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Enric Rabasseda i Raventós

Abstract

This thesis will focus on the study of Boolean functions. In point of fact, they can be represented with a
Fourier expansion and many of the definitions and results for these functions can be rewritten in terms of
the Fourier coefficients. The definition of Boolean functions is simple, this implies that they have a natural
interpretation and hence have applications in many areas of scientific research. Specifically, in this thesis
we will see applications in Social Choice Theory, Theoretical Computer Science and Combinatorics. For the
first area, we will see and prove with Fourier analysis Arrow’s theorem and KKL theorem in order to show
that it is not possible to define a perfect voting election system from an ethical standpoint. Additionally,
we will translate the proof presented by Arrow for his own theorem in terms of mathematical language.
The work for the second application will follow the steps to prove Sensitivity Conjecture which, although
it has remained unsolved for 30 years, Huang has presented a brilliant short proof in a paper published at
Annals of Mathematics very recently (2019). For the last area we will present the strange phenomena of
thresholds in Random Graph properties and we will show Margulis-Russo Formula to study this event in
terms of Boolean functions Fourier analysis.
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Enric Rabasseda i Raventós

1. Introduction to Boolean functions

This chapter follows the first chapter of Ryan O’Donell’s reference book about the analysis of Boolean
Functions [1], we will see that all the analysis on Boolean functions is based on a Fourier expansion that
exists for every function. This part of the book presents the principal definitions and results from Boolean
Functions that are needed to understand some applications and theorems that will be presented in the next
chapters.

1.1 Basic definitions

Definition 1.1. We define a Boolean function f as

f : {−1, 1}n −→ {−1, 1}.

where f maps each length-n binary vector called string into a single binary value named bit. More precisely,
we can classify these functions in two types depending on its range. So we call real-valued a Boolean
function with range R and we name boolean-valued a Boolean function with range {−1, 1}.

Sometimes other domains will be used. For example {0, 1} as ”False” and ”True” or elements of the
field F2 of size 2. All the following results are true for every mentioned domain. But in this thesis we will
focus mainly on the domain of the Definition 1.1.

Definition 1.2. We refer to the domain of a Boolean function as the Hamming cube. In this domain we
can also define a distance between two strings x, y.

4(x, y) = #{i : xi 6= yi}.

These are the basic definitions that allow the reader to understand how the Boolean functions work
and what metric can be used in the Hamming cube. But it also will be interesting to write the Boolean
functions by a expression that will give us more information.

1.2 Fourier expansion

Given a boolean-valued Boolean function f : {−1, 1}n −→ {−1, 1} there is an easy method for finding a
polynomial that interpolates this function by its 2n strings of the Hamming cube. First, it is necessary to
define a characteristic function explicitly to verify, once a given string of the Hamming cube is given, if an
input of the Hamming cube is exactly this string.

Definition 1.3. For each point a = (a1, ... , an) ∈ {−1, 1}n the indicator polynomial for a is:

1{a}(x) =
(1 + a1x1

2

)
· · ·
(1 + anxn

2

)
=

ß
1 if x = a,
0 if x ∈ {−1, 1}n \ {a}.

Thus f can be interpolated using the indicator polynomial as

f (x) =
∑

a∈{−1,1}n
f (x)1{a}(x). (1.1)
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Boolean functions

We observe that the definition of the indicator polynomial works because of the values in the Hamming
cube: −1 and 1. The next possible step is to extend the product of the factors in the indicator polynomial.
This product will finish in a linear combination of products of xi . This also works well for real-valued
Boolean functions since we only care about inputs x where xi = ±1, so x2

i can be replaced by 1. Hence,
what we have proved here is that every function f can be written as a multilinear polynomial.

Example 1.4. Here we study the multilinear polynomial representation of the function max2 : {−1, 1}2 −→
{−1, 1} where max2(x) = maxi∈{1,2}xi . First we get the image of all the strings in the Hamming cube:

• max2
(
(−1,−1)

)
= −1

• max2
(
(−1, +1)

)
= +1

• max2
(
(+1,−1)

)
= +1

• max2
(
(+1, +1)

)
= +1

And once we have the values of the function on all the inputs we can develop (1.1) to obtain the
multilinear polynomial representation of max2:

max2(x) = (+1)
(1 + x1

2

)(1 + x2
2

)
+ (+1)

(1− x1
2

)(1 + x2
2

)
+ (+1)

(1 + x1
2

)(1− x2
2

)
+ (−1)

(1− x1
2

)(1− x2
2

)
=

1

4
+

x1
4

+
x2
4

+
x1x2

4
+

1

4
− x1

4
+

x2
4
− x1x2

4
+

1

4

+
x1
4
− x2

4
− x1x2

4
− 1

4
+

x1
4

+
x2
4
− x1x2

4

=
1

2
+

1

2
x1 +

1

2
x2 −

1

2
x1x2.

Before we can talk about the Fourier expansion of a Boolean function we have to clarify some notation.
The multilinear polynomial representation of the Boolean function may have up to 2n terms corresponding
to the subsets S ⊆ [n]. So we will write the monomial corresponding to S as xS =

∏
i∈S xi with x∅ = 1 by

convention.

Theorem 1.5. Every function f : {−1, 1}n −→ R can be uniquely expressed as a multilinear polynomial:

f (x) =
∑
S⊆[n]

f̂ (S)xS .

This expression is called the Fourier expansion of f and the real numbers f̂ (S) are named the Fourier
coefficients of f on S. Collectively, the coefficients are called the Fourier spectrum of f. Later we will explain
how to prove this theorem.

Observation 1.6. The monomial xS can also be thought as a function on x = (x1, ... , xn) ∈ Rn defined
like χS(x) =

∏
i∈S xi . Thus we sometimes write the Fourier expansion of f : {−1, 1}n −→ R like

f (x) =
∑
S⊆[n]

f̂ (S)χS(x). (1.2)

It is important to note that all these representations work for the Hamming cube {−1, 1}n but they
can not be defined like this in Fn

2.

We define the Fourier expansion for functions f : Fn
2 −→ R by ”encoding” its input bits 0, 1 ∈ F2 by

−1, 1 ∈ R. The idea behind this encoding is to label the elements of the field F2 by the numbers of the
Hamming cube with which a Fourier expansion has been developed. The encoding function χ : F2 −→ R
is defined as χ(0) = +1 and χ(1) = −1. It’s mathematically natural because all elements b in F2 satisfy
χ(b) = (−1)b. This result can generalize the definition of the encoding function for strings in Fn

2.
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Definition 1.7. For S ⊆ [n] we define χS : Fn
2 −→ R by:

χS(x) =
∏
i∈S

χi (xi ) = (−1)
∑

i∈S xi .

which satisfies χS(x + y) = χS(x)χS(y).

It is good to interpret Fn
2 as the n-dimensional space F2 and identify subsets S ⊆ [n] with vectors

γ ∈ Fn
2. Since we have defined this encoding function we can write the Fourier expansion for functions

f : Fn
2 −→ R equally as (1.2).

1.3 The Hilbert space of Boolean functions

The functions defined before as χS(x) = xS have an own name and are called parity functions. They are
called like that because of the definition of the functions, since they multiply all the bits identified with the
set S and give us the parity.

Looking at the set of all functions f : {−1, 1}n −→ R it is possible to check that we can add two
functions (pointwise) and we can multiply a function by a real scalar. So this set can be thought as a
vector space V . V is 2n-dimensional, since we can express a Boolean function by stacking the 2n values
f (x) into a tall column vector.

In fact, the Fourier expansion (1.2) states that every real-valued Boolean function, hence in V , is a
linear combination of the parity functions. Then parity functions are a spanning set for V . But also the
number of parity functions is 2n, the same as the dimension of V , so we can deduce that they are in fact
a linearly independent basis for V . This result allows us to prove the uniqueness of the Fourier expansion
for every function as it is remarked in Theorem 1.5.

Additionally, it is also possible to define inner products between two functions living in this space V .
Although there are some possible products to choose, the one for Boolean functions is defined as it follows.

Definition 1.8. We define an inner product 〈·, ·〉 on pairs of functions f , g : {−1, 1}n −→ R by:

〈f , g〉 = 2−n
∑

x∈{−1,1}n
f (x)g(x) = E

x∼{−1,1}n
[f (x)g(x)].

It is trivial to prove that the previous definition is a dot product. We also use the following notation to
define p-norms:

‖f ‖p = E[|f (x)|p]
1
p .

In this definition and later is used the notation E to denote the expectation. This expression will be
used many times along this thesis. Additionally, we write x ∼ {−1, 1}n to denote that x is a uniformly
chosen random string from {−1, 1}n. When we do not write x ∼ {−1, 1}n under the expectation E is
because we take it for granted. The n coordinates xi are independently chosen to be +1 and −1 both with
probability 1/2. This inner product can be interpreted as an average rather than a sum. Additionally, for
boolean-valued Boolean functions, since f (x)2 = 1, the square of the 2-norm equals 1 always.

Returning now to the basis of parity functions for V the crucial fact is that it is an orthonormal basis
with the inner product.
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Lemma 1.9. The 2n parity functions χ : {−1, 1}n −→ {−1, 1} form an orthonormal basis for the vector
space V of functions f : {−1, 1}n −→ R, i.e.

〈χS ,χT 〉 =

ß
1 if S = T ,
0 if S 6= T .

Proof. This lemma is proved by two steps that are supported strongly by the fact that the inputs of these
functions are boolean strings with bits chosen uniformly random from ±1, so x2

i = 1. Then, by developing
the parity functions of two subsets S and T we obtain χS(x)χT (x) = χS4T (x) where S4T denotes the
symmetric difference S ∪ T \ S ∩ T . Afterwards, by the independence of all the bits xi in a string x from
the Hamming cube, the expectation E[xS ] can be computed as a product of all the expectations of the
bits from the subset S and, since they are uniformly random chosen, E[xi ] is null. Therefore, the product
of all of them E[χS(x)] will be null unless S is the empty set because χ∅(x) = 1 by convention.

Summarizing, we have seen that the Fourier expansion of f : {−1, 1}n −→ R can be thought as the
representation of f over the orthonormal basis of parity functions {χS}S⊆[n] and its coordinates are the
Fourier coefficients of f . There is an alternative way to compute the Fourier coefficients of f without
simplifying the interpolation method (1.1).

Proposition 1.10. For f : {−1, 1}n −→ R and S ⊆ [n] the Fourier coefficient of f on S is given by
f̂ (S) = 〈f ,χS〉.

Now that we have a directly way to compute the Fourier representation of f and an orthonormal basis
generated by parity functions we can introduce two important theorems. The first one, Parseval’s Theorem,
lets us measure the squared ”length” (2-norm) of f efficiently.

Theorem 1.11 (Parseval’s Theorem). For any f : {−1, 1}n −→ R,

〈f , f 〉 = E
x∼{−1,1}n

[f (x)2] =
∑
S⊆[n]

f̂ (S)2.

In particular, if f : {−1, 1}n −→ {−1, 1} is boolean-valued, then

〈f , f 〉 =
∑
S⊆[n]

f̂ (S)2 = 1.

The second theorem named Plancherel’s Theorem generalizes Parseval’s Theorem giving a similar result
but for two different functions f and g .

Theorem 1.12 (Plancherel’s Theorem). For any f , g : {−1, 1}n −→ R,

〈f , g〉 = E
x∼{−1,1}n

[f (x)g(x)] =
∑
S⊆[n]

f̂ (S)ĝ(S).

The proof of this two theorems is straight forward by computing the inner product substituting each
function by its Fourier expansion and using the orthogonality of the basis.

Boolean-valued functions are easier to interpret than real-valued since there are only two possibilities
for its images. In mathematical terms it is possible to see if two images are the same by multiplying
them: if f (x)g(x) = 1 then f (x) = g(x) otherwise f (x) 6= g(x). We can also define a distance between
boolean-valued functions.
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Definition 1.13. Given f , g : {−1, 1}n −→ {−1, 1}, we define their (relative Hamming) distance to be
the fraction of inputs on which they disagree:

dist(f , g) = Pr
x∼{−1,1}n

[f (x) 6= g(x)].

So the inner product between two functions can be interpreted as some type of correlation between f
and g . And for boolean-valued functions it can be written in terms of the Hamming distance.

Proposition 1.14. If f , g : {−1, 1}n −→ {−1, 1}:

〈f , g〉 = Pr[f (x) = g(x)]− Pr[f (x) 6= g(x)] = 1− 2dist(f , g).

Finally, we can start studying some interesting combinatorial properties of a Boolean function f from
its Fourier coefficients. But first some definitions, related to Probability Theory on f , are given.

Definition 1.15. The mean of f : {−1, 1}n −→ R is E[f ]. When f has mean equally 0 we say that it is
unbiased or balanced. In the particular case that f is boolean-valued, its mean is:

E[f ] = Pr[f = 1]− Pr[f = −1].

Thus f is unbiased if and only if it takes value 1 on exactly half of the points of the Hamming cube.
Next, we can also define a variance for a real-valued Boolean function:

Definition 1.16. The variance of f : {−1, 1}n −→ R is:

Var[f ] = 〈f − E[f ], f − E[f ]〉 = E[f 2]− E[f ]2.

Definition 1.17. The covariance of f , g : {−1, 1}n −→ {−1, 1} is:

Cov[f , g ] = 〈f − E[f ], g − E[g ]〉 = E[fg ]− E[f ]E[g ].

The Definitions 1.15, 1.16 and 1.17 can also be expressed in terms of the Fourier coefficients.

Proposition 1.18. If f : {−1, 1}n −→ R then

(1) E[f ] = f̂ (∅).

(2) Var[f ] =
∑

S 6=∅ f̂ (S)2.

(3) Cov[f , g ] =
∑

S 6=∅ f̂ (S)ĝ(S).

Proof. The first one is proved multiplying f by 1 inside the expectation and substituting 1 for the identical
function that is χ∅. Meanwhile the second is proved using the definition of the second equality in Definition
1.16 and the Parseval’s Theorem 1.11. Finally Plancherel’s Theorem 1.12 shows the third.

Another interesting approach is to study how the variance works on boolean-valued functions using the
fact that they only have two possible images: ±1.

Proposition 1.19. For f : {−1, 1}n −→ {−1, 1}

Var[f ] = 1− E[f ]2 = 4Pr[f (x) = 1]Pr[f (x) = −1].

Hence the variance of a boolean-valued function it is always between 0 and 1. In particular, f has
variance 1 if it is unbiased and variance 0 if it is constant. Then we can think that the variance is
proportional to its distance from being constant.
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1.4 Boolean functions generating probability distributions

This chapter will talk about how a boolean-valued function can create a probability distribution. But first
a more general definition is given for real-valued Boolean functions:

Definition 1.20. The Fourier weight of f : {−1, 1}n −→ R on set S is defined to be the squared Fourier
coefficient f̂ (S)2.

Surprisingly, many formulas depend on the weights of f . For example, the Proposition 1.18 states
that the variance of f depends on its Fourier weights on non empty sets. In boolean-valued functions,
Parseval’s Theorem 1.11 assures that the total weight of f sums 1. Therefore we can think that they define
a probability distribution on subsets of [n].

Definition 1.21. Given f : {−1, 1}n −→ {−1, 1}, the spectral sample for f , denoted Sf , is the probability
distribution on subsets of [n] in which the set S has probability f̂ (S)2. We write S ∼ Sf for a draw from
this distribution.

We often stratify the subsets S ⊆ [n] according to their cardinal. Equivalently this is the degree
associated to the monomial xS .

Definition 1.22. For f : {−1, 1}n −→ R and 0 ≤ k ≤ n, the Fourier weight of f at degree k is:

Wk [f ] =
∑
S⊆[n]
|S |=k

f̂ (S)2.

If f : {−1, 1}n −→ {−1, 1} is boolean-valued, an equivalent definition is:

Wk [f ] = Pr
S∼Sf

[|S | = k].

By Parseval’s Theorem 1.11 Wk [f ] = ‖f =k‖22, where

f =k =
∑
|S |=k

f̂ (S)χS

is called the degree k part of f. We will also sometimes use notation like W>k [f ] and f ≤k for similar
significance.
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2. Social Choice Theory

This chapter introduces the application of Boolean functions in Social Choice Theory. They will be useful
tools to approach voting election systems problems. It will follow the structure of the second chapter of
O’Donnell’s reference book [1] with the objective to define Arrow’s Theorem. The theorem will be proved
rewriting Arrow’s work on [2] with mathematical objects. Some extended results from Kalai presented in
[3] will give a mathematical proof of the theorem and a stability result.

2.1 Social choice functions and initial concepts

The fundamental question in Social Choice Theory is how to aggregate the options of many agents. A
boolean-valued function f : {−1, 1}n −→ {−1, 1} can be thought as a voting rule or social choice function
for an election with two candidates and n voters mapping the votes of every individual to a winner. Now
some social choice functions, which define an election system, will be presented.

Definition 2.1. For n odd: the majority function Majn is defined by:

Majn : {−1, 1}n → {−1, 1}
x 7→ sgn(x1 + · · ·+ xn).

Note that it must be defined for n odd. But for n even we say that f (x) is a majority function if
sgn(x1 + · · ·+ xn) equals f (x) whenever is non-zero.

Remember the identification we made before between −1 and ”True” and +1 and ”False”. The
following two systems elect a winner if all voters agree with ”True” or elect a winner if at least one voter
agrees with ”True”, respectively.

Definition 2.2. The function ANDn is defined by:

ANDn : {−1, 1}n → {−1, 1}

x 7→
ß
−1 if x = (−1, ... ,−1),
+1 otherwise.

The function ORn is defined by:

ORn : {−1, 1}n → {−1, 1}

x 7→
ß

+1 if x = (+1, ... , +1),
−1 otherwise.

Another voting rule, simple but really important for the analysis of Boolean functions and Arrow’s
Theorem, is the dictator function.

Definition 2.3. The ith dictator function χi is defined by:

χi : {−1, 1}n → {−1, 1}
x 7→ xi .

We can think this like a projection mapping. A generalization of this notion is defined as it follows.

9
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Definition 2.4. A function f : {−1, 1}n −→ {−1, 1} is called a k-junta for k ∈ N if it depends on at most
k of its input coordinates. In mathematical terms: f (x) = g(xi1 , ... , xik ) for some g : {−1, 1}k −→ {−1, 1}
and i1, ... , ik ∈ [n].

A voting rule can also be defined as a weighted majority rule like the following one.

Definition 2.5. A function f : {−1, 1}n −→ {−1, 1} is called a weighted majority or threshold function if
there exist a0, a1, ... , an ∈ R such that:

f : {−1, 1}n → {−1, 1}
x 7→ sgn(a0 + a1x1 + · · ·+ anxn).

