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Abstract

Deep Learning and Computer Vision have had a rapid evolution over the past few years,
and new techniques have risen to give response to multiple tasks. One of those tasks is
Attribute Transferring, or the ability to transfer visual components of an image (from
textures or shapes to more concrete ones such as facial features) to another.

The goal of this thesis is to research the state of the art methods in this field and develop
our own model to perform Attribute Transferring over bedrooms. This model, deployed
as part of an app, would allow the user to take a picture of its bedroom and swap its
appearance with the one of a desired bedroom, conserving the original elements and their
disposition.
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1 Introduction

The aim of this thesis is to examine the state of the art in Deep Learning applied to im-
ages, specially the Generative Adversarial Networks, and the techniques used to perform
attribute transfer. Attribute transferring involves any task with the objective of transfer-
ring a visual attribute from one image to another. These attributes include facial features
(hair, mouth, glasses) or clothes, but also more generic ones such as shape or color.

Originally we planned to apply our research to perform attribute transfer over people’s
clothes, with the final goal being an application capable of switching the clothes from the
image of one person over to another one. However, we found out that there were already
many solutions for this problem, so we decided to apply our research to perform attribute
transfer over rooms, more precisely bedrooms.

We begin by examining the Attribute-Decomposed GAN (ADGAN) model [12], which can
perform both pose and clothes transfer over people. Using ADGAN as our foundation, we
have developed a new model called RoomGAN, which performs attribute transfer over
bedrooms (Figure 1). Our method can transfer the shape, pose and texture from the
different components of a bedroom (bed, lamp, window, ...) to another one.

(a) Desired appearance (b) Original bedroom (c) Result

Figure 1: Attribute transfer over bedrooms.

The motivation behind this research was to end up offering an application that would
allow the user to visualize how their bedrooms would look like in a different style. The
user would be able to take a picture of their own bedroom and the picture of another
bedroom whose appearance would like to have, and the app would output the result with
the smallest delay possible.
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1.1 Objectives

The objectives of this thesis can be summarized as:

• Research the state of the art in attribute transfer and select the most appropiate
model to use as foundation.

• Achieve a method capable of performing shape, pose and texture transfer over two
bedroom images, on a set of defined components.

• Achieve photo-realistic outputs.

• Compare RoomGAN to other state of the art methods for the specific task of at-
tribute transfer over bedrooms.

• Adapt the model to be ready for deployment as part of an app.

• Keep the total processing time relatively low, so the model can be practical in
real-life scenarios.

1.2 Planification

This research was performed in collaboration with Aleix Clemens, a colleague of mine
who is also a student of Telecommunications Technologies and Services Engineering. We
have shared all the effort of investigating and developing RoomGAN, but while Aleix’s
focus was to create a mobile app that could be used as a fronted to our method, mine
was to deepen the research into some alternative state of the art methods, and compare
them to our own.

Figure 2: Separation of tasks performed. Green indicates tasks performed by both of us,
yellow denotes tasks performed by Aleix and blue for the ones I carried out.
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This document has also been a common effort between Aleix and I. We share some of the
subsections, including the following:

• Section 1

• Section 2.1, 2.2.1, 2.2.2 and 2.2.3

• Section 3.1 and 3.2

• Section 4.4

Finally, Figure 3 shows the original Gantt diagram of the project, which we managed to
carry as planned. Green denotes the common work packages, while blue denotes the ones
exclusively performed by me.

Figure 3: Gantt diagram of the project
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2 Review of the Literature

2.1 Fundamentals

In the next section we will give a brief overview on two of the techniques that are pre-
dominantly used in Computer Vision and in Attribute Transferring tasks: Convolutional
Neural Networks (CNN) and Generative Adversarial Networks (GAN).

2.1.1 Convolutional Neural Network

CNNs are a deep learning algorithm, predominantly used in Computer Vision tasks. They
present multiple advantages with respect to classical Neural Networks, specially when
working with images as inputs. Not only are CNNs able to capture spatial and temporal
dependencies in an image, but they also reduce the number of parameters involved in the
model, thus saving computation time and storage.

The main difference is that CNNs are able to reduce images into simpler forms, which are
easier to process, by performing convolutions over multiple layers, called Convolutional
Layers, of the network. The element involved in carrying these convolutions (Figure 4) is
called the Kernel or Filter. The kernel can vary on dimensions between layers of the same
network, and its values are trainable parameters.

Figure 4: Single step of a 2D convolution operation, using a 3x3 kernel [15]

Usually, the first Convolutional Layer is responsible to extract low-level features from
the input image, such as edges or color, while the following layers focus on extracting
progressively higher-level features, providing a complete understanding of the image.

Figure 5: Types of pooling [10].

