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Abstract—Tensor computations are important mathematical operations for applications that rely on multidimensional data. The
tensor—vector multiplication (TVM) is the most memory-bound tensor contraction in this class of operations. This paper proposes an
open-source TVM algorithm which is much simpler and efficient than previous approaches, making it suitable for integration in the most
popular BLAS libraries available today. Our algorithm has been written from scratch and features unit-stride memory accesses, cache
awareness, mode obliviousness, full vectorization and multi-threading as well as NUMA awareness for non-hierarchically stored dense
tensors. Numerical experiments are carried out on tensors up to order 10 and various compilers and hardware architectures equipped
with traditional DDR and high bandwidth memory (HBM). For large tensors the average performance of the TVM ranges between 62%
and 76% of the theoretical bandwidth for NUMA systems with DDR memory and remains independent of the contraction mode. On
NUMA systems with HBM the TVM exhibits some mode dependency but manages to reach performance figures close to peak values.
Finally, the higher-order power method is benchmarked with the proposed TVM kernel and delivers on average between 58% and 69%

of the theoretical bandwidth for large tensors.

Index Terms—Parallel algorithms, shared memory, tensor computations, high bandwidth memory, NUMA

1 INTRODUCTION

HE numerical application of multilinear algebra is
Tpresent in a wide variety of scientific domains such as
data mining and analysis [1], [2]. It is based on the notion of
tensors (or multidimensional arrays), their properties and
the operations defined on them. The tensor contraction is
a fundamental operation since it is ubiquitous in many
algorithms [3]. Examples of tensor contraction operations
include the tensor—tensor multiplication (TTM), the tensor—
matrix multiplication (TMM) and the tensor-vector multi-
plication (TVM). The TTM and TMM algorithms can be
generalized to BLAS level 3 functions while the TVM can
be classified as a BLAS level 2 kernel.

This paper focuses on the TVM algorithm applied to
dense tensors as well as its implementation within the
higher-order power method (HOPM) algorithm [4], which
relies upon a series of TVM operations. The TVM involves
a contraction over a unique mode of the tensor, hence
turning out to be the most memory-bound numerical kernel
among the three core tensor operations mentioned above.
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The TTM/TMM is analogous to the matrix-matrix multipli-
cation (MMM) and the TVM to the matrix-vector multipli-
cation (MVM). The MMM and MVM are widely known by
the function names gemm and gemv, respectively, where the
former is compute-bound and the latter is memory-bound.
For a TVM contraction over mode £k the arithmetic intensity
(Al) is 2n/(n + n/ni + ni,) FLOPs per item being n and
ny the total number of elements of the involved tensor and
vector, respectively. This results in an Al bounded between 1
and 2 corresponding to the most extreme cases n > n;, and
n = n}, respectively. For this reason, the throughput of a
TVM execution is often measured in terms of bandwidth
(e.g. GB/s). Another aspect worth considering in tensor
computations, although it also applies to matrix computa-
tions to a much lesser extent, is mode obliviousness. This
property guarantees that a tensor operation, e.g. a TVM,
yields roughly similar performance independently of the
contraction mode it is applied to.

It can be readily seen that both performance and mode
obliviousness are crucial for efficient tensor algorithms. In
the case of the TVM, previous studies focused on sequential
execution have demonstrated that even the most widely
extended “loop” and “unfold” TVM implementations are
mode-dependent and deliver poor performance overall [5].
This is due to how tensors are stored in system memory.
While matrices are commonly stored following a row-major
or column-major ordering, a tensor of rank d can be stored
as a multidimensional array using d! different combinations
although, in practice, only the first-order or last-order lay-
outs are considered.

Another important observation with regard to the TVM
efficiency is that, regardless of the tensor ordering, re-
searchers do express the TVM algorithm as a series of calls
to gemm [6] or gemv [7], [8] kernels over contiguous matrices
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that represent the tensor. In multi-threaded scenarios this
approach is prone to load imbalance as it may not be
possible to evenly distribute these matrices among all the
available threads [9]. This constitutes a potential source of
performance loss. The present study contributes to enhance
the TVM performance by:

e Designing from scratch an open-source algorithm
exclusive to the TVM that is different from previous
implementations based on external BLAS routines.

o Applying specific optimizations to this algorithm to
enable full vectorization, mode obliviousness, multi-
threading and NUMA awareness.

e Performing exhaustive benchmarks on several archi-
tectures using different compilers to compare its par-
allel performance against the theoretical bandwidth
values reported by the manufacturers.

The remainder of this paper is organized as follows.
Section 2 and 3 present the background and related work,
respectively. The proposed TVM algorithm is introduced
in Section 4 together with its integration into the HOPM
benchmark. Section 5 evaluates in detail the performance of
the TVM and HOPM algorithms and Section 6 presents the
main conclusions and future work.

2 BACKGROUND

This section has been made intentionally concise and the
reader is referred to Kolda & Bader [3] for a more detailed
description of tensors and their operations. In this work
scalars, vectors, matrices and tensors follow the notation
z, x, X and &, respectively. The d-order dense tensors
considered herein can be interpreted as d-dimensional ar-
rays which are stored in system memory according to
the last-order storage format layout given by the tuple
mq = (d—1,d—2,...,0). This decision is determined by the
C++ programming language: we adopt the row-major order
for storing multi-dimensional arrays and start counting or
indexing elements from zero.

Consider a tensor A € R"0X"1X-X"d-1 composed of
d modes, that is a d-order tensor, and a vector x € R™*
of ny elements with 0 < k& < d — 1. The k-mode tensor—
vector multiplication is defined as Y = A xj, x and results
in another tensor J) = R™0 X XMk—1X1IXNk41 X XNa—1 com-
posed of d — 1 modes and whose kth mode is of size unity.
Let n = [[%=) ni, | = n/nj, and A" (and its transpose
AmeXl) be the matricization of A which reinterprets that
tensor as an [ X nj matrix (and ny x ! matrix). A particularity
of the matricized form of a tensor is that its elements do not
need to be ordered consecutively (see for instance Fig. 1).
A TVM algorithm can be thought as one or more instances
of a matrix—vector multiplication on contiguous regions of
the matricized form of a tensor. Since tensors are stored
following a last-order layout, left-hand sided vector-matrix
multiplications (VMMs, Y = xT X A":X1) are necessary for
modes k < d—1 while a single matrix—vector multiplication
(MVM, Y = A x x) is required for the last contraction
mode k =d — 1.

We refer to getvm_loop and getvm_unfold to desig-
nate two common algorithms used to compute the TVM; see
Pawtowski et al. [5] for details. The main difference between

the two is that the former applies a VMM on consecutive
portions of the matricized tensor A™+*! while the latter
reorders (i.e. unfolds) the tensor in memory to guarantee
that all data is contiguous in system memory before carrying
out a single VMM over the entire matrix. However, such
unfolding yields an overhead over the looped algorithm and
hence we discard it in this study. From a high performance
computing perspective, a parallel implementation of the
loop TVM imposes two nested levels: (i) the outer level
corresponds to a loop over the aforementioned consecu-
tive parts of the matricized tensor and (ii) the inner level
which corresponds to the VMM algorithm itself. In order to
exploit nested parallelism, researchers employ OpenMP to
parallelize the outer loop and rely on parallel BLAS level 2
routines available in heavily optimized libraries [9]. Nested
parallelism helps to increase the overall performance of the
TVM loop algorithm but it also has caveats. For instance,
one must depend on two different parallel strategies due to
nesting making the algorithm prone to load balance issues.

