analysis of inertia weight 𝜔.
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Fig. 18. Sensitivity analysis of total number of iterations 𝑇 .

CPU time (indicating the computational burden) increases with
𝐾 , but the increasing rate will slow down if 𝐾 ≥ 80, due to a
higher convergence rate. According to Fig. 18, 𝑇 has a small
effect on the average value of fitness function, and the best
result for each 𝐾 remains almost constant.

Based on all the above, we choose the PSO parameters that
have good performance, and also consider the convergence
rate and computational burden in the section covering our case
study.

In terms of the computational complexity, we divide the
modified discrete PSO algorithm into two parts: the optimizing
iteration loop and the calculation of the fitness function. The
complexity of the first part is 𝑂 (𝑛2) for the worst case,
according to [32].

The fitness function consists of six independent steps, and
we now analyze their computational complexity one by one.
We denote 𝑁 as the effective gateway number. First, in
the process of computing the spherical Voronoi division, the
algorithm traverses all the seed points (of the effective gateway
number 𝑁) to obtain all edges of the spherical polygons.
For each of them, there are 𝑁 vertices in the worst case,

TABLE IV
Parameters of Telesat Constellation

Set 𝑃 𝑆 ℎ (km) 𝑖 𝐸

1 6 12 1000.0 99.5◦ 20.0◦

2 5 9 1248.0 37.4◦ 20.0◦

TABLE V
Equivalent parameters of GPO Model for Telesat

𝜖 (Kbps) 𝐷𝑠 𝐶𝑠 𝐵𝑠 (Gbps) 𝐷min 𝛼 𝑁

100 31.35◦ 4 20 3◦ 1 471

and the algorithm calculates the chain of edges. Therefore,
the complexity of this step is 𝑂 (𝑁2). Second, in the process
of computing the attractive/repulsive factor of gateways, the
algorithm should traverse all the spherical polygons, thus
making a loop of 𝑁 times. For each time, we need to judge
whether the north pole (south pole) is inside the polygon,
which causes the coordinate transformation at most 𝑁 times.
After that, the edges of each polygon are traversed to find the
cross point with a certain longitude. Hence, the complexity is
𝑂 (2𝑁2). Third, in terms of calculating the traffic matrix, the
complexity is 𝑂 ( |𝐾𝑝𝑜𝑝 |𝑁), where the constant value |𝐾𝑝𝑜𝑝 |
is the number of population density units that are non-zero.
Fourth, the process of calculating the constraint 𝑔1 (𝒙) obtains
the symmetric distance matrix of each gateway and introduces
complexity of 𝑂 (𝑁 (𝑁 − 1)/2). Fifth, when calculating 𝑔2 (𝒙),
for the worst case, we traverse 𝑗 (from 2 to the order of the
distance matrix of 𝑁 gateways). For each 𝑗 , we use a loop of
a combinatorial number 𝐶 𝑗𝑁 = 𝑁!/((𝑁 − 𝑗)! 𝑗!) to calculate
the gateways inside a certain satellite coverage area. Thus,
the number of calculation is

∑𝑁
𝑗=2 𝐶

𝑗
𝑁 = 2𝑁 − (𝑁 + 1). As

a result, the complexity of this step is 𝑂 (2𝑁 ). Finally, the
complexity of calculating the constraint 𝑔3 (𝒙) is 𝑂 (1). To
conclude, the computational complexity of the fitness function
is 𝑂 (3𝑁2 + |𝐾𝑝𝑜𝑝 |𝑁 + 𝑁 (𝑁 − 1)/2 + 2𝑁 + 1) = 𝑂 (2𝑁 ).

