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Abstract: This work presents a hybrid visual-based SLAM architecture that aims to take advantage
of the strengths of each of the two main methodologies currently available for implementing visual-
based SLAM systems, while at the same time minimizing some of their drawbacks. The main idea is
to implement a local SLAM process using a filter-based technique, and enable the tasks of building
and maintaining a consistent global map of the environment, including the loop closure problem, to
use the processes implemented using optimization-based techniques. Different variants of visual-
based SLAM systems can be implemented using the proposed architecture. This work also presents
the implementation case of a full monocular-based SLAM system for unmanned aerial vehicles that
integrates additional sensory inputs. Experiments using real data obtained from the sensors of a
quadrotor are presented to validate the feasibility of the proposed approach.

Keywords: visual SLAM; filter; optimization; key-frame; hybrid; local mapping; global mapping;
loop closure

1. Introduction

Despite the great advances reported during the last years, the Simultaneous Local-
ization and Mapping (SLAM) problem still attracts great attention from the robotics/AI/
computer vision research community since it represents a fundamental milestone in the
road to developing truly autonomous mobile robots and vehicles. In this context, the
visual-based SLAM systems represent an interesting sub-class of SLAM methods due to the
inherent characteristics of cameras as sensors. For instance, cameras, in general, provide a
lot of information about the robot environment.

Most of the approaches for implementing visual-based SLAM systems, and also visual
odometry (VO) systems (e.g., [1,2]), can fall into two broad categories: (i) Filter-based
methods and (ii) optimization-based methods. The first class makes use of stochastic filter-
based techniques, such as the Kalman Filter [3,4] Extended Kalman Filter [5–9], Unscented
Kalman Filter [10–12], Information Filter [13,14], and Particle Filter [15–17], for concurrently
estimating the state of the robot as well as the states of the visual features composing the
map of the environment. The second class of visual-based SLAM systems, which is also
referred to as key-frame-based methods, decouples the robot’s localization process from
the mapping process and reformulates both problems, the localization, and mapping as
optimization problems. Examples of this kind of approach are [18–24].

In our opinion, both approaches present their own advantages and drawbacks. For
instance, the filter-based SLAM methods make use of theoretically well-founded stochastic
estimation tools coming from the systems and control theory. This facilitates the analy-
sis of important system properties as the observability (e.g., [25–27] or the stability and
convergence (e.g., [28,29], which makes it possible to design SLAM systems based on
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sound theoretical foundations. In this sense, optimization-based SLAM methods are in
general built following a more heuristically design methodology, and therefore there is a
lack of theoretical studies (math proof-type) supporting the operation of these kinds of
methods. Moreover, filter-based SLAM methods are very well suited for incorporating
aiding information from different sensory sources (e.g., Altimeter, IMU, range sensors, etc.)
due to the data fusing nature of stochastic filters. In this sense, optimization-based SLAM
methods require in general more ad-hoc solutions for incorporating data from other sensors
(e.g., [30]).

On the other hand, perhaps the main drawback of filter-based SLAM methods is
related to the fact that its computational requirements scale poorly as the size of the state
vector increases when incorporates new map features. Although for small maps (of typically
100 features) the computational requirements are even lower for filter-based methods than
those needed for optimization-based methods (see [31]), when it is necessary to build larger
maps containing several hundred or even thousands of features, the filter-based methods
are unable to maintain a real-time performance using consumer-degree hardware. This
is when a clear advantage of the optimization-based SLAM methods becomes evident.
Although optimization techniques are more computational power-consuming for small
maps, their decoupled localization-mapping architecture and the use of local-optimization
strategies make these kinds of methods scale computationally better when the number of
map features becomes unmanageable for filter-based methods.

In this work, a new visual-based SLAM hybrid architecture is proposed which aims to
take the advantages while at the same time overcoming the drawbacks of both method-
ologies: the filter-based SLAM methods and the optimization-based SLAM methods. The
basic idea is to use each technique for what we consider is better suited according to its
strengths: the filter-based technique for implementing a local SLAM process, and the
optimization-based technique for building and maintaining a consistent global map of the
environment.

In Section 2 the proposed architecture is presented in a detailed manner. Section 3
presents a full monocular-based SLAM system for unmanned aerial vehicles, which in-
tegrates altimeter and range measurements, as an implementation case of the proposed
architecture. Section 4 presents the experimental results obtained from real data captured
from the sensors of a quadrotor. Final remarks are given in Section 5.

2. Proposed Architecture

The proposed visual-based SLAM system is composed of three processes running
concurrently: (i) a local SLAM process, (ii) a global mapping process, and (iii) a loop
correction process (see the Figure 1).

The local SLAM process implements a filter-based visual-based SLAM system with
state vector-size bounded to maintain real-time operation. By itself, this process produces
up-to metric scale (world referenced) estimates of both, the camera-robot state, and a local
map of features. But in this case, since old features are removed from the vector state,
to maintain real-time operation, previously visited areas of the environment can not be
recognized, and thus the accumulated position drift can not be corrected by the same
process alone. In this sense, the two other processes (global mapping and loop correction)
will be dedicated to build and maintain a global and persistent map of the environment
as well as correcting the accumulated drift when loops are detected. Some adaptations as
the Key-frame selection and the use of anchors from the global map, which will be better
explained later, are introduced to the filter-based SLAM method that allows interfacing
with the other processes. The local SLAM process can also be conceived as a complex
virtual sensor capable to provide 3D odometry information all together with visual and
spatial information of the environment.

The global mapping process takes as input the Key-frames produced by the local
SLAM process to create and maintain a global and persistent map of the environment. This
process runs asynchronously and at a lower operation rate than the local SLAM process.
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This process also implements an optimization-based technique as the bundle adjustment to
optimize the global map when new Key-frames are available. The map features composing
the global map will be called anchors. Besides the (local) state-vector features, the local
SLAM process can also make use of the (global) anchors as landmarks to correct its state.
Since the global map is built upon the Key-frames produced by the local SLAM, it still will
have the same drift as the position estimates of the latter.

