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Universitat Politècnica de Catalunya, Dept. of Civil and Environmental Engineering, Spain   

A R T I C L E  I N F O   

Keywords: 
Global design 
Stiffness Reduction Method 
Material nonlinearities 
Structural members 
Frames 
Stainless steel 

A B S T R A C T   

Current design standards for stainless steel such as ASCE 8-02 and EN 1993-1-4 prescribe provisions for the 
design of cross-sections and members that account for material nonlinearities and strain hardening, although 
these features are not considered in the global design of structures. Recent studies have highlighted the need of 
accounting for material nonlinearities in order to design efficient and safe stainless steel structures, and it is 
expected that the forthcoming versions of the standards will incorporate updated rules for the global design of 
these structures. To contribute to this field, this paper presents a Stiffness Reduction Method (SRM) for the in- 
plane design of stainless steel members and frames with stocky sections based on the prescriptions given in 
the next version of EN 1993-1-4. The proposed approach predicts the ultimate capacity and internal forces in 
stainless steel structures by performing a second-order elastic analysis in which the stiffnesses of the members are 
reduced by a set of factors defined in this paper to account for the effect of the spread of plasticity, residual 
stresses and member imperfections. The accuracy of the presented method is assessed for individual stainless 
steel structural members (columns, beams, and beam-columns) with different cross-sections and material 
properties, and for austenitic stainless steel portal frames, against numerical results obtained from nonlinear 
analyses conducted on finite element models. A comparison between the proposed approach and the Direct 
Analysis Method prescribed in the upcoming AISC 370 Specification is also provided, showing that the results are 
comparable in the two approaches.   

1. Introduction 

Stainless steel is increasingly used in structural engineering due to its 
mechanical properties and excellent corrosion resistance. Design stan
dards for structural stainless steel, based on those prescribed for carbon 
steel, are progressively more specific and comprehensive, and are aimed 
at designing more efficient structures. In the recent decades, research 
efforts have focused on the characterization of the nonlinear stress–
strain response of stainless steel alloys, which differs from the bilinear 
behaviour exhibited by carbon steel, and on the development of design 
expressions for stainless steel structural members. In addition, more 
accurate deformation-based design approaches for stainless steel ele
ments including strain hardening material effects to fully exploit the 
cross-sectional capacity have been developed, such as the Continuous 
Strength Method (CSM) [1–3] and the Direct Strength Method (DSM) 
[4]. Nevertheless, current stainless steel standards, such as the ASCE 8- 
02 [5] and the European EN 1993-1-4 [6], do not provide specific pro
visions for the global analysis or design of stainless steel structures, 

although recent studies have highlighted the need of accounting for 
material nonlinearities in order to design safer structures [7]. Therefore, 
research is now being focused on understanding the global behaviour of 
stainless steel structures [8] and on proposing global design expressions 
that consider the effects of material nonlinearity [9] or geometric 
nonlinearity [7,10]. In addition, the forthcoming publication of the 
European standard prEN 1993-1-14 [11], which regulates the design of 
steel structures through numerical methods, will allow all types of 
stainless steel structures to be designed by directly considering 
geometrical and material nonlinearities and initial imperfections in the 
analysis (i.e., through GMNIA analysis). Nevertheless, GMNIA analyses 
require advanced software that is not always available to designers so 
European researchers have tended to prescribe global design expression 
alternatives to account for geometric nonlinearities, such as the ampli
fication of horizontal forces in single storey carbon steel [12] and 
stainless steel [7,13] frames, while research in the US has focused on 
providing alternative design approaches known as Stiffness Reduction 
Methods (SRM), which account indirectly for material nonlinearities 
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through the concept of reduced stiffness but require second-order ana
lyses to be carried out. 

The strategy of reducing the stiffness of the members to account for 
material nonlinearities in the design of structures is widely accepted due 
to its simplicity and accuracy. Traditionally, the SRM has been devel
oped to be used in conjunction with plastic hinge-based analysis 
[14–20], and generally involves the modelling of geometric imperfec
tions [14–18]. Suroveck-Maleck and White [21,22] proposed a SRM in 
which the prediction of the capacity for steel structures was achieved 
through a second-order elastic analysis where only global imperfections 
were introduced. To account for the spread of plasticity, including the 
effect of residual stresses, the stiffnesses of the members were reduced 
by analytical stiffness reduction factors. With slight modifications, this 
approach was first adopted in 2005 as an annex of the AISC 360 Spec
ification for Structural Steel Buildings [23] as the Direct Analysis 
Method (DM). In the following editions of this Standard, the DM has 
become the preferred design method and has been incorporated in the 
main body of the Specification because it provides accurate estimates of 
the load effects in all types of steel structural systems and eliminates the 
need of calculating effective buckling lengths [24]. In the DM, the es
timations of strengths are obtained from a second-order elastic analysis 
where the spread of plasticity is taken into account by reducing the 
stiffness of the members by two reduction factors: a general stiffness 
factor applied to the whole structure, and an additional factor only 
affecting the flexural stiffness of the members contributing to the sta
bility of the structure. Initial global imperfections (out-of-plumbness of 
columns) should always be included in the analysis by means of notional 
loads or by modelling them directly, while different alternatives exist 
regarding initial member (out-of-straightness) imperfections: (1) they 
do not need to be explicitly included in the structural analysis, but they 
are accounted for by carrying out member checks, or (2) they can be 
explicitly included in the structural analysis, and therefore only cross- 
section checks are necessary. The first edition of the American Specifi
cation for Structural Stainless Steel Buildings AISC 370 [25] has adapted 
the DM approach previously developed for carbon steel to stainless steel 
structures by calibrating new values of the two reduction factors [26]. 
The other requirements of the DM remain unchanged, i.e., the consid
eration of initial global imperfections and the verification of member or 
cross-section strength depending on the approach adopted for the in
clusion of member imperfections in the structural analysis. The 
simplicity and accuracy of Stiffness Reduction Methods (SRM) have 
driven their adaptation into the European framework [27,28], including 
the proposal by Kucukler et al. [29,30] for the in-plane design of carbon 
steel structures and members. As in the DM, global imperfections must 
be included and cross-section capacities must be checked in the SRM 
approach proposed in [29,30], but no member checks are required since 
the proposed stiffness reduction factors are derived from the European 
buckling curves given in EN 1993-1-1 [12] and are thus implicitly pre
sent in the calibrated reduction factors. In this context, the present paper 
adapts the SRM proposed in [29,30] to stainless steel members and 
planar structures considering the provisions given in the upcoming 
version of European standard prEN 1993-1-4 [13]. Therefore, the SRM 
developed herein estimates second-order plastic forces in stainless steel 
structures through elastic geometrically nonlinear analyses considering 
global imperfections with reduced member stiffness to account for ma
terial nonlinearities, member imperfections and residual stresses, 
without requiring running a full GMNIA analysis. The study includes 
stocky Rectangular Hollow Section (RHS) members made of austenitic, 
ferritic and duplex stainless steel alloys. The development and assess
ment of the reduction factors proposed are based on the numerical 
models detailed in Section 2. In Sections 3 and 4, the development of the 
expressions to determine the stiffness reduction factors for columns 
subjected to pure compression and for beams under uniaxial bending, 
respectively, are presented. In Section 5, the stiffness reduction factor 
for members subjected to axial load plus bending moment is derived and 
assessed, and in Section 6 the proposed SRM is applied to different 

stainless steel planar portal frames subjected to vertical and horizontal 
loads to evaluate the accuracy of the proposed reduction factors. Finally, 
the validation of the method is assessed and discussed by comparing the 
results with those predicted by other design methodologies. 

2. Finite element modelling 

2.1. General 

In this Section, the Finite Element (FE) models used for the assess
ment and validation of the proposed Stiffness Reduction Method (SRM) 
are described. The assessment and validation required different types of 
analysis:  

– second-order plastic analysis with imperfections (GMNIA) to 
recreate the actual behaviour of the structural members and to 
obtain the target strength values (to be compared with the SRM),  

– first-order elastic analysis (LA) and second-order elastic analysis 
with stiffness reduction (GNA-SR) (to implement the SRM). 

The assessment was made on stainless steel columns, beams, beam- 
columns, and frames, and two types of numerical models were devel
oped with the general-purpose software ABAQUS [31]. GMNIA analyses 
of structural members were performed on shell-type FE models capable 
of realistically reproducing local buckling effects, while GNA-SR and LA 
analyses were conducted on beam-type FE models. For computational 
efficiency reasons, beam-type FE models were chosen for GMNIA, LA 
and GNA-SR analyses of portal frames. The modified Riks method 
available in ABAQUS [31] was used to solve all the FE analyses. 

