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Abstract: The growing energy demand around the world has increased the usage of renewable energy
sources (RES) such as photovoltaic and wind energies. The combination of traditional power systems
and RESs has generated diverse problems due especially to the stochastic nature of RESs. Microgrids
(MG) arise to address these types of problems and to increase the penetration of RES to the utility
network. A microgrid includes an energy management system (EMS) to operate its components
and energy sources efficiently. The objectives pursued by the EMS are usually economically related
to minimizing the operating costs of the MG or maximizing its income. However, due to new
regulations of the network operators, a new objective related to the minimization of power peaks
and fluctuations in the power profile exchanged with the utility network has taken great interest
in recent years. In this regard, EMSs based on off-line trained fuzzy logic control (FLC) have been
proposed as an alternative approach to those based on on-line optimization mixed-integer linear
(or nonlinear) programming to reduce computational efforts. However, the procedure to adjust the
FLC parameters has been barely addressed. This parameter adjustment is an optimization problem
itself that can be formulated in terms of a cost/objective function and is susceptible to being solved
by metaheuristic nature-inspired algorithms. In particular, this paper evaluates a methodology
for adjusting the FLC parameters of the EMS of a residential microgrid that aims to minimize the
power peaks and fluctuations on the power profile exchanged with the utility network through two
nature-inspired algorithms, namely particle swarm optimization and differential evolution. The
methodology is based on the definition of a cost function to be optimized. Numerical simulations
on a specific microgrid example are presented to compare and evaluate the performances of these
algorithms, also including a comparison with other ones addressed in previous works such as the
Cuckoo search approach. These simulations are further used to extract useful conclusions for the
FLC parameters adjustment for off-line-trained EMS based designs.

Keywords: microgrid; energy management system; fuzzy logic control; particle swarm optimization;
differential evolution; cuckoo search algorithm; nature-inspired algorithms
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1. Introduction

The growing energy demand in the industrial, commercial, and residential sectors
around the world has significantly increased energy consumption during the last decades.
The total primary energy supply, or the energy available in nature before being converted
or transformed, has increased from 6.1 billion tons of oil equivalent in 1973 to 13.7 billion
tons in 2016 [1]. This increment in energy consumption has generated a negative impact
on the concentration of greenhouse gases [2], indicating that many countries focus their
resources on improving energy efficiency and increasing the production of clean energy.
As a consequence of these actions, there has been a sustained increment in the usage of
renewable energy sources (RES), where photovoltaic and wind energies the ones with the
highest growth worldwide [3].

However, new problems have appeared when RESs are combined with traditional
sources of energy [3]. For instance, unexpected fluctuations in the response of RES can affect
the voltage and frequency of the network, constrained power electronics requirements,
different control and dispatch methods, etc. Thus, the microgrid (MG) concept appeared
to solve some of these drawbacks [4]. A microgrid is a low-voltage distribution network
consisting of loads, distributed generation elements, and energy storage systems (ESS),
which can be connected to the mains at a single point of common coupling (PCC). It has an
associated energy management system (EMS) that allows the reliable, safe, and economic
operation of the elements within the microgrid [5].

An EMS controls the power flux of different microgrid elements to achieve certain
goals, such as minimize operating costs or maximize revenues [6,7]. Several EMSs have
been presented in the literature, each of them considering different types of MG architec-
ture (i.e., AC, DC, and hybrid AC-DC microgrids) [8–10] and pursue different objectives
under different conditions [11,12]. For instance, [13] presents a stochastic risk-constrained
framework for short-term optimal scheduling of autonomous microgrid to maximize the
expected profit of the microgrids operator. In [14], an intelligent EMS using mixed-integer
linear programming of grid-connected home-type microgrid is presented. This approach
reduced energy costs of non-dispatchable distributed energy resources. The study in [15]
presents the design of an EMS for a grid-connected microgrid equipped with photovoltaic
(PV) generator to manage the load supply with the maximum exploitation of solar energy
and improving the thermal comfort of the occupants.

However, RES such as wind and PV feed power into the grid in a very variable way,
directly related to the variability of the energy source itself (i.e., wind and irradiance).
As these power sources are set to attain very high degrees of penetration level in the
current grid, this power variability is of great concern for grid operators [16–18]. Therefore,
various studies have been developed in recent years to minimize power fluctuations
(i.e., ramp-rates) on the power exchanged with the grid [19–21]. For instance, the study
in [19] analyzes the effect of smoothing the tie-line power fluctuations for grid-connected
industrial microgrids using demand-side approach. In addition, the studies in [20] and [21]
present a heuristic design of an EMS of residential electrical and electro-thermal grid-
connected microgrids, respectively, including an ESS, RES, and a residential electrical load.