The loop correction process is intended to minimize the drift accumulated simultane-
ously by the global map and the local SLAM, by detecting and closing the trajectory loops.
This process runs asynchronously to the other two processes. It takes the current camera
frame used by the local SLAM process and tries to associate it with previous key-frames
stored by the global mapping process by means of visual descriptors. If a match is founded,
indicating that this area of the environment was previously visited, then a corrected posi-
tion of the camera-robot is computed. The computed camera-robot pose is used to correct
the global map drift by means of a global optimization technique as the graph-SLAM, as
well it is used to correct the system state estimates of the local SLAM.

Figure 1. Proposed architecture.

In the following subsections, the proposed architecture will be described in depth: First,
in Section 2.1 the local SLAM process is presented, then in Section 2.2 the global mapping
process is presented, and finally in Section 2.3 the loop correction process is presented.

2.1. Local SLAM Process

If the following variable-size state vector x is defined:

x =
[
xT

r yT
1 . . . yT

n
]T (1)

which is composed by the state of the camera-robot xr and the states of n map features yi,
i ∈ {1, . . . , n}. The ith feature xi can use any parameterization (e.g., Euclidean, Inverse-
depth, etc.). And given:

(i) a continuous or discrete state-space model of the dynamics of the system:

ẋ = f(x, u) or xk+1 = f(xk, uk) (2)

where u is the input vector.
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(ii) an initialization function of new map features:

ynew = f(xr, zi) (3)

(iii) a series of measurements z for each sensor with measurement model ẑ:

ẑ = h(x) (4)

(iv) knowledge of the initial state x0 and the initial covariance matrix P0:

x̂0 = E{x0}
P0 = cov(x0, x0) = E{(x0 − x̂0)(x0 − x̂0)

T} (5)

where E{.} is the expected value.
Then, any general filter-based method (KF, EKF, UKF, Particle Filter, etc.) able to

compute an estimate of the vector state x̂

x̂ = E{x} (6)

can be used as a basis to implement the local SLAM process. To adapt the filter-based
SLAM method to be used in the proposed architecture, the following functionalities must
be implemented:

• Deleting of old features. It is well known that the computational cost of filter-based
SLAM methods scales poorly as the size of the state vector increases. Therefore, “old”
features that are left behind by the movement of the robot-camera must be removed
from the vector state x and covariance matrix P to maintain a stable computational
cost (see [32]).

• Observation of anchors. We will call anchors to the map features ai whose state and
uncertainties are not stored respectively in the state vector x and the covariance matrix
P. Similar to a map feature, an anchor can be any 3d static point of the environment
that can be visually detected and tracked frame to frame (e.g., a corner of a desktop,
or the edge of a rock). The difference to a map feature is that the anchor is considered
to be a fixed reference for estimating the camera pose. That is, when an anchor ai
is observed, the state x of the camera-robot is affected through the filter update, but
the state of the anchor remains the same. Thus, the anchors act like “fixed” visual
landmarks for the filter-SLAM estimation process. Anchors ai can use the same or
different parameterization than state vector features xi, but a new measurement model
ẑa (see Equation (7)) that depends on the state of the camera-robot xr and the constant
parameter ai must be defined.

ẑa = ha(xr, ai) (7)

The global map is composed only of anchors, so these will act as an interface between
the local SLAM and the global mapping process. For instance, if the global mapping
process modifies the position of the anchors observed by the camera, then the state x
of the local SLAM will be affected accordingly.

• Key-frame selection. Key-frames Kj are frames captured by the camera which are
selected regularly among the video stream according to some specific criteria (e.g.,
spatial [18] or visual [19]). Each jth key-frame Kj will store the camera-robot state xr at
the moment that the frame was captured. Hereafter let define xrj as the camera-robot
state associated with the jth key-frame. After a Key-frame is selected it is sent to the
Global mapping module to be processed.

• Position measurement update. To provide an interface with the loop correction process,
a position update stage must be implemented to the local SLAM process. In this case,
a position measurement model of the following type must be defined:

ẑp = [x, y, z]T = hp(x) (8)
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where [x, y, z] is the position of the camera-robot expressed in the world reference
frame. The corrected camera-robot positions computed by the loop correction process,
are incorporated into the local SLAM by mean of this update stage.

2.2. Global Mapping Process

First let us define K = {K1,K2, . . . ,Kn} as the set of n key-frames generated by the
local SLAM process and which are stored by the global mapping process. Also let us define
the global map A = {a1, a2, . . . , am} as the set of m anchors stored and processed by the
global mapping process.

The following basic capabilities must be implemented by the global mapping process.

• Anchors initialization. As new key-frames arrive from the local SLAM module, new
anchors are computed. Each key-frame Kj can represent a camera view since it has
associate visual and spatial information. Therefore, a multiview geometry technique
(e.g., [33]) can be used to compute the position of new anchors. For instance, a new
subset of anchors Anew can be computed using a stereo-based triangulation technique,
where Anew = f (Kj,Kj−1) (see Figure 2).

Figure 2. A stereo-based triangulation technique can be used for computing new anchors ai. In this
case, the camera state information associated with a pair of key-frames (Kj,Kj−1), and the projections
(pj, pj−1) are used to compute the 3d position of anchor ai.

• Bundle adjustment. In order to refine the global map, a local bundle adjustment
technique is used (e.g., [34]). Assume that n anchors are seen (projected) in m key-
frames, and let vij be the measured projection of the ith anchor on the jth key-frame.
Also let ha(xrj , ai) be the predicted projection of the ith anchor on the jth key-frame,
where xrj is the camera-robot state associated with the jth key-frame. Then, bundle
adjustment minimizes the total reprojection error with respect to n anchors belonging
to A and the m camera states xrj associated with the m key-frames contained to K, or

min
xrj ,ai

n

∑
i=1

m

∑
j=1

d(ha(xrj , ai), vij)
2 (9)

where d(y, x) denotes the Euclidean distance between the image points represented
by vectors y and x. If the anchor i is not visible in the key-frame j then d(., .) = 0.

