
Performance characterization of containerization for HPC workloads
on InfiniBand clusters: an empirical study

Peini Liu1,2 • Jordi Guitart1,2

Received: 15 February 2021 / Revised: 22 October 2021 / Accepted: 27 October 2021
� The Author(s) 2021

Abstract
Containerization technology offers an appealing alternative for encapsulating and operating applications (and all their

dependencies) without being constrained by the performance penalties of using Virtual Machines and, as a result, has got

the interest of the High-Performance Computing (HPC) community to obtain fast, customized, portable, flexible, and

reproducible deployments of their workloads. Previous work on this area has demonstrated that containerized HPC

applications can exploit InfiniBand networks, but has ignored the potential of multi-container deployments which partition

the processes that belong to each application into multiple containers in each host. Partitioning HPC applications has

demonstrated to be useful when using virtual machines by constraining them to a single NUMA (Non-Uniform Memory

Access) domain. This paper conducts a systematical study on the performance of multi-container deployments with

different network fabrics and protocols, focusing especially on Infiniband networks. We analyze the impact of container

granularity and its potential to exploit processor and memory affinity to improve applications’ performance. Our results

show that default Singularity can achieve near bare-metal performance but does not support fine-grain multi-container

deployments. Docker and Singularity-instance have similar behavior in terms of the performance of deployment schemes

with different container granularity and affinity. This behavior differs for the several network fabrics and protocols, and

depends as well on the application communication patterns and the message size. Moreover, deployments on Infiniband are

also more impacted by the computation and memory allocation, and because of that, they can exploit the affinity better.

Keywords Performance � Containerization � InfiniBand � Multi-container � Singularity � Docker

1 Introduction

Following the trend of Cloud computing, the HPC com-

munity has also started to adopt containerization instead of

hardware virtualization to benefit from some of its well-

known advantages [1], such as the encapsulation of specific

software environments for each user, which allows for

customization, portability, and research reproducibility; the

isolation of users from the underlying system and from

other users, which allows for security and fault protection;

and the agile and fine-grain resource allocation and bal-

ancing, which allows for efficient cluster utilization and

failure recovery [2, 3].

A matter of the utmost importance for HPC users is that

the containers running their applications can leverage the

underlying HPC resources such as Infiniband networks,

which offer high-speed networking capabilities with

improved throughput and low latency through the use of

Remote Direct Memory Access (RDMA)[4].

Previous work on this area has demonstrated that con-

tainerized HPC applications can exploit InfiniBand net-

works, especially when they run on a single container per

host that shares the host network namespace. Whereas

some works have evaluated more sophisticated networking

modes, such as overlay networks, they have just superfi-

cially considered multi-container deployments which par-

tition the processes that belong to each application into

& Peini Liu

peini.liu@bsc.es

Jordi Guitart

jordi.guitart@bsc.es

1 Computer Science Department, Barcelona Supercomputing

Center (BSC), Barcelona, Spain

2 Computer Architecture Department, Universitat Politecnica

de Catalunya (UPC), Barcelona, Spain

123

Cluster Computing
https://doi.org/10.1007/s10586-021-03460-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0058-8732
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03460-8&domain=pdf
https://doi.org/10.1007/s10586-021-03460-8

multiple containers in each host. Partitioning HPC appli-

cations has demonstrated to be useful when using virtual

machines by constraining them to a single NUMA (Non-

Uniform Memory Access) domain [5], and can also

increase the utilization of the hosts since small-sized tasks

can be packed more easily. Consequently, it is essential to

understand the performance implications of multi-con-

tainer deployment schemes for HPC workloads on Infini-

band clusters, focusing especially on understanding how

the container granularity and its combination with proces-

sor and memory affinity impact the performance when

using different networking modes.

Performance analysis of HPC applications in con-

tainerized environments is an ongoing research problem

[6, 7]. Most related works evaluate single-container

deployments and emphasize the possibility that deploying

an HPC workload into a single container can achieve native

performance [8, 9], while others use orchestrators to

manage the container placement at scale and study the

incurred overheads [2, 7, 10]. Few works include experi-

ments with different container granularity [7, 11], but none

of them provide a deep understanding of the impact of such

multi-container deployments on the performance of HPC

workloads, which considers different containerization

technologies, container grain sizes, and includes processor

and memory affinity. The ability to provision InfiniBand to

Docker and Singularity containers has been shown in

[4, 7, 12, 13]. However, it is still unclear how multi-con-

tainer deployment schemes with different affinity settings

perform with various network interconnects and protocols,

and how different communication patterns and message

sizes impact the performance of containerized HPC

workloads.

In this paper, we present a detailed performance char-

acterization of different containerization technologies (in-

cluding Docker and Singularity) for HPC workloads on

InfiniBand clusters through different dimensions, namely

network interconnects (including Ethernet and InfiniBand)

and protocols (including TCP/IP and RDMA), networking

modes (including host, MACVLAN, and overlay net-

working), and processor and memory affinity. We aim to

answer some research questions including: i) What is the

performance of different containerization technologies

with various network interconnects and protocols? ii) What

is the impact of container granularity on multi-container

deployment scenarios using different network intercon-

nects and protocols? iii) What is the impact of processor

and memory affinity on multi-container deployment sce-

narios using different network interconnects and protocols?

2 Background

2.1 Containerization

2.1.1 Docker

Docker,1 the most popular containerization technology,

builds upon resource isolation and limitation features of the

Linux kernel, such as namespaces and cgroups,

respectively. Also, it adds a union-capable file system such

as OverlayFS. Without the hypervisor needed for virtual

machines, Docker contains a lightweight engine to control

and manage its containers. Docker also allows containers to

share the underlying host kernel, including the libraries,

modules, kernel functions, and a root file system. Regard-

ing runtime isolation, Docker containers are defined into

some operational spaces (e.g., Network, PIDs, UIDs, IPC)

implemented by means of namespaces. Regarding

resource limitation, some sets of dedicated resources

defined through cgroups can be allocated to the Docker

containers.

2.1.2 Singularity

Singularity2 containers are mostly used in HPC environ-

ments where they are proven to introduce less overhead

than Docker while providing more reliable security guar-

antees [6]. Regarding security, Singularity does not create

containers as spawned child processes of a root-owned

daemon. Regarding performance, Singularity enables all

the containers to use the underlying HPC environment

naturally (without namespaces isolation). Because of this

feature, the integration between Singularity and MPI can be

transparent to the user. These make Singularity a first-class

choice for HPC and scientific simulations [14]. In late

2018, Singularity 3.0 was released [15]. This version brings

a new functionality (so-called instances) to run containers

in ‘‘daemon’’ mode, which allows running containers as

services in the background. Singularity instances can have

isolated network resources, and they also support cgroups

functionality to restrict resource usage. MPI applications

can run in Singularity instances as if they were running in

separated hosts, having their own network identity and

using an SSH backend service to communicate.

2.2 Multi-host container networking

Containers could communicate across hosts through both

underlay and overlay networking approaches. In underlay

network approaches, containers are directly exposed to the

1 https://www.docker.com/.
2 https://sylabs.io/.

Cluster Computing

123

https://www.docker.com/
https://sylabs.io/

host network. When running a single container per host, the

container could run in host mode and share the network

stack and namespace of the host. When running one or

multiple containers per host, we also consider MACVLAN

as an underlay network approach. MACVLAN allows

configuring multiple MAC addresses on a single physical

interface. This can be used to assign a different MAC

address (and consequently a different IP address) to each

container, making it appear to be directly connected to the

physical network. In that way, containers can be accessed

through their IP addresses. However, MACVLAN requires

those addresses to be on the same broadcast domain as the

physical interface. MACVLAN is a simple and efficient

approach but the underlying network could restrict its

application, in particular by limiting the number of dif-

ferent MAC addresses on a physical port or the total

number of MAC addresses supported, or forbidding mul-

tiple MAC addresses to be assigned on a single physical

interface. Furthermore, MACVLAN is not generally sup-

ported for wireless network interfaces.

In overlay network approaches, a logical network

between the containers is built using networking tunnels to

deliver communication across hosts. Those tunnels add an

additional level of encapsulation to the underlying network.

Because of this, they may introduce some extra overhead

when compared with an underlay approach, due to the

encapsulation overhead of the frame size and the process-

ing overhead on the server. Nevertheless, overlay network

approaches are very flexible as they decouple the virtual

network topology from the physical network, which sup-

ports for instance the mobility of components indepen-

dently of the physical network. In addition, they essentially

support an unlimited number of components, as they do not

suffer from restrictions to the number of addresses imposed

by the physical network [16].

2.3 InfiniBand interconnect

InfiniBand (IB) [17] interconnect can provide high

throughput and low latency communication across systems

for distributed and parallel applications. IB is well-known

and supported by most operating systems and cluster

vendors. IB comprises two channel adapters: Host Channel

Adapter (HCA) and Target Channel Adapter (TCA). HCA

provides the hardware visibility at the user-level for com-

munication. OpenMPI follows the standard of the software

stack from the OpenFabrics Alliance for the Remote Direct

Memory Access (RDMA) through InfiniBand, which

allows processes to access the memory of a remote node

process without the CPU intervention [18].