2.1.1. Benchmark models for stainless steel members 
Shell FE models of stainless steel columns, beams and beam-columns 

were developed using four-noded shell elements, denoted as S4R [31], 
and used in conjunction with GMNIA analyses to estimate the actual 
capacity of the investigated members. The use of S4R elements together 
with a GMNIA analysis is widely accepted to reproduce accurately the 
behaviour of cold-formed steel [32] and stainless steel [33,34] mem
bers. After a mesh convergence study, flat regions were discretised 
following a uniform mesh size of 10 mm, while the curved corner re
gions were divided into a four-element mesh. Local imperfections were 
included in the form of the local buckling mode obtained from prior 
linear elastic eigenvalue buckling analyses with the amplitudes pro
posed by Gardner and Nethercot [35]. 

In the case of columns and beam-columns, initial member imper
fections were also incorporated following a half sinusoidal shape using 
the corresponding buckling mode with an amplitude equal to Lc/1000, 
where Lc is the length of the member. Pin-ended boundary conditions 
were defined by means of kinematic coupling constraints between the 
end sections of the members and reference points contained in the plane 
of the cross-sections, to which boundary conditions and loading ar
rangements were assigned. All degrees of freedom, except the rotation 
around the minor axis, were constrained at the lower reference point. 
Similar boundary conditions were assigned to the upper reference point, 
but the longitudinal displacement was also allowed, and the load was 
applied as an imposed vertical displacement. While the reference points 
were located at the centroid of the cross-sections in the models for col
umns, in the beam-column models both reference points were shifted 
horizontally to simulate eccentric loads. 

Beams were modelled following the four-point bending test config
uration (4PB). The loading and support sections were defined as regions 
forced to move as rigid bodies, placed at the bottom flange of the beams 
and connected to reference points located at the centre of each region. A 
more detailed description of these regions is provided in [4,36]. The 
support reference points were placed 1500 mm apart, according to the 
loading scheme described in [37], while the loading reference points 
were placed at a distance of 510 mm from the ends of the members. The 
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loads were applied as imposed vertical displacements at the loading 
reference points. The longitudinal and out-of-plane displacements were 
restrained at the midspan cross-sections, while only the vertical 
displacement was constrained at the support reference points. 

2.1.2. Benchmark models for stainless steel frames 
Numerical models of the frames used as benchmarks in Section 6 

were analysed by performing a GMNIA analysis and were developed by 
using Timoshenko linear B21 elements [31], since S4R elements are too 
computationally expensive for a parametric study [7,10,38]. Each 
member of the frame was divided into 100 finite elements and cross- 
sections were defined using the default box-section option in ABAQUS 
[31]. It is worth mentioning that, in practice, a much smaller number of 
finite elements than the 100 elements adopted in this study can be used 
to model individual structural elements. As suggested in [30], four el
ements may be sufficient for sway structures, while sixteen elements 
may be required for non-sway structures. Initial global imperfections 
were included through notional horizontal loads assuming an out-of- 
plumb angle of 1/200 according to EN 1993-1-1 [12], while the mem
ber imperfections of the columns were introduced by directly modifying 
the position of the nodes following a half-sine wave shape with an 
amplitude of Lc/1000 in the most detrimental direction. Finally, both 
fixed- and pin-ended boundary conditions were adopted at the supports 
of the columns, while vertical and horizontal concentrated loads were 
applied simultaneously at the top of the columns, as per in the numerical 
portal frames developed in [10], which were in turn based on the tests 
reported in [8]. 

2.1.3. Models for stainless steel members and frames using the Stiffness 
Reduction Method 

For all the FE models carried out using the Stiffness Reduction 
Method (including columns, beams, beam-columns, and frames), LA and 
GNA-SR analyses were performed on models using Timoshenko linear 
in-plane beam elements B21 [31]. In the case of GNA-SR analyses, the 
cross-section geometry was defined using the generalized-section 
available in ABAQUS [31]. Generalized-sections allow reducing the 
moment of inertia (I) without modifying the nominal cross-section area 
(A) and the material properties, i.e., the Young’s modulus (E), so that the 
flexural stiffness (EI) is modified while the axial stiffness of the members 
(EA) remains constant [30]. Members were divided into 100 elements. 
Although the proposed stiffness reduction factor for columns already 
incorporates the effect of member imperfections, to ensure that the 
geometrical nonlinearities were triggered in the column models, an 
imperfection amplitude of 0.001% Lc was incorporated following a half 
sinusoidal shape [9]. In the case of frames, notional horizontal loads 
were applied assuming a drift angle of 1/200, as recommended in EN 
1993-1-1 [12], in both LA and GNA-SR analyses. The loads were applied 
as imposed displacements and the boundary conditions were defined 
following the configurations described above. 

2.2. Material model 

In both shell and beam FE models, nonlinear material properties 
were defined by assigning user-defined true stress-plastic strain curves 
according to the two-stage Ramberg-Osgood material model proposed in 
[40] and shown in Eq. (1) and Eq. (2), where ε is the strain, σ is the 
stress, E is the Young’s modulus, fy and fu are the yield stress and ulti
mate tensile strength, respectively, εu is the ultimate strain, n and m are 
the strain hardening exponents and Ey is the tangent modulus at the 
yield stress, given in Eq. (3). 

ε =
σ
E
+ 0.002

(σ
E

)n
for σ ≤ fy (1)  

ε = 0.002 +
fy

E
+

σ − fy

Ey
+ εu

(
σ − fy

fu − fy

)m

for fy < σ ≤ fu (2)  

Ey =
E

1 + 0.002n E
fy

(3) 

The study presented in this paper was based on austenitic, ferritic 
and duplex stainless steel RHS members. Table 1 summarises the key 
weighted average material properties considered, which were calculated 
according to [35] from the material properties reported in [41] for the 
flat and corner regions of stainless steel RHS sections. Weighted average 
material properties were assigned to all the FE models to facilitate the 
comparison between GMNIA and GNA-SR analyses. 

2.3. Validation of FE models 

Numerical models for structural members (columns, beams and 
beam-columns) were validated using shell-type FE models, while the 
numerical models for portal frames were validated using both shell-type 
and beam-type FE models, as described in this Section. 

The FE models of stainless steel members used in the present study 
were validated against the experimental results on cold-formed EN 
1.4301 austenitic columns and beams with RHS cross-sections reported 
in [37]. The accuracy of the FE model for columns was assessed by 
comparing the results of the GMNIA analysis with those of columns 
subjected to pure compression under pin-ended boundary conditions. 
The cross-sections were modelled using S4R elements and divided into 
corner regions and flat regions [35]; the measured material properties 
given in [37], using the model given in Eq. (1) and Eq. (2), were assigned 
to each region. For this particular validation, the reference points con
nected to the end cross-sections were placed at a distance of 50 mm, 
following the experimental setup. Local and global imperfections were 
included by using the corresponding buckling modes and the measured 
amplitudes reported in [37]. To validate the numerical models of the 
beams, experimental results from four-point bending tests, with the 
stainless steel RHS sections bent around their major axis, were used. The 
same type of S4R elements and material models used for columns were 
also employed for beams. The test setup coincided with that described 
above for the numerical models of beams, whereby the distance between 
the support reference points was 1500 mm and between the load 
reference points, 510 mm. Local imperfections were included using the 
pattern given by the relevant buckling modes and with the amplitudes 
measured from the test specimens, as given in [37]. Fig. 1 presents the 
experimental load-lateral deflection curves of columns under pure 
compression around major (S2) and minor (S3) axis and the experi
mental load-midspan deflection curves for beams subjected to major axis 
bending, compared to the corresponding FE curves. The results 
demonstrate that the numerical analysis approach used in the present 
study can accurately simulate the actual behaviour of stainless steel 
members. It was observed that the failure modes also concurred. 
Therefore, the use of the numerical analysis approach presented herein 
is appropriate to obtain reference data to be compared with the results 
predicted from the proposed Stiffness Reduction Method. 

The frame FE model used herein was developed for a previous study 
and its validation, which was also carried out by comparing the loads 
and displacements predicted numerically with the corresponding 
experimental results from the frame tests conducted by Arrayago et al. 
[8], is available in [10]. Note that the setup reported in [8] varies from 
that adopted in the parametric study mainly in the position of the loads, 
the application of the vertical and horizontal loads in two separate steps 

Table 1 
Key material characterization parameters for parametric studies.  

Stainless steel type E 
[GPa] 

fy 

[MPa] 
fu 

[MPa] 
εu 

[mm/mm] 
n m 

Austenitic 198 428 650  0.39  5.5  3.7 
Ferritic 185 498 520  0.06  11.4  3.1 
Duplex 201 707 874  0.36  5.6  4.9  
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and the fact that the end support conditions were semi-rigid. Although a 
detailed model was developed using S4R shell elements, which is 
described in [8], these experimental and numerical results were used in 
[10] to validate the computationally more efficient FE models using B21 
beam elements. As reported in [10], the experimental and numerical 
vertical load-midspan deflection curves and the horizontal 
load–displacement curves showed that the behaviour of stainless steel 
portal frames with stocky cross-sections could be accurately predicted 
with a simpler numerical model that used B21 elements. 