The operation rate of the global mapping process is not restricted by the frame-rate
operation of the local SLAM process, but still, it is desirable to maintain a reasonable
operation rate. When the number of key-frames and the number of anchors increases the
computational cost of the bundle adjustment also increases. Therefore in practice, only a
subset of the last key-frames are considered in the minimization problem, hence the name
of local bundle adjustment.
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2.3. Loop Correction Process

This process is intended to detect previously mapped areas of the environment by
using visual information to minimize the position drift accumulated by both, the camera-
robot state and global map estimates. In this case, the process can be implemented in fact
in several ways (e.g., [35–37]. One of these can be for instance to apply a global bundle
adjustment when the projection of old anchors, belonging to previously mapped areas,
are detected and matched in recent camera frames. However in many cases, due to the
great numbers of anchors and key-frames, the minimization problem involving the bundle
adjustment can imply a considerable computational cost.

Based on the particularities of the proposed system architecture, the loop correction
process can be implemented through the following basic functionalities:

• Loop detection. Let define F as the current frame captured by the camera, which has
the current camera-state xrF associated with it. Then, different heuristic criteria can
be established, but in general, a loop is detected if enough number of visual features,
belonging to F , are visually matched against some previous (old) key-frameKj. Given
the above, let defined the matched key-frame as KM and its associated camera-robot
state as xrM .

• Corrected camera-robot pose computation. If a loop is detected, this functionality is
intended to compute the corrected (relatively to the previously mapped area) camera-
robot position. Let define the subset of anchors ai that have a projection ha(xrM , ai)
on the key-frame KM as AKM , where AKM ⊂ A. Let define the subset of anchors
ai belonging to AKM that have a measured (matched) projection ha(xrF , ai) on the
current frame F as AF , where AF ⊂ AKM . Moreover, let vi be the measured
projection ha(xrF , ai) of the ith anchor on the frame F . Then, the minimization of total
reprojection error with respect to n anchors belonging to AF and the camera states
xrF associated with the frame F , or

min
xrF

n

∑
i=1

d(ha(xrF , ai), vi)
2 (10)

is called Perspective-n-Point (or PnP) problem (see [38]). Now let define the camera-
robot state that minimizes the PnP problem as xrc . We will also refer to xrc as the
corrected camera-robot state or corrected pose. The state xrc = [xT

cp, xT
co]

T is composed
by the corrected position xcp and the corrected orientation xco of the camera-robot.
When a corrected camera-robot pose is computed, a filter update is executed in the local
SLAM process, to update the state of the local SLAM with xcp as position measurement.

• Global map correction. If a corrected camera-robot state xrc is available, then a Graph-
based SLAM technique (see [39]) can be used to accordingly correct the camera-
robot states xri associated with the key-frames contained in K. Now, let define
xg = [xr1 , xr2 , . . . , xrn ] as the vector of parameters to be optimized by the graph-
based SLAM, where xri describe the pose of node i. Note that in xg, one parameter xri

correspond to the state xrM of key-frame which was matched during the loop detection.
Also in xg, the last parameter xrn correspond to state xrF of the camera-robot when
the current frame F was captured. Let zij and Ωij be respectively the mean and the
information matrix of a virtual measurement between the node i and the node j. And
let ẑij(xri , xrj) be the prediction of a virtual measurement given a configuration of
the nodes xri and xrj . Finally let eij(xri , xrj) be an error function that computes the
difference between the expected measurement ẑij and the actual measurement zij:

eij(xri , xrj) = zij − ẑij(xri , xrj) (11)
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The goal of the graph-based SLAM (see Figure 3) is to found the configuration of
nodes x∗g that solve the following minimization problem:

min
xg

∑
〈i,j〉∈C

eT
ijΩijeij (12)

where C is the set of all pairs for which an observation (constraint) z exist.
For the proposed architecture, two kinds of virtual observation are defined:

- Visual odometry measurements zij are defined by the relative transformation between
consecutive camera-robot states, so zij = T(xri , xrj), where j = i + 1. In this case, there
will be n− 1 visual odometry measurements linking all the camera-robot states in xg.
The prediction ẑij(xri , xrj) can be set to zero ẑij = 0 if not visual odometry model is
available (or only by simplicity).

- A single closed-loop measurement, zij which is defined by the relative transformation
between the corrected camera-robot pose xrc and the state of the matched key-frame
xrj = xrM , or zij = T(xrc , xrM ). In this case the prediction ẑij is defined by the relative
transformation between the current camera-robot pose xrn = xrF and the state of the
matched key-frame xrj = xrM , or ẑij = T(xrF , xrM ). In this case, for zij and ẑij, i = n
since it corresponds to the current camera-robot state.

Figure 3. Visual representation of a Graph-based SLAM problem.

Each anchor ai ∈ A is linked to a specific key-frame Ki ∈ K (typically the first
key-frame when the anchor was initialized). If xri = [xT

p , xT
o ]

T and x∗ri
= [x∗p

T , x∗o
T ]T is

respectively the camera-robot state before and after of the graph-based SLAM technique is
applied, then, each anchor ai position can be corrected with:

ai = ai + (x∗p − xp) (13)

Observe that when a loop is detected, the state of the local SLAM process is corrected
directly by updating the state with the corrected pose xcp, and indirectly by the observation
of the corrected anchors ai composing the global map.

3. Implementation Case

In this section an implementation case of the visual-SLAM architecture proposed in
Section 2 is presented. It is important to recall that the specific system described here
does not represent the unique manner to implement the proposed architecture, but only
represents a practical validation example among many possibilities.

The system described in this section is a monocular-based SLAM system for MAVs
(Micro Aerial Vehicles). Besides the monocular camera, the system includes a barometer
for integrating (absolute-referenced) altitude measurements and a range sensor for incorpo-
rating information depth. The system provides metrics estimates of the camera-robot state
and the map of the environment, and it has loop-closing capabilities.
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3.1. Local SLAM

The Local SLAM process is based on the authors’ previous work [40]. In this case, an
Extended Kalman Filter (EKF) is used for estimating the state of a MAV equipped with
a down-facing monocular camera, a barometer, and an ultrasonic range finder as well as
for estimating a local map of the environment of the MAV. The camera is mounted over
a servo-controlled gimbal which counteracts the changes in the attitude of the MAV. The
range sensor is also mounted on the gimbal and parallel aligned with respect to the optical
axis of the camera (see Figure 4).