InfiniBand interconnect can also support other commu-

nication protocols, for example, TCP/IP network protocol

stack can be adapted for InfiniBand through TCP/IP over

IB (IPoIB) [19]. IPoIB is a Linux kernel module that

enables InfiniBand hardware devices to encapsulate IP

packets into IB datagrams or connected transport services.

When IPoIB is applied, an InfiniBand device is assigned an

IP address and accessed just like any regular TCP/IP

hardware device [18]. The IPoIB driver supports two

modes of operation: datagram and connected. In datagram

mode, the IB unreliable datagram transport is used. In

connected model, the IB reliable connected transport is

used.

3 Evaluation methodology

Our performance characterization will consider the four

dimensions in Fig. 1, namely containerization technolo-

gies, networking modes, interconnects and protocols, and

affinity, respectively.

3.1 Containerization technologies

In this dimension, we choose Docker, Singularity, and its

variant with container instances (hereinafter called Singu-

larity-instance and Singularity-instance ? cgroup) as rep-

resentative containerization technologies. The bare-metal

performance is also provided to evaluate the corresponding

overhead of each containerization technology.

3.2 Interconnects and protocols

We consider 1-Gigabit Ethernet and InfiniBand intercon-

nects in this dimension. We evaluate the performance of

the different containerization technologies configured with

several networking modes to operate on these interconnects

through various protocols, such as TCP/IP and RDMA.

Details are as we described in Sect. 2.3.

Bare-metal

Docker

Singularity

Containerization
Technologies

Networking�
mode

MACVLAN

Affinity

Interconnects
and Protocols TCP/IPIP over

Infiniband
RDMA

Host Overlay

ANY

CPU/CPUMEM/CPUMEMPIN

Fig. 1 Four evaluation dimensions

Cluster Computing

123

3.3 Networking mode

For Docker and Singularity-instance, the networking

modes considered in the experiments depend on the num-

ber of deployed containers per host. As described in

Sect. 2.2, when deploying a single container per host, we

could use an underlay networking approach by sharing the

host network with the containers or by setting a MACV-

LAN address to each container, or use an overlay net-

working approach through a network VXLAN tunnel that

enables the communication across hosts. When deploying

multiple containers per host, we can only use MACVLAN

or overlay networking approaches for the communication

of multiple containers across hosts.

For default Singularity, as the containers within the

same host do not have isolated network namespaces (they

run in the same network namespace as the host), they can

share the host network.

3.4 Affinity settings

The affinity settings for our multi-containerized deployment

scenarios include CPU, CPUMEM, and CPUMEMPIN,

which are all compared to ANY. We assume a number of

hosts Nh, where each has a number of containers Nctn. Each

container hosts a number of processes Nmpi, so that

Nctn � Nmpi ¼ K, which is kept constant in all the deploy-

ment scenarios (e.g., 128). The hardware platform provides

a number of CPU cores and MEM nodes from one or more

sockets S ¼ fsocketsjs ¼ 0; . . .;Nsocket � 1g, where each

socket has P cores. Hence, for each application comprising a

set of processes MPI ¼ fmpijjj ¼ 1; . . .;Nmpig hosted in a

set of containers CTN ¼ fctniji ¼ 1; . . .;Nctng which run on

a set of hosts HOST ¼ fhosthjh ¼ 1; . . .;Nhg, each affinity

setting defines a mapping:Maph;i;j ! CPUh;s;x!y þMEMh;s

where h, s and x ! y denote the assigned host, socket, and

the range of cores, respectively. Each affinity setting works

as follows:

(I) ANY: processes do not have any processor or

memory affinity, they could access all the

resources provided to this application, and the

actual distribution is decided by the operating

system. Thus, the mapping of ANY scenarios

could be expressed as:

Maph;i;j !

[Nsocket�1

s¼0
CPU

h;s;s�P!s�PþNcpu�Nctn
Nsocket

�1

[Nsocket�1

s¼0
MEMh;s

8
><

>:

ð1Þ

(II) CPU: we define a specific processor affinity for

each container to a set of cores from two different

sockets. The mapping of CPU scenarios could be

formulated as follows:

Maph;i;j !

[Nsocket�1

s¼0
CPU

h;s;s�Pþði�1Þ� Ncpu
Nsocket

!s�Pþi� Ncpu
Nsocket

�1

[Nsocket�1

s¼0
MEMh;s

8
>>>><

>>>>:

ð2Þ

(III) CPUMEM: we define a specific processor and

memory affinity for each container to a set of cores

belonging to a single socket and to the corre-

sponding local memory node. The mapping of

CPUMEM scenarios could be calculated as fol-

lows, provided that the number of cores requested

by each container is lower than the cores each

socket provides.

Maph;i;j !

CPU
h;d i

Ncps
e�1; i

Ncps

l m
�1

� �
�Pþðði�1Þ

�Ncps� i
Ncps

l m
�1

� ��
�Ncpu

! i
Ncps

l m
�1

� �
�Pþði�Ncps

� i
Ncps

l m
�1

� ��
�Ncpu�1

MEM
h; i

Ncps

l m
�1

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð3Þ

where Ncps refers to the number of containers per

socket and is calculated as Nctn=Nsocket.

(IV) CPUMEMPIN: this scheme has the same setting

as CPUMEM about the affinity of the containers,

but it enables the 1-to-1 process-to-processor

binding inside the container. Thus each process

is mapped into a specific core:

Maph;i;j !

CPU
h; i

Ncps

l m
�1; i

Ncps

l m
�1

� �
�Pþðði�1Þ

�Ncps� i
Ncps

l m
�1

� ��
�Ncpuþj�1

MEM
h; i

Ncps

l m
�1

8
>>>>>>><

>>>>>>>:

ð4Þ

4 Performance evaluation

In this section, we first describe our experimental setup.

Then, we present the results when deploying a single

container per host with different networking modes.

Finally, we provide the results of multi-container

Cluster Computing

123

deployments, where we evaluate the impact of container

granularity and processor and memory affinity when using

different network interconnects and protocols.

4.1 Experimental setup

4.1.1 Hardware

Our experiments are executed on a five-node HPC Infini-

Band cluster. Each host consists of 29 Intel 2697v4 CPUs

(18 cores each, hyperthreading disabled), 256 GB RAM, 60

TB GPFS file system, 1-Gigabit Ethernet network, and

Mellanox Technologies MT27700 Family ConnectX-4

InfiniBand (EDR 100Gb/s Adapter), which works on

datagram mode.

4.1.2 Software

For both hosts and containers, we use CentOS release

7.6.1810 with host kernel 3.10.0-957.27.2.el7.x86_64 and

MLNX_OFED_LINUX-4.7-1.0.0.1 as the HCA driver.

Docker 19.03.10 and Singularity 3.5.1 are used to conduct

all the experiments. OpenMPI 4.0.3rc3 and all the bench-

marks are compiled with gcc 5.5.0 compiler.

4.1.3 Benchmarks

(1) OSU Benchmark OSU Benchmark3 is a suite of

benchmarks that measure the MPI-level operation perfor-

mance. We choose this benchmark for understanding MPI

communication performance with different message sizes.

We use version 5.6.3. (2) HPCC Benchmark The HPC

Challenge benchmark suite4 is widely used to evaluate the

performance of HPC systems. Its design goal is to enable

complete understandings of the performance characteristics

of platforms [20]. It consists of several benchmarks that

show the performance impact of real-world HPC applica-

tions. For example, the capability of processor floating

point computation (e.g., DGEMM, FFT), memory band-

width (e.g., STREAM, FFT) and latency (e.g., Ran-

domAccess), and communication bandwidth (e.g.,

RandomRing Bandwidth, PTRANS, FFT) and latency

(e.g., RandomAccess) [21, 22]. We use v1.5.0.

4.1.4 Networking mode and protocol settings

We evaluated various network interconnects and protocols,

namely TCP/IP protocol on Ethernet, TCP/ IP protocol

over InfiniBand (IPoIB), and RDMA natively on Infini-

Band. Detailed network and protocol settings for each

containerization technology are shown in Table 1. Single

container per host scenarios are tested with three different

networking modes: Host, MACVLAN, and Overlay. Note

that MACVLAN does not work with InfiniBand, so we

tested it only with TCP/IP on Ethernet. Multiple containers

per host scenarios are tested only with the overlay net-

working mode, as this is the only mode that allows running

multiple containers per host on all the network

interconnects.

Docker implements its own networking specification

called the Container Network Model,5 which supports

multi-host networking through both underlay (based on

MACVLAN) and overlay native drivers. The overlay net-

work for Docker used in our experiments is not using

Docker Swarm but configuring an external etcd6 discovery

service. For Singularity-instance, it uses the CNI7 plugins

for defining various basic networks such as bridge, ipvlan

or macvlan. We use the knowledge from our previous work

to enable the interconnection between Singularity instances

across hosts [16]. As for Singularity-instance ? cgroups,

we keep the same network settings as Singularity-instance

but enabling the cgroup support by adding apply-

cgroups parameter.

