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a b s t r a c t

Context: In despite of agile and rapid software development (ARSD) being researched and applied
extensively, managing quality requirements (QRs) are still challenging. As ARSD processes produce a
large amount of data, measurement has become a strategy to facilitate QR management.
Objective: This study aims to survey the literature related to QR management through metrics in ARSD,
focusing on: bibliometrics, QR metrics, and quality-related indicators used in quality management.
Methods: The study design includes the definition of research questions, selection criteria, and
snowballing as search strategy.
Results: We selected 61 primary studies (2001–2019). Despite a large body of knowledge and
standards, there is no consensus regarding QR measurement. Terminology is varying as are the
measuring models. However, seemingly different measurement models do contain similarities.
Conclusion: The industrial relevance of the primary studies shows that practitioners have a need to
improve quality measurement. Our collection of measures and data sources can serve as a starting point
for practitioners to include quality measurement into their decision-making processes. Researchers
could benefit from the identified similarities to start building a common framework for quality
measurement. In addition, this could help researchers identify what quality aspects need more focus,
e.g., security and usability that have surprisingly few metrics reported.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Agile and rapid1 software development (ARSD) are currently
he two most prominent software development approaches
Anon, 2020). In a recent systematic mapping study (Behutiye
t al., 2020), we pointed out that, despite the importance that
uality has in the development of successful software prod-
cts (Anon, 2021a), the management of quality requirements
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1 Rapid software development (RSD) refers to rapid and continuous software
ngineering approaches focusing on the capability to develop, release, and learn
rom deployed software in short cycles, that can be from hours to a few weeks
e.g., continuous integration and continuous delivery, and DevOps).
ttps://doi.org/10.1016/j.jss.2021.111187
164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
c-nd/4.0/).
(QRs, defined as the desired qualities of a system under develop-
ment) is still an open challenge in ARSD. More precisely, we found
a number of issues related to (i) a limited ability to handle QRs
through typical agile artifacts such as user stories, (ii) a tendency
to neglect QRs in favor of functional requirements, and (iii) time
constraints due to short iteration cycles that often have a negative
impact on products’ quality (Behutiye et al., 2020).

This open challenge is not a consequence of a lack of data.
Rather the opposite, ARSD produces a large amount of data as
a result of the development process, much of it related to qual-
ity. For example, Jira,2 GitLab,3 and Jenkins4 produce test and
bug related data that, when properly interpreted, can be used
to provide evidence on a system’s quality and guide quality
management. This is in line with the ISO 9000 standard (Anon,
2021b), which defines evidence-based decision making as one of

2 https://www.atlassian.com/software/jira.
3 https://about.gitlab.com/.
4 https://www.jenkins.io/.
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the seven quality management principles (Quality Management
Principles, 2015). In the particular case of quality management,
measurement is seen as a central feature to assess software qual-
ity characteristics (Malhotra, 2016). In our previous study (Be-
hutiye et al., 2020), we learned that measurement, which was
not our initial focus of attention, is particularly relevant in QR
management. For this reason, we decided to extend our original
study and further explore the literature that particularly focuses
on quality measurement in ARSD.

Software metrics, which focus on collecting development data,
lay an important role in measurement. They have now been
tudied for decades (Kitchenham, 2010). Still, the scientific un-
erstanding on the use of software metrics in ARSD is rather
imited (Ram et al., 2018; Kupiainen et al., 2015). The literature
uggests that metrics used in agile software development may
onflict with traditional measurement programs (Kupiainen et al.,
015). For example, traditional approaches often use metrics to
rack progress against a preconceived plan, instead of embrac-
ng change, as it should be the main focus in agile software
evelopment. Moreover, the Agile principle of simplicity may
onflict with traditional measurement programs that are based
n a rather heavyweight set of metrics (Kupiainen et al., 2015).
The overall picture of metrics used to manage quality in ARSD

s unclear. On the one hand, QRs are more difficult to measure and
onitor than functional requirements (Karhapää et al., 2021). On

he other hand, quality is seen as an abstract concept that is not
imited only to the characteristics considered under the umbrella
f QRs. For example, aspects such as customer satisfaction or
elease on time are also important when considering quality but
re not explicitly considered under any specific QR. Therefore,
easuring QRs provides only a partial view on quality. For this

eason, we decided to focus our study on two measurement as-
ects: (a) QR metrics, defined as metrics used to measure QRs, and

(b) Quality Management Indicators (QMIs), defined as indicators
used in the context of quality management, usually as input for
some decision-making processes at a strategic level.

This study provides a thorough analysis of the scattered evi-
dence that conforms the state of the art of quality measurement
in ARSD and points out research gaps on the area, through a
systematic mapping study that:

1. Identifies and classifies the existing scientific literature on
quality measurement in the context of QR management in
ARSD.

2. Assesses the quality of existing empirical studies on the
area in terms of research rigor and industrial relevance.

3. Identifies and classifies QR metrics in the context of ARSD
reported in the literature.

4. Identifies and classifies data sources used to compute QR
metrics as well as the tools that produce them.

5. Identifies and classifies QMIs used in ARSD, their base
metrics (referred as QMI metrics) and data sources, the
tools used to visualize them, the entities that are their
focus (i.e., product, process, project, resources) and the
relationship that the identified QMIs have with regards to
QRs, analyzing on top of which QRs are the QMIs metrics
defined.

The rest of the paper is structured as follows. In Section 2,
e explain the central concepts and introduce related work.
ection 3 presents the research questions and details our research
ethod. In Section 4 we present the results that answer our

esearch questions. In Section 5 we discuss the implications of
he results for researchers and practitioners. Finally, Section 6
oncludes the study.
2

2. Background and related work

2.1. Measuring quality

One of the seven quality management principles stated in ISO
9000 is Evidence-based decision making, which states that effective
decisions are based on the analysis of data and information (Anon,
2021b). In order to be able to apply this principle, organiza-
tions need to determine, measure and monitor key indicators
to demonstrate the organization’s performance (Quality Manage-
ment Principles, 2015). In the context of software measurement,
ISO/IEC/IEEE 15939 (Anon, 2017) identifies a process including
the definition of a suitable set of measures that address specific
information needs, but it does not provide the set of measures to
be used as part of the measurement plan.

In this study, we are interested in measuring software quality
in the context of ARSD processes. ARSD are particularly well-
suited for evidence-based decision making, because they produce
a large amount of data during the development processes, provid-
ing evidence that can be used for quality management. In ARSD,
software quality demanded by stakeholders is characterized by
quality requirements (QRs) documented in the software spec-
ification. The ISO/IEC 25010 standard provides a definition for
QRs and quality models to help determine which quality char-
acteristics should be considered when assessing certain quality
properties (Anon, 2011). A QR is defined by ISO/IEC 25010 as
a ‘‘requirement that a software quality attribute be present in
software’’. Given this focus on the software, we adopt in the rest
of the paper the software product quality model defined in the
standard as a conceptual framework to classify QRs. This quality
model is composed of eight characteristics that relate to static
properties of software as an artifact, and dynamic properties of
the software system in execution (see Table 1).

Table 2 contains some definitions from both aforementioned
ISO standards that are used in the context of this study.

2.2. Measuring quality in ARSD

In the search for previous secondary studies on the topic of
quality measurement in ARSD, we found four secondary studies
after a keyword-driven automatic search (Kupiainen et al., 2015;
Arvanitou et al., 2017; Biesialska et al., 2020; Arcos-Medina and
Mauricio, 2019), and an additional one after performing snow-
balling on them (Mishra and Abdalhamid, 2018). None of them
cover the same scope as ours (see Fig. 1). Kupiainen et al. (2015)
report on using metrics in industrial lean and agile software
development teams analyzing the reasons for and the effects of
using them. Arvanitou et al. (2017) report on design-time quality
attributes and related metrics. Biesialska et al. (2020) analyze
how big data analytics is used in the agile development lifecy-
cle. Arcos-Medina and Mauricio (2019) analyze critical success
factors, metrics to measure quality, quality attributes, agile prac-
tices, quality models, and agile principles. Mishra and Abdalhamid
(2018) explore quality in Scrum research, including attributes and
metrics used for quality assessment.

Besides the secondary studies, we found a tertiary study on
agile software development (Hoda et al., 2017). This tertiary study
includes a table with a list of secondary studies. Again, as Hoda
et al. revealed in their analysis (Hoda et al., 2017), none of them
focuses on the particular topic of the present study. Likewise, one
of the secondary studies (Arvanitou et al., 2017) refers to a set of
other secondary studies in its related work analysis (Section 2),
but they do not contain works on the specific area of quality
measurement in ARSD either. Therefore, we have not found any
study in the same topic as the present study (see Fig. 1).