Figure 4. As an implementation case, a monocular-based SLAM system for a MAV equipped with a
down-facing monocular camera, a barometer, and an ultrasonic range finder is presented.

Altitude measurements provided by the barometer are integrated for incorporating
metric information into the system improving the observability of the metric scale. The
range information provided by the ultrasonic sensor is integrated into the system also for
improving the observability of the metric scale as well as for improving the robustness of
the initialization of map features.

The elements of the state vector x defined in Equation (1) are:

xr =
[
px py pz vx vy vz

]T yi =
[
pxi pyi pzi

]T (14)

where pN = [px, py, pz] represent the position of the camera-robot expressed in the naviga-
tion frame N , vN = [vx, vy, vz] represent the velocity of the camera-robot expressed in the
navigation frame N . And [pxi , pyi , pzi ] represent the position of the i map feature expressed
in the navigation frame N . Note that due to the permanent down-facing camera restriction,
the problem is simplified to consider only the position estimation of the camera-robot.

The discrete state-space model (Equation (2)) is:

pN
k+1 = pN

k + vN
k ∆t

vN
k+1 = vN

k + VN

y1[k+1] = y1[k]
:
yn[k+1] = yn[k]

(15)

where ∆t is the time step, and VN = σ2
a ∆t represents an unknown linear velocity impulse

with acceleration zero-mean and known-covariance Gaussian processes σa.
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The model, Equation (3), for initializing new map features is:

ynew = pN + dRCN
[

cx − u′

f
cy − v′

f
1
]T

(16)

with
[

u′

v′

]
= f−1

d (u, v, k1, . . . , kn) (17)

where RCN = (RNC)T , and d is the approximate feature depth computed from the
range sensor.

Every time that a range reading is available, new map features are initialized using
the next camera frame available. First ORB keypoints [41] are detected on the frame, then a
subset of strong keypoints is selected using the methodology proposed in [42]. For each
strong keypoint, a new map feature is initialized in the local SLAM system state using
model in Equation (16). Map features lying inside the beam pattern of the range sensor are
initialized with smaller depth uncertainty than features lying outside of it. For more details
about the initialization process see [40]. The corresponding ORB descriptor is stored and
associated with each new map feature.

The measurement model ẑyi = [u, v]T(Eqquation (4)), that projects a 3D map feature
yi, with position [pxi , pyi , pzi ], to the image coordinates [u, v] of a camera located at pN =
[px, py, pz] is:

[
u
v

]
= fd(u′, v′, k1, . . . , kn) with s

u′

v′

1

 =

 f 0 cx
0 f cy
0 0 1

r11 r12 r13 px
r21 r22 r33 py
r31 r32 r33 pz




pxi

pyi

pzi

1

 (18)

where rij is the i-j element of the known (by the gimbal assumption) rotation matrix RNC

which allows transforming from the navigation frame N to the camera frame C. Let fd the
camera distortion model depending on the distortion parameters k1, . . . , kn, and let f and
(cx, cy) be respectively the focal lenght and the principal point of the camera. In this work,
the distortion model described in [43] is used, and the intrinsic parameters of the camera
are known by calibration.

Every time a new camera frame is available ORB keypoints-descriptors are computed
all over the image. Map features, that have a projection ẑyi over the image, are attempted
to be visually matched against the ORB descriptors computed in the current frame, using a
FLANN-based matcher [44]. The successful matches represent the visual measurements
zyi . Moreover, a validation step (e.g., RANSAC) can be added for discarding outliers.

The measurement model for updating altitude measurements obtained from the
barometer is simply ẑpz = pz. Every time a barometer measurement is available the filter is
updated. For more details see [40].

The estimated state x̂ is computed using the typical loop of filter prediction-updates
steps defined by the standard EKF-based SLAM methodology (see [45,46]), along with the
required adaptations described in Section 2.1:

• Old features deleting. A map feature yi is removed from the state vector x and the
covariance matrix P, when the ratio of unmatched-matched times of a map feature is
high, or number of times that it is not considered to be matched is high.

• Observation of anchors. Anchors are parameterized in the same manner as state map
features:

ai =
[
pxi pyi pzi

]T (19)

and therefore the measurement model [u, v]T = ẑa (7) is similar to (18), but in this case
[pxi , pyi , pzi ] are fixed parameters and the jacobians does not depend on them. The
local SLAM process owns a structure for storing local anchors. A local anchor is one
that can be potentially projected into the current camera image-frame. Let AL be the
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set of anchors belonging to the structure owned by the local SLAM process. Anchors
are added to AL in two ways:

– The global mapping process copy anchors from A to AL that are visually linked
to the current camera frame. This process will be explained in more detail later.

– The map features contained in the state x, whose position exhibits some good
degree of convergence, are removed from the EKF state and transformed into
anchors contained in AL. In this case, the following simple condition is proposed:√

σ2
xi
+ σ2

yi
+ σ2

zi

‖pN − yi‖
< λ (20)

If the above criteria is met, then the transformation yi −→ ai is carried out
(simply ai = yi ). Where σ2

xi
, σ2

yi
, σ2

zi
represent the variances of of the feature yi

along each axis taken from the system covariance matrix, and λ is a threshold. In
our implementation, a value of λ = 0.1 was used.

On the other hand, anchors are removed from AL in the following cases:

– An anchor is removed from AL if similar conditions that those for deleting local
map features are accomplished.

– If the loop correction process has detected a loop closing condition and a corrected
pose xcp is available, all the anchors in AL are deleted and replaced with visually
linked anchors from the corrected global map.

In the same manner as state features, anchors have associated an ORB descriptor.
Every time a new camera frame is available the anchors ai ∈ AL are projected into the
image frame, and they are attempted to be matched in the same manner as the local
map features to determine visual measurements of anchors za.

• Key-frame selection. A camera frame is selected as key-frame if two criteria are met:

– The displacement of the camera-robot is bigger than some threshold tk depending
on the average depth of the n local map features, or

‖PN
k − PN

k−1‖
1
n ∑n

i=1‖yi − PN
k ‖

> tk (21)

In our implementation, a value of tk = 0.15 was used.
– A minimum number of features (or anchors) were visually matched at that frame.