3 RELATED WORK

The literature is populated with examples of TVM imple-
mentations that simply consist of interfaces to either BLAS
level 3 [10] or level 2 kernels [5], [11]. Such implemen-
tations largely benefit from libraries like Intel MKL [12],
LIBXSMM [13] and also BLIS [14] which offer heavily op-
timized BLAS kernels that are crucial for high performance.
As explained in the previous section, it is fairly common for
some TVM implementations to resort to tensor unfolding
operations with their subsequent overheads while others
employ a looped algorithm to operate on parts of the tensor
so that no unfolding is necessary. All things considered, the
aforementioned TVM algorithms have been mainly moti-
vated by performance gains and cache-oblivious behaviour.
Pawlowski et al. [5] were the first authors to assess mode
obliviousness for the TVM algorithm by storing tensors
following a Morton-order layout.

On the other hand, there has been extensive work put
into libraries that deal natively with tensors. For example,
TACO is a library for performing tensor algebra computa-
tions that automatically generates efficient code [15]. How-
ever, the TVM contraction defined therein sometimes can
lack performance by not reverting to optimized BLAS level
2 kernels within its generated codes [5]. More recent libraries
such as TBLIS [16] applies the BLIS philosophy to generate
efficient tensor algebraic reductions thus eliminating the
possible storage and performance overheads of resorting
to external BLAS routines. Similarly, the authors of the
framework GETT [6] propose a tensor-contraction genera-
tor to systematically reduce a tensor contraction to loops
around a highly tuned matrix-matrix multiplication kernel
(gemm) that delivers great single-threaded performance for
single and double precision computations. Motivated by
the fact that level-3 tensor contractions based on gemm do
not perform equally well for tensor-vector multiplications,
Bassoy [11] suggests a series of contraction algorithms that
either directly call gemv kernels or recursively apply gemv
on tensor slices multiple times. It is worth noting that such
algorithms depend on an external BLAS level 2 routine
provided by the OpenBLAS library.
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Fig. 1: Memory addresses following a last-order layout for
the matricized form A®*39 derived from the 1-mode TVM
applied to the third-order tensor A!3*5*3. The execution
pattern of getvm shown here arises from parallelizing the
entire TVM operation over columns (n) using three threads.

To the best of our knowledge there are no bibliographic
works proposing a TVM algorithm independent of third-
party BLAS libraries featuring mode obliviousness, multi-
threading and NUMA awareness for non-hierarchically or-
dered dense tensors. In this regard the present study not
only seeks to compare the TVM performance against the
theoretical bandwidth of different hardware architectures, it
can also be seen as a software tool to be used by compiler
designers to optimize their generated binaries.

4 ALGORITHM DESCRIPTION

We proceed by describing our algorithm on a single NUMA
node, extending it to multiple NUMA nodes and, finally,
integrating it into the HOPM benchmark.

4.1 Single- and multi-threaded implementations

Contrary to previous approaches, a native algorithm for the
k-mode TVM expresses the operation on subsets of both the
input and output tensors. This is analogous to applying the
BLAS level-2 routine gemv on portions of the input matrix
and output vector. Based on this premise we propose a
TVM native function getvm whose definition adopts the
following schematic form in C++ syntax:

template<class objT> void getvm(
intT layout, intT trans, intT m , intT n,
objT alpha , objT » a , intT lda ,

, objiT * x , intT incx,

objT % y0 ,

objT = y , intT

objT beta , incy) ;

Such a function shares the same list of arguments as
gemv, plus an additional term y0 which is a pointer to
the very first element of the output tensor ). The variable
a refers to the input tensor A and x corresponds to the
input vector x. The primitive data type intT represents an
integer of any size while obJjT can be either an integer or a
floating-point number of any given precision (for the sake of
briefness, only floating-point tensors are considered in this
work). This native definition brings us the opportunity to
build our own VMM and MVM kernels from scratch, i.e.
vecMat and matVec, in order to exploit novel optimization
techniques for further single-threaded performance.

To illustrate the proposed algorithm, consider the follow-
ing example of a 1-mode TVM on a third-order dense tensor
ALBX5X3 of doubles or 8-byte integers. Its matricized form
has 5 rows and 39 columns whose layout in system memory

is partially represented in Fig. 1. Recall that the tensor is
stored in a generalized row-major format and thus Fig. 1
shows a logical view of A under a 1-mode TVM. Assume
that the TVM is only to be applied to a subset of A; for
instance, it is executed over the first 13 columns of that
matrix. Figure 1 represents indeed that subset composed
of 5 x 13 elements. The corresponding portion of ), not
shown here for the sake of conciseness, contains the first
13 elements of that tensor. Regardless of the size of the
subset, each one of them is composed of up to three clearly
differentiated zones: (i) a left zone marked in Fig. 1 with a
pattern filled with packed circles, (ii) a certain number of
central zones represented with a checkerboard pattern and
(iii) a right zone marked with a wavy pattern.

Pointers y and y0 are employed to index the zones of
the tensor, which permits our single-threaded algorithm
getvm to traverse all of them, one by one and from left to
right, performing a vector-matrix multiplication in this case.
While doing so, our vecMat routine exploits vectorization
with the aid of OpenMP directives as well as unroll & jam
techniques. The black (e.g. 128-bit SIMD/SVE) and gray
(e.g. unroll=4) boxes represent the memory touched by
these two techniques on each zone during the first vector
iteration. An important optimization for the TVM native
algorithm arises from adding a second unroll to the central
zones (e.g. unrollz=3, light gray boxes). Should all the
elements touched along this third dimension remain within
L1 CPU cache, this technique economizes function calls
which directly translates into greater performance, espe-
cially for higher-order tensors and large contraction modes.
In this regard, the proposed function vecMatz can offer a
competitive advantage over the conventional gemv routine
for all internal modes 0 < k£ < d — 1.

For the first mode a single VMM is carried out via
vecMat and for the last mode a single MVM is executed
via matVec. The matrix-vector multiplication algorithm
shares similar vectorization and unroll & jam optimizations.
Furthermore, both algorithms benefit from C++ template
arguments to generate, at compile time, versioned functions
which deal with remainder loops issued from unrolling (as
seen in Fig. 1) thus mitigating any performance degradation
on these particular cases.

