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Abstract 
Bronchoalveolar lavage (BAL) images are a medical test from which different pathologies 
can be extracted based on their cellular distribution. In the hospital La Vall d’Hebron 
technicians make manual count to determine this cell distribution. We did not have any 
labelled BAL image, because this was the first contact with the problem. In this project, 
maxtree-based solution is used to do the first segmentation, and then, a correcting process 
is carried out in order to correctly label 56 BAL images. With this small dataset, and taking 
into account the maxtree results in some aspects were not as good as we expected, we 
decided to test and train a CNN based in the U-Net. We applied specific techniques for 
small datasets and we tested different parametrizations of the network. Finally, we obtain 
70% IoU global score approx. in the validation of the CNN. 
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1. Introduction 

1.1. Introduction to the problematic 
Bronchoalveolar lavage (BAL) is a diagnostic method of the lower respiratory system, in 
which a bronchoscope is passed through the mouth or nose into an appropriate airway in 
the lungs, with a measured amount of fluid introduced and then collected for examination. 
After fluid collection, samples are centrifuged to distribute quite homogeneously its content 
and stained to clearly differentiate its cells, in our case, we work with Papanicolaou stain. 
This method is typically performed to diagnose pathogenic infections of the lower 
respiratory airways (leading to, for example pneumonia, COVID-19, etc.) [1] 
 
Once the fluid is collected, centrifuged and stained, it is ready for the inspection. It can be 
observed directly in a microscope or scanned to produce whole slide images (WSI), which 
can be digitally stored and managed. 
 

 
In these whole slide images of BAL, we can find commonly two groups of cells.  
 
The first group, contains inflammatory cells, which can determine the kind of inflammation 
present in the sampled. They are the main cells in BAL test, commonly they represent 95% 
of the cells in the sample, being the main object of study. In this group we can find: 
 
 

1. Macrophages: (red contours): big cells with big nucleus, they contain lot of 
cytoplasm. 

 
 
 

Figure 1: Bronchoalveolar Lavage (BAL) Image Cut 
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2. Lymphocytes (yellow contours): small cells, round and dark nucleus; they have 

very little cytoplasm, we almost only see the nucleus. 
 

 
3. Polymorphonuclears / neutrophiles (green contours): small as lymphocytes, 

but they do not have one nucleus, they have 3 or 4. 
 

 
4. Eosinophiles (pink contours): very similar to polymorphonuclears, but they do not 

have 3 or 4 nuclei, they only have 2. 
 

 

Figure 2: Macrophages 

Figure 3: Lymphocytes with a macrophage 

Figure 4: Polymorphonuclears with a macrophage 

Figure 5: Eosinophiles 
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Doctors can estimate the different kinds of inflammation depending on the appearance 
frequency of inflammatory cells types 
 

1. 80 – 90 % of macrophages: no inflammation, normal sample. 
 

2. + 20 % of lymphocytes: chronical inflammation (tuberculosis). 
 

3. + 20 % of polymorphonuclears: sharp inflammation (pneumonia, presence of 
bacteria). 

 
The second group of cells we can find in these samples are mucous cells, which in our 
case are treated as contamination, provided that they do not exceed the 5% of the total 
cells. There are different types of mucous cells in BAL samples: 
 

1.  Bronchial cellularity: cells coming from bronchus  
 

 
 

2. Squamous cellularity: cells coming from mouth 

 
3. Mucus & Blood 

Figure 6: Bronchial cilindric cell 

Figure 7: Squamous mouth cell 

Figure 8: Blood & Mucus 
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1.2. Introduction to the data 
Images coming out of the scanner are whole slide images (WSI), also known as virtual 
microscopy, refers to scanning a complete microscope slide and creating a single high-
resolution digital file. This is commonly achieved by capturing many small high-resolution 
images and then montaging them to create a full image of a histological section [2]. These 
WSI are big to manage with them, that is why we break them up into smaller pieces many, 
that we call tiles. They are 512 pixels wide by 512 pixels high, with 30 overlapping pixels. 
They have enough resolution to differentiate cells and enough cells to make a 
representative counting,  

The main goal of this project would be the cell quantification in WSI images, because it is 
clinically relevant. This quantification can be carried out by counting the connected 
components in images of semantic segmentation of the inflammatory cell types.  

Taking into account the state of the art, the best solution to implement semantic 
segmentation are convolutional networks, but they require having a ground truth which we 
do not have. So, we propose to develop a system based on classical techniques of image 
processing, in order to have the first approximation to the correct segmentation and ease 
manual labelling to generate this ground truth and extract useful information for future 
development. 
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2. State of the art of the technology used or applied in this 
thesis: 

2.1. BAL Images Analysis 
According to La Vall d’Hebron doctors, the classical method to analyse these images is not 
automatic. Images are observed by technicians, which count randomly 100 or 200 of cells, 
and with this small sample they calculate their frequency distribution. They can do that 
because, given a WSI, its statistic is quite homogeneous in all its tiles, due to the 
centrifugation step. After the manual counting, technicians highlight relevant areas in order 
to help doctors to analyse inflammatory cells in images. 

2.2. Semantic Image Segmentation 
Image segmentation is a computer vision task in which we label specific regions of an 
image according to what is being shown. The goal of semantic image segmentation is to 
label each pixel of an image with a corresponding class of what is being represented.  

One important thing to note is that instances of the same class are not separated; we only 
care about the category of each pixel. In other words, if you have two objects of the same 
category in your input image, the segmentation map does not inherently distinguish these 
as separate objects [3].  

 

 

 

2.3. Maxtree 
Maxtree and Mintree are image (or signal) representations created by structuring as a tree 
the connected components resulting from threshold decomposition. It provides a multiscale 
description of extremas of images and signals and are, among other things, one of the 
classical ways to build connected operators. These trees can also be populated with 
attributes, resulting in Graph attribute signals that can themselves be processed [4]. 

Figure 9: Semantic Segmentation of a street picture [3] 
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A Maxtree describes the entire set of connected components resulting from the threshold 
decomposition of upper-level sets. The resulting connected components are ordered by 
inclusion and structured in a tree. The tree leaves represent the image maxima and the 
root node the entire image support. A Maxtree can then be viewed as a multiscale 
description of the image maxima [5]. 

Maxtree processing toolbox allows easy creation and processing of attributes in Maxtree 
or Mintree. These attributes defined on the tree structure can be considered as graph 
signals and processed with the corresponding graph signal processing tools. With this 
toolbox we can make a distinction between the pixels that are associated to a node and 
the connected components created by the threshold decomposition.  

The nodes in a Maxtree actually represent a structuring by inclusion of the connected 
components created by threshold decomposition. However, the set of pixels defining the 
connected component associated to a node can be obtained as the union of the pixels 
stored in a node and all its descendant nodes [4]. 

The features used to develop the project are the following [4]: 

• Area: Compute the number of pixels of the connected component associated to a 
current node. This number is equal to the sum of the number of pixels stored in the 
current node and all its descendant nodes. 
 

