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Abstract: In near-field free-space optical (FSO) communication, spatial-mode multiplexing
(SMM) increases transmission capacity by transmitting independent information streams in
orthogonal modes. Propagation through atmospheric turbulence causes phase and amplitude
distortions that can degrade SMM performance. In this paper, we show there exist optimal modes
for transmission through turbulence with minimum degradation, under a realistic assumption that
a transmitter knows the turbulence statistics but not the instantaneous state of the atmosphere.
These modes are determined by performing a Karhunen-Loève expansion of the optical electric
field in the receiver aperture. We show that these modes are Laguerre-Gauss (LG) modes whose
beam waist is chosen depending on the field coherence length in the receiver plane. These
adaptive-waist LG modes, when ordered by decreasing eigenvalue, can approximate a received
signal field by a finite number of modes with lowest mean-square error among all orthonormal
mode sets. Hence, they represent optimal transmit and receive bases for SMM FSO. Using
numerical simulation, we study SMM FSO transmission at various turbulence strengths and
signal-to-noise ratios. We compare the performance using the adaptive-waist LG modes to
that using fixed-waist LG modes (which assume no knowledge of turbulence statistics) and
instantaneous eigenmodes (which assume knowledge of the instantaneous state of the turbulence).
We also study the performance using the orbital angular momentum subsets of the adaptive-waist
LG mode and fixed-waist LG mode sets.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Free-space optical (FSO) communication, which uses laser light to provide high-capacity links
between distant sites, is an appealing alternative to radio-frequency communication. Spatial-mode
multiplexing (SMM), a form of multi-input, multi-output (MIMO) transmission, employs spatial
and polarization modes as orthogonal dimensions for increasing transmission capacity without
requiring increased frequency bandwidth [1–4]. Various mode sets have been considered for
SMM [5], including Laguerre-Gauss (LG) modes [6] and a subset often called orbital angular
momentum (OAM) modes [7].

SMM FSO communication is applicable when, even in the presence of atmospheric turbulence,
the beam size in the receiver plane is on average smaller than the receiver aperture, avoiding
beam clipping and preserving orthogonality among the modes [6]. In these so-called near-field
links, the maximum number of spatial modes with efficient coupling exceeds unity. Neglecting
turbulence, the maximum number of efficiently coupled modes is approximated by the product
of the transmitter and receiver Fresnel numbers, NF = (ATAR)/(λ

2L2), where AT and AR are
transmit and receive aperture areas, λ is optical wavelength, and L is propagation range [8]. In
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links such that NF ≤ 1, the transmitter can couple to only one spatial mode at the receiver, and
SMM cannot be employed.

SMM FSO links transmit mutually coherent, orthogonal light modes. Modes that propagate
through random media, such as atmospheric turbulence, are subject to phase distortions and
amplitude fluctuations, which can degrade coherence and limit the number of independent modes.
The need to improve SMM FSO link robustness has motivated study of adaptive optics methods
for correcting distortion of the light modes [9,10]. In this work, instead of using adaptive optics to
mitigate turbulence-induced distortion, we increase SMM FSO system capacity by transmitting a
set of mutually orthogonal modes that optimally exploit the spatial dimensions available after
propagation through atmospheric turbulence.

In an ideal SMM FSO system, both transmitter and receiver terminals would have detailed
knowledge of the instantaneous random distortions introduced by turbulence and would adapt
themselves to the channel accordingly. Various effects in practical systems, including partial
reciprocity and round-trip time delay, render unrealistic the assumption that the transmitter has
instantaneous channel information. In practice, it is far more realistic to assume that the transmitter
has access only to limited statistical information about the random distortions introduced by
turbulence, as the channel statistics vary over much longer time scales than the instantaneous
channel realization. Knowledge of the channel statistics can be obtained by exploiting partial
link reciprocity, or by employing feedback from the receiver to the transmitter. In this work, we
assume limited knowledge of the turbulent channel statistics, and determine an optimal set of
modes.