4.1.5 Granularity deployment scenarios

We study both single- and multi-container deployment

schemes. One host acts as the master for launching the

experiments and the other four hosts run each benchmark

consisting of 128 processes in total. Detailed settings are

shown in Table 2. For Docker, Singularity-instance, and

Singularity-instance ? cgroups, we generate scenarios

SCE1–SCE6 by increasing the number of containers per

host, in particular 1, 2, 4, 8, 16, and 32 containers per host,

but decreasing the number of processes per container, that

is, finer-grained container granularity (i.e., 32, 16, 8, 4, 2,

and 1 processes per container, respectively).

4.1.6 Scheduling and binding policy

OpenMPI’s default mapping and binding policy schedules

in a round-robin fashion through slots and automatically

binds processes to socket if the number of processes is

more than two and binds processes to cores if the number

of processes is less or equal than two. However, this

binding policy is inadequate when enabling multi-container

deployments because processes in different containers are

not aware of their peers and always bind to the first socket

by default. Thus, in experiments (Sects. 4.2 and 4.3), we

3 https://mvapich.cse.ohio-state.edu/benchmarks/.
4 http://icl.cs.utk.edu/hpcc/.

5 https://github.com/docker/libnetwork/blob/master/docs/design.md.
6 https://etcd.io.
7 https://github.com/containernetworking/cni.

Cluster Computing

123

https://mvapich.cse.ohio-state.edu/benchmarks/
http://icl.cs.utk.edu/hpcc/
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://etcd.io
https://github.com/containernetworking/cni

use rankfiles with specific mappings between processes and

cores to ensure a uniform distribution. For experiment

(Sect. 4.4), the rankfiles are derived from the formulas

presented in Sect. 3. In addition, in our experiments, we

restrict the resources to Docker and Singularity-in-

stance ? cgroups containers by setting cpuset-cpus

and cpuset-mems parameters and specifying cpus and

mems options within the cgroup file used by apply-

cgroups, respectively.

4.1.7 Performance analysis tools

We use Paraver8 to profile MPI usage patterns of the

benchmarks. We capture performance event counters and

operating system metrics (through Perf9), such as context-

switches, migrations, and memory accesses, from repre-

sentative executions of the benchmarks and we use them to

explain the obtained performance results.

4.2 Impact of containerization on a single
container per host deployment scenario
with different network fabrics

We use the MPI_Alltoallv Latency Test from the OSU

benchmark suite to evaluate the global latency of ranks

sending and receiving data. This test spreads 128 MPI

processes across four hosts, and then all of them send data

to and receive data from all the others. In addition, we use

the OSU Bidirectional Bandwidth Test to measure the

maximum aggregate bandwidth between two adjacent

nodes that send out a fixed number of back-to-back mes-

sages between them. As both tests perform a large number

of iterations and already provide an averaged result, we

display the outcome of a single execution for each sample.

Figures 2, 3 and 4 show the performance of different

containerization technologies with several network fabrics

and protocols. As expected, the RDMA protocol has higher

performance and lower latency than IPoIB, and those two

perform better than TCP/IP in all the container networking

modes.

Default Singularity reaches the same performance as

bare-metal in all the scenarios, given that running on

default Singularity is equivalent to running processes on

bare-metal, as all the container processes on a given host

reside in the same namespaces (network, IPC, etc.) as the

host.

For Docker and Singularity-instance, underlay container

networking approaches, such as host networking and

MACVLAN networking, also achieve comparable perfor-

mance to bare-metal experiments. With host networking,

the single container shares the same network namespace as

the host. With MACVLAN networking, a container gets

unique MAC and IP addresses and is exposed directly to

the underlay network. In contrast, overlay networking

brings explicit latency increase and bandwidth degradation

for Docker and Singularity-instance. This occurs because

all the communications among containers must be encap-

sulated through a tunnel, and this additional encapsulation

incurs overhead (i.e., reduces the amount of application

data sent on each network packet). For TCP/IP over Eth-

ernet, latency increments are more significant with small

messages, whereas bandwidth degradation occurs for all

message sizes. For example, Docker overlay networking

shows 244% (8B), 9% (1 MB) latency increase and 70%

(8B), 49% (1 MB) bandwidth degradation compared to

bare-metal. For IPoIB, overlay networking shows

Table 1 Networking mode and protocol settings

Containerization Networking mode Protocols

Bare-metal(B) Host TCP/IP; IPoIB; RDMA

Docker(D) Host Overlay MACVLAN TCP/IP; IPoIB; RDMA TCP/IP; IPoIB; RDMA TCP/IP

Singularity- instance(SI) Host Overlay MACVLAN TCP/IP; IPoIB; RDMA TCP/IP; IPoIB; RDMA TCP/IP

Singularity(S) Host TCP/IP; IPoIB; RDMA

Table 2 Container granularity settings

Containerization No. of containers per host (NC) No. of processes per container (NP)

Docker (D) 1, 2, 4, 8, 16, 32 32, 16, 8, 4, 2, 1

Singularity-instance (SI) 1, 2, 4, 8, 16, 32 32, 16, 8, 4, 2, 1

Singularity-instance ? cgroups (SI ? CG) 1, 2, 4, 8, 16, 32 32, 16, 8, 4, 2, 1

8 https://tools.bsc.es/paraver.
9 http://man7.org/linux/man-pages/man1/perf.1.html.

Cluster Computing

123

https://tools.bsc.es/paraver
http://man7.org/linux/man-pages/man1/perf.1.html

significant latency increments (especially with large mes-

sages) and bandwidth degradation with all sizes compared

to bare-metal. In particular, Docker presents 26% (8B),

211% (1 MB) latency increase and 70% (8B), 74% (1 MB)

degradation on bandwidth. Both TCP/IP and IPoIB can

benefit from an increment of the MTU (Maximum Trans-

mission Unit) value to attenuate the incurred overhead by

overlay networking for communication-intensive

workloads.

On the other side, overlay networking on RDMA over

InfiniBand has negligible performance degradation for all

the containerization technologies on bandwidth and latency

regarding the bare-metal baseline. This is because the data

communications among processes are performed through

RDMA and the overlay network connection is only used

for initiating and setting up the nodes.

4.3 Impact of container granularity on multi-
container per host deployment scenarios
with different network fabrics

In this section, we evaluate the impact of container gran-

ularity on multi-container deployments. First, we use again

the MPI_Alltoallv Latency Test from the OSU benchmark

through different message sizes. Then, we use the HPCC

benchmark suite to assess how different MPI communi-

cation patterns are impacted by container granularity.

HPCC results are derived from the average of ten execu-

tions, and we plot the median value and the standard

deviation after eliminating outliers that lie beyond 1.5

times the interquartile range. As justified before, all the

multi-container experiments use overlay networks.

4.3.1 OSU MPI_Alltoallv latency

Figures 5, 6 and 7 show the MPI_Alltoallv latency of

multi-container deployments for Docker and Singularity-

1 2 4 8 16 32 6412
8

0

10k

20k

30k

40k

25
6

51
2 1K 2K 4K 8K 16

K
0

100k
200k
300k
400k

32
K

64
K
12

8K
25

6K
51

2K 1M
0

10M

20M

30M

host-TCP/IP-B host-TCP/IP-D host-TCP/IP-SI host-TCP/IP-S
overlay-TCP/IP-D overlay-TCP/IP-SI macvlan-TCP/IP-D macvlan-TCP/IP-SI

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y

(μ
s)

(a) OSU MPI Alltoallv Latency

1 2 4 8 16 32 6412
8

0

20

40

60

25
6
51

2 1K 2K 4K 8K16
K
32

K
0

50
100
150
200

64
K
12

8K
25

6K
51

2K 1M 2M 4M
0

50
100
150
200
250

host-TCP/IP-B host-TCP/IP-D host-TCP/IP-SI host-TCP/IP-S
overlay-TCP/IP-D overlay-TCP/IP-SI macvlan-TCP/IP-D macvlan-TCP/IP-SI

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

B
an

dw
id

th
 (

M
B
/s

)

(b) OSU Bidirectional Bandwidth

Fig. 2 TCP/IP over Ethernet: Latency (a) and bandwidth (b) for scenario SCE1 with different networking modes

Cluster Computing

123

instance with several network fabrics and protocols,

namely TCP/IP, IPoIB, and RDMA.

For small and medium messages, we observe that sce-

nario SCE1 has the lowest latency and running more

containers per host increases the latency. This increment is

related with the number of containers per host only for

TCP/IP and IPoIB. In particular, the latency on Docker

with message size 8B in scenarios SCE2–SCE6 over TCP/

IP, IPoIB, and RDMA has increased by 2%–5%–6%–7%–

9%, 8%–13%–16%–17%–18%, 64%–13%–42%–24%–

52% compared to SCE1, respectively.