It is possible to see that the previous Definitions 2.1, 2.2, 2.3 are weighted majority functions. For
example, the Dictator function 2.3 is a threshold function with all terms equal to 0 except ai , which will
be equal to 1.

Finally, we will introduce a voting system that will be really important later for the study of KKL
Theorem 3.14. Now the voters are divided into tribes (groups of voters) and if a tribe elects a candidate
unanimously it will win the election.

Definition 2.6. The tribes function of width w and size s, is defined by:

Tribesw ,s : {−1, 1}ws → {−1, 1}
(x(1), ... , x(n)) 7→ ORs(ANDw (x(1)), ... , ANDw (x(s))).

Where x(i) ∈ {−1, 1}w .

So these are some examples of Boolean functions that can provide a voting system perhaps intuitive
for us. Now we can define, like with real functions, some properties that Boolean functions can satisfy.
These properties will be reasonable hypothesis to ensure a fair voting system.

Definition 2.7. We say that a Boolean function f : {−1, 1}n −→ {−1, 1} is:

(1) Monotone: if x ≤ y coordinate-wise, then f (x) ≤ f (y).

(2) Odd : if f (−x) = −f (x).

(3) Unanimous: if f (1, ... , 1) = 1 and f (−1, ... ,−1) = −1.

(4) Symmetric : if f (xπ) = f (x) for all permutations π ∈ Sn.

(5) Transitive-symmetric: if for all i , i ′ ∈ [n] there exists a permutation π ∈ Sn exchanging i and i ′ such
that f (xπ) = f (x) for all x ∈ {−1, 1}n.

Note that the symmetric functions depend only on how many 1’s the input has. A really important
result presented by May in [4] is that many functions satisfy some of these properties but there is only one
that satisfy all of them.

Theorem 2.8 (May’s Theorem). Let f : {−1, 1}n −→ {−1, 1} be monotone, odd, unanimous and sym-
metric. Then f must be the majority function Majn.
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Proof. First, note that the function f is symmetric thus f (xπ) = f (x) for every permutation π ∈ Sn. In
other words, the value of f (x) only depends on the number of 1’s of the input x. So we can pack all the inputs
in sets depending on the number of ones, we denote them N(k) = {x ∈ {−1, 1}n : #{xi : xi = +1} = k}.

Second, since the function is unanimous f (N(0)) = −1 and f (N(n)) = 1. Additionally f (N(i)) ≤
f (N(j)) for i ≤ j because of the monotonicity. Tu sum up, all these conditions imply that f starts
being worth -1 and ends being +1, however it can not jump on different values -1,+1,-1 because of the
monotonicity so we have to find with how many 1’s f changes its value from -1 to +1.

Third, observe that the input −x, in terms of the defined packages N(i), is −N(i) = N(n − i). Then
if f is odd for every i ∈ [n] we have f (−N(i)) = −f (N(n − i)). If we start computing this result for the
basic cases it makes sense: +1 = f (N(n)) = f (−N(0)) = −f (N(0)) = −(−1). In fact, it is necessary for
n to be odd because there will be an even number of packages N(i) and hence an exact number of pairs
(N(i), N(n − i)) for i = 0, ... , n−1

2 .

In conclusion, the four conditions on the function f forced us to define a function for inputs of odd
size which take value -1 through the first half of the inputs and at the middle n+1

2 starts taking value +1.
This is the definition of the majority function Majn.

Before finishing this part we can be pessimistic and think that it is impossible that the n voters are not
related. At least this should be the objective from a wise point of view. Although it seems unrealistic, we
can define a vote in which the n voters preference are independent and it will be a good basis to study the
undecided or party-independent voters. It also offers an advantage for studying functions from the point
of view of Probability Theory.

Definition 2.9. The impartial culture assumption is that the n voters’ preferences are independent and
chosen uniformly at random.

2.2 Influence, operators and noise stability

Once we have begun to think Boolean functions as voting rules it is natural to question how can we measure
the influence or power of a voter. It can be interpreted as the probability that the voter preference affects
the outcome.

Definition 2.10. We say that coordinate i ∈ [n] is pivotal for f : {−1, 1}n −→ {−1, 1} on input x if
f (x) 6= f (x⊕i ), where x⊕i = (x1, ... , xi−1,−xi , xi+1, ... , xn). The influence of coordinate i on the boolean-
valued function f : {−1, 1}n −→ {−1, 1} is defined to be:

Infi [f ] = Pr
x∼{−1,1}n

[f (x) 6= f (x⊕i )].

Influence measures how a variable ”influence” the output of the Boolean function f . In another words,
how determinant is a voter on the result of an election between two candidates.

Example 2.11. Here we compute the influences of some functions which have been defined in Section 2.1.

(1) For the ith dictator function χi the coordinate i is pivotal for every input, hence Infi [χi ] = 1. On
the other hand if j 6= i then coordinate j is never pivotal and the influence is Infj [χi ] = 0.

(2) If f = ±1 (constant function) then any coordinate i ∈ [n] is not pivotal and Infi [f ] = 0.

11
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(3) For the ORn function, coordinate 1 is pivotal for exactly two inputs: (−1, 1, ... , 1) and (1, 1, ... , 1),
hence

Inf1[ORn] =
1

2n
+

1

2n
=

1

2n−1
= 21−n.

Observation 2.12. Another way to treat the Hamming cube is by using geometry. This will help in other
applications like the one presented in Sensitivity Conjecture in Chapter 4. A n-dimensional cube can be
drawn with vertices as the inputs x ∈ {−1, 1}n. For boolean-valued functions f : {−1, 1}n −→ {−1, 1} we
can paint the vertices, for example, in grey if f (x) = −1 and black if f (x) = +1.

Figure 1: Hamming
cube of Majn

We will define (x, y) as a dimension-i edge if y = x⊕i . And this dimension-i
edge will be a boundary edge if f (x) 6= f (y). Hence, influence Infi [f ] equals the
fraction of dimension-i edges which are boundary edges.

Let us give an example by studying the majority function Maj3. In the Figure
1 it can be seen that there are 2 boundary edges, which are drawn in a thicker
edge, in each of the three dimensions. Since there is a total of 4 edges of each
dimension i we have Infi [Maj3] = 2/4 = 1/2 for every i in [3].

Now it is possible to think how affected is the function by every coordinate by
summing all the influences.

Definition 2.13. The total influence of f : {−1, 1}n −→ R is defined to be:

I[f ] =
n∑

i=1

Infi [f ].

Example 2.14. We see now the total influence of the functions given in Example 2.11.

(1) For the ith dictator function we have seen that Infi [f ] = δi ,j where δi ,j is the Kronecker’s delta. So
the total influence will be:

I[χi ] =
n∑

j=1

Infj [χi ] =
n∑

j=1

δi ,j = 1.

(2) If f = ±1 then I[f ] = 0 since the influences of all coordinates are zero.

(3) For the ORn function, we have seen that every coordinate is pivotal for exactly two inputs, thus:

I[ORn] =
n∑

i=1

Infi [ORn] =
n∑

i=1

21−n = n · 21−n.

(4) If we study the total influence of Maj3 we have:

I[Maj3] =
3∑

i=1

Infi [Maj3] =
3∑

i=1

1/2 = 3/2.

Definition 2.15. The sensitivity of f at x is defined to be the number of pivotal coordinates for f at input
x. Hence:

sensf (x) = #{i ∈ [n] : f (x(i→+1)) 6= f (x(i→−1))}.

12
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This definition will be really important for the next application in Chapter 4. But it also gives a natural
form to compute the total influence:

Proposition 2.16. For f : {−1, 1}n −→ {−1, 1}:

I[f ] = E[sensf (x)].

By now we have been able to compute the influences of many functions. But this was possible because
we knew the image for every input and have a intuitive idea of the function. We will introduce an adaptation
of an analytical tool that is used in real functions with the aim to obtain the influence more analytically.

Definition 2.17. The ith (discrete) derivative operator Di maps the function f : {−1, 1}n −→ R to the
function Di f : {−1, 1}n −→ R like:

Di f (x) =
f (x (i→+1))− f (x (i→−1))

2
.

The (discrete) gradient operator ∇ is defined to map the function f : {−1, 1}n −→ R to the function
∇f : {−1, 1}n −→ Rn like:

∇f (x) = (D1f (x), D2f (x), ... , Dnf (x)).

Realize that Di f (x) does not actually depend on xi of the concrete input x. Additionally, if f :
{−1, 1}n −→ {−1, 1} is boolean-valued, Di f (x) is ±1 if coordinate i is pivotal for x and is 0 otherwise.
Thus Di f (x)2 is the 0-1 indicator for whether i is pivotal for x so we can expand the definition of influence
given for boolean-valued functions 2.10 to real-valued functions using the fact that the derivative operator
is defined for this range of f .

Definition 2.18. We define the influence of coordinate i on f : {−1, 1}n −→ R to be:

Infi [f ] = E [Di f (x)2] = ‖Di f (x)‖22.

In fact, now that the influence is defined for all the functions that we will work with, we might want
to identify the coordinates that have some influence on the function f : {−1, 1}n −→ R. So we will
say that coordinate i ∈ [n] is relevant if and only if Infi [f ] > 0. Thus, a coordinate will be relevant if
f (x (i→+1)) 6= f (x (i→−1)) for some x ∈ {−1, 1}n.

As every Boolean function, Di f (x) have a unique Fourier expansion like Theorem 1.5 states. The study
of this Fourier expansion and the application of Parseval’s Theorem 1.11 gives us the influence in terms of
the Fourier coefficients of Di f (x).

Proposition 2.19. Let f : {−1, 1}n −→ R have the multilinear expansion f (x) =
∑

S⊆[n] f̂ (S)xS .

(1) Then:

Di f (x) =
∑
S⊆[n]
i∈S

f̂ (S)xS\{i}.

(2) For i ∈ [n]:

Infi [f ] =
∑
i3S

f̂ (S)2.

13
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Proof. The first statement is given by the linearity of the ith discrete derivative operator Di .

Di f (x) = Di

( ∑
S⊆[n]

f̂ (S)xS
)

=
∑
S⊆[n]

f̂ (S)Di (xS). (2.1)

There can be two cases computing the ith derivative operator Di on parity functions:

• i 6∈ S .

Di (xS) =
xS − xS

2
= 0.

• i ∈ S .

Di (xS) =
x1 · · · (+1) · · · x|S | − x1 · · · (−1) · · · x|S |

2
= xS\{i}.

Therefore, the sum (2.1) can be rewritten like in the statement.

The second statement is a consequence derived from the first and from Parseval’s Theorem 1.11.

Infi [f ] = ‖Di f (x)‖22 =
∑
S3i

f̂ (S)2.

It is possible to generalize the last results given. Note that for f : {−1, 1}n −→ {−1, 1} we have
‖∇f (x)‖22 = sensf (x). And we can expand this idea to real-valued functions f : {−1, 1}n −→ R and obtain
a similar proposition like the last one but for the total influence.

Proposition 2.20. Let f : {−1, 1}n −→ R have the multilinear expansion f (x) =
∑

S⊆[n] f̂ (S)xS .

(1) Total influence is defined like:
I[f ] = E[‖∇f (x)‖22].

(2) It can be computed from Fourier coefficients like

I[f ] =
∑
S⊆[n]

|S | · f̂ (S)2 =
n∑

k=0

k ·Wk [f ].

(3) For a boolean-valued function f : {−1, 1}n −→ {−1, 1} the last result can be rewritten using the
spectral sample of f (see Definition 1.21):

I[f ] = E
S∼Sf

[|S |].

Proof. First statement is derived from the definition of the gradient 2.17 and the definition of influence
2.18. The next two statements are proved straight forward with Proposition 2.19.

A really important inequality can be derived from the total influence expressed in terms of the Fourier
coefficients. This inequality is so useful that it has its own name.

Theorem 2.21 (Poincaré Inequality). For any f : {−1, 1}n −→ R , Var[f ] ≤ I[f ].
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Proof. The proof expresses the variance and the total influence in terms of the Fourier coefficients as it is
presented in Proposition 1.18 and Proposition 2.20, respectively.

Var[f ] =
∑
k>0

Wk [f ] ≤
∑
k≥0

k ·Wk [f ] = I[f ].

Another useful operator can be defined to measure the mean of the value of f : {−1, 1}n −→ R for a
given input x without caring about some coordinate.

Definition 2.22. The ith expectation operator Ei is the linear operator on functions f : {−1, 1}n −→ R
defined by:

Ei f (x) = E
xi

[f (x1, ... , xi , ... , xn)] =
f (x(i→+1)) + f (x(i→−1))

2
.

This operator has a similar behaviour to the differential operator since it also does not depend on
the coordinate xi . The operator applied to a real-valued function f : {−1, 1}n −→ R is another real-
valued function, hence the Theorem 1.5 states that it can be expressed as a Fourier expansion. The next
proposition assures this and also provides a meaningful decomposition of f in terms of the differential and
expectation operators applied to this function.

Proposition 2.23. Let f : {−1, 1}n −→ R have the multilinear expansion f (x) =
∑

S⊆[n] f̂ (S)xS .

(1) The Fourier expansion for the ith expectation operator on f where i ∈ [n] is:

Ei f (x) =
∑
S 63i

f̂ (S)xS .

(2) For every i ∈ [n] f can be expressed as:

f (x) = xiDi f (x) + Ei f (x).

Proof. First statement is given by the linearity of the ith expectation operator Ei .

Ei f (x) = Ei

( ∑
S⊆[n]

f̂ (S)xS
)

=
∑
S⊆[n]

f̂ (S)Ei (xS). (2.2)

There can be two cases computing the ith expectation operator Ei on parity functions:

• i 6∈ S .

Ei (xS) =
xS − xS

2
= xS

• i ∈ S .

Ei (xS) =
x1 · · · (+1) · · · x|S| + x1 · · · (−1) · · · x|S|

2
= 0.
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Plugging this result on the sum (2.2) we obtain the desired result.

Second statement is shown simply by differentiating terms on the sum. Recalling the statement above
and the first statement of Proposition 2.19 we write f in terms of the Fourier expansion given by Theorem
1.5:

f (x) =
∑
S⊆[n]

f (x) = xi ·
∑
S⊆[n]
i∈S

f̂ (S)xS\{i} +
∑
S⊆[n]
i 6∈S

xS = xi · Di f (x) + Ei f (x).

Finally we can define the last operator which lets us have an idea about how different is the value of f
on an input x compared to what is expected to be.

Definition 2.24. The ith coordinate Laplacian operator Li on f : {−1, 1}n −→ R is defined by:

Li f (x) = f (x)− Ei f (x) =
f (x)− f (x⊕i )

2
.

More generally, the Laplacian operator L can be defined as a linear operator by:

Lf (x) =
n∑

i=1

Li f (x).

The concept behind the interpretation of the Laplacian can be helpful to make assumptions about f .
If this operator is defined just behind the definition of influence and the other operators is because some
results can be provided by exploiting the previous propositions. In fact we will also see that the Laplacian
is closely related to the sensitivity defined in Definition 2.15.

Proposition 2.25. Let f : {−1, 1}n −→ R have the multilinear expansion f (x) =
∑

S⊆[n] f̂ (S)xS .

(1) Suppose for this result that f : {−1, 1}n −→ {−1, 1} so we can get the sensitivity in terms of the
Laplacian:

Lf (x) = f (x)sensf (x).

(2) The Fourier expansion for the ith coordinate Laplacian operator on f with i in [n] is:

Li f (x) = xiDi f (x) =
∑
i3S

f̂ (S)xS .

(3) The Fourier expansion for the Laplacian operator on f is:

Lf (x) =
∑
S⊆[n]

|S |f̂ (S)χS(x).

(4) Influence on coordinate i in [n] can be obtained in terms of the ith coordinate Laplacian operator on
f as:

〈f , Li f 〉 = ‖Li f ‖22 = Infi [f ].

(5) Total influence can be derived also from Laplacian operator on f :

〈f , Lf 〉 = I[f ].
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Proof. All the results are proved straight forward by the decomposition of f presented in the second
statement of Proposition 2.23.

Until now it was supposed that the votes are always well interpreted, but there exists a possibility that
some vote is not correctly recorded. The following definitions approach the study of how garbled votes can
affect the result of an election choice.

Definition 2.26. Let ρ ∈ [0, 1]. For fixed x ∈ {−1, 1}n we write y ∼ Nρ(x) to denote that the random
string y is drawn as it follows: for every i in [n] independently,

yi =

ß
xi with probability ρ,
uniformly random with probability 1− ρ.

But we extend the notation to all ρ ∈ [−1, 1] as it follows,

yi =

ß
xi with probability 1/2 + 1/2ρ,
−xi with probability 1/2− 1/2ρ.

and we say that y is ρ-correlated to x.

Definition 2.27. Given x ∼ {−1, 1}n drawn uniformly random and y ∼ Nρ(x), we say that (x,y) is a
ρ-correlated pair. Sometimes we will abbreviate it as ρ-corr.

Note that it is equivalent to saying that, independently for each i in [n], every pair of random bits
(xi , yi ) satisfies E[xi ] = E[yi ] = 0 and E[xiyi ] = ρ.

To sum up we define a new concept and later we will talk about how can we interpret it.

Definition 2.28. For f : {−1, 1}n −→ R and ρ ∈ [−1, 1], the noise stability of f at ρ is:

Stabρ[f ] = E
(x,y)
ρ−corr

[f (x)f (y)].

In fact, we are computing the expected value of the function f valued on every x of the Hamming
cube multiplied by f valued on an input derived from x but where the coordinates can be garbled with
probability ρ. But this concept does not allow yet to perceive how affected is the value of the outcome if
there is an affected input. However, for boolean-valued functions it is really interpretative.

Observation 2.29. Let f : {−1, 1}n −→ {−1, 1} then, since f (x) and f (y) can be only two options and
the sign of the product between them can identify if they are equal or not, we can interpret:

Stabρ[f ] = Pr
(x,y)
ρ−corr

[f (x) = f (y)]− Pr
(x,y)
ρ−corr

[f (x) 6= f (y)] = 2 · Pr
(x,y)
ρ−corr

[f (x) = f (y)]− 1.

So for boolean-valued functions it is possible to compute the probability that the missrecorded votes do
not affect the outcome:

Pr
(x,y)
ρ−corr

[f (x) = f (y)] =
1

2
Stabρ[f ] +

1

2
.
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Example 2.30. Here we compute the noise stability of some social choice functions defined previously:

(1) The constant functions f = ±1 have the same noise stability for every ρ:

Stabρ[f ] = 2 · Pr
(x,y)
ρ−corr

[f (x) = f (y)]− 1 = 2− 1 = 1.