Although not exactly in the same area, we can still find some
common topics:
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Table 1
ISO/IEC 25010:2011 software product quality model.
Characteristic Sub-characteristics

Functional Suitability Functional Completeness, Functional Correctness, Functional Appropriateness
Performance Efficiency Time Behavior, Resource Utilization, Capacity
Compatibility Co-existence, Interoperability
Usability Appropriateness Recognizability, Learnability, Operability, User Error Protection, User Interface Aesthetics, Accessibility
Reliability Maturity, Availability, Fault Tolerance, Recoverability
Security Confidentiality, Integrity, Non-repudiation, Authenticity, Accountability
Maintainability Modularity, Reusability, Analysability, Modifiability, Testability
Portability Adaptability, Installability, Replaceability
Table 2
Quality measurement concepts used in this paper (with reference to the ISO standard defining the concept).
Concept Definition

Base measure (15939) Measure defined in terms of an attribute and the method for quantifying it
Entity (15939) Object that is to be characterized by measuring its attributes. An entity can be a process, product, project or resource.
Indicator (15939) Measure that provides an estimate or evaluation of specified attributes derived from a model with respect to defined

information needs
Measure (noun) (25010) Quantitative indication of extent, amount, dimension, capacity, or size of some attribute of a product or process
Measurement (15939) Set of operations having the object of determining a value of a measure
Measurement process (25010) The process by which numbers or symbols are mapped to attributes of entities in the real world in such a way as to

describe them according to clearly defined rules.
Metric (25010) Quantitative measure of degree to which a system, component or process possesses a given attribute. ‘‘A handle or guess

about a given attribute.’’
Process (15939) Set of interrelated or interacting activities that use inputs to deliver an intended result
Product (15939) Result of a process
Project (15939) Endeavor with defined start and finish criteria undertaken to create a product or service in accordance with specified

resources and requirements
Quality model (25010) Defined set of characteristics, and of relationships between them, which provides a framework for specifying quality

requirements and evaluating quality
Quality requirement (25010) Requirement that a software quality attribute be present in software
Resourcea A useful or valuable possession or quality that a person or organization has
Resource Type (9001) Resources will often include raw materials, infrastructure, finance, personnel and ITb .

aCambridge Dictionary.
bhttps://www.iso9001help.co.uk/7.1%20Resources.html.
a

Fig. 1. Specific topic of related works.

• We have observed that many metrics are defined by the au-
thors of the studies on their own, in some cases very similar
but with different names. Kupiainen et al. also state that
"it appears that practitioners add and invent new metrics
according to their needs" (Kupiainen et al., 2015).
 n

3

• Only Biesialska et al. address quality indicators in the form
of Key Performance Indicators (KPIs) as we do (Biesialska
et al., 2020). However, their work is framed in the context of
the use of big data analytics in agile, their analysis is focused
on the used data sources instead of metrics or KPI, which
makes the focus of the study different. The rest of related
works only report about metrics. In the case of Arvanitou
et al. the focus is explicitly set out of KPIs (Arvanitou et al.,
2017).

• Data sources identified in our study are included in those
identified by Biesialska et al. who cover a broader context
in which data is collected, embracing the whole software
development process (Biesialska et al., 2020) . We have
reported issues, source code, version control system, test, sys-
tem at runtime, builds and requirements while they have
identified, among others, user feedback, logs (including tests,
failures, monitoring, commit logs, pull requests), project ar-
tifacts (including user stories), issue reports (including ex-
periments), source code & data model and project execution
(including version control system). No other related work
provides information about data sources for measurement.

• Quality characteristics emerging in our study (suitability,
maintainability, performance, reliability, security) are in-
cluded in those identified by Arcos-Medina and Mauricio
(2019) and mostly included in those reported by Mishra and
Abdalhamid (suitability is missing) (Mishra and Abdalhamid,
2018).

From this analysis, we can conclude that, although the liter-
ture includes some antecedents that we consider in our work,

one of the studies found covers the same scope as ours.

https://www.iso9001help.co.uk/7.1%20Resources.html
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Table 3
Study research questions.
RQ1 How is the research on quality measurement characterized in the context of QR management in ARSD?

RQ1.1 What is the annual publication distribution trend?
RQ1.2 What is the distribution of the venue of publications?
RQ1.3 What is the distribution of research in terms of research type?
RQ1.4 What is the authors’ affiliation distribution?
RQ1.5 What application domains are more prominent?
RQ1.6 What is the level of quality of the primary studies which are empirical?

RQ2 What is the focus of software measurement in the context of QR management in ARSD?

RQ2.1 What metrics are reported in the scientific literature in the context of QR management in ARSD?
RQ2.2 What data sources have been used to collect data to compute these metrics?
RQ2.3 What tools produce the data needed to compute these metrics?

RQ3 What is the focus of QMIs and which are their relationships to software measurement metrics in the context of QR
management in ARSD?

RQ3.1 What QMIs are reported in the scientific literature in the context of QR management in ARSD?
RQ3.2 What tools are used to manage and visualize these QMIs?
RQ3.3 What metrics have been used to measure QMIs?
RQ3.4 What entities have been measured by these QMI metrics?
RQ3.5 What data sources have been used to collect data to compute these QMI metrics?
RQ3.6 What QRs are used to measure these QMIs?
3. Research method

The goal of this systematic mapping study (SMS) is to pro-
ide an overview of the state of the art of quality measure-
ent in ARSD. To achieve this goal, we conducted a systematic
apping (Petersen et al., 2015) following snowballing guide-

ines (Wohlin, 2014).

.1. Objective and research questions

We define the main objective of the systematic mapping study,
sing GQM (Caldiera and Rombach, 1994), as: Analyze the scien-
ific literature about QR management for the purpose of structuring
he state of the art with respect to quality measurement from
he point of view of SE researchers and practitioners in the con-
ext of ARSD. QR management stands for the identification and
lassification of QRs, QR metrics and QMI.
In order to achieve this objective, we derive three Research

uestions (RQ), decomposed into sub-questions as shown in Ta-
le 3. RQ1 focuses on bibliometrics about QRs management in
RSD based on the selected primary studies. RQ2 focuses on
oftware measurement instruments (metrics, data sources, and
ools). Finally, RQ3 focuses on QMI and their relationships with
oftware measurement instruments.
Fig. 2 depicts the conceptual model that shapes this SMS,

ncluding the main concepts and the research questions intro-
uced above. The two main concepts related to our study are
R Metric and QMI, representing the corresponding measurement
spects mentioned in the introduction. A QR represents the well-
nown requirements engineering concept of quality requirement
see Table 2), e.g. ‘‘The system shall respond to users’ request
n less than 3 s in the 95% of the interactions’’. These QRs can
e classified under a QR Type, e.g., ‘‘Performance efficiency’’ is
he type of the former QR, QR types correspond to the ISO/IEC
5010 characteristics (see Section 2.1). Therefore, a QR metric
efines how the satisfaction of a QR that belongs to a certain
R type is measured, e.g., using response time metric for the
revious example. An example of a QR metric for the requirement
bove is ‘‘Response Time’’. Related to QMIs, which are general
ndicators used in the context of quality management, we are
lso interested in the way these QMIs (e.g., delivery speed) are
easured through QMI metrics (e.g., integration speed, such as

average time to deliver features). The model also establishes what
kind of Data Source is used to compute both kinds of metrics (QR
metric and QMI metric), and which Software Tool produces the
ata. For QMI metrics, we are also interested in the measured
ntity.
4

3.2. Search and study selection

This research originates from a previous SMS aimed at synthe-
sizing the state of the art on quality management in the context
of ARSD (Behutiye et al., 2020).

While conducting that study, we learned that measurement
was particularly relevant and decided to further explore the lit-
erature that specifically focuses on measurement in ARSD. This is
the goal of the current study. We used the papers found in our
previous study with focus on measurement as seed papers. These
seed papers are the result of an exhaustive search of scientific
studies that contribute to the body of knowledge of QRs in ARSD
(i.e., those that discuss different aspects of QRs in the context of
ARSD). Therefore, as this study only focuses on the measurement
aspect (a particular aspect of the initial study), we consider this
set of seed papers to be complete. Then, we repeated the snow-
balling process that we followed for that study to further explore
the measurement part of managing quality in ARSD. Details of
this process are given below and in Fig. 3.

3.2.1. Seed papers identification
In order to select the seed papers to start the snowballing

process, we followed the next steps: (1) Building an initial set
of papers, (2) Formulating the inclusion/exclusion criteria, (3)
Piloting inclusion/exclusion criteria on the initial set of papers,
and (4) Applying inclusion/exclusion to identify the seed papers.
The steps were conducted in the period October 2019–January
2020.

Initial set of papers. We collected the 156 primary studies
selected in our previous secondary study (Behutiye et al., 2020),
which we used as the initial set of papers.

Piloting inclusion/exclusion criteria. Six researchers piloted the
inclusion/exclusion criteria (see below) on 36 randomly selected
studies from the 156 studies of the initial set in two rounds
following the next protocol for every paper:

1. Check the exclusion criteria. If it is not excluded, proceed
to 2.

2. Review the title. If it is clear that the paper addresses at
least one of the inclusion criteria, include it; if it does not,
exclude it; if unsure, proceed to 3.

3. Review the abstract. If it is clear that the paper addresses
at least one of the inclusion criteria, include it; if it does
not, exclude it; if still unsure, proceed to 4.

4. Review the paper entirely. If it is clear that the paper
addresses at least one of the inclusion criteria include it;
if it does not, exclude it.
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Fig. 2. SMS Conceptual model.
Fig. 3. Overview of the study selection process.
The results of the first piloting revealed that all six researchers
greed on the inclusion of two papers and exclusion of eight pa-
ers. However, there were differences in the inclusion decisions
or the remaining 26 studies due to discrepancies in understand-
ng the inclusion criteria. We discussed and resolved the issues
nd updated the inclusion criteria to clarify the misunderstand-
ngs. Then, we piloted the inclusion and exclusion criteria again.
n this second pilot run, we agreed to include 11 additional stud-
es and excluded the rest. Therefore, there was an agreement on
he 36 studies, including 13 studies and rejecting 23 studies, and
ll researchers considered to understand inclusion and exclusion
riteria in the same way:

• Inclusion criteria (IC):

(a) Studies reporting concrete metrics to measure QR in
ARSD

(b) Studies reporting QMI and QMI metrics in the context
of ARSD

• Exclusion criteria (EC):

a. Secondary studies
5

b. Studies presenting summaries of conferences
c. Non-peer reviewed studies
d. Studies not presented in English
e. Studies with non-accessible full text after checking

with the authors
f. Books and grey literature
g. Duplicated studies

Seed papers identification The remaining 120 studies were di-
vided into 3 groups of 40 studies each. In each group, two re-
searchers applied the inclusion/exclusion criteria on the 40 stud-
ies individually and compared their results. This helped minimize
researcher bias as both researchers were comparing their results
and resolving disagreements, if any. In cases where the two
researchers disagreed on the inclusion of a paper, all researchers
reviewed the paper to resolve the disagreement. Only four studies
required to be reviewed by all the researchers due to lack of
consensus, with the result of including one of them. In total,
from these 120 studies, we included 26 studies and excluded
94 studies. Overall, from the starting set of 156 papers, we kept
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a total of 39 primary studies after applying the inclusion and
exclusion criteria.