Our approach to finding the optimal modes considers the second-order statistics of the
propagated optical fields. It uses a Karhunen-Loève (KL) expansion [11] of the optical fields
propagated through atmospheric turbulence, a statistical technique that performs an orthogonal
transformation of a set of observations of correlated fields into a superposition of a set of fully
spatially coherent modes with uncorrelated coefficients. These modes are the eigenfunctions
of the mutual intensity and, when ordered by decreasing eigenvalues, they can approximate a
received optical field by any finite number of modes with lowest mean-square error among all
orthonormal mode sets. Hence, they are an optimal transmit or receive basis when the number
of modes is constrained. As we show, these modes are LG modes that have their beam waist
chosen appropriately relative to the transverse coherence length of the field in the receiver plane.
These adaptive modes with adjustable waist can be tuned to the turbulence statistics using simple
variable-magnification optics.

The remainder of this paper is organized as follows. In Section 2, we show that KL functions
of the atmospheric optical fields are the optimal set of basis modes for SMM FSO. In Section 3,
we study the performance of SMM in turbulence channels, comparing the optimal basis modes
to other mode sets. We present conclusions in Section 4.

2. Optimal basis for random optical fields

We want to know the best set of basis modes to define independent and orthogonal communication
channels for SMM FSO. In our analysis, we will define a complete orthonormal basis set of
functions ψ1(ρ), ψ2(ρ), ψ3(ρ), . . . at any position ρ in a plane transverse to the direction of
propagation.

In these near-field links through random media, we can expand the complex optical field as
U(ρ) = U0(ρ) exp[Φ(ρ)], where the field without turbulence is assumed to have a Gaussian
profile U0(ρ) = exp(− |ρ |2/2ω2

0), and the factor exp[Φ(ρ)] represents the random distortion
introduced by the turbulent medium. The Gaussian profile U0(ρ) is characterized by a reference
beam waist ω0, which is chosen as explained below. When the optical field propagates through
turbulence, both its envelope and its phase fluctuate. The exponent of the random distortion is
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Φ(ρ) = χ(ρ) + jϕ(ρ), where χ(ρ) and ϕ(ρ) represent log-amplitude fluctuations (scintillation)
and phase fluctuations (aberrations), respectively.

We begin by finding the KL expansion of the random fields across the receiver aperture. The
KL expansion represents the random optical fields as a superposition of orthonormal functions
ψn(ρ) with uncorrelated coefficients αn:

U(ρ) =

∞∑︂
n=1

αnψn(ρ), (1)

where ∫
ψ∗

m(ρ) ψn(ρ) dρ1 =

⎧⎪⎪⎨⎪⎪⎩
1 m = n

0 m ≠ n
(2)

and the coefficients of the expansion are given by

αn =

∫
U(ρ) ψ∗

n(ρ) dρ. (3)

Among all possible orthogonal expansions, the KL expansion chooses one that has uncorrelated
expansion coefficients:

E{αnα
∗
m} =

⎧⎪⎪⎨⎪⎪⎩
λn m = n

0 m ≠ n
, (4)

where E{·} denotes ensemble average. Using Eq. (3) in Eq. (4) yields

E{αnα
∗
m} =

∫ [︃∫
Γ(ρ1, ρ2)ψn(ρ2) dρ2

]︃
ψ∗

m(ρ1) dρ1 (5)

and the coefficients will satisfy Eq. (4) provided that∫
Γ(ρ1, ρ2)ψn(ρ2) dρ2 = λnψn(ρ1). (6)

Here, Γ(ρ1, ρ2) = U0(ρ1) U∗
0(ρ2) E{exp[Φ(ρ1) + Φ∗(ρ2)]} is the mutual intensity of the

random field in the receiver aperture. Γ(ρ1, ρ2) characterizes the loss of coherence of an initially
coherent wave propagating in the turbulent medium [13–15]. Therefore, to achieve uncorrelated
coefficients, the expansion needs to select the orthogonal functions ψn(ρ) to be eigenfunctions of
the integral equation (6), and the constants λn are the corresponding eigenvalues [16]. We refer
to the as the KL modes.

The KL expansion is optimal in the sense that no other linear decomposition can better
reproduce the random fields at the receiver with the same number of modes. The eigenvalue λn is
a measure of the power contained in the respective eigenfunction ψn(ρ). As a consequence, when
the set of KL modes ψ1(ρ), ψ2(ρ), ψ3(ρ), . . . is arranged in descending order of the eigenvalues
λ1, λ2, λ3, . . . , a linear combination of any finite subset {ψn(ρ), n = 1, . . . , N} can approximate
the received optical field with the minimum mean-square error among all orthogonal mode sets.
The minimum-mean-square-error approximation of the received field is a linear combination
of the ψn(ρ) with uncorrelated coefficients, so the KL modes represent a decorrelating basis
for the received optical field. For this reason, the KL modes represent an optimal basis set for
transmission, reception and MIMO signal processing in SMM FSO systems when the number of
modes is constrained.