It is worth mentioning that our TVM library already
provides optimized getvm versions for both aligned and
unaligned memory accesses and the two most common us-
ages, thatis & = 1 and 8 = O or 8 = 1, while it also supports
the general expression ) := aA X, x+ Y which can access
the involved arrays with non-unit strides (incx, incy). At
this moment, the library only supports dense tensors stored
with last- or row-major layout (Layout=0) but extending
it to first- or column-major ordering should be straight-
forward. Lastly, changing the floating-point precision can
be simply done by redefining the primitive object £loatT
(e.g. via a preprocessor directive). The number of elements
that fit within the vector length is automatically adjusted
to guarantee fully vectorized code via OpenMP directives
and the same applies to the memory alignment. This open-
source TVM library (Version 1.0; Martinez-Ferrer [17]) is
released under the GPLv3 license.

The multi-threaded implementation of getvm is pretty
straightforward. Using the previous example as a reference,
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Code 1: Multi-threaded implementation of the native algo-
rithm getvm by means of OpenMP “parallel for” pragma
directives for the matrix—vector and vector-matrix multipli-
cation variants.

assert (layout == last—-order
if (trans

const intT bsM

izZero); // Ensure row-major layout:

= splitInterval (m, nbA, unroll);

#pragma omp parallel for firstprivate(x, a,
for(intT i = iZero; 1 < m; i += bsM) {
const intT bsMA = MIN(bsM, m - 1i);
getvm(layout , trans, bsMA, n ,
alpha, a + ixlda, lda , x, incx,
y, beta , v + 1 , incy);

y)

}
}

else if (trans == iOne) { // Vector-matrix (transposed vector)
const intT bsN = splitInterval2(n, nbA, simdVMsize/objTsize),
zsize = mxlda;
#pragma omp parallel for firstprivate(x, a, y)
for (intT j = iZero; j < n; j += bsN) {
const intT bsNA = MIN(bsN, n - j);
getvm(layout , trans, m, bsNA,
alpha, a + zsizex(j/lda) + j % lda, lda , x, incx,
y, beta , v + 3 , incy);

the matricized form of the input tensor A5*39 can be viewed
as a collection of three subsets, each one composed of 13
columns. One can assign a unique thread to each portion
of A in order to carry out the three TVM executions simul-
taneously since they constitute an embarrassingly parallel
operation. Code 1 shows the multi-threaded implementa-
tion of the getvm algorithm via the OpenMP “parallel for”
clause for both the matrix-vector (trans=0) and vector—
matrix (t rans=1) multiplication variants. The MVM case is
covered in lines 8-10 and is similar to a gemv kernel with the
extra argument y at the beginning of line 10. For the VMM
operation one needs to set the appropriate offset to the input
tensor a (line 21). The functions splitInterval attempt
to divide the total number of rows (m) or columns (n) by the
number of available threads (nb2) so that the result is a mul-
tiple of the unroll factor or the vector length, respectively,
in order to maximize the algorithm performance. Critically,
the multi-threaded implementation of the native algorithm
presents a flat loop structure in contrast to the TVM loop
algorithm which relies on 2-level nested parallelism [5].
This ultimately renders get vm easier to implement, easier to
execute in parallel and more robust vis-a-vis load imbalance.

4.2 NUMA awareness support for TVM

The algorithm described in Code 1 is executed in parallel
in a shared memory system via a single OpenMP parallel
for loop. When dealing with NUMA architectures one can
expect performance penalties if inter-NUMA communica-
tion takes place during the TVM operation [9]. The amount
of communication is closely related to (i) the contraction
mode of the TVM and (ii) how the system allocates the
arrays a and y given by their first-touch policy, taken into
account that memory is allocated on the node beloging
to the thread that first accesses a memory page [18]. The
first contraction mode is especially critical because, if the
array a is uniformily allocated across all NUMA nodes,

1

iZero) { // Matrix-vector (non-transposed vector)2

Ny
0] 1]10]11]20[21]30]31]40][41]50]51]60 \\ \\ 121
2|3 |2|1|2 | n|2]n|e|s|2]58|a) |||
4|5 |14|15 |24 253435 |44 45|54 |55 | ea | [ 125]|3
6 |7 11617126 (27|36 |37 |46 |47 |56 |57 | 66 H 127
8|9 181928 ] 29|38 |39 |48 40|58 |59 68|l | [129
@ L

Ida,;

21 Fig. 2: Memory addresses (last-order layout) for the matri-
22 cized form of a third-order dense tensor A13*5%3 disjointed

23
24 along its last mode. Subtensors

A13><5><2 ( A13><5><1
1

top) and
(down) are allocated on NUMA nodes 0 and 1, respectively.
This particular matricized form corresponds to the 1-mode
TVMs U}:o Vi= U;:() A; X1 x executed by getvmd.

applying getvm on different partitions of a would yield
a significant amount of inte-NUMA communication and
therefore the algorithm will not scale [9]. For the remaining
contraction modes, communication reduces so dramatically
that the impact on performance is negligible. In this study
we propose two different strategies to render our TVM
algorithm NUMA-aware.

The first method is the most straightforward, it remains
transparent or implicit to the user and also yields better
scalability results. By means of the function mmap we align
all buffers to the system page size which is typically 2 MiB if
transparent huge pages (THP) are active. Next, we carry out
a first-touch policy for the actual allocation of buffers which
modestly consists of initializing them to zero by following
the exact same memory access pattern involved in the actual
TVM operation (see Fig. 1). This first touch is done in par-
allel using the same hardware resources that are exploited
later on by the k-mode TVM thus removing intra-NUMA
communication on a for a given value of k. This method
does not modify the original memory layout of the tensor
and is supported by the multi-threaded implementation of
getvm shown in Code 1.

The second approach explicitly splits or disjoints the
original tensor across different NUMA nodes. This modi-
fies the original memory layout in order to carry out the
computation in parallel without NUMA interference and is
partially based on earlier work [9]. Its implementation in
a global address space is far more complex than the first
approach. What is more, we only consider one-dimensional
splitting: that is, tensors are disjointed along one of their
modes. Depending on the contraction mode, tensors are
disjointed on their last mode for k¥ < d — 1 and on their
first mode for £k = d — 1. To better illustrate this, consider
disjointing the input tensor from the previous 1-mode TVM
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(Section 4.1) across two NUMA nodes. Such splitting yields
two subtensors, i.e. A3X5%3 = A33*5%2J AP *L whose
matricized form in system memory is represented in Fig. 2.
To achieve this, the first 130 elements of buffer a need to
be first-touched by threads belonging to the first NUMA
node while the remaining elements are touched by threads
of the other node. The same decomposition is carried out on
buffer y. Note also that there is only one single buffer per
tensor independently of the number of NUMA partitions.
Translating between such an SPMD-like disjointed view and
a standard last-order layout is by no means trivial. For
example, the third column of A in Fig. 1 (addresses 2, 5, 8,
11, 14) corresponds to the first column of A; located at node
1 in Fig. 2 (addresses 130, 131, 132, 133, 134). Furthermore,
the amount of load imbalance this method can incur in
our experience often results in subpar performance with
respect to the first NUMA-aware strategy presented. Lastly,
we note that both strategies presented achieve the asymp-
totically optimal data movement bound for a sequence of
(0,1,...,d—1)-mode TVMs derived by Pawtowksi et al. [9].