• MeanGrayLevel: Mean value of the GrayLevel field in the connected component 
(that is the area associated to the current node and all its descendant node). 
 

• MaxLeafValue: Compute the height of the largest branch of a node. 
 

More features are currently available, but after some tests, they were rejected for our 
problematic. Also, trees can be used to generate images, filtering the different nodes based 
on their attributes. This is the restitution step.   

Figure 10: Tree representation of BAL Image cut (inverse) 
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Maxtree is the classic image processing tool we will use to have a first approximation to 
the semantic segmentation. 

2.4. Convolutional Neural Network (CNN) 
Convolutional neural networks are a type of deep artificial neural networks widely used in 
the field of computer vision. They have been applied to many tasks, including image 
classification, super-resolution and semantic segmentation [6].  

The role of the CNN is to reduce the images into a form which is easier to process, without 
losing features which are critical for getting a good prediction [7]. 

Convolutional Neural Network are currently the state of art technique in image 
segmentation field of research. Since astounding results on ImageNet has been 
demonstrated, all other methods have rapidly been abandoned [8]. 

2.4.1. Unet 
U-Net architecture consists of a contracting path (left side), a fully connected path and an 
expansive path (right side). In total the network has 23 convolutional layers. 

The contracting path follows the typical architecture of a convolutional network. It consists 
of the repeated application of two 3x3 convolutions (unpadded convolutions), each followed 
by an activation function and a 2x2 max pooling operation with stride 2 for downsampling. 
At each downsampling step we double the number of feature channels.  

Every step in the expansive path consists of an upsampling of the feature map followed by 
a 2x2 convolution (“up-convolution”) that halves the number of feature channels, a 
concatenation with the correspondingly cropped feature map from the contracting path, 
and two 3x3 convolutions, each followed by an activation function. At the final layer a 1x1 
convolution is used to map each 64-component feature vector to the desired number of 
classes.  

To allow a seamless tiling of the output segmentation map, it is important to select the 
input tile size such that all 2x2 max-pooling operations are applied to a layer with an even 
x- and y-size [9]. 
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Figure 11: U-net architecture. Each blue box corresponds to a multi-channel feature map. The number of 
channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes 

represent copied feature maps. The arrows denote the different operations. [9] 
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3. Project Development 
As we said in the state of the art, a CNN trained on a large and versatile dataset, learns 
information about object characteristics that is generic enough to transfer to objects that 
are not in the original dataset. 

But what happen if we do not have that annotated dataset? We have just received the BAL 
images from la Vall d’Hebron hospital, we do not have any labelled image. So, as first 
approximation, we decided to use classical techniques to tackle the problem. Because the 
manual labelling is a hard and tedious task, having a first technique that classifies quite 
well the pixels of the images into the different classes, would be a good starting point, which 
would reduce the manual labelling task.  

Having studied different classical segmentation techniques for our problem, we decided to 
implement a Maxtree solution on grayscale images. Due to its tree and branch structure 
and its good handling of connected components we thought that the Maxtree solution would 
be suitable for our problem. 

3.1. Appropriate Image Selection 
The first step, is to decide which tiles are suitable for segmentation and which are not. 
Because some tiles are clean and they have cells that can be well differentiate, but others 
can have much contamination, and classify cells can be a difficult task, also for doctors. 
For that reason, in order to carry out the correct and accurate count of the inflammatory 
cell types, it is necessary to determine which tiles of the WSI are suitable for a correct 
classification. Dismiss not suitable tiles would not be a problem from a statistical point of 
view, taking into account that WSI statistics are quite homogeneous in every tile due to the 
centrifugation step and that a WSI can contain hundreds of thousands of cells. Also, when 
technicians analyse these images in the hospital, they ignore the parts with a lot of mucus, 
where the counting of inflammatory cells is very difficult, so in some way, they do the same. 

  

 

To carry out this task, a thresholding algorithm is used, based on the average grey level of 
the image. If the mean grey level of the image is lower than a threshold, the tile is 
automatically rejected.  

Figure 12: Tile suitable for analyse vs not suitable 
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To determine the threshold, we analyse some images, and here we have an example of 
the mean grey level of ten images suitable for the analysis and ten images which are not. 

 

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8  Image 9 
Image 

10 
223 225 219 210 232 220 222 216 236 228 

 

Table 1: Mean grey level of suitable images for analysis 

 

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8  Image 9 
Image 

10 
193 200 196 191 198 213 208 202 212 208 

 

Table 2: Mean grey level of images not suitable for analysis 

 

In the next figure we can see the probability density function of both tile types, 
approximating them as gaussian and computing mean and variance about twenty images 
of each class.  

 
Figure 13: Normal distribution of the two tile types 

As we can see, 215 is the mean grey level where the curves intersect, so it is where we 
decide to put the threshold. 

215 
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3.2. Maxtree-based Solution 

3.2.1. Image Simplification 

As we said before, we are going to use Maxtree algorithms to develop the first 
segmentation. But before computing it, reducing the number of nodes of the tree and 
remove spurious candidates without losing relevant image data would be important in order 
to reduce the computation time and to not have spurious detection. For that reason, 
morphological cleaning techniques have been used; opening, closing, reconstruction with 
the original eroded image as marker and dual reconstruction with the original dilated image 
as marker.  

Best techniques should reduce the maximum number of nodes without losing relevant data, 
the nuclei, their shape and their separation, so it is important to not remove nuclei and to 
not increase the overlap between them, either. 

Opening and opening by reconstruction of erosion are two morphological techniques which 
remove those maxima smaller than the structuring element, so the goal of applying them 
is to remove small maximums that bother us or do not contribute to us when analysing the 
tree. For example; spurious maxima located in the mucus, nucleolus inside cells, or 
variations in the grey level of the nuclei. In Figure 15: Spurious maxima located in mucus 
and Figure 14: Spurious nucleolus we can see how applying morphological techniques can 
help reducing remove these unwanted maxima. 

Closing and closing by reconstruction of dilation are two morphological techniques which 
remove those minima smaller than the structuring element, so the goal of applying them is 
to remove small minima which do not contribute to us when analysing the tree without 
remove relevant data. 

 

s in the nuclei grey level 

Figure 15: Spurious maxima located in mucus 

Figure 14: Spurious nucleolus 
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It is important to remark that in order to have more visual information, images are inverted 
in grey level scale, to look for maxima and not for minima. This is applied in all the project, 
so when we talk about maxima, are actually minima of the original image and vice versa.  

3.2.1.1. Opening vs opening by reconstruction of erosion and closing vs closing by 
reconstruction of dilation  

Firstly, we are going to test which operation most reduce the number of nodes in the tree. 
In the next table we can see the average number of nodes that different images Maxtrees 
have depending on the cleaning technique we apply. These averages are computed with 
43 different images, with 3 radius pixels disk structuring element. 

 

 

Table 3: Maxtree nodes applying different morphological techniques 

Opening by reconstruction of erosion and closing are the two operations which reduce the 
largest number of nodes. But it is also very important to preserve the relevant data for the 
correct segmentation of the image. For that reason, opening by reconstruction of erosion 
and closing by reconstruction of dilation are applied. These are the techniques who best 
preserve the natural shape of the cells and do not cause overlap between cells. 