In our implementation, a value of 10 was used for this criteria.

• Position measurement update. If the loop correction process has detected a loop closing
condition and therefore a corrected pose xcp is is available, the filter is updated in a
standard manner with the measurement model (8) and the measurement zp = xcp.

3.2. Global Mapping

Several functionalities implemented by the global mapping process and also the loop
correction process makes use of a visibility graph (see [19]), that accounts for visual relations
between key-frames. Let define the visibility graph Vg as the symmetric matrix:

Vg =


0 w12 w13 . . . w1n

w21 0 w23 . . . w2n
w31 w32 0 . . . w3n

: : :
. . . :

wn1 wn2 wn3 . . . wnn

 (22)

where the component wij = wij is the number of global map anchors ai ∈ A, that have a
projection [u, v]T = ẑa = ha(xr, ai) in both key-frames, Ki and Kj. The number of visual
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links of the i-key-frame is wKi = ∑i
j=1 wij. Figure 5 show a visual graph obtained from an

actual experiment. K1 is the first keyframe. Observe, that if the visual graph is interpreted
by rows, from right to left (from recent to older key-frames), it can be inferred when the
camera-robot return near to previously mapped areas.

Figure 5. (Left): the plot of a matrix Vg illustrating the visual relations between 110 key-frames taken
from an actual experiment (right plot). White pixels indicate no visual relations. Black pixels indicate
visual relation (value wij > 0). Key-frames are indicated in red, global map anchors are indicated
in yellow.

New key-frames Kj, generated by the local SLAM process, are incorporated into the
structure that stores the set of key-frames K belonging to the global map. When new
key-frames are available, the following procedure is executed by the global map process:

• Computing new anchors. If a new key-frame Kj is available and the number of
visual links of the previous key-frame wKj−1 is below a threshold, then new anchors
ai ∈ Anew are initialized by triangulation. First, visual matches are searched between
the ORB descriptors of key-frames Kj and Kj−1. Then Outliers are removed using
RANSAC. If [u′j, v′j] and [u′j−1, v′j−1] are respectively the (undistorted) projection of the
anchor ai over the key-frames Kj and Kj−1, then the location of the anchor can be
computed by triangulation as follows:
From model (18) we have that:

su′

sv′

s

 = K


pxi

pyi

pzi

1

 with K =

 f 0 cx
0 f cy
0 0 1

r11 r12 r13 px
r21 r22 r33 py
r31 r32 r33 pz


where a′i = [pxi , pyi , pzi , 1]T , and [pxi , pyi , pzi ] is the position of the anchor ai expressed

in the navigation frame N . Let kj
i be the i row of the projection matrix K of the

key-frame j. We have that su′ = kj
1a′i, sv′ = kj

2a′i, and s = kj
3a′i = pzi . Substituting

the last expression, we have that: pzi u
′ = kj

1a′i and pzi v
′ = kj

2a′i. Considering both
projections [u′j, v′j] and [u′j−1, v′j−1], of the same anchor ai, the following linear system
can be formed: 

pzi u
′
j = kj

1a′i
pzi v

′
j = kj

2a′i
pzi u

′
j−1 = kj−1

1 a′i
pzi v

′
j−1 = kj−1

2 a′i

(23)

The above linear system can be solved for ai = [pxi , pyi , pzi ]
T . New anchors Anew

computed by triangulation are added to the global map A
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• Adding anchors computed by the local SLAM. The anchors computed by the local
SLAM process ai ∈ AL are added to the global map A.

• Visibility graph update. Every time a new key-frame Kj is available, the visibility
graph Vg is updated. In this case, the visual links wij are updated by taking into
account the projections of the new initialized anchors over previous key-frames, and
also the projections of old anchors over the new key-frame Kj.

• Bundle adjustment. First, let define the subset Kl ⊂ K as the subset of m key-
frames {Kj,Kj−1, . . . ,Kj−m−1} that are visually linked to the most recent key-frame
Kj. A key-frame Kj is visually linked to another key-frame Kj−i if w(j−i),j 6= 0.
Moreover, let define the subset Al ⊂ A as the subset of n anchors ai ∈ A that
have at least three measured projections vij over three different key-frames Kj ∈ Kl .
A measured projection vij is determined by visually matching an anchor ai, with
predicted projection ha(xrj , ai), on the key-frame Kj using ORB descriptors.
The global map is optimized by applying local bundle adjustment (Equation (9)) to
anchors ai ∈ Al and setting each camera state xrj of the key-frames Kj ∈ Kl as fixed
parameters.

• Weak anchors deleting. Anchors that can not be matched in at least three key-frames
are removed from the global map to maintain only anchors with a good likelihood to
be visually matched when the camera-robot revisits previously mapped areas.

• Local map anchors updating. Every time the global map is optimized by the local
bundle adjustment the set of anchors ai ∈ AL owned by the local SLAM process
is updated. In this case, the optimized anchors ai ∈ Al replaces their counterparts
owned by the local SLAM ai ∈ AL. Moreover, the new anchors computed (and
optimized) by the global SLAM process are added to the local SLAM set AL.

3.3. Loop Correction

As it was described in Section 2.3, every time that it is possible, the loop correction
process takes the last available frame F to detect previously mapped areas for correcting
the map and camera-robot pose. In this case, the following procedure is carried out:

• Loop detection. If Kj ∈ K is the most recent key-frame, and K1
j is the oldest key-frame

visually linked to Kj, and K2
j is the oldest key-frame visually linked to K1

j , first lets
define Ko ⊂ K as the subset of all key-frames not containing the key-frames visually
linked to K1

j nor Kj, or: Ko = {K ∈ K : K /∈ {K2
j , . . . ,K1

j , . . . ,Kj}}.
The ORB descriptors, computed from the current frameF , are attempted to be matched
against the ORB descriptors of key-frames K ∈ Ko. RANSAC is applied to remove
potential match outliers. Now, let define Km ⊂ Ko as the subset of consecutive key-
frames with at least n number of matches (n = 15 is used by the implementation).
A potential loop is detected if Km contain at least three key-frames. The key-frame
KM ∈ Km is the key-frame with the highest number of matches (see Section 2.3).

