
Low energy cache memory

implementation with data

compression

Héctor Romero de Blas

Bachelor Thesis

Specialization in Computer Engineering

Director: Ramon Canal Corretger

GEP tutor: Joan Sardà Ferrer

October 2021

Contents

1. Context 5

1.1. Introduction . 5

1.1.1. The project in the context of the FIB 6

1.2. Concepts . 7

1.2.1. Memory technologies . 7

1.2.2. Locality of reference . 8

1.2.3. Cache memory . 9

1.2.4. Cache associativity . 9

1.2.5. RISC and RISC-V . 10

1.3. Problem to be solved . 11

1.3.1. Stakeholders . 12

1.4. Justification . 13

1.4.1. Previous studies . 13

1.4.2. Our target . 13

1.5. Scope . 14

1.5.1. Objectives . 14

1.5.2. Potential problems . 14

1.5.3. Requirements . 15

1.6. Methodology and rigor . 15

1.6.1. Methodology . 15

1.6.2. Validation . 15

2. Related Work 17

2.1. Dynamic Zero Compression . 17

2.1.1. Verilog’s Switch Level Modeling 17

2.1.2. RISC-V implementation of the DZC cache on Verilog 18

2.2. Significance Compression . 18

2.3. Zero-Contents Augmented Caches . 20

1

2.4. Discarded compression methods . 21

2.4.1. Adaptive Cache Compression for High-Performance Processors . . 21

2.4.2. Compresso: Pragmatic Main Memory Compression 21

3. Novel proposal: Ghost Cache 22

3.1. Physical layout . 22

3.2. Design decisions . 24

4. Compression 25

5. Replacement policy 26

5.1. Least Frequently Used . 26

5.2. Compression replacement policy . 27

5.3. Improved cache . 27

6. Testing Algorithms 28

6.1. Test methodology . 28

6.1.1. Verilator . 28

6.1.2. Statistics counters . 29

6.2. Sieve of Eratosthenes . 30

6.2.1. Statistics with first prototype cache 30

6.2.2. Statistics with improved cache . 34

6.2.3. Statistics without calloc . 36

6.3. Trémaux’s algorithm . 38

6.4. Pigeonhole sort . 40

6.4.1. Statistics of the pigeonhole sort 40

6.5. Mergesort and quicksort . 42

6.5.1. Quicksort . 42

6.5.2. Mergesort . 45

6.6. Performance metrics analysis . 47

6.7. Discarded benchmarks . 52

2

6.8. Initial energy analysis . 53

6.9. Static energy . 53

6.10. Dynamic energy . 54

6.11. Design conclusions . 55

7. Integration with RISC-V 57

8. Scheduling 58

8.1. Task description . 58

8.1.1. Control tasks . 58

8.1.2. Theoretical part . 58

8.1.3. Practical part . 59

8.2. Summarized task table . 62

8.3. Gantt diagram . 63

8.4. Risk management . 64

9. Budget 65

9.1. Costs . 65

9.2. Contingency budget and incident management 65

9.3. Total costs . 66

9.3.1. Amortization . 67

10.Sustainability 68

10.1. Ecological footprint . 68

10.1.1. CPU production . 68

10.1.2. Energy consumption of CPUs . 69

10.1.3. FAQ on Environmental Dimension 70

10.2. Economical impact . 70

10.2.1. FAQ on Economic Dimension . 71

10.3. Social impact . 71

10.3.1. FAQ on Social Dimension . 71

3

10.4. Conclusion . 72

11.Conclusion 73

4

Abstract

Energy consumption on CPUs is reaching a point where the heat is becoming

hard to dissipate, and the temperature is hindering the overall performance of the

processors. In addition, the device that feeds the data to the processor, the cache

memory, it is getting larger, and the larger it is, the more power it uses.

In order to solve the energy problem, this thesis proposes a new design of

compressing cache, the ‘Ghost Cache’. The proposal for the ‘Ghost Cache’ tries

to extend another existing cache compressing algorithms in order to compress 3

possible values (0, 1 and -1) in 2 bits. Doing this, we reduced the regular 32-bit

data banks of caches, into a 8-bit data bank. We analyzed 5 different algorithms,

and we tested them on our cache programmed in Verilog to show which algorithms

work better on the cache and which work worse.

Resumen

El consumo de enerǵıa en las CPUs ha alcanzado un punto en que dificulta la

disipación de calor, y la alta temperatura reduce el rendimiento del procesador.

Además, el dispositivo que alimenta la CPU con datos, la memoria caché, está

creciendo, y cuanto más crece, más enerǵıa consume.

Para solventar ese problema, esta tesis propone un nuevo diseño de caché de

compresión, la ‘Ghost Cache’. Esta propuesta intenta ampliar otros algoritmos

de compresión de cachés para comprimir 3 valores distintos (0, 1 y -1) en 2 bits.

De esta manera reducimos un banco de datos de 32 bits a uno de 8. También

analizamos 5 algoritmos distintos, y los probamos en nuestra caché programada

en Verilog para ver en qué casos hay mejoras en nuestra caché y en cuáles no.

1. Context

1.1. Introduction

In the recent decades, computer technologies had expanded and evolved significantly.

Every device, whether it is a computer, a car, or a fridge, has some kind of digital circuit

5

with a processor. This widespread application of computers creates new requirements,

from low-power efficient passively cooled processors, to huge multi core fast processors

that require water cooling. Nevertheless, even fast inefficient processors try to expel as

low heat as possible, allowing the chip to run faster and last longer.

Recent advances in CPU technology have greatly improved the performance of pro-

cessors. This increase is due to technological enhancements, such as miniaturization;

and architectural advances, such as superscalar1 and pipelined2 processors. Processor

performance improvements have outpaced memory performance enhancements. This

difference in performance made CPUs unable to run at full speed while fed by the main

memory, which led to a new memory in the memory hierarchy3 called the Cache Memory.

Modern cache memories are located inside the CPU die, while old CPU caches were

installed on the motherboard. The main advantage of having the cache on-die is that

the latency on that cache will be the lowest possible. The major drawback is that the die

shares the heat spreading device, meaning that cache heat and CPU heat will be shared,

heating both devices and presumably reducing performance and energy efficiency.

1.1.1. The project in the context of the FIB

Historically universities were the pioneers of the Computer Science development.

From hardware to operating systems and software, research on colleges always has

been on the bleeding edge of technology. In this regards, it makes sense to develop

studies about hardware improvements on the hardware department of the ‘Facultat

d’Informática de Barcelona’.

The FIB always has shown a great concern over the environmental impact of comput-

1Superscalar refers to the capability of a CPU of executing more than one instruction on a single

cycle, usually implementing parallelism.
2Another improvement of CPUs that isolates the hardware inside the CPU in ‘steps’, which greatly

increases the maximum frequency of the CPU.
3Memory hierarchy refers to a distinction of computer memories based on their response time and

capacity. Modern computers have, from slowest to fastest: Persistent Memory, Main, Cache Level 3,

Level 2, Level 1 and CPU Registers.

6

ers of the modern age, making the topic of energy and resource efficient caches interesting

to investigate and solve.

I am a student of the FIB and I am very passionate about RISC-V. The idea of making

an open-source computer processor is very appealing as a concept. In addition, the

DRAC4 is a project related to the FIB and the DAC5, making this project a potentially

valuable asset for the development of the European processors.

1.2. Concepts

1.2.1. Memory technologies

We explained on chapter 1.1 the memory hierarchy, but not the reasoning behind it.

In essence, memory hierarchy is created by using a diversity of physical storage tech-

nologies, with their advantages and disadvantages. The more remarkable technologies

are the following:

Magnetic Storage: one of the oldest persistent memory technologies still used to

date. It has the worst latency, due to the need for rotating platters and a magnetic

head that moves to read each segment of the platter.

Flash: flash memory is the other widespread persistent memory technology used

today. Either pen-drives or solid state drives are made with one of the two MOS-

FET6 flash implementations, NAND or NOR7 flash.

DRAM: dynamic random-access memory is a volatile semiconductor memory con-

sisting of a MOS transistor and a capacitor. DRAM memory is the foundation of

the main memory, usually referred as the RAM memory of a computer. It is also

used on high speed Solid State Drives as a cache, to improve read and write speeds.

4Designing RISC-V-based Accelerators for next generation Computers, an European project that

uses RISC-V architecture to develop general purpose and high performance processors.
5Department of Computer Architecture
6Metal-oxide-semiconductor field-effect transistor, a type of transistor made by oxidating a semicon-

ductor, i.e. silicon. It is the most produced type of transistor to date.
7NAND or NOR flash describes the type of logical gate used for making the memory.

7

DRAM chips are used on the main memory because it has great speed and the en-

ergy consumption is reasonably low. The distinguishing factor of DRAM memory

is that uses capacitors, which need to be cyclically re-charged to hold their value.

SRAM: static random-access memory is the fastest volatile memory used today.

It uses latching technology, which consists usually in 6 transistors that constantly

feedback and hold a data value inside the memory cell. SRAM cells use a lot of

energy8 compared to other memory technologies. They also use more transistors

than other, making them less dense and more expensive to manufacture. All this

caveats turn SRAM a non viable option for massive data storage, and they are the

reason why we only find SRAM in the cache and registers of a CPU.

1.2.2. Locality of reference

In order to accelerate memory accesses, applications are characterized. The most

common characteristics of all software are considered the ‘locality of reference’. This

term refers to the tendency of the processor to access certain data repeatedly on short

periods of times. The two main types of localities are:

Temporal: when a memory address is referenced, chances are that same address

will be referenced again in a short period of time.

Spatial: when a memory address is referenced it is likely that another close memory

value will be accessed. This is due to data being stored contiguously on the mem-

ory, both arrayed data and spare variables, making memory accesses to contiguous

memory addresses very common.

8Energy consumption can greatly change on SRAM chips depending on how many times they are

accessed. The idle energy consumption of a SRAM chip can be negligible, but high performance SRAM

uses a lot of energy when accessed at high frequencies.

8

1.2.3. Cache memory

Cache memory is a small fast memory designed to exploit the ‘locality of reference’

of computer software. This memory reduces greatly the latency of accessing data from

the main memory. It stores the recent accessed memory values on SRAM data cells.

The way cache memory keeps track of which memory entries are valid, and which

addresses correspond to a certain cache line is with metadata, usually holding a presence

bit, a validity bit, and then storing the address. Also, certain types of caches hold the

address in different ways, due to the cache working method.

Another distinction made on the cache memory is the level. There are 3 levels: L1,

L2 and L3. The lower the level, the smaller the memory gets. This hierarchy is made to

further exploit the ‘locality of reference’. Increasing the size of a cache also increases the

complexity for accessing the data value, so the smaller it is, the faster it can transmit

valid data.

Once a data block gets pushed out of the L1, it gets stored on the L2, and the same

happens on the L2 cache. This helps to hold the data close to the CPU instead of

sending the blocks directly to main memory. It also increases the overall capacity of the

cache memory.