 Image Opening Opening by 
reconstruction 

Closing Closing by dual 
reconstruction 

Average 

Nº Nodes 

36.816 7.754 6.664 13.544 36.531 

Figure 17: Closing vs Dual Reconstruction 

Figure 16: Opening vs Reconstruction  
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3.2.1.2. Size of structuring element 

In order to estimate the size of the elements in the image and which radius size of the 
structuring element starts to remove relevant data, granulometry techniques have been 
applied. Accumulate granulometry of 43 images has been computed.  

It seems clear that something is happening when the opening by reconstruction of erosion 
is made with the original eroded image as marker using structuring elements which radius 
are 4, 8 and 11 pixels. In these values we are removing something that seems important. 
So, we are going to study these cases (not 11 because in 8 we see we start to remove 
relevant information). 

• Reconstruction with the original eroded image as marker using 4 pixels 
radius structuring element: spurious maxima located in the mucus and variations 
in the grey level of the nuclei are removed, but at the same time we start to remove 
relevant data as some nuclei maxima.  

Figure 20: Top Hat 3 vs 4 pixels radius structuring element 

Figure 18: Granulometry of one image 

Figure 19: Closing vs Dual Reconstruction 
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• Reconstruction with the original eroded image as marker using 8 pixels 
radius structuring element compared with 7 pixels radius structuring 
element: relevant data as nuclei maxima are removed. 

Looking at the results, and taking into account that this software will be an intermediate 
step, which goal is to label images to train a CNN, calculation time is not the most important, 
we prioritize to keep relevant data. For that reason, we decided to clean the image applying 
reconstruction with the original eroded image as marker using 3 pixels radius structuring 
element. Which as we saw before, is very useful to reduce the number of nodes in the tree. 

 

To clean minima, it is necessary to apply closing by dual reconstruction of image dilation, 
since with the closing, we obtain an unwanted overlapping. With the original image dilated 
as marker using 3 pixels radius disk structuring element, we manage to clean some noise 
in the background of the image without overlapping nuclei, so that was the selected 
technique. 

 

3.2.2. Macrophage Detection 

The first step is to compute the maxtree, which is an easy task thanks to maxtree 
processing toolbox [4]. 

 

Figure 21: Top Hat 7 vs 8 pixels radius structuring element 

Figure 22: Reconstruction with 3 pixels radius structuring element 
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The first analysed cells are macrophage, which we considered easiest for their shape and 
regularity. They always have the same structure, ellipse shape nucleus with cytoplasm. 
Taking this into account, two variable cuts in the trees have been done, one to determine 
the cytoplasm and another to determine the nuclei. 

 

3.2.2.1.  Macrophage cytoplasm, first cut 

To decide whether or not a node belongs to macrophage cytoplasm 4 parameters are used, 
which are actually thresholds. If the node accomplishes them, the node is considered as 
macrophage cytoplasm node, if it does not accomplish them, it is not. The parameters are 
the following: 

 

1. min_leaf_glvl: minimum leaf grey level that must have a node to be macrophage 
cytoplasm candidate. 
 

2. min_cito_glvl: minimum grey level that must have a node to be macrophage 
cytoplasm candidate. 
 

3. max_cito_leafdist: maximum grey level distance to the leaf that a node can have 
to be a macrophage cytoplasm candidate. 
 

4. min_cito_area: minimum area that must have a node to be macrophage cytoplasm 
candidate. 

Figure 23: Maxtree Representation 
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This algorithm has the advantage of performing a local analysis of the nodes, since the 
assignation to a macrophage cytoplasm depends on the leaf, if a node does not present a 
grey level close enough to the leaf, it cannot be assigned as macrophage candidate. And 
if a node belongs to a branch which does not have a high enough grey level leaf, it cannot 
be assigned as macrophage candidate. 

This makes that perhaps a macrophage with a cytoplasm which grey level is lower than 
some mucus, is detected as macrophage, because it may have a higher leaf and despite 
the fact that this grey level is lower than the common of macrophage cytoplasm, it can be 
assigned as macrophage cytoplasm candidate, since its classification depends on the 
distance to the leaf. 

Another important feature is that cytoplasm candidate nodes must have a minimum area, 
understanding as area the sum of the number of pixels stored in the current node and all 
its descendant nodes [4]. This is because the rest of cells are smaller than macrophages, 
and the rest of parameters do not filter them, so some of the other cell types would be 
determined as macrophages. For that reason, we need to filter these candidates with little 
area. We do not use a parameter to filter how big a macrophage cytoplasm, this is because 
in some images appears what is called “soups of macrophage”, where many macrophages 
appear sharing a common cytoplasm. This cytoplasm is very big, and these macrophages 
have to be counted as well. 

Finally, the last parameter is to filter the nodes which have a very low grey level, since 
some mucus can be detected as macrophage if it has spurious maxima and enough area. 

 

 

Leaf 

max_cito_leafdi
st 

min_cito_glvl 

min_cito_area 

MACROPHAGE 

MACROPHAG
E 

Figure 24: Macrophage cytoplasm analysis 
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All the parameter values have been selected by hand, testing many images and choosing 
those ones that best determine the correct candidates. 

• Final values chosen 
 

 

Table 4: Parameters final values 

3.2.2.2. Macrophage nuclei 

Once a macrophage cytoplasm is detected, we tried to determine which nodes are 
macrophage nuclei. For this task, the same technique used with macrophage cytoplasm 
candidates will be used, changing some parameters and their values. 

1. min_leaf_glvl: minimum leaf grey level that must have a node to be macrophage 
nucleus candidate. 
 

2. min_nuc_glvl: minimum grey level that must have a node to be macrophage 
nucleus candidate. 
 

3. max_nuc_leafdist: maximum grey level distance to the leaf that a node can have 
to be a macrophage nucleus candidate. 
 

min_leaf_glvl min_cito_glvl max_cito_leafdist min_cito_area 

120 30 0.25 1400 

Figure 25: Macrophage Soup 
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4. min_nuc_area: minimum area that must have a node to be macrophage nucleus 
candidate. 

 
5.  max_nuc_area: miximum area that must have a node to be macrophage nucleus 

candidate 
 

• Final values chosen 

 

 

Table 5: Macrophage nuclei parameters final values 

 

• Detection Example 

In the next figure we can see an example where two macrophages are detected and 
contamination is rejected, because it does not have enough area in the cytoplasm cut. 

min_leaf_glvl min_nuc_glvl max_nuc_leafdist min_nuc_area max_nuc_area 

160 50 0.74 200 2000 

MACROPHAGE 

NUCLEUS 

Leaf 

max_nuc_leafdist 

min_nuc_glvl 

max_nuc_area  

min nuc area 

Figure 26: Macrophage nucleus analysis 
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3.2.2.3. From candidate nodes to candidate pixels 

 

Before this classification algorithm, we have the nodes that the algorithm considers they 
belong to macrophage or macrophage nuclei. A recovery of the pixels associated to these 
nodes is necessary. For this task, a function of the maxtree processing toolbox [4] is used, 
which returns an image where pixels associated to nodes that are marked as candidates 
have their branchID (branch identifier, each branch has one) and those pixels associated 
to nodes which are not marked as candidates have 0 as value. 