3. Stiffness reduction under axial loading 

In this Section, the development of the stiffness reduction factor τN 
accounting for the loss of stiffness due to geometrical imperfections, 
residual stresses and the spread of plasticity in stainless steel columns 
under axial loading is presented, as well as its validation by the com
parison of GNA-SR and GMNIA results. 

3.1. Derivation of stiffness reduction factor τN 

The stiffness reduction factor τN of a column subjected to axial 
loading was derived from the European buckling curves specified in the 
next version of the prEN 1993-1-4 [13] standard and following the 
methodology proposed by Kucukler et al. [29] for carbon steel columns. 
The stiffness reduction factor τN is the ratio between the inelastic and the 
elastic critical buckling loads of the member, Ncr,i and Ncr respectively, 
and can be expressed in terms of the flexural buckling reduction factor χ 
and the member slenderness λ, as shown in Eq. (4). 

τN =
Ncr,i

Ncr
= χλ2 (4) 

The buckling curves to calculate the flexural buckling reduction factor 
χ prescribed in the latest edition of the Design Manual for Structural 
Stainless Steel [42] and in the upcoming version of prEN 1993-1-4 [13] 
are based on the Ayrton-Perry approach [43]. The buckling reduction 
factor is given by Eq. (5), where the effects of the residual stresses and 
member imperfections are included in the auxiliary parameter ϕ defined 
in Eq. (6). The values of the imperfection factor α and the limiting slen
derness λ0 depend on the type of cross-section, stainless steel family and 
the buckling axis considered. For the specific case of cold-formed stain
less steel RHS columns, the imperfection factor adopts a value of α = 0.49 
[13,42], while the limiting slenderness is λ0 = 0.3 for austenitic and 

duplex stainless steels, and λ0 = 0.2 for ferritic alloys. 

χ =
1

ϕ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϕ2 − λ2
√ but χ ≤ 1.0 (5)  

where 

ϕ = 0.5
[
1+ α(λ − λ0)+ λ2 ] (6) 

The reduction function τN proposed herein and given in Eq. (7) and 
Eq. (8) is adopted from Kucukler et al. [29], which in turn comes from 
the European buckling curves for carbon steel, but assumes the imper
fection factor and limiting slenderness values calibrated for stainless 
steel alloys [13]. It is noteworthy that the strength prediction resulting 
from applying the proposed reduction factor τN and performing a GNA- 
SR analysis up to failure is identical to that estimated from the European 
buckling curve Nb,Rk. Hence, the maximum column resistance estimated 
by the proposed SRM is the squash load of the gross cross-section Npl, 
and the applied axial load NEd in Eq. (7) and Eq. (8) should not be greater 
than the characteristic column strength Nb,Rk. 

τN =
4ψ2

α2NEd
Npl

[

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 4ψ (NEd/Npl − 1)
α2NEd/Npl

√ ]2 but τN ≤ 1.0 (7)  

where 

ψ = 1+ λ0α NEd

Npl
−

NEd

Npl
(8) 

From the relationship presented in Eq. (4), it is possible to derive 
stiffness reduction functions that consider imperfections and residual 
stresses based on any buckling curve. For assessment purposes, the 
stiffness reduction factors derived from the buckling curves proposed in 
AISC 370 [25] for RHS stainless steel columns were also calculated. 
Fig. 2 shows the comparison of the stiffness reduction functions specif
ically obtained herein for austenitic and duplex RHS columns from the 
buckling curves in prEN 1993-1-4 [13] and AISC 370 [25]. As shown in 
Fig. 2, both stiffness reduction functions are very similar, as the flexural 
buckling curves prescribed in AISC 370 [25] have been recently revised 
to provide strength predictions comparable to those predicted with the 
European curves [39]. These new buckling curves provide similar or 
slightly higher strength predictions than the equivalent European curves 
and show a larger yield plateau due to the less strict reliability re
quirements stipulated for the AISC 370 Specification. The new expres
sion for the AISC 370 buckling curves is defined in three stages 
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Fig. 1. Comparison of FE load–deflection curves for S2 (RHS 120 × 100 × 4) 
and S3 (RHS 120 × 40 × 4) austenitic stainless steel columns and four-point 
bending beams with the experimental results reported in [37]. 

Fig. 2. Comparison between the proposed stiffness reduction factor τN and the 
stiffness reduction factor derived from AISC 370 [25] buckling curves for an 
austenitic stainless steel column. 
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depending on the slenderness or stress ratios. For high slenderness ra
tios, i.e., low NEd/Npl ratios, the AISC 370 design buckling stress is a 
constant proportion of the elastic buckling stress, resulting in the plateau 
shown in Fig. 2 and which adopts a value of 0.82 for austenitic and 
duplex RHS members. 

3.2. Application of the proposed stiffness reduction factor τN 

The ability of the proposed stiffness reduction factor τN based on the 
European buckling curves for stainless steel RHS columns to consider the 
effects of material nonlinearities, initial imperfections and residual 
stresses was evaluated by numerical FE analyses. For this, a range of 
simply supported columns made of the austenitic, ferritic and duplex 
materials reported in Table 1 were studied. The geometry of the cross- 
section considered in the assessment corresponds to the section RHS1 
shown in Table 2, where H is the total height of the cross-section, B is the 
total width, t is the wall thickness and Rext is the external corner radius. 
Local slenderness values under pure compression λp,c are also reported. 
Table 2 also includes the geometric characteristics of the other cross- 
sections used in this study (RHS2 and RHS3), and the local slender
ness values under major axis bending λb,y and minor axis bending λb,z for 
the three cross-sections. All local slenderness λp,i values reported in 
Table 2 were calculated from λp,i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
fy/σcr,l

√
, where σcr,l is the elastic 

local buckling stress of the full cross-section under the appropriate stress 
distribution, obtained using CUFSM [44]. Finally, the assessment pre
sented in this Section considered different stainless steel columns with 
varying member lengths, which corresponded to member slenderness 
values that ranged from 0.25 to 2.00. In total, 8 columns were analysed 
for each stainless steel family. 

The proposed reduction factor τN was used to estimate the ultimate 
strength of the investigated columns by conducting a GNA-SR analysis 
and its accuracy was assessed by comparing these estimations with the 
ultimate capacities of the same columns predicted from a GMNIA 
analysis. The ultimate strength of the columns was estimated as the 
applied load when the most loaded cross-section reached its cross- 
section capacity in the GNA-SR analyses proposed in the present 
study. The ultimate cross-section capacity was determined using the 
Continuous Strength Method (CSM) interaction equation for RHS cross- 
sections under combined axial load plus uniaxial bending provided in 
prEN 1993-1-4 [13], but slightly modified to limit the axial forces up to 
the squash load of the gross cross-section Npl, since the buckling curves 
from which the factor τN was derived are limited to Npl. The CSM 
approach is based on the cross-section deformation capacity and pro
vides accurate predictions of the ultimate cross-section resistance 
because strain hardening effects are taken into account. The CSM 
formulation relies on a base curve which relates the maximum strain εcsm 
that a cross-section can experience prior to buckling to its local slen
derness λp,i, normalised by the yield strain εy, which is calculated from 
εy = fy/E. Eq. (9) shows the CSM base curve for fully effective stainless 
steel cross-sections as given in prEN 1993-1-4 [13], where C1 is a ma
terial coefficient that adopts a value of C1 = 0.10 for austenitic and 

duplex alloys and C1 = 0.40 for ferritic stainless steel grades, and Ω is a 
project specific parameter that defines the maximum permissible level of 
plastic strain in the structure. According to prEN 1993-1-4 [13], the 
recommended value for Ω is 15. 

εcsm

εy
=

0.25
λp,i

3,6 ≤ min
(

Ω,
C1εu

εy

)

for λp,i ≤ 0.68 (9) 

Thus, in the case of stocky cross-sections, the CSM bending moment 
resistance Mcsm, whose formulation can be found in the main stainless 
steel standards and design guides [13,25,42], is greater than Mpl. Since 
RHS1 is a stocky cross-section, the ultimate cross-section resistance of 
the columns analysed through the GNA-SR proposed herein is that 
shown in Eq. (10) [13,42]. The parameter a in Eq. (10) depends on the 
axis of bending and it corresponds to a = aw =(A − 2bt)/A when 
calculating the major axis strength and a = af =(A − 2ht)/A for minor 
axis bending, where b and h are the internal width and height of the 
cross-section, respectively, and A is the cross-sectional area. In the case 
of RHS sections with local slenderness values λp > 0.60, the linear 
interaction equation given in Eq. (11) might be used. Note that, for 
comparison purposes, partial safety factors for cross-section γM0 and 
member γM1 resistances are equal to unity in this paper. 