Assuming the turbulence is homogeneous, isotropic and described by a classical Kolmogorov
model, the ensemble average E{exp[Φ(ρ1) + Φ∗(ρ2)]} yields a spatial 5/3-exponent law [15].
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This leads to a mutual intensity Γ(ρ1, ρ2) = U0(ρ1) U∗
0(ρ2) exp(−|ρ1 − ρ2 |

5/3/2δ0
5/3), where

the field coherence length δ0 = r0/6.883/5 is proportional to the coherence diameter r0 describing
the spatial correlation length of the random optical field U(ρ) in the receiver plane [15]. We
would like to use this mutual intensity in the KL expansion, but, as often happens in the study
of propagation effects through turbulent media, the 5/3 exponent makes analytic approaches
intractable. Hence, we can only use a numerical KL expansion of the 5/3-exponent function.

To overcome the analytical difficulties caused by the 5/3-exponent function, we consider
a statistical model in which the received optical field distortion is regarded as a finite set of
independent cells randomly arrayed in the receiver aperture. To a good approximation, we can
consider the received field distortion to comprise (ω0/δ0)

2 independent cells, each of radius δ0,
inside of which the field distortions are highly correlated [17]. This approach has been used
in many heuristic analyses of imaging through random inhomogeneous media, and explains
correctly a variety of speckle phenomena caused by atmospheric turbulence (e.g., see [18]).

Inside any of the (ω0/δ0)
2 independent cells, the random field has a tilted but unwarped

phase front, and its correlation can be described by a Gaussian-shaped elemental function of
the form exp(−|ρ − v|2/2δ0

2), where δ0 is the correlation length and v denotes the cell’s random
center in the receiver aperture. Considering the Gaussian profile of the transmitted field, we can
assume the centers of the cells are samples of a Gaussian distribution v ∼ N(0, ω0

2 I ) whose
variance scales with the aperture radius ω0, where I is a 2 × 2 identity matrix. With the received
optical field expanded as a set of independent cells, we can represent the mutual intensity as a
linear superposition of as many as (ω0/δ0)

2 Gaussian-shaped elemental functions, leading to a
representation

Γ(ρ1, ρ2) =
1

2π ω02

∫
exp

(︄
−
|ρ1 − v|2

2δ0
2

)︄
exp

(︄
−
|ρ2 − v|2

2δ0
2

)︄
× exp

(︃
−

|v|2

2ω02

)︃
dv. (7)

Performing the integration in (7), we express the mutual intensity as

Γ(ρ1, ρ2) = exp

(︄
−
|ρ1 |

2 + |ρ2 |
2

2σ2
g

)︄
exp

(︄
−
|ρ1 − ρ2 |

2

2σ2
s

)︄
, (8)

with σ2
g and σ2

s described in terms of ω2
0 and δ0

2 as σ2
g = (ω2

0 + δ0
2) and σ2

s = (ω2
0 + δ0

2)δ0
2/ω2

0.
The advantage of considering the mutual intensity (8) is that its KL expansion admits an

analytical solution [12]. It can be verified by direct substitution in the integral Eq. (6) that the KL
modes ψn(ρ) are a complete set of LG modes

ψn(ρ) =
1
ω

√︄
2 p!

π ( p + |l| )!

(︂√
2
ρ

ω

)︂ |l |
L |l |

p

(︃
2
ρ2

ω2

)︃
exp

(︃
−
ρ2

ω2

)︃
exp(jlϕ) . (9)

We use polar coordinates to represent position ρ = (ρ, ϕ). The orbital angular momentum
(OAM) number l = 0, ± 1,±2, . . . indicates the rate of azimuthal twist of the phase front and
p = 0, 1, 2, . . . is the radial index. L |l |

p is the Laguerre polynomial. ω is the optimized beam
waist of the mode with l = 0, p = 0, which is the fundamental Gaussian mode.