Next, we checked the adequacy of the set of papers as seed
o conduct snowballing (i.e., minimize the possibilities of missing
apers because we applied snowballing instead of automatic
earches in databases). To do so, we performed the following
uality checks on the group of 39 selected primary studies: (1)
nclude articles from different clusters not citing each other, and
ence cannot be found through citation relationships, (2) Make
seed set which is not too small, (3) Are from different authors,
ears of publication, and also publisher, not limiting the breadth
f the search, (4) Include keywords from the research questions.
ince these quality checks were satisfied, we concluded that this
roup of 39 primary studies was adequate as seed papers to start
nowballing.

.2.2. Snowballing
In this study, we applied Wohlin’s snowballing guidelines for

ystematic reviews (Wohlin, 2014) for searching and identifying
rimary studies. As argued by Petersen, ‘‘in the particular context
tudied, all relevant studies identified by the search could also be
btained by snowball sampling. The key for success is to define a
ood start set’’ (Petersen et al., 2015).
We performed backward and forward snowballing on the 39

eed papers to identify additional primary studies. In order to fa-
ilitate the snowballing process and provide visibility of the work
n progress, we used a shared spreadsheet where researchers
ere able to track progress. As we were working in a distributed
nvironment, this helped ensure that there were no duplicate
fforts. For instance, researchers avoided working on the same
aper simultaneously.
We used the Google scholar citations to perform forward

nowballing and the reference list of studies to conduct back-
ard snowballing, as recommended in Wohlin (2014). The snow-
alling search ran between February 2020 and April 2020. We
ivided the 39 studies among three researchers to perform the
nowballing. In every iteration, one researcher proposed possible
apers to be included based on title, and other two researchers
hecked the inclusion and exclusion criteria to either accept them
r reject them. We needed 5 iterations to reach saturation. After
hecking inclusion and exclusion criteria, we included 22 addi-
ional studies, 17 from forward snowballing and 5 from backward
nowballing. As a result, we found 61 primary studies (39 seed
apers and 22 from snowballing), listed at Appendix A.

.3. Data extraction

The data was extracted according to a predefined extraction
orm (see Appendix B) based on our RQs. Each primary study was
ssigned to a pair of researchers. Each researcher extracted the
ata from the half of the assigned papers to the pair s/he belongs
o, and the result was reviewed by the other researcher of the
ame pair.
During the data extraction, we dealt with the two main con-

epts of our study, namely: QR metric (RQ2) and QMI (RQ3). The
ormer, QR metric, refers to the set of metrics measuring a QR
ype. It also includes basic metrics, i.e., metrics that are com-
uted directly to measure a concrete product quality property.
or example, project size, number of bugs or complexity of the
ode. The latter, QMI, refers to: (1) Non-basic sets of metrics
ualified explicitly as ‘‘indicators’’ or ‘‘KPIs’’ by the authors of the
tudy, (2) Metrics measuring more than one QR type together
e.g., maintainability and reliability), and (3) Software quality
etrics not measuring a QR type of a product, but rather the
rocess, project, or resources.
Furthermore, a few primary studies included appendices de-

ailing aspects of our data extraction form (e.g., QR metrics such
s process performance metrics). In those cases, we have also
xtracted data from available appendices.
6

3.4. Quality assessment

Even if quality assessment is not mandatory in systematic
mappings, we assessed the rigor and relevance of the empirical
primary studies. We adapted Ivarsson and Gorschek’s industrial
assessment model (Ivarsson and Gorschek, 2011) to assess the
quality of the studies presenting empirical results. Concretely,
this model defines some aspects to be evaluated to assess the
research rigor and industrial relevance (see Table 4). Research
rigor evaluates three aspects: description of the context, de-
scription of the study design, and discussion of validity threats.
Industrial relevance evaluates four aspects: representativeness of
the subjects of the study, relevancy of the context, realistic size
of subjects and experimental research method.

Following the rubrics included in the model, each rigor aspect
can be rated by 1 (strong description), 0.5 (medium description),
or 0 (weak description), and each relevance aspect can be rated
by 1 (do contribute to relevance) or 0 (do not contribute to
relevance). We assign the values for rigor and relevance as the
sum of the rating of their aspects.

The quality assessment data has been extracted during the
data extraction following the same protocol and the same extrac-
tion form (see Section 3.3).

3.5. Data analysis

For the data analysis, we combined quantitative and qualita-
tive techniques. For quantitative results, we applied frequency
and correlation analysis; for qualitative results, we applied coding
and classification. We applied these techniques depending on the
research question:

• Frequency analysis. This technique is used for providing
quantitative results related to the total number of papers.
We applied this technique to RQ1 (research characteriza-
tion), RQ2 (reported quality factors), and RQ3 (reported
QMIs).

• Correlation analysis. We applied correlation to RQ1 for the
analysis of the primary studies quality (rigor and relevance
properties), RQ2 for analyzing the relation between data
sources and QRs, and RQ3 to analyze the relation between
entities and data sources with QMIs.

• Coding and classification. This technique allows us to identify
categories. We used deductive coding for domains in RQ1,
QRs types in RQ2, and entities in RQ3; and inductive cod-
ing for data sources in RQ2 and RQ3. The first six authors
performed this coding and classification.

For the deductive coding of domains (RQ1), we used the do-
ain taxonomy in the Industry Classification Benchmark (ICB)

v3.4, February 2020) (Russell, 2017). ICB provides a detailed
tructure of classifying industries and their sectors. We chose the
uper sector level in the taxonomy (the second level in the hier-
rchy, as the first one is too general and lower ones would cause
reat dispersion) as the set of domain values to assign to the
tudies. For the deductive coding of QRs (RQ2), we used the soft-
are product quality model included in the ISO/IEC 25010 (Anon,
011). We chose the quality model characteristics as the set of QR
ypes to assign to the studies. For deducting coding of entities,
e used the resource type definition included in Section 2.1 (see
able 2). For the inductive coding of data sources (RQ2, RQ3) and
MIs (RQ3), the codes arose directly from the studies. We mainly
sed the metric names and the context of the paper to specify
orresponding data sources and entities because this information
as not provided by most of the primary studies.
For each QMI metric, we identified the measured entity type

i.e., process, product, project, or resources). During the entity
lassification, we found some problems distinguishing entities.
herefore, we followed the next rules:
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Table 4
Primary studies quality assessment attributes (Ivarsson and Gorschek, 2011).
Attribute Aspect Description

Rigor

Context described It is considered strongly described when the reader can understand and compare it to others.

Study design described It is considered strongly described when the reader can fully understand the protocol, e.g.,
measured variables, treatments, sampling, etc.

Validity discussed It is considered strongly described when the validity of the evaluation discussion includes
threats and the measures taken to mitigate them.

Relevance

Subjects It is considered relevant when the subjects are representative of the intended users of the
proposal.

Context It is considered relevant when the study has been performed in a representative setting of
the usage of the proposal.

Scale It is considered relevant when the evaluation has been performed in a realistic size of
subjects.

Research method There was a list of relevant (action research, lessons learned, case study, field study, interfere,
descriptive/exploratory survey) and non-relevant (conceptual/mathematical analysis,
laboratory experiment, other) methods.
• Process: Metrics related to the time used for performing
some activities.

• Personnel resources: Metrics related to the effort used to
perform some activities.

• Project:

– Metrics for QMIs that include the word project, e.g.,
project success, project cost.

– Metrics related to the quality of the product when it is
already released, e.g., bugs delivered to the customer,
post-release quality.

– Metrics measuring if the product is ready to be re-
leased, e.g., on-time delivery, product readiness.

– Metrics measuring time deviations, that implies a pe-
riod of time, e.g., release delay, relative schedule devi-
ation.

3.6. Threats to validity

We applied various mitigations to minimize the construct,
internal, external and conclusion validity threats which are com-
mon in secondary studies, as defined in Ampatzoglou et al. (2019)
and Zhou et al. (2016).

Construct validity entails identifying and applying appropri-
ate operational measures for the concepts under study. We ap-
plied an SMS protocol with research objective, research questions,
search method, study selection, data extraction, analysis, which
was reviewed by researchers to guide the SMS, and summarized
in this Section 3. This helped mitigate threats that could arise
from imprecise description of the SMS setting.