1.2.4. Cache associativity

There are 3 common types of cache memory, determined by their associativity. Asso-

ciativity is the policy of structuring memory addresses in the cache. In order to enforce

this strategy, memory addresses are interpreted by sections. On each policy, sections are

delimited differently, but the common idea is using the 2-4 latest bits of the address as

an offset9 and the higher bits of the address to know which data is being stored.

The associativity types are the following:

Direct mapping: the simplest way to store data in a cache. It can be seen as a

single line matrix. The way it uses the lower bits of the address to choose the

9Every cache line has multiple bytes, the offset determines which byte of the line represents the

address. E.g. if a cache line can hold 4 characters there would be 2 offset bits.

9

cache line creates conflicts when directions are close10 and the lowest bits coincide.

Hence, this type of cache has the lowest hit-rate11 of all.

N-Associative: to keep it simple, an N-associative cache is a set of various small di-

rect mapped caches, that circumvent the limitation of close equal-ending addresses.

It does this by having N number of ”sets” that target the same addresses. Then,

each set is assigned to a different memory space. E.g. 0x0000, 0x4000, 0x8000 can

fit on a 3-associative.. The only drawback of this solution is that requires more

hardware than a direct cache, as well as a replacement policy of which associative

sets should be invalidated and reused. However, 8-associative caches are the more

common nowadays due their advantages (better hit-rate) weighted against their

complexity.

Fully Associative: a fully associative cache holds the whole ”Tag”, meaning that

the whole address (except the final offset bits) are stored in the line metadata,

making this cache capable of holding any data, as close or far apart they might

be. The major issue is the replacement mechanism being very complex and time

consuming, as well as energy consuming. It also requires more hardware, making

it the most expensive of the three, and it does not give a more consistent hit-rate

on all scenarios.

1.2.5. RISC and RISC-V

There are two main philosophies into designing the instruction set12, CISC and RISC.

Complex Instruction Set Computers emphasize the importance of dedicated hardware

to create a lot of instructions. CPUs created with CISC designs tend to be very complex,

high power, high performance processors. The advantage over RISC is that having more

10If the cache holds ‘n’ bytes, each ‘n’ addresses will coincide in line
11Hit-rate means how many times the demanded value is in cache over how many times it is not
12Abstract model that represents each operation executed in a processor as an ‘instruction’, that

describes the effects and the required operands for an operation. It also describes data types, registers

and inner workings of the processor, and Input/Output relevant information.

10

instructions, one for each job, creates less bloated and faster software.

On the other hand, Reduced Instruction Set Computers take the opposite idea. It

uses a smaller instruction set, with as little number of instructions as possible, to keep

the hardware simple. This creates small, energy efficient processors that usually rely on

accelerators13 for making complex calculations. This processors rely more on software

implementations to compensate for the lacking instructions, which create larger codes.

However, as superior as CISC might seem, usually the instructions present on com-

mon software are in CISC as well as in RISC, and the lacking instructions are compen-

sated with the acceleratiors as aforementioned. In addition, RISC CPUs are simpler in

design, and are more power efficient. All of those reasons explain the recent rise of RISC

architectures like ARM and RISC-V.

RISC-V[11] is a free and open source RISC instruction set. It is becoming a widespread

architecture due to it being free, open source, and having implementations intended to

run on FPGAs14.

1.3. Problem to be solved

The problem presented in this Degree Final Project is the excess of heat production

and energy consumption on modern caches. As stated on chapter 1.1, nowadays cache

memory shares die with the main processor of the computer. This creates inherent heat

and power transfer between them, decreasing power efficiency and performance due to

thermal throttling15.

To put in context the type of energy consumption CPUs work with, we show this

graph. In it we can observe how CPU improvements increase power density in processors

13Small hardware connected directly to the CPU that processes complex operations with a narrow

purpose, e.g. a video decoder or a cryptography encoder
14Field Programmable Gate Array, a technology that allows to configure chips architecturally, in

opposition to regular chips that are only configurable once, when they are built.
15Reduction in CPU frequency due to overheating. One of the limitations for CPUs is temperature.

Although 130◦C is the theoretical limit, CPUs do not exceed 100◦C, and they dynamically reduce the

frequency to keep the temperature under the threshold.

11

until it got close to the power density of a nuclear reactor.

Figure 1: Power density of CPUs

[5]

As shown in figure 1, if the increasing trend continued, CPUs could have reached

power densities on excess of nuclear reactors by the 10nm lithography16. However, this

never happened. CPU manofacturers started taking another approach for increasing

the performance of CPUs: they increased the number of processing cores and the IPC17

rather than increasing frequency.

1.3.1. Stakeholders

The stakeholders involved in this project are the director and the researcher. The

director of this project is Ramon Canal, associate professor and former Vice Dean of post-

graduate studies at the ‘Facultat d’Informatica de Barcelona’. The researcher, Héctor

Romero de Blas, will research, design, document and implement a cache with the aid

and approval of the director.

This project benefits the RISC-V community, as well as the cache designing commu-

nity. It gives access to the study and design of a working compressing cache that can

16Term describing the size of the transistors of a given chip.
17Instructions per Clock, meaning how many instructions can perform a CPU on each clock cycle.

12

improve energy efficiency compared to the current designs.

1.4. Justification

1.4.1. Previous studies

As stated on chapter 1.3, in the recent years there have been grand efforts to in-

crease power efficiency of the computers, due to the impossibility of augmenting their

performance with previous methods.

There are a lot of new studies that propose some kind of energy optimization hardware-

wise, such as the Dynamic zero compression for cache energy reduction[13], or the Sig-

nificance Compression[8] papers. We will analyze these papers on chapter 2, with proper

evaluations to state why we cannot implement exactly these options, but we can extract

the main ideas.

As a summary, Dynamic zero compression requires alterations of the transistor design

at a level that our tools would not allow it. Significance Compression also falls out of

our scope, due to requiring a general alteration of the inner workings of the CPU, not

only the cache.

The most implementable idea is the Zero-Contents Augmented Cache[2], and our

proposal will be heavily influenced by this option.

1.4.2. Our target

The main problem with all the theories aforementioned is that they have very limited

applications, relying on the presence of zeroes on memory. This cache memories are not

appealing to implement due to the small benefits they give compared to the complexity

to implement.

Our goal is to improve this design, making compression caches more useful, thus

more appealing for the grand market CPU manufacturers.

13

1.5. Scope

1.5.1. Objectives

The main objective of this project is to propose a compressing cache that reduces

energy consumption compared to current caches. This project can be divided as a

theoretical part and a practical part.

The theoretical part will be an analysis of the currently proposed methods to

create a compressing cache, and then present our conclusions and the best option

to implement. We must provide a thorough description of our proposed option,

with diagrams, schematics, etc.

The practical part will be implementing a working prototype of cache in Verilog18.

For experimental purposes, we also want to include the cache implementation on

a RISC-V CPU, accommodating the data interfaces to the standard for RISC-V

32bit.

1.5.2. Potential problems

Time constraints. The theoretical part is doable in the provided time, but the

practical part can be very time consuming. The complexity of including a new

design in a CPU can be hard, because we will need to understand the way the

CPU is built by the tool-chain, and then include the new part.

Inclusion in a CPU. As stated before, the inclusion of the cache on a working CPU

can be challenging on itself, not only on time, but on difficulty. We will need to

change the way Verilog inserts data in a simulation of a third-party developer.

Failing to the premises. If our cache does not reduce energy reduction, or it

reduces it at the expense of a lot of performance, then our design does not meet

18Verilog is a hardware description language. It is similar to a programming language, but it does not

compile to an executable file. Instead, other tools known as synthesis tools create a circuit as described

by Verilog

14

the expectations. This kind of conclusion is not uncommon on research projects,

meaning that not all researches end up with positive outcomes. The project will

document all the point where it failed and why.

1.5.3. Requirements

In this section we will enumerate the functional and non-functional requirements of

the project.

Functional requirements:

• Compress data.

• Decompress data.

• Interact with the processor.

Non-functional requirements:

• Compression and decompression without performance compromises.

• Data integrity of the compressed bytes.

• Capacity size and capabilities of industry standard caches.

1.6. Methodology and rigor

1.6.1. Methodology

The methodology that I will use is the Scrum framework. The core concept is to

incrementally build the project, from basic ideas all the way up to the complex final

product. It accepts that the problem cannot be comprehended fully upfront, thus focus-

ing the efforts on the emerging requirements.

1.6.2. Validation

The main target of the practical part is to validate the design of the theoretical part.

When we implement the concept proposed on the Project we will be able to gather

15

valuable information about how successful is the design.

The practical part will be executed and validated on a Verilog Simulator, that inter-

prets the code, correcting for errors, and then simulates the whole design.

16

2. Related Work

2.1. Dynamic Zero Compression

One of the methods of cache compression is Dynamic Zero Compression [13]. This

method aims to reduce energy consumption on the cache when reading or writting zero-

bytes. DZC is a very effective method due to the prevalence of zero bytes present

in caches. According to the DZC report’s abstract[13, p.1], this method is capable of

reducing cache energy consumption by 26% on the data cache and 10% on the instruction

cache.

Implementing the DZC requieres making a few hardware changes to existing devices

on the cache. One of those changes is adding additional bits to the cache to represent

the presence of a zero-byte. This bit is called the ZIB (Zero Indicator Bit). 4 ZIBs are

needed in total to represent each 32bit number. Other changes require modifications

in the CPU store data driver, the Word Line Gating or the addition of a ZIB sense

amplifier to the cache.

There are two problems when implementing this method:

2.1.1. Verilog’s Switch Level Modeling

The changes aforementioned require modifications at the Switch Level, wich means

designing circuitry at the transistor level. For instance, the Word Line Gating changes

that prevent bitline discharge when reading zeros require adding PMOS and NMOS

transistors directly to the SRAM cells that make each bit of the cache.

Although Verilog is suited for Switch Level Modeling, Verilog’s approach makes de-

signing this changes very difficult. Verilog allows NMOS and PMOS transistors to be

added as devices in every module, but Verilog doesn’t have basic things requiered in

SLM like VDD / GND cable systems. This is due to the design philosophy of Ver-

ilog. The language is suposed to describe the workings of hardware on a more abstract

way (precisely at the Register-Transfer Level), and power, grounding and other things

inherent to SLM design are delegated to the Synthesis tools.

17

The way Verilog expects you to describe the memory is to use the keyword ”reg”, wich

defines a variable. Then the implementation of that variable depends on the interpreter

that reads the Verilog file.

All the avobe suggests that Verilog is not the best tool suited when working with

SLM, and will hinder the developement of our cache. In fact, it is very uncommon

to work in SLM in Verilog in the industry of Hardware Design. SLM seems to be

implemented on Verilog as a tool to test certain circuits, but not for final production.