The most important attribute of the KL modes is the optimized beam waist ω. It depends on
the reference beam waist ω0 and the field coherence length δ0 via

1
ω2 =

1
ω2

0
+

1
2δ0

2

√︂
1 + 2 (ωo/δ0)

2

1 + (ωo/δ0)
2 . (10)

The dimensionless ratio ω0/δ0 quantifies the loss of coherence of an initially coherent wave
caused by turbulence, so we refer to it as a turbulence strength parameter. Figure 1(a) shows how
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the optimized beam waist ω varies with the turbulence strength parameter ω0/δ0. In the limit of
weak turbulence (ω0/δ0 → 0), ω ≈ ω0, while in the limit of strong turbulence (ω0/δ0 → ∞),

the optimized beam waist scales as ω ≈

(︂√
2ω0δ0

)︂1/2
.

Fig. 1. (a) Normalized beam waist ω/ω0 of KL modes as a function of turbulence strength
parameter ω0/δ. (b) Distribution of eigenvalues λn over the first 45 KL modes for a
turbulence strength parameter ω0/δ0 = 10.

In the derivation of the KL modes above, the reference beam waist ω0 imposes an upper bound
on the optimized beam waist ω. In strong turbulence, if we want to minimize power coupling
losses due to field mismatches, the spatial extent of the KL modes should be of the same order as
the turbulence cell size at the receiver. Consequently, one might conclude that the optimized
beam waist ω should depend only on the field coherence length δ0 and not on the reference beam
waist ω0. There is, however, a nonzero probability that at a particular instant of time, the fields in
two or more cells at the receiver aperture are correlated; in that case, allowing the KL modes to
have a larger size to include several field cells would increase the average power coupling. As
the size of the modes is ultimately limited by the reference beam waist ω0, the optimized bream
waist ω should also depend on the reference beam waist ω0. This helps explain the dependence

of the optimized beam waist in the strong-turbulence regime, ω ≈

(︂√
2ω0δ0

)︂1/2
.

In (9), n is a mode ordering index, which is a function of l and p. The KL modes, ψn, are
ordered such that increasing mode order n = 1, 2, . . ., corresponds to decreasing eigenvalue λn.
The eigenvalues are given by

λn =
2

ξ +
√︁

2ξ − 1

(︄
ξ −

√︁
2ξ − 1

ξ +
√︁

2ξ − 1

)︄ 2p+ |l |

, (11)

where ξ = 1 + (ωo/δ0)
2. . For a given 2p + |l|, modes with a lower value of l are enumerated

first. The lowest-order mode ψ1 is the fundamental Gaussian mode with l = 0, p = 0. As
an example, Fig. 1(b) shows how the eigenvalues λn are distributed for a turbulence strength
parameter ω0/δ0 = 10.

3. Spatial-mode multiplexing in turbulence

In this section, we evaluate the performance of SMM FSO systems on turbulence channels
using various mode sets, illustrating the superior performance of the KL modes in quasi-realistic
transmission scenarios. Our assumptions and analysis are similar to [6], with the major difference
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that we consider the impact of atmospheric turbulence. We assume an optical system comprising
circular transmitter and receiver apertures, each containing a single thin positive lens and aligned
along a common central axis. We assume similar aperture sizes at the transmitter and receiver.
We consider SMM using a set of N mutually orthogonal modes, which propagate along the
common central axis through an atmospheric channel. We assume that practical considerations
constrain the product of transmit and receive Fresnel numbers NF. For LG multiplexing, the
number of modes NLG = (1/2)M(M + 1) is related to the number of mode groups M by counting
all permutations of p and l that satisfy 2p + |l| + 1 ≤ M. For OAM multiplexing, the same
constraint onresnel number product NF constrains M to the same value as for LG multiplexing
and counting the LG modes with p = 0, the number of modes is estimated as NOAM = 2M − 1.

In near-field links for SMM FSO transmission, where the beam waist does not change
significantly from the transmitter to the receiver, the propagation range L lies within the Rayleigh
range z0 = πω0

2/λ. For instance, at a wavelength λ = 1550 nm, two circular apertures of
diameter D = 40 cm efficiently couple NF = 45 modes out to L ≈ 12 km, which is within the
Rayleigh range of a beam with ω0 = 8 cm. A truncation parameter τ = 2.5 describes the ratio of
the aperture diameter D to the beam waist diameter 2ω0.