VI. CASE STUDY

A. Telesat Constellation

The Telesat LEO constellation, scheduled to operate in
2022, is used to test the proposed GPO model. Parameters
of the Telesat constellation are listed in Table IV, where 𝑃
is the orbit number, 𝑆 is the satellite number per orbit, ℎ is
the orbit altitude, 𝑖 is the orbit inclination angle, and 𝐸 is the
minimum ground elevation angle. It adopts a multiple orbit-
set configuration with some satellites in inclined orbit and
others in polar orbit. This ensures continuous two-fold global
coverage [1], such that at least two satellites are within the
line of sight for any given location. Each Telesat satellite has
two gateway antennas, and its total gateway link bandwidth
is 10 Gbps. Nonetheless, 𝐶𝑠 and 𝐵𝑠 of the Telesat system
should be doubled for our simulations because there are always
2 satellites providing services to any terrestrial users. The
average value of traffic demand per user is 𝜖 = 100 Kbps,
which means that the actual data rate can sometimes surpass
it. In addition, we can calculate the coverage diameter, 𝐷𝑠 ,
of any satellite with (16). Equivalent values of parameters in
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Fig. 19. Fitness function 𝐹 (𝒙) of different number of gate-
ways.
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Fig. 20. Objective functions 𝑓1 (𝒙) and 𝑔2 (𝒙) of different
number of gateways.
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Fig. 21. Gateway maximum traffic varies with number of
gateways.

TABLE VI
Experimental set-up for obtaining Pareto front

𝑚 Trial times 𝑤𝑜
1 𝑤𝑜

4
28 10 1 1

10 1.8 0.2
10 0.2 1.8

29 10 1 1
10 1.8 0.2
10 0.2 1.8

30 10 1 1
10 1.8 0.2
10 0.2 1.8

31 10 1 1
10 1.8 0.2
10 0.2 1.8

GPO model that we adopt here are listed in Table V, except
for 𝑚, whose value will change in our simulations.
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Fig. 22. The approximated Pareto set with 21 gateways. The
red circle emphasizes the reference placement scheme.

We run the algorithm 10 times independently for each
𝑚, and obtain the fitness function 𝐹 (𝒙) shown in Fig. 19.
Generally, 𝐹 (𝒙) can take smaller values with fewer gateways,
even though that of the best solution for each 𝑚 cannot
decrease obviously if the number of gateways is fewer than
30. Fig. 20 presents the traffic deviation 𝑓1 (𝒙) and bandwidth
limitation 𝑔2 (𝒙) of different numbers of gateways. 𝑓1 (𝒙) can
take smaller values when there are fewer gateways, whilst
𝑔2 (𝒙) has no explicit relationship with the number of gate-
ways. When there are fewer gateways, it is easier to find a
load-balancing placement scheme that satisfies the bandwidth
constraint; when the number of gateways increases, their traffic
load is difficult to balance.

It seems that a placement scheme with fewer gateways
can have better results in our GPO model. However, too few
gateways may also cause them to have high traffic load. We
calculate the gateway’s maximum traffic, which is depicted
in Fig. 21. We can see that it reaches the lowest value when
𝑚 = 30, and it becomes reasonably larger when 𝑚 < 30. The
gateway’s maximum traffic increases when 𝑚 > 30, because
more gateways can exacerbate the load balancing and increase
the gateway’s maximum traffic even more.

Accordingly, we choose around 30 gateways for conducting
more experiments to obtain the Pareto set, since there is a
trade-off between 𝑓1 (𝒙) and 𝑔2 (𝒙). To this end, we change the
weight factors, namely 𝑤𝑜1 and 𝑤𝑜4 of 𝑓1 (𝒙) and 𝑔2 (𝒙) as it is
shown in Table VI. Other weight factors, namely 𝑤𝑜3 and 𝑤𝑜5 ,
are maintained the same as they are in Table III, because 𝑔1 (𝒙)
and 𝑔3 (𝒙) only need to be satisfied but not optimized. We run
the algorithm 10 times for each set of weight factors, so there
are 30 optimal results for each 𝑚. As the reference placement
scheme has 21 gateways, we also obtain the results of the same
gateway number for comparison. Optimization results and the
Pareto set are shown in Fig. 22 and 23, where the point inside
the red circle is the reference placement scheme, and the red
lines are the approximated Pareto front in terms of 𝑓1 (𝒙) and
𝑔2 (𝒙). Besides, each point here represents an optimal solution,
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(a) 𝑚 = 28
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(b) 𝑚 = 29
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(c) 𝑚 = 30
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(d) 𝑚 = 31

Fig. 23. The approximated Pareto set with different number of gateways.
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Fig. 24. An example of optimal results for 𝑚 = 28.

whose color indicates the gateway’s maximum traffic.