(2) The parity functions’ χS noise stability only depends on ρ:

Stabρ[χS ] = E
(x,y)
ρ−corr

[xSyS ] = E
(x,y)
ρ−corr

[
∏
i∈S

xiyi ]

=
∏
i∈S

E
(x,y)
ρ−corr

[xiyi ] =
∏
i∈S

ρ = ρ|S |.

Finally, we introduce the most important operator of the chapter. This operator will provide practical
results for the noise stability but also good behaviour in terms of hypercontractivity as it will be shown in
Section 3.1.

Definition 2.31. For ρ ∈ [−1, 1], the noise operator with parameter ρ is the linear operator Tρ on functions
f : {−1, 1}n −→ R defined by:

Tρf (x) = E
y∼Nρ(x)

[f (y)].

So for every input x the function Tρf maps it to the expectation of the value that f will have for all
the missrecorded inputs y derived from x. This operator also has a fancy Fourier expansion and can be
applied to compute the noise stability.

Proposition 2.32. Let f : {−1, 1}n −→ R have the multilinear expansion f (x) =
∑

S⊆[n] f̂ (S)xS .

(1) Given ρ ∈ [−1, 1] we can relate Tρ and noise stability:

Stabρ[f ] = E
x

[f (x)Tρf (x)] = 〈f , Tρf 〉.

(2) The Fourier expansion of Tρf is:

Tρf =
∑
S⊆[n]

ρ|S |f̂ (S)χS =
n∑

k=0

ρk f =k .

(3) Noise stability can be also provided by the Fourier coefficients:

Stabρ[f ] =
∑
S⊆[n]

ρ|S |f̂ (S)2 =
n∑

k=0

ρkWk [f ].

Proof. The first statement is proved by writing the definition of noise stability and looking how the noise
operator interferes. The second has only one key step and is the proof that TρχS = ρ|S|χS . The last result
is proved using the previous two equalities and the Plancherel’s Theorem 1.12.
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Now that we have introduced the noise stability term we can define a new influence. It has not any
natural interpretation but we will see how profitable it is in the Section 3.3.

Definition 2.33. For f : {−1, 1}n −→ R, ρ ∈ [0, 1] and i in [n] the ρ-stable influence of i on f is:

Inf
(ρ)
i [f ] = Stabρ[Di f ] =

∑
i3S

ρ|S |−1f̂ (S)2.

We also define I(ρ)[f ] =
∑n

i=1 Inf
(ρ)
i [f ].

If we look closer to the representation of the ρ-stable influence of i on f given by the Fourier coefficients
we can compare it to Proposition 2.19 and see that it is closer to the natural influence defined in Definition
2.18 when ρ is closer to 1.

2.3 Arrow’s Theorem proof using ordered sets

Kenneth Arrow was an American economist that worked in a theory to study which was the better way
to take decisions in a society. This work, along with others, awarded him the Nobel prize in 1972. For
m alternatives the objective was to take a collective decision that represented, as best as possible, the
society’s preference given the decisions of n individuals. All this study was presented in [2].

To simplify the theorem he worked with 3 alternatives A, B, C and n individuals. An example will be
given now to clarify the procedure. Condorcet created a system to order society preference’s. If we use the
majority function to decide in every pair-wise competition we obtain a result like this:

Voter’s preference
1 2 3 Society choice

a+1 vs b−1 +1 -1 +1 +1

b+1 vs c−1 +1 +1 -1 +1

c+1 vs a−1 -1 +1 +1 +1

Table 1: Condorcet Election with 3 alternatives and 3 candidates

If we look closer to society’s choice we see that it gives a non-rational outcome although the voting
preferences of all the individuals were rational. This is called the Condorcet paradox and Arrow’s objective
was to study whether it would be possible to define a voting system where this paradox is avoided.

Before giving any solution or result some notation is defined but the intention of this thesis is to
transform the exposition of the concepts, theorem and proof in mathematical terms. Alternatives are
denoted as small letters x , y , z and every chooser must make one and only one of three decisions: x is
preferred to y , x is indifferent to y and y preferred to x . This decisions are assumed to be consistent: if x
is preferred to y and y indifferent to z then x is preferred to z . We denote x preferred or indifferent to y
as xRy .

From the definition of preference and indifference there are two axioms that all decisions satisfy:

• Axiom I. Every alternative is comparable. For all x and y , either xRy or yRx .

• Axiom II. Preferences of the electors are rational. For all x , y and z if xRy and yRz this implies xRz .
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However a relation R satisfying these 2 axioms is termed a weak ordering because it does not differ if
the alternatives are preferred or indifferent. So a stronger order is created by defining the notation xPy to
mean not yRx and to be read like x is preferred to y . It is also defined xIy to mean xRy and yRx and it
will be read x indifferent to y .

Lemma 2.34. All these properties are satisfied by relationships between alternatives x , y , z:

(a) For all x, xRx.

(b) If xPy, then xRy.

(c) If xPy and yPz, then xPz.

(d) If xIy and yIz then xIz.

(e) For all x and y, either xRy or yPx.

(f) If xPy and yRz, then xPz.

Since we are saying that the R relation between two alternatives satisfy reflexivity, antisymmetry and
transitivity properties we can relate this to mathematical order theory. We can think that every elector
defines a partially ordered set from the alternatives set S . Hence, if x is preferred to y we have y ≤ x .

As for notation, let Ri be the ordering relation for alternative social states from the standpoint of
individual i . Sometimes when different ordering relations are being considered for the same individual,
the symbols will be distinguished by adding a supperscript. For (strict) preference relation we write Pi

and for indifference Ii . In mathematical terms is used ≤i for relation Ri , <i for preference Pi and =i for
indifference Ii . Similarly, society will be considered to have a social ordering relation for alternative social
states designed by R (≤), sometimes with a prime or second. Social preference and indifference will be
denoted by P (<) and I (=), respectively.

For the next analysis, it will be assumed that individuals are rational, by which is meant that the
ordering relations Ri satisfy the two axioms. Hence, every individual i will give a partially ordered set from
the alternatives set that will be denoted (S)≤i

. The problem will be to obtain also a rational choice-making
from the society.

Arrow searched for a social welfare function defined as a process which, for each partially ordered set
(S)≤i

given the set of alternatives S , states a partially ordered set for the society’s preferences (S)≤. Five
conditions were proposed on the social welfare function. They were premeditated and represent a fair way
to elect a winner. For simplicity, the work is done with two individuals and 3 alternatives.

1. Well defined : The social welfare function is defined for every admissible pair of individuals’ partially
ordered sets (S)≤i

. Although it is trivial, this should be emphasized to avoid problems with the
solutions.

2. Positive association of social and individual values: If an alternative x rises or does not fall in each
of the partially ordered sets (S)≤i

without any other change in those orderings then, although there
are changes in the orders between other alternatives, x remains at the same position in the society’s
partially ordered set (S)≤. So if x ≤i y before the change in individual’s orderings, then still x ≤i y .

3. Independence of irrelevant alternatives: Given the 2 individuals’ preferences (S)≤1
, (S)≤2

and another
option of preferences (S)′≤1

, (S)′≤2
if there is a pair of alternatives with the same order in the ordered
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sets (S)≤i
and (S)′≤i

then the order given by the society’s ordered set (S)≤ is the same either we
choose one or the other individuals’ preferences.

4. Citizen’s sovereignty : The social welfare function is not imposed. There is not any pair of alternatives
for any individual’s ordered set (S)≤i

that has an imposed order. Every individual is independent and
free to choose his preferences.

5. Non-dictatorship: The social welfare function is not a dictatorship function. We have defined this
function in Definition 2.3, but in the current terms it means that the society’s ordered set (S)≤ is
not equally one corresponding to an individual (S)≤i

.

A group of consequences are drawn from these 5 conditions. The combination of them allows to prove
the possibility theorem or also known as Arrow’s Theorem:

Theorem 2.35 (Arrow’s Theorem, v1). If there are at least three alternatives among individuals can order
in any way, then every social welfare function satisfying conditions 2 and 3 and respecting axioms I and II
must be imposed or dictatorial.

As it was said before, the proof is a construction of some consequences given the previous conditions.
It is supposed that there exists a social welfare function satisfying these conditions and it will lead to a
contradiction. As notation, x ′ and y ′ will be written as variables that represent possible alternatives on the
values x , y , z .

The first consequence is a lemma that shows that the social welfare function is unanimous:

Lemma 2.36. If y ′<1 x ′ and y ′<2 x ′, then y ′ < x ′.

Proof. By the condition 4 there exists ordered sets (S)′≤1
and (S)′≤2

with corresponding social preference
y ′ < x ′. Let us form an ordered set (S)′′≤1

from (S)′≤1
by raising x ′ to the top while leaving y ′ and z ′

positions alone. We form (S)′′≤2
from (S)′≤2

in the same way.

Since all we have done is raise x ′ to the top of every ordered set while leaving the others alone, in
accordance to the condition 2: y ′, z ′ < x ′. But, by construction, both individuals order y ′<i x ′ in the
ordered sets (S)′′≤i

i = 1, 2, and society’s ordered set (S)′′≤ satisfy y ′ < x ′.

By condition 3, the order between x ′ and y ′ depends only on (S)′≤i
for i = 1, 2, it follows that whenever

both individuals order y ′<i x ′, regardless of the rank of z ′, society’s order is the same for (S)′≤i
and (S)′′≤i

.
So society will order y ′ < x ′.

This second lemma assures that once the order of the first individual prevails against the opposition of
the second, then individual 1’s order will prevail if 2 is indifferent or if he agrees with 1.

Lemma 2.37. Suppose that for some fixed alternatives x ′ and y ′, when y ′<1 x ′ and x ′<2 y ′, y ′ < x ′.
Then, whenever y ′<1 x ′, y ′ < x ′.

Proof. Let (S)≤1
be an ordered set which orders y ′<1 x ′ and let (S)≤2

be any ordered set. Let (S)′≤1

be the same as (S)≤1
but now let (S)′≤2

be (S)≤2
but with x ′ being the lowest element and prevailing

the order of the two other alternatives given in S . By construction y ′<′1 x ′ and x ′<′2 y ′. By hypothesis,
y ′ < x ′, where (S)′≤ is the ordered set derived from (S)′≤i

for i = 1, 2.

Now the only difference between the ordered sets (S)≤i
and (S)′≤i

for i = 1, 2 is that x ′ is raised at the
scale of order in the latter compared with the former. Hence, by condition 2 it follows from y ′<′ x ′ that
y ′< x ′.
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The third lemma proves that if two ordered sets have opposite orders on two variables, then society
ordered set has an equality in that comparison.

Lemma 2.38. If y ′<1 x ′ and x ′<2 y ′, then x ′ = y ′.

Proof. Let us suppose it is false. Let (S)≤i
for i = 1, 2 be ordered sets and for some alternatives x ′, y ′

with opposed order let the society ordered set (S)≤ state y ′ < x ′ without loss of generalization. It will be
shown that this assumption leads to a contradiction.

Again, without loss of generalization, let us say x ′, y ′ are fixed alternatives like x ′ = x and y ′ = y .
Collecting everything, the condition 3 states that society’s order depends exactly on the orders given by
the individuals:

If y <1 x and x <2 y , then y < x . (2.3)

It will be shown that (2.3) leads to a contradiction.

Suppose y <1 x and z <1 y , while x <2 z and z <2 y so individual 2 orders x <2 y . By condition (2.3)
society orders y < x . Also both order z <i y so by unanimity proved in Lemma 2.36 society orders z < y .
By the transitive property of the society’s partially ordered set (S)≤ we must have z < x . Therefore, there
have been exhibited ordered sets (S)≤i

such that z <1 x and x <2 z , but z < x . But, by the condition 3
again, the society’s order between x and z depends only on the individuals’ preferences for x and z :

If z <1 x and x <2 z , then z < x . (2.4)

Now we will consider all possible order cases and apply the conditions (2.3),(2.4) on both individual’s
ordered sets (S)≤i

.

Suppose (S)≤1
has the order z <1 x <1 y and (S)≤2

has x <2 y <2 z . By unanimity shown at Lemma
2.36 society’s order must be x < y , and by (2.4) z < x , so the society’s ordered set (S)≤ must satisfy
z < y . By the same reasoning as before with the condition 3:

If z <1 y and y <2 z , then z < y . (2.5)

In other case if (S)≤1
has the order x <1 z <1 y and (S)≤2

has y <2 x <2 z . By unanimity shown at
Lemma 2.36 society’s order must be x < z and from (2.5) z < y , so the society’s ordered set (S)≤ must
satisfy x < y . By the same reasoning as before with the condition 3:

If x <1 y and y <2 x , then x < y . (2.6)

Now if (S)≤1
has the order x <1 y <1 z and (S)≤2

has y <2 z <2 x . By unanimity shown at Lemma
2.36 society’s order must be y < z and from (2.6) x < y , so the society’s ordered set (S)≤ must satisfy
x < z . By the same reasoning as before with the condition 3:

If x <1 z and z <2 x , then x < z . (2.7)

Finally if (S)≤1
has the order y <1 x <1 z and (S)≤2

has z <2 y <2 x . By unanimity shown at Lemma
2.36 society’s order must be y < x and from (2.7) x < z , so the society’s ordered set (S)≤ must satisfy
y < z . By the same reasoning as before with the condition 3:

If y <1 z and z <2 y , then y < z . (2.8)
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From (2.3)-(2.8) it follows that for any pair of alternatives x ′, y ′, whenever x ′<1 y ′ then x ′ < y ′.
Therefore the order in the society’s ordered set (S)≤ is given by the order on (S)≤1

. This implies that the
individual 1 is a dictator. But we suppose from condition 5 that our social welfare function can not be a
dictatorship. So we have come to a contradiction and we have proved the lemma.

Now it is possible to prove Arrow’s Theorem 2.35.

Proof. (Arrow’s Theorem, v1) Suppose (S)≤1
has the order z <1 y <1 x , while (S)≤2

has the order
y <2 x <2 z . By unanimity shown at Lemma 2.36 y < x . Since z <1 y and y <2 z , it follows from
Lemma 2.38 that y = z . Then by definition of the ordered set (S)≤ we have z < x .

But also z <1 x and x <2 z , which implies x = z by Lemma 2.38. It cannot be possible that z < x but
also z = x . Thus the assumption that there is a social welfare function compatible with conditions 1− 5
comes to a contradiction. Or in another way, to satisfy conditions 2-3 so Lemma 2.36 holds then either
condition 4 or 5 must be violated so we must have an imposed or dictator social welfare function.

2.4 Kalai’s work on Arrow’s Theorem

We have seen in the Section 2.3 that although the voters provide rational votes, the social choice function
can derive to a non-rational outcome. This anomaly has an own name in honor to the man who presented
the system of voting.

Definition 2.39. Given rational votes by individuals, we say that an alternative is a Condorcet winner if it
wins all the pair-wise voting in which it participates.

Hence it is possible to define Arrow’s Theorem 2.35 in another words:

Theorem 2.40 (Arrow’s Theorem, v2). Consider a Condorcet election system for 3 candidates using an
unanimous voting rule f : {−1, 1}n −→ R. If there is always a Condorcet winner, then f must be a
dictatorship.

Gil Kalai proved the theorem in mathematical terms (see [3]) instead through results derived from
ordered sets like Arrow. He started searching if there was a closed formula to compute the probability of
a Condorcet winner.

To find this probability he proposed an easy mathematical way to identify a Condorcet winner. Given
an input from {−1, 1}3, that will provide the preferences of a voter on 3 alternatives, we can identify if
this vote is rational by assuring that all the bits are not equal. This can be seen in Table 1, because if the
input was for example all 1’s, the voter would prefer a to b, b to c and c to a, and this result leads to a
contradiction. So first of all it is defined a function to identify non-rational outcomes.

Lemma 2.41. Let NAE3 : {−1, 1}n −→ {0, 1} be the following indicator function:

NAE3 : {−1, 1}n → {0, 1}

x 7→
ß

0 if x = (−1,−1,−1) or x = (1, 1, 1),
+1 otherwise.

Then the Fourier expansion of this function NAE3 is:

NAE3(x) =
3

4
− 1

4

(
χ{1,2}(x) + χ{1,3}(x) + χ{2,3}(x)

)
.
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This lemma will not be proved since it is easy to do as an exercise applying the method to obtain the
Fourier coefficients presented in 1.10. But this is a powerful result that helped Kalai to manage to obtain
a closed formula for the probability of having a Condorcet winner.

Lemma 2.42. Consider a 3-candidate Condorcet election with pair-wise confrontations a vs. b, b vs. c and
c vs. a. Suppose that every election is given by the outcome of the functions f , g , h : {−1, 1}n −→ {−1, 1},
respectively. Then, under the impartial culture assumption, the probability of a Condorcet winner is:

E
x,y,z

[NAE3(f (x), g(y), h(z))] =
3

4
− 1

4

(
E
x,y

[f (x)g(y)] + E
y,z

[g(y)h(z)] + E
x,z

[f (x)h(z)]
)

.

Proof. Every individual participating in the Condorcet election will give votes xi , yi , zi for the preferences
on the confrontations a vs. b, b vs. c and c vs. a, respectively. Since the preferences must be rational,
NAE3(xi , yi , zi ) = 1. So society’s election for every pair-wise confrontation will be f (x), g(y), h(z) where
x = (x1, ... , xn), y = (y1, ... , yn) and z = (z1, ... , zn) where n is the number of voters. Then we can
compute the probability of a Condorcet winner identifying them with the NAE3 function:

Pr [∃ Condorcet winner] = E
x,y,z

[NAE3(f (x), g(y), h(z)].

Which is equal, by using Lemma 2.41, to:

E
x,y,z

[
3

4
− 1

4

(
χ{1,2}(f (x), g(y), h(z)) + χ{1,3}(f (x), g(y), h(z)) + χ{2,3}(f (x), g(y), h(z))

)
].

Developing the expression above we set:

3

4
− 1

4

(
E
x,y

[f (x)g(y)] + E
y,z

[g(y)h(z)] + E
x,z

[f (x)h(z)]
)

.

This result is really general since it works for different functions for every pair-wise election. But usually
in a Condorcet-election system, also in the hypothesis of Arrow’s Theorem, every pair-wise confrontation
winner is given by the same social choice function. If we try to compute the last probability in this condition,
we can relate it with the noise stability defined in 2.28.

Lemma 2.43. Consider a 3-candidate Condorcet election using f : {−1, 1}n −→ {−1, 1} as the social
choice function. Then, under the impartial culture assumption, the probability of a Condorcet winner is:

Pr [∃ Condorcet winner] =
3

4
− 3

4
Stab−1/3[f ].

Proof. In the joint distribution of (x, y) the n bit pairs (xi , yi ) are independent since impartial culture
assumption is assumed. The same observation is given for (y, z) and (x, z) but we will prove it without
loss of generalization for (x, y).