2.1.2. RISC-V implementation of the DZC cache on Verilog

At the current times, RISC-V has gained a lot of popularity due to it’s use on FPGAs.

RISC-V provides a variety of CPU designs: simplified and minimalistic cores, cores with

extensions such as FPUs or MMUs. . . This versatility combined with the reduction of

costs of FPGAs are the reasons why RISC-V is getting this popularity.

Having this in mind, the implementation on this paper should take into account the

feasibility of the cache with the current technologies.

FPGA boards usally come with an SRAM module. This is because creating an

SRAM in an FPGA is impossible. FPGAs work at a Logic Gate level, whereas in order

to create an SRAM cell you need to work at a transistor level. This is a major roadblock

on the implementation of DZC.

Regardless of FPGA limitations, having a SLM modified SRAM cell integrated on a

non SLM CPU seems challenging at the synthesis level. Conecting the power signals to

those generated by the synthesizer is a very complex task, or even impossible.

This two problems render this DZC approach non-viable.

2.2. Significance Compression

Another promising compression method is Significance Compression. The paper[8]

studied in this section reports a reduction of activity 30-40% for each pipeline. The

main idea conveyed in this paper is to reduce inter-stage data traffic at all stages of

the pipeline using ”Significance Compression”. The study focuses on the reduction of

18

dynamic energy consumption, due to it being the primary energy consumption of the

current CMOS transistor technology.

The compression proposed is basically sending only the significant bits through data

lines. The paper explains various encoding methods for data representation[8, p.2]. The

report proposes using a granularity of byte for simplicity, as well as adding two extension

bits to mark how many extension bytes are. The final proposition is a three-bit extension

scheme with more edge cases covered, and with only a 9% overhead. This compression

would be applied to data, as well as cache tags.

One important point on this paper is that the methods proposed reduce energy con-

sumption at the expense of performance. It is not forseen for our proposed compressed

cache to reduce performance in a significant manner. The introduction of the report[8,

p.1] states that 30-40% of activity can be reduced at the pipelines provoking a 79% of

CPI(cycles per instruction) on the most basic implementation, but wider pipelines can

get only a 2-6% penalty.

Chapters 2.3[8, p.3] and 2.6[8, p.5] are the Instruction Cache and Data Cache pro-

posals.

The Instruction Cache requires storing the instructions in permuted forms. Un-

fortunately, the report is made for MIPS ISA, and the methods described for

permutations are designed for that architecture. Due to our proposal using RISC-

V architectures, other permuting methods are required. Finding those methods

would require further research.

The Data Cache uses the three-bit extension to reduce drastically the activity of

the cache. A few benchmarks show a reduction of 31% for the data array and 1%

to the tag array.

The only major drawback for this implementation is that our cache optimizations

aim to affect only the cache itself. We want a cache that can be incorporated on any

design of RISC-V 32-bit processor. In order to make the optimizations described on this

paper, the pipelines, data buses and other interfaces should be changed in size, as well as

19

adding aditional hardware to compress and uncompress at all stages (or at least at the

cache input, output and ALU/REGFILE stages). Nevertheless, this paper make great

proposals, such as the three-bit scheme, that will be added to our final design after a

small redesign to suite our purposes.

2.3. Zero-Contents Augmented Caches

Yet another twist to exploiting the presence of zeroes in the cache. The Zero-Content

Augmented Cache, or ZCA, consists of a convenional cache and a specialized cache for

memorizing null blocks, the Zero-Content Cache. The paper of this proposal claims that

on applications manipulating large amounts of null data blocks, ZC reduce up to 81%

the miss rate and memory traffic, specially the write-back traffic[2, p.4]. It also claims

to not create any performance loss for applications with low null block rate.

The ZCA is a very simple solution at a Register-Transfer Level, wich makes it very

interesting for our purposes. One advantage of this method is that we can create huge

Cache memories without using as many transistors as in regular Caches. This would

reduce the energy consumed by the cache.

The biggest problem of this cache is that the application of this theory works best only

in the presence of huge data structures with a lot of consecutive null values. Another

problem is that this solution is heavily intended for Data Cache, meaning that this

method is innefective on Instruction Caches. It is not as common to find null values on

Instruction Caches.

The last problem, common to all zero-based compression, is the fact that the ZC

is a ”Read-Only” cache. When a non-zero value is stored in the ZC, the block gets

invalidated. This requires additional hardware to synchronize the two caches and to

mantain the coherence of both. A potential issue of this hardware is that, for instance,

if zero-values are read and put into the ZC, they can be immediately modified, thus

invalidating the block, requiring a new block on the regular cache. This new block could

also invalidate recent data of the regular cache. If this ”worst case scenario” is prevalent,

the ZCA could be a very slow cache. This problem will be addressed on our proposal.

20

2.4. Discarded compression methods

2.4.1. Adaptive Cache Compression for High-Performance Processors

The Adaptive Cache Compression for High-Performance Processors paper[1] proposes

an interesting method of storing compressed lines on the L1 with a 2:1 compression ratio,

thus doubling the L1 capacity.

The main problem on this cache is the reliance on the L2 cache. The L2 is the

cache who tracks whether compression is viable or not in a given application. The final

implementation of the cache on this paper does not have a compressed L1, it has a

compressed L2 instead. All the aforementioned renders this solution not suitable for our

proposal.

2.4.2. Compresso: Pragmatic Main Memory Compression

The Compresso[4] method relies on Memory Compression, rather than Cache com-

pression. The reason why we analyzed this paper was to determinate if the compressed

data could be copied from the main memory to the cache still compressed. It seems that

the three main compression methods (Frequent Pattern Compression, Lempel-Ziv and

Base-Delta-Immediate) would require major cache modifications to accommodate the

compressed data, making this solution also non viable. It would need more SRAM cells

to hold the dictionaries, or additional hardware for decoding the B∆I[3], which could

severely increase the time of cache hit. B∆I compression is also a dynamic compression,

which could compress or not compress, depending on the values of the data.

21

3. Novel proposal: Ghost Cache

From chapter 2 we gathered some ideas that can be implemented in a single cache,

further improving the design of the compressed cache. This cache will have to imple-

ment compression at a high level, as stated in chapter 2.1. It will also exploit the

characterization of software, for instance, the presence of zero-values.

Due to the Register-Transfer level implementation, our plan for reducing energy

consumption is to maintain the capacity of the cache while reducing the number of

transistors in it, with a method similar to the chapter 2.3.

Our Proposed method is the Ghost Cache, an 8-Way Associative Data Cache with

4 blocks of regular Cache memory, and 4 ”Ghost Caches”. A ”Ghost Cache” is a Cache

with a smaller memory module tied to it. The size of this memory will be of 2 bits per

byte, adding into 8 total bits to represent a 32 bit integer. Having 2 bits per byte adds

granularity enough to support the usage of 8 bit, 16 bit and 32 bit numbers.

This proposal would be similar to the chapter 2.3, but instead of only storing Null

values, the GC can also store another value, either 1 or -1.

3.1. Physical layout

Our cache will have three distinct parts: the logical circuitry, the storage device and

the interfaces.

The logical circuitry will compute the necessary data to detect hits in cache memory,

assessing the next state, calculating the next victim for the replacement policy and other

housekeeping calculations for running the cache microcode.

The storage device is divided into two main banks: compressed and non-compressed.

There is a tag, a validity bit and a data array on each bank. The main difference is that

on the non-compressed bank, the bank holds 32 bits, whereas the compressed one holds

8 bits.

Interfaces on this cache are compatible with the cv32e40p LSU (Load Store Unit).

The following figure shows the diagram of the cache:

22

Figure 2: Cache design diagram (Own compilation)

23

3.2. Design decisions

In order to justify the decisions taken in the making of the design of the cache, we

have to take into account the philosophy we applied: keep it simple.

The best way to not over-complicate our design is to understand the purpose of our

cache. This cache will demonstrate the effectiveness of our compression algorithm on

the L1 cache. It will not be the fastest, nor the most memory-cache bus efficient. By

having a simple design, we will be able to try some changes in replacement policies or

other parts of the algorithm relatively easy.

In addition, the first iteration of the cache will allocate all the compressible data on

the compressible data banks, and vice-versa. This is in order to analyze the effectiveness

of the compression, how much data can be compressed, and other statistics.

24

4. Compression

Our compression algorithm will allow 3 different 8 bit values to be compressed into

2 bits:

0b00: This corresponds to a 0x00.

0b01: This corresponds to a 0x01.

0b10: This corresponds to a 0xFF.

With this granularity of compression we allow various things, one of them being

compressing an array of booleans. Arrays of booleans are widely used in a large variety

of algorithms. Furthermore, optimization techniques, such as memorization, usually

relies on boolean arrays. In chapter 6 we will describe two algorithms that represent

best scenario use-cases for our cache.

In case of being a C like language, where a boolean uses 32 bits instead of using 8

bits, it will default to use too much memory. However, our compression also allows bools

at 8 bits, which means that manually specifying a char/unsigned char based structure

would be optimal.

25

5. Replacement policy

5.1. Least Frequently Used

The replacement policy used on our test cache is the Least Frequently Used (LFU).

The main reason why we use this replacement algorithm is its simplicity waged against

its effectiveness. We want a rather simple algorithm in order to implement the logic for

compression on top of the replacement logic, and then testing its efficiency. Our main

target of this project is to find out weather compression is useful or not in a cache, so

using a complex replacement policy is not necessary.

The implementation of our LFU is made as follows:

Each cache line has an 8 bit access counter.

When a cache line is accessed, the corresponding access counter gets increased by

one.

When a cache block is taken from memory, the access counter is reset to 1.

Every cycle, the LFU logic calculates which is the least frequently used associative

block. It does this by using the address sent by the CPU. We have a separate LFU

minimum index for the non compressed cache, and another for the compressed.

Although a replacement policy is not strictly necessary on a n-associative cache, we

included one to further improve the hit probability and to simplify the process of memory

fragmentation when we have an array with mixed compressible and non-compressible

data. We want to allow the case of an array being at two different associative blocks

at the same time, but this could mean an expulsion at the compressed side or on the

non-compressed. Thus, allowing the usage of other associative blocks, using LFU rather

than the fixed index logic, would in theory yield better performance.

26

5.2. Compression replacement policy

Due to our cache having 4 lanes of non-compressed data and 4 lanes of compressed

data, we need to establish some special behaviour between them. More specifically,

we need to discuss what to do when a compressed memory value changes to a non-

compressible, and vice versa.

On the case of a compressed data that becomes non-compressible, we will use the non-

compressed LFU victim index to replace the least used value on the non-compressible

cache data banks. We will also liberate the compressed block, setting the valid bit to

zero. The reason behind this is that we need to keep the most recent value of the data.

If the value goes to a non-compressible value, it needs to still be on the cache.