In Fig. 22, the optimized solutions show much better perfor-
mance than the reference placement scheme. The results are

aggregated mainly in three regions, namely minimum 𝑓1 (𝒙),
minimum 𝑔2 (𝒙), and the transition region, which corresponds
to the three sets of parameters in Table VI. The minimum
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Fig. 25. Optimization results of OneWeb with different number
of gateways.

deviation of gateway traffic is about 0.2 with a relatively high
satellite’s maximum traffic, while it takes the lowest value of
about 6 Gbps with larger traffic deviation of gateways.

The results in Fig. 23 have roughly similar profiles, even
though they are explicitly affected by the number of gateways.
Points closer to the y-axis are darker, which means that the
maximum traffic of gateways is mostly lower when their traffic
deviation of them is smaller, and it has a large range (5 to
14 Gbps). More blue points exist when more gateways are
allowed. In general, fewer gateways can have lower traffic
deviation as in (a) and (b), which conforms to results in Fig.
20. Furthermore, points on the approximated Pareto front often
have gateway traffic lower than 10 Gbps, regardless of 𝑚.
Obviously, the performance of our optimization model proves
to search deeply, and the optimized solutions are close to the
Pareto set.

There is a trade-off between the gateway traffic deviation
and the satellite’s maximum traffic. Therefore, we choose
one solution in Fig. 23 (a), where the traffic deviation is
around 0.27 and the satellite’s maximum traffic is 13 Gbps, to
illustrate the results, which is shown in Fig. 24. More gateways
are used in densely-populated areas such as east Asia and
Europe, but not in Africa because there are not many IXPs
indicating the Internet backbone. On the contrary, a greater
number of IXPs results in six gateways in North America,
which is quite a large number. Gateways in Asia have the
highest traffic load, whilst those in Oceania have the lowest.

B. OneWeb Constellation

We further test the proposed method on the OneWeb con-
stellation of 720 satellites operating in 18 orbit planes with
40 satellites in each orbit. The altitude is 1200.0 km, and the
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(a) 𝑚 = 35
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(b) 𝑚 = 40

Fig. 26. The approximated Pareto set with different number
of gateways.

orbit inclination angle is 87.0◦ with a ground elevation angle
of 55.0◦. Based on this, we can calculate the parameters of
our GPO model for OneWeb. The diameter of the coverage
area is 12.27◦, and the bandwidth limitation is assumed to be
10 Gbps. Other parameters are the same as in Table V.

The simulation results are shown in Fig. 25, and 𝐹 (𝒙) can
take better values when 𝑚 varies from 30 to 40. In terms
of 𝑓1 (𝒙) and 𝑔2 (𝒙), the former generally increases with 𝑚
while the latter decreases with 𝑚. Fig. 25 (d) shows that the
maximum traffic of gateways has a declining trend with 𝑚, but
it reaches a stationary phase when 𝑚 >= 35. Based on that,
we further calculate the Pareto set of 𝑚 = 35 and 𝑚 = 40,
respectively, by changing the weight factor as shown in Table
VI. According to the results in Fig. 26, the gateway traffic
remains at a low value, as indicated by the dark blue color of
most points. Compared with Fig. 23 of Telesat constellation,
the y-axis in Fig. 26 has a smaller range, mostly lower than
10 Gbps, which satisfies the bandwidth constraint. Moreover,
because the constellations are different, the circled point that
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represents the same reference placement scheme has different
values of satellite’s maximum traffic in Fig. 23 and 26.

VII. CONCLUSION

In this paper, we propose a gateway placement problem in
LEO satellite networks, and formulate an optimization model
concerning traffic deviation of gateways and satellite com-
munication resources. We adopt the so-called gravity model
to estimate the traffic matrix between gateways and users.
A discrete PSO method is modified and then used to solve
our problem, and sensitivity and convergence analyses are
implemented to obtain good parameters of PSO. Finally, we
adopt real satellite constellations to obtain the optimal gateway
placement scheme and evaluate our optimization model. We
obtain solutions to gateway placement of different numbers
and find the approximated Pareto front. Results shows that
around 30 gateways could be the best choice for the Telesat
constellation and 35 to 40 for OneWeb. Our model shows good
performance for solving the GPO problem.

Future work will focus on applying our model to other
constellations, especially those huge ones with thousands of
satellites such as Starlink. In addition, more precise traffic
estimation methods could also be taken into consideration for
better results.
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