Apart from Convolutional Layers, a conven-
tional CNN will also present a series of Pooling
Layers, responsible of reducing the dimensions
of the outputs from the different Convolutional
Layers in order to decrease the computational
power required to process all the data, while
also extracting some dominant features. There
are two ways to perform the pooling, average
and maximum. Like shown in Figure 5, they
both take a small patch of the data, and return
a value, which can be the maximum or the av-
erage of said patch.
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Once all the relevant features are extracted, and the data has an adequate format, it can
be fed to a fully-connected layer. A classic example is to add a Softmax layer after the
fully-connected layer to perform classification tasks, and then apply the backpropagation
throughout the whole network. A typical example of the structure of a CNN can be seen
in Figure 6.

Figure 6: Example of a CNN structure [14].

2.1.2 Generative Adversarial Network

GANs are a deep learning method used in image generation tasks. Generative models are
those that automatically discover and learn the regularities or patterns in the input data,
in such a way that the model can be used to generate new examples that resemble the
original data.

Figure 7: GAN structure [2].

To train these generative models, GANs pro-
pose a structure (Figure 7) consisting of two
sub-models: Generator and Discriminator. The
generator tries to output new examples from
the same distribution, while the discriminators
tries to classify the examples as real or fake.

The discriminator is a regular classification
model, that will learn to distinguish between
real data (coming from the dataset) or fake
(generated). This sub-model will provide feed-
back to the generator, and will be discarded
after training since it isn’t needed in the gener-
ation process. The generator is trained based on
how well its generated images have been able to
fool the discriminator in the previous iteration.

The two models are trained and the same time
and compete with each other, until the generator is able to consistently fool the discrimi-
nator. In an ideal case, the discriminator would predict the same probability of being real
or fake for every example.

13



2.2 State of the Art

In the section below we will be reviewing some of the state of the art techniques applied
in conditional image generation tasks, specially those involving attribute transfer.

2.2.1 StyleGAN2

The style-based GAN is one of the state of the art architectures for unconditional gen-
eration of images. It allows for an automatically learned and unsupervised separation of
high-level attributes, such as pose or shape, as well as better interpolation properties and
better disentanglement of the latent factors. The StyleGAN2 model [6] is an enhanced ver-
sion of the original StyleGAN [5], which yields even better results, and which has become
the base for many conditional and unconditional generative networks.

2.2.2 VOGUE

VOGUE [8] proposes a novel way to perform garment transfer. Given an image of a
target person and an image of another person wearing a garment, this method generates
the target person in the garment worn by the other one, like shown in Figure 8. It is
based on the StyleGAN2 model, to which has been added an algorithm to automatically
optimize the interpolation of the different areas of interest from each image.

Figure 8: Demonstration of the VOGUE capabilities. This method can switch both top
and bottom garments.

Presented in January 2021, it is one of the most recent models available in the litera-
ture, which also yields the best results in terms of garment transfer. However, the official
implementation of this model is not public yet, which makes impossible to verify its per-
formance.
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2.2.3 ADGAN

The Attribute-Decomposed GAN method [12] introduces a conditional generative model
that produces realistic person images with the desired head, upper clothes and pants, in
any given pose. These attributes can be provided via different inputs, thus allowing the
possibility to perform pose transfer, like shown in Figure 9, or garment transfer (Fig-
ure 10).

Figure 9: Source person synthesized in
different poses.

Figure 10: Garment transfer on both upper
and bottom clothes.

This method does not require any labeled data and can achieve component separation
in an unsupervised way, but it does require that the training dataset contains images
of the same person wearing the same outfit in different poses, which makes applying
this method to other use cases complicated. This model will be the baseline for our own
method, explained in Section 3.2.

2.2.4 MixNMatch

MixNMatch [9] is a conditional generative model that uses a multi-factor disentanglement
and encoding. This translates into a model capable of separating the shape, pose, texture
and background of an image in an unsupervised way (it only requires bounding boxes
around the objects of interest during the training phase). Then, the model can use these
separated features to create completely new images, as seen in Figure 11.

15



Figure 11: Example of usage proposed by MixNMatch.

2.2.5 Pix2Pix

Pix2Pix [3] is a model that seeks to provide a general solution for the image-to-image
translation problem using Conditional Generative Adversarial Networks. The fact that
GANs not only learn the mapping between input and output, but also a loss function
to train said mapping, makes it possible to apply the same generic approach to different
problems (e.g. Figure 12) that would have required very specific solutions using traditional
methods like CNNs.

Figure 12: Examples of Image-to-Image translation.
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2.2.6 SPADE

The Spatially-Adaptive Normalization (SPADE) model [13] proposes a method to syn-
thesize photorealistic images given an input semantic layout (Figure 13).

Figure 13: Output generated by
the SPADE model.

The main difference with a traditional Image-
to-Image translation approach is that instead
of feeding the semantic layout through a Deep
Neural Network consisting of normalization,
convolution and nonlinear layers, the layout is
used to modulate the activations of the normal-
ization layers, which effectively propagates the
semantic information throughout the network.
This method produces better results, since it
has been proven that the normalization layers
tend to deteriorate the semantic information
from the input.

Furthermore, SPADE also supports style-
guided generation (Figure 14). A style encoder
is attached to capture the style of a target
image, which will then be fed to the network
instead of plain random noise, thus allowing
to control the general appearance of the out-
put image.