On the reverse case, a non-compressible data that becomes compressible, we will

not move it on the compressed cache. The reasoning behind it is that if the value was

non-compressible, chances are the data type being stored is coincidentally compressible,

and will become non-compressible again. In order to save cycles and possible expulsions,

we will not swap from cache banks.

5.3. Improved cache

After the initial tests with the algorithms described at chapter 6, it was clear that

cache size would hinder greatly performance metrics. After a brief discussion, we in-

creased the cache line number, from 64 lines / associative block to 1024, making it a

32KB L1 cache. This puts the overall capacity of the cache up to industry standard.

The change was relatively simple due to the use of parameters and defines19. Once

all the ranges were recalculated (e.g sectioning the address to create the tag, index and

offset).

19Both parameters and defines are Verilog mechanisms to set numeric constants, to then apply on

the code, e.g. the number of lines or the range of bits that should take from an input

27

6. Testing Algorithms

6.1. Test methodology

During the whole development for the cache, we used Icarus Verilog as our test

platform. The reason why we used Icarus is because it is faster to write small changes,

and Icarus uses the verilog language to program the tests. For testing if it works or does

not work, it is a great tool. It is also very useful when you are making constant changes.

However, the testing requirements changed when we wanted to test algorithms. We

needed a more programming focused language to develop the algorithms and then testing

the cache.

6.1.1. Verilator

In order to accommodate the new requirements, we changed our testbench software

from Icarus Verilog to Verilator. Verilator creates a representation in C++20 of your

designs written in verilog. This will allow us to program any algorithm, and then use

our cache as memory in order to get the statistics.

All the information regarding the algorithms, as well as the pseudocodes21 come

from Wikipedia[6], GeeksforGeeks[10] and Rosetta Code[12]. From these pseudocodes

we elaborated codes that interacted with the cache. We made helper functions to manage

all the memory interactions with the Verilator generated cache simulation model, as well

as implemented a basic stack-based memory management system in order to allocate

dynamic memory on some algorithms that required it. These helper functions are the

ones that also analyzed and categorized all the values that transited the memory bus,

and the Verilator cycle clock gave us the number of clocks passed for all interactions.

20A low level general programming language used primarily to make efficient software.
21A pseudocode is a description step by step of an algorithm written in plain English instead of a

programming language.

28

6.1.2. Statistics counters

In order to obtain the statistics, we added some hardware counters, and we modified

the cache in order to write to those counters according to what happened. We have a

counter for:

Hit counter: counts how many hits are in the non compressed cache side. We

consider a hit as every memory access with the validity bit to one. This means

that this block was red from the memory on a prior access.

Miss counter: count how many misses are in the non compressed cache side. We

consider a miss as every memory access with the validity bit to zero. This translates

to reading a new address as well as writing to a new address.

Chit counter: counts how many hits are in the compressed cache side.

Cmiss counter: counts how many misses are in the compressed cache side.

Swap counter: counts how many times we change a compressed value to the non

compressed side of the cache due to the data changing from a compressible value

to a non compressible value.

SwapEx counter: counts how many swaps occur that produce a block expulsion

on the non compressed cache.

In addition, we want to further explain how the cache determines whether a value is

compressible or not. When we are writing an int to the memory, we are able to know if

we can compress it in situ. However, in the case of writing a byte or a short, it might not

be as straight forward. If what you are writing is not compressible, then it will not be

compressible at all. However, if it is compressible, we need to ask to the main memory

for the rest of the data block, to check if it is still compressible or not. This means that

if we write a compressible data, but the block is not compressible, we will count this as

a non compressible miss. On reads, we also need to wait for the memory to know if it is

a cmiss or a miss.

29

6.2. Sieve of Eratosthenes

The Sieve of Eratosthenes is an algorithm for calculating the prime numbers between

2 and a given value (n). The name of the algorithm alludes it’s creator, Eratosthenes of

Cyrene, and it is dated around the 3rd century BC.

This algorithm is often used as a quick comparison benchmark, due to the memory

complexity and ease of implementation. Furthermore, it is a very flexible algorithm,

being able to benefit from things like lazy evaluation, making it more valuable in bench-

marking optimizations.

The time complexity of the classical sieve of Eratosthenes is around O(n log log n),

although there are CPU optimizations. However, the biggest drawback for this algorithm

is memory complexity. It needs to hold the entire range of numbers that are going to be

used22 on a Boolean array. Some memory optimization techniques allow the reduction

on memory complexity to O(
√
n

logn
).

This memory requirement makes our cache a very appealing solution. It can double

the effective cache storing capacity without doubling the physical cache resources. This

will effectively double the cache hit probability.

6.2.1. Statistics with first prototype cache

The following plots show the statistics of the cache while executing the Sieve of

Eratosthenes:

22Although the lazy evaluated version might help to mitigate this, it will hold until the largest used

value, which could lead to the same scenario as the non lazy evaluated.

30

Figure 3: Eratosthenes with N=100 (own compilation)

Figure 4: Eratosthenes with N=1000 (own compilation)

31

Figure 5: Eratosthenes with N=10000 (own compilation)

On the first plot, figure 3, we can observe a very interesting behaviour. The hit rate

stays exactly equal on both byte and int variant, but misses are a lot higher on the

int side. This is due to the Erathostenes sieve invoking a calloc system call (a system

call23 24 that allocates dynamic memory25 with all values initialized at 0). When we

allocate memory and set it to zero, we miss every time we bring a block from memory26.

However, if we use a byte structure, we allocate less int blocks (n
4
because each int

contains 4 bytes), meaning that we miss less. If on the other hand we reserve int blocks,

we will use effectively 4 times more memory (n). This is clearly shown on figure 3 where

23System calls are functions that demand resources to the operating system, such as memory or access

to a device like the screen or the keyboard.
24It must be noted that the calloc implementation on our cache writes ints in order to be more

efficient.
25A type of memory reserved during a program’s execution specially design to be versatile on size.
26In our cache design, we do not bring a block from memory if we write a int as an optimization.

This is because every line holds an int and if we write an int we will not lose any data. The only reason

for bringing data from memory is when you write a byte or a short. You do not want to loose the data

adjacent to the written data, thus you need to take from memory the rest of the block. Nonetheless

this will not affect our statistics because we count this interaction always as a miss. If we do not have

a block valid on the cache, it is a miss after all.

32

we have 25 misses for byte and 100 misses for int. The rest of accesses hit on the cache

because on the process of initializing everything at zero, we brought the data to the

cache and it is all present due to the size of the cache fitting all the 100 lines.

Both figure 4 and 5 show a flaw on our prototype cache, the size. When n grows,

the miss rate grows very quickly. This also corresponds to the algorithm accessing very

disperse memory locations on a wider range of addresses. It was at this point on testing

that, after consulting with the director, we agreed to increase the memory cache size to

1024 lines per associative block. The rest of the tests will be performed on the improved

version of the cache.

This two figures also show the benefit of using byte over int. As expected, using

a data type 4 times smaller than another yields a better hit rate, and a lower overall

memory access due to the aforementioned behaviour of calloc.

Regardless of the size, we can see that the compressed cache can hold all the data used

on the Eratosthenes sieve, making it 100% efficient on our cache. In order to increase

the hit rate, we should either make the cache larger, or consider holding compressible

data on the non-compressible side of the cache.

The following plot will show the data values that were sent between the cache and

the CPU while executing the algorithm:

33

Figure 6: Eratosthenes data values (Own compilation)

As expected, the algorithm only uses a 0 and a 1 as values in a Boolean array.

6.2.2. Statistics with improved cache

The following plots show the statistics of the improved cache with 1024 lines per

associative block while executing the Sieve of Eratosthenes:

Figure 7: Eratosthenes with N=100 (own compilation)

34

Figure 8: Eratosthenes with N=1000 (own compilation)

Figure 9: Eratosthenes with N=10000 (own compilation)

With the new cache design, we expected to see a better hit rate compared to the

old version of cache. While examining the results, we can see that on n = 100 have the

same exact statistics (figure 3 and figure 7). This is an expected outcome, because for

small n values, both caches should behave exactly the same.

On figures 4 and 8 however, we see a new difference. The hit rate is much better on

35

the new cache, while in the old cache is approximately 48.7% worse. Consequently, we

can deduce that our cache resizing was successful, and that our new cache will be able

to handle bigger workloads.

Lastly, figure 9 shows a big improvement on the byte test and not a not so big

improvement on the int over the results in figure 5. This is expected due to the int test

exceeding the overall cache size. With these tests we established that our new cache

is better performing than the old one, and that the interaction between main memory

stills intact, meaning that data does not get corrupted on memory transactions.

6.2.3. Statistics without calloc

The Eratosthenes algorithm requires a memory region that guarantees all values to

be 0. On a regular computer, this region is obtained using the aforementioned calloc

system call. However, on our testing methodology we control the initial state of the

cache, and the current setup is to have all the memory starting at 0. This means that

we could theoretically execute directly Eratosthenes without the system call.

Nonetheless, we do not value the following test as a valid, representative performance

metric of our cache on Eratosthenes, but rather we value it as a test to weather our

theory about the calloc creating the difference in C MISS on the different tests (theory

described at the big paragraph on figure 6.2.1). We think that it is very important the

complete understanding of the results in order to reach correct conclusions. Thus we

need to check if our guesses and the results coincide.

The following two figures show the tests without a calloc:

36

Figure 10: Eratosthenes with N=100 (own compilation)

Figure 11: Eratosthenes with N=1000 (own compilation)

Both figure 10 and 11 show the exact same proportion of hit and miss for each data

type. Thus, we find the calloc to be the culprit in the discrepancy of misses on the prior

tests.

37

6.3. Trémaux’s algorithm

The Trémaux’s algorithm is a maze solving algorithm that relies on marks. It is an

efficient maze solving method that guarantees to give a path for all well defined mazes,

although it might not be the shortest path possible.

The reason why we mention this algorithm is that it uses 2 possible marks, meaning

that the array won’t be necessarily of bools, rather some data type that allows 3 different

numbers, a short for instance. This method proves the improved versatility of our

cache compression policy. You could implement this algorithm with two arrays of bools

instead of one of shorts, but this would hinder performance. Our cache is pseudo27 8-

way associative, meaning that the CPU can access 8 different bool arrays at the same

time, but having two arrays would effectively double the amount of memory accesses,

which would also double the amount of cache misses, thus increasing the overall energy

consumption of the algorithm.

Another reason is that the Trémaux algorithm could be interpreted as a more complex

version of a broad-first-search or a deepth-first-search algorithm28. This is because the

Trémaux algorithm shares the core principle of marking visited corridors, but it uses a

three state matrix instead of a boolean matrix, increasing efficiency of finding an exit

at the expense of using more memory than the BFS or DFS. Thus, this algorithm is

representing also a worst case scenario of the performance expected from those BFS and

DFS, due to more memory complexity.

This algorithm works as follows:

You never go through a passage with two marks.