Internal validity involves determining a causal relationship
between factors within the context of a given study. We applied
snowballing search to retrieve as many relevant primary studies
as possible. In snowballing search, a potential threat comes from
difficulties in identifying a good start set of papers (i.e., rele-
vant and adequate number of starting set of papers), which has
been claimed to be problematic for systematic reviews using
snowballing search strategy (Wohlin, 2014). We minimized this
threat by using an existing secondary study in QR management
in ARSD to identify the initial set of papers (Behutiye et al.,
2020) and by the aforementioned quality checks over the set of
seed papers. Another threat to internal validity comes from study
selection bias. We piloted the inclusion/exclusion criteria on 36
studies with six researchers to mitigate this threat. This helped to
clarify differences and build a common understanding of the in-
clusion/exclusion criteria. Additionally, we performed researcher
triangulation in order to minimize researcher bias when selecting
the primary studies and performing the data analysis.
7

External validity defines the applicability of the findings of a
study to other contexts. We defined the context of each primary
study following the ICB domain classification, mainly from tech-
nology and telecommunication domains. In the discussions, as
implications for SE practitioners, we offer a starting point for
companies, which is only applicable depending on the data and
context they have.

Conclusion validity shows the extent to which the procedures
of a study are repeatable with the same result. We applied an
SMS protocol, reviewed by all researchers, to guide the study. We
mitigated the conclusion validity threat that may arise from data
extraction bias by piloting the data extraction in two rounds with
the six researchers who participated in the data extraction phase.
We also performed a review process in which one researcher
reviews the data extracted by another researcher. This helps min-
imize errors that can happen in the data extraction spreadsheet
and possible bias of the researchers in the extracted data and its
interpretation.

4. Results and analysis

In this section, we present the results for each of our RQs with
an emphasis on visual maps and graphs, as is recommended for
SMSs by Petersen et al. (2015). Section 4.1 provides an overview
of the research on the topic. Section 4.2 presents the findings
regarding QR metrics, and Section 4.3 presents the findings re-
garding QMI and QMI metrics. Appendix A includes the complete
list of primary studies; the extracted data and the complete list
of QR and QMI metrics is publicly available at López et al. (2021).

4.1. Overview of research on quality measurement in the context of
QR management in ARSD (RQ1)

In this section we report bibliometrics characteristics and the
results from the quality assessment.

4.1.1. RQ1.1 - What is the annual publication distribution trend?
The 61 selected primary studies were published between 2004

and 2019 with the only exception of one paper in 2001. Fig. 4
shows a moderate ascending trend from 2004 in four cycles
(2005–2008, 2009–2011, 2012–2015, and 2016–2019), with 2014
as the year in which the field experienced a significant growth:
33 primary studies (54.1%) have been published in the six-year

period from 2014 to 2019.
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Fig. 5. Venue type distribution.

4.1.2. RQ1.2 - What is the distribution of the venue of publications?
The venues considered in this SMS are peer-reviewed (in-

cluding journals, conferences, workshops, and book chapters).
The distribution shows that conferences stand out as the main
venue for primary studies in the area (see Fig. 5). However, the
temporal distribution of the venues (depicted in Fig. 4) shows
that a majority of journal papers (10 out of 14, i.e., 71.4%) were
published in the last six years covered by our SMS (2014–2019).

The 61 primary studies have been published in 48 differ-
ent venues. Looked the other way round, most of the venues
(39 venues; 81.2%) only published one study. The most targeted
venue is the International Conference on Agile Software Develop-
ment (AGILE; five papers), which concentrates four papers but
most published long ago, in the period 2004 to 2008 (the first
cycle identified in the annual distribution in the previous sub-
section). All the venues publishing more than one paper are
shown in Table 5.

4.1.3. RQ1.3 - What is the distribution of research in terms of type?
Fig. 6, left, shows how empirical studies are the prevalent type

f research paper, dominant over experience reports and theo-
etical papers. Analyzing the 54 empirical studies in detail (Fig. 6,
 o

8

right), we see that more than half of these papers used case stud-
ies as empirical method, while surveys, experiments and action
research were used in a similar share. The mixed study applies
case study and experiment. It is worth mentioning that three of
the primary studies applying surveys use both questionnaires and
interviews, three only questionnaires, and two only interviews.
From the studies classified as other, one is based on surveys (ques-
tionnaires and interviews) and observations, one on interviews
and a workshop, one on a workshop, one on quantitative analysis
of real-life project data, and one on observations.

4.1.4. RQ1.4 - What is the authors’ affiliation distribution?
We analyzed the authors’ affiliation to further understand the

nature of the involved stakeholders. For each primary study, we
extracted the affiliation information of all the authors and the
involved companies. Fig. 7, left, reports the frequency of academia
(including both universities and research institutes) and industry
conducting research in this field. It is remarkable that 44% of
the primary studies includes authors from industry (summing
up Industry and Collaboration types), although only five papers
have industry-only authors [PS11][PS20] [PS30] [PS41] [PS60].
Industry authors belonged to 25 companies. Fig. 7 (right), lists the
companies that appear in more than one paper.5

Authors’ organizations belong to 30 countries. Fig. 8 paints
the countries in shades of blue according to the number of pri-
mary studies, and shows the number of primary studies (black
bubbles.6) and number of primary studies including authors from
industry (orange bubbles7) per continent (North and South Amer-
ica, Europe, and Asia) The figure shows the three countries with
the highest number of primary studies (USA, Germany, and Swe-
den) and the concentration of research in Europe, with partici-
pation in 54.1% over the total of 61 primary studies, growing to
62.9% over the 27 papers with authors from industry.

4.1.5. Q1.5 - What application domains are more prominent?
Out of the 61 primary studies, 46 (75.4%) reported information

related to the application domain. The most recurring domains

5 In this figure, we count the number of papers, not the number of authors.
6 Since [PS10] [PS26] [PS34] [PS56] have authors belonging to more than
ne continent, the sum of black bubbles is 65 instead of 61. Europe and Asia
lack bubbles do not correspond to the sum of their countries because there
re papers with authors of different countries in the same continent.
7 Since [PS26] is a collaboration between the USA and Japan, the sum of
range bubbles is 28.
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Table 5
Venues publishing more than one primary study.
Venue #Papers Years

International Conference on Agile Software Development (AGILE) 5 2004–2006,
2008, 2012

International Conference on in Software Engineering (ICSE) 2 2006, 2007
International Symposium on Empirical Software Engineering and Measurement (ESEM) 2 2010, 2019
Information and Software Technology Journal (IST) 2 2011, 2014
Joint Conference of the International Workshop on Software Measurement and the International Conference
on Software Process and Product Measurement (IWSM Mensura)

2 2013, 2017

International Journal of Secure Software Engineering (IJSSE) 2 2014, 2017
International Conference in Availability, Reliability and Security (ARES) 2 2015, 2016
Journal of Systems and Software (JSS) 2 2015, 2017
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE)

2 2015, 2019
Fig. 6. Research type distribution.
Fig. 7. Authors’ affiliation organization.
re technology (code 1010; 24 primary studies) and telecommu-
ications (1510; 13), followed by Industrial Goods and Services
5020; 3), Banks (3010; 2), Consumer Products and Services (4020;
), Financial Services (3020; 1), and Health Care (2010; 1).

.1.6. RQ1.6 - What is the level of quality of the empirical primary
tudies?

Fig. 9 maps the industrial relevance and research rigor of
he 54 empirical primary studies. The bubble plot combines the
ndustrial relevance and rigor, and the bubble size represents the
umber of primary studies corresponding to the concrete value
or both attributes.

Analyzing industrial relevance, more than half of the assessed
tudies obtained the highest rate (i.e., relevance = 4; 34 studies,
3.0%), and this number grows until 43 studies (79.6%) when we
onsider studies with positive industrial relevance (i.e., relevance
2). For research rigor, the rates are more distributed, but still a
9

significant number of studies obtained positive rates (i.e., rigor >
1.5; 35 studies, 64.8%). The normalization of the average values
into the interval [0,1] also shows how relevance (normalized
average = 0.83) is better than rigor (normalized average = 0.67).

In order to show a global picture of the quality, Fig. 9 dis-
tributes the studies into five areas. The largest share of studies (30
studies, 55.6%) have both aspects positive (area A in the figure),
while the converse case (both aspects negative) occurs only in
two studies (3.7%; area E). On the other hand, the number of
studies with one positive aspect and the other neutral is nine
(16.7%; area B), while there are 10 studies with one negative
aspect (18.5; area D). The remaining three studies (5.6%; area
C) have both aspects neutral. The combined normalized averages
of the two aspects is 0.75, both combined with arithmetic mean
and geometric mean, indicating an overall good rate for relevance
and rigor, despite a significant number of studies (15, 27.8%) are
located in areas C, D and E.
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Fig. 8. Authors’ affiliation country and continent. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
Fig. 9. Studies quality (research rigor and industrial relevance).
We also looked into the aspects that contribute to each at-

ribute. We discovered that weak validation is the root cause for

he lower score of rigor. Summing up the score of each of the 54

mpirical studies on each aspect, we get 23 for validity while we

et 43.5 for context, 41.5 for design, 43 for subject, 45 for context,

7 for scale and 45 for method. As long as the maximum score for

ach aspect is 1, these sums can achieve a maximum value of 54,

hich shows clearly that validity is the only aspect with a poor

ssessment.
10
4.2. Quality requirements measurement in the context of QR man-
agement in ARSD (RQ2)

We found QR metrics in 28 primary studies, which corre-
sponds to 45.9% of the total of 61 primary studies. This section
provides information about what measurable QRs have the focus
of attention in the literature and how they are measured for
software quality management in the context of ARSD.