The multi-threaded function getvmd adds support for
disjointed tensors. It accepts the same arguments as getvm
although variables m, n and 1da are no longer primitive
objects; instead, they are pointers to lists of integers with a
size equal to the number of NUMA partitions. This multi-
threaded function relies on two-level nested parallelism in
which the first level corresponds to an outer loop along
NUMA nodes. Here we rely on OpenMP to specify the
correct affinity in order to ensure that each iteration of
the loop is assigned to a distinct node. At the same time,
each iteration of this outer loop contains a call to the
regular getvm function which itself utilizes all the hardware
resources available on that particular NUMA partition.

This section concludes with a brief mention to the role of
the input vector x in achieving NUMA awareness. In prac-
tice, this variable is orders of magnitude smaller than the
tensors involved in the TVM operation and, for this reason,
its influence on performance is negligible. In this work, the
array x is uniformily distributed among all nodes and thus
it is subject to inter-NUMA communication. Nevertheless,
the communication of buffer x remains minimal, due in part
to its efficient reuse in CPU cache, which prevents us from
measuring any performance penalty.

4.3 TVM integration in the HOPM benchmark

For the sake of completeness, this work also contemplates
the higher-order power method (HOPM) [4], which is em-
ployed to find the best rank one approximation of a given
tensor. Henceforth it is utilized as a benchmark since, given
a tensor A of rank d, the algorithm performs d(d — 1)
TVM operations across all tensor modes of A. Therefore,
the HOPM can be seen as an excellent tool to measure the
overall performance of new TVM implementations.

Our sequential implementation requires up to two ad-
ditional buffers to store intermediate tensors resulting from
TVM operations. It also contains two in-house optimized
functions dot and axpby that normalize the final output
vectors. Since the first-touch based NUMA-aware algorithm
outperforms the one using disjointed tensors, we achieve a
NUMA-aware HOPM by the former approach.

TABLE 1: Number of 8-byte floating-point elements and
memory footprint (within brackets) for the small (L3) and
large (DDR) hypersquare tensors used in this work.

Order L3 tensor (MB) DDR tensor (GB)
2 12762 (13.0) 300012 (7.2)
3 1163 (12.5) 9893 (7.7)
4 344 (10.7) 1574 (7.5)
5 16° (8.4) 625 (7.3)
6 106 (8.0 316 (7.1)
7 77 (6.6) 197 (7.2)
8 58 (3.1) 138 (6.5)
9 49 (2.1) 99 (3.1)
10 410 (8.4) 710 (2.3)

If there are no memory constraints, one can allocate a
third buffer to store a copy of the input tensor A with a
different touch policy in relation to NUMA locality. The
original tensor stored in buffer a is first-touched following
the (d — 1)-mode TVM memory access pattern and is later
on employed on the HOPM for the 1-mode TVM over A. At
the same time, another copy of the original tensor is stored
in buffer aIT, which has been previously first touched
according to the 0-mode TVM memory access pattern, and
is employed in every 0-mode TVM over A taking place
during the HOPM operation. The two additional buffers
used to store intermediate tensors do follow the same layout
as the original buffer a since it yields minimal inter-NUMA
communication for all modes except the first one, in which
case the buffer aIT is used.

This HOPM implementation based on three temporary
buffers maximizes performance at the expense of doubling
the memory requirements for storing the input tensor A. In
NUMA systems with limited memory resources, as it can be
the case for systems equipped with small high-bandwidth
memories, it might be worth considering one single buffer
for the input tensor with an inverse first-touch policy. In
such scenarios, any performance degradation due to NUMA
effects will only be bounded to the 1-mode TVM over A
which occurs every d(d — 1) TVM operations, that is, once
per HOPM external iteration.

5 PERFORMANCE EVALUATION

This section evaluates the performance of the TVM and
HOPM native algorithms proposed in this work. From a
hardware point of view, several architectures available at
the Barcelona Supercomputing Center (BSC) are taken into
account: Intel Xeon Platinum 8160, AMD EPYC 7742, Intel
Xeon Phi 7230 (KNL) and Fujitsu ARM A64FX CPUs. From
a software perspective, it is equally interesting to compare
different compilers since the performance of the algorithms
will ultimately depend on the generated binaries. To this
end Intel, Clang and GCC compilers are considered.

Table 1 shows the tensors used in this work. These are
hypersquare, dense tensors filled with 8-byte floating-point
numbers, which is typical of this kind of studies [5], [9].
Taking the Intel Xeon Platinum 8160 CPU as a reference,
two families of small and large tensors are considered. On
the one hand, small tensors are selected so that all the
associated working buffers fit within the 33 MiB of L3 cache
memory. On the other hand, large tensors are constricted
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to occupy less than 8 GB so that all buffers used during
a TVM or HOPM operation can be comfortably allocated
in the 16 GB of high bandwidth memory (HBM) installed
in the KNL. The length or size of each tensor dimension
has been intentionally chosen to prevent it from being a
multiple of the vector length (e.g. 8 when using doubles and
512-bit SIMD/SVE). However, the dimension size of 16 cor-
responding to the fifth-order L3 tensor is rather motivated
by its memory footprint, which decreases monotonically
with the tensor order. The tenth-order L3 tensor does not
follow this rule because the minimum size per dimension
is kept at 4. This particular election of dimension sizes
presented in Table 1 is intended to maximize unaligned
memory accesses. Similarly, the fact that large tensors are
relatively small to fit in HBM, compared to other studies
dealing with tensors of hundreds of gigabytes [9], means
that the performance figures presented in this work corre-
spond again to unfavourable scenarios. In this respect, much
larger tensors with SIMD/SVE-friendly dimension sizes will
certainly yield better performance figures.

With regard to compilation flags and taking the GCC
compiler as a reference, -march=native is used to en-
able CPU specific optimizations, -Ofast combined with
-mprefer-vector-width=512 ensure that full 512-bit
vector instructions are generated (except in the case of
AMD, which remains a 256-bit vector architecture) and
—~fopenmp enables OpenMP pragma directives used for
both vectorization and parallelization. Other code ad-
justments are made possible via preprocessor directives:
L1 cache memory (e.g. ~-DL1C=32768, except for ARM
which is 64 KiB), transparent huge pages memory (e.g.
-DTHP=2097152), unroll factor (fixed at -DUNROLL=8 at
all times) and default vector length (-DSIMD=512, except
for AMD which reduces to 256). Each benchmark runs a
particular TVM or HOPM kernel during 5 seconds, which is
enough to generate multiple kernels calls (between 10% and
10° instances) and extract statistical figures.

5.1 NUMA single-node experiments
5.1.1 L3 and DDR bandwidths

The first experiment conducted in this section is the pop-
ular STREAM benchmark. We utilize McCalpin’s source
code [19] and an in-house implementation written in C++
following the same optimization techniques included in
our TVM algorithm. Contrarily to McCalpin’s, the size of
the buffers is not known at compile time in the in-house
implementation. Both benchmarks are executed using all the
24 cores of the 8160 CPU and, for the sake of conciseness,
only the triad function z := x + ky is considered.