Due to its heuristic nature, some studies have focused on the design of the EMS using
expert knowledge rule-based systems since they have proven to be easy to implement
and low computational run time cost than other sophisticated analytical solutions [22,23].
Thus, a fuzzy logic control (FLC) EMS of two inputs, one output, and 25 rules is developed
in [24] and experimentally validated in [25]. The same approach, but now using generation
and demand forecasts is described and validated in [26]. These EMSs, and others designs
based on FLC [27], pursue a common main objective, which consists of smoothing the
power profile exchanged from the MG to the utility network. However, the design of
the FLC block involved within these EMSs requires the selection of several parameters
such as the type and number of membership functions, rule base, and variation range of
each variable. Therefore, a first approach to perform the parameter adjustment of an FLC
controller that is part of the EMS of a residential grid-connected microgrid is developed
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in [28]. This approach performs an off-line parameter tuning of the FLC of an EMS using
the real recorded data of RES production and load consumption in one year.

However, the selection of the FLC parameters can be seen as an optimization prob-
lem that could be formulated in terms of a cost/objective function [29]. Fortunately,
in addition to costly and time-consuming traditional optimization techniques, several
metaheuristic nature-inspired algorithms have been proposed to solve optimization prob-
lems in a wide range of applications [30–33]. Some examples of these nature-inspired
algorithms that can be found in the literature are genetic algorithms [34], differential evo-
lution (DE) [35], ant colony optimization [36], particle swarm optimization (PSO) [37],
firefly algorithm [38], Cuckoo search (CS) [39], among others. In this regard, to improve
the parameter adjustment procedure described in [28], a methodology based on the
CS algorithm is presented in [40,41]. This approach is applied to the EMS of a residen-
tial grid-connected electro-thermal microgrid, improving its performance in terms of
smoothing (i.e., minimizing power peaks and fluctuations) the power profile exchanged
with the utility network.

Hence, to analyze the behavior of other nature-inspired algorithms, this paper eval-
uates a methodology for adjusting the FLC parameters of the EMS of a residential grid-
connected electro-thermal microgrid through two metaheuristic nature-inspired algorithms,
namely PSO and DE. Although there are many nature-inspired optimization algorithms,
PSO, DE, and CS are the most classical examples of nature-inspired techniques that are
based on different search strategies [42]. DE is a heuristic evolutionary optimization
algorithm developed for solving real-valued numerical optimization problems [35]. It is
a very effective global search algorithm with a simple mathematical structure. On the
other hand, PSO is a stochastic and multi-agent parallel global-search technique [37],
which, unlike DE, is based on the mathematical modeling of various collective behaviors
of living creatures that display complex social conducts, allowing it to develop local
solutions into global optimum solutions. Finally, the CS algorithm is a more recent
alternative to PSO that models the obligate brood parasitism of some cuckoo species [39].
A global cost function, including all criteria used to evaluate the quality of the grid power
profile, is formulated, which constitutes the optimization objective function. Results
show that the evaluated nature-inspired algorithms present similar optimization perfor-
mance. However, the CS algorithm offers some advantages related to the reduction of
fluctuations and power peaks in the grid power profile. It is also important to mention
that in terms of computing time, the PSO algorithm is faster than CS and DE algorithms.
A comparison with an EMS strategy that uses an off-line parameter tuning for the FLC
block [43] demonstrates that the CS, PSO, and DE algorithms get an acceptable response
concerning the main objective pursued by the EMS (i.e., smoothing the power profile
exchanged with the mains).

The main contributions of this paper are listed below:

1. A complete procedure for adjusting the parameters of an FLC block of the EMS
of a residential grid connected electro-thermal microgrid using the PSO and
DE algorithms.

2. A set of comparative one-year simulations and quantification of smoothing in-
dexes, using real data, highlighting the advantages and disadvantages of each
analyzed approach.

The remainder of this paper is organized as follows. Section 2 presents the architecture
and operation of the electro-thermal microgrid under study. Section 3 describes the fitness
function and presents the optimization matrix and search space used in this optimization
problem. The PSO and DE algorithms are described in Sections 4 and 5, respectively.
Section 6 presents the simulation and comparison results. Finally, Section 7 summarizes
the main conclusions of this study.
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2. Structure and Operation of the Grid-Connected Microgrid

This study is an extension of the previous works [40,41], which present a methodology
for adjusting the FLC parameters of the EMS of an electro-thermal microgrid employing
the CS algorithm. The structure of the microgrid under analysis, as well as its operation in
grid-connected mode, is presented below.

Note that the mathematical models of RESs, i.e., PV and wind turbine (WT), the
domestic hot water system (DHW) system, the forecast of power generation and load
demand, and the battery state-of-charge (SOC) estimator are not included in this study.
However, for complete information on these models, the reader could refer to [27].