You mark once every path you follow. This mark is at every end of the passage,

meaning that you will have a mark on the entrance and another on the exit of the

passage.

27It’s only 8 way associative if the data used is compressible and non-compressible at the same time

by the algorithm, otherwise it is effectively 4 way associative, and stores half of the capacity.
28BFS and DFS are both pathfind algorithms that usually use a boolean array to check whether a

given position has been visited or not.

38

If you find a junction without marks, choose a passage and mark it.

Else if the path that lead you to an intersection with all marked entries, you turn

around, marking again your used path, making it a two mark entrance.

Else if that intersection has free entries instead, traverse one arbitrarily.

When the algorithm reaches the exit, the only marked once paths will give the valid

path from the entrance to the exit.

Figure 12: Trémaux solving a 32 by 16 maze (own compilation)

Figure 12 we see a very high hit rate of both the compressed and uncompressed cache.

This means that our cache is working for the purpose that was especifically designed:

reading an uncompressed array (the map) and a compressed array (the byte array) at

the same time. Figure 13 shows exactly that data value distribution. The 1s and 255s

are the compressed values, and the values between 2 and 254 are the map. Zeroes are

both present on the map and the compressed array.

39

Figure 13: Trémaux data values (own compilation)

6.4. Pigeonhole sort

The pigeonhole sort algorithm is an algorithm that sorts arrays on a very time effi-

cient manner (O(N+n), where N is the range of key value and n the number of items to

sort). This algorithm uses the pigeonhole principle29 to reduce time complexity into one

of the most time efficient sorting algorithms in existance. However, this fast speed can-

not be achieved without drawbacks. Those drawbacks manifest in a very high memory

complexity compared to the other sorting algorithms (O(N + n), when the most com-

monly used sorting algorithms use O(n), O(log n) or O(1). This characteristic makes

the pigeonhole sort an interesting testbench for our cache.

6.4.1. Statistics of the pigeonhole sort

The following figure shows the statistics for the pigeonhole sort on our cache:

29If n items go into m containers, and there are more items than containers, at least one container

must contain two or more items.

40

Figure 14: Pigeonhole sort with N=100 (own compilation)

This data shows a mixed usage between the non compressed and the compressed

cache. However, there are more accesses to the non compressible zone, which make

sense because our algorithm should not contain a lot of compressible data. This be-

haviour is probably due to the versatility we gave to the cache when we decided to allow

fragmentation of the data and to have an array on two or more associations, rather than

keeping a whole array into a compressible or non compressible associative block.

Although the more basic version of this algorithm, the counting sort, would be more

compressible; the pigeonhole algorithm is more common, and more representative of a

real world application30. However, the counting sort would be more suitable to use on a

system that uses our cache, rather than the pigeonhole sort.

30‘Real world application’ in this context describe software that aims to be on a final product or

application, rather than being academic or experimental software.

41

Figure 15: Pigeonhole sort data value distribution (own compilation)

On figure 15 we can see a prevalence in zeroes, which corresponds to the hole array,

a big auxiliary memory array that the pigeonhole sort uses in order to sort. This array

contains zeroes where there is no data, and in this case, there are a lot of holes empty.

6.5. Mergesort and quicksort

On the following subsections we are going to analyze two more commonly found

sorting algorithms: mergesort and quicksort. These algorithms are probably the two

benchmarks that represent better a ‘real world application’ on the tests that we did.

6.5.1. Quicksort

The quicksort algorithm is a sorting algorithm that does not use a lot of memory,

because it is usually implemented as an in-place31 algorithm. In terms of speed, quicksort

shows an average case of O(n log n) and a worst case of O(n2).

Quicksort is a relevant algorithm. It is one of the three pilars of introsort, a hybrid

algorithm that is included in the standard library as ‘the sorting algorithm’. Introsort

31In-place means that the algorithm does not use extra memory. It uses the input data memory to

compute and store the output.

42

uses quicksort, heapsort and insertion sort to optimize as much as possible the sorting

speed. The quicksort is also commonly used as a standalone sorting algorithm, due to

the ease of implementation weighted to its speed and low memory complexity.

Our test case and code evaluate the worst case possible: the input data is inversely

sorted, and the algorithm takes the leftest item as a pivot. The following charts show

the statistics of quicksort:

Figure 16: Quicksort with N=5192 (own compilation)

43

Figure 17: Quicksort with N=10000 (own compilation)

Figure 18: Quicksort data value distribution (own compilation)

As expected, the quicksort uses non compressible values. The algorithm itself does

not operate with data structures, it only sorts the input data. This means that if the

input data is non compressible, it will not use that side of the cache. This lack of

compressible data is shown on figure 18. Therefore, figures 16 and 17 show no use of the

compressed cache side.

44

6.5.2. Mergesort

Mergesort is a sorting algorithm that uses the ‘divide et impera’32 principle in order

to sort an array. In opposition to the quicksort, the mergesort uses more memory,

because it allocates new memory regions each time a recursive ‘division’ happens.

The use of mergesort is less common than the quicksort, but it is still widely used.

The differences between the mergesort algorithm and the quicksort algorithm are that

the mergesort uses more memory in exchange of a constant complexity of O(n log n),

whereas the quicksort can be slower, having the worst case complexity of O(n2). This

means that the mergesort will be used on applications that require a guaranteed time

complexity of O(n log n). It is also used as the default algorithm to explain how the

‘divide et impera’ logic is applied to algorithms.

The following charts show the test results of the mergesort algorithm:

Figure 19: Mergesort with N=5192 (own compilation)

32‘Divide et impera’, ‘divide et vinces’ or divide and conquer in english, when talking about computer

science, refers to a strategy of recursively dividing a problem into smaller problems until the problems

are simple enough to solve them directly.

45

Figure 20: Mergesort with N=10000 (own compilation)

Figure 21: Mergesort data value distribution (own compilation)

However, we tested the algorithm with smaller numbers and we got different results.

In order to see that data, we need to use a table, because it is not really visible on a

chart. The following table shows the data of the test for n = 10000 versus the test for

n = 10000 with smaller numbers:

46

INT (N=10000) INT (N=10000) and small numbers

HIT 530111 530084

C HIT 0 65

MISS 143568 143491

C MISS 0 39

SWAP 0 35

SWAP + EXPULSION 0 35

Table 1: Mergesort with N=10000 vs N=10000 and small numbers (own compilation)

Similar to the quicksort, the mergesort does not actively use compressible data on its

operation. It just sorts data, without using auxiliary data structures. This means that

the compressibility of this algorithm is tied to the input data. The more compressible the

input data, the more compressed memory it will use. However, having only 3 numbers

that are compressible really hinder the performance on this cache, and the data on table

1 confirms that.

6.6. Performance metrics analysis

The following table shows the relevant performance metrics of the cache:

47

Algorithm Clock cycles Memory accesses CPMA Hit Rate Miss Rate

Eratosthenes

BYTE (n=100) 937 214 4,378504673 87,85% 12,15%

INT (n=100) 1462 289 5,058823529 65,05% 34,95%

BYTE (n=1000) 10467 2524 4,146988906 90,06% 9,94%

INT (n=1000) 15717 3274 4,800549786 69,43% 30,57%

BYTE (n=10000) 113068 28352 3,988007901 91,18% 8,82%

INT (n=10000) 226699 35852 6,32318978 41,29% 58,71%

Trémaux

BYTE (n=32*16) 6325 1468 4,308583106 86,44% 13,56%

Pigeonhole sort

INT (n=100) 2977 600 4,961666667 52,56% 47,44%

Quicksort

INT (N=5192) 33682559 13509581 2,493234912 90,18% 9,82%

INT (N=10000) 245207759 50059997 4,898277541 42,06% 57,94%

Mergesort

INT (N=5192) 1446287 325328 4,445627182 86,24% 13,76%

INT (N=10000) 3147457 673680 4,672035685 78,69% 21,31%

INT (N=10000, small numbers) 3147211 673680 4,671670526 78,69% 21,31%

Table 2: Clocks, memory cycles, hit and miss ratio (own compilation)

Table 2 shows the clock cycles of the cache memory, the number of memory accesses,

the division of the previous two (clock / total accesses), and the hit rate and miss rate

on the cache.

We observe a very stable cycle to memory access cost of arround 4 cycles. Taking

into account the fact that the main memory responds in 1 cycle, that shows a really fast

cache, and its relatively independent of the hit ratio.

On the last 3 Eratosthenes runs, there is an inverse correlation between the hit ratio

and the average cycles per access. The best hit ratio has the lowest CPM (Clock per

memory access), where as the lowest hit ratio has the highest CPM. This is the expected

behaviour of a cache, because on a miss the cache usually has to wait for memory. As

we alluded before, our memory responds so quickly that this effect is hardly present on

the testing.

48

This inverse relationship is again noticeable on the Quicksort tests. The highest hit

rate on our testing is the one with the lowest CPM of all.

In addition, we also want to add a table with the comparison between the hit rate

of our cache, and the hit rate of a regular cache. In order to do that, we created a

regular 8-way associative cache and a 4-way associative cache, with the same replacement

algorithm. However, the compressed placement logic is disabled. The following table

shows the comparison between the three:

Algorithm Hit rate (GC) Miss rate (GC) Hit rate (8-way) Miss rate (8-way) Hit rate (4-way) Miss rate (4-way)

Eratosthenes

BYTE (n=100) 87,85% 12,15% 87,85% 12,15% 87,85% 12,15%

INT (n=100) 65,05% 34,95% 65,05% 34,95% 65,05% 34,95%

BYTE (n=1000) 90,06% 9,94% 90,06% 9,94% 90,06% 9,94%

INT (n=1000) 69,43% 30,57% 69,43% 30,57% 69,43% 30,57%

BYTE (n=10000) 91,18% 8,82% 91,18% 8,82% 91,18% 8,82%

INT (n=10000) 41,29% 58,71% 61,33% 38,67% 41,29% 58,71%

Trémaux

BYTE (n=32*16) 86,44% 13,56% 87,87% 12,13% 87,87% 12,13%

PigeonHole

INT (n=100) 52,56% 47,44% 51,33% 48,67% 51,33% 48,67%

Quicksort

INT (N=5192) 90,18% 9,82% 99,96% 0,04% 90,18% 9,82%

INT (N=10000) 42,06% 57,94% 89,04% 10,96% 42,06% 57,94%

Mergesort

INT (N=5192) 86,24% 13,76% 95,82% 4,18% 86,24% 13,76%

INT (N=10000) 78,69% 21,31% 87,43% 12,57% 78,69% 21,31%

INT (N=10000, small numbers) 78,69% 21,31% 87,43% 12,57% 78,69% 21,31%

Table 3: Comparison between our Ghost Cache, a regular 8-way associative cache and

a 4-way associative cache (own compilation)

As we can see in table 3, the 8-way cache has an edge on the capacity, making hit

rates greater on cases where the smaller caches would run out of memory. We can see

the smaller Eratosthenes tests having the exact same hit rates, whereas the big ones

fall behind on the Ghost Cache and the 4-way. Both Trémaux and pigeonhole sort fall

into margin of error, meaning that the difference would not be noticeable. This happens

because the input sizes of both algorithms is not big enough to saturate the caches.