First, we can compute by inspection the following expectations reminding the only two values the bits
can take:

E[xi ] = E[yi ] = Pr[xi = +1]− Pr[xi = −1] =
1

2
− 1

2
= 0. (2.9)

Second, we can compute the probability of E[xiyi ] bearing in mind that NAE3(xi , yi , zi ) = 1:

E[xiyi ] = Pr[xiyi = +1]− Pr[xiyi = −1] =
2

6
− 4

6
= −1

3
. (2.10)
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Hence, we observed in Definition 2.27 that the results of the expectations given in (2.9)-(2.10) are
equivalent to saying that (x, y) is a −1/3-correlated pair. Then, by the definition of noise stability given
in 2.28, we can rewrite the terms: E[f (x)g(y)] = Stab−1/3[f ].

Finally we can substitute the expression for the probability of a Condorcet winner found in the Lemma
2.42 by this last result:

E
x,y,z

[NAE3(f (x), f (y), f (z))] =
3

4
− 1

4

(
E
x,y

[f (x)f (y)] + E
y,z

[f (y)f (z)] + E
x,z

[f (x)f (z)]
)

=
3

4
− 1

4

(
Stab−1/3[f ] + Stab−1/3[f ] + Stab−1/3[f ]

)
=

3

4
− 3

4
Stab−1/3[f ].

Furthermore, we need a result from Fourier coefficients before we can prove the main theorem. As it
was said in the part of Fourier expansions 1.2, the Fourier coefficients give a lot of information about a
Boolean function.

Lemma 2.44. Let f : {−1, 1}n −→ {−1, 1} with the Fourier expansion f =
∑

S⊆[n] f̂ (S)χS . Suppose

that W1[f ] = 1. Then f (x) = ±xi for some i ∈ [n].

Proof. First, note that Parseval’s Theorem assures 〈f , f 〉 = 1. Then if W1[f ] = 1, all other degree k parts
of f Wk [f ] with k 6= 1 must be 0, thus f̂ (S) = 0 for every set such that |S | 6= 1.

Second, since we are working with a boolean-valued function, f (x) = ±1 for every input from the
Hamming cube. So the boolean-valued function squared can be also defined as f 2 = 1. In terms of Fourier
expansions:

1 =
( n∑

i=1

f̂ (i)xi

)2
=

n∑
i=1

f̂ (i)2 +
n∑

i ,j=1

f̂ (i)f̂ (j)xixj = 1 +
n∑

i ,j=1

f̂ (i)f̂ (j)xixj .

Where in the second equality we introduced the hypothesis W1[f ] = 1. So all rests to prove that the
second term in the sum is equal to zero. Note that:

n∑
i ,j=1

f̂ (i)f̂ (j)xixj =
n∑

i ,j=1

f̂ (i)f̂ (j)χ{i ,j}.

But for every set S such that |S | 6= 1 its Fourier coefficient must be zero. Therefore, by the uniqueness
of Fourier expansion, f̂ ({i , j}) = f̂ (i)f̂ (j) = 0. These Fourier coefficients will be null if the product
f̂ (i)f̂ (j) = 0 for i 6= j . However, the equality W1[f ] = 1 restricts that there is only one i ∈ [n] such that
f̂ (i) 6= 0 and indeed it must be ±1.

Consequently, writing the function by its Fourier expansion, f (x) = ±xi .

Finally, the proof of Arrow’s Theorem 2.40 is now deduced from these previous lemmas.

Proof. (Arrow’s Theorem, v2) By assumption, the probability of a Condorcet winner is 1 and writing it as
the expression given in Lemma 2.43:

1 =
3

4
− 3

4
Stab−1/3 =

3

4
− 3

4

n∑
k=0

(
− 1

3

)k
Wk [f ].
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Where in the second equality the noise stability is expressed in terms of its Fourier coefficients as it is
showed in Proposition 2.32. Since (−1/3)k ≥ −1/3 for all k , the equality above only occurs when all
Fourier weights are on degree 1; i.e. W1[f ] = 1. By the Lemma 2.44 this implies that f = ±xi . In other
words f is a dictator or a negated dictator. Since f is unanimous, it must in fact be a dictator.

The expression found by Kalai can also be used to bound the probability of a Condorcet winner.

Proposition 2.45. In a 3-candidate Condorcet election using f : {−1, 1}n −→ {−1, 1}, the probability of
a Condorcet winner is at most 7/9 + 2/9 ·W1[f ].

Proof. The probability given in Lemma 2.43 is:

3

4
− 3

4
Stab−1/3[f ] =

3

4
− 3

4

n∑
k=0

(
− 1

3

)k
Wk [f ]

≤ 3

4
+

1

4
W1[f ] +

1

36
W3[f ] +

1

324
W5[f ] + · · ·

≤ 3

4
+

1

4
W1[f ] +

1

36
(W3[f ] + W5[f ] + · · · )

≤ 3

4
+

1

4
W1[f ] +

1

36
(1−W1[f ])

=
7

9
+

2

9
W1[f ].
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3. Hypercontractivity and stability

This chapter will introduce the concept of hypercontractivity in Boolean functions. We will follow the
results given in chapters 4 and 9 of O’Donnell’s reference book [1]. The capability of giving a stability
result for Arrow’s Theorem 2.40 and prove the KKL Theorem 3.14 depends on some new concepts about
hypercontractivity on Boolean functions. When we talk about stability of some statement we refer that
being near the hypothesis implies something near the result.

3.1 Hypercontractivity results

In 1979 Aline Bonami introduced and proved in [5] a surprising theorem which states that the noise operator
has really good properties applied to the functions that we are working on.

Theorem 3.1 ((p, q)-Hypercontractivity Theorem). Let f : {−1, 1}n −→ R and let 1 ≤ p ≤ q ≤ ∞.

Then ‖Tρf ‖q ≤ ‖f ‖p for 0 ≤ ρ ≤
»

p−1
q−1 .

This result is stronger than Hölder’s inequality because somehow we have flipped p and q. We will
prove a less general lemma called Bonami Lemma 3.5. But first of all, we define an aspect of Boolean
functions that will favor them on having good properties.

Definition 3.2. The degree of a Boolean function f : {−1, 1}n −→ R is the degree of its Fourier expansion.

Random variables can have sometimes unreasonable behaviour. This is a really general concept but
one example is that the random variable is never close to its expectation. Bonami Lemma assures that low
degree functions have reasonable behaviour. Let us define now a mathematical condition which secures
good behaviour.

Definition 3.3. For a real number B ≥ 1, we say that the real random variable X is B-reasonable if
E[X4] ≤ BE[X2]2.

Doing some work this condition gives good properties to the random variable. For example, we can
obtain better tail bounds than what we would get out of the Chebychev inequality. For discrete random
variables a simple condition to be reasonable is to take on each of its values with nonnegligible probability.
The property that we will see shows that we can have an upper bound for the probability of these random
variables being close to zero.

Proposition 3.4. Let X 6= 0 be B-reasonable. Then Pr[|X| > t‖X‖2] ≥ (1−t2)2
B for all t ∈ [0, 1].

Proof.

Pr[|X| > t‖X‖2] = Pr[X2 > t2‖X‖22] = Pr[X2 > t2E[X2]] ≥ (1− t2)2
E[X2]2

E[X4]

≥ (1− t2)2
E[X2]2

BE[X2]2
=

(1− t2)2

B
.

Where the first inequality comes from the Paley-Zygmund inequality.

Finally, it is introduced the Bonami Lemma. It will confirm the suspicion that a high degree function
is required to have non-reasonable behaviour.
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Lemma 3.5 (Bonami Lemma). For each k, if f : {−1, 1}n −→ R has degree at most k and the coordinates
are uniformly random bits ±1 i.i.d. then the random variable f (x) is 9k -reasonable, i.e.:

E[f 4] ≤ 9kE[f 2]2, if and only if, ‖f ‖4 ≤
√

3k‖f ‖2.

Proof. This lemma is proved by induction on n. We use k ≥ 1, as otherwise f is constant and the claim
is trivial. Again, if n = 0, then f is also constant. For n ≥ 1, we will start decomposing f in terms of Dnf
and Enf as it was shown in Proposition 2.23. For brevity we write f = f (x), d = Dnf (x) and e = Enf (x).
Now:

E[f 4] = E[(xnd + e)4] = E[x4
nd4] + 4E[x3

nd3e] + 6E[x2
nd2e2] + 4E[xnde3] + E[e4]

= E[x4
n ] · E[d4] + 4E[x3

n ] · E[d3e] + 6E[x2
n ] · E[d2e2] + 4E[xn] · E[de3] + E[e4].

(3.1)

The last equality is due to the independence of xn from d and e since they do not depend on xn.

We compute the expectations E[xn] = E[x3
n ] = 0 and E[x2

n ] = E[x4
n ] = 1. Then we can simplify the

Expression (3.1) like:

E[f 4] = E[d4] + E[d2e2] + E[e4]. (3.2)

Doing the same procedure but now for f 2:

E[f 2] = E[(xnd + e)2] = E[x2
nd2] + 2E[xnde] + E[e2]

= E[xn]2 · E[d2] + 2E[xn] · E[ed ] + E[e2]

= E[d2] + E[e2].

(3.3)

To get an upper-bound on (3.2) recall that we have seen in Proposition 2.19 that Di f has degree ≤ k−1
and depends on n − 1 variables so we can apply the induction hypothesis to deduce E[d4] ≤ 9k−1E[d2]2.
Similarly, Proposition 2.23 shows that Enf is a function of degree ≤ k and depends on n − 1 variables so
E[e4] ≤ 9kE[e2]2. To bound E[e2d2] we apply the Cauchy-Schwarz inequality:

E[e2d2] = 〈e2, d2〉 ≤
»

E[d4]
»

E[e4].

. We can apply the induction hypothesis for the terms inside the square roots. Thus we have:

E[f 4] ≤ 9k−1E[d2]2 + 6
»

9k−1E[d2]2
»

9kE[e2]2 + 9kE[e2]2

≤ 9k(E[d2]2 + 2E[d2] · E[e2] + E[e2]2)

= 9k(E[d2] + E[e2])2 = 9kE[f 2]2.

Where the second inequality is valid since k ≥ 1. In the last equality we used the result from (3.3).

Many important results that we will see later use the Hypercontractivity Theorem 3.1 on some fixed
pairs (p, q). This concrete results can be proved from the Bonami Lemma.
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3.2 Stability of Arrow’s Theorem

Once Arrow’s Theorem 2.40 is understood, one natural question is if the result is stable. By stable we
mean that being really close to the hypothesis almost implies being close to the result of the statement.

We can be curious if a Condorcet winner probability near one also states that the function is ”close”
to be a dictatorship. Later we will see that it is just like that. But before we define in mathematical terms
how can we measure the closeness of a function to being a certain function.

Definition 3.6. If f and g are boolean-valued functions we say that they are ε-close if dist(f , g) ≤ ε,
where dist(·, ·) is the Hamming distance from Definition 1.13.

Therefore it is possible to introduce the Friedgut-Kalai-Naor Theorem presented in [6].

Theorem 3.7 (FKN Theorem). Suppose δ > 0 and f : {−1, 1}n −→ {−1, 1} has W1[f ] ≥ 1− δ. Then f
is O(δ)-close to ±χi for some i ∈ [n].

Note that this theorem states that if almost all the weights W[f ] are in the first level there is one weight
in W1[f ] which is big enough to be decisive on valuing the function. Before we can show this theorem we
need a lemma provided from Bonami Lemma.

Lemma 3.8. Let f : {−1, 1}n −→ R be a nonconstant function of degree at most k; write µ = E[f ] and
σ =

√
Var[f ]. Then:

Pr
x∼{−1,1}n

[|f (x)− µ| > 1

2
σ] ≥ 1

16
· 91−k .

Proof. Let g = 1/σ(f − µ). a function of degree at most k standardized so ‖g‖2 = 1. By the Bonami
Lemma 3.5, g is 9k -reasonable. The result now follows by applying the Proposition 3.4 for reasonable
variables with t = 1/2:

Pr[|g | > t‖g‖2] = Pr[|f − µ| > 1

2
σ] ≥ (1− (1/2)2)2

9k
=

1

16
· 91−k .

Finally it is possible to prove the FKN theorem.

Proof. (FKN Theorem). We write ` = f =1, so E[`2] = 1− δ by assumption. We can assume without loss
of generality that δ ≤ 1

1600 . The goal is to show that Var[`2] is small, in particular we will show Var[`2]
≤ 6400δ.

To bound Var[`2] we first apply the Lemma 3.8 to the degree two function `2:

Pr

[
|`2 − (1− δ)| ≥ 1

2

»
Var[`2]

]
≥ 1

16
· 91−2 =

1

144
.

Now suppose by way of contradiction that Var[`2] > 6400δ, then the inequality above implies:

1

144
≤ Pr[|`2 − (1− δ)| > 40

√
δ] ≤ Pr[|`2 − (1− δ)| > 39

√
δ]. (3.4)
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This is saying that |`| has some probability of being far from 1. Since |f | = 1 always we can deduce
that |f − `|2 is frequently large. In fact, a precise calculation can be done and see that (f − `)2 ≥ 169δ if
|`2−1| > 39δ. But using Markov’s inequality on (3.4) derives to E[(f −`)2] ≥ 1

144169δ > δ, a contradiction
since it is computable and E[(f − `)2] = 1−W1[f ] = δ by assumption.

Therefore we prove that Var[`2] small gives us the desired result. By the expression of variance in terms
of the Fourier coefficients seen in Proposition 1.18 we can write:

1

2
Var[`2] =

∑
i 6=j

f̂ (i)2f̂ (j)2 =

(
n∑

i=1

f̂ (i)2

)2

−
n∑

i=1

f̂ (i)4 = (1− δ)2 −
n∑

i=1

f̂ (i)4 ≥ (1− 2δ)−
n∑

i=1

f̂ (i)4.

And hence using the small variance proved above, Var[`2] ≤ 6400δ, we have:

1− 3202δ ≤
n∑

i=1

f̂ (i)4 ≤ max
i∈[n]
{f̂ (i)2}

n∑
i=1

f̂ (i)2 ≤ max
i∈[n]
{f̂ (i)2} ≤ max

i∈[n]
{|f̂ (i)|}.

Hence there is a Fourier coefficient with absolute value greater than some threshold and the greatness
depends on δ. This is the definition of being O(δ)-close to some dictatorship.

At the end, as it was suspected, we can introduce a corollary of Arrow’s Theorem that states stability
on the theorem. It is an immediate consequence of FKN Theorem 3.7.

Corollary 3.9. Suppose that in a 3-candidate Condorcet election using f : {−1, 1}n −→ {−1, 1} the
probability of a Condorcet winner is 1− ε. Then f is O(ε)-close to ±χi for some i ∈ [n].

Proof. In Proposition 2.45 it is presented an upper-bound for the probability of a Condorcet winner. In the
hypothesis the probability is 1− ε, hence:

1− ε ≤ 7

9
+

2

9
W1[f ], then: W1[f ] ≥ 1− 9

2
ε.

The conclusion follows immediately from the FKN Theorem.

3.3 Kahn–Kalai–Linial Theorem

By the moment, boolean-valued functions have proved us that they have a really good behaviour and
interpretations. In fact, we can represent them in terms of a decision tree or another more compact
representation called DNF formula.

Definition 3.10. A DNF (Disjunctive Normal Form) formula over Boolean variables x1, ... , xn is a logical
OR of terms, each of which is a logical AND of literals. A literal is either a variable xi or its negation xi .
The number of terms is called the size and the number of literals in every term is defined as the width.

We have seen before a function defined like this. Remember the definition of the Tribes function 2.6.
Tribesw ,s is a width-w and size-s DNF formula.

One can easily see that
Pr[Tribesw ,s(x) = −1] = 1− (1− 2−w )s .

Hence Ben-Or and Linial tried in [7] to construct a nearly unbiased function with the following definition.
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Definition 3.11. For w ∈ N+ let s = sw be the largest integer such that 1− (1− 2−w )s ≤ 1/2. Then for
n = nw = sw we define Tribesn : {−1, 1}n −→ {−1, 1} as Tribesw ,s .

Hereinafter we will denote log (x) as log2 (x). If we do the computations we can see that s ≈ ln(2)2w ,
hence n = sw ≈ ln(2)w2w and therefore w ≈ log (n)− log (ln (n)) and s ≈ n/ log (n). Before giving some
results about this asymptotic terms, let us recall, for the sake of completeness, some expressions in Big O
notation.

• f (n) = o(g(n)) if for every k > 0 there exists a n0 such that |f (n)| < kg(n), ∀n ≥ n0.

• f (n) = O(g(n)) if there exists a k > 0 and n0 such that |f (n)| ≤ kg(n), ∀n ≥ n0.

• f (n) = Ω(g(n)) if there exists a k > 0 and n0 such that f (n) ≥ kg(n), n ≥ n0.

• f (n) = Ω̃(g(n)) if there exists a k 6= 0 such that f (n) = Ω
(
g(n) logk (g(n))

)
.

• f (n) = Θ(g(n)) if there exists a k1 > 0, k2 > 0 and n0 such that k1g(n) ≤ f (n) ≤ k2g(n), ∀n ≥ n0.

Doing the computations it is possible to see the following asymptotic results for the parameters in the
Tribesn function.

Proposition 3.12. For the Tribesn function given in Definition 3.11:

• s = ln (2)2w −Θ(1).

• n = ln (2)w2w −Θ(w).

• w = log (n)− log (ln (n)) + o(1).

• Pr[Tribesn(x) = −1] = 1
2 − O(log (n)/n).

Note that the last result is stating that with this setting of parameters Tribesn is essentially unbiased.
We can try to see if this gives a good (small) influence.

Proposition 3.13.

Infi [Tribesn] =
ln (n)

n

(
1± o(1)

)
, for each i ∈ [n].

And hence, I[Tribesn] = ln (n)(1± o(1)).

Proof. In Tribesn voter i is pivotal if and only if all the voter’s in i ’s ”tribe” vote -1 (True) and all the
other tribes produce the outcome +1 (False). The probability of this is:

2−(w−1) · (1− 2−w )s−1 =
2−(w−1)

1− 2−w
(1− 2−w )s =

21−w

1− 2−w
Pr[Tribesn = +1]

=
2

2w − 1
Pr[Tribesn = +1] =

2

2w − 1

(
1

2
+ O

( log(n)

n

))

=
ln (n)

n

(
1± o(1)

)
.