Figure 3 reports on the average memory bandwidth for
increasing values of the touched memory (the sum of buffers
z, y and z) with various compilers. The L3- and DDR-bound
scenarios are of great importance for the benchmarks that
will be later shown. As expected, the peak bandwidth value
above 1000 GB/s is reached at about half the L3 cache ca-
pacity. For very large buffers, all curves except one converge
to an average bandwidth of about 80 GB/s. Indeed, the
Intel compiler takes advantage of knowing the buffer size
at compile time in McCalpin’s static code and hence uses
streaming stores on the output buffer z. These stores bypass

1000
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In-house (Inétel) — -
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Fig. 3: STREAM triad function average bandwidth corre-
sponding to an Intel Xeon Platinum 8160 CPU and various
compilers. Black and gray colors refer to our in-house and
McCalpin’s [19] benchmark results, respectively. Vertical
dotted lines correspond to L1 (32 KiB), L2 (1 MiB) and L3
(33 MiB) cache memory sizes of that CPU.

the CPU cache in order to write directly into system memory
achieving 104.5 GB/s of bandwidth, a value that is closer to
the theoretical 128 GB/s that the manufacturer reports for a
single socket of MareNostrum 4 with two Intel CPUs.

We discuss other aspects of Fig. 3. First, the Intel com-
piler seems victim of its own success since it causes a
premature performance drop for L3-bound buffers due to an
early use of streaming stores. Second, GCC falls behind the
other two compilers in terms of performance for L3-bound
scenarios and smaller, especially when the buffer size is
unknown at compile time. This lead us to believe that either
the binaries generated by GCC or its OpenMP runtime are
definitively not optimal (Intel and Clang compilers both use
the same OpenMP runtime KMP while GCC has its own
implementation). As a result, when the memory bottleneck
moves from system RAM to CPU cache, it manifests in the
form of overhead.

5.1.2 Native TVM algorithm performance

Table 2 shows the average bandwidth for the L3 and DDR
tensors of Table 1. For a given tensor of rank d, this is in fact
the average TVM performance over all contraction modes
k € [0,1,...,d — 1]. The standard deviation over these
modes is also specified in percentage terms. Best results
correspond to greater average performance values (bold
characters) and smaller deviation rates (in italics). Finally,
the arithmetic mean of these two quantities over all tensors
is reported on the last row in order to give a better idea of
the average TVM performance for different compilers.

In an L3-bound scenario, Table 2(a), Intel reports the best
results followed closely by Clang which is about 3% slower
when looking at the arithmetic mean. At the same time,
GCC is 30% slower than Intel. This performance regression
affecting GCC coincides with the observations made on
Fig. 3. Taking Intel results as a reference (although the
same applies to the other compilers), the average TVM
performance across modes varies significantly with the
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TABLE 2: Average bandwidth (GB/s) and standard devia-
tion percentage (within brackets) across all TVM contraction
modes over the (a) small and (b) large tensors of Table 1.
The arithmetic mean over all tensors (¥) is provided at the
end for completeness. Bold and italic figures indicate best
results in terms of performance and standard deviation,
respectively. Results from different compilers on the Intel

Xeon Platinum 8160 CPU.

(a) L3 tensor

Order Intel Clang GCC
2 787.6 (45.8) 721.6 (44.3) 675.9 (19.9)
3 978.5 (8.5) 926.1 (7.4) 766.2 (3.8)
4 869.3 (22.3) 8455 (27.1)  667.8 (19.9)
5 937.4 (18.3)  960.5 (20.0) 683.8 (9.6)
6 815.4 (41.5) 822.7 (44.8) 5652 (34.2)
7 749.9 (22.9) 696.2 (35.0) 504.4 (29.7)
8 585.5 (22.3) 576.3(32.1) 338.8 (27.0)
9 556.7 (18.9) 543.8 (30.0) 286.4 (21.5)
10 1030.6 (28.3)  973.5(38.6) 676.6 (35.7)
8123 (254) 785.1(31.0) 573.9 (22.4)

(b) DDR tensor

Order Intel Clang GCC
2 1074 (0.3) 1081 (0.3) 106.6 (1.9)
3 108.6 (3.1) 108.8 (2.9) 106.1 (5.4)
4 102.8(11.3) 1026 (11.6) 1026 (8.9)
5 99.4 (13.3) 99.4 (13.4) 98.7 (13.0)
6 985(10.9)  98.6(11.0)  98.7 (8.5)
7 93.1 (10.8) 95.8 (11.6) 95.7 (11.6)
8 942 (83) 936 (77) 938 (7.9)
9 91.5 (9.8) 91.3 (9.7) 91.1 (9.7)
10 95.0 (1.9) 944 (1.8) 948 (2.0)
b 98.9 (7.8) 99.2 (7.8) 987 (7.7)

tensor order, which is expected of such tiny tensors. The
average bandwidth per tensor is 812.3 GB/s and, although
it may be deemed small in comparison to the peak value
of 1165.4 GB/s measured in the STREAM benchmark with
the same compiler, the tensors used here are indeed many
times smaller than the L3 cache. Under these circumstances
the parallel performance decreases with the touched mem-
ory, see Fig. 3, which ultimately explains that difference
in performance. Lastly, the standard deviation rates reflect
strong variations (of up to 45.8%) across modes, which is
also expected of such small tensors. It is worth noting that
it is mandatory to limit the vector length to 256 bits on
this processor in order to get competitive L3 results over
the last contraction mode k = d — 1. This is done via the
preprocessor directive ~-DSIMDMV=256, which only adjusts
the vector length of the kernels inside the function matvec.

When considering DDR-bound scenarios, Table 2(b), the
results remain compiler agnostic. It can be readily seen that
the performance decreases slightly with the tensor order
and, considering GCC results in this case, the average band-
width per tensor is 98.7 GB/s and fairly close to the peak
bandwidth of 104.5 GB/s measured by STREAM bypassing
CPU cache writes. The maximum standard deviation is only
13.4% with the average below 8%. These deviations are
within the bounds reported by Pawlowski et al. [5] and
therefore we can assert that this TVM algorithm is mode

(a) TVM loop algorithm (getvm_loop)
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Fig. 4: k-mode TVM average bandwidth on the Intel Xeon
Platinum 8160 CPU with increasing core count for (a) the
getvm_loop algorithm based on Intel MKL gemv kernels
and (b) the native algorithm getvm. Both binaries were
generated by the Intel compiler. Results correspond to the
hypersquare tensor composed of 7' doubles of Table 1.

oblivious for DDR-bound dense tensors.