Lastly, quicksort and mergesort show a big improvement on the 8-way over both other

caches.

A potential problem that we find with this comparison is that our cache and the 4-

49

way show an almost exact behaviour. However, with the extensive testing that we have

done previously, we know why this happens: none of the test actually used optimally

the Ghost cache to the point that would differ from a 4-way cache. This is because it

either used 100% compression, or it did not at all. Trémaux and pigeonhole sort were

the ones that used best the cache, but by having a memory usage that fits in a 4-way,

the 4-way shows comparable results.

Unfortunately, we could not make the Trémaux algorithm work with larger input

data. However, we could get pigeonhole sort with a size of 5000, in order to saturate the

4-way cache. The following chart shows the comparison of this pigeonhole sort with the

three caches:

Figure 22: Pigeonhole sort comparison (own compilation)

Figure 22 shows how the Ghost Cache has a better hit rate than the 4-way, due to

the compressibility of this algorithm. The following chart compares the hit rates and

miss rates:

50

Ghost Cache 4-way 8-way

HIT 43,58% 31,12% 51,16%

MISS 56,42% 68,88% 48,84%

Table 4: Pigeonhole sort n = 5000 comparison (own compilation)

Table 4 comparison further proves our theory about the small input sizes equalizing

the hit rates of our cache and the 4-way.

Table 3 also shows the reason why CPU manufacturers choose to keep doing big

caches, rather than compressing caches. Their hit rates are comparable or better (spe-

cially in the more memory complex algorithms), and they are simpler in design and

operation.

Finally, we wanted to also compare the speed in cycles on our cache, against the 8-

way and 4-way associative cache. This cycle comparison is not very effective, because the

design of the 8-way and 4-way derive from the Ghost Cache, but it is also an interesting

comparison. The following table shows the speedup of the other caches over the Ghost

Cache:

51

Algorithm 8 way / cache 4 way / cache

Eratostenes

BYTE (n=100) 0,00% 0,00%

INT (n=100) 0,00% 0,00%

BYTE (n=1000) 0,00% 0,00%

INT (n=1000) 0,00% 0,00%

BYTE (n=10000) 0,00% 0,00%

INT (n=10000) 17,65% 0,00%

Trémaux

BYTE (n=32*16) 0,00% 0,00%

PigeonHole

INT (n=100) 0,00% 0,00%

Quicksort

INT (N=5192) 19,63% 0,00%

INT (N=10000) 47,96% 0,00%

Mergesort

INT (N=5192) 7,36% 0,00%

INT (N=10000) 5,52% 0,00%

INT (N=10000, small numbers) 5,51% 0,00%

Table 5: Cycle speedup compared to the Ghost Cache (own compilation)

Table 5 shows how the 8-way is faster than the Ghost cache, but the 4-way is effec-

tively as fast as our cache.

6.7. Discarded benchmarks

Although we tested 5 different algorithms on our cache, we investigated a lot more.

We analyzed weather or not was worth it to code and adequate the benchmarks to our

cache memory system, but in the end, the following algorithms were discarded: binary-

tree test, mandelbrot set, julia set, pi digit calculation, n-body and regex-redux.

52

Some algorithms, such as the pi digit, or the regex-redux did not use an extensive

amount of memory, and it did not make lots of sense evaluating CPU intensive algo-

rithms.

Other algorithms, like the binary-tree or the n-body required some high level memory

calls, that required lots of time to develop for our benchmark.

Lastly, the mandelbrot and julia sets were very complex, and they are more CPU

heavy than memory heavy. Thus, waging the amount of hours needed to adequate one

of these algorithms against the value of the data that would give us, we decided against

testing them.

Nonetheless, the algorithms that we chose to evaluate our cache were representative

enough of a computer workload to achieve reasonable conclusions. Both the Eratosthenes

sieve and the Trémaux algorithm were a best case scenario for our cache, whereas the

mergesort, quicksort were a worst case scenario. Lastly we chose the Pigeonhole sort as

a middle ground, representing a different algorithm principle that could exploit cache

compression, but the algorithm was not fine tuned to use our cache in a way that counting

sort would, for instance.

6.8. Initial energy analysis

The methods to obtain certainty on the usage of energy from our new cache are very

time consuming for the short time of this thesis. However, we can make an educated

guess about how much energy it will use.

6.9. Static energy

From the data bank perspective, we are reducing a 32bit cell into a 8 bit cell. This is

a 4 time reduction in size. Since we have 8 banks, 4 compressed and 4 non compressed,

this means that we will have the equivalent of 5 non compressed grids, over 8 that regular

caches have.

Giving that the data banks are made of data and metadata, we only reduce partially

the size of the bank. The metadata is made of 29 bits, without taking into account

53

the replacement policy counters, and 37 bits with it. To simplify the math, we will

assume that the metadata is also 32 bits. With a simplistic approach to the maths,

if we had 5 grids on our cache over 8 on the original one, now we add 8 to both,

getting 16 grids on the original and 13 on the compressed. Solving the next formula,

1− 13
16

= (1− 0.8125) = 0.1875, we get that the energy reduction is about 18.75%.

To this number we need to add the increase of energy consumption due to the com-

pressor and decompressor, and also take into account the rest of the transistors dedicated

to the logic control of the cache. We know from existing cache memories that the size of

the logic compared to the data banks is ridicule, but just for being sure, we can assume

than the best case scenario is a 18.75% reduction in energy (the one obtained above)

and a worst case scenario of a 10% reduction.

A 10% reduction of energy would a small improvement, albeit not sufficient to reduce

significantly the heat of a processor.

6.10. Dynamic energy

The concept of dynamic energy is directly tied to the activity of the hardware and

data lanes. On our cache, a memory access for a byte, will not use the same energy that

a int access. On our testing, we can assume that a byte access will use 1
4
the energy

that an int access would. With this information and our testing data, we can obtain the

reduction of dynamic energy.

Aplying the energy reduction formula, we can get the energy reduction of any test.

The formula would be as follows: EnergyReduction = 1 − Ed

En
= 1 − Nint+

Nbyte
4

Nint+Nbyte
=

1− Nint+
Nbyte

4

1
= 1− (Nint +

Nbyte

4
).

Both Quicksort and Mergesort show a 0% improvement, due to the input data being

all non-compressible integers. On the other hand, Eratosthenes would only use com-

pressed byte memory accesses, meaning that it would reduce a 75% of the dynamic

energy. Trémaux would yield a 28% improvement (with a 37.47% compressed byte ac-

cesses), and lastly Pigeonhole sort would yield a 22% dynamic energy reduction (with a

29% compressed byte access).

54

In conclusion, our testing shows a very strong correlation between the compression

potential of an algorithm and the dynamic energy reduction. Ranging between the 75%

best case scenario energy reduction, to the 0% of a non-optimized algorithm, it is hard

to take conclusions. Noting that the average case, being something similar to Trémaux

or Pigeonhole, where we have a 25% energy reduction, and also guessing that a general

purpose CPU would use a lot of non-optimized algorithms, we deduce that the dynamic

energy reduction would be around 20% to 10%.

6.11. Design conclusions

As a summary, these are our observations from the results of the testing phase of our

project:

In terms of replacement policies, and the mixed usage of compressible and non-

compressible data, we can conclude that our cache does in fact predict correctly

where to place the data with a high degree of confidence. All the tests show

an almost non-existent amount of ‘swap’ and ‘swap with block expulsion’, which

means that once it places the data on a block, it does not need to be moved from

the compressed to the non compressed blocks.

We can also conclude that our replacement policy works as expected, because our

miss rate is usually below 33%. The cases where the miss rate increases, like in

figure 17 or figure 14 are due to various expected reasons. First, the cache only

loading 32 bits each time it access the memory, meaning that if we use 32 bit-size

variables, we will miss every time, where as if we use an 8 bit-size variable, we will

bring 32 bits, dividing the miss rate by 4 effectively. This effect can be seen at

figure 5, but this algorithm introduces the next problem: some algorithms access

memory on a random way, and read that data again in a long span of time, enough

for the data to not be present in the cache. This last problem cannot be solved

easily, hence why there are caches that hold to recently removed blocks, such as

the L2 or L3 caches.

55

In terms of compressibility, we can conclude that compressibility is directly related

to the application (or algorithms) executed. In all our tests, only the benchmarks

that we expected to compress (Erathostenes, Trémaux, and pigeonhole as the

middle case) were able to compress the data. The rest of benchmarks showed no

usage of compressed memory at all, even with our aggressive compression policies.

This direct relation to the software executed means that a cache with this design

would not improve a computer just by including it on the design. It would re-

quire either this computer to execute compressible algorithms only, or to use the

hardware knowledge and awareness and design software in a way that exploits our

compression design (e.g. using boolean or a three state variable array).

In terms of speed, the tests were not as thorough as possible, but we obtained

enough data to establish that the Ghost Cache is slower than an 8-way equivalent

cache. It is approximately 20% slower. However, speed was never our focus, but

rather the energy efficiency.

56

7. Integration with RISC-V

One interesting thought about this project is the integration of our cache on a RISC-

V core.

Unfortunately, due to time constraints, the final design of the cache has not been

tested thoroughly on the RISC-V core. However, the interfaces of our cache, as well as

the protocol used for the transactions on both the CPU side as well as the Memory side

are all CV32E40P compliant.

The documentation for including the cache memory on the existing core benchmark

is almost non existing, due to the nature of that test bench. The idea is for you to

make your own test bench for the CPU core. Moreover, in addition to the complexity of

changing that test bench, in order to test the cache the right way, would be to change

it on the official repository for testing, the core-v-verif on GitHub. This would involve

changing the Makefile and learning a complex test environment with a documentation

that does not explain a lot about changing the core design33.

33This is not their fault. The documentation that we could find talked about how to make a test

bench (without changing the core, just for testing core related functionalities) and things about the

standard namings and conventions to follow if we want to contribute to the project.

57

8. Scheduling

This project started on the 13th of September 2021, and it will last about 250h in a

best-case scenario. The delivery deadline is the 20 of December. The time of the oral

defense is yet to be disclosed.

It is foreseen to work from 5 to 8 hours a day in this project, and the scheduling and

Gantt diagram are made with that assumption.

8.1. Task description

8.1.1. Control tasks

This tasks are recurrent over the development of the project. They are the commu-

nications between the researcher and the director.

The list of tasks is the following:

[C1] Initial deliberations: The researcher and the director need to narrow down

the target of the project and focus it on the expected features of a Final Degree

Project from the ‘Facultat d’Informatica de Barcelona’. This takes about 1 hour.