Figure 14: Different synthesized images, generated from the same semantic layout,
depending on the image provided as style.
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3 Methodology

3.1 Datasets

For the purpose of our research we needed a dataset consisting of images of indoor en-
vironments, specially those containing bedrooms. Ideally, the dataset would also contain
the ground truth semantic segmentation of all its images.

The only dataset that fullfilled every requirement was the ADE20K [19] (see Figure 15
for an example), from the MIT Computer Science and Artificial Intelligence Laboratory
(CSAIL), which includes 150 semantic categories. The dataset contains 25,574 training
images and 2,000 validation images, with dimensions 256x256. Of those, 1,130 training
images and 204 validation ones correspond to bedrooms.

(a) Image. (b) Semantic segmentation.

Figure 15: Example of an entry on the ADE20K dataset.

These numbers were enough to start experimenting with the dataset and obtain reason-
able training results, but we realized we would need a lot more images if we aimed to
obtain respectable test results. Since there were not any other datasets that matched our
requirements, we decided to synthesize our own. To find the most number of bedroom
images we used the LSUN Bedrooms dataset [17], which consists of 196,224 images.

To obtain the semantic segmentation of said images, we used the CSAIL semantic seg-
mentator [18] with the ResNet18 pretrained model, which offers a good balance between
accuracy and speed, something important due to the high number of images to process. We
resized all the images to the same 256x256 dimensions of the ADE20K dataset. Overall,
the dataset contains high quality pictures of regular bedrooms, with which the segmen-
tator performs great (e.g. Figure 16). However, some of the images have a poor quality,
only show a small part of a room (not even a bedroom) or even have no relation to a
room (e.g. Figure 17)

18



(a) Images. (b) Semantic segmentations.

Figure 16: Example of the generated semantic segmentations.

(a) Images. (b) Semantic segmentations.

Figure 17: Example of bad quality entries on the dataset.
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We managed to improve the consistency of the dataset by removing those images in
which the segmentator found people and those for which the total of the image that
corresponded to a bed was too small (less than 5% of the image). Unfortunately, there
were a few outliers remaining which we couldn’t automatically remove since they didn’t
check the two conditions just mentioned (e.g. Figure 18).

(a) Image. (b) Semantic segmentation.

Figure 18: Example of bad quality entries that could not be automatically removed.

3.2 RoomGAN

RoomGAN is our very own method to perform attribute transfer over bedrooms. Our
model is capable of synthesizing a bedroom with arbitrary components (bed, windows,
wardrobe, ...) in a certain disposition. RoomGAN takes as input two images, a source
image, from which the different elements will be taken, and a target image which will be
used as the layout for the generated output.

Our method is based on the ADGAN model [12], which is able to produce realistic person
images with desired human attributes and in any given pose. The feature that interested
us the most is not actually the component transfer part of the model, which can mix
characteristics from two different people, but the pose transfer. Our main objective was
to use the pose transfer ability of this network to change the layout of a room, thus
generating a new bedroom with the same elements but a different layout.

To do so, we performed several changes to the original ADGAN’s structure (Figure 19)
so as to implement our method.

20



Figure 19: Structure of the ADGAN model.

3.2.1 Layout

Figure 20: Examples of pose
encoding used by ADGAN.

During test time, ADGAN takes two inputs to
perform the pose transfer: source image, from
which we extract the textures, and target im-
age, which gives the desired pose. These poses
P ∈ R18xHxW (e.g. Figure 20) represent the lo-
cation of 18 joints of the human body, and can
be automatically extracted from an image using
a pose estimation method [1]. Our first change
was to find a suitable substitute for the poses,
that could be extracted from a room. Originally,
we planned to use RoomNet [7] or similar meth-
ods to extract a 2D layout estimation based on
keypoints such as floors, walls and ceiling. How-
ever, we felt that these few keypoints could not
capture the dispositions of all the elements in
the room so we finally discarded the idea. Instead, we opted for encoding the semantic
segmentation of the room. To do so, we use a layout L ∈ RNxHxW , where N are the
number of objects to encode. Ideally we would want to perform the layout transfer to
every elements of the room, but since there could be an unlimited number of them we
selected the most frequent ones, according to their appearance on the ADE20K dataset,
that made sense to be found in bedrooms. We ended up picking 18 objects, out of the 150
available, same as the number of joints used in the original pose:

• Bed

• Wall

• Window

• Chair

• Lamp

• Pillow

21



• Floor

• Door

• Curtain

• Blanket

• Cabinet

• Ceiling

• Table

• Mirror

• Plant

• Shelf

• Painting

• Carpet

To create a layout L (Figure 21), we begin by splitting the semantic segmentation of an
image into 18 different masks, each one corresponding to an object. The mask will be a
binary image where 1’s represent the section of the original image in which the object
was present. In case the image did not contain some of the objects, their masks won’t be
created since their values would be all 0’s. Then, we proceed to stack the masks into the
final layouts L ∈ R18x256x256, in which every object has a fixed channel.