Where we used the Proposition 3.12 in the two last equalities.
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Thus, if we are interested in unbiased voting rules in which every voter has small influence, Tribesn is
much better than Majn where each voter has influence Θ(1/

√
n). We can wonder if there exists any other

unbiased voting rule such that the maximum influence is smaller than Θ(ln (n))/n. The Kahn-Kalai-Linial
Theorem was presented in [8] and shows that the Tribesn example is tight to constants.

Theorem 3.14 (KKL Theorem). For any f : {−1, 1}n −→ {−1, 1}:

MaxInf[f ] = max
i∈[n]

Infi [f ] ≥ Var[f ]Ω
( log (n)

n

)
.

We can interpret this theorem like: ”The maximum influence is greater than something that depends
on the function (Var[f ]) and a function that increases with log (n)/n”. The proof of this theorem requires
a bunch of lemmas and a derived theorem that will be presented next.

As it was previously said in Section 3.1 the Bonami Lemma 3.5 is a really useful tool to prove the
Hypercontractivity Theorem 3.1 for specific pairs (p, q).

Observation 3.15. An immediate consequence of the Bonami Lemma is that for any f : {−1, 1}n −→ R
and k ∈ N,

‖T1/
√
3f =k‖4 = ‖

( 1√
3

)k
f =k‖4 =

1√
3k
‖f =k‖4 ≤

√
3k√
3k
‖f =k‖2 = ‖f =k‖2.

But there is a generalization of this (2,4)-Hypercontractivity Theorem which says that the assumption of
having degree-k f is not necessary.

Lemma 3.16 ((2,4)-Hypercontractivity Theorem). Let f : {−1, 1}n −→ R. Then ‖T1/
√
3f ‖4 ≤ ‖f ‖2.

If we look close, this is saying that T1/
√
3 is a contraction when is viewed as an operator from

L2({−1, 1}n) to L4({−1, 1}n). Hence we should think of hypercontractivity like quantifying the extent
to which the noise operator Tρ is a smoothing operator.

Proof. We will prove the identical result E[T1/
√
3f (x)4] ≤ E[f (x)2]2 using the same induction as in the

proof of the Bonami Lemma. Retaining the notation e and d , and now denoting T = T1/
√
3, since the

noise operator is lineal:

Tf = T (xn · d + e) = xn ·
1√
3

Td + Te.

Similar computations as with the Bonami lemma, like the independence of xn on the functions d and e and
the expectations on E[xk

i ] for k in {1, 2, 3, 4}, yield:

E[(Tf )4] =
( 1√

3

)4
E[(Td)4] + 6

( 1√
3

)2
E[(Td)2(Te)2] + E[(Te)4]

≤ E[(Td)4] + 2E[(Td)2(Te)2] + E[(Te)4]

≤ E[(Td)4] + 2
»

E[(Td)4]
»

E[(Te)4] + E[(Te)4]

≤ E[d2]2 + 2E[d2]E[e2] + E[e2]2 = (E[d2] + E[e2])2

= E[f 2]2.

Where in the second inequality we used the Cauchy-Schwarz inequality and the following inequality is the
induction step because the number of variables from which d and e depend are less than n. Finally, in the
last equality, we write E[f 2] like it was computed in (3.3).
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This precise hypercontractivity theorem allows to introduce and prove another hypercontractivity the-
orem for a concrete pair (p, q):

Lemma 3.17 ((4/3,2)-Hypercontractivity Theorem). Let f : {−1, 1}n −→ R. Then ‖T1/
√
3f ‖2 ≤ ‖f ‖4/3.

Observing that ‖T1/
√
3f ‖2 =

»
Stab1/3[f ] we can rewrite this as:

Stab1/3[f ] ≤ ‖f ‖24/3. (3.5)

Proof.

‖T1/
√
3f ‖22 = 〈T1/

√
3f , T1/

√
3f 〉 = 〈f , T1/

√
3T1/

√
3f 〉

≤ ‖f ‖4/3‖T1/
√
3T1/

√
3f ‖4 ≤ ‖f ‖4/3‖T1/

√
3f ‖2.

Where the first inequality is due to Hölder’s inequality with p = 4/3 and q = 4. In the second inequality
we applied the (2,4)-Hypercontractivity Theorem 3.16. Dividing now by ‖T1/

√
3f ‖2 we have:

‖T1/
√
3f ‖2 ≤ ‖f ‖4/3.

The left-hand side of the Equation (3.5) is a natural quantity. The right-hand side is always 1 for
boolean-valued functions f : {−1, 1}n −→ {−1, 1} because of the definition of the norm ‖ · ‖4/3. It is
interesting to treat other Boolean functions g such that g = |g | = g2 for example g : {−1, 1}n −→ {0, 1}
or g : {−1, 1}n −→ {−1, 0, 1}.

Corollary 3.18. Let f : {−1, 1}n −→ {−1, 1}. Then Inf
(1/3)
i [f ] ≤ Infi [f ]3/2 for all i in [n].

Proof. By definition Stab1/3[Di f ] = Inf
(1/3)
i and ‖Di f ‖22 = Infi [f ] = E[Di f

2]. So:

Stab1/3[Di f ] ≤ ‖Di f ‖24/3 =
(

E[Di f (x)4/3]3/4
)2

= E[Di f
2]3/2.

The first inequality provides from (3.5). The last equality happens only because Di f ’s range {−1, 0, 1}, so
Di f

4/3 = Di f
2.

Hence if the influence of i is small, then its 1/3-stable influence is much smaller.

Before we can show the KKL Theorem 3.14 we will see a variation of the theorem. This result was also
presented by Kahn, Kalai and Lineal in [8].

Theorem 3.19 (KKL Edge-Isoperimetric Theorem). Let f : {−1, 1}n −→ {−1, 1} be non-constant and
let Ĩ[f ] = I[f ]/Var[f ] ≥ 1 (which will be just 1 if f is unbiased). Then

MaxInf[f ] ≥

(
9

Ĩ[f ]2

)
· 9−Ĩ[f ].

This statement is different from the statement of KKL Theorem 3.14. Here we can interpret that the
maximal influence will be greater than a expression that depends on the total influence and the variance.
Remember that the variance measures how far is a Boolean function from being constant. Additionally,
note that now maximal influence does not increase with a function depending on the size of the Hamming
cube n.

The idea of the proof is to look at the contrapositive: supposing that all of f ’s influences are small, we
want to show that its total influence must be large.
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Proof. (KKL Edge-Isoperimetric Theorem). The proof treats only the case when f is unbiased, i.e. Var[f ] =
1 so Ĩ[f ] = I[f ]. Before we can prove the theorem, we will introduce 3 inequalities that will be used in the
proof.

The first one is a consequence of the Fourier expansion for the noise stability:

3 · Stab1/3[f ] = 3
∑
S⊆[n]

(1

3

)|S|
f̂ (S)2 = 3 · E

S∼Sf
[3−|S|] ≥ 3 · 3−E[|S|] = 3 · 3−I[f ]. (3.6)

Where the second equality comes from the definition of the written expectation. The inequality is
derived from the convexity of the function t 7→ 3−t .

The second useful inequality is given by reasoning on Fourier formulas and the fact that f̂ (∅) = 0 since
f is unbiased:

I(1/3)[f ] =
∑
|S |>1

|S |
(1

3

)|S |−1
f̂ (S)2 ≥ 3 ·

∑
|S|≥1

(1

3

)|S|
f̂ (S)2 = 3 · Stab1/3[f ]. (3.7)

The third inequality is immediate since f is a boolean-valued function so Infi [f ] =
∑

i∈S f̂ (S)2 ≤ 1.

n∑
i=1

Infi [f ]3/2 ≤
n∑

i=1

MaxInf[f ]1/2Infi [f ] = MaxInf[f ]1/2I[f ]. (3.8)

Grouping all the inequalities and recalling the Corollary 3.18 we finally have:

3 · 3−I[f ] ≤
(3.6)

3 · Stab1/3[f ] ≤
(3.7)

I(1/3)[f ] ≤
3.18

n∑
i=1

[Infi [f ]3/2 ≤
(3.8)

MaxInf[f ]1/2I[f ].

So getting the power of two on both sides and reordering the terms we have the desired result.

With the Edge-Isoperimetric version of the Kahn-Kalai-Linial Theorem we can prove immediately the
original KKL Theorem 3.14:

Proof. (KKL Theorem). We may assume f is non-constant. We can have two cases for the previous defined
influence Ĩ[f ]. On one hand, if Ĩ[f ] = I[f ]/Var[f ] ≥ 0.1 log (n) then we are done, the total influence is at
least I[f ] ≥ 0.1Var[f ] log (n), and hence MaxInf[f ] ≥ 0.1Var[f ] log (n)/n as the theorem states.

On the other hand, if Ĩ[f ] ≤ 0.1 log (n), the KKL Edge-Isoperimetric Theorem 3.19 implies:

MaxInf[f ] ≥ Ω

(
1

(0.1)2 log2 (n)

)
9−0.1 log (n) ≥ Ω

(
1

log2 (n)

)
9−0.1 log (n)

= Ω

(
1

log2 (n)

)
·
(

2log (9)
)−0.1 log (n)

= Ω

(
1

log2 (n)
· n−0.1 log (9)

)
= Ω̃

(
n−0.1 log (9)

)
= Ω

(
n−0.317

)
.

(3.9)
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We only need to see that Ω(n−0.317) is greater than the right-side of the inequality of the KKL Theorem.
Watch in 3.14 that there is a Var[f ] multiplying and it can take really small values, therefore we should
see that Ω(n−0.317) is much greater than Ω(log (n)/n). To prove this we will use limits to see that the
first function takes much greater values than the second.

Let f (n) be in Ω(n−0.317), by definition there exists a k1 > 0 and n1 such that f (n) ≥ k1n−0.317 for
every n ≥ n1. We can also define a function g(n) in Ω(log (n))/n, so there exists a k2 > 0 and n2 such
that g(n) ≥ k2 log (n)/n for every n ≥ n2. If now we take limits with n tending to infinity we must note
that n will be greater than max {n1, n2} so we can write the limit between f (n) and g(n) as it follows:

lim
n→+∞

f (n)

g(n)
≥ lim

n→+∞

k1n−0.317

k2
log (n)

n

=
k1
k2
· lim
n→+∞

n0.683

ln (n)
ln (2)

=
k1 · ln (2)

k2
· lim
n→+∞

0, 683 · n−0.317
1
n

=
k1 · ln (2) · 0, 683

k2
· lim
n→+∞

n0,683 = +∞

Where in the first equality we applied the rule of change of basis of a logarithm. In the second it is necessary
to use Hôpital’s rule since the limit is a division between infinities so we differentiate with respect to n in
the numerator and the denominator. Finally we can plug this result of limits in the Equation (3.9) to show
the final result:

MaxInf[f ] ≥ Ω(n−0.317) >> Var[f ]Ω

(
log (n)

n

)
.
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4. Path to the proof of the Sensitivity Conjecture

This chapter starts presenting what is the Computational Complexity Theory. It will locate the reader in a
position to understand some of the most important complexities defined until now and how they are related.
The aim of the chapter is to present the relation between two specific complexities. It was first conjectured
by Nisan and Szegedy in [9] but proved in [10] by Huang almost 30 years later with an equivalence to the
problem presented by Gotsman and Kalai in [11].

4.1 Foundations of Computational Complexity Theory

The Computational Complexity Theory is the branch of Computer Science that defines sensitivity measures
and studies how they are related in order to classify computational problems. One type of relation is in
polynomial ways.

Definition 4.1. Given the measures of complexity s1 and s2 they are said to be equivalent if they are
polynomially related; i.e. there exist polynomials p1(x) and p2(x) such that for every f :

s1(f ) ≤ p2(s2(f )), s2(f ) ≤ p1(s1(f )).

Once it is said how measures of complexity are related it is possible to introduce and define two basic
measures.

Definition 4.2. Let f : {0, 1}n → {0, 1} be a Boolean function. A decision tree model is an algorithm
which repeatedly queries input variables until it can determine the value of the function. The cost of the
model is the number of queries. The decision tree complexity, D(f ), is defined to be the cost of the best
tree model algorithm for f .

Definition 4.3. Let f : {0, 1}n → {0, 1} be a Boolean function and x any input string. A 1-certificate for
f is an assignment to some subset of variables that forces the value of f to be 1. Same definition can be
given but for value 0. The certificate complexity of f on x, Cx(f ), is the size of the smallest certificate
that agrees with x. The certificate complexity of f, C (f ), is defined like maxx∈{0,1}n{Cx(f )}.

At the beginnings of the development of Computational Complexity Theory it was proved that these
two measures of complexity were related.

Theorem 4.4.
C (f ) ≤ D(f ) ≤

(
C (f )

)2
.

Since this two measures were equivalent Nisan tried to search for other measures that could be also in
this equivalence group. Now we adapt the definition of sensitivity in 2.15 for actual terms. For x ∈ {0, 1}n
and a subset S ⊆ [n] we denote xS the binary vector obtained from x by flipping all indices in S .

Definition 4.5. For f : {0, 1}n −→ {0, 1} the local sensitivity on the input x, s(f , x), is defined as the
number of indices i in [n] such that f (x) 6= f (x{i}). The sensitivity of f, s(f ), is maxx∈{0,1}n s(f , x).

Note that sensitivity measures local changing behaviour of a Boolean function with respect to the
Hamming cube. So it can be viewed as a way to measure smoothness in discrete functions.

Nisan studied if sensitivity was also polynomially related to certificate complexity and decision tree
complexity. However he could not achieve any result with sensitivity so in [12] he proceeded to search an
equivalence with a more relaxed condition rather than sensitivity called block sensitivity.
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Definition 4.6. For f : {0, 1}n −→ {0, 1} the local block sensitivity on the input x, bs(f , x), is the
maximum number of disjoint blocks B1, ... , Bk of [n] such that for each Bi , f (x) 6= f (xBi ). The block
sensitivity of f, bs(f ), is maxx∈{0,1}n bs(f , x).

Then he presented two lemmas to prove the mentioned statement of equivalence.

Lemma 4.7. For any f : {0, 1}n −→ {0, 1}:

s(f ) ≤ bs(f ) ≤ C (f ).

Proof. First inequality follows from the definitions. The singletons which f is sensitive in s(f ) will be blocks
in bs(f ). But it is possible that there exist blocks with more than one element which f is sensitive too.
Hence bs(f ) ≥ s(f ).

Observe that for every input x any certificate for x must include at least one variable from each set
f is sensitive to on x. If it is not like that, there will be sensitive blocks that are not controlled and the
certificate for x will not assure the value of f (x). Thus C (f ) ≥ bs(f ).

Lemma 4.8. For any f : {0, 1}n −→ {0, 1}:

bs(f ) ≥
»

C (f ).

Proof. Let x be an input achieving certificate complexity so every certificate for x is of length at least
C (f ). Let S1 be some minimal set (with no proper subsets), such that f (x) 6= f (xS1). In general we pick
Si to be a minimal disjoint set from the previous created such that f (x) 6= f (xSi ) until at a certain point
no such set exists, say the last set was St .

The union of all this sets is a certificate for x, since otherwise it could have been possible to pick
another set that changes the value of the function when is flipped. Thus we get:

t∑
i=1

|Si | ≥ C (f ). (4.1)

1. Suppose t ≥
√

C (f ). Since f is sensitive to each Si on x:

bs(f ) ≥ bs(f , x) ≥ t ≥
»

C (f ).

2. Suppose t <
√

C (f ). From the Equation (4.1) it follows:

C (f ) ≤
t∑

i=1

|Si | <

√
C(f )∑
i=1

|Si | ≤ max
i∈[t]
{|Si |} ·

»
C (f ).

Thus at least one of the sets has to be of size larger than
√

C (f ). For each i , Si is minimal, then
on xSi f is sensitive to each element in Si . Hence,

bs(f ) ≥ bs(f , x) ≥ bs(f , xSi ) ≥ max
i∈[t]
{|Si |} >

»
C (f ).
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Therefore it is given the first result of equivalence between sensitivity measures. The proof is immediate
by Lemmas 4.7-4.8 and Theorem 4.4.

Theorem 4.9. For any f : {0, 1}n −→ {0, 1}:

bs(f ) ≤ D(f ) ≤ bs(f )4.

After this statement Nisan co-worked with Szegedy to find other sensitivity measures to add to this
equivalence group. They proved that the degree defined in 3.2 and the degree of a polynomial approximating
the function are also equivalent. The result is presented in [9] and the paper begins introducing the degree
of this polynomial approximation of the Boolean function on L1.

Definition 4.10. Let f be a boolean function and let p be a real polynomial. We say that p approximates
f if for every x ∈ {0, 1}n we have that |p(x) − f (x)| ≤ 1/3. The approximate degree of f , d̃eg(f ), is
defined to be the degree of the lower degree polynomial p that approximates f .

For the proof of the required equivalences it will be used the method of symmetrization.

Definition 4.11. Let p : Rn → R be a multivariate polynomial, then the symmetrization of p is

psym(x1, ... , xn) =

∑
π∈Sn p(xπ(1), ... , xπ(n))

n!
.

As we have observed with symmetric functions in Definition 2.7, since the polynomial’s inputs are in
{0, 1}n, truly the symmetrization only depend upon

∑n
i=1 xi . Thus it can be represented as an univariate

polynomial of
∑n

i=1 xi .

Lemma 4.12. If p : Rn → R is a multivariate polynomial, then there exists a unique univariate polynomial
p̃ : R→ R of degree at most n such that for all x ∈ {0, 1}n we have

psym(x) = p̃
( n∑

i=1

xi

)
.

Moreover, deg(p̃) ≤ deg(p).

Before the first lemma necessary to prove the next equivalence, it is presented, for completeness, a
classical theorem that will be used in the proof of the lemma.

Lemma 4.13. Let p : R → R be a univariate polynomial of degree d such that any real number x in

[a1, a2] satisfies b1 ≤ p(x) ≤ b2. Then for all a1 ≤ x ≤ a2, the derivative of p satisfies |p′(x)| ≤ d2·(b2−b1)
a2−a1 .

Now it is presented the first lemma of the paper and the proof is a consequence of this last result.

Lemma 4.14. Let p : R→ R be a polynomial with the following properties:

1. For any integer 0 ≤ i ≤ n we have b1 ≤ p(i) ≤ b2.

2. For some real 0 ≤ x ≤ n the derivative of p satisfies |p′(x)| ≥ c.

Then,

deg(p) ≥
…

c · n
c + b2 − b1

.
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Proof. Let c ′ = max0≤x≤n |p′(x)| ≥ c . Then it can be seen by Taylor of first order that for all real
0 ≤ x ≤ n:

b1 −
c ′

2
≤ p(x) ≤ b2 +

c ′

2
.

With a bound on the polynomial evaluated on every real number a1 ≤ x ≤ a2 Lemma 4.13 derives that:

c ′ ≤ deg(p)2(c ′ + b2 − b1)

n
.