 

 

Not enough 

Figure 27: Macrophage Detection Example 

Figure 28: Macrophage cytoplasm image of candidates 
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3.2.2.4. Images of candidates cleaning 

Sometimes, images of candidates are not as good as we want; they are noisy, with some 
overlapped cells, with holes inside candidates… In order to improve the quality of these 
reconstructed images, post cleaning techniques are applied. 

• Macrophage cytoplasm image of candidate closing by dual reconstruction of 
image dilation 

To implement hole filling without removing important data, as minimums which separate 
two or more close macrophages, we use dual reconstruction with the original image of 
candidates eroded using 10 pixels radius disk structuring element. We have chosen it 
instead of opening because it better preserves the shapes and does not print the structuring 
element on the image. 

 

• Macrophage cytoplasm image of candidates opening 

To clean some spurious macrophages that have a lot of area because they are long and 
narrow, we applied opening with 15 pixels radius disk as structuring element. In addition, 
with this opening we separate some different cells that are a bit overlapped (it is very 
common to find a macrophage and a lymphocyte overlapped, with this opening, we solve 
this problem). In this case, a reconstruction step should not be used, because by 
reconstruction overlapped cells are not separated. 

 

 
 

• Macrophage nuclei image of candidates closing by dual reconstruction of 
image dilation 

Like before, we want to do hole filling without removing important data, such as minima 
which separate two or more close nucleus. For that reason, dual reconstruction with 
the original image of candidates eroded using 10 pixels radius disk structuring element 
has been applied. 

 

Figure 29: Macrophage cytoplasm opening and dual reconstruction 
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• Macrophage nuclei image of candidates opening 

 

In order to clean some spurious macrophages nucleus and separate some others that are 
a bit overlapped, opening with 8 pixels radius disk as structuring element has been applied. 

Finally, macrophage nucleus detected outside macrophage cytoplasm are automatically 
rejected. 

  

• Image of candidates cleaning examples 

Figure 30: Macrophage nucleus hole filled 

Figure 31: Macrophage nucleus cleaned 

Figure 32: Macrophage image of candidates cleaning example 1 
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3.2.2.5. Macrophage detection 

To decide which pixels mark as macrophages or which ones not, we had two options: mark 
as macrophage pixel the cytoplasm candidates, or mark as macrophage pixel the nuclei 
candidates. As the application final goal is to count the number of every cell type present 
in the image to give a medical diagnosis, we decided to mark as macrophage only the 
pixels that belong to nuclei candidates. Because it is likely that two or more macrophage 
overlap, so they share cytoplasm and the only way to differentiate them is through their 
nuclei. We can see a clear example in Figure 25. 

  

Figure 33: Macrophage image of candidates cleaning example 2 
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• Macrophage detection examples 

 

 
Figure 35: Macrophage detection example 2 

Figure 34: Macrophage detection example 1 
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3.2.3. Lymphocytes, Polymorphonuclear and Eosinophiles Detection 

These three types of cells have been grouped because their size is very similar, it depends 
more on the chosen BAL sample than on the type of cell. For that reason, we decided firstly, 
detect these three types of cells together, making a cut in the tree, and once they are 
detected, separate them making another cut. 

 

3.2.3.1. First maxtree cut, looking for cytoplasm, joint detection 

As we do in macrophage detection, we are going to take advantage of the Maxtree analysis 
to select lymphocytes, polymorphonuclears and eosinophiles candidates. So, the first step 
is to compute the Maxtree. 

Once this step is done, the same algorithm used in the macrophage cytoplasm is applied, 
we do a variable cut in the tree, following a series of parameters, which will determine if a 
node is considered as candidate or not. 

1. min_leaf_glvl: minimum leaf grey level that must have a node to be considered as 
candidate. 
 

2. min_cyt_glvl: minimum grey level that must have a node to be considered as 
candidate. 
 

3. max_cyt_leafdist: maximum grey level distance to the leaf that a node can have 
to be considered as candidate. 
 

4. min_cyt_area: minimum area that must have a node to be considered as candidate. 
 

5.  max_cyt_area: maximum area that must have a node to be considered as 
candidate. 

It is exactly equal that macrophage cytoplasm detection, changing parameters. Figure 24  

• Final values chosen 

Table 6: Small cells cytoplasm parameters final values 

 

min_leaf_glvl min_cyt_glvl max_cyt_leafdist min_cyt_area max_cyt_area 

145 50 0.25 50 600 

Figure 36: Polymorphonuclear / Eosinophile / Lymphocyte 
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3.2.3.2. Second maxtree cut, looking for cytoplasm, joint detection 

Now, following as we did in the macrophages, we intend to make a second variable cut in 
the tree, trying to find the nuclei candidates. The used values for the parameters are the 
following: 

1. min_leaf_glvl: minimum leaf grey level that must have a node to be considered as 
candidate. 
 

2. min_nuc_glvl: minimum grey level that must have a node to be considered as 
candidate. 
 

3. max_nuc_leafdist: maximum grey level distance to the leaf that a node can have 
to be considered as candidate. 
 

4. min_nuc_area: minimum area that must have a node to be considered as 
candidate. 

 
5.  max_nuc_area: maximum area that must have a node to be considered as 

candidate. 

It is exactly equal that macrophage cytoplasm detection, changing parameters. Figure 26 

• Final values chosen 

Table 7: Small cells nuclei parameters final value 

• Detection Example 

 

min_leaf_glvl min_nuc_glvl max_nuc_leafdist min_nuc_area max_nuc_area 

185 170 0.89 20 300 

Figure 37: Lymphocytes, polymorphonuclears and eosinophiles detection 
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This cut, besides providing us the pixels which belong to nuclei, should provide us the 
necessary information to differentiate cells; considering that, as we have seen, 
lymphocytes only have one nucleus, eosinophiles two, and polymorphonuclear three or 
more.  But actually, we saw that in the vast majority of cases, nuclei are overlapped, and 
cleaning the image will be not enough to differentiate the different type of cells. 

3.2.3.3. Images of candidates cleaning 

To generate candidate images, we use the same technique used in macrophage detection, 
and equal to macrophages case, images of candidates are not as good as we want. We 
only did a small opening by reconstruction with the original image of candidates dilated as 
marker using a 3 pixels radius disk structuring element to remove spurious maxima in 
mucus. Nuclei detected outside cytoplasm, are automatically rejected. We also reject the 
candidates detected inside macrophage nuclei, because we consider that macrophage 
nuclei are better detected, and it is very rare to find a lymphocyte, polymorphonuclear or 
eosinophile above a macrophage.  

The real goal in these cells cleaning is to achieve separate nuclei, because this will be the 
way to differentiate the cell type.  