[C2] Regular communication: The researcher needs to inform regularly the director

about the state of the project, as well as asking for help whenever needed. This

task takes about 0.5 hours each 2 weeks.

8.1.2. Theoretical part

The main goal of the theoretical part of this project is to propose an implementable

RISC-V 32 bit compatible compressing cache. In order to achieve this target, we need

to segment the tasks using the Scrum methodology.

The tasks are the following:

[T1] Brainstorming: The first task on every theoretical part is to use the common

knowledge to write down every possible way to develop the project. The main

purpose of brainstorming is to start narrowing down the scope on what to do, and

58

finding the next task, which is investigating sources. This task will require 8 hours

at best.

[T2] Finding sources: One of the fundamental tasks on a project is to investigate

the ‘State of the art’34. This task requires 8 hours.

[T3] Analysis of the sources: Once we have every source, we need to analyze every

paper of the project’s topic, to gather the ideas for making our design. This task

takes about 24 hours.

[T4] Making our design: This task ties to the conclusion of the analysis of the

sources. While making our design, we need to describe the architecture of the

cache, make diagrams for helping the architecture explanation and write the state

diagram of data in the cache. This task takes 24 hours.

[T5] Making speculative calculations for the design: The last task on the theoretical

part of the job is to make some calculations to obtain the expected performance

and behaviour of our design. This task will take about 6 hours.

8.1.3. Practical part

The practical part of this project has two purposes: checking the functionality of

our cache design, and also testing the integration with RISC-V. The tasks will be the

following:

[P1] Learning the tools: On this project we work with RISC-V. RISC-V, being

open source, uses a modern tool-chain to synthesize and simulate processor designs.

The main programming language for RISC-V developement is Verilog. Verilog is

a relatively modern HDL35. We need to learn to use this language, and the tools

that comes with (Verilator, Icarus...). This will take about 12 hours.

34State of the art means what has been done or investigated on the field in which you are going to

work on.
35Hardware Describing Language

59

[P2] Finding code: Once we know how to code in Verilog, we need to analyze the

public RISC-V cores to further improve our Verilog designing and programming

skills, as well as understanding the way different modules interact between them.

We also need to decide which core will be used in the final design for testing. The

most difficult thing about this task is understanding the Makefile36 of the RISC-V

cores. This will take about 14 hours.

[P3] Starting with the cache prototype: To code the cache we will start on an

isolated environment. We will first try to create a regular simple direct cache

module, with tags and the memory cells. We also need to test this design and

check that works as it should. In this stage, there are no external interfaces, just

the internal cache module. This task will be about 20 hours.

[P4] Making the associative cache: The next step to have our compressing cache is

making it associative. At this point, we only have the regular cache module, and

we will use this module 4 times to make a 4 associative cache. This task will take

about 20 hours.

[P5] Making the compressing cache module: On this task, we will take the design

of the theoretical part and implement it on Verilog. This task will take around 6

hours.

[P6] Changing the associative logic and including the compressing cache modules:

This task is one of the hardest on this project. We need to change the associative

placing algorithm to bias the compressing caches when they can be effective. We

also need to make a complex logic that will change a block from the compressing

cache to the regular cache when needed. This task will take about 22 hours.

[P7] Creating the external interface: This is the last step in making our cache. We

36Make is a software that handles dependencies defined by a Makefile. Make is usually used for

software compilation, or on this case, to execute the tool-chain and synthesize and test the Verilog

code.

60

will connect the inner circuits to an interface compatible with the RISC-V core.

This task will take about 10 hours.

[P8] Including the cache in the RISC-V core: This is the hardest task on the

project. This task requires a perfect comprehension of the T1 and T2 tasks. What

we need to do is change the Makefile that defines how the CPU is created, and

add our new cache. We also will need to change some Verilog files from the core

to add the cache. This task could take up to 35 hours.

[P9] Cache testing: once we have the CPU assembled, we can simulate it and check

for the correct working of the cache. This task takes about 12 hours.

61

8.2. Summarized task table

Code Description Time Dependencies Resources

C1 Inital deliberations 1h NONE PC

C2 Regular communication 0.25h/week NONE PC

C Control Subtotal 4h

T1 Brainstorming 8h NONE PC

T2 Finding sources 8h NONE PC, internet

T3 Source analysis 24h T2 PC, papers

T4 Designing 24h T3 PC, analysis results

T5 Speculative analysis 6h T4 PC, theoretical design

T Theoretical Subtotal 70h

P1 Learning the tools 12h NONE PC, Verilog/Verilator manuals

P2 Finding code 14h NONE PC, Github / RISC-V webpage

P3 Starting cache prototiping 20h P1 PC, Verilator / Icarus

P4 Creating associativity hardware 20h P3 PC, Verilator / Icarus

P5 Compressing cache module 6h P4 PC, Verilator / Icarus

P6 Modifying cache structure 22h P5 PC, Verilator / Icarus

P7 Adding external interfaces 10h P6 PC, Verilator / Icarus

P8 Cache installation in CPU 35h P7 PC, core documentation / Makefile

P9 Cache testing 12h P8 PC, Verilator / Icarus

P Practical Subtotal 151h

TOTAL 225h

Table 6: Summarized task table (own compilation)

62

8.3. Gantt diagram

Figure 23: Gantt diagram (Own compilation)

63

8.4. Risk management

In this section we will discuss the alternative planning for every problem that can

occur during the development of the project.

The three problems stated on the chapter 8.4 are the feasibility of incorporating the

cache in the RISC-V core before the deadline, general time constraints and failing to

meet the expectations of performance.

The two first problems combined would mean that the testing on the cache could

not be done on an actual RISC-V processor, and would require some other method to

check the correct working.

The simplest way to solve this is ditching the idea of using a pre-built CPU and

making our own RISC-V simulator. We would need to implement a Verilog program,

or a Verilator C++ script. This program should interface with the cache as a regular

RISC-V CPU, with the instruction and memory interactions as a regular program would

do on a RISC CPU. This new task would need at least 25 hours, and worst case 50 hours

of extra work.

The final possible risk is failing at the premise of making an efficient compressing

cache. This means that we could not achieve successful or expected results on this

project. In the event that this happened, we should report as much information as

possible about how we failed, what failed, and how could this failure be overcame on

future projects. This task wold be around 20 hours.

Another potential risk that is not only related to this project, but with the whole

research scenario, is data loss, which will be prevented with regular backups. In addition,

the practical part of the project has programming on it, which will be preserved and

version controlled via git37. This also will help into making backups.

37The most common program for version control, used ubiquitously on every project computer science

related.

64

9. Budget

In this section we will discuss the economical cost of the project. Although this

project will be developed by a single person with the help of the director, we will assume

that there are two different agents in the development of this project, a documentation

curator and a hardware designer.

Both agents will need office equipment, as well as access to the internet and other

expenses. Everything will be detailed below.

9.1. Costs

In order to develop this project we do not need esoteric technologies, unlike others

projects that require expensive FPGA / experimental boards. We need to cover mobility

expenses and office equipment. The following table show the prices for every expense:

Name Type of cost Cost

Document curator(DC) OpEx 27€/hour

Hardware designer(HW) OpEx 35.1€/hour

Internet connection OpEx 50€/month

T-usual metro ticket OpEx 40€/ticket

Electricity OpEx 0.29762€kWh

Table 7: Project CapEx and OpEx (Own compilation)

Note that salaries in the table 7 already take into account the x1.35 factor of the

Social security. Also note that we do not have any CapEx, because all our software is

free and open source, and we do not need any extra equipment besides the computers.

9.2. Contingency budget and incident management

On every project, there should be a contingency budget in case of any unexpected

expense. The contingency budget will be a 15% of the total cost of the project.

65

In terms of incident management, we should be aware that we disclosed risks on the

section 8.4 that could occur during the development of the project. In order to take

them into account, we will also add the cost of OpEx during the estimated times of the

alternative tasks.

9.3. Total costs

Task / Concept Quantity Cost Subtotal Notes

Internet Connection 3 months 50€ 150€

T-usual metro ticket 6 tickets 40€ 240€ 3 tickets per person, 2 people

Electricity 13.5kWh 0.2976€/kWh 4.0176€

OpEx 394,0176€

C1 1h 35.1€/h 35.1€ Hardware Designer wage

C2 3h 62,1€/h 186.3€ Hardware Designer + Document Curator wages

T1 8h 35.1€/h 280.8€ Hardware Designer wage

T2 8h 35.1€/h 280.8€ Hardware Designer wage

T3 24h 35.1€/h 842.4€ Hardware Designer wage

T4 24h 62,1€/h 1490.4€ Hardware Designer + Document Curator wages

T5 6h 35.1€/h 210.6€ Hardware Designer wage

P1 12h 35.1€/h 421.2€ Hardware Designer wage

P2 14h 35.1€/h 491.4€ Hardware Designer wage

P3 20h 35.1€/h 702€ Hardware Designer wage

P4 20h 35.1€/h 702€ Hardware Designer wage

P5 6h 35.1€/h 210.6€ Hardware Designer wage

P6 22h 35.1€/h 772.2€ Hardware Designer wage

P7 10h 62,1€/h 621€ Hardware Designer + Document Curator wages

P8 35h 62,1€/h 2173.5€ Hardware Designer + Document Curator wages

P9 12h 62,1€/h 745.2€ Hardware Designer + Document Curator wages

Tasks 10165.5€

Project Expected Subtotal 10559.5176€

Contingency 1583.92764€ 15% of the Project Expected Subtotal

Delay 1 50h 35.1€/h 1755€ Making our own RISC-V simulator (HW wage)

Delay 2 20h 62,1€/h 1242€ Documenting the failures (HW + DC wages)

TOTAL 15140,45€

Table 8: Total costs of the project

66

9.3.1. Amortization

When an enterprise buys materials, an amortization study should be done. Because

the computers will be used only three months, we know that the amortization will not

come with positive results. This is because the legal maximum amortization on our

country applied to computer equipment, the EPI38, only allows a maximum of 25%

amortization each year. Because we will analyze the amortization by month, we will use

a (25/12)% monthly amortization rate.

The following table will show the amortization:

Month Cummulative amortization Net tax value

0 0€ 3900€

1 81,25€ 3818,75€

2 162,5€ 3737,5€

3 243,75€ 3656,25€

TOTAL 243,75€ 3656,25€

Table 9: Lineal amortization table (Own compilation)

As we can see on the table, the amortization of the materials show a net value of

3656,25€, due to the use of only 3 months, rather than the expected of 4 years by the

law. In order to have an even amortization, we should have a 0 in net tax value.

38”Equipos para procesos de información”, the maximum yearly amortization value applied to a

computer device on Spain.

67

10. Sustainability

The sustainability study will determine the ecological footprint of the project, as well

as the long term viability of the hardware proposed. The way we are going to analyze

the sustainability is by comparing the current hardware with the hardware proposed,

see the differences and then arguing the benefits of one design over the other one.

