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Abstract. For area-preserving Hénon-like maps and their compositions, we

consider smooth perturbations that keep the reversibility of the initial maps
but destroy their conservativity. For constructing such perturbations, we use

two methods, a new method based on reversible properties of maps written in

the so-called cross-form, and the classical Quispel-Roberts method based on a
variation of involutions of the initial map. We study symmetry breaking bifur-

cations of symmetric periodic orbits in reversible families containing quadratic

conservative orientable and nonorientable Hénon maps as well as a product of
two Hénon maps whose Jacobians are mutually inverse.

1. Introduction. Among dynamical systems of various classes, the so-called re-
versible systems are of special interest that can be explained by two main reasons.
First, such systems often appear in applications [20, 26], and second, they require
the development of very specific mathematical methods for their study [3, 27, 28].
In this paper we study two-dimensional reversible maps.

Recall that a Cr-map (diffeomorphism) f is said to be reversible if it is conjugate
to its inverse f−1 by an involution G, i.e. the following condition holds f = G ◦
f−1 ◦ G, where G2 = id and the diffeomorphism G is also at least Cr-smooth.

Recently, the study of dynamics of reversible systems has got a new motivation
due to the discovery of the new, third, form of dynamical chaos, the so-called
mixed dynamics [10, 12], which is characterized by the principal inseparability of
dissipative elements of dynamics (attractors and repellers) from conservative ones.
The above property makes mixed dynamics fundamentally different from the two
other classical forms of chaos, conservative and dissipative.
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Conservative dynamics is demonstrated by Hamiltonian systems or, more gener-
ally, systems preserving the phase volume, and, from the point of view of topological
dynamics, is characterized by the fact that the entire phase space of the correspond-
ing system is chain-transitive [12].

Dissipative dynamics has a completely different nature: it is associated with the
existence of “holes” (absorbing and repelling domains) in the phase space M . Recall
that an open domain D is said to be absorbing (repelling) if the image of its closure
under the action of a map T (a map T−1) lies strictly inside it. By definition, a
dissipative attractor, closed stable invariant set, resides in some absorbing domain
Da, analogously, a (dissipative) repeller resides in some repelling domain Dr, and
these domains do not intersect (Da ∩Dr = ∅).

As for mixed dynamics, unlike the conservative case, the phase space is not chain-
transitive, since infinitely many dissipative attractors and repellers can exist here,
and their closures intersect along closed invariant sets, the so-called reversible cores
[12], having neutral (conservative-like) type of stability. The latter means that the
reversible core itself attracts nothing and repels nothing – for any nearby point, the
forward orbit tends to the nearest attractor and the backward orbit tends to the
nearest repeller.1 In other words, here, unlike the dissipative case, it is impossible
to construct a set of disjoint absorbing and repelling domains. The explanation of
this phenomenon from the topological point of view was given in [12] based on the
concept of attractor going back to D. Ruelle [30].

Certainly, mixed dynamics is not the peculiarity of reversible systems only. As
follows from [15], it can arise in general systems, which somewhere contract phase
volumes, and somewhere expand them, and the corresponding regions of the phase
space are not dynamically separated from each other - e.g. there are heteroclinic
connections between saddle periodic orbits with the Jacobians greater than 1 and
less than 1. For reversible non-conservative systems, both of these properties are
quite natural – their attractors and repellers are always symmetric to each other,
they can intersect along a reversible core, which is always self-symmetric (under
the involution) and contains the explicit conservative elements, such as symmetric
elliptic periodic orbits [12, 16]. In the case of general systems, the conservative
nature of reversible cores is still completely unknown, and, in this sense, reversible
systems are special and, therefore, interesting.

One of the main fundamental properties of systems with mixed dynamics, which
can also be considered as a criterion and even as its definition, is the existence of
the so-called absolute Newhouse regions [15, 34, 35]. Recall that Newhouse regions
are open regions in the space of dynamical systems (or in the parameter space)
in which systems with homoclinic tangencies are dense (or values of parameters
corresponding to systems with homoclinic tangencies are dense) [14, 23, 25, 29]. It
was shown by Newhouse himself [24] that, in the dissipative case, there may exist
Newhouse regions in which systems with infinitely many stable and saddle peri-
odic orbits are dense and, moreover, generic, i.e., they form subsets of the second
Baire category. The absolute Newhouse regions are characterized by the following
property: systems with infinitely many periodic orbits of all possible types (sinks,
sources, and saddles) are generic in such regions, and these orbits are insepara-
ble from each other, i.e., the closures of the sets of orbits of different types have
nonempty intersections.