Figure 21: Semantic segmentation to layout process.

3.2.2 Training inputs

At training time, ADGAN takes three inputs (Figure 22): a source image Is, representing
the person whose pose will be altered, a target pose Pt, containing the desired pose of the
generated image, and the target image It, which is the ground truth of the person shown
in Is posing like Pt.
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(a) Is (b) Pt (c) It (d) Ig

Figure 22: Inputs and output of the ADGAN method at training time.

It follows a GAN structure (see Figure 7) with one generator and two discriminators Dp

and Dt. Dp is used to guarantee the alignment of the pose of the generated image Ig with
the target pose Pt. It takes two pairs of inputs, the target pose Pt concatenated with the
generated image Ig as a fake input, and the same pose Pt concatenated with the target
image It as a real input.

Dt is used to ensure the similarity of the appearance texture of the source image Is with Ig.
It also takes two input pairs, Is concatenated with Ig as fake and the same Is concatenated
with It as real.

One of the main differences between RoomGAN and ADGAN, substitution of Pt by target
layout Lt aside, is the use of the target image It. ADGAN uses ground truth images of the
source person in the desired target pose Pt, while RoomGAN does not have that option
since the datasets we are using do not contain images of the same room in different layouts
or even from different perspectives. Therefore, our It is the image of the room from which
we extract the layout. Adapting to this difference was one of the most challenging parts
of our research.

We started by removing Dt, because unlike in the case of ADGAN, we could not use the
discriminator to ensure the similarity of the textures since our It did not have the same
appearance as the Is.

The resulting structure of RoomGAN is presented in Figure 23.
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Figure 23: Structure of the RoomGAN method.

3.2.3 Losses

The training losses of the generator also suffered multiple changes. The model uses four
different losses: Adversarial (1), Reconstruction (2), Perceptual (3) and Contextual (4).

Ladv = E [log (Dt (Is, It) ·Dp (Pt, It))] + E [log ((1−Dt (Is, Ig))

· (1−Dp (Pt, Ig)))]
(1)

Lrec = ‖Ig − It‖1 (2)

Lper =
1
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The adversarial loss tells the generator how real its outputs are perceived by the discrim-
inators. The loss computes the binary cross-entropy between the outputs of the discrim-
inators when fed with the real pairs and fake pairs. It increases if the generator can not
fool the discriminator, forcing the former to improve the realism of its outputs. The recon-
struction loss is the L1 distance between Ig and It. Those two losses were not modified,
but the perceptual and contextual losses did.

The perceptual loss exploits deep features extracted from certain layers of the pretrained
VGG network (used in the texture encoder, see Figure 19) for texture matching, which
has been proven to be effective in image synthesis. It computes the L1 distance between
the output features from layer 3 of the VGG (φ3) for inputs Ig and It. Similar to what
happened with the discriminator Dt, in the case of RoomGAN the It used does not have
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the same textures as Is, thus making the image useless in terms of texture matching. We
decided to substitute It for Is as one of the inputs, due to the fact that even though the
alignment won’t be the same, the network could still take advantage of the textures.

Since we could not use It the way it was originally intended, we decided to add a second
kind of perceptual loss that would use Ig and It, but instead of using the layer 3 would
use the layer 14. Shallower layers tend to extract high-level features such as colors, while
deeper layers extract more complex features, like detailed shapes. Our goal was to use
this second perceptual layer to better define the shapes of the objects in Ig.

The contextual loss [11] is designed to measure the similarity between two non-aligned
images for image generation. It computes the logarithm of the similarity metric CX of
the feature maps F l extracted from layer l of the pretrained VGG. It does not require
pixel-to-pixel alignment, thus allowing spatial deformations with respect to the target,
getting less texture distortion and more reasonable outputs.

Since the loss does not penalize pixel-to-pixel dealignement as much as a traditional L1
loss, we decided to substitute again It for Is, since the textures between Ig and Is are the
ones that should match.

Finally, we realized that for the training to make sense we had to select pairs of image that
included the same elements, otherwise the model would try to learn to transfer textures
of objects that are not present in the target image. We developed a script that classified
each image according to the elements present on its segmentation (out of the 18 used to
generate the layouts). That way images can only be paired if they have the same objects
present, thus optimizing the training and avoiding possible misbehaviours.

3.3 MixNMatch

Our main goal with this model was to use it to perform a similar task to the RoomGAN
model, which is performing attribute transfer throughout the different elements of a bed-
room. By selecting the color from one of the elements of the source image, and the shape,
pose and background of the same element from the target image, we wanted to check
whether the MixNMatch method would perform better than the RoomGAN. MixNMatch
can only act over one object at a time, so our first approach was to pick the most common
element in a bedroom, the bed.