For large messages, TCP/IP has similar performance

with different container granularity. However, for IPoIB

and RDMA, scenarios with several containers per host

(SCE2–SCE6) show up to 19% and 10% lower latency than

SCE1 for IPoIB and RDMA, respectively. This is because

the memory latency becomes a critical factor when the

network latency is not the dominant bottleneck, as occurs

in high-speed networks. As shown in Fig. 8, which depicts

relevant performance counters of osu-alltoallv for IPoIB

and RDMA with large message size (1 MB) on Docker,

scenarios SCE2–SCE6 show better cache utilization, fewer

local memory accesses, and fewer remote memory accesses

than SCE1. These are consequences of the scheduling of

the containers (i.e. the cgroups) and their corresponding

MPI processes. With scenarios SCE2–SCE6 running more

containers, each of them runs fewer processes, tending to a

single-level scheduling (i.e. at the cgroup level), which is

simpler and allows exploiting processor affinity better, thus

improving the cache usage and enforcing local memory

accesses.

The memory contention also affects the performance on

IPoIB and RDMA. In order to measure the memory con-

tention that occurs on osu-alltoallv with large message size,

we calculate the memory contention ratio among cores by

using the model proposed by Tudor and Teo [23]. Like

those authors, we are not interested in the absolute value of

stall cycles, but on how stall cycles grow relative to a

baseline value on one core (where there is no contention)

due to memory contention among cores. Consequently, we

derive the memory contention ratio x as the stall cycles

due to contention divided by the useful work cycles

1 2 4 8 16 32 6412
8

0
2k
4k
6k
8k

10k

25
6

51
2 1K 2K 4K 8K 16

K
0

10k

20k

30k

32
K

64
K
12

8K
25

6K
51

2K 1M

0

1M

2M

3M

host-IPoIB-B host-IPoIB-D host-IPoIB-SI host-IPoIB-S
overlay-IPoIB-D overlay-IPoIB-SI

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y

(μ
s)

(a) OSU MPI Alltoallv Latency

1 2 4 8 16 32 6412
8

0
20
40
60
80

100

25
6
51

2 1K 2K 4K 8K16
K
32

K
0

500
1000
1500
2000
2500

64
K
12

8K
25

6K
51

2K 1M 2M 4M
0

1000

2000

3000

host-IPoIB-B host-IPoIB-D host-IPoIB-SI host-IPoIB-S
overlay-IPoIB-D overlay-IPoIB-SI

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

B
an

dw
id

th
 (

M
B
/s

)

(b) OSU Bidirectional Bandwidth

Fig. 3 TCP/IP over Infiniband: Latency (a) and bandwidth (b) for scenario SCE1 with different networking modes

Cluster Computing

123

(including stall cycles that are not due to resource con-

tention). Figure 9 presents the average memory contention

ratio of osu-alltoallv for IPoIB and RDMA with message

size 1 MB on Docker, where a higher x means more

memory contention. As shown in the figure, the memory

contention ratio decreases when increasing the number of

containers. This is because, as described previously, using

more containers decreases the number of accesses to the l3

cache and the memory, which reduces the contention.

4.3.2 HPCC MPI communication-intensive workloads

RandomRing Bandwidth benchmark features a number of

communication patterns (e.g., non-blocking and blocking

concurrent transfers). In particular, it performs MPI_Isend

and MPI_Irecv to left and right partner, as well as

MPI_Sendrecv, and saves the minimum of both latencies

for all rings. We show the results for different container

granularity in Figs. 10a, 11a, and 12a. Containerization

technologies using overlay networks present significant

degradation for TCP/IP and, especially, IPoIB regarding

bare-metal and Singularity. As discussed in the previous

section, this is due to the overhead introduced by the

encapsulation of network packets.

For TCP/IP and IPoIB, increasing the number of con-

tainers per host does not have a noticeable impact on the

bandwidth. This is because the bottleneck for TCP/IP and

IPoIB comes from the interconnection between nodes,

which is far slower than the interconnection between

containers in the same node or between processes in the

same container (i.e., shared-memory). This can be con-

firmed in Fig. 13a and b. However, for RDMA, multi-

container scenarios SCE2–SCE6 have 17%–23%–25%–

26%–27% performance degradation in the bandwidth

regarding SCE1. This occurs because the interconnection

between nodes on RDMA is as fast as the shared-memory

communication within a container as shown in Fig. 13c.

Therefore, the interconnection between containers in the

same node becomes the performance bottleneck, and this

increases with the number of containers per node.

G-PTRANS and G-RandomAccess present different

point-to-point communication patterns and use different

1 2 4 8 16 32 6412
8

0
50

100
150
200
250
300

25
6

51
2 1K 2K 4K 8K 16

K
0

1000
2000
3000
4000
5000
6000

32
K

64
K
12

8K
25

6K
51

2K 1M
0

100k
200k
300k
400k

host-InfiniBand-B host-InfiniBand-D host-InfiniBand-SI host-InfiniBand-S
overlay-InfiniBand-D overlay-InfiniBand-SI

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y

(μ
s)

(a) OSU MPI Alltoallv Latency

1 2 4 8 16 32 6412
8

0
200
400
600
800

1000

25
6
51

2 1K 2K 4K 8K16
K
32

K
0

5k

10k

15k

20k

64
K
12

8K
25

6K
51

2K 1M 2M 4M
0

5k

10k

15k

20k

host-InfiniBand-B host-InfiniBand-D host-InfiniBand-SI
host-InfiniBand-S overlay-InfiniBand-D overlay-InfiniBand-SI

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

B
an

dw
id

th
 (

M
B
/s

)

(b) OSU Bidirectional Bandwidth

Fig. 4 RDMA over Infiniband: Latency (a) and bandwidth (b) for scenario SCE1 with different networking modes

Cluster Computing

123

message sizes. In particular, G-PTRANS performs mainly

blocking concurrent transfers (e.g., MPI_Sendrecv) with

message size 2 MB. G-RandomAccess uses mostly small-

sized non-blocking communication (e.g., MPI_Isend,

MPI_Irecv, MPI_Wait). Thus, G-PTRANS is mainly a

network-bandwidth-intensive benchmark that behaves

similar to RandomRing. In particular, as shown in

Figs. 10b, 11b, and 12b, Docker multi-container scenarios

SCE2–SCE6 incur 7%–14%–14%–16%–17% performance

degradation on RDMA compared to SCE1. On the other

side, G-RandomAccess accesses data from all the pro-

cesses. As shown in Figs. 10c, 11c, and 12c, there is an

increasing performance degradation with finer-grained

containers. In particular, Docker multi-container scenarios

SCE2–SCE6 have 6%–11%–13%–15%–14%, 12%–16%–

21%–22%–21%, and 8%–23%–25%–34%–38% perfor-

mance degradation regarding SCE1, for TCP/IP, IPoIB,

and RDMA, respectively. This occurs because G-Ran-

domAccess performs a high number of MPI invocations,

and when increasing the number of containers a significant

part of them involve inter-container communications

instead of intra-container (which are faster). This is espe-

cially relevant for RDMA, given that the memory latency

is a critical parameter for the performance of

G-RandomAccess.

G-FFT mainly uses MPI_Alltoall communication pat-

tern to transfer large data, and it is also intensive on

memory bandwidth and computation. As shown in

Figs. 10d, 11d, and 12d, the performance of multi-con-

tainer scenarios SCE2–SCE6 is similar on TCP/IP and

IPoIB, whereas on RDMA they show some performance

degradation compared to SCE1 (e.g., around 8% in average

on Docker). Whereas the performance on TCP/IP (and

IPoIB) is mostly limited by the network bandwidth, the

performance on RDMA depends on the memory latency,

which is worse when running multiple containers per host.

However, this incurs low degradation due to the low

number of MPI invocations performed by G-FFT.