We assume that NLG ≤ NF, so that on average, even in the presence of turbulence at the
levels we consider, the received beam size is smaller than the receiver aperture, avoiding beam
clipping. In the presence of turbulence, the smaller optimized beam waist ω reduces the effective
Rayleigh range and, consequently, the maximum propagation distance L by a factor (ω/ω0)

2.
For the previous example, under strong turbulence conditions described by ω0/δ0 ≈ 5 and
(ω/ω0)

2 ≈ 0.25 (see Fig. 1(a)), the apertures will support NLG = 45 LG modes out to a maximum
propagation range of 3 km.

We assume that modes are multiplexed at the transmitter and demultiplexed at the receiver
without hardware-induced loss or crosstalk. Fundamentally lossless multi-plane converters or
mode-selective photonic lanterns [19,20] can perform fixed transformations at the transmitter
and receiver between separate single-mode waveguides and coaxial modes in a free-space beam.
These (de)multiplexing devices were developed for SMM in optical fiber [21], and can be
leveraged to help make SMM FSO systems practical. It is worth noting that most SMM FSO
experiments to date (see e.g. [22–24]) have used only OAM modes, the subset of the LG modes
with radial order p = 0.

We define a turbulence-free signal-to-noise ratio (SNR) γ = P/σ2, where P is the total
transmitted power in all modes and σ2 is the receiver noise power per mode. We assume received
signals are detected coherently and the dominant noise source is local oscillator shot noise, so γ
equals the number of received signal photons. As we are considering near-field links, where the
receiver collects virtually all the signal power leaving the transmitter, γ also equals the number
of transmitted signal photons.

We quantify SMM FSO system performance using information-theoretic measures that are
standard for MIMO systems over random fading channels. We consider the ergodic average
spectral efficiency SN , which is the ergodic average Shannon capacity per unit frequency
bandwidth [25,26], and the effective degrees of freedom (EDOF), which represents the number of
spatial modes that are effectively conveying information [27]. For a single-mode system, the
SE (in bit/s/Hz) is given by SE = log2(1 + γ) and a 2δ-fold increase in transmit power increases
the spectral efficiency by log2(2δ) = δ bit/s/Hz per polarization. In a system using EDOF
independent modes in parallel, the spectral efficiency should increase by EDOF × δ bit/s/Hz.
Hence, the EDOF per polarization at SNR γ is given by [27]

EDOF = (d/dδ) SE(2δγ)|δ=0 . (12)

In our analysis, given transmit and receive bases of NLG spatial modes, the ergodic average spec-
tral efficiency per polarization is SE = maxQSE(Q) where SE(Q) = EH{log2 |I + γ H Q H∗ | }
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is the mutual information with the channel matrix H and the input matrix Q [28,29]. The
expectation EH{ } is an ensemble average over realizations of the channel matrix H, I is an
NLG × NLG identity matrix, and | | represents a matrix determinant. Here, H is an NLG × NLG
matrix characterizing the atmospheric channel, with Hij representing the complex coupling
coefficient between transmit mode j and receive mode i. Also, Q = E[q q∗] is an NLG × NLG
unit-trace diagonal matrix with Qjj representing the fraction of the total signal power transmitted
in the jth mode. The matrix Q is chosen to describe the SMM transmission strategy, and the
spectral efficiency optimization problem involves finding the optimum Q to maximize SE(Q). The
optimal transmission strategy Q depends on the amount of knowledge about the channel matrix
H that is available at the transmitter [29–31]. Various transmission strategies are considered
below.

First, we consider using a transmit and receive basis of NLG instantaneous eigenmodes of
the atmospheric channel. We assume the channel changes slowly enough that the receiver can
estimate the channel matrix H using conventional MIMO signal processing techniques and feed
back accurate information about H to the transmitter without significant delay. Then, using the
eigende composition of the NLG ×NLG channel matrix H, the instantaneous channel realization is
converted into NLG parallel, non-interfering single-mode channels, or instantaneous eigenmodes
[29]. In that case, the optimal transmit strategy takes the form of a water-filling over the
instantaneous eigenmodes [26]. The algorithm can be understood using the analogy of pouring
water (power) into a vessel of variable depth (eigenvalues). Instantaneous eigenmodes that have
larger eigenvalues receive more power and the power allocated to some of the eigenmodes may
be zero.