MEd ≤ MN = Mcsm
1 −

(
NEd
/

Npl
)

1 − 0.5a
≤ Mcsm for λp ≤ 0.60 (10)  

NEd

Npl
+

MEd

Mcsm
≤ 1 for λp > 0.60 (11) 

The results obtained using the proposed stiffness reduction factor τN 
for stainless steel columns are plotted in Fig. 3 along with those corre
sponding to the stiffness reduction factors derived from the buckling 
curves proposed in AISC 370 [25], as discussed in Section 3.1. The 
discrepancies observed between the GNA-SR and GMNIA results are 
associated with the accuracy or adjustment of the buckling curves 
considered to the specific stainless steel materials considered in the 
present study. Both AISC 370 [25] and prEN 1993-1-4 [13] buckling 
curves were calibrated using a large number of data and provide accu
rate predictions of the ultimate buckling strengths. Since the proposed 
τN factor was directly obtained from the European buckling curves, the 
GNA-SRτN prEN 1993-1-4 curves shown in Fig. 3 overlap the prEN 1993-1-4 
[13] buckling curves. Hence, the accuracy of the proposed τN factor will 
depend on the fit of the flexural buckling curves to the ultimate member 
resistance of stainless steel columns. Based on the results shown in Fig. 3, 
it can be concluded that the austenitic buckling curve prescribed in prEN 
1993-1-4 [13] was in good correlation with the studied austenitic cases, 
while less accurate fits were found for the ferritic and duplex materials 
studied. 

For the cases considered in this Section, i.e., members under pure 
compression, it is possible to approximate the inelastic buckling strength 
of the column by reducing the elastic critical buckling load Ncr by τN. 
Furthermore, equivalent results may be obtained when a Linear Buck
ling Analysis with Reduced Stiffness (LBA-SR) is carried out. The latter 

Table 2 
Cross-section geometric properties and local slenderness values under different load cases.  

Cross-section type H [mm] B [mm] t [mm] Rext [mm] Stainless steel type λp,c  λp,by  λp,bz  

RHS1  90.0  76.0  6.0  9.5 Austenitic  0.32  0.25  0.29      
Ferritic  0.36  0.28  0.33      
Duplex  0.41  0.32  0.37  

RHS2  125.0  76.0  6.0  9.5 Austenitic  0.43  0.25  0.41      
Ferritic  0.48  0.28  0.46      
Duplex  0.55  0.32  0.52  

RHS3  146.0  76.0  6.0  9.5 Austenitic  0.50  0.26  0.48      
Ferritic  0.56  0.29  0.54      
Duplex  0.64  0.33  0.61  
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approach is especially recommended for columns subjected to non- 
uniform axial forces, with non-uniform cross-section or various bound
ary conditions [29]. 

4. Stiffness reduction under bending 

In this Section, the derivation of the stiffness reduction function τM 
for estimating the yield distribution effects on the structural behaviour 
of beams under pure bending through a GNA-SR analysis is presented. 
Application of the derived τM factor and the assessment of the results are 
also provided. 

4.1. Derivation of stiffness reduction factor τM 

In out-of-plane restrained beams subjected to constant bending 
moment, the stiffness reduction function τM estimates the spread of 
plasticity in the cross-section and, therefore, it depends on the cross- 
sectional geometry, material response and residual stresses, but not on 
the initial geometrical imperfections [29]. The reduction factor τM cor
responding to a certain bending moment MEd can be expressed as the 
ratio between the tangent flexural stiffness at a particular bending 
moment value EIt, and the initial flexural stiffness EI. As shown in Eq. 
(12), the tangent flexural stiffness of a member at any given bending 
moment value EIt corresponds to the derivation of dMEd /dκ, where κ is 

the curvature; in other words, to the slope of the moment–curvature 
curve at MEd. 

τM =
EIt

EI
=

dMEd
dκ

EI
(12) 

Real and Mirambell [45] proposed an analytical expression to 
describe the bending moment–curvature relationship of stainless steel 
beams subjected to bending moment up to a moment M02, which cor
responds to the moment at which the maximum normal tensile stress is 
equal to the yield stress fy. Note that for materials showing nonlinear 
stress–strain responses such as stainless steels, M02 is different from the 
elastic bending moment of the section and can be estimated by inte
grating the nonlinear stress distribution of the cross-section [45]. The 
expression approximates the cross-sectional curvature as a combination 
of elastic and plastic components. While the elastic component corre
sponds to the ratio of the applied moment MEd and the initial flexural 
stiffness EI, the plastic component is governed by the definition of the 
plastic curvature κp,02 for M02. Recently, Shen and Chacón [9] proposed 
a stiffness reduction function for stainless steel RHS beams based on Real 
and Mirambell’s approximation. However, the proposed function was 
only valid up to a moment equal to the elastic moment Mel, so a second 
stage was added to the τM formula to consider nonlinear stress distri
butions up to the plastic moment Mpl [9]. 

In an effort to simplify this approach, the alternative expression for 
the calculation of the curvature up to Mpl given in Eq. (13) is proposed in 
this paper. Eq. (13) is based on Real and Mirambell’s expression but, 
while the elastic component is the same, the plastic component uses the 
plastic moment Mpl instead of M02, and the plastic curvature κp corre
sponding to Mpl is adopted (instead of the κp,02 curvature). The plastic 
curvature κp, defined in Eq. (14), can be determined as the difference 
between the curvatures corresponding to the plastic Mpl and elastic Mel 
bending moments. These curvatures are calculated based on the strains 
and the cross-section half-heights, i.e., κ = ε/(H/2). While the strain for 
Mel is straightforward, that for Mpl can be accurately estimated as 3εy for 
RHS, following the recommendations in [4,46]. 

κ =
MEd

EI
+ κp

(
MEd

Mpl

)n− 1

(13)  

κp =
2
H
(
3εy − εy

)
(14) 

By deriving Eq. (13) with respect to κ, substituting the resulting 
expression into Eq. (12) and assuming 2εyEI/H = Mel, the stiffness 
reduction factor τM shown in Eq. (15) is obtained. 

τM =

[

1 + (n − 1)
2Mel

Mpl

(
MEd

Mpl

)n− 2
]− 1

(15) 

The τM factor estimated by Eq. (15) has been assessed against the τM 
value derived from the numerical moment–curvature relationship ob
tained through a GMNIA analysis. Simply supported beams subjected to 
four-point loading conditions and bending around minor axis, as 
described in Section 2, were considered, and corresponded to the three 
stainless steel alloys shown in Table 1 and the cross-sections RHS1, 
RHS2 and RHS3 presented in Table 2. Bending moment–curvature re
lationships were determined at the midspan sections from the FE 
models, where the bending moment distribution is constant, and cur
vatures were calculated from Eq. (16), where uav is the average value of 
the deflections at the loading sections, u2 is the deflection at the midspan 
section and Lp is the distance between applied loads [47]. 

κ =
8(u2 − uav)

4(u2 − uav)
2
+ Lp

2 (16) 

Fig. 4 shows the comparison between the stiffness reduction factor τM 
given in Eq. (15) for a RHS2 austenitic beam against the flexural stiffness 
reduction factor derived from GMNIA results. Suggested by Shen and 

Fig. 3. Comparison of the results obtained from different GNA-SR analyses 
with GMNIA predictions on (a) austenitic, (b) ferritic and (c) duplex stainless 
steel simply supported columns. 
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Chacón [9], and as demonstrated in Fig. 4, substituting the term (n − 1) 
in Eq. (15) by (n − 1)/2 provides a better fit of the analytical expression 
of τM. Consequently, the proposed stiffness reduction function τM is 
given in Eq. (17). As shown in Fig. 4, the fit obtained with Eq. (17) is 
excellent up to Mel, and becomes poorer beyond this value due to the 
strain hardening of the material. 

τM =

[

1 + (n − 1)
Mel

Mpl

(
MEd

Mpl

)n− 2
]− 1

(17)  

4.2. Application of the proposed stiffness reduction factor τM 

The accuracy of the proposed stiffness reduction function given in 
Eq. (17) was verified by means of FE analyses. A parametric analysis of 
simply supported beams following the four-point bending test configu
ration (4PB) was carried out. Beams bent about their minor axes, were 
1500 mm long and vertical loads were applied at a distance of 510 mm 
away from the supports. Different materials corresponding to the three 
stainless steel families defined in Table 1 were analysed, considering 
three cross-sections (RHS1, RHS2 and RHS3 sections presented in 
Table 2) with varying local slenderness values for each material. 
Moment-curvature relationships were determined at the midspan sec
tions as explained above. Fig. 5 shows the comparison of the proposed 
stiffness reduction factor τM given in Eq. (17) against the corresponding 
GMNIA results for austenitic, ferritic and duplex simply supported 
beams with RHS1 cross-section. The largest differences observed be
tween the GMNIA and GNA-SR curves are in the cases of austenitic and 
duplex alloys. These discrepancies can be explained by the existing 
resistance reserve after Mel due to the strain hardening of the material, 
which the proposed stiffness reduction function τM does not take into 
account. 