1 2 4 8 16 32 6412
8

0
10k
20k
30k
40k
50k

25
6

51
2 1K 2K 4K 8K 16

K
0

100k
200k
300k
400k

32
K

64
K
12

8K
25

6K
51

2K 1M
0

5M
10M
15M
20M
25M
30M

overlay-TCP/IP-SCE1 overlay-TCP/IP-SCE2 overlay-TCP/IP-SCE3 overlay-TCP/IP-SCE4
overlay-TCP/IP-SCE5 overlay-TCP/IP-SCE6

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y

(μ
s)

(a) MPI Alltoallv latency on Docker

1 2 4 8 16 32 6412
8

0
10k
20k
30k
40k
50k

25
6

51
2 1K 2K 4K 8K 16

K
0

100k
200k
300k
400k

32
K

64
K
12

8K
25

6K
51

2K 1M
0

5M
10M
15M
20M
25M
30M

overlay-TCP/IP-SCE1 overlay-TCP/IP-SCE2 overlay-TCP/IP-SCE3 overlay-TCP/IP-SCE4
overlay-TCP/IP-SCE5 overlay-TCP/IP-SCE6

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y

(μ
s)

(b) MPI Alltoallv latency on Singularity-instance

Fig. 5 TCP/IP over Ethernet: MPI_Alltoallv latency for multi-container deployment scenarios (SCE1–SCE6)

Cluster Computing

123

4.3.3 HPCC MPI throughput workloads

EP-STREAM characterizes the memory bandwidth, while

EP-DGEMM stresses the computation capabilities of the

system. As shown in Figs. 14, 15 and 16, overlay net-

working does not bring explicit performance penalties due

to the low amount of interprocess communication. Simi-

larly, multi-container scenarios do not show significant

performance differences, except EP-DGEMM on SCE6. In

this scenario, EP-DGEMM on Docker (also on Singularity-

instance ? cgroup) shows noticeable performance

improvement (11%, 16%, and 7% for TCP/IP, IPoIB, and

RDMA, respectively) regarding other deployment scenar-

ios (including bare-metal). This is a consequence of the

scheduling of the containers (i.e., cgroups) and their cor-

responding MPI processes. As each container runs a single

process, this is essentially a single-level scheduling (i.e. at

the cgroup level), which is simpler and allows to exploit

processor affinity better, in a similar way to when processes

are pinned explicitly.

4.4 Impact of affinity on multi-container
per host deployment scenarios
with different network fabrics

Figures 17, 18, and 19 show the performance results of

Docker multi-container deployment scenarios with differ-

ent affinity settings for various network interconnects and

protocols. Singularity-instance shows similar results, which

have not been included due to space constraints. As dis-

cussed in Sect. 4.3, communication-intensive benchmarks

have degradation in multi-container deployment scenarios

due to the overhead of overlay communication for TCP/IP

and IPoIB. Similarly, RDMA is limited by the bandwidth

of inter-container communication. Setting affinity cannot

avoid this performance degradation. For example, enabling

affinity on G-PTRANS does not bring improvements

1 2 4 8 16 32 6412
8

0
2k
4k
6k
8k

10k
12k

25
6

51
2 1K 2K 4K 8K 16

K
0

10k

20k

30k

40k

32
K

64
K
12

8K
25

6K
51

2K 1M
0

0.5M
1M

1.5M
2M

2.5M
3M

overlay-IPoIB-SCE1 overlay-IPoIB-SCE2 overlay-IPoIB-SCE3 overlay-IPoIB-SCE4
overlay-IPoIB-SCE5 overlay-IPoIB-SCE6

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y

(μ
s)

(a) MPI Alltoallv latency on Docker

1 2 4 8 16 32 6412
8

0
2k
4k
6k
8k

10k
12k

25
6

51
2 1K 2K 4K 8K 16

K
0

10k

20k

30k

40k

32
K

64
K
12

8K
25

6K
51

2K 1M
0

0.5M
1M

1.5M
2M

2.5M
3M

overlay-IPoIB-SCE1 overlay-IPoIB-SCE2 overlay-IPoIB-SCE3 overlay-IPoIB-SCE4
overlay-IPoIB-SCE5 overlay-IPoIB-SCE6

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y

(μ
s)

(b) MPI Alltoallv latency on Singularity-instance

Fig. 6 TCP/IP over Infiniband: MPI_Alltoallv latency for multi-container deployment scenarios (SCE1–SCE6)

Cluster Computing

123

because its performance is mainly limited by the network

bandwidth.

The effectiveness of affinity in multi-container deploy-

ments depends significantly on the resource usage charac-

teristics of each benchmark. For example, restricting the

range of CPUs to be assigned to the containers can help

applications that suffer many cpu-migrations and context-

switches. Restricting the memory access of the containers

to the NUMA node where their CPUs belong can help

applications presenting an elevated number of remote

memory accesses.

CPU and memory affinity have considerably increased

the performance of EP-DGEMM in all the scenarios.

Specifically, the speedup in CPU, CPUMEM, and

1 2 4 8 16 32 6412
8

0
100
200
300
400
500

25
6

51
2 1K 2K 4K 8K 16

K
0

2000

4000

6000

32
K

64
K
12

8K
25

6K
51

2K 1M
0

100k

200k

300k

400k

overlay-InfiniBand-SCE1 overlay-InfiniBand-SCE2 overlay-InfiniBand-SCE3
overlay-InfiniBand-SCE4 overlay-InfiniBand-SCE5 overlay-InfiniBand-SCE6

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y

(μ
s)

(a) MPI Alltoallv latency on Docker

1 2 4 8 16 32 6412
8

0
100
200
300
400
500

25
6

51
2 1K 2K 4K 8K 16

K
0

2000

4000

6000

32
K

64
K
12

8K
25

6K
51

2K 1M
0

100k

200k

300k

400k

overlay-InfiniBand-SCE1 overlay-InfiniBand-SCE2 overlay-InfiniBand-SCE3
overlay-InfiniBand-SCE4 overlay-InfiniBand-SCE5 overlay-InfiniBand-SCE6

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y

(μ
s)

(b) MPI Alltoallv latency on Singularity-instance

Fig. 7 RDMA over Infiniband: MPI_Alltoallv latency for multi-container deployment scenarios (SCE1–SCE6)

Fig. 8 Performance event counters of osu-alltoallv for different interconnects and protocols with message size 1 MB on Docker

Cluster Computing

123

CPUMEMPIN scenarios with respect to ANY scenarios

ranges from 9%–21% (SCE2–SCE5 CPU), 18%–35%

(SCE2–SCE5 CPUMEM), and 22%–41% (SCE1–SCE6

CPUMEMPIN) on TCP/IP; 15%–26% (SCE2–SCE5

CPU), 19%–36% (SCE2–SCE5 CPUMEM), and 21%–

42% (SCE1–SCE6 CPUMEMPIN) on IPoIB; and 17%–

22% (SCE2–SCE5 CPU), 21%–37% (SCE2–SCE5 CPU-

MEM), and 31%–43% (SCE1–SCE6 CPUMEMPIN) on

RDMA. These performance increments are directly related

with the container granularity, as finer-grained deploy-

ments provide better speedup on CPU and CPUMEM. This

happens because CPU affinity restricts the number of

assigned CPUs within each container, hence the processes

running in finer-grained containers have less available

CPUs where they could be migrated. Setting CPU affinity

reduces the number of context-switches and cpu-migrations

in CPUX scenarios, while setting memory affinity restricts

as well the remote memory accesses in CPUMEMX

scenarios.

Benchmarks with different memory usage characteris-

tics can benefit from setting affinity. This is more explicit

in RDMA scenarios, where the computation and memory

latency also become critical parameters instead of only the

network interconnect. In particular, G-FFT on RDMA has

significant performance improvement, 18%–32% (SCE2–

SCE5 CPUMEM) and 16%–32% (SCE1–SCE6 CPU-

MEMPIN). As the all-to-all communication on RDMA is

considerably faster than on TCP/IP, the overall perfor-

mance is impacted then by the memory latency. Therefore,

G-FFT on RDMA benefits from multi-container deploy-

ments with memory affinity which enforces local memory

accesses.

Noticeably, setting affinity decreases the performance of

G-RandomAccess on TCP/IP, up to 21% (CPU), 22%

(CPUMEM), and 24% (CPUMEMPIN). By analyzing the

results in Figs. 20 and 21, we found out that the actual

cause of the performance degradation of CPUMEMPIN

was the load imbalance among processes. Figure 20, which

depicts the time spent in MPI communication patterns of

Fig. 9 Average memory contention ratio of osu-alltoallv for different

interconnects and protocols with message size 1 MB on Docker

SCE1SCE2SCE3SCE4SCE5SCE6
0

0.001

0.002

0.003

0.004

B D SI SI+CG S

G
B
/s

(a) RandomRing Bandwidth

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.1
0.2
0.3
0.4
0.5

B D SI SI+CG S

G
B
/s

(b) G-PTRANS

SCE1SCE2SCE3SCE4SCE5SCE6
0

0.002

0.004

0.006

0.008

B D SI SI+CG S

G
U

P/
s

(c) G-RandomAccess

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.5

1

1.5

B D SI SI+CG S

G
FL

O
P/

s

(d) G-FFT

Fig. 10 TCP/IP over Ethernet: Impact of container granularity in HPCC MPI communication workloads

Cluster Computing

123

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.05
0.1

0.15
0.2

0.25

B D SI SI+CG S

G
B
/s

(a) RandomRing Bandwidth

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0
5

10
15
20

B D SI SI+CG S

G
B
/s

(b) G-PTRANS

SCE1SCE2SCE3SCE4SCE5SCE6
0

0.002

0.004

0.006

0.008

B D SI SI+CG S

G
U

P/
s

(c) G-RandomAccess

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

10
20
30
40
50

B D SI SI+CG S

G
FL

O
P/

s

(d) G-FFT

Fig. 11 TCP/IP over InfiniBand: Impact of container granularity in HPCC MPI communication workloads

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.1
0.2
0.3
0.4

B D SI SI+CG S

G
B
/s

(a) RandomRing Bandwidth

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

10

20

30

B D SI SI+CG S

G
B
/s

(b) G-PTRANS

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.1

0.2

0.3

0.4

B D SI SI+CG S

G
U

P/
s

(c) G-RandomAccess

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

20

40

60

B D SI SI+CG S

G
FL

O
P/

s

(d) G-FFT

Fig. 12 RDMA over InfiniBand: Impact of container granularity in HPCC MPI communication workloads

Cluster Computing

123

G-RandomAccess for TCP/IP interconnect with ANY and

CPUMEMPIN affinities on Docker scenario SCE1, shows

that the time spent on MPI_Waitany and especially

MPI_Barrier for CPUMEMPIN is much higher than ANY.