As explained in the State of the Art section, the MixNMatch model is trained in an unsu-
pervised way, but it does require bounding boxes around the objects of interest to model
the background. The bedroom datasets at our disposition do not contain bounding boxes,
but it quite straightforward to transform the semantic segmentations into bounding boxes.
To get the bounding boxes as accurate as possible, we decided to use the ADE20K dataset,
which provides ground truth masks. To convert the semantic layout into a bounding box
around the bed (Figure 24), we select only the pixels corresponding to the bed label.
Then, from that set of pixels, we select the maximum and minimum positions values of
X and Y, and get the corners of the bounding box according to the next criteria:
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• Top right corner: (xmax, ymax)

• Top left corner: (xmin, ymax)

• Bottom right corner: (xmax, ymin)

• Bottom left corner: (xmin, ymin)

(a) Semantic layout.

(b) Mask corresponding to bed. (c) Bounding box drawn around bed.

Figure 24: Conversion from semantic layout to bounding box.

Finally, we convert the corner positions into an XYWH notation (center of the bounding
box and width and height of said box), which is the one used by the model.

3.4 Pix2Pix

The Pix2Pix model comes pretrained in a couple of different datasets, that allows the
model to perform different Image-to-Image translation tasks (e.g. Figure 12).

The code also allows to train the model using different datasets. It accepts any kind of
paired data A/B, such as label map/photo or BW image/color image, and can be trained
to perform the translation in both directions (A to B or B to A). For our original purpose,
we can use the model to translate semantic segmentations from existing rooms into new
bedrooms that keep the same layout but have a different appearance.

Since this is a less conditioned model, we wanted to improve its performance at test time
by using the LSUN synthesised dataset, which will allow the model to see significantly
more images. The split will consist of 10,000 images for training, 1,000 for validation and
500 for testing.
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4 Experiments and results

4.1 Implementation

In this section we are going to test and compare four different Conditional GAN models,
that allow different levels of control over the generated output, from the one that allows
the most control to least control: RoomGAN, MixNMatch, SPADE and Pix2Pix. We have
chosen to work with the Pytorch implementations, which were luckily available for all the
models. They all required an NVIDIA GPU and CUDA/CuDNN to work properly, plus
some of them required some extra Python packages that will be detailed bellow.

Our very own code for the RoomGAN method is available at github: https://github.
com/imatge-upc/roomGAN

4.2 Parameters

Ideally, we would use the exact same parameters for every model so we could compare
them in all fairness. However, some of the implementations work different from others,
specially in the case of MixNMatch, and do not allow to tweak every parameter. Apart
from that, one of our main goals is to achieve the best possible results, so we finally
decided to leave most of the parameters as default, since those are the ones that proved
to work better for the original models, and adjust some of them as we thought necessary
after analyzing the results of the experiments.

The exact parameters used to experiment with every model will be indicated in their
respective subsections below.

4.3 Evaluation Metrics

It is quite difficult to pick any evaluation metric that would accurately represent how well
any of the models perform with respect to the rest, specially because they all perform
different levels of conditioned image generation. We could compare some of the common
losses for most of them, such as the Adversarial loss, but that would not capture the real
performance of the model.

Even though we will compare how well the models learn for this exact task by looking at
the tendencies of their losses, the final evaluation and comparison of their performances
will be subjective according to the quality of the final generated images.
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4.4 RoomGAN

4.4.1 First experiment

The very first experiment we performed was also the first time we trained the model. We
used the ADE20K Dataset, since in that moment we had not even began to synthesize the
semantic segmentations for the LSUN Dataset. The RoomGAN model had not suffered
yet all the changes described in the Methodology section. For instance, the perceptual
loss was not divided into two different losses, and it still used It to improve the textures.

Initially we focused on finding the optimal λ for every training loss, so we ran the training
phase for a day with each of the combinations that we thought would work best, adjusting
them on the go. After a week, we decided to choose a fixed set of lambdas and let the
model train for a prolonged period of time, while the rest of the hyperparameters were
set as default. The values for this set of lambdas were:

• Lambda L1: 1.0

• Lambda Perceptual: 1.4

• Lambda Adversarial: 5.0

• Lambda Contextual: 3.0

Most of the losses (Figure 25) seemed to decrease over time, specially the contextual. The
generated images were promising, although far from realistic. In Figures 26(b), 26(d),
26(e) we can observe how the model properly transfers the predominantly colors of the
ceiling, walls and floor. Occasionally it even manages to transfer more concrete textures,
like in Figure 26(a). However, the model can not properly replicate some of the elements
and it clearly fails in delivering realistic outputs.

(a) Dp Loss (b) L1 Loss

(c) Adversarial Loss (d) Contextual Loss (e) Perceptual Loss

Figure 25: Training losses for a batch size of 1. Blue lines correspond to the actual
losses, while the orange lines are a smoother version.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 26: From left to right: source image, semantic segmentation of Is, target image,
semantic segmentation of It and generated output.
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4.4.2 Second experiment

In the next experiment we trained the model without the discriminator Dp, but still
with the ADE20K dataset. The contextual loss was also changed as described in the
Methodology section.

Apart from this change, we also tried to find better values for lambdas, so we tried
different combinations of them during the same training, which as we can see in Figure 27
caused some steep increases and decreases in the losses. We finally ended with the same
combination used in the previous experiment, since it turned out to be the most effective
one. In total, we trained the model for 217 epochs.