We have tried with openings, using different sizes of structuring elements. The size we saw 
we obtained acceptable results and it did not remove relevant data is 3 pixels radius 
structuring element, because with 4 pixels we start to lose relevant data. 

 

 

 

 

 

 

 

Figure 38: Nuclei Overlapped 



 

 34 

 

And here we have a successful example, but they are isolated cases. The most common 
is not to achieve good separation. 

 

This was a serious problem, because we cannot differentiate one type of cell from the 
others, we needed to find a way to do it. At first, we think about doing a third cut into the 
tree, but we have tried and the cut was not very accurate, because leaves were not in every 
nucleus, and not always a maximum was related to a nucleus. 

 

3.2.3.4. Distance Function 

The distance transform provides a metric or measure of the separation of points in the 
image. It calculates the distance between each pixel that is set to off (0) and the nearest 
nonzero pixel for binary images. In our case, we use Euclidean distance [10]. 

Figure 39:Example of how 4 pixels radius structuring element remove relevant data 

Figure 40: Second cut example 
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It can be computed with cascading erosions, as we can see in Figure 41. 

Taking into account that the maxtree solution does not seem to help us in this task another 
option is to find a solution based in the shape of nuclei, implementing a distance function 
solution. Our intention was to find the maxima in the distance function of the image of nuclei 
candidates, and this would return the number of nuclei in a cell.  

 

Here we have some results, where Maxima1 are maxima of the distance function 
calculated with a very restrictive threshold, whereas Maxima2 are maxima of the distance 
function calculated with a less restrictive threshold. These maxima are computed using 
maxtree cuts, such as in cell detection, but in this case, there are almost no nodes. 

Figure 41: Distance Function 
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Figure 42: Analysis by maxima of distance function 1 

Figure 43: Analysis by maxima of distance function 2 
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The proposed technique is not always effective. It improves the separation of the cleaning 
techniques but it continues confusing the cell type. This was the final way we used in the 
classical algorithm to differentiate cells counting the number of connected components 
coming out of the maxima of distance function inside the cells. If it has one connected 
component is a lymphocyte, if it has two it is eosinophile and if it has more it is 
polymorphonuclear. If the cell candidates do not have any maxima of distance function, 
they are rejected. I want to remark that in this case, the cells are marked with cytoplasm, 
because they can have more than one nucleus. 

The results in small cells (lymphocytes, polymorphonuclears and eosinophiles) are not as 
good as in the macrophage case, because as we said before, the algorithm continues 
confusing the cell type. It seems that looking for maxima in the image is not the best way 
to separate the overlapped nuclei, because not all maxima in the image are nuclei and not 
all nuclei have the maximum of the cell inside. As we have seen, it was a difficult task that 
we underestimated. However, the cell cytoplasm is quite well segmented, the problem is 
how to differentiate one type of cell from the others. More research can be done to achieve 
this classification using classical techniques (as proposed in future development or others). 
Nevertheless, the results obtained could already be used as a preliminary ground truth for 
training a machine learning algorithm. 

 

 

 

Figure 44: Example of small cells detection 1 
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3.2.4. Mask creation 

Once we have applied all these techniques, masks have to be generated. The algorithm 
generates as output grey scale images, where 0 value pixels are background, 64 value 
pixels are macrophage, 128 value pixels are lymphocytes, 191 value pixels are 
polymorphonuclears and 255 value pixels are eosinophiles. 

 

 

Figure 45: Example of small cells detection 2 

Figure 46: Output masks examples 
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3.2.5. Manual Labelling Corrections 

To solve the classification problem of the small cells and to improve the results of the 
maxtree, we decide to correct by hand the output masks, in order to train a small CNN to 
start testing how they work with this problematic. If it works better than the maxtree 
algorithm, we could continue labelling images with the output of the CNN and correcting 
them by hand, but it is always easier to correct something more or less good than correct 
something from zero. 

3.2.6. VGG Image Annotator 

Once an algorithm segments the images in the different classes and background, the 
segmentation has to be corrected. For that reason, a tool to correct the labelled images is 
needed. We use the VGG Image Annotator (VIA), a simple and standalone manual 
annotation software for image, audio and video. VIA runs in a web browser and does not 
require any installation or setup. The complete VIA software fits in a single self-contained 
HTML page of size less than 400 Kilobyte that runs as an offline application in most modern 
web browsers [11]. 

With this annotator, we can generate easily new annotations with so many different shapes, 
but if you have previous annotations, the only way to load them in the browser is convert 
all the regions in a recognizable shape (square, rectangle, circle, etc.), in our case, ellipses 
are the defined shapes that best suit our cells. After that, we should write them in a .json 
file, to be able to modify the masks. And loading this .json file in the browser annotator we 
can start to correct our labelled images. 

 

Figure 47: Correcting masks in the VGG Annotator 
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Once we have the masks corrected, we want to get the shapes back, but this is not possible 
directly, because this annotator returns the ellipses. In order to get back the regions, we 
have to apply a watershed step. 

All the algorithms needed to make the correction were provided to me by my tutors and 
external people, because they were applied in another tasks. The part we have to do was 
to understand how they work and modify some parameters and processes to adapt the 
algorithms to our problematic. 

3.2.6.1. Corrections 

It is important to say that these corrections have been done with some supervision of the 
doctor Jordi Temprana, who helps us to segment correctly some doubtful images and cells. 

We generate a dataset of 56 images with their corresponding masks, at first segmented 
with our algorithm and finally corrected with the VGG Annotator. 

As you already know, we have a classification problem with the small cells, so the most 
frequent error corrected is the change of class, where the detection is well, but the 
classification does not. 

The procedure to do that is the following: 

 

 

 

 

 

Figure 48: Images Segmentation Procedure 
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• Correction Examples 

 

  

Original	Image	 Our	algorithm	segmentation	 Corrected	segmentation	

Original	Image	 Our	algorithm	segmentation	 Corrected	segmentation	

Figure 50: Correction example 1 

Figure 49: Correction example 2 
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3.3. Convolutional Neural Network, U-Net 

3.3.1.  Introduction 

There is large consent that successful training of deep networks requires many thousand 
annotated training samples [9]. In our case we only have 56 annotated images, which will 
result in 11 validation samples (20%) and 45 training samples (80%). 

In number of cells, we have annotated 1.526 cells, which breakdown is: 388 macrophages, 
312 lymphocytes, 782 polymorphonuclears and 44 eosinophiles. 

The goal of this CNN is not to generate the final software for the image segmentation, which 
gives the definitive results. We intend to make a test with a small dataset, a prove of 
concept to see how CNN manage with these images, and if it is acceptable, take ideas or 
use it to generate more images for the dataset.   

Network and training strategies that relies on the strong use of data augmentation have to 
be applied to use the available annotated samples more efficiently. It is generated applying 
elastic deformations to the available training images. This allows the network to learn 
invariance to such deformations and avoid overfitting with small datasets, without the need 
to see these transformations in the annotated image corpus. This is particularly important 
in biomedical segmentation, since deformation used to be the most common variation in 
tissue and realistic deformations can be simulated efficiently [9]. 