1Note that the reversible core can be vast and occupy a large part of the phase space and, thus,
mixed dynamics becomes an observable phenomenon in applications, see e.g. [6, 7, 8, 13, 18, 19].
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The absolute Newhouse regions exist for two-dimensional reversible maps as well
[4, 17, 21]. Moreover, the dynamics of systems from reversible absolute Newhouse
regions is much richer than for those in the general case. In particular, as shown
in [21], diffeomorphisms with infinitely many coexisting periodic sinks, sources,
and symmetric elliptic periodic orbits are generic in reversible absolute Newhouse
regions.

A periodic orbit of a reversible map f is called symmetric if it is invariant with
respect to the involution G, i.e., if its points are posed G-symmetrically around the
set Fix(G) = {x : G(x) = x} of fixed points of the involution, thus, if Q is such an
orbit, then Q = G(Q). Note that a symmetric orbit should have intersection points
either with Fix(G) or with Fix(f ◦G), where f ◦G is always the second involution for
f . In the two-dimensional case, a symmetric periodic orbit of an orientable reversible
map f has multipliers λ and λ−1. In the general case λ 6= λ−1, symmetric periodic
points can be divided into two types: saddle points, if λ 6= ±1 is real, and elliptic
points, if λ1,2 = e±iϕ and 0 < ϕ < π. The saddle points are structurally stable. As
for elliptic points, although they are very similar to conservative elliptic points [32],
they can differ greatly from the latter, as shown by the following results [12, 16]:

• all symmetric elliptic periodic orbits of a Cr-generic (r = 1, ...,∞) two-
dimensional reversible map are the limits of periodic sinks and sources.2

• all symmetric elliptic periodic orbits of a Cr-generic (r = 1, ...,∞) two-
dimensional reversible map are reversible cores;

• the generic elliptic periodic point of a reversible map is totally stable (or stable
under permanently acting perturbations), while in the case of area-preserving
maps any such orbit is unstable (although it is Lyapunov orbitally stable).

Thus, the reversible mixed dynamics manifests itself locally wherever symmetric
elliptic points exist. This important circumstance, of course, testifies to the fact
that mixed dynamics should be viewed as one of the fundamental properties of
reversible systems. Moreover, the above results show that symmetric (elliptic and
other) orbits form a skeleton of global mixed dynamics, as they compose naturally
that invariant set, reversible core, which simultaneously separates and connects the
attractor and repeller.

The other important circumstance testifying to the universality of mixed dy-
namics in reversible systems is the so-called Reversible Mixed Dynamics (RMD)
conjecture:

• Near any reversible map with a symmetric homoclinic tangency or a symmet-
ric nontransversal heteroclinic cycle, there are absolute reversible Newhouse
regions.

This RMD-conjecture was proposed in [4] and was almost immediately proved in
[16] for Newhouse regions from the space of reversible systems in the Cr-topology
with 2 ≤ r ≤ ∞. In the analytical case, as well as in the case of parame-
ter families, the RMD-conjecture was proved only for the so-called a priori non-
conservative reversible diffeomorphisms [5, 17, 21], when a heteroclinic cycle con-
tains non-conservative elements (for example, saddles with the Jacobians greater
and less than 1, or pairs of nonsymmetric homoclinic tangencies of a symmetric

2The genericity is understood here in the sense that reversible maps with the indicated proper-
ties form a subset of the second Baire category in the space of Cr-smooth reversible maps having

symmetric elliptic periodic orbits.
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saddle point, as in [5]), as well as for reversible maps with symmetric heteroclinic
cycles of conservative type [4].

Essentially, it remains to consider only two most interesting cases: reversible
maps with symmetric quadratic and cubic homoclinic tangencies. However, these
two cases are also the most difficult, since, in principle, the main problem of this
topic is connected with the study of symmetry breaking bifurcations in first return
maps constructing near orbits of symmetric homoclinic tangencies. In the main
order, these maps coincide with the conservative Hénon-like maps: the conservative
Hénon map x̄ = y, ȳ = M − x − y2 (when the tangency is quadratic) and the
reversible cubic Hénon maps x̄ = y, ȳ = −x+My± y3 (appearing near symmetric
cubic homoclinic tangencies of two different types [9]).