Second, we consider using a transmit and receive basis of NLG KL modes (9). We assume
that the beam waist of the transmit modes is adapted appropriately to the correlation statistics
of the turbulence channel. This approach is of practical interest when the channel varies too
rapidly for the transmitter to have perfect channel information, but the statistical properties of the
atmospheric channel change sufficiently slowly for the transmitter to have an accurate knowledge
of the channel correlation statistics. With this statistical knowledge of the channel, the optimum
transmission strategy takes the form of a water-filling over the eigenvalues λn (11). of the KL
modes [28,30]. As a complement to the above, under identical assumptions and analysis, we also
consider a transmit and receive basis of the NOAM OAM modes that are the subset of the NLG KL
modes that have radial order p = 0.

Finally, we consider using a transmit and receive basis of NLG conventional LG modes with
fixed beam waist ω0, even though some of these modes may not propagate efficiently through the
atmosphere. This approach is the only one possible when the transmitter has no knowledge of
the atmospheric channel. In that case, by analogy with results from standard MIMO systems
[29,31], the transmission strategy with power distributed equally among all transmit LG modes is
optimum. As with KL modes, we also consider a transmit and receive basis that only uses the
NOAM fixed OAM modes that are the subset of the fixed LG modes modes with radial order p = 0.

We use Monte Carlo simulations to assess the performance obtained using different SMM FSO
transmit and receive modal bases. We approximate the field disturbance caused by turbulence
using a phase screen model. Phase screens are the result of integrating atmospheric turbulence
along the propagation line of sight. The phase-screen turbulence model is valid for the near-field
links considered in this analysis, in which the phase aberration ϕ(ρ). is the most significant
turbulence distortion, and power scintillation is small. Intuitively, in the presence of turbulence,
which can refract and diffract light, intense scintillation occurs when a beam passing through
random phase distortions interferes with a spatially shifted version of itself. In practice, this
means that scintillation is most pronounced when a beam propagates over a long atmospheric
path, whereas in typical near-field links, which are shorter, scintillation is weaker. We use
an algorithm that simulates atmospherically distorted phase wavefronts ϕ(ρ) using a Zernike
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expansion [32]. Because the wavefront distortion in near-field links is dominated by phase
fluctuations rather than amplitude fluctuations, a full-field numerical simulation of laser beam
propagation including both refraction and diffraction effects would not significantly alter our
findings. In our simulations, we use at least 600 Zernike polynomials for an accurate statistical
generation of each phase wavefront. We introduce the influence of turbulence exp[ϕ(ρ)] in the
transmitting modes and consider an overlap integral to estimate the complex coupling coefficients
between pairs of transmit and receive modes characterizing the random channel matrix H. In the
Monte Carlo experiments, we generate 104 instances of the channel matrix H for the different
transmit and receive basis sets and use them to collect the statistics of SE and determine the
EDOF.

Figure 2 summarizes the results of these studies. The figure considers five transmission
strategies. The ideal transmission strategy (solid black line) uses instantaneous eigenmodes,

Fig. 2. Spectral efficiencies and effective degrees of freedom (EDOF) for different
transmission strategies with M = 9 mode groups, corresponding to NLG = 45 and NOAM = 17
modes for SMM and OAM, respectively. (a) Spectral efficiency vs. turbulence strength
parameter ω0/δ0 for fixed SNR γ = 50 dB. (b) Spectral efficiency vs. SNR γ for fixed
turbulence strength parameter ω0/δ0 = 20. (c) EDOF vs. turbulence strength for fixed
SNR γ = 50 dB. (d) EDOF vs. SNR γ for fixed turbulence strength parameter ω0/δ0 = 20.
Transmission strategies considering instantaneous eigenmodes and KL modes offer much
higher spectral efficiencies and EDOF than those using fixed LG modes or OAM modes
under moderate-to-strong turbulence, as seen in (a) and (c). At low SNR, the efficiencies of
all the transmission strategies are limited by the available transmit power, as in (b), while at
high SNR, the EDOF for instantaneous eigenmodes and KL modes approaches NLG = 45,
as seen in (d).
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requiring knowledge of the instantaneous channel realization. The KL transmission strategy
(solid blue line) uses KL modes, requiring only knowledge of the channel statistics to optimize the
beam waist ω. The KL OAM transmission strateg(solid red line) uses the zero radial-order subset
of the KL modes, and also requires knowledge of the channel statistics. The fixed LG mode
transmission strategy (dashed blue line) uses fixed-waist LG modes, and requires no channel
knowledge. The fixed OAM transmission strategy (dashed red line) uses fixed-waist OAM modes,
as in most SMM FSO systems to date, and also requires no channel knowledge.