To carry out this CNN segmentation 
(https://github.com/qubvel/segmentation_models.pytorch) [12] library has been used. 

3.3.2. Network Architecture 

We have used the U-Net architecture to carry out the CNN development.  

3.3.3. Data Augmentation 

How do I get more data, if I don’t have “more data”? Knowing that CNN are not smart, to 
get more data, we just need to make minor alterations to our existing dataset. Minor 
changes such as flips or translations or rotations. Our neural network would think these are 
distinct images anyway [13]. To do this task, the library (https://github.com/albumentations-
team/albumentations)  [14] have been used. 

Figure 51: Data Augmentation in play [13] 
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3.3.4. Transfer Learning 

As we have little labelled data, we use transfer learning as [15] [12] suggest. Essentially, 
the net starts the learning process from patterns that have been learned for a different but 
similar task, instead of starting the learning process from a (often randomly initialized) blank 
sheet.  

Also, humans are not taught every single task or problem in order to be successful at it. 
Everyone gets into situations that have never been encountered, and we still manage to 
solve problems in an ad-hoc manner. The ability of learning from a large number of 
experiences, and exporting 'knowledge' into new environments is exactly what transfer 
learning is all about [16]. 

Following [15] [12], ResNext encoder, specifically resnext50_32x4d have been used as 
backbone, with Imagenet pre-trained weights.  

3.3.5. Training mini-batch size 

As we have 45 images for training, 5 images mini-batch is used, in order to use the same 
number of images in every epoch and do not give more relevance to some images, 
because if the last mini-batch is smaller, its images would have more influence in weights 
if we do not discard them (drop last). 

3.3.6. Activation Function 

The activation functions are the way to introduce non-linearities in the network, it defines 
the output of a node given a set of inputs. For that purpose, two different activation functions 
have been tested in the CNN, ReLU and sigmoid. 

 
Sigmoid was the activation function finally chosen, because independently of the rest of 
the parametrization it presents better results than ReLU. IoU scores with sigmoid are in 
average 5 – 10 % greater than with ReLU, independently of the number of epochs, learning 
rate or optimizer. A possible reason may be that sigmoid suits better our data to converge 
towards a better solution. 

Figure 52: ReLU vs Sigmoid [28] 
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3.3.7. Classification 

As output of the network, we obtain 4 feature maps, one for each class. In feature map i 
there are the probabilities of each pixel to belong to the class i. These probabilities are 
computed by a pixel-wise soft-max: 

𝑝!(𝑦 = 𝑘	|	𝒙) = 	
exp	(𝑎!(𝒙))

∑ exp	(𝑎!!(𝒙))"
!!#$

 

𝑝!(𝑦 = 𝑘	|	𝒙) is the probability that pixel y belongs to class k. 

𝑎!(𝒙) is the activation in feature channel k at the pixel y 

So, if 𝑝!(𝑦 = 𝑘	|	𝒙)	≈ 1 for the k that has the maximum activation 𝑎!(𝒙)	𝑎𝑛𝑑	 𝑝!(𝑦 = 𝑘	|	𝒙)	≈ 
0 for all other k. 

Figure 53: Sigmoid vs ReLU 
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3.3.8. Adam Optimizer 

Adam is an optimization algorithm that can be used instead of the classical stochastic 
gradient descent procedure to update network weights iterative based in training data.  

Stochastic gradient descent maintains a single learning rate for all weight updates, it does 
not change during training. Adam is designed to accelerate the optimization process, 
decrease the number of function evaluations required to reach the optima, or to improve 
the capability of the optimization algorithm, making use of the average of the second 
moments of the gradients (the uncentered variance) to adapt the learning rate. It can 
improve performance on problems with sparse gradients (computer vision). [17] [18] 

3.3.9. Dice Loss Function 

As part of the optimization algorithm, the error for the current state of the model must be 
estimated repeatedly. This requires the choice of loss function that can be used to estimate 
the loss of the model so that the weights can be updated to reduce the loss on the next 
evaluation. In our case, it is used Dice Loss, which originates from Sørensen–Dice 
coefficient, a statistic used to gauge the similarity of two samples. [19] [20]  

Figure 54: Output segmentation maps 

Figure 55: Sørensen–Dice coefficient [27] 
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So, the generic formula to compute it. [19] 

𝐷𝐿 = 1 − 𝐷𝑆𝐶 

Jaccard Loss is very similar to Dice Loss but instead of optimize Sørensen–Dice coefficient 
it optimizes the Jaccard Coefficient (IoU) Figure 56: IoU . MSE Loss is based on the Mean 
Square Error. 

All these loss functions are applied for each mask separated, but the backpropagation is 
computed with the whole mini-batch.  

  

Where A is ground truth 
mask and B is predicted 
mask or vice versa. 
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4. Results 

4.1. Metrics, IoU  

The Intersection-Over-Union (IoU), also known as the Jaccard Index, is one of the most 
commonly used metrics in semantic segmentation. 

The IoU is the area of overlap between the predicted segmentation and the ground truth 
divided by the area of union between the predicted segmentation and the ground truth. This 
metric ranges from 0–1 (0–100%) with 0 meaning overlap and 1 meaning perfectly 
overlapping segmentation [22]. 

 

The IoU computed in the network is calculated over the whole mini-batch, with all channels 
together and pixel by pixel. This means that it is not directly the averages of IoUs of each 
class, because the number of pixels in each class is taken into account to calculate the 
coefficient, so the classes with more representation counts more. 

In addition, we calculate two metrics for the validation data, which both take into account 
all the validation images. One that calculates IoU for each class and another that 
determines the IoU of pixel detection, only taken into account if the pixel is detected and 
not the class to which it is assigned. 

4.2. Final Results 

To finish adjusting the results of our network, different parameterizations have been tested 
to see what results we obtain. We test different Loss Functions (Jaccard Loss, Dice Loss, 
MSE Loss), different optimizers (Adam, Adamax), different learning rates (static, variable) 
and different number of epochs. 