2.1. Microgrid Structure

The microgrid architecture comprises two main blocks, namely the electrical system
and the DHW system [27,43,44]. The electrical system includes a hybrid renewable genera-
tion system comprising a PV generator of 6 kWp and a WT of 6 kW, an ESS consisting of a
lead-acid battery bank with a rated capacity of 72 kWh, and a domestic load of 7 kW, which
includes typical domestic appliances, lighting, etc. The DHW system includes a solar ther-
mal collector of 2 kW, an electric water heater (EWH) of 2 kW, a thermal ESS consisting of a
hot water tank of 800 L capacity, and thermal demand (i.e., DHW consumption) equivalent
to 2 kW. Figure 1 shows the microgrid architecture under study.

Figure 1. Electro-thermal microgrid architecture.

The microgrid shown in Figure 1 uses one-year real data of renewable power gener-
ation and load demand, provided every 15 min (i.e., sampling period of Ts = 900 s), by
the MG installed at Public University of Navarre (UPNa) (Pamplona, Spain: 42◦49′06′′ N
1◦38′39′′ O). These power profiles are depicted in Figure 2.
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Figure 2. Microgrid power profiles: (a) Photovoltaic power, (b) wind turbine power, (c) solar thermal collector power,
(d) domestic load demand, (e) electric water heater power, and (f) domestic hot water equivalent power.

2.2. Microgrid Operation in Grid-Connected Mode

In grid-connected mode, the microgrid under study is in charge of smoothing the
grid power profile through suitable control of the power injected/absorbed by the battery
ESS. The EMS is based on a control strategy described in [43]. The goal of the EMS is to
perform the suitable use of the energy stored in the battery ESS to cover part of the energy
required by the EWH for keeping the water temperature in the thermal storage between
established limits.

In this regard, the control of the battery power, PBAT, is indirectly performed by
controlling the power supplied by the battery ESS for the EWH consumption, PB

WH , and
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imposing the desired grid power profile, PGRID. In [43], the grid power profile is defined as
the sum of three components, as follows:

PGRID(t) = P∗CTR(t) + PSOC(t) + PFLC(t) (1)

PBAT(t) = PLG(t)− PGRID(t) + PB
WH(t) (2)

PLG(t) = PLOAD(t) + PWH,E(t)− PPV(t)− PWT(t) (3)

where t is the current sample, P∗CTR is the output of a central moving average (CMA)
filter, which establishes the MG average power profile, PSOC is the output of the battery
control loop, which is used to keep the battery SOC close to the 75% of the battery rated
capacity, PFLC is the output of an FLC block, which is used to smooth the grid power profile
according to the microgrid power forecast error and the battery SOC [40,43], PLG is the
microgrid net power, PLOAD is the domestic load demand, PWH,E is the EWH power, PPV is
the photovoltaic power, and PWT is the wind turbine power.

The EMS block diagram comprises six blocks [43], see Figure 3, which regulates both
the power delivered by the utility grid and the power injected or absorbed by the ESS.

Figure 3. Energy management strategy block diagram [43]. ©2018 IEEE, Reprinted, with permission
from D. Arcos-Aviles et al., “Fuzzy-based energy management of a residential electro-thermal
microgrid based on power forecasting,” in IECON 2018—44th Annual Conference of the IEEE
Industrial Electronics Society, Washington, DC, USA, October 2018, pp. 1824–1829.

Where PGEN is the renewable power generation, P∗LG is the modified MG net power
defines as P∗LG(t) = PLG(t)− PB

WH(t), being PB
WH the power injection to the EWH from the

battery ESS, P∗LG,FC is the forecast of the modified MG net power, P∗E is the MG forecast
error, P3H∗

E is the power forecast error of the previous 3-h, SOCAVG is the average battery
SOC of the previous 24-h, SOCREF is the battery SOC reference value (i.e., SOCREF = 75%),
ke is the proportional gain constant (i.e., ke = 0.05), and PMG

BAT is an auxiliary variable used
to compute the battery power. Note that the step-by-step design of the EMS is out of the
scope of this paper. However, for complete descriptions of each block within the EMS
design (see Figure 3), readers can refer to [43].
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In the diagram shown in Figure 3, block number six constitutes the one that is re-
sponsible for smoothing the power profile exchanged with the grid. This block consists
of an FLC that assumes a Mamdani-based inference and defuzzification method of the
Center of Gravity of two input, one output, and 25 rules. The inputs of the FLC are the
current battery SOC and the power forecast error of the previous 3-hours, P3H∗

E , which is
defined as:

P3H∗
E (t) = (1/M3)∑M3

k=1 P∗E(t− k) (4)

where k is the sample index, M3 is the number of samples in 3-h, and P∗E is computed as
P∗E(t) = P∗LG(t)− P∗LG,FC(t).