The contextual loss was the one that decreased the most while the other losses seemed
to decrease slowly over time, except the Adversarial loss, which increased a little. We
obtained better texture transfer than in the previous experiment and slightly more realistic
images. The model did manage to transfer the lighting and shape of lamps (Figure 28(a-b))
and even the wooden headboard of the bed (Figure 28(a)).

(a) Dp Loss (b) L1 Loss

(c) Adversarial Loss (d) Contextual Loss (e) Perceptual Loss

Figure 27: Training losses for a batch size of 4. Blue lines correspond to the actual
losses, while the orange lines are a smoother version.
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(a)

(b)

(c)

Figure 28: Examples of generated images at training time.

4.4.3 Third experiment

In order to improve the performance, specially at test time, we decided to use the much
bigger LSUN dataset, maintaining the same parameters as the ones used in this last
training phase. The training developed as usual, but around the 10 epoch mark the losses
values turned to NaN . This also resulted in the model generating completely black images
for every input. At this point, we had not performed the dataset cleanse described in the
Methodology section. These results (Figure 29) were actually the reason we decided to
perform said cleanse, since one of the most probable motives behind the losses turning
NaN (due to a gradient explosion) could be the outliers we saw in some of the iterations
(e.g. Figure 17-18).

Figure 29: The model only generates black images.
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4.4.4 Fourth experiment

Finally, once the dataset was cleansed and we checked that the model no longer generated
black outputs, we ran one last training phase that included all the changes described in
the Methodology. The main difference with the last training, dataset apart, is the split of
the perceptual loss.

In Figure 30 we can see how the L1, Contextual and the new perceptual loss using It all
decrease, even though in a slower pace than in previous experiments. The Adversarial loss
also decreases, which is a huge improvement from the last training phase in which the
loss showed an increasing tendency. The discriminator and the percentual loss that uses
Is do not decrease, although the perceptual loss is already at very low values.

(a) Dp Loss (b) L1 Loss (c) Adversarial Loss

(d) Perceptual Loss (Target) (e) Perceptual Loss (Source) (f) Perceptual Loss (Target)

Figure 30: Training losses for a batch size of 4. Blue lines correspond to the actual
losses, while the orange lines are a smoother version.

The results, shown in Figure 31, are promising. The model does exceptionally well on
transferring the overall appearance as well as the predominant colors, specially those of
the walls. Nonetheless, it fails to properly transfer the texture of some beds, specially if
they contain complex patterns, and the general look of the outputs is not very realistic.

We noticed the importance of the quality of the semantic segmentation of the inputs
in the quality of the result. In Figure 31(e) we can see how the lamp is present in the
segmentation and the model is able to properly transfer it, even the fact that it is on. In
Figure 31(f) however, the lamp is not present in the mask (black void) and therefore the
model is unable to generate it in the result.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 31: From left to right: source image, semantic segmentation of Is, target image,
semantic segmentation of It and generated output.

33



4.4.5 Inference Time

The average total inference time of our model is 22.8 seconds. The tests were run in the
GPI computing server, which has the following specs:

• Ubuntu 18.04.

• 3 Intel CPUs.

• 10 GB of RAM memory.

• 2 NVIDIA Tesla V100 GPUs.

More detailed information about the inference time can be found in the thesis of Aleix [16].

4.5 MixNMatch

The first experiment we ran with this model uses the ADE20K dataset, consisting of
aroung 1,000 images, which contains ground truth semantic segmentations, thus making
the bounding boxes needed for the training extremely accurate.

The training phase consists of two stages. In the first stage the encoders learn to disentagle
the features, while in the second stage the model focuses on extracting the shape and pose
features. These stages are trained sequentially, and the user has control over the iterations
that each of them perform. Since the implementation provided by the authors does not
allow to retrain a stage once it has finished, our first goal was to find the maximum
number of iterations for each stage that could be run withing the 24 hours limit on the
GPI server. These values turned out to be 1,200 iterations for the first stage and 2,400
for the second one.

Another important hyperparameter to tune are the super categories and the fine cate-
gories. Super categories tell the model the number of expected different shapes that the
network should try to learn, while fine categories are the different textures to expect. We
selected these values to be 100 and 400 respectively. The rest of settings are left as default:
an Adam optimizer with a learning rate of .0002 and a batch size of 12.

(a) Real images.

(b) Generated images.

Figure 32: Results on the first stage.

(a) Real images.

(b) Generated images.

Figure 33: Results on the second stage.
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Both stages produce images (Figure 32-33) along the training, and although the model
does not provide feedback on any training loss, we can use the generated images to follow
the training process. The model outputs 128x128 images.

To perform the attribute transfer task, we will select the texture from an image (source)
and the pose, shape and background from another image (target). The goal is to obtain
a picture that preserves the pose, shape and background of the bed in the target image,
while the bed’s texture has been swapped with the one of the source image. As we can
see in Figure 34, the results are not promising.