Both these maps are only certain truncated normal forms for the complete first
return maps, and they demonstrate exclusively conservative dynamics. What can
be said about the dynamics of these maps under perturbations that keep the re-
versibility, and how can dissipative elements appear here, such as periodic sinks,
sources, or saddles with the Jacobians other than 1? This is still open problem
which requires solving the following issues.

• How to construct perturbations of area-preserving Hénon-like maps which
maintain their reversibility, but destroy the conservativity?

• What is the structure of symmetry breaking bifurcations under such pertur-
bations?

In the current paper we deal with these questions. Accordingly, the paper is
divided into two parts. In the first one, Sections 2 and 3, we consider two methods
for the construction of reversible perturbations for conservative Hénon-like maps.
The first method looks to be new: we call it “cross-form perturbations”, see Sec-
tion 2.1. We apply this method to the conservative Hénon-like maps of the form
x̄ = y, ȳ = −x+F (y), see Section 2.2, and for compositions of two Hénon-like maps,
see Sections 2.3 and 2.4. The second method is the classical method proposed in
the paper [28] by Quispel and Roberts. We apply this Quispel-Roberts method
for the above Hénon-like maps in Section 3 and for the nonorientable conservative
Hénon-like maps of the form x̄ = −y, ȳ = −x+ F (y) in Section 3.1.3

In the second part of the paper, Section 4, we study symmetry breaking bifur-
cations in one-parameter families of reversible non-conservative Hénon-like maps,
using those perturbations that have been constructed in the first part of the paper.
We show that the simplest bifurcations of this type are reversible pitchfork bifurca-
tions of periodic orbits. We consider such families in the cases of the product of two
(quadratic) Hénon maps (Section 4.1), the nonorientable conservative Hénon map
(Section 4.2) and the orientable conservative Hénon map (Sections 4.3 and 4.4). In
the first two cases we show that even symmetric fixed points can undergo pitchfork
bifurcations and recover their structure. It is interesting that, in the case of ori-
entable conservative Hénon map, this bifurcation occurs starting only with an orbit
of period 6 (no such bifurcation takes place for orbits of less period), that is very
surprising.

3Note that, formally, the cross-form perturbations method and Quispel-Roberts method give
different results, at first sight. Of course, the Quispel-Roberts method is more general, since
this method can be applied to any reversible maps, however, it is not very clear how certain

perturbations can be obtained by means of it, in particular, those that the cross-form method
gives.
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2. On construction of reversible perturbations for Hénon-like maps and
their compositions. The conservative Hénon-like maps are the two-dimensional
planar diffeomorphisms that can be represented in the form

H : x̄ = y, ȳ = −x+ F (y), (1)

where F (y) is some nonlinear function (e.g. a polynomial). Map (1) is area-
preserving, with the Jacobian equal to 1, and reversible with respect to the linear
involution h : (x, y) → (y, x). Indeed, H−1 takes the form x = ȳ, y = −x̄ + F (ȳ);
the relation h ◦ H−1 ◦ h means, due to the simplicity of h, that we need to make
interchanges x↔ y, x̄↔ ȳ in the formula for H−1, after which we get (1).

In this section we consider the cross-form method for construction of such suffi-
ciently smooth (analytic) perturbations of Hénon-like maps (1) and their composi-
tions that destroy the conservativity of these maps but keep their reversibility with
respect to the involution h.

2.1. Cross-form perturbations. The first method to obtain reversible perturba-
tions is based on the following cross-form map

g : (x, y)→ (x̄, ȳ) : x̄ = G(x, ȳ), y = G(ȳ, x). (2)

Note that map (2) is reversible with respect to the involution h : (x, y) → (y, x).
The proof is immediate: map g−1 takes the form x = G(x̄, y), ȳ = G(y, x̄), and
the composition h ◦ g−1 ◦ h means that we need to make interchanges x ↔ y and
x̄↔ ȳ in g−1, which leads to (2).

We introduce certain notations for the derivatives of functions:

• F ′(ρ) denotes the first derivative of the function F (y) at the point y = ρ;
• for a smooth function s(x, y), we denote

u(x, y) =
∂s(x, y)

∂x
, v(x, y) =

∂s(x, y)

∂y
.

and
sx(ξ, η) = u(ξ, η), sy(ξ, η) = v(ξ, η).