• Camera pose computation. The corrected camera pose xcp is computed through
Equation (10), selecting the anchors ai ∈ KF as it is described in Section 2.3, and with
ha(xrF , ai) defined by the projection model (18) with ai = [pxi , pyi , pzi ]. The following
considerations are taken into account for the minimization:

– Due to the gimbal assumption, RNC is set as a known fixed parameter in
Equation (10).

– Due to the integration of the altimeter, pz (the z-axis location of the camera-
robot) is set as a fixed parameter in Equation (10) equal to the current altitude
camera-robot position computed by the local SLAM in xrF .

It is important to note that the subset KF must contain a minimum number of four
anchors to compute xcp, but in practice, to improve robustness, a minimum number of
10 anchors is required in this implementation; otherwise, the loop closure is rejected.
Additionally, in this implementation to improve the robustness of the solution of the
corrected camera pose an additional test was considered. For this test, the anchors
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ai ∈ KF are re-projected to the image plane through (10) using the computed xcp.
If the projection of a single anchor ai lies outside of the image frame then the loop
closure is rejected.

• Global map correction. If a corrected camera pose xcp is available, then the global map
(position of key-framesK ∈ K and anchors ai ∈ A) is corrected through Equations (12)
and (13) as it is described in Section 2.3. But in this case, due to that, only the position
of the camera-robot must be estimated (gimbal assumption) and that the altitude
computed by the local SLAM is taken to be the best estimate (altimeter assumption),
the graph SLAM problem is simplified to a 2DOF (x-y) position estimation problem.
Therefore, in Equation (12):

ẑij(xri , xrj) =

[
px
py

]
(24)

After a loop closure is carried out, the visibility graph is completely recomputed to
reflect the actual visual relationships between key-frames.

• Position update triggering. When a corrected camera pose is available and the global
map is rectified, a position update is triggered in the local SLAM process using xcp as
the measurement to correct the local map accordingly to the loop close condition.

3.4. Implementation Notes

The implementation case of the visual-SLAM architecture proposed in Section 2 is
written in c++ and makes use of the following libraries: (i) CERES [47] for solving all the
minimization problems. (ii) OpenCV [48] for implementing all the image-level processing
(e.g., ORB descriptors). (iii) Armadillo [49] for implementing linear algebra operations.

As it was already stated before, the proposed visual-SLAM architecture can be im-
plemented in several manners. Meaning that also the particular implementation case,
presented in this section, can be easily extended to incorporate for instance additional
sensors aiding. An example o this, could be the integration of GPS measurements to the
local SLAM process when they are available. Of course, the SLAM as a pure research
problem aims to solve robotic navigation without depending on any external infrastructure
(as the GPS). But in practical applications, the system performance will be benefited from
the use of any available sensory source information.

4. Experimental Results

A ground application was implemented for capturing and storing the sensors’ data
obtained from a Bebop 2 quadrotor from Parrot [50] (see Figure 6, right plot). The Bebop 2
is a P7 dual-core CPU and quad-core GPU embedded system running a Linux-based OS
with built in Wi-Fi, GPS and camera. It has 8GB internal flash memory, 3350 mAh battery
with 25 min flying time. For our purposes, image frames from the frontal camera with a
pixel resolution of 320 × 240 were captured at 30 fps. The Bebop’s camera can be set to
look downwards. Moreover, altitude measurements produced by the flight controller of
the Bebop, and range measurements obtained from the ultrasound sensor were captured at
5 Hz.

In experiments, the quadrotor takeoff from a specific home location, and was manually
commanded to follow flight trajectories similar to the one illustrated in Figure 6, where
the robot flight away from the home area and eventually returned over there. During each
flight, the sensors’ data were time-stamped and stored in a data set as it was previously
described. The implementation case described in Section 3 was executed in an offline
manner using the captured data sets for testing the proposed visual-based SLAM approach.
In this case, a major objective was to observe if the proposed SLAM system was able to
close the loops and therefore to correct the error drift in both the robot position and the
global map by detecting old landmarks belonging to the home area.
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Figure 6. Experimental setup (left plot). UAV used in experiments (right plot).

4.1. Local SLAM

First, let analyze the estimation results obtained by the Local SLAM process. Figure 7
shows a flight trajectory computed solely by the local SLAM process. Observe that the
map is always composed of visual features located near the current UAV position since
they are removed from the map as the UAV moves away from them to maintain a stable
computation time. In this case, it is important to note that Local SLAM can operate completely
independently from the other two system process (global map and loop correction) as some
kind of visual odometry and local mapping system. Of course, if previous mapped features
are removed, then the Local SLAM is unable to recognize previously mapped areas (i.e.,
close the loop) and therefore unable to minimize the accumulated error drift in estimates.
Observe in Plot (c), that by the end of the flight trajectory, the accumulated error x-y position is
approximately 5 m. The above by considering that the grid in the computed scene is composed
of squares of 1 × 1 m, and the home location reference measures 0.7 × 0.7 m. The UAV’s
actual position at the end of the trajectory has been calculated from knowing the dimension of
the home landmark (the four black-square reference), and the intrinsic camera parameters.

home location

UAV estimated position

UAV actual position

Figure 7. Estimates obtained from the Local SLAM process (aerial x-y view). Plot (a) corresponds
to an initial stage of the flight trajectory, Plot (b) corresponds to a middle stage when the UAV is
near to complete the first loop, Plot (c) corresponds to a final stage when the UAV has completed a
second loop.

Table 1 shows some statistics obtained from the Local SLAM for the flight trajectory
illustrated in Figure 7. Experiments were run in a laptop equipped with an Intel i7-6500U
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processor with 4 cores running at 2.5 GHz. The actual time duration of the flight trajectory
was 86.1 s. Considering the execution times (total and per frame) is evidently that the Local
SLAM process can easily meet the real-time requirements with this hardware. In this sense, it
is important to note that the Local SLAM is the only process in which the execution time is
constrained by the operation rate of the sensors (e.g., camera fps) to accomplish a real-time
performance. Moreover, for this experiment, the use of anchors reduced the computation time
by around 10 percent, without any significant differences in the estimates by using them.