The TVM native algorithm is now compared against an
in-house TVM loop algorithm (getvm_loop) that relies on
the Intel MKL optimized kernel gemv. In order to maximize
its parallel performance, this looped implementation com-
bines the parallelism already integrated in the MKL function
with an OpenMP “parallel for” directive at the outer loop
over contiguous matrices. With the aim of keeping this part
concise, only the arithmetic mean figures of the looped
algorithm are reported here: 576.9 GB/s (43.2%) and 95.4
GB/s (17.4%) for the L3 and DDR tensors, respectively,
using the same notation of Table 2. From these figures it
can be inferred that the native algorithm is between 1.41x
and 1.03x faster than its looped counterpart, on average,
and also reduces the standard deviation rates by about half.
A closer inspection at each contraction mode, not shown
here for the sake of conciseness, reveals that the looped
implementation remains mode-dependent in all scenarios
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TABLE 3: HOPM average bandwidth (GB/s) for the (a)
small and (b) large tensors of Table 1. Same legend as in
Table 2. Results from different compilers on an Intel Xeon
Platinum 8160 CPU.

(a) L3 tensor (b) DDR tensor

O. Intel Clang GCC O. Intel Clang GCC
2 4825 4891 4451 2 1069 1068 1057
3 5904 5813 4491 3 1014 1024 99.0
4 5148 5375 396.4 4 882 87.4 93.0
5 4731 4782 2935 5 834 83.5 83.7
6 4141 417.0 2759 6 847 84.8 88.8
7 3947 4069 2619 7 822 82.2 82.4
8 2463 2564 1517 8 849 84.8 84.7
9 1689 1715 92.5 9 807 80.8 80.7

10 3240 327.6 2247 10 923 91.9 92.3

¥ 4010 4073 2879 Y 894 894 900

and quickly begins losing performance with increasing ten-
sor orders and contraction modes. This is clearly depicted
in Fig. 4 for the tenth-order tensor with 7'* elements of
Table 1. The axis of abscissae represents the core count
to evidence any scalability issues present at each k-mode
TVM. The results speak from themselves and demonstrate
once more the mode-obliviousness properties of the native
algorithm when applied to dense tensors stored following a
non-hierarchical, last-order layout.

5.1.3 HOPM performance

The last benchmark to be run is the higher-order power
method, which is another candidate for measuring the ulti-
mate performance of a given TVM implementation. Table 3
shows the results corresponding to the HOPM with calls to
getvm for the small (L3) and large (DDR) tensors executed
on the Intel Platinum CPU. The reported bandwidths are
smaller than those of Table 2 which is consistent with the
HOPM benchmark performing consecutive TVM operations
on successively smaller input tensors. As the touched mem-
ory involved in the HOPM decreases, so does its parallel
performance. When that memory is smaller than the L1
cache size (32 KiB for this CPU), the corresponding kernels
getvm, dot or axpby are executed sequentially for best
throughput. Comparing the arithmetic mean results against
those of Table 2, the HOPM bandwidth is halved with
respect to the TVM bandwidth for L3 tensors while it is only
reduced by less than 10% when considering large tensors. In
the latter case, the benchmark is bounded by the system
memory bandwidth, which is where all three compilers
deliver similar performance. The HOPM standard deviation
across DDR tensors stays below 10% on average, rendering
the HOPM benchmark based on our native TVM algorithm
oblivious to the tensor order.

To complete this section the HOPM benchmark based on
calls to the TVM loop algorithm with Intel MKL optimized
kernels (gemv, dot and axpby) is studied. The final results
obtained by arithmetic mean are 166.9 GB/s and 68.1 GB/s
for the small and large tensors, respectively. These figures
clearly demonstrate the superiority of the native algorithm
when integrated in the HOPM, making this benchmark
between 2.4x and 1.31x faster than its looped counterpart.
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Fig. 5: Average bandwidth (GB/s) and standard deviation
(error bars) across all TVM contraction modes over the large
tensors of Table 1 provided by the getvm and getvmd
algorithms. The arithmetic mean (¥) is also provided at the
end for completeness. Results from different compilers on a
two-socket system with Intel Xeon Platinum 8160 CPUs.

5.2 NUMA multi-node experiments
5.2.1

The first NUMA experiments are carried out on a full
compute node of MareNostrum 4 which consists of a two-
socket system equipped with Intel Xeon 8160 CPUs with a
theoretical bandwidth of 256 GB/s. However, McCalpin’s
STREAM triad function reports an average bandwidth of
155.5 GB/s and 205.6 GB/s when using the GCC and Intel
compilers, respectively. This represents roughly 60% and
80% of the theoretical peak value and demonstrates again
how the Intel binary benefits from using streaming stores in
this particular benchmark.

Figure 5 reports on the TVM average bandwidth em-
ploying the two NUMA-aware strategies proposed in Sec-
tion 4.2. Henceforth only the large tensors of Table 1 will be
considered. By looking at the results corresponding to the
TVM disjointed algorithm getvmd, it can be readily seen
that GCC lacks support for OpenMP parallel nesting (two
levels are required) at least up to version 10.1.0. Further-
more, this explicit NUMA-aware implementation somehow
experiences performance regression on certain tensors. For
instance, the measured bandwidth of the seventh-order
tensor is barely better than that of the single-socket con-
figuration, see Table 2(b). The same applies, but to a lesser
extent, to the eighth- and tenth-order tensors.

On the other hand, Fig. 5 also reports on the TVM
performance of the implicit NUMA-aware implementation
provided by getvm. Since parallel nesting is not longer
required, GCC is able to fully compete with Intel and Clang
as evidenced by the mean bandwidth values. Indeed, the
three compilers deliver once again similar performance. For
lower-order tensors the measured bandwidths are slightly
larger than those reported by STREAM. What is more, the
results also indicate that the standard deviation remains
invariant of the number of NUMA nodes and stays, on
average, below 8% while the speedup reaches 1.99x.
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Fig. 6: HOPM average bandwidth (GB/s) for the large ten-
sors of Table 1. The arithmetic mean () is also provided at
the end for completeness. Results from different compilers
on one- and two-socket systems equipped with Intel Xeon
Platinum 8160 CPUs.

All things considered, getvm is 7% faster than getvmd
and manages to attain more than 76% of the theoretical
bandwidth when considering the arithmetic mean over
all tensors. The implicit NUMA-aware implementation of
getvm, which is fully supported by the GCC OpenMP
runtime, is faster and much simpler than its disjointed
counterpart. Hence, from now on, we study only the implicit
NUMA-aware getvm version.

Figure 6 reports on the HOPM average bandwidth based
on calls to getvm for this two-socket system. The three
compilers are tied and the arithmetic mean figures reflect
an overall speedup of 1.9x over the single-socket results.
Although the HOPM bandwidth results remain competitive,
these figures are on average about 10% inferior to those
reported by the TVM algorithm; indeed, the HOPM bench-
mark attains more than 66% of the theoretical bandwidth
compared to the 76% of the TVM. This is again attributed
to the getvm, dot or axpby functions whose memory
footprint is smaller than the L1 cache and hence are executed
sequentially within the HOPM. Although this results in
overall best performance, it does not necessarily yield best
NUMA scalability and therefore we cannot longer claim that
the HOPM performance for more than one NUMA node is
oblivious to the tensor order.