Thus,

deg(p) ≥
 

c ′n

c ′ + b2 − b1
≥
…

cn

c + b2 − b1
.

Second and main lemma is presented as it follows.

Lemma 4.15. Let f : {0, 1}n −→ {0, 1} be an unanimous Boolean function. Then,

deg(f ) ≥
…

n

2
and d̃eg(f ) ≥

…
n

6
.

Proof. Here we give the proof for the inequality on d̃eg(f ). Let p be a polynomial approximating f and
consider p̃ the univariate polynomial giving its symmetrization. This polynomial p̃ satisfies the following
properties:

(1) For every integer 0 ≤ i ≤ n, −1/3 ≤ p̃(i) ≤ 4/3 (since for every input x, p(x) is within 1/3 of a
boolean value by the definition of approximation).

(2) p̃(0) ≤ 1/3 (by unanimity of the function).

(3) p̃(1) ≥ 2/3 (again by unanimity of the function).

Properties (2) and (3) say that for some real 0 ≤ z ≤ 1, the derivative of the polynomial p̃ satisfy
|p̃′(z)| ≥ 1/3. This is because the least value will be 1/3 if p was a line from 0 to 1 with slope 1/3. Finally
by the condition (1) and the last result |p̃′(z)| ≥ 1/3 we can apply Lemma 4.14.

deg(p) ≥ deg(p̃) ≥
 

1/3 · n
1/3 + 4/3− (−1/3)

=

…
n

6
.

The first inequality is mentioned in Lemma 4.12.

The proof for the inequality on deg(f ) can be seen analogously by rewriting the three properties and
deriving 0 ≤ p(z) ≤ 1 and |p′(z)| ≥ 1.
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Note that the last lemma concerns very special types of Boolean functions. But it turns out that it
is enough to give good bounds for all Boolean functions. This can be done by relating the degree to
other combinatorial properties of Boolean functions. The following result takes a huge step relating block
sensitivity and the degree.

Lemma 4.16. For every Boolean function f : {0, 1}n −→ {0, 1}:

deg(f ) ≥

 
bs(f )

2
and d̃eg(f ) ≥

 
bs(f )

6
.

Proof. Suppose x is the input such that bs(f ) = bs(f , x). Let S1, ... , St be the sets achieving the block
sensitivity. It will be assumed without loss of generality that f (x) = 0. Then it is defined the function
f ′ : {0, 1}t → {0, 1} like:

f ′(y1, ... , yt) = f (x⊕ y1S1 ⊕ · · · ⊕ ytSt).

The sign ⊕ adds bits in modulo 2. So the j’th bit fed to f is xj ⊕ yi if j ∈ Si for some 1 ≤ i ≤ t and is xj
if j is not in any of the blocks Si . It is immediate to see that f ′ is unanimous.

1. f ′(0, ... , 0) = f (x) = 0 by assumption.

2. f ′(1, ... , 1) = 1 because the fact of feeding any block in the input (x⊕Si ) flips the output of f (x) = 0.

Hence this function f ′ satisfies the hypothesis of Lemma 4.15 and since deg(f ) ≥ deg(f ′) because bits xj
are not variables in the definition of f ′:

deg(f ) ≥ deg(f ′) ≥
…

t

2
=

 
bs(f )

2
.

and

d̃eg(f ) ≥ d̃eg(f ′) ≥
…

t

6
=

 
bs(f )

6
.

Finally it is a direct result from Lemma 4.16 and Theorem 4.9 the equivalence between decision tree
complexity and the two degrees defined in 3.2 and 4.10.

Theorem 4.17. For every f : {0, 1}n −→ {0, 1}:

deg(f ) ≤ D(f ) ≤ 16deg(f )8.

and
d̃eg(f ) ≤ deg(f ) ≤ D(f ) ≤ 1296d̃eg(f )8.

At the end of the paper Nisan and Szedegy meditated about the actual group of equivalence of sensitivity
measures. They missed having sensitivity on this group remembering that bs(f ) ≥ s(f ). Hence they were
not discouraged and conjectured the possible polynomially relation between bs(f ) and s(f ).

Conjecture 4.18 (Sensitivity Conjecture). For every f : {0, 1}n −→ {0, 1} and some c:

bs(f ) ≤ s(f )c .
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From now on, the paper will explain the historical timeline to finally give a proof for the conjecture. It
took almost 30 years for it to happen.

There were many reasons to achieve the proof of this conjecture. For example, a parallel RAM is a
collection of synchronous parallel processors sharing a global memory. The sensitivity complexity measure
s(f ) lower bounds T (f ) - the time needed by a parallel RAM to compute f . Relating s(f ) to other
complexities would facilitate the lower bound of T (f ) in terms of these measures.

4.2 The Equivalence Theorem

When the Sensitivity Conjecture was presented, there were many researchers investigating how to approach
the problem and what was necessary to achieve the proof. Gotsman and Linial presented in [11] a theorem
that makes equivalent proving the Sensitivity Conjecture to proving a property on a concrete graph.

Before we can present this theorem, we must introduce some notations and definitions in graphs. We will
denote by Qn the graph on the n-dimensional Hamming cube {−1, 1}n where any two vertices are adjacent
if and only if they differ in exactly one component. For an induced subgraph G on Qn we denote the maximal
degree of G by ∆(G ), i. e. ∆(G ) = maxx∈V (G) degG (x). We denote Γ(G ) = max{∆(G ), ∆(Qn \ G )}.

Given the last two notations it is possible to state and prove the theorem that connects Sensitivity
Conjecture problem with a problem in combinatorics.

Theorem 4.19 (Equivalence Theorem). The following are equivalent for any monotone function h : N→ R.

1. For any induced subgraph G of Qn such that |V (G )| 6= 2n−1, Γ(G ) ≥ h(n).

2. For any Boolean function f , deg(f ) < h−1(s(f )).

Proof. We begin by transforming the two statements making them depend only on boolean functions. First
we associate the subgraph G with a Boolean function g : {−1, 1}n −→ {−1, 1} defined as it follows:

g(x) =

ß
1 if x ∈ V (G ),
−1 if x /∈ V (G ).

Note that degG (x) = n − s(g , x) for x in V (G ) because local sensitivity of g on x is the number of
neighbours of x that do not have the same output of g , i.e. they are not in V (G ). The same holds in
Qn \ G for x /∈ V (G ). We denote by E [g ] the expectation of g and it is possible to compute it explicitly:

E[g ] =
1

2n
·
∑

x∈{−1,1}n
g(x) =

1

2n
· |V (G )| − 1

2n
· |V (Qn \ G )|.

Now we can transform the two statements. For the first, the condition of a subgraph G such that
|V (G )| 6= 2n−1 can be stated also as E[g ] 6= 0 as it can be seen in the last computation on the expectation of
g . The condition Γ(G ) ≥ h(n) means that there exists some vertex such that deg(x) = Γ(G ) and this input
x can be in G or either in Qn\G but for the two subgraphs we have noted that deg{G ,Qn\G}(x) = n−s(g , x)
so the condition can be written as n − s(g , x) ≥ h(n) and hence s(g , x) ≤ n − h(n).

For the second condition we impose now s(f ) < h(n) and this will imply deg(f ) < h−1
(
s(f )

)
<

h−1
(
h(n)

)
= n since h is monotone.
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Thus statements 1 and 2 are clearly equivalent to the following:

1’. For any boolean function g , E[g ] 6= 0 implies that there exists some x such that s(g , x) ≤ n− h(n).

2’. For any boolean function f , s(f ) < h(n) implies deg(f ) < n.

And the proof of the theorem is based in proving the equivalence of this two statements. First it is defined
g as it follows:

g(x) = f (x) · χ[n](x).

Remember that χ[n] denotes the parity function on all indices in [n]:
∏n

i=1 xi . The definition of g given
above is universal since every function g can be written like this for some function f and the same for every
function f and some function g .

First observe that for all x in the Hamming cube, since χ[n](xi ) = −χ[n](x),

s(g , x) = #{i ∈ [n] : f (xi ) · χ[n](xi ) 6= f (x) · χ[n](x)} = #{i ∈ [n] : f (xi ) = f (x)} = n − s(f , x). (4.2)

Second the Fourier coefficients of g , ĝ(I ) where I ⊆ [n], are derived from the Fourier coefficients of f :

ĝ(I ) = 〈g ,χI 〉 = 〈f · χ[n],χI 〉 = 〈f ,χ[n] · χI 〉 = 〈f ,χ[n]−I 〉 = f̂ ([n]− I ).

Therefore, by Proposition 1.18, E[g ] = ĝ(∅) = f̂ ([n]−∅) = f̂ ([n]), i. e. E [g ] 6= 0 if and only if the highest
order coefficient in the representation of f as a polynomial is not null so deg(f ) = n. The equivalence
between 1′ and 2′ is shown by proving the contraposition of every statement.

First we prove 1′ implies 2′. Suppose E[g ] 6= 0 so deg(f ) = n. By 1′ there exists an input x such that
s(g , x) ≤ n − h(n). Therefore, by (4.2), n − s(f , x) ≤ n − h(n), then by definition of the sensitivity of f ,
s(f ) ≥ s(f , x) ≥ h(n).

Second we prove 2′ implies 1′. Suppose that for all x, s(g , x) > n − h(n). By (4.2) this implies
n − s(f , x) > n − h(n) and again by definition of the sensitivity of f follows s(f ) < h(n). Then by 2′ this
implies that deg(f ) < n, that is equivalent to E[g ] = 0, contradicting the premise.

This theorem was really meaningful since proving h(n) =
√

n in statement 1 would prove the Sensitivity
Conjecture 4.18. Other approaches on the proof of the conjecture were proposed but Equivalence Theorem
4.19 was the one that led to success.

4.3 Huang’s proof from the Book

Almost 30 years after the presentation of the conjecture, Huang’s proved in a paper published at Annals
of Mathematics (see [10]) the statement 1 of Equivalence Theorem 4.19. The proof is so simple that
Aaronson and O’Donnell called Huang’s paper the ”Book” proof of the Sensitivity Conjecture, referring to
Paul Erdös’ notion of a celestial book in which God writes the perfect proof of every theorem.

Since the condition of the statement 1 in Equivalence Theorem 4.19 is |V (G )| 6= 2n−1 Huang worked
on a proof for a (2n−1 + 1)-vertex induced subgraph G of Qn. The key elements of the proof are a theorem
presented by Cauchy many years ago and an understandable property of the adjacency matrix of Qn.

Lemma 4.20 (Cauchy’s Interlace Theorem). Let A be a symmetric n × n matrix, and B be a m × m
principal submatrix of A, for some m < n. If the eigenvalues of A are λ1 ≥ λ2 ≥ · · · ≥ λn, and the
eigenvalues of B are µ1 ≥ µ2 ≥ · · · ≥ µm, then for all 1 ≤ i ≤ m,

λi ≥ µi ≥ λi+n−m.
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A short proof of Cauchy’s Interlace Theorem can be found in [13].

Proof. Given the polynomials f (x) and g(x) which have all real roots r1 ≤ r2 ≤ · · · ≤ rn and s1 ≤ s2 ≤
· · · ≤ sn−1 respectively. We say that f and g interlace if and only if

r1 ≤ s1 ≤ r2 ≤ s2 ≤ · · · ≤ sn−1 ≤ rn.

It is known that the roots of polynomials f , g interlace if and only if the linear combinations f + αg have
all real roots for every real number α. Using this we can see that if A is a Hermitian matrix and B is a
principle submatrix of A, then the eigenvalues of B interlace the eigenvalues of A.

Given a real number α, since the principal submatrix B is the remain of deleting the same number of
rows and columns from matrix A, we select the following partition of A without loss of generality[

B c

c∗ d

]
Then we write the characteristic polynomial of a Hermitian matrix and consider the following equation that
follows from linearity of the determinant:∣∣∣∣∣∣ B − x · I c

c∗ d − x + α

∣∣∣∣∣∣ =

∣∣∣∣∣∣ B − x · I c

c∗ d − x

∣∣∣∣∣∣+

∣∣∣∣∣∣ B − x · I c

0 α

∣∣∣∣∣∣
From this equation it can be seen that |A − x · I | + α · |B − x · I | is the characteristic polynomial of the
following matrix [

B c

c∗ d + 2 · α

]
Since this matrix is also a Hermitian matrix all its eigenvalues are real. Hence the characteristic

polynomial |A− x · I |+α · |B − x · I | has all real roots for any α. Therefore, the roots of the characteristic
polynomials of A and B interfere, i.e. the eigenvalues of A and B interfere.

Lemma 4.21. We define a sequence of symmetric square matrices iteratively as follows,

A1 =

ï
0 1
1 0

ò
, An =

ï
An−1 I

I −An−1

ò
Then An is a 2n × 2n matrix whose eigenvalues are

√
n of multiplicity 2n−1, and -

√
n of multiplicity 2n−1.

Proof. It is proved by induction that A2
n = n · I . For n = 1, A2

1 = I . Suppose the statement holds for n−1,
then

A2
n =

ï
A2
n−1 + I 0

0 A2
n−1 + I

ò
=

ï
(n − 1)I + I 0

0 (n − 1)I + I

ò
= nI .

Therefore, A2
n − n · I is a characteristic polynomial and the eigenvalues of An are either

√
n or −

√
n. Since

Tr(An) = 0, An has exactly half of the eigenvalues being
√

n and the rest being −
√

n.

Lemma 4.22. Suppose H is an m-vertex undirected graph, and A is a symmetric matrix whose entries are
in {−1, 0, 1} whose rows and columns are indexed by V (H), and whenever u and v are non-adjacent in H,
Au,v = 0. Then,

∆(H) ≥ λ1 = λ1(A).
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Proof. Suppose v is the eigenvector corresponding to λ1. Then λ1 · v = A · v. Without loss of generality,
assume v1 is the coordinate of v that has the largest absolute value. Then,

|λ1 · v1| = |(A · v)1| =

∣∣∣∣∣
m∑
j=1

A1,j · vj

∣∣∣∣∣ ≤
m∑
j=1

|A1,j | · |v1| ≤ ∆(H) · |v1|.

Hence |λ1| ≤ ∆(H).

Note that the matrix A is almost the adjacency matrix of H. It is not exactly the adjacency matrix
because H is an undirected graph but A can take −1 values. Despite this, A conserves the property of
valuing zero when two vertices are not adjacent and not zero if they are adjacent.

With the lemmas above it is possible to present and prove the main theorem of the paper which proves
Sensitivity Conjecture.

Theorem 4.23 (Huang’s Theorem). For every integer n ≥ 1, let H be an arbitrary (2n−1 + 1)-vertex
induced subgraph of Qn, then

∆(H) ≥
√

n.

Moreover this inequality is tight when n is a perfect square.

Proof. Let An be the sequence of matrices defined in Lemma 4.21. As we have said the entries of An

are in {−1, 0, 1}. By the iterative construction of An, it can be seen that changing every (-1)-entry of An

to 1 gives exactly the adjacency matrix of Qn. Thus An and Qn satisfy the conditions in Lemma 4.22.
Therefore, a (2n−1 + 1)-vertex induced subgraph H of Qn and the principal submatrix AH of An naturally
induced by H also satisfy the conditions of Lemma 4.22. Then,

∆(H) ≥ λ1(AH). (4.3)

On the other hand, from Lemma 4.21, the eigenvalues of An are known to be
√

n with multiplicity 2n−1

and −
√

n also with multiplicity 2n−1. Note that AH is a (2n−1 + 1)× (2n−1 + 1) submatrix of the 2n × 2n

matrix An. Then by Cauchy’s Interlace Theorem 4.20,

λ1(AH) ≥ λ1+2n−(2n−1+1)(An) = λ2n−1(An) =
√

n. (4.4)

Combining the inequality (4.3) and the inequality (4.4) we have the desired result:

∆(H) ≥ λ1(AH) ≥
√

n.

Finally by Lemma 4.16, Equivalence Theorem 4.19 and Huang’s Theorem 4.23 it is possible to give a
value for c in the Sensitivity Conjecture 4.18.

Corollary 4.24. For every f : {0, 1}n −→ {0, 1}:

bs(f ) ≤ s(f )4.
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5. Thresholds on graph properties for Random Graphs

Graph Theory is the subject of mathematics that relates various graph properties. Once we work and study
this area it is natural to imagine and have the notion of a random graph. This chapter is privileged to move
on to the Graph Theory and Random Graphs only because we will see that we can write all the definitions
given in this context with the language of Boolean functions. The final objective is to show Margulis-Russo
Formula 5.23 to study random graph properties taking advantage of Fourier analysis on Boolean functions.

5.1 Random graphs and graph properties

The study of random graphs was first presented by Erdös and Rényi in [14]. These graphs are attractive
to study because of its definition.

First model starts with an empty graph of n vertices and inserts m edges in such a way that all possible((n2)
m

)
choices are equally likely.

Definition 5.1 (Uniform random graph). Let Gn,m be the family of all labeled graphs with vertex set
V = [n] and exactly m edges, with 0 ≤ m ≤

(n
2

)
. To every graph G ∈ Gn,m, we assign a probability

p(G ) =

Ç(n
2

)
m

å−1
.

We will call this a uniform random graph and it will be denoted by Gn,m = ([n], En,m).

Second model needs to fix a probability 0 ≤ p ≤ 1. Same as before, we will start with an empty graph
but now we will perform

(n
2

)
Bernoulli experiments inserting edges independently with probability p.

Definition 5.2 (Binomial random graph). Let 0 ≤ p ≤ 1 be a fixed probability and let Gn,m be the family
of all labeled graphs with vertex set V = [n] and exactly m edges, with 0 ≤ m ≤

(n
2

)
. To every graph

G ∈ Gn,m, we assign a probability

p(G ) = pm(1− p)(n2)−m.

We will call this a binomial random graph and it will be denoted by Gn,p = ([n], En,p). This model of
random graph was introduced by Gilbert in [15].

From a practical standpoint, if we have to choose from which type of random graph we want to study
a determined graph property we will select binomial random graphs before uniform random graphs. The
former are handier because the edges are independent and we only need results from Probability Theory,
while the latter are more combinatorial and need counting.

The two models of random graphs presented can be related once we fix the number of edges of the
graph. The following proposition states and proves this relationship.

Proposition 5.3. Given a number of edges m, the random graph Gn,p is equally likely to be one of the((n2)
m

)
graphs that have m edges.

45



Boolean functions

Proof. Let G0 be any labeled graph with m edges. Since the event {Gn,p = G0} ⊆ {|En,p| = m} we have:

p(Gn,p = G0

∣∣ |En,p| = m) =
p(Gn,p = G0 ∩ |En,p| = m)

p(|En,p| = m)

=
p(Gn,p = G0)

p(|En,p| = m)

=
pm(1− p)(n2)−m((n2)
m

)
pm(1− p)(n2)−m

=

Ç(n
2

)
m

å−1
.