Table 1. Statistics of the Local SLAM process. In this table, feats:I/D is the relation between
the total number of initialized and the deleted EKF features, feat/frame is the average number of
features per frame, anchors:I/D is the relation between the total number of initialized and the deleted
anchors, time(s)/frame is the average computation time per frame, and total time(s) is the total
computation time.

Feats:I/D Feat/Frame Anchors:I/D Anchors/Frame Time(s)/Frame Total Time(s)

No anchors 17,226/17,146 83.2 ± 7.03σ 0 0 0.0118 ± 0.0025σ 30.77
With anchors 11,163/11,134 30.49 ± 9.42σ 1496/1436 60.4 ± 11.82σ 0.0106 ± 0.0023σ 27.54

4.2. Global Mapping

Figure 8 shows the results obtained for the same flight trajectory described in Figure 7,
but in this case when the Global mapping process is taken into account. Observe that since
the Global mapping process’s main task is only to construct the Global map, the same error
drift exhibited by the Local SLAM remains in the estimates.

home location

UAV estimated position

UAV actual position

Figure 8. Estimates obtained from the Global Mapping process (aerial x-y view). The Global map
is composed of anchors computed by the Global mapping process itself (green dots) and also by
anchors computed by the local SLAM process (yellow dots).The location of the Key-frames belonging
to the Global map is also highlighted along the UAV trajectory (yellow squares).

Figure 9 shows a lateral view of the estimated global map. Since the orography of the
mapped terrain is approximately flat and formed of dirt, grass, and very small bush, it
gives a reference for analyzing qualitatively the depth estimates of the Local SLAM (EKF)
and the Global mapping (Triangulation plus optimization). In this sense, it can be observed
that the anchors computed by the Global mapping process exhibit a higher number of
outliers. This result is consistent with the one presented in [31] in which filter-based SLAM
methods are compared with optimization-based SLAM methods.
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Figure 9. Estimates obtained from the Global Mapping process (lateral z-y view). Anchors computed
by the local SLAM process are indicated in yellow. Anchors computed by the global mapping process
are indicated in green.

Tables 2 and 3 show the statistics obtained from the global map illustrated in Figure 8.
Considering this results, it is clear that the real-time performance of the global mapping
process can be easily achieved by the hardware used in experiments. In fact, in future
work, the unused computation time could be used for instance to perform a global bundle
adjustment of the global map.

Table 2. Statistics of the Global mapping process. In this table, number KF is the total number
of Key-frames contained by the global map, anchors:I/D is the relation between the number of
initialized and deleted anchors carried out by the global mapping process, anchors:GM is the number
of anchors composing the global map that was initialized by the global mapping process, anchors:LS
is the number of anchors composing the global map that was initialized by the local SLAM process,
anchors:total is the total number of anchors composing the global map.

Number KF Anchors:I/D Anchors:GM Anchors:LS Anchors:Total

Global Map 99 2299/1624 675 1008 1683

Table 3. Computation times of the Global mapping process. In this table, n updates is the number of
updates carried out by the global mapping process (an update includes the execution of all the steps
described in Section 3.2), KF optimized per update is the average number of key-frames optimized by
the local bundle adjustment step, Time per update (s) is the execution time per global mapping update,
Total time (s) is the total execution time of the global mapping process during the flight trajectory.

n Updates KF Optimized per Update Time per Update (s) Total Time (s)

Global Map 97 17.4 ± 8.1σ 0.082 ± 0.032σ 8.001

4.3. Loop Correction

Observing Figures 6–8, it can be seen that the flight trajectory used in experiments has
two potential loop detection situations, each one when the UAV passes near over the home
location (at the middle and at the end of the trajectory).

Figure 10 shows three examples of the final estimates obtained when the Loop cor-
rection process is incorporated into the system. In this case, it is important to note that in
our implementation, the detection of new visual features (ORB keypoints) over the images
is carried out in a random manner. Therefore every time the algorithm is executed, it
produces a slightly different estimated Local SLAM and Global map for the same flight
trajectory (observe the Global maps illustrated in Figure 10). For the above reason, the
chances of detecting and correcting a loop vary each time the algorithm is executed. For
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instance, for a sample of 100 executions of the proposed algorithm over this flight trajectory,
the case (a) was obtained 55 times, the case (b) was obtained 15 times, the case (c) was
obtained 18 times, and 12 times the algorithm finished without correcting any loop.

home location

UAV actual position

UAV estimated position

home location

UAV actual position

UAV estimated position

home location

UAV actual position

UAV estimated position

Local SLAM trajectory

Corrected Global map

(Before Loop correction)

UAV estimated position
(After Loop correction)

Figure 10. Estimates obtained from the proposed system: Local SLAM + Global mapping + Loop
correction (aerial x-y view). Plot (a) shows a case when only the second loop was detected and
corrected, Plot (b) shows a case when only the first loop was detected and corrected, and Plot (c)
shows a case when both, the first and the second loop was detected and corrected. In experiments,
the case (a) occurred more often. Plot (d) shows a comparison between a flight trajectory estimated
from the proposed method and the one obtained from GPS.

By comparing the results presented in Figures 8 and 10, it can be observed that every
time that the proposed system was able to detect at least one loop, the estimated Global
map was considerably improved, and the final error drift in the estimated UAV position
was also considerably minimized. Moreover, the correction over the Global map after loop
closure can be better appreciated by comparing the Local SLAM trajectory with the final
key-frames position: in Figure 8 (without loop closure) both are overlapped, in Figure 10
both differ due to the loop correction over the Global map. In this case, observe that there is
a sudden “jump” in the Local SLAM trajectory every time the position of the camera-robot
is corrected due to the loop closure. Figure 10 in Plot (d) also shows a comparison between
a flight trajectory estimated from the proposed method (after loop-closure) and the one
obtained from GPS. In this case, it is important to remark that due to its inherent sources of
error, the GPS trajectory should not be taken as a perfect reference for evaluating the actual
precision of the estimates. On the other hand, this kind of comparison is still relevant since
it is shown that the proposed method is able to provide similar navigation capabilities to
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a UAV, but without the use of the GPS, which in the end is one of the major goals of the
SLAM methods.