Regarding the design of the FLC, an offline parameter setting process, described
in [28], is followed, which allows the adjustment of all parameters involved in the FLC,
such as the number of membership functions (MFs) per input/output, type, mapping,
and rule base. This process is performed considering the real recorded and forecasted
data of renewable energy source electricity production and load demand for one year.
This procedure leads to the MF for inputs and outputs shown in Figure 4 [45], with their
respective variation ranges where Pe = 6kW; SOCMIN = 50%, SOCMAX = 100%, PN = 0.8 kW,
and PP = 1.35 kW, and the FLC rule base presented in Table 1. Note that the fuzzy subsets
depicted in Figure 4 are denoted as NB, NM, NS, NSS, ZE, PSS, PS, PM, and PB, where B
represents “Big”, M “Medium”, S “Small”, SS “Smallest”, N “Negative”, P “Positive”, and
ZE “Zero”.

Table 1. Heuristic approach rule base energy management system (EMS) [43].

P∗E(n)PFLC (n) NB NS ZE PS PB

SOC (n)

NB PB PM PS PM PB
NS PM PS PSS PS PM
ZE NS ZE ZE PSS NSS
PS NM NS NSS NS NM
PB NB NSS NM NM NB

Figure 4. Cont.
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Figure 4. Fuzzy controller membership functions (MF): (a) Power forecast error, (b) battery state-of-charge (SOC), and
(c) fuzzy logic control (FLC) output [45]. ©2016 IEEE, Reprinted, with permission, from Arcos-Aviles D, Guinjoan F, Marietta
MP, Pascual J, Marroyo L, Sanchis P. Energy management strategy for a grid-tied residential microgrid based on Fuzzy Logic
and power forecasting. IECON 2016—42nd Annu. Conf. IEEE Ind. Electron. Soc., Florence, Italy: IEEE; 2016, pp. 4103–4108.

3. Optimization Function
3.1. Fitness Function

Since the main objective of the EMS is to smooth the MG power profile by managing
the energy balance between renewable energy sources, electric loads, energy storage
systems, and the main electrical grid, a set of six quality criteria, which quantify the
effectiveness of energy management, is defined according to [20,21,25,26,40–42], as follows:

PG,MAX = max(PGRID) (5)

PG,MIN = min(PGRID) (6)

MPD = max
(∣∣∣ .

PGRID

∣∣∣) (7)

APD =
1
M

M

∑
n=1

∣∣∣ .
PGRID(t)

∣∣∣ (8)

.
PGRID(t) = [PGRID(t)− PGRID(t− 1)]/TS (9)

PVR =
PG,MAX − PG,MIN

PLG,MAX − PLG,MIN
(10)

PPV =

√√√√ f f

∑
f= fi

(
PGRID, f

)2
/

PDC (11)

where PG,MAX and PG,MIN are the maximum and minimum power of the grid power profile
(PGRID); MPD (maximum power derivative) is the maximum grid power profile ramp-rate
(

.
PGRID) in one year; APD (average power derivative) is the average of the grid power

profile ramp-rates in one year, with M being the number of samples in one year; PVR
(power variation range) is the grid power profile variation concerning the MG net power;
and PPV (power profile variability) gives an idea of the quality of the grid power profile
where PGRID,f is the grid power harmonic at f frequency, and fi = 1.65 × 10−6 Hz and
ff = 5.55× 10−4 Hz are the initial and final frequencies defined to evaluate variation periods
of above one week or less [20,21,25,26].
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On the other hand, since the FLC tuning procedure can be considered as an optimiza-
tion process [29], it will require the definition of an optimization (cost) function involving
all energy management quality criteria to coherently represent the designer’s preferences
between objectives in terms of a weighted sum function [46]. This function is defined
according to [40], and it is normalized in terms of the reference energy management quality
criteria obtained from a previous study where a heuristic-based optimization procedure is
applied [43]. From this perspective, the optimization function is defined as follows:

f itness = w · F1 + (w− 1) · F2 (12)

F1 =

(
PG,MAX

PREF
G,MAX

+
PG,MIN

PREF
G,MIN

+
MPD

MPDREF

)
(13)

F2 =

(
APD

APDREF
+

PVR
PVRREF

+
PPV

PPVREF

)
(14)

where w ≥ 1 is a fixed real number that balances the designer’s preference between F1 and
F2, prioritizing one of them during the iterative optimization process [40].

3.2. Optimization Matrix and Search Space

The optimization matrix comprises the variables to be optimized. Its dimension is n x
d, where n represents the maximum number of agents selected for optimization, i.e., nest
for CS, particles for PSO and individuals or population for DE algorithm, and d refers to
the total of variables (i.e., size of the dimensional problem). The search space (SS) refers to
the domain of the function to be optimized.