(a) Source images (b) Target images (c) Generated images

Figure 34: MixNMatch results on the first experiment.

The model does great at keeping the pose, shape and background from the target images,
but it transfers the bed’s colors to the whole image rather than only to the bed.

Since the main problem seemed to be that the network was not capable of identifying the
object of interest, we decided to resize the whole dataset to the 128x128 format used in
the output, to check whether or not that was causing this behaviour. The results were
even worse. Compared to the model trained used 256x256 inputs (Figure 36), the network
fails to retain the shape and pose and keeps being unable to transfer the texture to the
object of interest only.
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(a) Source image (b) Target image (c) 256x256 input (d) 128x128 input

Figure 35: Comparison between 256x256 and 128x128 input size.

Finally, we wanted to check whether feeding the model with a substantially bigger number
of images could improve its performance. Instead of using the ADE20K dataset (around
1,000 images) we trained the model with the synthesized LSUN dataset, selecting only
50,000 images from the total available. To fit each stage in one day we had to decrease
the number of iteration over ten times, 100 iterations for the first stage and 200 for the
second.

As a reference, we will be comparing the results to the ones generated by the model
when trained with an input of 256x256 since it proved to perform better than its 128x128
counterpart. In Figure 35 we can see how the model does not perform nearly as well.
Although the previous training failed to deliver a proper texture transfer in the object
of interest, it does much better at transferring the shape and background. The model
trained with the LSUN dataset fails to acurrately recreate the shapes of the target image,
let alone transfer any kind of realistic textures. The outliers and the less accurate masks
failed to outweight the benefits of the increased number of images of the LSUN dataset.
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(a) Source image (b) Target image (c) ADE20K (d) LSUN

Figure 36: Comparison between training with the ADE20K or the LSUN dataset.

We believe that the reason why the model could not perform as well as showcased in the
paper [9] for other kinds of objects (birds, cars and dogs) is due to the fact that beds do
not stand out against the background as much, and have similar shapes as other objects
around them, thus making it harder for the model to disentangle its components from the
rest of the image.

4.6 SPADE

The SPADE model is already pretrained in the whole ADE20K Indoor dataset. We wanted
to test its performance on the subset of bedrooms from the very same ADE20K. This
method takes as input a semantic segmentation, but it also accepts an optional style
image, from which the model will try to extract a general appearance. This feature adds
some extra control over the overall style of the generated output. However, it requires an
attached encoder that is not provided in the official code, and therefore we won’t test it.

The results, shown in Figure 37, are fantastic. Unlike RoomGAN the model generates
every object defined in the segmentation, and does it with a high quality in terms of
shapes and textures, giving the final result a much more realistic look.
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(a) Ground truth (b) Semantic segmentation (c) Output

Figure 37: From left to right: real image, semantic segmentation of said image and
synthesized image produced by SPADE using the segmentation as input.
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4.7 Pix2Pix

In the case of the Pix2Pix model, another reason to use the Pytorch implementation [4]
was that it allegedly outperforms the original TensorFlow implementation.

Pix2Pix is the least conditioned model, in the sense that it does not allow any control
over the style of the generated image. Therefore, it will be the model that is expected to
perform better in terms of photo-realistic results, since it has less constrains to take into
account.

This model does provide feedback of the four losses it uses for training:

• Adversarial Loss

• L1 Loss

• Discriminator loss for real images

• Discriminator loss for fake images

The first experiment will use the dataset and split mentioned in the methodology section.
It will run using all the default options, including a batch size of 1. The model performs
around 30 epochs per day, so it took a couple of days to get conclusive results. The
model run for a total of 120 batches (around 1,500,000 iterations). As we can observer in
Figure 38, all the training losses are quite noisy, but on average the tendency shows that
the model is indeed learning, with the exception of the Adversarial loss.

(a) Adversarial Loss (b) L1 Loss

(c) Discriminator Loss (Real Images) (d) Discriminator Loss (Fake Images)

Figure 38: Training losses for a batch size of 1. Blue lines correspond to the actual
losses, while the orange lines are a smoother version.
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The Adversarial Loss tells the generator how plausible are the generated images to belong
to the target domain. In other words, how ’real’ the images seem. In this particular case,
the fact that the loss is increasing could be due to the fact that some of the generated
masks are not perfectly generated, or it could also be caused by some of the outliers in
the dataset. Either way, one of the ways of reducing the impact of these isolated entries
is to increase the batch size.

As a first approach, we increased the batch size to 4. As shown in Figure 39, the results
are considerable better. The L1 loss continues to show a decreasing tendency, while both
Discriminator losses only show a residual worsening. As for the Adversarial Loss, even
though we did not manage to make it decrease, has clearly improved.

(a) Adversarial Loss (b) L1 Loss

(c) Discriminator Loss (Real Images) (d) Discriminator Loss (Fake Images)

Figure 39: Training losses for a batch size of 4.

To further confirm this approach, we then increased the batch size to 32 and used two
GPUs to perform the training. We gave the model the same training time (around 3 days),
which resulted in less total iterations (around 200,000) due to the bigger batch size.