Thus, the subscripts x and y means the differentiation with respect to the
first and second variables, respectively.

Lemma 2.1. The Jacobian of map (2) takes the form

J =
Gx(x, ȳ)

Gx(ȳ, x)
(3)

Proof. It follows from (2) that

∂x̄

∂x
= Gx(x, ȳ) +Gy(x, ȳ)

∂ȳ

∂x
,
∂x̄

∂y
= Gy(x, ȳ)

∂ȳ

∂y
,

0 = Gx(ȳ, x)
∂ȳ

∂x
+Gy(ȳ, x), 1 = Gx(ȳ, x)

∂ȳ

∂y
Then we get

∂ȳ

∂y
=

1

Gx(ȳ, x)
,
∂ȳ

∂x
= −Gy(ȳ, x)

Gx(ȳ, x)
,

∂x̄

∂x
= Gx(x, ȳ)− Gy(x, ȳ)Gy(ȳ, x)

Gx(ȳ, x)
,
∂x̄

∂y
=
Gy(x, ȳ)

Gx(ȳ, x)
,

and, as a result, we deduce formula (3) for the Jacobian J = ∂x̄/∂x · ∂ȳ/∂y −
∂x̄/∂y · ∂ȳ/∂x.
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Therefore, once having a conservative map written in the implicit form (2), we
can simply add a perturbation in such a way that the cross-form is preserved, and
the perturbed system will be reversible.

2.2. Cross-form perturbation of (1). The idea to write a cross-form perturba-
tion for map H, given in (1), comes from a possibility to present the second equation
of (1) in the form y = F−1(x + ȳ), where F−1 is a formal operator. Then map H
is rewritten in cross-form (2) as follows

H : x̄ = F−1(x+ ȳ), y = F−1(ȳ + x).

Thus, perturbations of the form

H̃ : x̄ = F−1(x+ ȳ) + ε(x, ȳ), y = F−1(ȳ + x) + ε(ȳ, x)

are formally reversible. For the corresponding map H̃ we obtain from the second
equation that F−1(ȳ + x) = y − ε(ȳ, x) and, thus, ȳ + x = F (y − ε(ȳ, x)). Then

map H̃ takes the following form

H̃ : x̄ = y + ε(x, ȳ)− ε(ȳ, x), ȳ = −x+ F (y − ε(ȳ, x)). (4)

By construction, map (4) should be reversible, however, the operator F−1 is only

formal, therefore, the reversibility of H̃ should be verified directly. This is done in
the following lemma.

Lemma 2.2. The map H̃, defined in (4), is reversible with respect to the involution
h : (x, y)→ (y, x).

Proof. To prove the reversibility of H̃, we have to show that H̃ = h ◦ H̃−1 ◦ h.
The inverse map H̃−1 is obtained after swapping the bar and no-bar variables
x̄↔ x, ȳ ↔ y, i.e.,

H̃−1 : x̄ = −y + F (ȳ − ε(y, x̄)), ȳ = x− ε(x̄, y) + ε(y, x̄). (5)

After exchanging x ↔ y and x̄ ↔ ȳ in (5), due to the involution h, we get the

expression for h ◦ H̃−1 ◦ h which coincides with (4).

Lemma 2.3. The Jacobian of map (4) takes the following formula

J =
1 + F ′(y − ε(ȳ, x))εx(x, ȳ)

1 + F ′(y − ε(ȳ, x))εx(ȳ, x)
. (6)

Proof. Differentiating the first equation of (4) with respect to x and y we get

∂x̄

∂x
= εx(x, ȳ) + εy(x, ȳ)

∂ȳ

∂x
− εx(ȳ, x)

∂ȳ

∂x
− εy(ȳ, x),

∂x̄

∂y
= 1 + εy(x, ȳ)

∂ȳ

∂y
− εx(ȳ, x)

∂ȳ

∂y
.

Therefore, we have

J =
∂x̄

∂x

∂ȳ

∂y
− ∂x̄

∂y

∂ȳ

∂x
= (εx(x, ȳ)− εy(ȳ, x))

∂ȳ

∂y
− ∂ȳ

∂x
. (7)

We find the derivatives ∂ȳ/∂x and ∂ȳ/∂y from the second equation of (4) by its
implicit differentiation

∂ȳ

∂x
=
−1− F ′(y − ε(ȳ, x))εy(ȳ, x)

1 + F ′(y − ε(ȳ, x))εx(ȳ, x)
,

∂ȳ

∂y
=

F ′(y − ε(ȳ, x))

1 + F ′(y − ε(ȳ, x))εx(ȳ, x)
.