The optimization matrix for PSO and DE algorithms is defined in (15). It includes
the FLC parameters, such as MFs of inputs (P3H∗

E and SOC) and output (PFLC), the output
universe of discourse xk(−)(+), and the rule base (RB).

x =

 x1PE, x1SOC, x1PFLC, x1k(−)(+), x1RB
...

xnPE, xnSOC, xnPFLC, xnk(−)(+), xnRB

 (15)

Table 2 presents the number of variables to be optimized for each parameter, which
gives a total of 72 (i.e., d = 72). In short, both inputs comprise five fuzzy subsets and 11
variables (i.e., three variables for MFs NS, ZE, and PS, and one variable for MFs NB and
PB). The FLC output comprises 9 fuzzy subsets and 23 variables (i.e., three variables for
MFs NM, NS, NSS, ZE, PSS, PS, and PM, and one variable for MFs NB and PB). The FLC
rule base comprises 25 rules, thus, 25 variables. Finally, this study considers two variables
to define the universe of discourse of the FLC output. Note that this study assumes a fixed
universe of discourse for input variables.

Table 2. Number of variables for each fuzzy logic control (FLC) parameter.

Parameter Number of Variables

Membership functions (MF) for the input P3H∗
E 11

MFs for the input SOC 11
MFs for the output PFLC 23

xk(−)(+) 2
Rule base 25
Total (d) 72

Finally, the SS limits are defined based on previous studies [40,41]. The SS of each FLC
parameter is presented below.
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xPE =
{

xPE ∈ SSxPE
| −6 ≤ xPE ≤ 6

}
(16)

xSOC = {xSOC ∈ SSxSOC | 50 ≤ xSOC ≤ 100} (17)

xk(−)(+)
=
{

xk(−)(+)
∈ SSxk(−)(+)

| 0 ≤ xk(−)(+)
≤ 10

}
(18)

xPFLC =
{

xPFLC ∈ SSxPFLC
| k(−) ≤ xPFLC ≤ k(+)

}
(19)

xRB = {xRB ∈ SSxRB | 1 ≤ xRB ≤ 9} (20)

4. Particle Swarm Optimization Algorithm

PSO is a stochastic technique for the optimization of nonlinear continuous functions
designed by Kennedy and Eberhart in 1995 [47]. The operation of this particular meta-
heuristic is based on the ideal behavior of bird flocks when they look for food. One of the
advantages of the PSO algorithm is its rapid convergence without the need for complex cal-
culations when it is compared to other metaheuristic algorithms, such as genetic algorithm
and CS, among others.

In the PSO algorithm, the particle swarm has the position (x) and velocity (v) matrices
of i× j dimension within a search space SS. Note that it is necessary to add an extra column
in the matrix x to record the result of the fitness function fitxi, as follows:

v =

 v11 · · · v1j
...

. . .
...

vi1 · · · vij

 (21)

x =

 x11 · · · x1j | f itx1
...

. . .
... |

...
xi1 · · · xij | f itxi

 (22)

The velocity and position of each particle are given by (23) and (24), respectively,
as follows:

vi(k + 1) = w(k)vi(k) + R1C1[Pbesti
(k)− xi(k)] + R2C2[Gbest(k)− xi(k)] (23)

xi(k + 1) = xi(k) + vi(k + 1) (24)

where vi (k + 1) and vi (k) are the new and current particles velocities, respectively; xi (k + 1)
and xi (k) are the positions of the new and current particles, respectively; w(k) is the inertia
weight; C1 and C2 are acceleration constants, which determine the swarm behavior; R1 and
R2 are random numbers within the range [0, 1] [31]; Pbest is a matrix defined by (25), which
records the personal best position of each particle; and, Gbest is a vector, defined by (26),
which records the best global position of all swarm. Similarly, matrix (25) and vector (26)
add a column vector with the result of the fitness function.

Pbest =


Pbest11 · · · Pbest1j

| f itPbest1
...

. . .
... |

...
Pbesti1

· · · Pbestij
| f itPbesti

 (25)

Gbest =
[

Gbest11 · · · Gbest1j | f itGbest

]
(26)

For each particle, its fitness xi (k + 1) is compared with its best-recorded position in
Pbesti

. If the new fitness is less than the best value seen so far, Pbesti
is updated with xi (k + 1).
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After that, the lowest value of fitness in Pbesti
is found and compared to Gbest. If the fitness

of the best particle is lower than the best global position, Gbest is updated by Pbesti
.