Note that the number of edges for an uniform random graph is fixed. On the other hand, for a binomial
random graph it is unknown but we can compute the expected number of edges. Since Gn,p is a binomial
random variable of

(n
2

)
events with probability p the expectation is immediate to compute and we will have

an expected number of edges m =
(n
2

)
p.

Hence, for n large random graphs Gn,m and Gn,p should behave in a similar fashion when the number
of edges in Gn,m equals or is close to the expected number of edges in Gn,p. We can achieve this when

m =

Ç
n

2

å
p ≈ n2p

2
.

Or, in terms of some fixed number of edges, when the edge probability in Gn,p is

p ≈ 2m

n2
.

Here we used the notation f ≈ g to denote that f = (1 + o(1))g .

We introduce now a useful tool called coupling technique that generates the random graph Gn,p in two
different steps. The same procedure that will be presented for binomial random graphs can be extended to
uniform random graphs. The idea is to obtain a binomial random graph Gn,p in terms of two independent
random graphs:

Gn,p = Gn,p1 ∪Gn,p2 , where, 1− p = (1− p1)(1− p2).

Thus an edge is not included in Gn,p if it is not included in either of Gn,p1 or Gn,p2 .

Definition 5.4. We will say that two graphs are coupled and denote this by Gn,p1 ⊆ Gn,p if the random
graph Gn,p is obtained by superimposing a random graph Gn,p1 with other random graph Gn,p2 and replacing
eventual double edges by one.

To study graph properties in random graphs we will think about a property P as a subset of the set of

all labeled graphs on vertex set [n], i.e., P ⊆ 2(n2). Thus we say that a fixed graph G satisfies some graph
property P0 if it belongs to the subset P0, i.e., G ∈ P0.

Now we present various definitions about graph properties. A graph property P is monotone increasing
if adding an edge to the graph does not destroy the property, i.e., if G ∈ P then G + e ∈ P. A monotone
increasing property is non-trivial if the empty graph ∅ does not satisfy the property but the complete
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graph Kn does. A graph property P is monotone decreasing if removing an edge from a graph does not
destroy the property. Note that a graph property P is monotone increasing if and only if its complement
is monotone decreasing. Observe also that not all graph properties are monotone.

From the coupling argument it follows immediately that if P is a monotone increasing property then,
whenever p < p′:

p(Gn,p ∈ P) ≤ p(Gn,p′ ∈ P). (5.1)

It is possible to upper-bound the probability of a uniform random graph satisfying a certain graph
property in terms of the probability of a binomial random graph satisfying this graph property and the
number of edges. There is a more accurate upper-bound that does not depend on the number of edges if
the graph property is monotone increasing. For more details see [16].

5.2 Thresholds and sharp thresholds

One of the main reasons of why random graphs are interesting to study is because of the abrupt nature
of the appearance and disappearance of certain graph properties. Here we introduce more formally this
phenomena.

Definition 5.5 (Threshold v1). A function p∗ = p∗(n) is a threshold for a monotone increasing property
P in the random graph Gn,p if

lim
n→∞

p(Gn,p ∈ P) =

ß
0 if p/p∗ → 0,
1 if p/p∗ →∞.

as n→∞.

This definition can be adapted easily for monotone decreasing graph properties. To short many state-
ments of theorems and proofs of this chapter we will say that a sequence of events An occurs with high
probability (w.h.p.) if

lim
n→∞

p(An) = 1.

Thus the previous Definition 5.5 for thresholds can be rewritten in another way.

Definition 5.6 (Threshold v2). A function p∗ = p∗(n) is a threshold for a monotone increasing property
P in the random graph Gn,p if Gn,p 6∈ P w.h.p. if p � p∗, while Gn,p ∈ P w.h.p. if p � p∗.

This definition may seem specific for certain monotone increasing graph properties. However, Bollobás
and Thomason presented in [17] a theorem that states that in fact all non-trivial monotone graph properties
have a threshold.

Theorem 5.7. Every non-trivial monotone graph property has a threshold.

Proof. We will prove the statement constructing a probability that will depend on our non-trivial monotone
graph property P in order to have a threshold in p∗ = p(1/2).

Without loss of generality, we define p : (0, 1) → (0, 1) such that given any ε in (0, 1) we define p(ε)
to satisfy p(Gn,p(ε) ∈ P) = ε. Note that we are able to create p because p(ε) exists since

p(Gn,p ∈ P) =
∑
G∈P

p|E(G)|(1− p)(n2)−|E(G)|
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is a monotone increasing function from 0 to 1 because P is a monotone increasing property. Thus there
exists an inverse function that will be our p(ε).

Let G1, ... , Gk be independent copies of Gn,p. The probability of having an edge in G1 ∪ · · · ∪ Gk is
1 − (1 − p)k . Hence, the graph G1 ∪ · · · ∪ Gk is distributed as Gn,1−(1−p)k . Now, since 0 < p < 1,

1− (1− p)k ≤ kp and therefore by the coupling argument of Definition 5.4:

Gn,1−(1−p)k ⊆ Gn,kp.

Therefore if Gn,kp 6∈ P then G1 ∪ · · · ∪ Gk and this implies G1, ... , Gk 6∈ P. Thus

p(Gn,kp 6∈ P) ≤
[
p(Gn,p 6∈ P)

]k
. (5.2)

This inequality is derived from (5.1) and the fact that the complement of a monotone increasing property
is a monotone decreasing property.

Now let ω(n) be a function such that ω(n) → ∞ as n → ∞. This function will increase slowly to
infinity so suppose, without loss of generality, that ω(n) � log log n, i.e., ω(n) = o(log log n). Suppose
also that p = p∗ = p(1/2) and k = ω so the graph is being obtained as a big number of random graphs
superimposed. Then

p(Gn,ωp∗ 6∈ P) ≤
[
p(Gn,p∗) 6∈ P

]ω
=
[
p(Gn,p( 1

2
)) 6∈ P

]ω
=
(1

2

)ω
= o(1). (5.3)

The inequality is given by Equation (5.2). On the other hand, for p = p∗/ω:

1

2
= p(Gn,p( 1

2
) 6∈ P) = p(Gn,p∗ 6∈ P) = p(Gn,ωp 6∈ P) ≤

[
p(Gn,p 6∈ P)

]ω
=
[
p(G

n, p
∗
ω

6∈ P)
]ω

.

Again, the inequality is given by Equation (5.2). Next, from the equation above we get

p(G
n, p
∗
ω

6∈ P) ≥
(1

2

)ω
= 1− o(1). (5.4)

Finally, note that we have proved the statement if we follow the definition of a threshold given in
Definition 5.5. First, if p = ωp∗ so p/p∗ = ω →∞ as n→∞, then (5.3) yields that p(Gn,p 6∈ P) ≤ o(1).
Hence,

p(Gn,p ∈ P) = 1− p(Gn,p 6∈ P) ≥ 1− o(1).

Second, if p = p∗/ω so p/p∗ = 1/ω → 0 as n → ∞, then (5.4) yields that p(Gn,p 6∈ P) ≥ 1 − o(1).
Thus,

p(Gn,p ∈ P) = 1− p(Gn,p 6∈ P) ≤ 1− (1− o(1)) = o(1).

In many monotone graph properties it can be observed a more delicate threshold that increases faster
that the one defined in Definition 5.5 and 5.6.
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Definition 5.8. A function p∗ = p∗(n) is a sharp threshold for a monotone increasing property P in the
random graph Gn,p if for every ε > 0

lim
n→∞

p(Gn,p ∈ P) =

ß
0 if p/p∗ ≤ 1− ε,
1 if p/p∗ ≥ 1 + ε.

For this reason, the sharp threshold is called ”sharp”. If we analyze Definition 5.8 we can see that the
probability of having a graph property for the random graph will be zero until it arrives to the threshold,
where the probability will increase in the interval [p∗ − ε, p∗ + ε] (almost vertically) from 0 to 1. On the
other hand, a normal threshold from Definition 5.5 increases from 0 to 1 but in a wider interval around p∗.

Finally we present two different lemmas, derived directly from Markov’s inequality, that will be useful
tools to prove thresholds.

Lemma 5.9 (First moment method). Let Xn ≥ 0 be an integer valued random variable. If E[Xn]→ 0 then
Xn = 0 w.h.p. as n→∞.

Proof. First we put t = 1 in Markov’s inequality p(Xn ≥ t) ≤ E[Xn]
t . Thus

p(Xn > 0) = p(Xn ≥ 1) ≤ E[Xn].

Consequently, if E[Xn] → 0 as n → ∞ then p(Xn > 0) → 0 so p(Xn = 0) → 1 as n → ∞ and Xn = 0
with high probability.

Lemma 5.10 (Second moment method). Let Xn ≥ 0 be an integer valued random variable. If E[Xn] > 0
for n large and Var [Xn]/E[Xn]2 → 0 then Xn > 0 w.h.p. as n→∞.

Proof. We set t = E[Xn] in Chebyshev’s inequality p(|Xn − E[Xn]| > t) ≤ Var [Xn]
t2

:

p(|Xn − E[Xn]| > E[Xn]) ≤ Var [Xn]

(E[Xn])2
.

Recall that Xn ≥ 0 so p(|Xn − E[Xn]| > E[Xn]) = p(Xn = 0). Therefore, if Var [Xn]/E[Xn]2 → 0 then
p(Xn > 0)→ 1 as n→∞ and Xn > 0 with high probability.

5.3 Threshold on cycles in a random graph

We start with the first example of a threshold for a graph property. After taking a look on the proof of a
threshold for the graph property for having a triangle in a random graph presented by Novozhilov in [18],
a natural question is if the proof can be generalized for k-cycles instead of triangles. Here we proof that
the threshold presented is conserved for every k-cycle. From now on, we will refer to a cycle of k vertices
by k-cycle.

We will denote Ck,n the random variable on the space Gn,p which is equal to the number of k-cycles in
a random graph. Then we can introduce the first theorem.

Theorem 5.11. Let k ≥ 3 be the number of vertices of the cycle and α : N→ R be a function such that
α(n)→ 0 as n→∞; let p(n) = α(n)

n for each n ∈ N. Then Ck,n = 0 w.h.p..
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Proof. The goal is to show that p(Ck,n = 0) → 1 as n → ∞. With First Moment Method 5.9 this is
equivalent to proving E[Ck,n]→ 0. For each fixed n and k we can represent Ck,n as

Ck,n = 1τ1 + · · ·+ 1τs , s =

Ç
n

k

å
,

where τi is the event that the ith tuple of k vertices from the set of all vertices of Gn,p forms a k-cycle.
Here we assume that all possible k-tuples are ordered and labeled. Using the linearity of expectation:

E[Ck,n] =
s∑

i=1

E[1τi ] =
s∑

i=1

p(τi ) =

Ç
n

k

å
pk ,

since p(τi ) = pk in the Erdös-Rényi random graphs Gn,p. Finally, we have

E[Ck,n] =

Ç
n

k

å
pk =

n!

(n − k)!k!

αk(n)

nk
=

n(n − 1) ... (n − k + 1)αk(n)

k!nk
≈ αk(n)

k!
→ 0.

Now we establish the conditions for Erdös-Rényi random graphs to have a k-cycle almost always.

Theorem 5.12. Let k ≥ 3 be the number of vertices of the cycle and ω : N→ R be a function such that
ω(n)→∞ as n→∞. Let p(n) = ω(n)/n for each n ∈ N. Then Ck,n ≥ 1 w.h.p..

Proof. From Second Moment Method 5.10 proving this theorem is equivalent to proving Var [Ck,n]/E[Ck,n]2 →
0 as n → ∞. It is a well known definition that Var [Ck,n] = E[C 2

k,n] − E[Ck,n]2 and we already know that

E[Ck,n] ≈ ωk(n)/k! from the proof of Theorem 5.11. Hence we only need to find out E[C 2
k,n]. Using the

same notation as before

E[C 2
k,n] = E[(1τ1 + · · ·+ 1τs )

2]

=
s∑

i=1

E[12
τi

] +
∑
i 6=j

E[1τi 1τj ]

=
s∑

i=1

E[1τi ] +
∑
i 6=j

E[1τi 1τj ].

The first term of the sum is ωk(n)/k!. Note that E[1τi 1τj ] = p(τi ∩ τj) which is the probability that both
k-tuples of the vertices subset with indices i and j belong to Gn,p.

It is easy to imagine that cycles can intersect, if they do, in a vertex or rather in an edge (two vertices).
However it is possible to intersect in at most k − 1 vertices. On the contrary, if they intersect in k vertices
then they must be the same cycle.

Therefore, there are different possible values for p(τi ∩ τj). If the two cycles do not intersect or they do
in a vertex the probability will be p(τi ∩ τj) = p2k . On the other hand, if the two cycles intersect in more
than two vertices, let m be the number of vertices in common, the probability will be p(τi∩τj) = p2k−(m−1).
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The total number of the pairs of k-tuples i and j with no common vertices is
(n
k

)(n−k
k

)
. On the other

hand, the total number of the pairs of k-tuples with m common vertices is k
(n
k

)(n−k
k−m

)
. Summing everything

we have:

∑
i 6=j

E[1τi 1τj ] =
∑
i 6=j

p(τi ∩ τj)

=

Ç
n

k

åÇ
n − k

k

å
p2k +

k−1∑
m=1

k

Ç
n

k

åÇ
n − k

k −m

å
p2k−(m−1).

(5.5)

Now we will use the following facts:Ç
n

k

å
≈
Ç

n − k

k −m

å
≈ nk−m

(k −m)!
, for 0 ≤ m ≤ k − 1.

Plugging the argument above into the equation (5.5) we have the following result:

∑
i 6=j

E[1τi 1τj ] ≈
nk

k!

nk

k!
p2k + k

nk

k!

k−1∑
m=1

nk−m

(k −m)!
p2k−(m−1)

=
n2k

(k!)2
ω2k(n)

n2k
+ k

k−1∑
m=1

n2k−m

k!(k −m)!

ω2k−(m−1)(n)

n2k−(m−1)

=
(ωk(n)

k!

)2
+

k−1∑
m=1

ω2k−(m−1)(n)

(k − 1)!(k −m)!n

= E[Ck,n]2(1 + o(1)).

Remember that E[Ck,n] = ωk(n)/k!→∞ as n→∞. Hence,

Var [Pn,k ]

E[Pn,k ]

2

=
E[C 2

k,n]− E[Ck,n]2

E[Ck,n]2

=
E[Ck,n] +

∑
i 6=j E[1τi 1τj ]− E[Ck,n]2

E[Ck,n]2

=
1

E[Ck,n]
+

∑
i 6=j E[1τi 1τj ]− E[Ck,n]2

E[Ck,n]2

=
1

E[Ck,n]
+

E[Ck,n]2(1 + o(1))− E[Ck,n]2

E[Ck,n]2
→ 0.

Therefore, if we have in mind the definition of a threshold given in Definition 5.6, Theorem 5.11 and
Theorem 5.12 prove that p∗ = p∗(n) = 1/n is a threshold for having k-cycles on a random graph.
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5.4 Sharp threshold on connectivity

This section follows with the second example of a threshold for a graph property. In this case we will follow
the result given in [19] to give a sharp threshold on connectivity in Erdös-Rényi random graphs. A graph
is connected when there is a path between every pair of vertices. One easy way to approach if a graph is
connected is by considering the degree of every vertex.

From now on we denote the degree of an arbitrary vertex k of Gn,p by Dk . This will be a random
variable where each of the n−1 edges connecting the other vertices to the vertex k is present independently
with probability p. So Dk will follow a binomial distribution, i.e., D ∼ Bin(n − 1, p). Hence the expected
degree of every vertex will be the same: E[Dk ] = (n − 1)p for all k in [n].

Now we present the principal theorem that proves the sharp threshold for connectivity.

Theorem 5.13. Let

p(n) = λ
ln n

n

for a constant λ > 0. Then

• If λ < 1, then p(Gn,p(n) is connected)→ 0.

• If λ > 1, then p(Gn,p(n) is connected)→ 1.

Proof. First we treat the case λ < 1. Let Xn denote the number of isolated vertices in Gn,p. Then we
need to show that Xn > 0 w.h.p..

Next we compute the expected number of isolated vertices. We define Ii to be the indicator random
variable which indicates that the ith vertex is isolated. Hence, using the linearity of the expectation:

E[Xn] =
n∑

i=1

E[Ii ] = n · p(node i is isolated) = n · (1− p(n))n−1 = n · q(n). (5.6)

From now on we denote the probability of an isolated vertex by q(n) = (1 − p(n))n−1. The limit of
E[Xn] as n→∞ is better computed if we look at the limit of ln E[Xn] as n→∞:

ln E[Xn] = ln n + (n − 1) ln (1− p(n)) ≈ ln n − n − 1

n
λ ln n→∞. (5.7)

Remember that the notation f ≈ g means that f and g are asymptotically the same. In the last
expression we have used the first-order Taylor expansion ln (1− x) ≈ −x . Observe that this limit tends to
∞ only because of the hypothesis that λ < 1.

Thus E[Xn] → ∞ as n → ∞. This indicates that the statement we want to prove if on its way of
being true because we want to prove that p(Xn > 0)→ 1. However this is not enough because we will get
the proof derived from Second Moment Method 5.10. So we need to compute Var [Xn] and prove that the
ratio Var [Xn]/E[Xn]2 → 0.

In fact this step is where the hardness of the problem appears because I1, ... , In are not independent.
Consequently, we must use the following formula for the variance of the sum of non-independent identically
distributed random variables:

Var [Xn] = Var [
n∑

i=1

Ii ] = n · Var [I1] + n · (n − 1) · Cov(I1, I2). (5.8)
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We remember here the definition of the covariance:

Cov(I1, I2) = E[I1I2]− E[I1]E[I2]. (5.9)

So now we compute all the necessary in (5.8). First, since I1 is a Bernoulli random variable, i.e.,
I1 ∼ Bernoulli(q(n)):

Var [I1] = q(n)(1− q(n)) (5.10)

Second, note that E[I1I2] = p(I1 ∩ I2) = p(vertex 1 and vertex 2 are isolated) and to have two isolated
vertices there must be 2n − 3 absent edges:

E[I1I2] = p(I1 ∩ I2) = (1− p(n))2n−3 =

(
(1− p(n))n−1

)2
1− p(n)

=
q(n)2

1− p(n)
. (5.11)

Therefore we can compute Cov(I1, I2) plugging (5.6) and (5.11) in (5.9):

Cov(I1, I2) =
q(n)2

1− p(n)
− q(n)2 =

p(n)q(n)2

1− p(n)
. (5.12)

Finally we can plug the results from (5.10) and (5.12) in the definition of the variance given in (5.8)
to compute the ratio in which depends Second Order Method 5.10:

Var [Xn]

E[Xn]2
=

nq(n)(1− q(n)) + n(n − 1)p(n)q(n)
2

1−p(n)

n2q(n)2
=

1− q(n)

nq(n)
+

n − 1

n

p(n)

1− p(n)
.