As expected, increasing the batch size considerably smoothens the losses (Figure 40). It
does not have much effect on the Discriminator losses, but we can clearly appreciate an
improvement on the Adversarial loss, which even decreases until the 50,000 iterations
mark and does not spike after. The L1 loss does not suffer much improvement apart from
a huge noise reduction.
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(a) Adversarial Loss (b) L1 Loss

(c) Discriminator Loss (Real Images) (d) Discriminator Loss (Fake Images)

Figure 40: Training losses for a batch size of 32.

These results confirm our hypothesis that the Adversarial loss was being heavily affected
by some of the outliers in the dataset.

To compare how well the model performs when trained with the different batch sizes, we
ran the method on 100 images from the test set. The results (Figure 41) are somewhat
similar. The smaller batch sizes result in simpler images, with less complex textures and
less defined shapes. However, the bigger batch sizes tend to apply too many textures
resulting in a less realistic image. This is quite contradictory with our expectations on the
Adversarial Loss, which saw an improvement when using bigger batch sizes.
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(a) Ground truth (b) Input (c) Batch size 1 (d) Batch size 4 (e) Batch size 32

Figure 41: Comparison between different batch sizes.

In the end, results show that using a moderate batch size ends up producing more realistic
results, even though the training losses would suggest that increasing the batch size does
not have any drawbacks.

4.8 Comparison

As mentioned in the beginning of this section, it is certainly difficult to establish a fair
way to compare the four models discussed. There is not an evaluation metrics that could
be used, and even if it was, it would not be fair to compare RoomGAN, which is a highly
conditioned method, to SPADE or Pix2Pix, which perform simpler tasks.

However, we can try to give a subjective comparison of the results. We will leave MixN-
Match out of the comparison since it did not prove to achieve any significant results.

We will start by comparing SPADE and Pix2Pix (trained with a batch size of 4 as it
showed the best performance) since they perform the same task of translating a semantic
segmentation into an image. The main difference, architectures aside, is that SPADE is
trained using the whole ADE20K Indoor dataset, that contains images of different indoor
rooms, while we trained Pix2Pix using bedroom images exclusively. This fact could lead
us to think that Pix2Pix would perform better on test time when given only bedroom
segmentations, but the results point otherwise.
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(a) Ground truth (b) Segmentation (c) Pix2Pix (d) SPADE

Figure 42: Comparison between Pix2Pix and SPADE.
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In Figure 42 we can appreciate the difference between the generated images both model
produce when fed the same input. Although Pix2Pix manages to produce quite realistic
results, the style of most images tends to resemble that of a painting. And even though
Pix2Pix manages to properly synthesize every object present in the output, it fails to
delimit their shapes as nicely as SPADE. Overall, both models perform well for the task
of translating semantic segmentations to images, but SPADE clearly outperforms Pix2Pix,
despite the fact that the second was trained specifically for bedrooms.

Finally, we also wanted to compare the performance of RoomGAN. We can not make a
fair straight comparison with the rest of the models, since RoomGAN performs a much
more complex task, but we want to compare the quality of the generated images to give
a reference of how far RoomGAN positions from other state of the art methods.

In Figure 43 we wanted to show some of the outputs that better represent the biggest
flaw of RoomGAN. It achieves good results in the task of properly transfering the style
of the image as well as the textures of walls, floors, ceiling and in general big objects with
simple textures. However, it struggles with smaller objects that have complex textures,
as it is often the case with beds. Overall, it produces pleasant results, but far away from
being as realistic as the outputs of methods like Pix2Pix and SPADE.

Figure 43: From left to right: source image, semantic segmentation of Is, target image,
semantic segmentation of It and generated output.
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5 Conclusions

The aim of this thesis was to research the state of the art Generative Adversarial Networks
and their applications on Attribute Transferring, with our final goal being the development
of a method capable of transferring the shapes and textures of a certain set of objects
from one image to another, and apply that method to create an app that would allow the
user to change the visual style of their own bedroom.

We began by researching the state of the art methods used to perform similar tasks in
hopes of finding a model that could be used as the foundation for our own method, and
we succeeded by picking ADGAN, which has proven to serve as the base on top of which
we have developed RoomGAN.

RoomGAN performs well on the task of transfering the shape, pose and textures of a bed-
room’s objects over another image, but it sadly fails in delivering photo-realistic results,
specially compared to those of the state of the art models researched.

From the very beginning we always had in mind the development of an app in which
deploy our model, and we successfully managed to adapt the model so it could be used
as part of an end-to-end application with a low delay of around 20 seconds.

Out of our six original objectives we have managed to successfully complete five of them.

5.1 Future Work

The next steps we want to take involve improving the model performance and the app,
so as to make it more viable for deployment and daily use:

• Find a new discriminator capable of improving the realism of the generated images,
which fits the available data that we already have.

• Reduce even further the delay of the end-to-end process.

• Improve the quality of the synthesized dataset by finding a better segmentator or
look up for a new dataset with ground truth segmentations and a big volume of
images.
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