Thus, this requires us to generate the MPI profile by

duration time of the experiments.

Figure 21, which shows a detailed MPI duration profile

for all 128 processes, reveals that in ANY, the scheduler

can better balance the load among processes and reduce

their wait time in the barrier. Contrariwise, in CPU-

MEMPIN, some processes incur high wait latency that

slows down the entire application. Given the random nature

of the data accesses in G-RandomAccess benchmark, some

processes might receive more requests than others, but as

they are pinned to specific cores they cannot take advan-

tage of other cores which are currently idle, thus causing

the busy-waiting of other processes and introducing more

latency. ANY affinity can mitigate this problem by

1 2 4 8 16 32 64 128
256
512
1K 2K 4K 8K 16K
32K
64K
128K
256K
512K
1M 2M

0
2k
4k
6k
8k

10k

Inter-node Inter-container
Intra-container Inter-container-differentsocket
Intra-container-differentsocket

B
an

dw
id

th
(M

B
/s

)

(a) TCP/IP on Ethernet

1 2 4 8 16 32 64 128
256
512
1K 2K 4K 8K 16K
32K
64K
128K
256K
512K
1M 2M

0
2k
4k
6k
8k

10k

Inter-node Inter-container
Intra-container Inter-container-differentsocket
Intra-container-differentsocket

B
an

dw
id

th
(M

B
/s

)

(b) TCP/IP on InfiniBand

1 2 4 8 16 32 64 128
256
512
1K 2K 4K 8K 16K
32K
64K
128K
256K
512K
1M 2M

0
5k

10k
15k
20k
25k

Inter-node Inter-container
Intra-container Inter-container-differentsocket
Intra-container-differentsocket

B
an

dw
id

th
(M

B
/s

)

(c) RDMA on InfiniBand

Fig. 13 Maximum aggregate bandwidth of inter-node, inter-container, and intra-container communications with different network protocols

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.5
1

1.5
2

2.5

B D SI SI+CG S

G
B
/s

(a) EP-STREAM

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

10

20

30

B D SI SI+CG S

G
FL

O
P/

s

(b) EP-DGEMM

Fig. 14 TCP/IP over Ethernet: Impact of container granularity in HPCC MPI throughput workloads

Cluster Computing

123

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.5
1

1.5
2

2.5

B D SI SI+CG S

G
B
/s

(a) EP-STREAM

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

10

20

30

B D SI SI+CG S

G
FL

O
P/

s

(b) EP-DGEMM

Fig. 15 TCP/IP over InfiniBand: Impact of container granularity in HPCC MPI throughput workloads

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.5
1

1.5
2

2.5

B D SI SI+CG S

G
B
/s

(a) EP-STREAM

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

10

20

30

B D SI SI+CG S

G
FL

O
P/

s

(b) EP-DGEMM

Fig. 16 RDMA over InfiniBand: Impact of container granularity in HPCC throughput workloads

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

10

20

30

ANY CPU CPUMEM CPUMEMPIN

G
FL

O
P/

s

(a) EP-DGEMM

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.1
0.2
0.3
0.4
0.5

ANY CPU CPUMEM CPUMEMPIN

G
B
/s

(b) G-PTRANS

SCE1SCE2SCE3SCE4SCE5SCE6
0

0.002

0.004

0.006

ANY CPU CPUMEM CPUMEMPIN

G
U

P/
s

(c) G-RandomAccess

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.5

1

1.5

ANY CPU CPUMEM CPUMEMPIN

G
FL

O
P/

s

(d) G-FFT

Fig. 17 TCP/IP over Ethernet: Impact of affinity for multi-container deployments of HPCC MPI workloads

Cluster Computing

123

allowing to migrate processes to achieve better load bal-

ance. However, enabling affinity can help to improve the

performance on RDMA, in particular, 7%–50% (SCE2–

SCE5 CPU), 0–43% (SCE2–SCE5 CPUMEM), and 0–43%

(SCE1–SCE6 CPUMEMPIN). With RDMA, memory

latency becomes relevant for performance, and for this

reason, restricting the remote memory accesses through

affinity can reduce the degradation.

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

10

20

30

ANY CPU CPUMEM CPUMEMPIN

G
FL

O
P/

s

(a) EP-DGEMM

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0
2
4
6
8

ANY CPU CPUMEM CPUMEMPIN

G
B
/s

(b) G-PTRANS

SCE1SCE2SCE3SCE4SCE5SCE6
0

0.002

0.004

0.006

0.008

ANY CPU CPUMEM CPUMEMPIN

G
U

P/
s

(c) G-RandomAccess

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

10

20

30

ANY CPU CPUMEM CPUMEMPIN

G
FL

O
P/

s
(d) G-FFT

Fig. 18 TCP/IP over InfiniBand: Impact of affinity for multi-container deployments of HPCC MPI workloads

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

10

20

30

ANY CPU CPUMEM CPUMEMPIN

G
FL

O
P/

s

(a) EP-DGEMM

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

10

20

30

ANY CPU CPUMEM CPUMEMPIN

G
B
/s

(b) G-PTRANS

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

0.1

0.2

0.3

ANY CPU CPUMEM CPUMEMPIN

G
U

P/
s

(c) G-RandomAccess

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0

20

40

60

ANY CPU CPUMEM CPUMEMPIN

G
FL

O
P/

s

(d) G-FFT

Fig. 19 RDMA over InfiniBand: Impact of affinity for multi-container deployments of HPCC MPI workloads

Cluster Computing

123

4.5 Performance insights on multi-container
per host deployment scenarios
with different network fabrics in large-scale
clusters

Experiments in previous sections were run in a testbed with

five nodes (1 master ? 4 workers). Nevertheless, we

anticipate that most of the performance insights obtained in

those sections would still hold for multi-container

deployment scenarios with different network fabrics in a

large-scale cluster.

First, we expect default Singularity to have close to

bare-metal performance because it can use an underlay

networking approach. However, it cannot support multi-

container deployments.

Second, we expect Docker and Singularity-instance,

which can support multi-container deployments by means

of an overlay networking approach, to incur noticeable

performance degradation for MPI communication

Fig. 20 Time spent in MPI

communication patterns of

G-RandomAccess for TCP/IP

interconnect with ANY and

CPUMEMPIN affinity on

Docker-SCE1

Fig. 21 MPI profile of G-RandomAccess for TCP/IP interconnect with ANY (top) and CPUMEMPIN (bottom) affinity on Docker-SCE1

Cluster Computing

123

workloads. This degradation is expected to increase as a

function of the number of nodes, as this will increase the

proportion of inter-node communications. The latter can be

appreciated in Fig. 22, which shows the distribution of

invocations to function alltoallv in the OSU alltoallv

benchmark among inter-container, intra-container, and

inter-node communications with different number of nodes

and deployment scenarios. Note that this benchmark

communicates all the processes so the impact might vary

depending on the communication pattern for other appli-

cations. It will basically depend on their ratio among inter-

container, intra-container, and inter-node communications.

Furthermore, the degradation will be more noticeable for

TCP on Ethernet and on Infiniband, as they provide much

worse performance than RDMA (check inter-node band-

width in Fig. 13) and the performance difference grows

rapidly as the number of nodes increases [24].

As also shown in Fig. 22, fine-grain multi-container

deployments will transform intra-node communications

using shared-memory on inter-container communications.

Although Fig. 13 showed that inter-container communi-

cations are slower, this effect will be diluted in large-scale

clusters given the dominance of inter-node communica-

tions, hence multi-container deployments should show

similar behavior in terms of the performance of deploy-

ment schemes with different container granularity.

Third, although setting affinity cannot avoid the over-

head incurred by overlay networking, we expect that it can

also make a difference on MPI throughput workloads in

large-scale clusters, as the performance bottlenecks for

those applications are the computation and memory allo-

cation and not the network transfers. As shown in Fig. 23,

which displays the performance of EP-DGEMM using

multi-container deployments scenarios when running on a

testbed with 7 nodes (1 master ? 6 workers), affinity still

brings valuable performance benefits in all multi-container

deployment scenarios and network fabrics.

5 Related work

Recent works have evaluated Docker and Singularity as

candidate containerization technologies to run HPC appli-

cations [6, 25]. These works mainly focused on a single

container wrapped HPC application allocated on a single

host, but without considering different container granular-

ity and different container interconnects. Rudyy et al. [26]

discussed the execution of a given containerized HPC

application on HPC clusters, and mainly studied different

container technologies and different HPC architectures, but

did not consider different container granularity.