First term of the sum tends to 0 as n→∞ because we have seen previously that nq(n) = E[Xn]→∞.
Second term of the sum also tends to 0 as n →∞ because p(n)→ 0. Consequently, by Second Moment
Method, Xn > 0 with high probability so Gn,p is not connected w.h.p..

Next, let λ > 1. This statement will be approached without First Moment or Second Moment Methods.
The key idea is that a graph is disconnected if and only if there exists a set of k vertices k ∈ {1, ... , bn/2c},
such that there is no edge connecting these k vertices with the other n − k vertices in the graph. Note
that this idea does not only treat the case where we have an isolated vertex since it also treats the case of
having some connected subgraphs but a non-connected graph. In short, we study all the possible cases of
a non-connected graph.
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p(Gn,p is disconnected) = p
( bn/2c⋃

k=1

{some set of k vertices is disconnected}
)

≤
bn/2c∑
k=1

p({some set of k vertices is disconnected})

≤
bn/2c∑
k=1

Ç
n

k

å
p({a specific set of k vertices is disconnected})

=

bn/2c∑
k=1

Ç
n

k

å
[1− p(n)]k(n−k).

First inequality can be directly seen by taking all positive terms of principle of inclusion-exclusion.
Second inequality is the result of computing all possible k vertices being disconnected from the other n−k
remaining. The equality is straight forward by the definition of having k vertices that will not have any
edge with the other n − k vertices.

To finish the proof it only remains to show that the expression obtained in the equation above tends
to 0 as n→∞ because λ > 1. This calculations are overlong and use non-trivial bounds thus we will not
write them here. However you can take a look in [19, p.5] too see the complete proof.

All in all, Theorem 5.13, states that p∗ = p∗(n) = ln (n)/n is a sharp threshold for connectivity. Observe
that if we move lightly around this threshold (getting λ close to 1 but assuring that λ > 1 or rather λ < 1),
we can pass from not having a connected graph to having a connected graph with high probability.

5.5 Margulis-Russo Formula

An understandable question that the reader may have is why we talk about these thresholds on this thesis
about Boolean functions. In this section we will relate random graphs, graph properties, thresholds and
boolean functions following the chapter 8 of O’Donnell’s book [1]. Additionally, we present Margulis-Russo
Formula 5.23 which tells how ”steep” is the threshold in terms of the Fourier coefficients of some Boolean
function.

Until now we have worked with Boolean functions f : {−1, 1}n −→ R where a random input x in
{−1, 1}n has each bit xi independently chosen from {−1, 1} uniformly random. However, now we will work
with p − biased hypercubes. In this space each bit follows the probability distribution on {−1, 1}:ß

πp(−1) = p,
πp(+1) = q = 1− p.

(5.13)

In fact, for every probability distribution πp, we are able to define an inner product space of functions
f : {−1, 1}n −→ R with the inner product

〈f , g〉p = E
x∼π⊗n

p

[f (x) · g(x)],
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where π⊗np denotes the product probability distribution (5.13) on {−1, 1}n. We will denote this inner
product space by L2({−1, 1}n,π⊗np ). The first difference that appears when using this more generalized
space is that the expectation of every bit is not necessary equal to 0:

µ = E
xi∼πp

[xi ] = p(xi = +1)− p(xi = −1) = q − p = 1− 2p.

Next thing we can search is a basis for the space L2({−1, 1}n,π⊗np ). We have talked in the beginning

of Section 1.3 why parity functions are a basis for L2({−1, 1}n,π⊗n1/2). However, we can find another basis

φ0,φ1 for the inner space L2({−1, 1},πp). Once this basis is found, we identify every subset S ⊆ [n] with
its 0− 1 indicator vector and write

ψS(x) =
n∏

i=1

φSi (xi ).

Then, the set of all products φi1 , ... ,φin forms a basis for the inner product space L2({−1, 1}n,π⊗np ).

First, observe that it is convenient that the basis φ0,φ1 for L2({−1, 1},πp) is orthonormal because
then it will be orthonormal for L2({−1, 1}n,π⊗np ) and this makes Parseval’s Theorem 1.11 and Plancherel’s
Theorem 1.12 hold. We can reach orthonormality by defining an orthonormal basis or by defining some
basis and submitting it later to the Gramm-Schmidt algorithm.

Second, it is also useful for the basis to contain the constant function φ0 = 1. Hence,

0 = 〈φ0,φ1〉p = 〈1,φ1〉p = E
x∼πp

[φ1(x)].

Thus, we can obtain the expectation, variance and covariance of f in terms of its Fourier coefficients
because Proposition 1.18 holds.

Now, in the context of p-biased Fourier analysis, we define the following basis. We can interpret this
basis as the normalization of every bit.

Definition 5.14. We define the basis function φ : {−1, 1} → R by:

φ(xi ) =
xi − µ
σ

.

Where,

µ = E
xi∼πp

[xi ] = q − p = 1− 2p,

σ =
…

Var
xi∼πp

[xi ] =
»

1− (1− 2p)2 =
»

4p(1− p) = 2
√

pq.

Remark 5.15. Note that σ2 = 1− µ2 and we can compute directly the following results:

φ(+1) =
1− µ
σ

=
2p

2
√

pq
=

…
p

q
.

φ(−1) =
−1− µ
σ

=
−2− 2p

2
√

pq
=
−2q

2
√

pq
= −
…

q

p
.
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It is clear that {1,φ} is indeed a Fourier basis for L2({−1, 1},πp) because is orthonormal and contains
the constant function 1. Now we can extend this basis to a product space:

Definition 5.16. In the context of L2({−1, 1}n,π⊗np ) we define the product Fourier basis functions
(φS)S⊆[n] by:

φS(x) =
∏
i∈S

φ(xi ).

Given f ∈ L2({−1, 1}n,π⊗np ) we will use the same notation for the Fourier coefficients given before in
Theorem 1.5. Thus we have the biased Fourier expansion

f (x) =
∑
S⊆[n]

f̂ (S)φS(x).

Remark 5.17. By the definition of the basis function given in 5.14 we can go from the usual Fourier
expansion (given in Theorem 1.5) to the biased Fourier expansion simply by plugging φ(xi ) in terms of
xi on the later. This is because xi = µ + σφ(xi ) and usual Fourier expansion comes in terms of parity
functions which are products of bits xi .

Example 5.18. The simplest example of this conversion is given by the dictator function ψi (x) = xi .
The Fourier coefficients of the usual Fourier expansion are equal to 0 except ψ̂({i}) which is equal to 1.
However, if we write this function in terms of the basis function we have ψi (x) = µ+σφ(xi ). Consequently,
the Fourier coefficients are now:

ψ̂i (S) =


µ if S = ∅,
σ if S = {i},
0 otherwise.

Notation 5.19. Let f : {−1, 1}n −→ R be any Boolean function and let p ∈ (0, 1). With the tools that
we have presented we can now study this function with Fourier analysis no matter what Hamming Cube
is. So we will write f (p) for the function when it is viewed as an element of L2({−1, 1}n,π⊗np ).

Next, we would like to define a derivative operator Di on L2({−1, 1}n,π⊗np ) that acts like the one
presented in Definition 2.17. In Section 2 we have differentiated with respect to xi (parity functions) but
now we would like to differentiate with respect to φ(xi ). This can be done with basic calculus:

∂

∂φi
=
∂xi
∂φi

∂

∂xi
= σ

∂

∂xi

First equality is given by the Chain rule. The second is the result from differentiating with respect to
φi the expression of xi in terms of the basis function. Therefore, recognizing the partial derivative with
respect to xi as the usual ith derivative operator Di we are led to the following:

Definition 5.20. For i in [n], the ith (discrete) derivative operator on L2({−1, 1}n,π⊗np ) is defined by:

Di f (x) = σ · f (x(i→1))− f (x(i→−1))

2
.
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It is important to keep in mind that the last definition depends on σ so the ith derivative operator
depends always on p and we will have a different derivative operator in every space L2({−1, 1}n,π⊗np ) for
every 0 ≤ p ≤ 1. Now we can introduce the influence in these spaces.

Proposition 5.21. Suppose f ∈ L2({−1, 1}n,π⊗np ) is a boolean-valued function. Then

Infi [f ] = σ2 Pr
x∼π⊗n

p

[f (x) 6= f (x⊕i )].

Furthermore, if f is monotone then Infi [f ] = σf̂ (i).

Proof. For this proof we will use Dxi to denote the derivative operator from Definition 2.17 and Dφi to
denote the derivative operator from Definition 5.20. Recall that Dφi = σDxi . Then

Infi [f ] = E
πp

[(Dφi f )2] = σ2 E
πp

[(Dxi )
2] = σ2 · Pr

x∼π⊗n
p

[f (x) 6= f (x⊕i )].

Moreover, if f is monotone, by definition of the derivative operator Dxi , we have that (Dxi )
2 = Dxi because

it is equal to 0 or either 1. Hence

Infi [f ] = σ2 E
πp

[(Dxi )
2] = σ2 E

πp
[Dxi ] = σ E

πp
[Dφi ] = σ · f̂ (i).

Last equality comes from the fact that the operator Di satisfies Di f =
∑

S3i f̂ (S)φS\{i} (see Proposition
2.19) and E[φS ] = 0 for every set S except for the empty set S = ∅.

Finally let us relate everything we have presented about Boolean functions with random graphs. For

every undirected graph G with n vertices we identify it with the string in {True,False}(
n
2) that indicates

which edges are present. We write Gn,p for the distribution π
⊗(n2)
p . Note that if we permute the n vertices

of a graph this induces a permutation on the
(n
2

)
edges.

Every graph property can be represented as a Boolean function f : {True,False}(
n
2) → {True,False}.

Thus, given a graph identified with some string in {True,False}(
n
2) this function outputs True if it satisfies

the graph property or False otherwise. However this function must not depend on the names of the vertices.
Hence, the Boolean function must be invariant under all n! permutations of its input and therefore it is a
transitive-symmetric function.

Example 5.22. The following Boolean functions represent all n-vertex graph properties:

• Conn(G ) = True if G is connected.

• Majn(G ) = True if G has at least
(n
2

)
/2 edges.

• χ[n](G ) = True if G has an odd number of edges.

• Tri(G ) = True if G has at least one triangle.

Each of these properties defines a family of Boolean functions, one for each value of n. However, note
that this is only notation. We can always think that there exists a Boolean function for every number of
vertices n that represents a graph property although it is not always possible or easy to find an explicit
Boolean function for this property. For example, identifying True with −1 and False with +1, we can define

χ[n] =
∏(n2)

i=1 xi . On the other hand, it is not that easy to define an explicit function for Conn(G ) or Tri(G ).
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Figure 2: Plot of Prπp [f = True] versus p on ψi ,AND2,OR3,Maj11 and Maj81.

Graph properties which are monotone are nice to study. A typical question is: ”How many edges does
a graph need to have before it is likely to satisfy the graph property?”. It is intuitively clear that, since p is
the probability of having an edge, when p increases from 0 to 1 this causes Prπp [Graph property(x) = True]
to increase from 0 to 1.

In Figure 2 we plot some examples to sketch how the probability increases in some of the Boolean
functions that have been presented in Section 2. The most outstanding function is Majn. Observe that the
probability increases from 0 to 1 steeper as n increases. This outstanding behaviour is the usual threshold
that appears on every property in a random graph.

The Margulis-Russo Formula quantifies how increases the probability of having a graph property in
terms of p. Specifically, it relates the slope of the curve Prπp [Graph property(x) = True] to the total
influence of f under π⊗np . To prove this formula we switch to the Hamming cube {−1, 1}n identifying True
with −1 and False with +1.

Theorem 5.23 (Margulis-Russo Formula). Let f : {−1, 1}n −→ R. Working with the relation µ = 1− 2p
we have:

d

dµ
E[f (p)] =

1

σ

n∑
i=1

f̂ (p)(i).

In particular, if f : {−1, 1}n −→ {−1, 1} is monotone, then:

d

dp
Pr

x∼π⊗n
p

[f (x) = −1] =
d

dµ
E[f (p)] =

1

σ2
I[f (p)].

Before we can start the proof we need a simple lemma to obtain the expectation of a Boolean function
in a new way.
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Lemma 5.24. Let f : {−1, 1}n −→ R have Fourier expansion f (x) =
∑

S⊆[n] f̂ (S)xS . Let F : Rn → R be

the extension of f which is also defined by F (x) =
∑

S⊆[n] f̂ (S)xS . If µ = (µ1, ... ,µn) ∈ [−1, 1]n then

F (µ) = E
y

[f (y)].

Proof. (Lemma 5.24). Here we will use the linearity of the expectation and the Fourier expansion of f :

E
y

[f (y)] = E
y

[ ∑
S⊆[n]

f̂ (S)yS
]

=
∑
S⊆[n]

f̂ (S)
∏
i∈S

E[yi ] =
∑
S⊆[n]

f̂ (S)
∏
i∈S

µi =
∑
S⊆[n]

f̂ (S)µS = F (µ).

Proof. (Margulis-Russo Formula 5.23). Treating f as a multilinear polynomial over x1, ... , xn we have by
Lemma 5.24 that

E[f (p)] = f (µ, ... ,µ).

Applying some basic calculus rules we can differentiate the expression above with respect to µ:

d

dµ
f (µ, ... ,µ) =

n∑
i=1

∂f

∂xi

∂xi
∂µ

∣∣∣∣
(µ,...,µ)

=
n∑

i=1

∂f

∂xi

∣∣∣∣
(µ,...,µ)

=
n∑

i=1

Dxi f (µ, ... ,µ).

However, by Lemma 5.24 again,

Dxi f (µ, ... ,µ) = E[Dxi f
(p)] =

1

σ
E[Dφi f

(p)] =
1

σ
f̂ (p)(i).

Where the second inequality comes from the definition of the derivative operator 5.20 Dφi = σDxi . Last
equality is due to the monotonicity of f which derives that Dφi = (Dφi )

2. This completes the proof for the
general statement.

d

dµ
E[f (p)] =

n∑
i=1

Dxi f (µ, ... ,µ) =
1

σ

n∑
i=1

ˆf (p)(i).

Next, we give the proof for the statement given for the concrete case of monotone boolean-valued
functions. First equality holds because µ = 1− 2p and E[f ] = 1− 2Pr[f = −1]. Then,

d

dµ

[
E[f (p)]

]
=

dp

dµ

d

dp

[
1− 2 Pr

x∼πp
[f (p)(x) = −1]

]
= −1

2

d

dp

[
− 2 Pr

x∼πp
[f (p)(x) = −1]

]
=

d

dp

(
Pr

x∼πp
[f (p)(x) = −1]

)
.

Since the Boolean function is monotone we recall now Proposition 5.21 . We plug the last result above
into the general statement that has been already proved and then we prove the second statement of this
proposition.
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d

dp

(
Pr

x∼πp
[f (p)(x) = −1]

])
=

d

dµ

[
E[f (p)]

]
=

1

σ

n∑
i=1

ˆf (p)(i) =
1

σ2

n∑
i=1

Infi [f
(p)] =

1

σ2
I[f (p)].

In fact, Margulis-Russo Formula says that if we want sharp thresholds we need to find functions with
high influence. This influence will give the slope of the function Prx∼πp [f (p)(x) = −1] and therefore we
will have a threshold or sharp threshold depending on how steep is the function around the threshold.

The study of threshold phenomena is a well studied topic in mathematics. There exist more sophisticated
theorems that generalize how can we find them. In fact, Friedgut and Kalai showed in [20] that any
monotone graph property has a sharp threshold. Later Bourgain proved in [21] a weaker characterization
for random graphs that works in every product probability space and thus does not need monotonicity.
These two cited papers are a nice way to delve into the subject but we will not present the theorems here
because they are out of reach of this thesis.
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6. Conclusions

In this thesis we have first presented the basic definitions on Boolean functions. The most important result
of the first chapter is the Fourier expansion, not also because it gives an alternative form to write any
function, but because many results on Boolean functions can be given by Fourier coefficients. These tools
have allowed us to study applications of Boolean functions in diverse scientific research areas in terms of
this Fourier analysis.

First application shows how to relate Social Choice Theory and Boolean functions. In fact, we have seen
that habitual voting systems can be written as a Boolean function. Moreover, we have defined mathematical
operators for Boolean functions that also have a natural interpretation in politics. In addition, we have
read the paper where Arrow presented his theorem and proof. This theorem has a really nice interpretation
since it says that we can never have a fair and ethical voting system unless the method to decide a winner
is a dictatorship or the winner is imposed, thus we will never have a fair and ethical voting system. We
have rewritten the proof given by Arrow for this theorem but in terms of Boolean functions and Set Theory.

Furthermore, we have delved into hypercontractivity to get stronger results for Boolean functions rather
than with usual real analysis in order to present more advanced applications in Social Choice Theory. On
the one hand, we have proved that Arrow’s theorem is stable. On the other hand, we have introduced
KKL theorem to show that in every voting system it is not possible to avoid that all voters will have a
minimum influence, which expression is given in terms of the total number of voters. Moreover, we have
showed more extensions of this theorem to obtain the proof of the original one.

The second application has been focused differently, since we do not have information of this subject
in O’Donnell’s reference book. Thus, we have first read and understood the paper published by Huang
at Annals of Mathematics and we have looked at the cited papers by him referring to the origins of the
Sensitivity Conjecture. Consequently, one of the main difficulties of this section has been to completely
understand various mathematical papers. Nevertheless, we have been able to write a chapter where it is
possible to follow the proofs timeline from basic Complexity Theory measures equivalences to the Sensitivity
Conjecture.

The third application has been an example of Boolean functions in Combinatorics and Probability
Theory. The strange phenomena of thresholds on properties for random graphs is illustratable but not ana-
lytically treatable. However, we have written all Random Graphs definitions in terms of Boolean functions
and moved to this area with the certainty that we have Margulis-Russo Formula to study thresholds with
Fourier analysis on Boolean functions. Notwithstanding, there exist further results from Friedgut, Bourgain
and Kalai that deepen the study of this subject.

Hence, a natural way to continue this work on Boolean functions is to take a look at the further work
given by Friedgut, Bourgain and Kalai with the aim of having a broader view for thresholds on properties
for Random Graphs. Alternatively, another option is to delve into other applications of Boolean functions
in scientific research areas.
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