  

Figure 56: IoU [21] 
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Optimizer Epochs LR Loss Function Macrophage 
IoU

Lymphocyte 
IoU

Polymorph
onunclear 

IoU

Eosinophiles 
IoU

Valid IoU 
Score

Train IoU 
Score

Pixel 
Detection 

IoU

Adam

40 Fixed: 1e-3 Jacard Loss 0,72 0 0,534 0 0,61 0,623 0,68

Variable: 1e-3 until 30, 1e-5 Jacard Loss 0,747 0 0,598 0 0,621 0,632 0,733

60 Fixed: 1e-3 Dice Loss 0,747 0,473 0,531 0 0,684 0,737 0,79

Variable 1e-3 until 40, 1e-5 until 55, 1e-6 Dice Loss 0,741 0,46 0,544 0 0,69 0,716 0,79

80

Fixed 1e-3 Dice Loss 0,73 0,34 0,53 0 0,649 0,69 0,78

Variable 1e-3 until 50, 1e-5 Dice Loss 0,75 0,501 0,527 0 0,695 0,746 0,778

Variable 1e-3 until 50, 1e-5 until 70, 1e-6 Dice Loss 0,75 0,512 0,535 0 0,7 0,824 0.794

Adamax

40 Fixed: 1e-3 Dice Loss 0,737 0,504 0,527 0 0,619 0,691 0,774

Variable: 1e-3 until 30, 1e-5 Jacard Loss 0,742 0,587 0,525 0 0,693 0,758 0,785

60 Variable: 1e-3 until 45, 1e-5 Dice Loss 0,748 0,501 0,527 0 0,684 0,763 0,769

Variable 1e-3 until 35, 1e-5 until 55, 1e-6 Dice Loss 0,74 0,587 0,536 0 0,693 0,78 0,782

80 Variable 1e-3, 1e-5 Jacard Loss 0,745 0,562 0,581 0 0,685 0,802 0,788

Variable 1e-3 until 50, 1e-5 until 70, 1e-6 Dice Loss 0,75 0,498 0,53 0 0,687 0,778 0,785

Table 8: Results Table 

Figure 57: Validation Results 
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4.2.1. Loss Function 

Jaccard Loss, Dice Loss and MSE Loss have been applied in the net in order to see how 
they work. Jaccard Loss and Dice Loss are similar, outperforming MSE Loss, they 
converge towards similar solutions. Looking at the results (Table 8, Table 9) Jaccard 
Loss seems to converge into a better solution with fewer epochs and with Adamax 
optimizer, whereas Dice Loss seems to converge towards a better solution with more 
epochs and combined with Adam optimizer.  

 

4.2.2. Optimizer 

Adam and Adamax optimizers have been tested in the network. Adamax is an extension 
of Adam optimizer based on the infinity norm. Both present similar behaviours, superior to 
SGD. Looking at the results (Table 8, Figure 58), Adamax seems to perform better with 
fewer epochs and with fixed learning rates, whereas Adam seems to converge towards a 
better solution with more epochs and with variable learning rates. Adamax presents 
smoother growing in the initial validation epochs, but differs more from training results in 
the last epochs. Adam starts with irregular growing in the first epochs but it finally remains 
stable more according with training results. 

 

 

 

Parametrization Loss Function Valid IoU Score Train IoU Score

Adam 40 variable lr 1e-3 until 30, 1e-4 JaccardLoss 0,621 0,632

DiceLoss 0,579 0,615

Adamax 40 variable lr 1e-3 until 30, 1e-4
JaccardLoss 0,693 0,758

DiceLoss 0,63 0,679

Adamax 60 variable lr 1e-3 until 35, 1e-5 until 
55, 1e-6

JaccardLoss 0,645 0,732

DiceLoss 0,693 0,78

MSELoss 0,601 0,671

Adam 80 variable lr ariable lr 1e-3 until 50, 1e-5 
JaccardLoss 0,686 0,723

DiceLoss 0,695 0,746

MSELoss 0,605 0,641

Adamax 80 variable lr ariable lr 1e-3 until 50, 1e-
5

JaccardLoss 0,685 0,802

DiceLoss 0,684 0,763

MSELoss 0,6732 0,755

Table 9: Loss Function results comparison 
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4.2.3. Learning Rate Annealing 

A commonly used technique, known as learning rate annealing, recommends starting with 
a relatively high learning rate and then gradually lowering the learning rate during training. 
The intuition behind this approach is that we would like to traverse quickly from the initial 
parameters to a range of "good" parameter values but then we would like a learning rate 
small enough that we can explore the "deeper, but narrower parts of the loss function" [23]. 

Following this technique, we test three different learning rates: static learning rate, variable 
learning rate with one step, and variable learning rate with two steps. The results obtained 
are very similar (Table 8: Results Table, Figure 59: Static learning rate vs variable), it 
depends on the number of epochs we use, but varying the learning rate we achieve quickly 
“good” parameter values and then make a more accurate adjustment. 

 

 

Figure 58: Adam vs Adamax 
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4.2.4. Number of epochs 

 

The number of epochs is the parameter that controls the number of complete passes 
through the training dataset. One of the critical issues while training a neural network on 
the sample data is Overfitting. When the number of epochs used to train a neural network 
is more than necessary, the training model learns patterns that are specific to sample data 
to a great extent. This makes the model incapable to perform well on a new dataset [24]. 

In our case, we do not obtain overfitting, our system fits the data but the validation results 
do not get worse along the epochs, so this is not an overfitting problem. But the model 
converges towards a solution and the scores almost do not vary since certain epoch, so it 
does not make sense to extend the number of epochs if the optimization of the weights is 
not going to improve. 

 

Figure 59: Static learning rate vs variable 

Figure 60: IoU Score along 180 epochs 
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40, 60 and 80 epochs have been tested with different learning rates. 40 epochs seem to 
be too few, despite the network starts to remain stable, bests results can be obtained. 
Between 60 and 80 epochs the results vary very little, they depend more on the optimizer 
and the variations in learning rate.  

4.2.5. Global and per Class IoU Score 

Looking at results (Table 8: Results Table) we can observe the global IoU score and IoU 
score per class computed by different network parametrizations. Global IoU score is a 
metric which defines how the network is working, and having scores of 70% approximately 
we consider them as good results in order to help for future dataset creation and 
development.  

In case of IoU score for each class we cannot say the same, they are lower as we expected 
in some classes more than in others. These results make us thing about the disparity in 
the IoU per class and the great difference in comparison with the global IoU. Knowing that 
the only difference between both is that the network computes the global IoU which takes 
into account the frequency of occurrence (at pixel level) of each class, we thought it could 
be a class imbalance problem. 

This is a problem that plagues most of the Machine Learning / Deep Learning Classification 
problems. It occurs when there are one or more classes (majority classes) that are more 
frequent occurring than the other classes (minority classes). Simply put, there is a 
skewness towards the majority class [25]. 

To analyse if our dataset suffers of imbalance, we compute how many pixels has each 
class in the whole dataset, and how this affects to the IoU score per class. 

 

 

 

 

 

 

Macrophages Lymphocytes Polymorphonuclears Eosinophiles

Number of pixels in training images 248988 92217 337132 18326

Number of pixels in validation images 77262 28330 83141 5409

% of the total cell pixels in training 35,74 13,24 48,39 2,63

% of the total cell pixels in validation 39,80 14,59 42,82 2,79

IoU Score of a good parametrization 0,75 0,512 0,535 0

Avg IoU Score 0,742 0,425 0,54 0

Table 10: Correlation between class representation and its IoU 
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Results are clear, our dataset suffers of imbalance, the IoU score for the majority classes 
are clearly higher than for the minority classes (eosinophiles IoU = 0). This is because 
when training a model on an imbalanced dataset, the learning becomes biased towards 
the majority classes. With a greater number of examples available to learn from, the model 
learns to perform well on the majority classes, but due to the lack of enough examples, the 
model fails to learn meaningful patterns that could aid it in learning the minority classes 
[25]. 