Zhang et al. [4, 8] studied the performance characteri-

zation of KVM and Docker for running HPC applications

on SR-IOV enabled InfiniBand clusters, and in a further

work [9], they stated that Singularity-based container

technology is ready for running MPI applications on HPC

clouds. Also in their work [13], they studied the locality

and NUMA aware MPI runtime for nested virtualization (a

combination of virtual machines and containers). These

works evaluated different aspects of using containerization

for HPC applications, but none of them considered

deployment schemes with different container granularity.

Chung et al. [11] evaluated Docker containers for

deploying MPI applications. They proposed deployment

scenarios with different container granularity. However,

this work only tested computing intensive and data inten-

sive applications and did not consider InfiniBand networks.

Their further work [12] considered Docker on InfiniBand

and highlighted the benefits of using InfiniBand with

Docker. This work showed the results of several bench-

marks, but did not consider affinity or different network

fabrics and protocols.

Saha et al. [7] evaluated the performance of running

HPC applications using Docker Swarm. Whereas they

considered a different number of MPI ranks distributed in

multiple containers across multiple hosts, their latency

experiments only include a fixed message size (e.g., 65536

bytes). Their results showed that deploying one rank per

container had worse performance because they ignored the

binding policy.

Saha et al. [10] enabled the orchestration of MPI

applications with Apache Mesos, and provided a policy-

based approach for deploying MPI ranks on containers with

different granularity. However, this policy is based on

TCP/IP over Ethernet, and does not consider InfiniBand.

Beltre et al. [2] evaluated Kubernetes to run MPI appli-

cations in clouds. They compared TCP/IP and InfiniBand,

but they did not include multi-container deployments.

In our previous work [16], we enabled the intercon-

nection across hosts through TCP/IP protocol between

Singularity instances running Big Data applications.

Fig. 22 Distribution of invocations to alltoallv among inter-container,

intra-container, and inter-node communications on a different number

of nodes (each group shows the percentage for 2, 4, and 6 worker

nodes, respectively)

Cluster Computing

123

Moreover, in our latest work [3], we performed a perfor-

mance analysis of multi-container deployments with dif-

ferent container granularity for a number of HPC

applications, but only with a single host and the TCP/IP

protocol.

Existing literature shows approaches and results of

deploying a single container per host using Docker or

Singularity in the cloud, and most of the work considers

using the orchestration thus ignoring the original impact of

the network fabric and protocols. Moreover, there still

exists a gap in terms of multi-container per host deploy-

ments evaluation on an InfiniBand cluster which considers

the performance of different container granularity and

enhanced affinity settings using different network fabrics

and protocols for HPC workloads.

6 Conclusion and future work

This paper has presented a performance characterization of

different containerization technologies (including Docker

and Singularity) for HPC workloads on InfiniBand clusters

from four dimensions, namely network interconnects (in-

cluding Ethernet and InfiniBand) and protocols (including

TCP/IP and RDMA), networking modes (including host,

MACVLAN, and overlay networking), and processor and

memory affinity. We focus especially on understanding

how the container granularity and its combination with

processor and memory affinity impact the performance

when using different networking modes. We used OSU

benchmarks to measure the network performance consid-

ering different message sizes, as well as HPCC workloads

that exhibit different communication patterns, memory

accesses, and computation.

We concluded that default Singularity has close to bare-

metal performance because it can use an underlay net-

working approach. However, it does not support fine-grain

multi-container deployments, which are only possible with

Docker and Singularity-instance. These use an overlay

networking approach, which incurs noticeable performance

degradation for MPI communication workloads, and show

similar behavior in terms of the performance of deploy-

ment schemes with different container granularity and

affinity. In particular, fine-grain multi-container deploy-

ments transform intra-node communications using shared-

memory on inter-container communications, which could

increase the network latency of some MPI operations, but

can alleviate the latency and contention of memory

accesses when these are the performance bottleneck.

Setting affinity cannot avoid the overhead incurred by

overlay networking, but it can make a difference on MPI

throughput workloads and even MPI communication

workloads where the computation and memory allocation

have replaced the network transfers as the performance

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0
5

10
15
20
25
30
35

ANY CPU CPUMEM CPUMEMPIN

G
FL

O
P/

s

(a) TCP/IP over Ethernet

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0
5

10
15
20
25
30
35

ANY CPU CPUMEM CPUMEMPIN

G
FL

O
P/

s

(b) TCP/IP over InfiniBand

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6
0
5

10
15
20
25
30
35

ANY CPU CPUMEM CPUMEMPIN

G
FL

O
P/

s

(c) RDMA over InfiniBand

Fig. 23 Performance of EP-DGEMM using multi-container deployments scenarios with different network fabrics when running on a testbed with

7 nodes (1 master ? 6 workers)

Cluster Computing

123

bottlenecks (e.g. when running on RDMA). In those sce-

narios, we have shown how processor and memory affinity

can reduce the number of kernel-level cycles spent due to

the process preemption (i.e., avoid cpu-migrations and

context-switches) and due to the system calls (i.e., exploit

locality in data accessing).

In the future, these insights about the performance of

multi-container deployments on InfiniBand clusters, espe-

cially those regarding the impact of the container granu-

larity and affinity with different networking modes, can be

employed to derive placement policies when deploying

HPC workloads which can get better utilization of the

resources while maintaining application performance.

Those policies could be integrated in traditional HPC job

schedulers, such as Slurm,10 which have also already

started to support containers, as well as, new schedulers for

HPC workloads with native containerization support, such

as the Kubernetes native batch scheduling system (i.e.,

Volcano11). Both approaches would allow integrating our

deployment schemes, namely fine-grained container gran-

ularity, affinity, and overlay networking, with the tradi-

tional HPC scheduling capabilities and QoS requirements

supported by those schedulers.

Acknowledgements We thank Lenovo for providing the testbed to

run the experiments in this paper. This work was partially supported

by Lenovo as part of Lenovo-BSC collaboration agreement, by the

Spanish Government under contract PID2019-107255GB-C22, and

by the Generalitat de Catalunya under contract 2017-SGR-1414 and

under Grant No. 2020 FI-B 00257.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer,

T., Epema, D.: Performance analysis of cloud computing services

for many-tasks scientific computing. IEEE Trans. Parallel Distrib.

Syst. 22(6), 931–945 (2011). https://doi.org/10.1109/TPDS.2011.

66

2. Beltre, A.M., Saha, P., Govindaraju, M., Younge, A., Grant, R.E.:

Enabling HPC workloads on cloud infrastructure using Kuber-

netes container orchestration mechanisms. In: Proceedings of

CANOPIE-HPC 2019: 1st International Workshop on Containers

and New Orchestration Paradigms for Isolated Environments in

HPC, pp. 11–20 (2019). https://doi.org/10.1109/CANOPIE-

HPC49598.2019.00007

3. Liu, P., Guitart, J.: Performance comparison of multi-container

deployment schemes for HPC workloads: an empirical study.

Journal of Supercomputing (2020). https://doi.org/10.1007/

s11227-020-03518-1

4. Zhang, J., Lu, X., Panda, D.K.: High performance MPI library for

container-based HPC cloud on InfiniBand clusters. In: 45th

International Conference on Parallel Processing (ICPP),

pp. 268–277. IEEE (2016). https://doi.org/10.1109/ICPP.2016.38

5. Ibrahim, K.Z., Hofmeyr, S., Iancu, C.: The case for partitioning

virtual machines on multicore architectures. IEEE Trans. Parallel

Distrib. Syst. 25(10), 2683–2696 (2014). https://doi.org/10.1109/

TPDS.2013.242

6. Arango, C., Dernat, R., Sanabria, J.: Performance evaluation of

container-based virtualization for high performance computing

environments. CoRR (2017). arXiv:1709.10140

7. Saha, P., Beltre, A., Uminski, P., Govindaraju, M.: Evaluation of

Docker Containers for Scientific Workloads in the Cloud. In:

Proceedings of Practice and Experience on Advanced Research

Computing (PEARC18). ACM, New York (2018). https://doi.org/

10.1145/3219104.3229280

8. Zhang, J., Lu, X., Panda, D.K.: Performance characterization of

hypervisor-and container-based virtualization for HPC on SR-

IOV enabled infiniband clusters. In: Proceedings of 30th Inter-

national on Parallel and Distributed Processing Symposium

(IPDPS16), pp. 1777–1784. IEEE (2016). https://doi.org/10.1109/

IPDPSW.2016.178

9. Zhang, J., Lu, X., Panda, D.K.: Is singularity-based container

technology ready for running MPI applications on HPC clouds?