The inertia weight of vi (k) is given by (27), which value decreases at each iteration.
A maximum and minimum weight of wmax = 0.9 and wmin = 0.4, respectively, are selected
according to [31], as follows:

w(k) =
wmin − wmax

kmax − 1
(k− 1) + wmax (27)

The pseudo-code to implement the PSO algorithm applied for adjusting the FLC
parameters is presented in Algorithm 1. Note that kmax represents the number of iterations
(kmax = 300) whereas, according to [48], the values of accelerations constants C1 and C2 are
set to the same value (C1 = C2 = 2)

Algorithm 1 Particle Swarm Optimization

Input: kmax, n, d, w, C1, C2
Output: Gbest

1: Initialize swarm x, y
2: Update fuzzy set parameters
3: Compute fitx (k + 1)
4: Set Pbest = x
5: Set BestPbest = min (fitx)
6: Set Gbest = BestPbest
7: repeat
8: Decrement w
9: for i = 1 ∈ n do
10: Update vi (k + 1)
11: Limit vi (k + 1)
12: Get xi (k + 1)
13: Update fuzzy set parameters
14: Compute fitxi (k + 1)
15: if fitxi (k + 1) < fitPbesti then
16: Set Pbesti = xi (k + 1)
17: end if
18: end for
19: Set BestPbest = min(fitPbest)
20: if BestPbest < fitGbest then
21: Set Gbest = BestPbest
22: end if
23: until
24: n > kmax
25: return Gbest

5. Differential Evolution Algorithm

The DE algorithm is a nature-inspired metaheuristic algorithm proposed by Rainer
Storn and Kenneth Price in 1995 [49]. It is an evolutionary algorithm, which is based on the
natural and genetic selection of populations. In general, the DE algorithm uses mutation,
crossing, and selection operators to generate new individuals. The main characteristic of
the DE algorithm is the use of a minimum number of parameters, such as the scale factor,
F, crossover rate, Cr, the size of the dimensional problem, d, and the number of individuals
or population, n, [31].

Initially, the DE algorithm performs a random selection of a population of n vectors,
with uniform distribution, which will cover the entire search space [49]. This selection
delivers the initial vector xi, which is used to carry out the mutation, crossover, and
selection processes.
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xt
i =

(
xt

1,i, xt
2,i, · · · , xt

d,i

)
(28)

where i = 1, 2, ..., n for each solution xi in any generation t.
The DE algorithm attempts to replicate the biological behavior of evolution in a

computer program. The mutation in the evolution of an individual consists of the ran-
dom variation of one of its genes. The DE algorithm takes this behavior as a reference.
For each target vector xi, a mutation vector, vi, is generated according to the following
mutation scheme:

vt+1
i = xt

p + F ·
(

xt
q − xt

r

)
(29)

where xp, xq, and xr are the target vectors at t, which are created from three randomly chosen
individuals in the population to cause a vector, in any of its values, to vary randomly. Note
that the scale factor, F, is a real value between [0, ∞), which is used to scale the differential
variation of the scanning vector (xq − xr). This study considers a scale factor between [0, 1],
according to [50].

Then, after a random set of vectors have been selected, the crossover operation is
carried out. In addition, a mutation operation is also applied to the recombined vector
in order to generate the final population. This process is controlled by the parameter
Cr ∈ [0, 1], which controls the crossover rate [51]. This study uses a binomial crossover
scheme, which performs a crossover on each of the variable components. The test vector u
is obtained as follows:

ut+1
j.i =

{
vt+1

j,i , i f rj ≤ Cr ∧ j = Jr
xt

j,i, i f rj > Cr ∨ j 6= Jr
(30)

where j = 1, 2, . . . ,d, rj ∈ (0, 1), Cr ∈ [0, 1] is a user-defined constant, and Jr = 1, . . . ,d is
a randomly index, which is chosen to ensure that ut+1

j,i receives at least one component

of vt+1
j,i .
Finally, selection in evolution refers to choosing which individuals pass to the next

generation. After the mutation and crossover stages, in which all n vectors served as a
target vector, for selection, the fitness value of each test vector f (ut+1

i ) is compared with
its corresponding target vector f (xt

i ) in the current population [31]. Then, the selection
of the vectors that will be preserved for the next generation is the one who has the best
performance function value [49], i.e.,

xt+1
i =

{
ut+1

i , i f f (ut+1
i ) ≤ f (xt

i )
xt

i , otherwise
(31)

The DE algorithm pseudo-code used to find the best population for adjusting the FLC
parameters of the EMS is presented in Algorithm 2. Note that this study considers F = 0.7,
Cr = 0.9, and n = 25 according to [31,50,52].