Another important fact to highlight is that macrophages are the best detected cells despite 
not being the most representative class in the images. This is probably because it is, as we 
have seen previously in the maxtree, the most different class from the rest, and therefore 
the easiest to differentiate. 

These “low” IoU per class scores makes the results of this project limited. However, their 
analysis can help a lot for future development, so knowing this imbalance in the dataset, 
actions can be taken to improve results, as the proposed in “5.2. Future Development”.  

4.2.6. Pixel detection IoU score 

Looking at results (Table 8: Results Table) we can observe the IoU score for the pixel 
detection in different parametrizations. This is one strong point in our results (80% approx.), 
because if we want to develop a tool to ease the creation of a big dataset, detect a high 
number of pixels that belong to any class we think that helps a lot. Because it provides the 
advantage of only have to change the label of some cells and not have to label them from 
zero.  

4.2.7. Tricky solution  

Taking into account the explanation in “4.2.5. Global and per Class IoU score”, one possible 
“tricky” result for the CNN, which actually can give “acceptable” IoU global scores can be 
obtained assigning all small cells pixels to the polymorphonuclear class. Because it was 
the most representative class (48,4% of the cell pixels) and because they are very similar 
to lymphocytes and eosinophiles. As the loss is computed globally and not for each class, 

Figure 61: Correlation between class representation and its IoU 
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as IoU global score, it also takes into account the frequency of occurrence (at pixel level) 
of each class, making possible this kind of solution. 

In order to avoid them in future development; something we can do is to avoid the 
parametrizations that lead us to these solutions. But to fix it in a good way, we should 
improve the dataset in order to increase the labelled data and solve the class imbalance 
problem. 

4.2.8. Maxtree Results 

Actually, results of the first part of the project were difficult to evaluate, because we did not 
have any labelled data to compare with, so we could not adjust or train the parameters 
based in a ground truth, because we did not have it. One possible solution could have been 
labelling manually some images to compute some scores and adjust our parameters before 
label the 56 images, but now it is too late, for future development I think I will implement it. 

However, now that we have the small dataset, we can compute the IoU score of the 
previous algorithm based on maxtree.  

Table 11: CNN vs Maxtree 

As it can be seen, performance is correct; the macrophage IoU is high, the lymphocyte IoU 
is very close to the CNN IoU and the IoU for pixel detection is higher than the obtained by 
the CNN. It is true that for polymorphonuclears, a very representative class, it does not 
provide good results. But taking into account that the goal for this algorithm was ease the 
manual labelling task, we can conclude that it probably does. 

One problem with this algorithm is that it was not intended to train it, so even if we improve 
and increase the dataset, results will not improve. So, if we want to continue facing the 
problem with this system, we should extract descriptors from the cuts made in maxtree to 
train them. But if the goal is to continue with CNN techniques, I think this maxtree based 
algorithm has fulfilled its objective, do as a launcher to start tackling the problem from 
machine learning.  
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5. Conclusions and future development 

5.1. Conclusions 

This Project has been the first contact with the BAL image segmentation. Carrying it out 
different techniques have been studied and applied to face this problem. As first, using a 
segmentation algorithm based on maxtree and correcting by hand the masks computed by 
it (56 masks). And finally testing and training a CNN, to develop a better classifier and 
obtain valuable information for the future development of the problem in CNN area. 

We can conclude that, in a way, the objectives of the project have been accomplished, 
despite perhaps the scores are not the expected and the CNN cannot generate segmented 
dataset to modify only details. I think that carrying out this project we have learned and 
advanced a lot with the BAL segmentation. We have obtained many valuable information 
about our dataset, we have developed a maxtree-based algorithm that has made the 
masks correction easier, we have labelled and corrected 56 different images, we have 
tested and trained a CNN, analysed different parametrizations, studied and applied 
techniques to improve results in small datasets, and finally, this CNN was trained to 
segment new images achieving better results. 

So, taking all this into account, and considering that at first, we had nothing labelled, and 
for training the net we have used a very limited dataset, with imbalance problems, we 
consider this project a good starting point. 

 

5.2. Future Development 

5.2.1. New techniques to classify lymphocytes 

This was a proposed method but not tested, maybe it is useful for future development. 
Considering the last explanations of the doctor Jordi Temprana, who said that lymphocytes 
have to be very round and almost without cytoplasm, it makes sense to measure the 
circularity of the nuclei and the ratio nucleus / cytoplasm of the small cells and only if they 
are very round and their ratio is close to 1, classify the cell as lymphocyte. 

 

5.2.2. Improve Transfer Learning 

As you know, we used a pre-trained models to initialize our CNN, applying transfer learning. 
But perhaps, images used to train these previous models are not the most similar to ours. 
ImageNet has 1000 classes. That’s why pretrained models have a lot of parameters in the 

Figure 62: Lymphocyte vs Polymorphonuclear 
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last layers on this dataset. On the other hand, medical image datasets have a small set of 
classes, frequently less than 20 (in our case 4). So, the design is suboptimal and probably 
these models are overparametrized for the medical imaging datasets [26]. 

In order to improve results and take more advantage of the transfer learning, find a model 
trained with images similar to ours would be necessary, so the initial parameters would be 
more adjusted to our images and our training would converge towards a better solution 
with less epochs by fine tuning. 

5.2.3. Improve Class Imbalance 

As explained, worst class results are very correlated with less data we have for this class. 
It seems logical, because the CNN does not receive enough data from this class so it does 
not learn enough to classify it.  

At first, talk with doctors could be a good option, to know the roll of eosinophiles (the class 
with less representation in the images), the importance of their detection and if there can 
be tiles with high presence of them.  

In case they do not have images with high presence of eosinophiles, other options can be 
considered. 

5.2.3.1. Weighted Loss Function 

In order to compensate the class imbalance, we can use a weighted loss function, which 
weights the loss computed for different samples differently based on the class they belong. 
We essentially want to assign a higher weight to the loss encountered by the samples 
associated with minor classes. 

There are different weighting schemes that can be followed, for example INS (Inverse of 
Number of Samples), ISNS (Inverse of Square Root of Number of Samples, ENS (Effective 
Number of Samples), among others. [25] 

5.2.3.2. Data Generation 

Another option to compensate the dataset is generating images from clippings where 
eosinophiles appears. It is important to generate feasible contexts; do not increase the 
appearance frequency too much, accompany eosinophiles with cells that usually appear 
next to them… Because CNN can learn things that are not true. Also, to have more samples, 
more data augmentations can be applied on these images. 

5.2.4. Squamous cellularity detection 

Following the indications that doctors gave us, the squamous cellularity detection can be 
important in order to determinate pathologies in the samples. For that reason, we think in 
future development, the detection of these cells could be interesting. However, these cells 
have very little representation in the samples, so it is likely to obtain low quality detection 
results due to the lack of data and the imbalance of the dataset, so probably, techniques 
as suggested in “5.2.3. Improve Class Imbalance” should be applied. 
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