Table 4 shows the average computation time for each step of the Loop correction
process. The detection of potential loops is carried out continuously at approximately at
5 Hz. The camera pose computation step is carried out only if a loop is detected and the
Global map correction step is carried out only if the corrected camera pose passes the tests
described in Section 3.3.

Table 4. Computation times of the Loop correction process. In this table, loop detection is the average
execution time needed for detecting potential loops, Camera pose comp is the average execution time
needed for computing the corrected camera pose, and Global map correction is the average execution
time needed for correcting the global map.

Loop Detection (s) Camera Pose Comp. (s) Global Map Correction (s)

Loop correction 0.183 ± 0.161σ 0.382 ± 0.021σ 0.379 ± 0.010σ

4.4. Comparison with an Optimization-Based Method

Figure 11 (left plot) shows the map and trajectory computed by the well-known ORB-
SLAM algorithm [19], when it is run over the first loop of the flight trajectory that was used
in previous experiments. For this experiment, the official MATLAB implementation of the
ORB-SLAM algorithm, provided by the Computer Vision Toolbox, was used. Since the
ORB-SLAM is a purely monocular algorithm (no metric information provided by aiding
sensors are considered) the map and camera trajectory is estimated only up to scale.

-2.5 -2 -1.5 -1 -0.5 0 0.5
X

-3

-2.5
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-1.5

-1

-0.5

0

0.5

Y

Map points
Estimated trajectory
Optimized trajectory

Figure 11. Up to scale map and trajectories computed with ORB-SLAM (left plot). Comparison
between the trajectories obtained with (i) ORB-SLAM (manually scaled), (ii) the proposed method,
and (iii) GPS (right plot).

For this experiment, to be able to satisfactory run the ORB-SLAM algorithm over the
whole trajectory, several frames had to be manually removed from the original dataset.
Most of the removed frames were frames with some degree of blur and correspond to
periods of fast camera movements due to sudden changes in the flight trajectory (turns
in corners). Without removing those frames the algorithm always crashed due to a low
number of visual features being tracked during those periods of fast movements. The above
even happen when trying several parameters configurations for tracking an extremely huge
number of visual features. Moreover, it is important to note that in this experiment only the
first loop of the flight trajectory was used because this implementation of the ORB-SLAM
algorithm only allows one close of a loop.

Figure 11 (right plot) shows a comparison between the (optimized after loop closure)
trajectory computed by the ORB-SLAM algorithm, the trajectory computed by the proposed
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hybrid SLAM method (after loop closure), and the trajectory obtained from GPS. In this
case, the ORB-SLAM trajectory was manually scaled to match the metric scale of the other
two trajectories.

Table 5 shows some statistics obtained from both methods: the ORB-SLAM and the
proposed method. It is very important to consider that the numbers expressed in this
table are included only for reference and should be not taken as a direct measurement
of the performance of both methods. For instance, MATLAB implementations usually
run much slower than C++ implementations. Moreover, there are so many structural
differences between methods, that make it difficult to carry out an in-depth comparative
study. On the other hand, what this simple experiment suggests is that a visual SLAM
system implemented with the hybrid architecture proposed in this work is able to provide
similar (but metric-scaled) estimates that those obtained by a state-of-art purely visual-
based SLAM method.

Table 5. Statistics of the comparison between the ORB-SLAM and the proposed Hybrid method. In
this table, n map feats is the number features/anchors contained by the map, n key-frames is the
number of key-frames, and Execution time is overall execution time.

n Map Feats n Key-Frames Execution Time (s)

ORB-SLAM (MATLAB) 8704 274 331.72
Hybrid SLAM (C++) 846 58 20.01

4.5. Other Flight Trajectories

The SLAM system described in Section 3 can not only be applied to simple flight trajec-
tories as the one used in previous experiments. Figure 12 shows the results obtained from
two different flight trajectories with a closed-loop. Observe that both trajectories present
several changes in direction which in turn corresponds to attitude changes of the drone.
Moreover, observe in the right plot that the flight trajectory includes a couple of periods where
the drone moves too fast. During those periods, the images captured from the camera are
very blurred, and therefore, the tracking of image features becomes unreliable (observe the
absence of map features and key-frames in those areas). The proposed method is able to cope
with this situation because during short periods where visual information is unavailable, the
estimates are computed from the prediction stage of the filter, and the remaining available
sensors updates (e.g., altimeter). In both cases, after the loop closure correction, the error in the
estimated position is less than 0.5 m. To have a reference for the metric scale of the estimates
consider that the (green-red) home axis has a length of one meter.

UAV actual position

UAV estimated position

UAV actual position

UAV estimated position

Fast movements

Figure 12. Results obtained from two different flight trajectories with a closed-loop.
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5. Conclusions

The experimental results previously presented show that the monocular-based SLAM
system for UAVs described in Section 3, which was implemented following the proposed
architecture described in Section 2, is able to estimate the state of the robot by using only
onboard sensors while at the same time building and maintaining a global map of its
environment. The system was able to considerably minimize the error drift in position by
detecting closing the trajectory loops. It also was shown that the SLAM system can easily
achieve real-time performance using consumer-degree hardware.

It is important to remark again that this monocular-based SLAM system for UAVs
represents only a case of many possible ones of implementations of the visual-based hybrid
architecture proposed in this work. For instance, a SLAM system for ground vehicles that
makes use of an omnidirectional camera or stereo camera as a principal sensor and which
uses a Unscented Kalman Filter for implementing the local SLAM process can be also
implemented based on the proposed hybrid architecture. In this sense, future work could
include development and experimentation with different visual-SLAM applications using
the proposed architecture. It could also include testing the performance of the monocular-
based SLAM system for UAVs presented in this work in an online context (not running in a
data set), and perhaps using the estimated state as the feedback signal of an autonomous
flight control system. Moreover, in future work, the path-tracking accuracy of the mobile
robot could be evaluated based on the information proposed by the onboard sensors as
in [51].
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