5. Stiffness reduction under combined axial load and bending 

In this Section, a stiffness reduction function τNM that considers the 
detrimental effects of material nonlinearities, residual stresses and 
initial imperfections in stainless steel members under combined loading 
is presented. Results for a variety of beam-columns analysed according 
to the Stiffness Reduction Method (SRM) using the proposed τNM factor 
are also shown and assessed against the capacity of stainless steel 
benchmark members subjected to a combination of axial load and uni
form bending. Finally, the consideration of different lineal moment 
distributions along the member length is addressed. 

5.1. Proposal of stiffness reduction factor τNM 

Kucukler et al. [29] proposed a stiffness reduction factor τNM to take 
into account the effect of yielding in I-section (IPE and HE) carbon steel 

beams-columns subjected to a combination of axial load and uniform 
bending. The τNM expression proposed in [29] depends on two factors, 
which in turn depend on the cross-sectional aspect ratio H/B (H/B ≤ 1.2 
or > 1.2) and the axis of buckling and bending. The cross-sections 
studied in this paper are stainless steel rectangular hollow cross- 
sections (RHS) with H/B > 1.2. Since RHS cross-sections subjected to 
combined axial and uniaxial bending moment for both major and minor 
axes behave similarly to I-sections under axial load plus strong axis 
bending, the τNM factor proposed by Kucukler et al. [29] for carbon steel 
I-section beam-columns with H/B > 1.2 for combined axial load and 
major axis bending is adopted herein. Thus, the interaction stiffness 
reduction function τNM used in this study is given in Eq. (18), in which τN 
and τM correspond to the reduction factors determined from Eq. (7) and 
Eq. (17), respectively. 

τNM = τNτM

{

1 −
(

NEd

Npl

)0.8(MEd

Mpl

)}

(18)  

Fig. 4. Assessment of the proposed stiffness reduction factor τM for austenitic 
stainless steel beams under constant bending moment against the flexural 
stiffness reduction factor derived from GMNIA results (RHS2 cross-section). 

Fig. 5. Evaluation of the proposed reduction function τM for (a) austenitic, (b) 
ferritic and (c) duplex stainless steel simply supported beams under minor axis 
bending (RHS1 cross-section). 
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5.2. Application of the proposed stiffness reduction factor τNM 

A comprehensive parametric analysis on simply supported austen
itic, ferritic and duplex stainless steel beam-columns subjected to axial 
load and uniform minor axis bending moment was conducted to assess 
the accuracy of the proposed τNM factor. Material properties considered 
in the FE models are shown in Table 1, and the details of the models have 
been discussed in Section 2. The member slenderness values considered 
were 0.5, 1.0 and 1.5, and the cross-sections analysed corresponded to 
the sections RHS1 and RHS2 defined in Table 2. Investigated bending 
moment-axial load ratios varied from pure compression to pure bending 
moment. Generally, constant bending moments were introduced by 
means of eccentric axial loads, with load eccentricity values equal to e0 
= 0.1B, 0.3B, 0.75B, 1.5B, 3.0B and 9.0B, where B is the total cross- 
section width. Only in the cases with null axial loading (i.e., pure 
bending moment loading), members were subjected to equal bending 
moments applied at the endpoints. 

The ultimate load and bending moment resistances of the beam- 
columns were obtained from a GNA-SR analysis using the τNM function 
proposed in Eq. (18) and following the procedure explained in Section 
3.2. Since the local slendernesses of RHS1 and RHS2 are lower than 0.60, 
the ultimate applied loads NEd and corresponding bending moments MEd 
were determined from the GNA-SR analyses by applying the interaction 
equation given in Eq. (10) at the critical cross-sections. These values are 
compared with the ultimate strengths predicted from the GMNIA ana
lyses in Fig. 6, which shows the nondimensional ultimate loads NEd/Npl 
and bending moments MEd/Mpl predicted from the GNA-SR analyses 
using the proposed reduction factor τNM for simply supported beams- 
columns under uniform uniaxial bending for the cross-section RHS2, 
the three stainless steel families and the three member slenderness λ 
values considered. Ultimate capacities of restrained beam-columns 
predicted from the GMNIA analyses are also provided as benchmark. 
As mentioned in Section 3.1, the compression resistances in members 
are limited to the flexural buckling resistance values Nb,Rk, which are 
represented by dashed horizontal lines in Fig. 6, while the ultimate 
bending capacities are limited by the CSM bending resistance as Eq. (10) 
assumes Mcsm as endpoint. Accurate and generally safe predictions are 
obtained for all materials and member slendernesses, since the GNA-SR 
predicted member strengths tend to lay below the GMNIA-predicted 
capacities. The most conservative estimations are obtained for stocky 
(i.e., short) specimens, since their structural behaviour is similar to that 
exhibited by the cross-section, without showing instability. In addition, 
when loading is governed by compressive loads, results seem to be more 
precise for austenitic alloys since, as discussed in Section 3.2, the 
austenitic buckling curve specified in the upcoming prEN 1993-1-4 [13] 
standard is in good agreement with the austenitic material used in the 
present study, while the buckling curves are worse fitted for the studied 
ferritic and duplex materials, as it was shown in Fig. 3. 

It is worth emphasizing that the GNA-SR curves shown in Fig. 6 are 
very close to the GMNIA curves in those loading cases governed by 
bending moment, even if the proposed τM function gradually loses ac
curacy when MEd > Mel, as discussed in Section 4.1. Based on these re
sults, it can be concluded that the τM factor defined by Eq. (17) 
accurately captures the stiffness loss of stainless steel beams subjected to 
constant bending up to a value of Mcsm, and consequently a second stage 
of the formulation for τM is not necessary. This fact is especially valuable 
considering the simplicity of the proposed τM formula compared to those 
available in the literature [9,29]. 

In addition, the accuracy of the stiffness reduction function was 
assessed through the ratio ζ defined in Eq. (19), following the approach 
adopted in [30], which is the ratio between the radial distances 
measured from the origin to the normalised interaction GNA-SR (ζi) and 
GMNIA (ζGMNIA) curves. 

ζ =
ζi

ζGMNIA
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
NEd,i/Npl

)2
+
(
MEd,i/Mpl

)2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
NEd,GMNIA/Npl

)2
+
(
MEd,GMNIA/Mpl

)2
√ (19) 

Table 3 summarises the comparison of the ultimate capacities of 
GNA-SR with those of GMNIA, where ζav and ζcov are the average value 
and the coefficient of variation (COV) of the calculated ζ ratios for the 
different beam-columns investigated and the member slenderness 
considered, and ζmax and ζmin are the maximum and minimum ζ values. ζ 
values lower than 1.0 correspond to conservative predictions. As re
ported in Table 3, the GNA-SR method provides accurate ultimate 
strength predictions, with ζav values close to 1.0 and considerably small 
coefficients of variation (COV), especially in the cases of austenitic and 
ferritic beam-columns. However, the COV values tend to increase for 
increasing member slenderness λ values. It should be noted that the 
errors in the unconservative side (i.e., ζ values higher than 1.0) are 
usually not greater than 10% (ζ ≤ 1.10), and that only in the case of 
slender austenitic members subjected to similar proportions of bending 
moment and axial compression forces (see Fig. 6), the SRM exceeds 

Fig. 6. Evaluation of GNA-SR results for (a) austenitic, (b) ferritic and (c) 
duplex stainless steel beam-columns under combined axial loading and uniform 
minor axis bending (RHS2 cross-section). 
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considerably the ultimate GMNIA strength (showing ζmax values of 1.16 
and 1.10). In contrast, the most conservative predictions are obtained 
for duplex members, with ζmax values reported in Table 3 being always 
≤ 1.0, and ζmin values ≤ 0.85. For ferritic and duplex stainless steel 
members, the minimum ζ values are usually obtained under pure 
compression (i.e., for columns) because, as discussed in Section 3.2, the 
European buckling curves (and consequently τN) provide reasonable, 
but not perfect, ultimate member resistances for these materials. 

5.3. Moment gradient effect 

Consideration of the effects derived from bending moment gradients 
along the member length is assessed herein. To account for linear 
moment gradient variations, the proposed τNM function was modified 
applying an equivalent uniform moment factor Cm to the maximum 
bending moment along the member length MEd. Since the present work 
focuses on members with linear moment gradients, the expression for Cm 
developed by Austin [48] and shown in Eq. (20) is used, where μ is the 
ratio between the smaller and larger applied end moments. The effec
tiveness of this expression has been widely validated and it is the 
equivalent uniform moment factor adopted in EN 1993-1-1 [12]. 