10.1. Ecological footprint

10.1.1. CPU production

The process to produce a CPU is a very energy and resource consuming process. It

uses very rare materials, such as pure silicon extracted from special sands. This pure

silicon is then subject to a set of procedures that are expensive and energy inefficient,

such as doping the silicon crystals or creating the electrical circuits and gates on the

silicon wafer39.

Those procedures are very susceptible to failure: even a single spot of dust can

destroy multiple CPUs on the wafer, meaning that the machines and the environments

where the processors are produced are very sterile and controlled to improve yields.

Also, improving the machinery required to make CPUs is also very expensive.

All the aforementioned means that having a smaller design (in size) could improve

yields due to fitting more processors in a wafer, thus reducing the losses when malfor-

mations happen in some CPUs on the wafer. The next formula shows the relationship

between processor area size and the amount that processor that can fit on a wafer:

39The way CPUs are produced is on silicon discs called wafers. Each wafer measures about 30-45cm

in diameter. In each wafer you produce multiple CPUs.

68

DPW =

⌊
πd2

S

⌋
(1)

where

d = diameter (mm)

S = size of the processor (mm2)

In the formula 1 we can see an inverse relationship between S and the DPW, meaning

the smaller the size, the larger the amount of processors per wafer.

Due to our cache design being smaller than the current ones (about 20-40% smaller),

the number of dies40 per wafer would increase, increasing the yield.

10.1.2. Energy consumption of CPUs

As we eluded in the introduction, cache modules in the CPU consume a lot of en-

ergy. In addition, some of the papers studied in this project[8][13] state that energy

consumption of caches is becoming a problem.

This project aims to reduce the overall energy consumption of CPUs, making it a very

positive design for the environment. Due to the widespread use of CPUs, a reduction

of energy of a processor can affect millions of different devices, from vending machines

to office printers, computers, etc. Less energy consumption directly affects energy pro-

duction, requiring less energy to maintain the electronics, thus reducing pollution due

to less energy generation.

In addition, heat is one of the factors that intervene in the longevity of semicon-

ductors. The colder they operate, the longer they live. This means that a chip with a

compressing cache could last longer, requiring less replacements and reducing obsoles-

cence of the devices, thus making it more Eco-friendly than competitors.

40Technical word to describe the silicon processor chip.

69

10.1.3. FAQ on Environmental Dimension

Have you estimated the environmental impact of the project? Yes, it is

thoroughly explained on sections 10.1.1 and 10.1.2.

Did you plan to minimize its impact, for example, by reusing resources?

Reusing resources in CPU production is a mixed bag. While some materials, such as

gold, are being reused, the silicon and other primary materials of the processors cannot

be recycled.

How is currently solved the problem that you want to address (state of the

art)?, and how will your solution improve the environment with respect other

existing solutions? As we stated on section 10.3, no manufacturer is using any kind

of energy saving measure in existing caches. Our solution aims to bring the compressing

cache technology to another level, increasing the effectiveness of the technology, making

it more appealing for hardware manufacturers.

10.2. Economical impact

In terms of economical effects of this project, the aforementioned improvements on

yields makes wafers more profitable. This yield improvement would increase the pro-

duction of the factories, reducing the price of processors and the cost in raw resources.

Besides the industrial efforts, changing the design of the cache as we propose is

not very inexpensive in a current generation of processors, but each time a new design

generation is implemented (e.g. from generation 1 to generation 2), the incorporation

of the new cache is less expensive in terms of the physical template for the processor.

Nevertheless, an incorporation of a newly designed module in a CPU requires thorough

testing, even more than we will ever do in the project, and that testing will be expensive.

Nonetheless including the design in a processor should be interpreted as a CPU

improvement for a new generation, thus justifying the cost of implementing it. The

cache we are developing is a no compromise, more energy efficiency version of the current

caches.

70

10.2.1. FAQ on Economic Dimension

Reflection on the cost you have estimated for the completion of the project

The cost of the project seems on par with a project of this caliber. 15k€ is a relatively

small sum, especially compared to the amount of money that could save on production

costs of CPUs.

How are currently solved economic issues (costs...) related to the problem

that you want to address (state of the art)?, and how will your solution

improve economic issues (costs ...) with respect other existing solutions?

The problem I want to address does not have a lot of competition. The market of

compressing caches is basically non-existing. Nevertheless, our approach to the project

is to pack as much features as possible in our cache, collapsing 3 or 4 designs of different

caches into one, with as much bennefits as possible. This should increase the value of

our solution over the other ones.

10.3. Social impact

10.3.1. FAQ on Social Dimension

What do you think you will achieve -in terms of personal growth- from

doing this project? This project not only will give me a better understanding on

how caches work and can be improved, but also give more ideas and possible solutions,

which eventually will reach production states. It will also help me put together all the

knowledge I have been gathering since entering the degree of computer science.

How is currently solved the problem that you want to address (state of the

art)?, and how will your solution improve the quality of life (social dimension)

with respect other existing solutions? No big hardware manufacturer is using any

type of hardware compression cache in its designs. A compressing cache is not the only

option to aid in energy consumption of the memory, but the problem is that they still

do not use another method, meaning that caches stayed almost untouched for decades.

Is there a real need for the project? This project aims to bring into attention

71

the issue with cache heat and energy consumption issue that other papers tried to arise.

This is a ever growing problem in the hardware design department of CPUs for at least

20 years. There is an urgency to solve this issue, otherwise improvements in the CPU

performance will be minimal in the coming years.

10.4. Conclusion

As a summary, there is not a great disadvantage in implementing a compressing cache.

The only reason why no one has included one on a commercially available processor is

because they do not give a great performance increase, meaning that they cost a lot of

money and do not give back perceivable returns. This also means that if our design also

does not deliver in performance metrics, it will not be used as well.

72

11. Conclusion

Our goal was to establish weather a compressing level 1 cache would be an improve-

ment over the current caches used in the CPU industry.

In those regards, we can establish that a general purpose CPU with a compressing

cache would not be feasible as we designed it. This is due to the fact that our compression

only benefits certain algorithms and optimized software, whereas non-optimized software

(the majority of the software used today) would use only half of the cache capacity.

Nowadays, the trend of CPUs is to make larger and larger caches, so having a cache

that halves its capacity on the majority of software would not be competitive (we saw

the effect of halving the capacity on table 3, where it behaved almost as a 4-way instead

of the pseudo 8-way cache that it actually is). If we then add the relatively small energy

usage reduction (around 10% - 20%, as seen in chapter 6.8) we can see that it is really

not feasible at all.

However, our cache design has shown that on certain tasks the Ghost Cache has

an edge, and that we could get rid of the non-compressing section, and use only a

compressed cache as a main cache. This means that, on certain use cases where the

algorithms could be optimized to use compression, such as a robot that explores mazes

or caves, or a microcontroller for a Hard Drive, it could be highly beneficial to the cache

physical size and energy requirements. By changing the non-compressed memory banks

for compressing memory banks, we would double the data bank size reduction, and we

would also double the energy reduction, achieving a more convincing 40% (doubling the

previous 20%) maximum energy efficiency improvement.

On the topic of custom requirements, the RISC-V platform is now used exactly for

those: custom designed processors. A hard drive company called Western Digital moved

from micro-controllers for their drives to RISC-V[14] processors optimized for hard drive

operations. And they are not the only ones switching to RISC-V[7]. This means that

our cache might be a usable option for a RISC-V specific processor that only operated

on compressible data, or a mixed used of compressible and non-compressible.

73

References

[1] A.R. Alameldeen and D.A. Wood. “Adaptive cache compression for high-performance

processors”. In: Proceedings. 31st Annual International Symposium on Computer

Architecture, 2004. ISSN: 1063-6897. June 2004, pp. 212–223. doi: 10.1109/ISCA.

2004.1310776.

[2] Julien Dusser, Thomas Piquet, and André Seznec. “Zero-content augmented caches”.

In: Proceedings of the 23rd international conference on Supercomputing. ICS ’09.

Yorktown Heights, NY, USA: Association for Computing Machinery, June 2009,

pp. 46–55. isbn: 9781605584980. doi: 10.1145/1542275.1542288. url: https:

//doi.org/10.1145/1542275.1542288 (visited on 09/20/2021).

[3] Gennady Pekhimenko et al. “Base-delta-immediate compression: Practical data

compression for on-chip caches”. In: 2012 21st International Conference on Parallel

Architectures and Compilation Techniques (PACT). Sept. 2012, pp. 377–388.

[4] Esha Choukse, Mattan Erez, and Alaa R. Alameldeen. “Compresso: Pragmatic

Main Memory Compression”. In: 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). Oct. 2018, pp. 546–558. doi: 10 .

1109/MICRO.2018.00051.

[5] Daniel Etiemble. “45-year CPU evolution: one law and two equations”. In: arXiv:1803.00254

[cs] (Mar. 2018). arXiv: 1803.00254. url: http://arxiv.org/abs/1803.00254

(visited on 09/26/2021).

[6] Wikimedia community. Wikipedia Main Page. en. Page Version ID: 1004593520.

Feb. 2021. url: https://en.wikipedia.org/w/index.php?title=Main_Page&

oldid=1004593520 (visited on 01/12/2022).

[7] Jeremy Hsu. RISC-V Star Rises Among Chip Developers Worldwide. en. Apr. 2021.

url: https://spectrum.ieee.org/riscv-rises-among-chip-developers-

worldwide (visited on 01/12/2022).

74

[8] R. Canal, A. Gonzalez, and J.E. Smith. “Very low power pipelines using signifi-

cance compression”. In: Proceedings 33rd Annual IEEE/ACM International Sym-

posium on Microarchitecture. MICRO-33 2000. ISSN: 1072-4451, pp. 181–190. doi:

10.1109/MICRO.2000.898069.

[9] Crystal Chen, Greg Novick, and Kirk Shimano. RISC vs. CISC. url: https://cs.

stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/

(visited on 01/12/2022).

[10] GeeksforGeeks.org. GeeksforGeeks — A computer science portal for geeks. en-us.

url: https://www.geeksforgeeks.org/ (visited on 01/12/2022).

[11] RISC-V Internationa. About RISC-V. en-US. url: https://riscv.org/about/

(visited on 01/12/2022).

[12] rosettacode.org. Rosetta Code. url: https://www.rosettacode.org/wiki/

Rosetta_Code (visited on 01/12/2022).

[13] Luis Villa, Michael Zhang, and Krste Asanović. “Dynamic zero compression for

cache energy reduction”. In: MICRO 33 (), pp. 214–220. doi: 10.1145/360128.

360150. (Visited on 07/31/2021).

[14] westerndigital.com. RISC-V —Western Digital. en. url: https://www.westerndigital.

com/solutions/business/risc-v (visited on 01/12/2022).

75