Algorithm 2 Differential evolution algorithm

Input: n, F, Cr, d
Output: xt+1

i
1: Parameter initialize

(1) Generate initial population with n individuals
(2) Select max_iterations
(3) Update Fuzzy Set Parameters

2: fitx ← f(x)
3: repeat
4: for i = 1 to n do
5: For each xi, randomly select 3 different vectors xp, xq, y xr
6: Generate a new vector vi by the DE mutation scheme

vt+1
i = xt

p + F · xt
q − xt

r
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Algorithm 2 Differential evolution algorithm

Input: n, F, Cr, d
Output: xt+1

i
(2) Select max_iterations
(3) Update Fuzzy Set Parameters

2: fitx ← f(x)
3: repeat
4: for i = 1 to n do
5: For each xi, randomly select 3 different vectors xp, xq, y xr
6: Generate a new vector vi by the DE mutation scheme

vt+1
i = xt

p + F · xt
q − xt

r
7: Generate a random index Jr ∈ {1, 2, . . . , d}
8: Generate a number rj ∈ [0, 1], randomly distributed
9: end for
10: Update fuzzy set parameters
11: for j = 1 to d do

12: ut+1
j.i =

{
vt+1

j,i , i f rj ≤ Cr ∧ j = Jr
xt

j,i, i f rj > Cr ∨ j 6= Jr
13: Select and actualize the solution

xt+1
i =

{
ut+1

i , i f f (ut+1
i ) ≤ f (xt

i )
xt

i , otherwise
14: end for
15: until
16: n < max_iterations
17: return xt+1

i

6. Comparison Results
6.1. Fuzzy Logic Control Parameters Comparison

The result of adjusting the FLC controller parameters through the PSO and DE algo-
rithms is presented below. In addition, the results achieved by the CS algorithm [40,41] are
included for comparison purposes. The FLC parameters obtained through the CS, PSO,
and DE algorithms are presented in Figures 5–7, respectively, where each MF, for inputs
variables, is superposed to the respective achieved by heuristic method (HM). In addition,
the resulting rule base achieved by each algorithm is presented in Tables 3–5.

Figure 5. Resulting MFs through Cuckoo search (CS) algorithm (a) input P3H∗
E , (b) input SOC, and

(c) output PFLC.
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Figure 6. Resulting MFs through Particle Swarm Optimization (PSO) algorithm (a) input P3H∗
E , (b) input SOC, and

(c) output PFLC.

Figure 7. Resulting MFs through Differential Evolution (DE) algorithm (a) input P3H∗
E , (b) input SOC, and (c) output PFLC.
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Table 3. Optimized rule base through Cuckoo Search (CS) algorithm [40,41].

P∗E(n)PFLC (n) NB NS ZE PS PB

SOC (n)

NB ZE ZE PS PM PB
NS NSS ZE PSS PS PB
ZE NS NSS ZE PSS PS
PS NM NS NSS ZE PSS
PB NB NM NS NS ZE

Table 4. Optimized rule base through Particle Swarm Optimization (PSO).

P∗E(n)PFLC (n) NB NS ZE PS PB

SOC (n)

NB ZE PSS PS PM PB
NS ZE ZE PSS PS PM
ZE NS NSS ZE PSS PS
PS NM NS NSS ZE PSS
PB NB NM NS NSS ZE

Table 5. Optimized rule base through Differential Evolution (DE) algorithm.

P∗E(n)PFLC (n) NB NS ZE PS PB

SOC (n)

NB PS PB PS PB PB
NS ZE PM PSS PB PB
ZE NSS PSS PSS PSS PS
PS NSS PSS NS ZE NSS
PB NM NB NSS ZE NB

6.2. Energy Management System Performance Comparison

This section presents the results achieved by the EMS after the FLC controller parame-
ter setting process through the nature-inspired algorithms described above. Furthermore, a
comparison is made with the results obtained through the EMS described in [43] where the
parameters of its FLC block are adjusted using a heuristic process and also with the results
obtained by the EMS presented in [40,41] where the adjustment of the FLC parameters is
made through the CS algorithm.

The comparison is made over the same FLC parameters optimization problem in terms
of the quality of the solutions and the computation time. Therefore, the same initial set of
random solutions (i.e., initial population), the optimization function defined in Section 3,
and the standard algorithm’s parameters [31] have been implemented.

A weighting factor of w = 2 is used in the optimization function defined in Section
3 to prioritize the minimization of PG,MAX, PG,MIN, and MPD over APD, PPV, and PVR
since the main objective of the EMS is to smooth the power profile exchanged with the grid
(i.e., minimizing grid power ramp-rates, power peaks [40]. Numerical simulations, using
Matlab® (MathWorks, Natick, MA, USA), are carried out in an INTEL® Core™-i7 6500U
CPU 2.50 GHz computer, where the three algorithms are executed under the same initial
conditions to solve 300 iterations.

For the case study, the convergence of the optimization function and the number of
iterations required by the algorithms under analysis to converge to its feasible optimum is
shown in Figure 8.
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Figure 8. Convergence chart.