Cm = 0.6 + 0.4μ but Cm ≥ 0.4 (20) 

Therefore, Eq. (21) and Eq. (22) should be used in the calculation of 
τM and τNM instead of Eq. (17) and Eq. (18) to include the variation of 
bending moment in beam-columns. 

τM =

[

1 + (n − 1)
Mel

Mpl

(
CmMEd

Mpl

)n− 2
]− 1

(21)  

τNM = τNτM

{

1 −
(

NEd

Npl

)0.8(CmMEd

Mpl

)}

(22) 

Fig. 7 shows the comparison between the GNA-SR and GMNIA results 
for two typical austenitic and duplex cases of simply supported beam- 
columns under axial load and varying minor axis bending along the 
length for cross-section RHS1. Linear bending moment distributions 
were obtained by applying an eccentricity only at one of the supports for 
the bending moment distribution corresponding to μ = 0, and by 
applying load eccentricities with different signs at the two ends of the 
beam-columns for μ = –0.5. GNA-SR predictions were limited by the 
cross-section interaction equation given in Eq. (10), as in the previous 

Sections. Similarly to the results reported in Table 3 for beam-columns 
under uniform bending moment, Table 4 summarises the ζav, ζcov, ζmax 
and ζmin values obtained from the comparison of the ultimate capacities 
predicted by the proposed GNA-SR approach with those of GMNIA for 
austenitic, ferritic and duplex beam-columns subjected to axial 
compression and bending moment gradients. It is worth noting that a 
number of the results shown in Fig. 7 and Table 4 for austenitic slender 
members, particularly under high bending and for the μ = − 0.5 distri
bution, are on the unsafe side, although deviations lie within the 
10–18% range. This is because (1) the equivalent moment factor Cm 
neglects the influence of the member length and the level of axial load, 

Table 3 
Comparison of the ultimate capacities obtained through GNAR-SR and GMNIA 
analyses for simply supported beam-columns subjected to axial compression and 
uniform bending moment.  

Stainless steel type Cross-section type λ  ζav  ζcov  ζmax  ζmin  

Austenitic RHS1  0.5  0.99  0.022  1.02  0.95    
1.0  1.03  0.038  1.08  0.97    
1.5  1.05  0.073  1.16  0.90  

RHS2  0.5  0.94  0.043  0.99  0.88    
1.0  0.98  0.048  1.05  0.92    
1.5  1.00  0.068  1.11  0.92  

Ferritic RHS1  0.5  0.99  0.022  1.02  0.95    
1.0  0.97  0.080  1.07  0.83    
1.5  0.98  0.098  1.08  0.80  

RHS2  0.5  0.98  0.023  1.01  0.94    
1.0  0.96  0.070  1.05  0.84    
1.5  0.97  0.089  1.06  0.80  

Duplex RHS1  0.5  0.94  0.033  0.98  0.89    
1.0  0.95  0.039  1.00  0.89    
1.5  0.95  0.054  1.03  0.86  

RHS2  0.5  0.91  0.037  0.95  0.85    
1.0  0.91  0.037  0.95  0.84    
1.5  0.93  0.049  1.00  0.87  

Fig. 7. Comparison of GNA-SR results for the proposed reduction factor for (a) 
austenitic and (b) duplex stainless steel beam-columns under combined axial 
loading and varying minor axis bending (RHS1 cross-section). 

Table 4 
Comparison of the ultimate capacities obtained through GNAR-SR and GMNIA 
analyses for simply supported beam-columns subjected to axial compression and 
gradient bending moment.  

Specimen Bending moment distribution μ λ  ζav  ζcov  ζmax  ζmin  

Austenitic RHS1 0  0.5  0.97  0.030  1.01  0.92    
1.0  1.03  0.042  1.08  0.96    
1.5  1.03  0.074  1.14  0.91  

− 0.5  0.5  0.94  0.042  1.00  0.89    
1.0  1.02  0.054  1.10  0.94    
1.5  1.02  0.097  1.18  0.91  

Ferritic RHS1 0  0.5  0.97  0.021  0.99  0.94    
1.0  0.96  0.089  1.07  0.83    
1.5  0.96  0.103  1.09  0.80  

− 0.5  0.5  0.95  0.018  0.98  0.92    
1.0  0.94  0.082  1.03  0.83    
1.5  0.94  0.104  1.06  0.80  

Duplex RHS1 0  0.5  0.92  0.015  0.94  0.90    
1.0  0.95  0.030  1.00  0.91    
1.5  0.95  0.054  1.01  0.86  

− 0.5  0.5  0.91  0.027  0.94  0.87    
1.0  0.94  0.039  1.00  0.89    
1.5  0.95  0.070  1.05  0.86  
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as previously highlighted in [49], which may lead to an overestimation 
of the beneficial effect of moment gradients on the beam-column sta
bility, and (2) the proposed τM factor does not accurately capture the loss 
of stiffness due to material nonlinearity after Mpl, as discussed in Section 
4, which is of particular relevance for austenitic beam-columns under 
the μ = − 0.5 distribution. Nevertheless, the analysis presented in Sec
tion 6 for austenitic portal frames indicates that good predictions of the 
ultimate frame strengths are obtained when the Cm factor is used in the 
analysis of structural systems, which is the relevant situation in design. 
The frames investigated covered the same ranges of member slenderness 
λ and μ factors considered in this Section. Besides, results in Table 4 
indicate that, on average, GNA-SR results are in good agreement with 
those predicted by GMNIA for the bending moment distributions 
considered (i.e., ζav values are close to 1.0). 

6. Stiffness reduction factors applied to portal frame design 

In this Section, the proposed stiffness reduction factor τNM is applied 
to the in-plane design of stainless steel portal frames. The assessment of 
the Stiffness Reduction Method was carried out through the comparison 
of the ultimate loads obtained for the τNM factor proposed in this paper 
with those determined using the Direct Analysis Method prescribed in 
the AISC 370 [25] Specification and the ultimate strengths predicted 
from GMNIA analyses. 

6.1. Application of the proposed method for in-plane global design 

The accuracy of the proposed Stiffness Reduction Method (SRM) to 
predict the global behaviour of stainless steel structures was assessed 
through a parametric study comprising austenitic RHS portal frames. A 
total of 20 single-span in-plane frames were studied: the height (Lc) of all 
columns was 2 m, while the span lengths (Lb) varied from 2 m to 4 m. All 
members featured the austenitic stainless steel material properties re
ported in Table 1 and the RHS1 cross-section given in Table 2, oriented 
in such a way that all members bent about their major axes. The loading 
scheme, shown in Fig. 8, ensured that the most loaded cross-sections 
were located at the columns in all frames. Both fixed- and pin-ended 
support conditions were analysed and vertical (VEd) and horizontal 
(HEd) loads were applied simultaneously in different proportions at the 
top of the columns. Table 5 summarises the horizontal load HEd values 
studied as a function of the applied vertical load VEd. Note that HEd =

0 and VEd = 0 imply that the portal frame was loaded only vertically or 
horizontally, respectively. Member slenderness values λ ranged from 
1.01 to 2.29, while bending moment distribution factors were μ = − 1 for 
beams, and μ = [− 0.59, − 0.74] and μ = 0 for fixed- and pin-ended 
columns, respectively, which are in line with the beam-column cases 
analysed in Section 5.3. 

The frames described above were analysed using the SRM proposed 
herein, i.e., by performing GNA-SR analyses on the numerical models 
described in Section 2.1.3, and the predicted ultimate capacities and 
internal forces were compared to those estimated from GMNIA. The 

application of the SRM to obtain the ultimate load of a structure is an 
iterative process, as stiffness reduction factors should be calculated for 
the load levels at which cross-section capacities are checked, and re-run 
until the capacity of the cross-sections is fully utilised [26,30]. In the 
GNA-SR analysis, the flexural stiffness of each member was reduced by 
the corresponding τNM factor determined from Eq. (22), where the fac
tors τN and τM were obtained from Eq. (7) and Eq. (21). The GNA-SR 
analysis was conducted until the most loaded section of the frame 
reached its resistance capacity, evaluated from the cross-section inter
action equation Eq. (10), since RHS1 exhibits a local slenderness lower 
than 0.60. For the studied pin-ended frames, the critical sections were 
located at the beam-to-column joints, while for the fixed-ended frames 
the critical sections were those at the supports of the columns. Note that 
since the GMNIA analyses were carried out on beam-type FE models (as 
explained in Section 2.1.2), the frame strengths and target internal 
forces were also obtained by checking the resistances of the critical 
cross-sections through the same Eq. (10) used for SRM analyses. 