In: Proceedings of 10th International Conference on Utility and

Cloud Computing (UCC17), pp. 151–160. ACM, New York

(2017). https://doi.org/10.1145/3147213.3147231

10. Saha, P., Beltre, A., Govindaraju, M.: Scylla: a mesos framework

for container based MPI jobs. CoRR (2019). arXiv:1905.08386

11. Chung, M.T., Quang-Hung, N., Nguyen, M.T., Thoai, N.: Using

Docker in high performance computing applications. In: Pro-

ceedings of 6th International Conference on Communications and

Electronics (ICCE16), pp. 52–57. IEEE (2016). https://doi.org/

10.1109/CCE.2016.7562612

12. Chung, M.T., Le, A., Quang-Hung, N., Nguyen, D., Thoai, N.:

Provision of Docker and InfiniBand in high performance com-

puting. In: Proceedings of the 2016 International Conference on

Advanced Computing and Applications, ACOMP16,

pp. 127–134. IEEE (2016). https://doi.org/10.1109/ACOMP.

2016.027

13. Zhang, J., Lu, X., Panda, D.K.: Designing locality and NUMA

aware MPI runtime for nested virtualization based HPC cloud

with SR-IOV enabled InfiniBand. SIGPLAN Not. 52(7), 187–200
(2017). https://doi.org/10.1145/3140607.3050765

14. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific

containers for mobility of compute. PLoS ONE 12(5), e0177459
(2017). https://doi.org/10.1371/journal.pone.0177459

15. HPC Wire: Sylabs releases singularity 3.0 container platform.

Cites AI Support (2018). https://www.hpcwire.com/2018/10/08/

sylabs-releases-singularity-3-0-container-platform-cites-ai-

support/

16. Sauvanaud, C., Dholakia, A., Guitart, J., Kim, C., Mayes, P.: Big

data deployment in containerized infrastructures through the

interconnection of network namespaces. Softw. Pract. Exp. 50(7),
1087–1113 (2020). https://doi.org/10.1002/spe.2793

10 https://slurm.schedmd.com/containers.html.
11 https://volcano.sh/en/.

Cluster Computing

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TPDS.2011.66
https://doi.org/10.1109/TPDS.2011.66
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00007
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00007
https://doi.org/10.1007/s11227-020-03518-1
https://doi.org/10.1007/s11227-020-03518-1
https://doi.org/10.1109/ICPP.2016.38
https://doi.org/10.1109/TPDS.2013.242
https://doi.org/10.1109/TPDS.2013.242
http://arxiv.org/abs/1709.10140
https://doi.org/10.1145/3219104.3229280
https://doi.org/10.1145/3219104.3229280
https://doi.org/10.1109/IPDPSW.2016.178
https://doi.org/10.1109/IPDPSW.2016.178
https://doi.org/10.1145/3147213.3147231
http://arxiv.org/abs/1905.08386
https://doi.org/10.1109/CCE.2016.7562612
https://doi.org/10.1109/CCE.2016.7562612
https://doi.org/10.1109/ACOMP.2016.027
https://doi.org/10.1109/ACOMP.2016.027
https://doi.org/10.1145/3140607.3050765
https://doi.org/10.1371/journal.pone.0177459
https://www.hpcwire.com/2018/10/08/sylabs-releases-singularity-3-0-container-platform-cites-ai-support/
https://www.hpcwire.com/2018/10/08/sylabs-releases-singularity-3-0-container-platform-cites-ai-support/
https://www.hpcwire.com/2018/10/08/sylabs-releases-singularity-3-0-container-platform-cites-ai-support/
https://doi.org/10.1002/spe.2793
https://slurm.schedmd.com/containers.html
https://volcano.sh/en/

17. Shanley, T.: InfiniBand Network Architecture. Addison Wesley,

Boston (2002)

18. Subramoni, H., Lai, P., Luo, M., Panda, D.K.: RDMA over

Ethernet: a preliminary study. In: Proceedings of the IEEE

International Conference on Cluster Computing and Workshops

(CLUSTER09), pp. 1–9 (2009). https://doi.org/10.1109/

CLUSTR.2009.5289144

19. Grun, P.: Introduction to Infiniband for end users. Technical

Report. InfiniBand Trade Association (2010)

20. Luszczek, P.R., Bailey, D.H., Dongarra, J.J., Kepner, J., Lucas,

R.F., Rabenseifner, R., Takahashi, D.: The HPC Challenge

(HPCC) benchmark suite. In: Proceedings of the 2006 ACM/

IEEE Conference on Supercomputing (SC06), pp. 213–es. ACM,

New York (2006). https://doi.org/10.1145/1188455.1188677

21. Xing, F., You, H., Lu, C.: HPC benchmark assessment with

statistical analysis. Procedia Comput. Sci. 29, 210–219 (2014).

https://doi.org/10.1016/j.procs.2014.05.019

22. HPC Advisory Council: HPCC performance benchmark and

profiling (2015). https://hpcadvisorycouncil.com/pdf/HPCC_Ana

lysis_and_Profiling_Intel_E5-2697v3.pdf

23. Tudor, B.M., Teo, Y.M.: A practical approach for performance

analysis of shared-memory programs. In: Proceedings of the 2011

IEEE International Parallel Distributed Processing Symposium,

pp. 652–663 (2011). https://doi.org/10.1109/IPDPS.2011.68

24. HPC Advisory Council: Interconnect analysis: 10GigE and Infi-

niBand in high performance computing. White Paper (2009).

https://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_

HPC.pdf

25. Younge, A.J., Pedretti, K., Grant, R.E., Brightwell, R.: A tale of

two systems: using containers to deploy HPC applications on

supercomputers and clouds. In: Proceedings of the 2017 IEEE

International Conference on Cloud Computing Technology and

Science (CloudCom), pp. 74–81 (2017). https://doi.org/10.1109/

CloudCom.2017.40

26. Rudyy, O., Garcia-Gasulla, M., Mantovani, F., Santiago, A.,

Sirvent, R., Vázquez, M.: Containers in HPC: a scalability and

portability study in production biological simulations. In: Pro-

ceedings of the 2019 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pp. 567–577 (2019). https://doi.

org/10.1109/IPDPS.2019.00066

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Peini Liu received her M.S.

degree in College of Computer

at National University of

Defense Technology (NUDT),

in 2018. She is currently a Ph.D.

student in Computer Architec-

ture Department of the Univer-

sitat Politècnica de Catalunya

(UPC) and collaborating with

Emerging Technologies for

Artificial Intelligence group of

Barcelona Supercomputing

Center (BSC). Her research

interests include virtualiza-

tion/containerization technolo-

gies, cloud native, resource management and the convergence of

HPC, Big Data and AI.

Jordi Guitart received the M.S.

and Ph.D. degrees in Computer

Science at the Universitat Poli-

tècnica de Catalunya (UPC), in

1999 and 2005, respectively.

Currently, he is an associate

professor at the Computer

Architecture Department of the

UPC and an associate researcher

at Barcelona Supercomputing

Center (BSC), where he leads

the Energy-aware and Virtual-

ization Technologies area

within the Emerging Technolo-

gies for Artificial Intelligence

group. His research interests are oriented towards green computing,

virtualization/containerization, the smart management of resources in

datacenters, and HPC/BD/AI convergence. He has been involved in

several EU and industrial Research and Development projects.

Cluster Computing

123

https://doi.org/10.1109/CLUSTR.2009.5289144
https://doi.org/10.1109/CLUSTR.2009.5289144
https://doi.org/10.1145/1188455.1188677
https://doi.org/10.1016/j.procs.2014.05.019
https://hpcadvisorycouncil.com/pdf/HPCC_Analysis_and_Profiling_Intel_E5-2697v3.pdf
https://hpcadvisorycouncil.com/pdf/HPCC_Analysis_and_Profiling_Intel_E5-2697v3.pdf
https://doi.org/10.1109/IPDPS.2011.68
https://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf
https://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf
https://doi.org/10.1109/CloudCom.2017.40
https://doi.org/10.1109/CloudCom.2017.40
https://doi.org/10.1109/IPDPS.2019.00066
https://doi.org/10.1109/IPDPS.2019.00066

	Performance characterization of containerization for HPC workloads on InfiniBand clusters: an empirical study
	Abstract
	Introduction
	Background
	Containerization
	Docker
	Singularity

	Multi-host container networking
	InfiniBand interconnect

	Evaluation methodology
	Containerization technologies
	Interconnects and protocols
	Networking mode
	Affinity settings

	Performance evaluation
	Experimental setup
	Hardware
	Software
	Benchmarks
	Networking mode and protocol settings
	Granularity deployment scenarios
	Scheduling and binding policy
	Performance analysis tools

	Impact of containerization on a single container per host deployment scenario with different network fabrics
	Impact of container granularity on multi-container per host deployment scenarios with different network fabrics
	OSU MPI_Alltoallv latency
	HPCC MPI communication-intensive workloads
	HPCC MPI throughput workloads

	Impact of affinity on multi-container per host deployment scenarios with different network fabrics
	Performance insights on multi-container per host deployment scenarios with different network fabrics in large-scale clusters

	Related work
	Conclusion and future work
	Funding
	References