As can be seen in Figure 8, the CS and DE algorithms perform similarly in terms of
convergence rate. However, the obtained solution through DE is slightly better than the
one achieved by the CS in terms of the solution quality since the optimization function’s
value for DE is lower than the CS value, as shown in Table 6.

Table 6. Fitness comparison.

EMS Strategy Fitness

EMS [43] 9
CS optimized EMS [40] 7.76

PSO optimized EMS 7.88
DE optimized EMS 7.75

On the other hand, an analysis of the convergence time is shown in Table 7, where
the population length represents the number of population agents, such as the CS-nest,
PSO-particles, DE-candidate solutions; the time per iteration is the time that takes to
analyze each agent in one iteration; the convergence iteration is the iteration in which the
algorithm converges; and the convergence time represents the total execution time until the
convergence iteration is reached. In short, the PSO algorithm presents a less convergence
time than the CS and DE algorithms for the case under study.

Table 7. Convergence time analysis for CS, PSO, and DE algorithms.

Algorithm Population
Length

Time per
Iteration (min) Iterations Conv. Time (h)

CS 25 16.1 243 65.21
PSO 25 16.1 107 28.71
DE 25 16.1 295 79.16

Despite that PSO presents better behavior than the CS and DE algorithms in terms of
the convergence rate, the obtained solutions by the CS and DE algorithms are slightly better
than the solution achieved by the PSO algorithm for the case under study. In this regard,
Table 8 presents the results of evaluating the power profile that the MG exchanges with
the utility network achieved by the EMSs under analysis. In addition, Figure 9 shows the
grid power profile for each EMS design, where it can be seen that all the designs meet the
objective of smoothing the power profile exchanged with the main grid (i.e., minimizing
power peaks and fluctuations). Finally, Figure 10 shows the grid power profile ramp-rates,
along one year, achieved by the analyzed EMSs. As can be seen, the fuzzy logic-based
EMS obtained through nature-inspired algorithms present a considerable reduction in the
power ramp-rates of the grid power profile, which facilitates the control of grid operators
and the penetration of RES into the mains.
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Table 8. Grid power profile quality criteria comparison.

EMS Strategy PG,MAX
(kW)

PG,MIN
(kW)

MPD
(W/h)

APD
(W/h) PPV PVR

EMS-FC [43] 2.56 −1.89 846 75 1.26 0.34
EMS-CS [40] 2.51 −1.66 469 75 1.25 0.32

EMS-PSO 2.51 −1.71 489 76 1.26 0.32
EMS-DE 2.50 −1.60 487 74 1.29 0.32
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7. Conclusions

This paper has addressed the tuning of parameters using the nature-inspired PSO
and DE algorithms of an FLC that is part of the EMS of a residential grid-connected
electro-thermal microgrid. The FLC-based EMS has been designed to smooth the power
profile exchanged with the grid. Numerical simulations have allowed the performance
comparison between PSO-tuned and DE-tuned EMSs as well as with heuristically tuned
and CS-tuned EMSs presented in previous works. In the adjustment process, the algorithms
perform the optimization of 72 variables corresponding to the MF mapping of inputs and
the output as well as the FLC rule base. The results have shown that all the designs are
capable of meeting the objective pursued by the EMS, obtaining a smooth grid power
profile, and the evolution of the battery SOC within the permitted ranges. Moreover, it
has been shown that all EMSs designs resulting from a tuning process based on PSO, DE,
and CS nature-inspired algorithms have obtained a reduction in the maximum grid power
ramp-rates (MPD) of over 40% when being compared to a fuzzy-based EMS where the
adjustment of the FLC uses a heuristic approach. In addition, simulation results have
revealed that the PSO algorithm performs better than CS and DE algorithms regarding
the convergence time. Finally, the quality criteria comparison have shown that the CS
algorithm has achieved an improved solution in terms of the MPD and PPV quality criteria,
whereas the DE algorithm presents a better behavior concerning the PG,MAX, PG,MIN, and
APD criteria.

Therefore, this study has shown that the different nature-inspired optimization algo-
rithms present similar results when it comes to improving FLC-based EMSs. However,
convergence time is a critical parameter that should be considered in any deployment,
especially if a real-time implementation is required. Furthermore, the set of input param-
eters needed for each algorithm must be understood to provide stability and robustness
to the optimization task. Finally, these nature-inspired optimization algorithms are able
to optimize the FLC rule base and the MF mapping simultaneously, using a single cost
function for both activities.
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Future work will focus on the design of a real-time adaptive fuzzy-based energy
management system. This new design will update the fuzzy logic control parameters at
the same time as the forecast variables, which could improve the EMS efficiency.
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