For assessment purposes, the 20 single-span in-plane frames were 
also analysed following the Direct Analysis Method (DM) prescribed in 
AISC 370 [25] for the design of stainless steel structures, in which the 
flexural stiffness of the members is adjusted by two different factors, τg 
and τb. The first factor τg corresponds to a general stiffness reduction, 
which is applied to all members and accounts for the reduction in 
member stiffness due to the development and spread of plasticity. A 
constant value of τg = 0.7 is adopted for all stainless steel members, as 
proposed in [26]. The second factor τb is an additional factor that is 
applied to the stiffness of those members that contribute to the stability 
of the structure. τb is given by Eq. (23) when considering the Load and 
Resistance Factor Design (LRFD) approach and was derived from the 
Ramberg-Osgood expression, so it considers the further loss in stiffness 
due to material nonlinearities, and it also takes into account the detri
mental effect of residual stresses by means of the effective strain hard
ening exponent neff. The value of neff depends on the strain hardening 
coefficient n, the cross-section type and the buckling axis, and was 
proposed in [26] and is tabulated in AISC 370 [25]. For the case of 
rectangular hollow sections studied herein, neff assumes a value equal to 
the strain hardening coefficient n, as the effects of residual stresses is 
negligible [26]. 

τb =
1.0

1.0 + 0.002neff
E
fy

(
NEd
Npl

)neff − 1 (23) 

There are three potential design options in AISC 370 [25] when the 
DM is adopted: (1) not including member imperfections explicitly in the 
structural analysis and verifying the structure by checking member ca
pacities, (2) including member imperfections in the analysis and veri
fying the capacity of the structure through cross-section strength 
equations that use the plastic section capacities Npl and Mpl, and (3) 
including member imperfections in the analysis and verifying the ca
pacity of the structure through cross-section checks that are anchored to 
the more accurate CSM end-points. Both member and cross-section 
checks should follow the corresponding design provisions prescribed 
in AISC 370 [25]. In the comparisons carried out in this paper, the latter 
approach is adopted because it is the option that is most similar to the 
GNA-SR proposal presented. Notional loads were used to include initial 
global imperfections with a value equal to 0.002NEd, which is based on a Fig. 8. Loading scheme for austenitic stainless steel portal frames.  

Table 5 
Frame cases analysed.  

Frame case No. Boundary  
conditions 

Lc × Lb Horizontal loading HEd 

1–12 Fixed-ended 2 × 4 m 
2 × 2 m 

HEd = 0, 0.03VEd, 0.01VEd, 0.25VEd,  
1.0VEd, VEd = 0 

13–20 Pin-ended 2 × 4 m 
2 × 2 m 

HEd = 0, 0.01VEd, 1.0VEd, VEd = 0  
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nominal initial storey out-of-plumbness ratio of 1/500 according to AISC 
370 [25], while member imperfections were included in the beam-type 
FE models by directly modifying the position of the nodes following a 
half-sine wave shape with an amplitude of Lc/1000 in the most detri
mental direction, as for the GMNIA models described in Section 2.1.2. 
Note that although the nominal out-of-plumbness ratio adopted for the 
DM is slightly lower than the corresponding value used in the GNA-SR 
analyses, the member imperfection amplitudes are equivalent, since 
the imperfection amplitude used in the calibration of the European 
buckling curves was Lc/1000. Since member instability is directly 
accounted for in the analysis, the capacity of the structure is verified by 
means of cross-section checks. Eq. (24) and Eq. (25) show the CSM cross- 
section interaction equations provided in AISC 370 [25], where NEd and 
MEd are the second-order internal axial force and bending moment ob
tained from the DM at the critical sections, and Pn,csm and Mn,csm are the 
CSM cross-section resistances in compression and bending, respectively. 
Note that the AISC 370 Pn,csm and Mn,csm capacities are based on the same 
CSM base curve given in Eq. (9), but adopt a lower value of 5 for the Ω 
parameter [25,26]. Formulae to calculate Pn,csm and Mn,csm are provided 
in [25,26]. In the present study partial safety and resistance factors 
proposed in prEN 1993-1-4 [13] and AISC 370 [25] assume values equal 
to unity. 

NEd

Pn,csm
+

8
9

MEd

Mn,csm
≤ 1.0 for NEd ≥ 0.2Pn,csm (24)  

NEd

2Pn,csm
+

MEd

Mn,csm
≤ 1.0 for NEd < 0.2Pn,csm (25)  

6.2. Assessment of the results 

The ultimate load predictions obtained with the proposed SRM for 
stainless steel frames subjected to combined vertical and horizontal 
loads are summarised in Fig. 9, where the results plotted in Fig. 9(a) 

correspond to large span frames and in Fig. 9(b) to short span frames. 
Both figures show the SRM predictions for fixed- and pin-ended 
boundary conditions, as well as the AISC 370-DM [25] predictions and 
the GMNIA results for reference. In addition, Table 6 reports the values 
of the stiffness reduction factors for each member of the studied frames, 
according to the proposed SRM (τNM,i) and the AISC 370-DM (τgτb,i) 
approaches, where the subscripts l, r and b refer to the left column, the 
right column and the beam, respectively. Note that for all the cases 
analysed in this paper, the AISC 370-DM stiffness reduction factor for the 
beams is equal to τgτb,b = τg = 0.70. Similar stiffness reduction factors 
and ultimate capacities were estimated for large span frames and short 
span frames, and the differences were associated with the type of 
boundary condition and load combinations. Following the approach 
given in [30], Table 6 also provides the parameter ζ, which refers to the 
accuracy of the considered method for the prediction of the ultimate 
frame strengths. The factor ζ is determined using Eq. (19), where MEd 
refers to the bending moment in the column and the subscript i refers to 
the assessed method (i.e., the proposed SRM or the AISC 370-DM 
approach). Recall that ζ values lower than 1.0 correspond to conserva
tive predictions. According to the results shown in Fig. 9 and Table 6, the 
proposed SRM accurately predicts the ultimate capacities of the frames. 
Only in the case of high vertical loads, in which the structural behaviour 
of the frames is determined by the buckling of their columns in 
compression, the SRM slightly underestimates the GMNIA strength 
predictions. While in the GMNIA analyses the vertical reaction observed 
in the supports were higher than the flexural buckling resistances Nb,Rk, 
in the SRM the column capacities were limited to Nb,Rk, as discussed in 
Section 3.1. In any case, the predictions obtained by the proposed SRM 
are adequate and provide a reasonable safety margin. Accurate and safe 
results are also obtained when using the AISC 370-DM [25] approach 
studied herein, although the ultimate capacity of fixed-ended frames is 
slightly underestimated, as shown in Fig. 9. The discrepancies between 
the two approaches are partly due to the use of different strength 
interaction equations to limit the GNA-SR analyses, but mainly to the 
fact that the CSM base curve adopts a different limiting value for Ω in the 
two approaches (i.e., Ω = 15 in prEN 1993-1-4 [13] but Ω = 5 in AISC 
370-DM [25]). Regarding the interaction equations, even if the AISC 
370-DM equations are anchored to the CSM cross-section resistances, 
they are more restrictive than the cross-section interaction check used in 
the proposed SRM (Eq. (10)) because they adopt a linear interaction 
function. On the other hand, as the RHS1 cross-section used in this study 
for the assessment of the design approaches is very stocky, the CSM 
strain in Eq. (9) is limited by the parameter Ω in the two approaches, 
which adopts different values (i.e., Ω = 5 for the DM as opposed to Ω =
15 for the SRM), and thus the CSM bending moment resistances Mcsm are 
significantly different. This can be clearly observed for the cases of fixed- 
ended portal frames with VEd = 0, where the frames are almost entirely 
bending dominated and the differences in interaction equation have 
almost no consequence, and the results are governed in both cases by the 
CSM bending moment resistance Mcsm. Since the SRM approach pro
posed in this paper uses a less restrictive ductility limit of Ω = 15, the 
value of Mcsm, and thus the predicted capacity of the frames, is higher. 
Nevertheless, for less stocky cross-sections, where the CSM strain would 
not be determined by the Ω limit, more similar values of Mcsm would be 
obtained for the two approaches and the results obtained from the 
proposed SRM and the AISC 370-DM would be less different. 