4.2.1. RQ2.1 - What QR metrics are reported in the scientific litera-
ture in the context of ARSD?

The 28 primary studies reported a total of 107 QR metrics; the
complete list is included in the public dataset (López et al., 2021).
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Fig. 10. The number of metrics measuring QRs per primary study.
Fig. 11. Number of QR metrics based on the mapping onto ISO 25010 characteristics.
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ost of the metrics (91 out of 107) are reported only once, with
nly 16 metrics reported in more than one study. More precisely,
ode duplication and Probability of successful attack are reported
n three studies and the other 14 metrics (Complexity, Comments,
on-blocking files, Passed tests, Fast tests, Bug density, Weighted

methods of a class, Lack of cohesion in methods, Impact of attack,
Memory usage, Number of vulnerabilities, Test coverage, Number of
transactions per second and Throughput) are reported twice. Out
f the primary studies, Martínez et al. is most active in reporting
etrics (two times 12 metrics [PS39] [PS40]) as illustrated in
ig. 10, i.e., they report nearly a fifth of our identified occurrences
f QR metrics in all primary studies (24 out of 125).
We applied deductive coding using as predefined codes the

ight quality characteristics defined in ISO 25010 (see Table 1,
ection 2.1), Fig. 11 shows the number of metrics per each QR
ype, the complete mapping is included in the public dataset
López et al., 2021). A first observation is that all except one
R metrics are mapped to six quality characteristics, with reli-
bility having the highest number of reported metrics. Examples
f reliability metrics include passed tests, bug density, number of
ested classes, and mean time to failure. The other two dominant
haracteristics are: maintainability, with metrics such as complex-
ty, tight class cohesion, coupling between objects and weighted
ethods of a class; and performance efficiency, including metrics
uch as memory usage, throughput, response time and operational
erformance.
We identified one paper by Jinzenji et al. that explicitly re-

orted the metric lines of code in relation with the QR type
eliability [PS26]. However, we mapped lines of code reported by
oncas et al. [PS14] and similar total LOC, reported by Bakota et al.
PS4], to the QR type maintainability according to the definition in
SO 25010. For us it is difficult to mark both lines of code metrics
s duplicates since the paper by Jinzenji et al. does not provide
dditional information. To avoid biasing our results, we mapped
11
he metric by Jinzenji et al. to the others category of the QR types
nd did not count it as a duplicated metric.

.2.2. RQ2.2 - What data sources have been used to collect data to
ompute these metrics?
We obtained the following types of data sources associated

ith QR metrics: source code, system (at runtime), issues, tests,
version control system, and builds.

As Fig. 12 shows, source code is the most used data source, ap-
pearing in 37 QR metrics. Examples of metrics using source code
are complexity, comments, and coupling between objects. Other
relevant data sources are: (i) system (at runtime) appearing in 30
QR metrics, used for measuring e.g., average CPU usage, memory
usage, mean time to failure, and number of transactions per second;
(ii) issues appearing in 22 QR metrics, used for measuring list of
open defects, critical issues ratio, and number of usability issues met
by user, among others; (iii) tests appearing in 17 QR metrics, used
for measuring for instance unit tests, passed tests, and fast tests.

It is worth to mention that 14 out of the 34 usages of source
ode were in combination with other data sources (eight with
ests, six with issues); for instance, defect density (released de-
ects/KLOEC) combines source code and issues.

Moreover, we cross analyzed these data sources with the
eported QRs by making use of our mapping to the QR character-
stics specified in ISO 25010 (see results of RQ2.1, QR types). The
orresponding result is provided in Fig. 13. For example, reliability
etrics make use of issues, tests, system (at runtime), source code,
nd builds. However, none of the reliability metrics are computed

based on the version control system (VCS). Looking at the data
sources, it appears that every data source except builds is primar-
ily used in QR metrics of a particular type. For instance, all except
one of the 22 QR metrics measuring performance efficiency need
the data source system (at runtime). It is worth remarking that we
found 10 QR metrics whose data source cannot be identified; we
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Fig. 12. Number of QR metrics per data sources.
Fig. 13. Data sources used for measuring QR Types.
lassified them as other. The cross analysis shows that eight out
f these 10 metrics are security metrics.

.2.3. RQ2.3 - What tools are reported together with the metrics
easuring QRs?
Only three primary studies (out of the 28 studies that propose

etrics for QRs) provide information about tools regarding their
eported QR metrics. In total, these primary studies reported 12
ifferent tools together with metrics measuring either reliability,
aintainability or functional suitability. Jira is reported by all of

he three primary studies whereas Gerrit, Nagios, SVN, and Zabbix
re reported just by one primary study. Table 6 provides the
hole mapping with details on the corresponding metrics and
he data sources.

.3. Quality management indicators measurement in the context of
R management in ARSD (RQ3)

We found QMIs in 46 primary studies, which corresponds to
3.8% of the total of 61 primary studies. This section provides
nformation about what QMIs have the focus of attention and how
hey are assessed for software quality management in the context
f ARSD.
12
4.3.1. RQ3.1 - What are the reported QMIs in the scientific literature
in the context of QR management in ARSD?

We collected 86 different QMI from the 46 primary studies
and classified them into 10 generic QMIs, as shown in Fig. 14. The
frequency distribution shows two prevalent QMIs (Product Quality
appearing in 65.2% of the studies, and Productivity in 39.1%) and
other eight QMIs mentioned by nine primary studies (19.6%) at
most. We use the 10 generic QMIs to present the analysis for this
RQ. Research dataset includes the categorized QMIs (López et al.,
2021).

Fig. 15 shows the number of QMIs identified in each primary
study. A similar number of studies introduce one single indicator
(19 studies; 41.3%) and two (21; 45.7%), with the rest of studies
(6; 13%) defining up to six QMIs.

The analysis of QMI per primary study (Fig. 15) shows that
QMIs are often not reported in isolation: 29 primary studies, out
of the 46 reporting QMIs (63.0%), report more than one QMI.
In order to provide a better understanding about the synergies
among QMIs, we analyzed the pairs of QMIs that are reported
together (see Table 7), and the number of times that the QMIs
are reported alone (Table 7, diagonal). The last row shows the
total number of QMIs reported in the same paper per each QMI.
We can observe that most QMIs are reported together with others
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Table 6
Overview of tools reported together with metrics measuring QR Types.
Tools (# metrics) # Primary studies Data sources Metrics QR Types

Jira (5) 3

tests unit test coverage for the developed code Reliability
source code & issues bug density, non-bug density Reliability

issues open defect severity index Reliability
well defined issues Maintainability

CodeSonar (1) 2 source code non-blocking files Maintainability

Coverity (1) 2 source code non-blocking files Maintainability

GitLab (5) 2
tests passed tests, fast tests Reliability
source code & issues bug density, non-bug density Reliability
issues well defined issues Maintainability

Jenkins (4) 2 tests passed tests, fast tests, test coverage (testing status) Reliability
builds build stability Reliability

Mantis (6) 2

source code & issues bug density, non-bug density Reliability

issues
postponed issues ratio, critical issues ratio Reliability
well defined issues Maintainability
end user feedback Functional suitability

Redmine (3) 2 source code & issues bug density, non-bug density Reliability
issues well defined issues Maintainability

SonarQube (5) 2 source code complexity, comments, duplication, non-blocking files Maintainability
tests test coverage (testing status) Reliability

Gerrit (1) 1 version control system highly changed files Maintainability

Greenhopper (2) 1 tests unit test coverage for the developed code Reliability
issues open defect severity index Reliability

Nagios (1) 1 system (at runtime) availability uptime Reliability

SVN (1) 1 version control system highly changed files Maintainability

Zabbix (1) 1 system (at runtime) availability uptime Reliability
Fig. 14. The number of QMIs per primary study.

nd in the extreme case, three of them (Customer Satisfaction, De-
veloper Satisfaction and Process Performance) are always reported
with some other QMI. Only Product Quality is defined alone in a
igh number of studies (cf. value eight in the diagonal) although
ercentual speaking, Project Success (one out of one) and Agility
one out of two) have a higher rate of individual definition. It is
orth noticing how the two most recurrent QMIs, namely Product
uality and Productivity, are also frequently introduced together,
s much as 15 times, which in the case of Productivity represents
3.3% of the total number of occurrences.

.3.2. RQ3.2 - What tools are used to manage and/or visualize these
MIs?
We were also interested in tools used for QMIs manage-

ent, i.e. tools that can be used to monitor the QMIs, presenting
he QMI metric results. From the 46 papers reporting QMIs,
2 papers mentioned tools (26%): Q-Rapids Tool [PS37] [PS39]
PS40] [PS59], MS Vista Gadget [PS50] [PS51] [PS52], Dashing
ool [PS41], Failure Modes and Effects Analysis (FMEA) [PS55],
oReady [PS53], and some papers including visualizations but not
s part of a tool, classified as ad-hoc dashboard [PS1] [PS9] [PS51].
13
Most of these studies use a single tool to visualize QMIs, except
[PS51], which uses MS Vista Gadget and an ad-hoc dashboard.

4.3.3. RQ3.3 - What metrics have been used to measure QMIs?
Not all the 46 primary studies reporting QMIs are reporting

QMI metrics. A total of 38 primary studies reported 223 QMI met-
rics, including descriptive measurement (e.g., cost as money, time,
and effort), or concrete formulas (e.g., number of lines of code,
cost computed as ((real cost - planned cost)/planned
cost) * 100)). Fig. 16 shows the number of metrics proposed in
the primary studies reporting QMI metrics (blue series) and the
number of QMIs that these metrics are measuring (red series). It
is remarkable to mention that eight primary studies (21.1%) are
reporting 10 or more metrics; altogether, they report more than
half of the reported metrics (57%). The number of measured QMIs
per study reveals that most of the studies are devoted to mea-
suring concrete QMIs, 36 primary studies (94.7%) are measuring
one or two QMIs. The complete list of metrics per each QMI is
included in the public dataset (López et al., 2021)

Most QMI metrics (199, 89.2%) are reported only once. We
found that authors measuring the same quality characteristic use
slightly different metrics. For example, for measuring the number
of bugs, the primary studies report metrics such as Number of
reported bugs (total number of bugs), Bug ratio (number of open
bugs/total number of issues), and Number of post-release bugs
(total number of bugs reported after the release).