5.2.2 Single-socket systems

The AMD Epyc 7742, Intel Xeon Phi 7230 (KNL) and Fujitsu
ARM A64FX CPUs are now tested. The first one is made
of chiplets and uses conventional DDR while the other
two benefit from HBM. These three CPU architectures are
composed of 4 NUMA nodes and therefore it is extremely
important to setup their firmware in such a way that all the
nodes are available to the programmer in order to minimize
inter-NUMA communication as much as possible.

In terms of compilers, if one considers performance
scenarios limited by the system memory (DDR or HBM),
as it is the case of this section, then GCC delivers the best

TABLE 4: Average system memory bandwidth, as measured
by McCalpin’s STREAM triad function [19], and theoreti-
cal bandwidth for an increasing number of NUMA nodes on
various hardware architectures: AMD Epyc 7742, Intel Xeon
Phi 7230 (KNL) and ARM AG64FX. The smaller figures re-
ported by STREAM were obtained via GCC binaries which
do not bypass CPU cache writes. Units are GB/s.

Platform 1-NUMA 2-NUMA 4-NUMA
AMD 27.7/ 51.2 55.2/1024 1102/ 204.8
KNL 84.4/115.2 168.1/230.4 331.7/ 460.8
ARM 153.7/256.0  306.7/512.0  609.8/1024.0

results on the ARM architecture while being just as com-
petitive as other compilers (vendor or Clang) on the other
three architectures. For this reason, we employ this free and
open-source compiler herein to bring the best comparison
between the four platforms. GCC version 10.1.0 is available
for both the AMD Epyc and Intel KNL CPUs (as well as the
Intel Platinum CPU). For the ARM platform, we utilize an
experimental beta version of GCC compatible with SVE and
based on the 11.0.0 beta release.

Table 4 shows the average system memory bandwidth
measured via McCalpins STREAM benchmark compiled
with GCC as well as the theoretical bandwidth according
to the hardware manufacturer for the three platforms. Dif-
ferent values are presented depending on the number of
NUMA partitions. Considering the last case with 4 nodes,
the measurements represent roughly 53%, 72% and 59%
of the theoretical bandwidth of the AMD, KNL and ARM
platforms, respectively. This is because the corresponding
GCC binaries do not use streaming stores. As it was the
case for the Intel Platinum CPU, one should expect TVM
and HOPM performance figures ranging from the values
measured via STREAM and the theoretical ones reported on
Table 4.

Table 5 summarizes the average parallel performance
of the TVM native algorithm for different architectures
and NUMA partitions. Starting with the AMD platform,
Table 5(a), it can be noted that the performance scales pretty
well with the number of nodes. The accumulated stan-
dard deviation percentages are similar to those previously
reported on the Intel Platinum CPU which also utilizes
conventional DDR. Looking at the 4-NUMA results, the
average bandwidth per tensor is 136.2 GB/s, which is above
the 110.2 GB/s reported by STREAM. The TVM algorithm
reaches, on average, 66% of the theoretical bandwidth on
the AMD platform. This is about 10% less than what was
achieved on the previous two-socket Intel system with
monolithic CPUs.

The effects of using fast RAM —HBM in the case of
the KNL and HBM2 for the ARM CPU— are shown on
Table 5(b)-(c). For example, it can be readily seen that
the standard deviation rates obtained by arithmetic mean
increase by almost a factor of two compared to the same val-
ues reported on the previous two systems with conventional
DDR. A closer inspection reveals that mode obliviousness
on higher-order tensors cannot longer be considered for the
KNL. This is even worse for the ARM architecture since the
0-mode TVM clearly indicates that there is a major perfor-
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TABLE 5: Average bandwidth (GB/s) and standard devia-
tion percentage (within brackets) across all TVM contraction
modes over the large tensors of Table 1. Same legend as
in Table 2. Results provided by the GCC compiler for an
increasing number of NUMA nodes on (a) AMD Epyc 7742,
(b) Intel Xeon Phi 7230 (KNL) and (c) ARM A64FX CPUs.

(a) AMD
Order 1-NUMA 2-NUMA 4-NUMA
2 382 (13) 753 (2.6) 1445 (5.5)
3 36.4(10.0) 75.8 (1.8) 1515 (1.4)
4 365 (9.0) 728 (89) 1443 (82)
5 339(127) 67.8(12.6) 1347 (12.1)
6 347 (83) 693 (83) 1377 (7.8)
7 329(11.0) 657(109) 130.7 (10.7)
8 328 (7.7) 656 (77) 1301 (7.3)
9 31.7 (9.0) 633 (9.0) 1245 (8.9)
10 326 (17) 650 (16) 127.8 (1.5)
T 344 (79) 690 (7.0) 1362 (7.0)
(b) KNL
Order 1-NUMA 2-NUMA 4-NUMA
2 911 (33) 1797 (5.0) 329.2 (14.9)
3 938 (2.3) 184.1 (3.8) 3552 (5.5)
4 870 (67) 1704 (47) 3345 (4.1)
5 81.3(15.4) 155.5(12.3) 2795 (9.3)
6 839(214) 159.9(19.6) 289.4 (20.0)
7 842(204) 158.1(184) 2789 (15.0)
8  86.0(186) 161.7(163) 2756 (21.3)
9 86.8 (23.1) 154.8 (18.7)  303.7 (20.0)
10 820(23.9) 162.6(24.3) 317.0 (24.5)
x 86.2 (15.0) 165.2(13.7)  307.0 (14.9)
(c) ARM
Order 1-NUMA 2-NUMA 4-NUMA
2 1824(274) 3447 (37.1) 616.0 (55.6)
3 171.0 (13.7) 334.7 (16.3)  655.8 (18.6)
4 146.4 (10.8)  291.2 (10.3) 5779 (9.8)
5 1544 (14.0) 3082 (14.0) 612.8 (13.8)
6 161.3 (10.1) 3205 (9.7) 635.1 (9.3)
7 173.1 (10.6) 3455 (10.6) 688.0 (10.4)
8  169.5(12.6) 3383 (12.6) 6744 (12.6)
9 151.6 (19.8)  302.6 (19.7)  603.9 (19.3)
10 168.1(18.6) 3358 (18.6) 672.2(17.9)
x 164.2 (15.3) 324.6 (16.6) 637.3 (18.6)

mance gap of up to 55.6% between the VMM and MVM
kernels. We believe that this may be due to the binaries
generated by the experimental version of GCC installed in
this platform. On the other hand, the NUMA scalability
remains pretty good, especially on ARM platform. The KNL
delivers an average bandwidth per tensor of 307 GB/s, that
is about 66% of the theoretical value and slightly below the
one reported by STREAM. On ARM this value is 637.3 GB/s,
just above the STREAM measurement, and represents 62%
of the theoretical bandwidth. All things considered, these
three architectures exhibit similar performance figures in
relative terms and remain below the average value reported
on the previous two-socket Intel platform (see Fig. 7(a)). This
is perhaps an indication that more sophisticated hardware
architectures, equipped or not with high bandwidth mem-
ory, become more challenging to fully exploit. In this re-

TABLE 6: HOPM average bandwidth (GB/s) for the large
tensors of Table 1. Same legend as in Table 2. Results
provided by the GCC compiler for an increasing number
of NUMA nodes on (a) AMD Epyc 7742, (b) Intel Xeon Phi
7230 (KNL) and (c) ARM A64FX CPUs.