Figure 2 assumes NLG = 45 modes (M = 9 mode groups) and assumes that the product of the
transmitter and receiver Fresnel numbers is larger than the number of modes used, i.e., NF>NLG.
For OAM multiplexing, the addressable number of LG modes with p = 0 is NOAM = 17.

Figures 2(a) and 2(c) show the spectral efficiencies and EDOF for the five transmission
strategies for fixed system SNR γ = 50 dB as a function of the turbulence strength parameter
ω0/δ0. . Figures 2(b) and 2(d) show the spectral efficiencies and EDOF for the five transmission
strategies for a strong turbulence ω0/δ0 = 20 as a function of the system SNR.

The plots in Figs. 2(a) and 2(c) show that the KL modes represent a practical transmission
strategy that, under most turbulence strength scenarios, significantly outperforms fixed LG modes,
yielding spectral efficiencies and EDOFs close to those expected for the ideal transmission
strategy based on instantaneous eigenmodes. Under strong turbulence conditions (large ω0/δ0),
the spectral efficiencies and EDOFs for instantaneous eigenmodes and KL modes are similarly
high and are noticeably higher than those obtained for fixed LG modes. Only in the limit of very
weak turbulence (small ω0/δ0.) are the spectral efficiencies and EDOFs for fixed LG modes and
KL modes comparable. Not surprisingly, using only the OAM subset of the LG modes decreases
the spectral efficiency and EDOF.

The plots in Figs. 2(b) and 2(d) show that at low SNR, all the schemes are limited by the
transmit power available rather than by turbulence conditions. At very low SNR, they offer
similar spectral efficiencies and EDOFs. At high SNR, the EDOFs for instantaneous eigenmodes
and KL modes approach the number of independent modes NLG employed. At high SNR, the
EDOF for KL OAM multiplexing also coincides with the number of independent modes NOAM .

4. Conclusion

We make the following conclusions based on the results presented above. First, there are optimal
modes for SMM transmission through atmospheric turbulence under the assumption that the
transmitter has knowledge of the channel statistics but nothe instantaneous channel realization.
These modes are derived by a KL expansion of the signal field in the receiver plane. The KL
modes are a set of LG modes in which the beam waist is chosen based on the transverse correlation
length of the signal field in the receiver plane. Second, the KL modes are a promising basis set
for SMM FSO systems, where the choice of modal basis is crucial for maximizing the number
of multiplexed information streams that can be transmitted through atmospheric turbulence.
The ordering of the eigenvalues of the KL modes is critical, and allows transmit power to be
allocated optimally to any number of the strongest modes. Third, we have shown that the KL
modes outperform other mode sets, in particular, any LG set not chosen to match the turbulence
statistics. KL modes achieve spectralfficiencies and EDOFs comparable to those achieved by
the ideal instantaneous eigenmodes, while avoiding the need for instantaneous knowledge of the
turbulence channel. Fourth, although most prior work on SMM FSO communication has used
the OAM subset of the LG modes, our analysis shows that this approach is far from optimal.
The fixed OAM modes yield the lowest spectral efficiencies and EDOFs among the mode sets
considered.

A distinct advantage of the proposed approach to SMM FSO transmission is the simplicity
of tuning the KL modes to the regime of turbulence encountered, i.e., the shorter the field
coherence length δ0, the smaller the KL mode beam waist ω. This tuning requires measurements
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to estimate the field transverse correlation length r0 in the receiver plane, enabling computation
of δ0, followed by adjustment of the beam waist ω of the transmitted and received modes using
variable-magnification optics at the transmitter and receiver.
Funding. Agencia Estatal de Investigación (PID2020-118410RB-C21).
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