The accuracy of the SRM and DM approaches for the prediction of 
internal forces was also assessed according to the indications given in 
[30], i.e., through the comparison of the nondimensional internal forces 
NEd,i/Npl - MEd,i/Mpl obtained from the considered method (i.e., the 
proposed SRM or the AISC 370-DM approach) and those obtained from 
the GMNIA analysis at the critical sections of the columns using Eq. (19). 
Results of the accuracy for the different design methods are summarised 
in Table 7, where ζav and ζcov are the average and coefficient of variation 
(COV) of ζ, and ζmax and ζmin are the maximum and minimum ζ values 
for the internal forces registered in the columns. As shown in Table 7, the 

0

200

400

600

800

1000

0 10 20 30 40 50 60

To
ta

l  
ve

rt
ic

al
 lo

ad
 2

V
E

d [
kN

] 

Total horizontal load HEd [kN]

Fixed-ended 

Pin-ended 

0

200

400

600

800

1000

0 10 20 30 40 50 60

To
ta

l  
ve

rt
ic

al
 lo

ad
 2

V
E

d [
kN

] 

Total horizontal load HEd [kN]

Fixed-ended 

Pin-ended 

g

GMNIA 

SRM NM 

DM b 

Fig. 9. Assessment of the results for the proposed stiffness reduction factors 
against GMNIA results and the DM [25] for austenitic stainless steel in-plane 
portal frames with (a) Lb = 4 m and (b) Lb = 2 m under vertical and horizon
tal loading (RHS1 cross-section). 
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internal forces predicted by the proposed SRM approach are in good 
agreement with those considered as target values (ζav = 1.00 and ζcov =

0.010), while the results obtained for the DM approach are slightly more 
conservative and more scattered (ζav = 0.85 and ζcov = 0.026). Based on 
the reported results, it can be concluded that the proposed SRM and the 
AISC 370-DM [25] approach analysed herein provide safe predictions of 
the ultimate in-plane response of stainless steel frames with stocky RHS 
sections under combined vertical and horizontal loads, but slightly 
better results are obtained for the proposed SRM approach, especially 
for fixed-ended frames. In addition, the proposal has the advantage of 
not requiring the explicit introduction of member imperfections in the 
numerical models. Finally, it is important to note that the ultimate ca
pacity of the structure obtained by either method will be generally lower 
than the ultimate load predicted from a GMNIA analysis since both 
methods are limited to the development of the first plastic hinge without 
considering any redistribution of internal forces. 

7. Summary of the proposed Stiffness Reduction Method 

The procedure to apply the proposed Stiffness Reduction Method for 
the in-plane stability design of stainless steel structures with stocky RHS 
sections is summarised as follows:  

(i) Perform a Linear Elastic Analysis (LA) to estimate the maximum 
internal forces (axial force NEd and bending moment MEd) in each 
member under the design loads.  

(ii) Calculate the Stiffness Reduction factors for each member from 
the proposed formulae: 

τN =
4ψ2

α2NEd
Npl

[

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 4ψ (NEd/Npl − 1)
α2NEd/Npl

√ ]2 but τN ≤ 1 (7)  

where 

ψ = 1+ λ0α NEd

Npl
−

NEd

Npl
(8)  

τM =

[

1 + (n − 1)
Mel

Mpl

(
CmMEd

Mpl

)n− 2
]− 1

(21)  

τNM = τNτM

{

1 −
(

NEd

Npl

)0.8(CmMEd

Mpl

)}

(22)  

where 

Cm = 0.6 + 0.4μ but Cm ≥ 0.4 (20) 

With λ0 and α being the slenderness plateau and imperfection factor 
given in next version of prEN 1993-1-4 [13], respectively; and μ being 
the ratio between the smaller and larger applied end moments.  

(iii) Perform a Geometrically Nonlinear Analysis with Stiffness 
Reduction (GNA-SR) considering initial global imperfections 
(out-of-plumbness) only. Note that stiffness reduction factors 
should affect the flexural stiffnesses, but not the axial stiffnesses, 
of the members. 

(iv) Check the cross-section capacity using the internal forces deter
mined from the GNA-SR analysis under the design loads through 
the following strength interaction expression for stocky sections: 

MEd ≤ MN = Mcsm
1 −

(
NEd
/

Npl
)

1 − 0.5a
≤ Mcsm for λp ≤ 0.60 (10)  

8. Conclusions 

A Stiffness Reduction Method for the in-plane stability design of 
stocky RHS stainless steel structures based on the provisions included in 
the upcoming version of the prEN 1993-1-4 [13] standard has been 

Table 6 
Assessment of the accuracy of the proposed stiffness reduction method SRM and the DM for the prediction of ultimate strengths in austenitic stainless steel portal 
frames.  

Frame case Horizontal loading HEd SRM AISC 370-DM 

τNM,l τNM,r τNM,b ζ  τgτb,l τgτb,r τgτb,b ζ  

2 × 4 m 
Fixed-ended 

HEd = 0  0.61  0.61  1.00  0.91  0.59  0.59  0.70  0.77 
0.03VEd  0.66  0.66  0.96  1.00  0.68  0.68  0.70  0.87 
0.01VEd  0.70  0.69  0.92  1.05  0.70  0.70  0.70  0.87 
0.25VEd  0.72  0.70  0.91  1.05  0.70  0.70  0.70  0.84 
1.0VEd  0.70  0.68  0.87  0.94  0.70  0.70  0.70  0.78 
VEd = 0  0.71  0.71  0.84  0.92  0.70  0.70  0.70  0.78  

2 × 2 m 
Fixed-ended 

HEd = 0  0.56  0.55  1.00  0.83  0.54  0.54  0.70  0.78 
0.03VEd  0.64  0.63  0.96  0.99  0.67  0.67  0.70  0.92 
0.01VEd  0.69  0.67  0.93  1.02  0.70  0.69  0.70  0.89 
0.25VEd  0.71  0.68  0.89  1.03  0.70  0.70  0.70  0.86 
1.0VEd  0.73  0.67  0.83  0.94  0.70  0.70  0.70  0.81 
VEd = 0  0.71  0.70  0.79  0.95  0.70  0.70  0.70  0.80  

2 × 4 m 
Pin-ended 

HEd = 0  0.81  0.81  1.00  0.88  0.70  0.70  0.70  0.68 
0.01VEd  0.81  0.80  0.96  1.10  0.70  0.70  0.70  0.89 
1.0VEd  0.66  0.62  0.86  1.08  0.70  0.70  0.70  0.94 
VEd = 0  0.39  0.39  0.70  0.97  0.70  0.70  0.70  0.85  

2 × 2 m 
Pin-ended 

HEd = 0  0.79  0.79  1.00  0.89  0.70  0.70  0.70  0.74 
0.01VEd  0.79  0.77  0.96  1.09  0.70  0.70  0.70  0.93 
1.0VEd  0.65  0.55  0.84  1.00  0.70  0.70  0.70  0.93 
VEd = 0  0.38  0.38  0.71  0.98  0.70  0.70  0.70  0.85  

Table 7 
Comparison of the accuracy of the SRM and DM approaches for the prediction of 
internal forces in the critical column of the frame cases analysed.  

Method ζav  ζcov  ζmax  ζmin  

SRM  1.00  0.010  1.02  0.98 
AISC 370-DM  0.85  0.026  0.88  0.80  
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presented. The proposed approach allows predicting the ultimate ca
pacity and internal forces in stainless steel structures by performing a 
second-order elastic analysis in which the stiffness of members is 
reduced by a set of factors defined in this paper to account for the effect 
of the spread of plasticity, residual stresses and member imperfections. 
The method only requires that initial out-of-plumbness imperfections be 
included, and the verification is limited to checking cross-section ca
pacities. The proposed stiffness reduction factors consider the loss of 
stiffness in members and planar structures due to axial load, uniaxial 
bending and the combination of axial loading and uniaxial bending ef
fects. The stiffness reduction factors under axial loads are derived from 
the European buckling curves and the reduction factors under bending 
are based on an analytical moment–curvature model developed in this 
paper. A third reduction factor under combined axial load and bending 
moment based on the previous ones is also proposed, which accounts for 
different bending moment distributions along the member. 

The accuracy of these factors has been evaluated by comparing the 
strengths estimated numerically for RHS stainless steel columns, beams 
and beam-columns, which showed a good agreement with GMNIA re
sults. Furthermore, the proposed stiffness reduction factors have been 
applied to the in-plane design of austenitic stainless steel portal frames 
with different boundary conditions and load combinations. It has been 
found that, for most of the studied cases, the ultimate strengths and 
internal forces predicted by the proposed Stiffness Reduction Method 
coincide with the benchmark strengths of the structures determined 
from GMNIA analyses. In addition, the assessment of the results has 
shown that comparable strength capacities are obtained using the Direct 
Analysis Method approach that will be included in the upcoming AISC 
370 [25] Specification for stainless steel structures, which is based on 
second-order analysis with member imperfections and adopts CSM- 
based cross-section checks. 

To fully consider the proposed Stiffness Reduction Method as an 
alternative approach to improve and simplify the stability design of 
stainless steel frames according to European provisions, the present 
study should be extended to other cross-section types, including slender 
cross-sections prone to local buckling, other failure modes and load 
combinations, such as lateral-torsional buckling and axial load plus 
biaxial bending, respectively, as well as to more complex structures. 
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