(a) AMD (b) KNL
O. 1N. 2N. 4N. O. 1N. 2-N. 4N.
2 382 753 144.1 2 739 1256 3235
3 341 751 1479 3 697 1125 3498
4 331 660 1307 4 688 1112 3396
5 294 584 1157 5 657 1092 326.1
6 313 619 1219 6 791 1166 3328
7 291 571 1120 7 741 1121 2547
8 299 578 1094 8 822 1324 3177
9 282 546 1023 9 971 1606 293.7
10 323 620 111.0 10 1108 1802 324.0
Y 317 631 1217 b 80.2 1289 318.0
(c) ARM
Order 1-NUMA 2-NUMA 4-NUMA

2 151.1 320.6 515.8

3 128.0 2934 570.0

4 127.0 311.9 615.0

5 135.1 336.4 657.9

6 135.7 334.5 637.5

7 134.1 334.6 631.3

8 148.9 340.6 628.5

9 165.5 313.2 544.0

10 181.4 341.8 563.6

T 145.2 325.2 595.9

gard, compilation parameters such as the unroll factor have
remained unchanged for all cases and hence no additional
efforts have been made to fine-tune the compilation for a
particular architecture.

Finally, Table 6 summarizes the average bandwidth
achieved by the HOPM native algorithm for different ar-
chitectures and NUMA partitions. One may expect that the
HOPM performance would always stay below the TVM per-
formance but, surprisingly, this is not the case for the KNL
using 4 NUMA nodes and the ARM CPU with 2 nodes. The
arithmetic mean figures corresponding to the 4-NUMA case
indicate that the HOPM reaches, on average, 59%, 69% and
58% of the theoretical bandwidth on the AMD, KNL and
ARM processors, respectively. In relative terms, the KNL
performs slightly better than the two-socket Intel platform.
For the AMD and ARM architectures, the approximate 10%
performance drop-off observed in the TVM algorithm is
carried forward in the HOPM benchmark.

The results presented in this section have demonstrated
the performance improvements brought by the TVM native
algorithm in various scenarios. All the mathematical oper-
ations have been carried out using double precision arith-
metic over the dense tensors described in Table 1. Figure 7
presents the average performance of the TVM and HOPM
for the same tensors filled with single precision floating-
point numbers when using all the NUMA nodes available
on the four architectures considered in this work. Note that
since the number of elements per tensor does not change,
their memory footprint is reduced by half. In order to
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Fig. 7: Single and double precision average performance (relative to the theoretical bandwidth) and standard deviation
(error bars) across all TVM contraction modes for the large tensors of Table 1 provided by the (a) TVM algorithm and (b)
HOPM benchmark. The arithmetic mean over all tensors (X) and the STREAM performance figures are also provided at the
end for completeness. Results correspond to the four architectures considered in this work exploiting their full potential.

facilitate the comparison between different architectures the
performance is expressed as a percentage of the theoretical
bandwidth. Similarly, double precision performance figures
previously obtained are included in the comparison.

Figure 7(a) shows that the TVM performance is invariant
of the arithmetic precision for Intel and AMD processors, es-
pecially when looking at the arithmetic mean values. There
is a slight reduction of bandwidth on the KNL CPU when
using 4-byte floats and a definitive performance gap on the
ARM architecture. We take the ARM results with a grain
of salt since we have experienced inconsistent behaviour
over certain contraction modes where the multi-threaded
performance was barely better than the single-threaded one;
it may be the experimental version of the GCC compiler not
being able to generate proper SVE vector instructions in this
particular scenario. It is worth mentioning that the principal
consequence of reducing the floating-point precision is an
overall increment of the standard deviation rates of 69% and
73% for the KNL and ARM architectures, respectively. We
attribute this to the HBM installed in these systems.

Finally, Figure 7(b) shows that, on average, the HOPM
performance also tends to decrease for the KNL and ARM
CPUs due to the use of HBM. In this particular case, the
performance drop is of the same order of magnitude for
the two architectures. However, only the standard deviation
value across all tensors increases by almost a factor of two
on the ARM CPU when using single precision arithmetic,
while it remains practically unaltered on the KNL system.

6 CONCLUSION AND FUTURE WORK

This work has presented a novel tensor—vector multiplica-
tion (TVM) algorithm in the form of an exclusive BLAS
level 2 function. It has been built from scratch, uses a
non-hierarchical layout, contains specialized optimizations
and shares the same list of arguments as the well-known
BLAS matrix—vector multiplication function plus an addi-
tional term. Moreover, its multi-threaded implementation
is straightforward and, because it presents a flat parallel
structure, delivers better scalability and performance over
other popular approaches such as the TVM unfold and loop
algorithms. Two first-touch strategies have been proposed
with the objective of bringing NUMA awareness to TVM
although working with disjointed tensors has proven to
yield worse results. Lastly, this TVM native algorithm has
been integrated in the higher-order power method (HOPM)
that serves as a real-world benchmark.

The TVM and HOPM algorithms have been satisfacto-
rily tested using up to three different compilers and four
hardware architectures, from which two of them feature
high bandwidth memory. For large tensors, the performance
results are limited by the system memory bandwidth and
remain compiler agnostic. Moreover, mode obliviousness is
achieved on architectures with conventional DDR contrarily
to what is observed in the case of the TVM loop algorithm,
even when relying on heavily optimized BLAS libraries with
architecture-tailored kernels. However, the proposed TVM
exhibits some mode dependency in the presence of HBM
since the associated TVM deviation rates tend to double. In
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general, the bandwidth achieved by the proposed algorithm
oscillates between 62% and 76% for the TVM and from
58% to 69% for the HOPM relative to the theoretical system
memory speeds reported by the manufacturers. These per-
centages diminish slightly on systems equipped with HBM
when performing single precision arithmetic computations.
Our results also confirm that the overall performance tends
to diminish as a consequence of using more complex archi-
tectures composed of several NUMA partitions.

Although all the figures shown in the present study are
related to worst-case scenarios due to the particular selec-
tion of tensors, they remain very competitive and clearly
assess the effectiveness of the proposed TVM algorithm,
making it suitable for integration in the most popular
BLAS libraries available today. Future work will be carried
out to integrate task-based shared memory programming
models as well as the message passing interface (MPI) for
distributed parallelism. Porting the TVM library to GPUs
and other accelerators is also envisaged. Finally, the funda-
mental principles applied to our TVM algorithm will also be
extended to the BLAS level 3 tensor—matrix multiplication
algorithm and, by extension, to the more general tensor—
tensor multiplication operation.
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