Fig. 17 shows the number of papers mentioning the same
metric, i.e., metrics reported in more than one paper, together
with the QMIs that they measure. In contrast to RQ2, in which
we observed that QR metrics are devoted to measure always
QRs belonging to the same quality characteristic, the same QMI
metric can measure different QMIs. For example, Number of open
defects, Size (LOC) and Spent bug fixing effort ratio are used to
measure Product Quality and Productivity, Timely feature specifi-
cation delivery and Non-issue component commits measure Process
Performance and Schedule; and Fast test builds measures Process
Performance and Product Quality.
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Fig. 15. Number of QMIs per primary study.
Table 7
Pairs of QMIs reported jointly (reported alone in the diagonal).
Fig. 16. The number of QMI metrics and QMIs per primary study. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
To complete the results related to this sub-RQ, Fig. 18 shows

he number of metrics reported per QMI (blue series) combined

ith the number of papers mentioning QMIs (red series) and the

umber of papers measuring the QMIs (green series). The most

easured QMI is Product Quality with half of the measures (112

etrics; 50.2%) and near two thirds of the primary papers (30

tudies, 65.2%).
14
4.3.4. RQ3.4 - What entities have been measured by these QMI
metrics?

As QMIs can be used to monitor different organization aspects,
we analyzed the entity measured by each metric. An entity can be
classified as process, product, project or resource (see Section 2.1).

Fig. 19 (left) shows the entities measured by QMI metrics. The
majority of the metrics focus on the product (121 measures out of
223), measuring different software product properties (e.g., size,
complexity, test coverage). Next, we find: process, measuring
mainly time spent (e.g., bug correction time, commit review du-
ration, and timely feature delivery); personnel resource,measuring
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Fig. 17. Number of papers reporting QMI metrics.
Fig. 18. Number of metrics and primary studies per QMI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)
Fig. 19. QMI measured entities frequency.
ffort spent on concrete activities (e.g., testing effort, LOC per
erson-month); and project. The least measured entity is finance
esource, none of the papers include details about how to measure
hem. Our analysis shows that all the project metrics are also
easuring another entity, as shown in the detailed chart on the

ight in Fig. 19.
In order to understand the impact of these entities in the

MIs, we analyzed which entities are measured for each QMI
see Fig. 20). Most of the QMI metrics have a type of entity as
he main target, i.e., with at least half of their metrics applied
o such type. Not surprisingly, Product quality metrics measure
undamentally Product entities (in 76.6% of the cases), Productivity
etrics apply mainly to Personnel resource (56.4%) and Schedule
etrics to Project entities (50.0%). On the other hand, not all
15
Process performance metrics apply to Process entities (only 39.4%
of occurrences). The most diverse is Agility, with similar numbers
for Process, Project and Personnel resource entities.

4.3.5. RQ3.5 - What data sources have been used to collect data to
compute these metrics?

As done in RQ2.2., we investigated the data sources that were
used to compute each QMI metric. Similar to data sources used
to compute QR metrics, this information was not provided by
most of the primary studies and it should be inferred from the
QMI metric’s description and/or formula. We identified the data
source for 187 metrics. By doing that, we found the same list of
data sources that we found for RQ2.2 (builds, issues, source code,
system at runtime, tests, and version control system data) and a new
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Fig. 20. Entities used in QMI Metrics.
Fig. 21. Data sources used in QMI Metrics.
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one, requirements. The most used data source is issues (78 metrics,
5%), with 64 QMI metrics using only issue data (e.g., #De-
ects injected per sprint, Amount of programming effort, and Bug
orrection time), nine using issues and source code (e.g., De-
ect density (Defects/KLOC), Size/Effort, and Defect rate (number of
rrors/complexity)), four using issues and tests (e.g., Test Effective-
ess (defect#/person-hour), Test Speed (TS#/person-hour)), and one
sing issues and VCS data (Productivity (LoC/person-hour)). The
umber of QMI metrics per each data source is shown in Fig. 21
some metrics need more than one data source).

Fig. 22 shows the results of the analysis of which data sources
re providing data for measuring the entities (blue bubbles) and
MIs (white bubbles). Entities and QMIs not using data sources
re not included in the figure (Finance resource entity and Cus-
omer and developer satisfaction QMIs). For the entities, only Prod-
ct is using all the reported data sources; the most used are
ource code and Issues, followed by Tests and Version control
ystems data. The other entities are measured by a similar number
f data sources (four or five) except Finance resources, for which

we could not identify any data source. In the case of QMIs,
we found a very diverse situation, ranging from Product Quality,
hich uses all data sources, to Customer Satisfaction and Developer
atisfaction, which do not use any data source but instead they are
easured qualitatively through questionnaires.
Metrics for Project Success, Risk, and Agility were reported in a

ualitative way; the primary studies do not include details about
ow they were computed, this is the reason why there is so little
nformation about the data sources that can be used.
16
.3.6. RQ3.6 - What QR Types are used to measure QMIs?
This subRQ addresses the relationship of QR measurement and

MIs. Given that QRs are defined as software quality attributes
hat must be present in the software product, we classified the
21 QMI metrics related to the entity product (see Fig. 19) using

the software product quality defined by the ISO/IEC 25010, as we
did in RQ2. Fig. 23 shows which QR Types are used to measure
the 10 QMIs identified in RQ3.1.

We identified five QR Types used in the QMI metrics: Func-
tional Suitability, Maintainability, Performance, Reliability, and Se-
urity. None of the QMIs uses all the QRs in the reported metrics.
he QMI related to more QRs is Product Quality, as we could ex-
ect because QR by definition is defined to improve the software
uality. Curiously enough, Security is not measured as part of
roduct Quality QMI; the few metrics related to security are used
n the context of risk management, assessed by Risk QMI.

The other QMIs impacted by QRs are Process Performance, Pro-
uctivity, Project Success, and Risk. Process Performance uses met-
ics measuring the old issues (Functional Suitability) and metrics
elated to bugs like bugs ratio and leakage (Reliability). Produc-
ivity uses metrics for code size and complexity (Maintainability),
nd number of defects and passed tests (Reliability). Project Suc-
ess is a tailored indicator that is assessed with four metrics, two
f them related to quality factors (size assessing Maintainability
nd defect rate assessing Reliability) and time and budget not
elated to product quality factors. Finally, metrics used for Risk
re measuring the risk of having complex files (Maintainability)
nd the risk of suffering an attack (Security).
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Fig. 22. Data sources used for measuring entities and QMIs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 23. QR Types used in QMI Metrics.
. Discussion

The analysis of the type of research methods applied and the
uality assessment results show that the research in the field is
uite relevant for practitioners. All the primary studies, except
or three, apply empirical methods, and their quality assessment
roves high industrial relevance scores. But, in spite of that, from
research point of view, there are some signs that suggest a

ack of maturity in the field. For example, we did not find any
tandardized models for metrics, neither a solid-holistic view
e.g., only one paper measuring ‘‘project success’’, and very few
etrics related to customer/user satisfaction).
This section presents the implications of the findings of the

apping study for software engineering researchers (Section 5.2)
nd practitioners (Section 5.3). We precede this analysis by a
17
summary of the most relevant observations on bibliometrics (Sec-
tion 5.1).

5.1. Analysis of bibliometrics

5.1.1. Publication trends
We found 61 primary studies related to QR management

through metrics in ARSD. From these primary studies, 28 relate to
QR metrics (45,9%) and 46 relate to QMI (73, 75.4%). From the 46
papers reporting QMIs, 38 also report QMI metrics (i.e., 82.6% of
these 46 papers provide means to measure the QMIs). A corollary
of the numbers above is that 12 primary studies (19.7%) target
both QR metrics and QMIs, providing a comprehensive analysis

of QR management through metrics in ARSD.
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Fig. 24. Trends on relevance (0–4), rigor (0–3) and validity (0–1).
Fig. 25. Annual distribution of academia/industry papers.
While RQ1.1 reveals an increasing publication trend, we can
rguably affirm that there are not many papers on the topic,
onsidering the relevance of quality management in software
evelopment. We interpret the results of RQ1.2 somehow aligned
o this observation: although there are some software quality and
easurement conferences and journals, our results make evident

hat the literature in this field is really scattered in terms of
enue. The absence of flagship venues may be an impediment for
community to grow and boost the research on the topic.

.1.2. Quality assessment
A positive outcome of our SMS reported in the answer to

Q1.6 is that the assessment of the primary studies’ quality yields
igh scores, especially on relevance (0.83 over 1 on average).
he average score on rigor is not as high (0.67) as a conse-
uence of the poor rating on validity. If we ignore this aspect
nd consider only the remaining ones, rigor score achieves 0.79.
t seems that quality has improved if we compare with Kupi-
inen et al.’s paper (Kupiainen et al., 2015), where we can read
‘Even though there were many low scoring studies, they were
ncluded’’. Also, Hoda et al. remark that ‘‘Combining research rigor
nd industrial relevance still remains a ‘grand challenge’ for ASD8

esearch’’ (Hoda et al., 2017). This improvement would be higher
f more attention is put on validity, the weak point of the primary
tudies.
This observation on improved quality seems to be supported

f we analyze the trends over time (see Fig. 24). We can see that
he scores9 tend to be more stable in the last 5-year period. The
bservation reported in RQ1.2 about the higher share of journal
apers published since 2014, as well as the wide use of empirical
ethods in the primary studies (cf. RQ1.3), aligns to this increase

n quality too.

8 ASD: Agile Software Development.
9 The values assigned to each year are computed as the averages of the papers

rom that year.
18
5.1.3. Industrial collaboration
The quality assessment performed in RQ1.4 reveals high rele-

vance for industry. This practitioners’ perception is confirmed by
the high number of authors from industry as reported in RQ1.4:
up to 44% of the primary studies include authors from industry.
This percentage is significantly higher than usual; as an example,
it is higher than the percentage found in the previous SMS on QR
management (Behutiye et al., 2020), which was 28% only.

As a result of the analysis of the number of publications
including authors from industry (see Fig. 25), we can remark that
it is quite stable. Years including industry authors (industry and
collaboration), have between one and three publications, with the
exception of 2013 with four. What is remarkable is that industry
authors publish almost all years, except for 2005 and 2013, in
2013 there were only papers with industry authors.

Regarding the geographical distribution, it is remarkable that
almost half of the companies involved in primary studies belong
to Sweden (48%); in fact, all the primary studies from Sweden
include some authors from industry. However, this fact also raises
an observation already reported by Kupiainen et al. (2015) that
they called ‘‘Ericsson bias’’: in our SMS, 25.9% of papers with
participation of industry authors had Ericsson affiliation (even
higher than the 22% reported by Kupiainen et al.). Kupiainen et al.
literature review analyzes primary studies until 2013, our study
reveals that Ericsson continues the research on the field, we found
four publications in the 6-year period 2014–2019.

5.2. Implications for researchers in quality measurement in ARSD

5.2.1. Elusive terminology
When we started this mapping study, and in spite of our

work in the previous related mapping on QRs in ARSD (Behutiye
et al., 2020), we were not aware of the existence of any specific
term for the indicators used in decision-making processes. The

analysis of the primary studies reporting indicators we named
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Fig. 26. Potential generic measurement model.
s QMI (RQ3.1), confirmed this lack of concrete terminology, at
east in the context of QR management. Most of the primary
tudies (32; 71.1%) use the word ‘‘indicator’’, a too generic term
o be included in a search string. Only one paper [PS51] includes
definition from the JCGM Vocabulary in metrology standard:

‘Indicator – measure that provides an estimate or evaluation of
pecified attributes derived from a model with respect to defined in-
ormation needs’’. (International Bureau of Weights and Measures.,
993)’’. Four primary studies use ‘‘key performance indicator’’
PS17] [PS39] [PS45] [PS50], but only [PS17] also includes the
PI acronym. Q-Rapids project papers use their own terminol-
gy, namely ‘‘strategic indicator’’ to highlight the fact that these
ndicators refer to high-level issues [PS37] [PS38] [PS40]. Others
erms used in the primary studies are ‘‘factors’’ or ‘‘influencing
actors’’ referring to quality requirements of software quality
PS2]; ‘‘quality attribute’’ related to agile process in [PS25]; and
nly ‘‘metrics’’ or ‘‘software metrics’’ in [PS5] [PS16] [PS24].
In the case of QRs, while the term itself is well-established in

E (notwithstanding the everlasting controversy with the term
‘non-functional requirements’’), discrepancies arise when it
omes to measurement terminology. Some of them mention
‘quality metrics’’ (9 primary studies from the 28 reporting QR
etrics; 32.1%) or ‘‘software quality metrics’’ (5 primary studies

rom 28; 17.8%) in the body. The rest of the papers, normally
nclude the word ‘‘metric’’, usually followed by an adjective
eferring to the measured quality, e.g. ‘‘coverage metrics’’ [PS60],
‘performance metrics’’ [PS49] [PS60], ‘‘process metrics’’ [PS56],
r ‘‘security metrics’’ [PS45]. We found one of the primary studies
hat does not even include the word ‘‘metric’’ [PS33]; in this case,
he authors use verbs ‘‘measures’’ and ‘‘calculate’’ to introduce the
etrics. Looking at the paper keywords, we only found ‘‘software
uality’’ in four primary studies [PS21] [PS33] [PS39] [PS40];
‘software metrics’’ in three [PS9] [PS14] [PS43]; ‘‘quality metrics’’
n one [PS26], and ‘‘software’’ and ‘‘metric’’ in one [PS1]. Most
f the papers are measuring a QR Type, and they include the
ame of the characteristic from the ISO/IEC 25010 quality model
e.g., maintainability, reliability, security), but only five primary
tudies are referring explicitly to the standard.
A consequence of this lack of standard terminology is that

earching this kind of literature can be challenging. In the case of
ystematically surveying the literature, we recommend applying
snowballing search strategy instead of using a search string, as
e have done in this SMS.
19
5.2.2. Low level of detail
Our findings revealed an important observation regarding the

reported information on metrics for QRs and QMIs: despite the
high-quality assessment, we observed that, in general, primary
studies did not include all the necessary details to fully under-
stand the metrics. For example, some recurrent missing infor-
mation is a definition or the concrete formula. Moreover, most
of the papers do not explicitly mention the data source or tool
used to get the data needed for the computation. We believe
that researchers and practitioners can benefit from definitions
and detailed explanations of metrics and their calculation, and
therefore we recommend that future studies on the topic take it
into consideration.

The lack of details on the metrics reveals that, although the
authors of the primary studies are reporting measurement plans
for specific quality attributes, the metrics themselves are not
the most important outcome. The authors of the primary studies
focus on how the metrics are defined and/or selected and how
they are used by the companies. However, reporting the concrete
data sources and tools that are actually used in practice could be
beneficial to get a more precise understanding on howmetrics are
actually operationalized. A lot of challenges related to measure-
ment are related to a lack of data and actual operationalization
of metrics (Ram et al., 2018). As a recommendation for future
studies, we believe that reporting this information could shed
light on this area.

5.2.3. Quality measurement efforts and gaps
We found that reliability, maintainability and performance

efficiency are the top three QR types with most reported met-
rics. On the other hand, our findings revealed that the literature
reports a small number of usability and security QR metrics. Dom-
inance of these three types occurs despite the fact that security
and usability are widely reported QRs in the literature of QR
management in ARSD (Behutiye et al., 2020). One reason could be
the difficulty in quantifying and measuring security and usability
QRs thus leading to a small number of metrics reported in the
literature. However, this hypothesis does not align well with the
huge body of knowledge that exists on these two types of QR.
Therefore, we finally interpret it as an indicator of a research gap
in these two particular areas in the context of the ARSD research
community.
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Table 8
Metrics for QMIs and QR Types per data source.
Data Source Metric Types QMI (RQ3) QR Type (RQ2 & RQ3.6)

Builds Average builds between quality builds, Average time between
quality builds, Build performance, Builds feedback time,
Deployment speed, Quality branches ratio, Quality builds ratio,
Successful builds ratio

Process Performance,
Product Quality

Performance Efficiency,
Reliability

Issues Big issues, Bug Types, Bugs (total), Bugs fixing effort, Bugs
fixing speed, Bugs ratio (#bugs/#issues), Closed bugs, Closed
issues, Closed tasks, Complete data in issues, Critical issues,
Development effort, Development speed, Development time,
Effort estimation, Fixing bugs effort, Issues (total), New issues,
Old issues, Open Bugs, Schedule deviation, Team
communication, Team productivity, Testing Effort, Usability
Issues, User issues

Cost, Process
Performance, Product
Quality, Productivity,
Schedule

Functional Suitability,
Maintainability,
Reliability, Security,
Usability

Requirements Requirement changeability, Requirements ambiguity,
Requirements analysis, Requirements design, Requirements
risk, Specification change

Agility, Product Quality Functional Suitability

Runtime CPU usage, Feature usage, Graphics card usage, Memory usage,
Operational performance, Rendering speed, Rendering time,
Response time, Screen switch time, System availability, System
crashes, System errors, System latency, System performance,
System resources, System throughput, Transactions rate

Product Quality Functional Suitability,
Performance Efficiency,
Reliability, Usability

Source Code
(code)

Branch coverage, Code changed, Code cohesion, Code
complexity, Code coupling, Code effectiveness, Code
extensibility, Code flexibility, Code functionality, Code
incorrectness, Code reusability, Code reviews, Code smells,
Code status, Code understandability, Code violations,
Commented code, Cost, Duplicated code, Product size

Cost, Product Quality,
Productivity, Project
Success, Risk

Maintainability,
Reliability

Tests Failed test ratio, Failed tests
fault content function, Path coverage, State coverage,
Successful test ratio, Test execution rate, Test performance,
Test ratio, Test speed, Tests, Transition coverage

Process Performance,
Product Quality,
Productivity

Reliability
Maintainability

Version Control
System (VCS)

Check-ins, Code changed, Commit comments, Commit speed,
Commits (total), File revisions, Issue Comments, Merge speed,
Pull requests frequency, Pull requests speed, Team activeness,
Technical debt

Process Performance,
Product Quality,
Productivity, Schedule,
Risk

Maintainability

Issues & Code Bugs ratio (#bugs/LOC), Code changed, Code changed
performance, Team productivity

Product Quality,
Productivity, Project
Success

Reliability

Issues & Tests Bug Types, Bugs identification productivity, Test speed (per
person-hour)

Process Performance,
Product Quality

Reliability

Issues & VCS Team productivity Process Performance

Code & Tests Path coverage, State coverage, Test coverage, Transition
coverage

Product Quality Reliability

Code & VCS Team productivity Productivity

Code & Tests &
VCS

Test coverage (per pull request) Product Quality Reliability
On the other hand, we observed that product quality and pro-
uctivity are the top two QMIs reported in our study, respectively.
imilarly, our findings revealed the highest number of metrics
or these two QMIs. The findings may imply that these two
MIs are widely adopted and relevant when considering quality
easurement in ARSD. Given that Agile software development
romotes close collaboration with customers to deliver value and
nsure customer satisfaction (Beck et al., 2001), one could expect
ore metrics focused on customer satisfaction in order to have a
ata-based understanding of customers. However, we only found
our works mentioning QMIs related to this concept, far from the
umbers of the topmost QMIs (product quality and productivity).
his gap calls for further research in this particular topic.

.2.4. Lack of common measurement model
We have not found any common baseline that could be used

o build up a measurement model, that is, a comprehensive
uality management strategy including all the elements defined
n the SMS conceptual model introduced in Fig. 2, nor to choose
r define the elements to be taken into account in the quality
anagement activity.
20
This lack of common base leads to remarkable dispersion
at several levels. For instance, most of the metrics (85% of QR
metrics and 89.7% of QMI metrics) are reported only once. We
found that some papers measuring the same quality element use
specific metrics, all of them really similar but still different. We
have also observed that most of the time, the literature does not
report the data source used to compute a metric.

This seems to be a gap that should be filled in order to help
practitioners to carry out their job in a more rapid way, and to
avoid repeating the same reasonings each time a quality man-
agement process is carried out and allowing reusing or adapting
previously designed models. The existence of some common ac-
cepted framework would also increase the confidence of the
indicators providing a more solid rationale to the management
decisions. The framework, of course, should be flexible enough to
allow its customization to each management context. It could be
built upon existing proposals or standards, e.g., the ISO/IEC 25010
standard for defining types of QRs, but it should cover aspects like
process not addressed by this standard.

Although there is no explicit model stated and used, a certain
pattern can be extracted from the primary studies that might be
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Table 9
Tools providing data sources.

Builds Issues Req. Runtime Code Tests VCS Total DS

Cantata++ X XX 2

CodeSonar X 1

Coverity X 1

Jira X X (plug-in) 2

Jenkins X X 2

Gerrit X 1

Git X X 2

GitHub X X 2

GitLab XX X X X X 5

Greenhopper X 1

Mantis X 1

Nagios X 1

OpenProject X 1

Redmine X 1

SonarQube X X 2

SVN X 1

TravisCI X XX 2

Zabbix X 1
a starting point of research to fill this gap. It is depicted in Fig. 26
and it consists of a directed graph connecting QMIs, data sources,
QR types and entities.

Using data in Fig. 20, each QMI is linked to the entities it
epends on, being the one linked with the thickest arrow the
ost important to the QMI. In a similar way, QMIs are linked to
R types according to data in Fig. 23. The edges from QR types to
ata sources come from Fig. 13, and, finally, Fig. 22 contains the
ata to establish the edges going from entities to data sources.
nterestingly enough, we have seen that, with the exception of
isk, cost and agility (with very little use in the primary studies)
iven a QMI, the sources reached by the thickest arrows include
he most important sources to the QMI according to the primary
tudies (Fig. 22). Moreover, the data sources reached starting
rom QMIs linked to some QR type following the left path also
nclude the most important sources reported in Fig. 22 with the
xception, in this case, of productivity.

.3. Implications for practitioners in ARSD processes

As we can see in the results section, the industrial relevance
f the primary studies is quite high, even higher than the re-
earch rigor classification. We summarize the evidence below,
s a starting point for companies that want to integrate quality
easurement as part of their decision-making processes in the
ontext of ARSD.
The results of this SMS can be used by the organizations to

nderstand which key indicators (QRs and QMIs) they need to
easure and monitor to improve the quality of their products and
rocesses. In order to automate the key indicators monitoring, the
rganizations need to use the data produced by the tools used
uring their development process. In this section we summarize
he most relevant data produced by the tools that are used by the
evelopment team as part of their daily tasks.
As part of the results of this SMS, we found that builds,

ssues, requirements, system (at runtime), source code, version
ontrol system, and tests are the most reported data sources in
he context of measuring quality in ARSD processes. We found
hat the most relevant data sources are: issues (99 QR and QMI
etrics), source code (85), tests (40), system (at runtime) (40) and
ersion control system (31). In the following table (Table 8), we
21
summarize the metric types that can be measured per each data
source, we also include which QMIs (RQ3) and QR Types (RQ2 and
RQ3.5) can be measured using these metrics. For the QR Types,
we include the QR extracted from RQ2 and the QRs identified in
the analysis of RQ3.6 (analyzing QMI metrics), the last ones are
underlined.

Table 9 summarizes concrete tools providing data, i.e., data
sources, which can be used to measure both QRs and QMIs. It
includes data sources used by the tools reported in the primary
studies (marked as X) and the data sources available on the tools
that are not used in the primary studies (XX), this complementing
data has been extracted from tools websites and documentation.
We have excluded specific tools that are used for specific orga-
nizations or products, e.g., Mozilla Wiki, Mozilla Bug Repository
and Mozilla Source Code Repository used for the management
of Mozilla products, or ServiceNow an ad-hoc tool for backlog
management.

The tool providing more kind of data is GitLab, providing all
the data sources related to the development phase (builds, issues,
source code, tests, and version control system data), the data
sources not covered are requirements (before development) and
runtime data (after release). Other remarkable tools are GitHub
and Jira. GitHub, which provides issues and version control sys-
tem data, can be integrated with external tools that would even-
tually provide source code metrics, builds and tests metrics em-
bedded in the pull request data (e.g., static source code analysis
from SonarCloud, and test and build from TravisCI). Even Jira,
which is mainly an issue tracker system, can be complemented
with some apps, provided in the Atlassian marketplace (Jira’s
producer), e.g., providing test management or continuous inte-
gration (TM4J, Zephir, Jenkins), tools providing test and builds
information.

6. Conclusions

We have conducted a SMS to survey the literature related
to QR management through metrics in ARSD focusing on three
aspects: bibliometrics, QR metrics, and QMIs. Our methodology
relies on Petersen et al. (2015) and includes the definition of
research questions, selection criteria and backward and forward
snowballing as a search strategy. The search returned 61 primary
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studies for analysis and data extraction, from the 3.778 evaluated
papers. 28 papers contain QR metrics (45.9%) and 46 contain QMI
(75.4%), 38 (62.3%) among the 46 contain QMI metrics also.
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From the results found, we have identified research gaps and
challenges that we think that should be addressed to increase the
maturity of the field and to provide a solid base to practitioners:
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Table 11
Data extraction form.
Data item Value RQ

PublicationID First author’s surname plus publication year
Publication Year Integer RQ1.1
Authors’ affiliation In terms of academia, industry or industry-academia collaboration. In the case of industry,

also the list of authors’ company names (all of them)
RQ1.4

Authors’ countries The list of countries of the authors’ organizations (all of them) RQ1.4
Venue Type Conference, Journal, Workshop or Book Chapter RQ1.2
Research Method Empirical (Action Research, Case Study, Controlled Experiment, Experiment, Survey, Other),

Theoretical, Experience Report
RQ1.3

Research rigor The research method of an empirical study, the context, study design and validity aspects.
Adopted from Ivarsson and Gorschek (2011).

RQ1.6

Industrial relevance Industrial relevance of an empirical study: aspects related to the industrial relevance
(subjects, context, scale, and research method) are evaluated. Adopted from Ivarsson and
Gorschek (2011).

RQ1.6

Domain Application domain of the study as reported in the study RQ1.5

For each QR Metric

QR Name Name of the quality requirement(s) as reported in the study RQ2.1
QR Metric Name of the metric used to compute the QR as reported in the study RQ2.1
QR Metric Data Source Source of data used to compute the metric RQ2.2
QR Metric Data Source Tool The name of the tool producing the data used to compute the metric RQ2.3

For each QMI

QMI Name Name of the indicator as reported in the study RQ3.1
QMI Metric Name and/or formula of the factors used to compute the QMI RQ3.3
QMI Metric’s QR Name of the QRs (if mentioned) that are measured by the QMI Metric RQ3.6
QMI Metric Measured Entity Type of measured entity (i.e., product, process, project, resources) RQ3.4
QMI Metric Data Source Source of data used to compute the metric (e.g., issues, source code, . . . ) RQ3.5
QMI Management Tool The name of the visualization tool RQ3.2
lack of a common framework and terminology, lack of metrics
and tools for some QR and QMI and low level of detail in the
definition of metrics.

We think that the information provided by this study may be
aluable to the research on quality models in ARSD as well as
rcos-Medina and Mauricio, who claim that their results can con-
ribute to the definition of a comprehensive quality model (Arcos-
edina and Mauricio, 2019). We have gone a little forward and
ketch a possible way to link quality concepts at different levels
n the discussion section.

From the industry point of view, our collection of measures
nd data sources can serve as a starting point for practitioners
ho want to include quality measurement into their decision-
aking processes. The results of this SMS can be used by the
rganizations to understand which key indicators (QRs and QMIs)
hey need to measure and monitor to improve the quality of their
roducts and processes as well as the data sources and tools that
hey can use.

Conducting this SMS, some questions arise that could be faced
y the research community in the field complementing the gaps
resented in the discussion section. The analysis reported in
his SMS could be complemented by studying which metrics are
pplied to which phases, activities, and stakeholders of the ARSD.
his study could be also replicated for the context of non-agile
ethods in order to provide a wider view identifying which
etrics are specific for ARSD.
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