After substituting these into (7), we obtain (6).
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It is worth mentioning that if the perturbation ε(x, y) in (4) is a symmetric
function, i.e. ε(x, y) = ε(y, x), the perturbed map (4) takes the simpler form

H̃ : x̄ = y, ȳ = −x+ F (y − ε(x, ȳ)), (8)

and the same formula (6) holds for the Jacobian.
Note that the perturbed systems (4) and (8) contain perturbing terms inside a

nonlinear function F , and, hence, it is hard to iterate the maps – one needs to solve
the second equation for ȳ and calculate ȳ = f(x, y). In Sections 2.3 and 2.4 we
show that using cross-form (2) it is possible to construct reversibility preserving
perturbations of other kinds which allows to iterate the resulting maps directly. We
also show in Section 3 that such explicit perturbations can be constructed by the
Quispel-Roberts method.

2.3. Perturbations of H−2. The cross-form reversible perturbations can be easily
constructed for the map H−2 that is the square of the inverse map H−1 of the
conservative Hénon-like map H. We obtain from (1) that map H−1 takes the form

H−1 : x̄ = −y + F (x), ȳ = x.

Then map H−2 = H−1 ◦H−1 is written as

H−2 : x̄ = −x+ F (−y + F (x)), ȳ = −y + F (x), (9)

Lemma 2.4. Map H̃−2 of the form

H̃−2 : x̄ = −x+ F (ȳ) + ε(x, ȳ), ȳ = −y + F (x) + ε(ȳ, x) (10)

is a reversible perturbation of H−2 with respect to the involution h : (x, y)→ (y, x).

The Jacobian of H̃−2 is

J =
1− εx(x, ȳ)

1− εx(ȳ, x)
.

Proof. Map (9) can be presented as follows

H−2 : x̄ = −x+ F (ȳ), y = −ȳ + F (x),

which is the cross-form (2) with G(x, y) = −x + F (y). Then the perturbed map
(10) preserves cross-form (2) with new G(x, y) = −x+ F (y) + ε(x, y). The desired

formula for the Jacobian J(H̃−2) is obtained now from (3).

Form (10) of H̃−2 allows to write the map explicitly for certain perturbations.
For example, if ε(x, y) is linear in x, i.e. ε(x, y) = α(y)+xβ(y), then the map yields

H̃−2 : x̄ = −x+ F (ȳ) + α(ȳ) + xβ(ȳ), ȳ =
−y + F (x) + α(x)

1− β(x)

and its Jacobian is

J =
1− β(ȳ)

1− β(x)
.

Hence, the new map is a diffeomorphism in some ball {x ∈ R : ‖(x, y)‖ ≤ Rβ}, where
Rβ →∞ as |β| → 0. Besides, for some special functions β(x) (for instance, β(x) =
µ arctan(x) with sufficiently small µ), the map is an analytical diffeomorphism in
the whole plane R2.
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2.4. Perturbations of compositions of two asymmetric Hénon-like maps.
The next approach is connected with constructing perturbations for the product of
two asymmetric (non-conservative, in general) Hénon-like maps H1 and H2 of the
form

H1 : x̄ = y, ȳ = bx+ F (y) and H2 : x̄ = y, ȳ =
1

b
x− 1

b
F (y). (11)

These maps have the Jacobians −b and −1/b, respectively, and their nonlinearities
are asymmetric, since their inverse maps are

H−1
1 : x̄ =

1

b
y − 1

b
F (x), ȳ = x and H−1

2 : x̄ = by + F (x), ȳ = x,

respectively. The composition H−1
12 = H−1

1 ◦H−1
2 of these maps can be written as

H−1
12 : x̄ =

1

b
x− 1

b
F (by + F (x)) , ȳ = by + F (x),

or as

H−1
12 : x̄ =

1

b
x− 1

b
F (ȳ) , y =

1

b
ȳ − 1

b
F (x). (12)

in cross-form (2) with G(x, y) = b−1(x− F (y)). This implies the following result

Lemma 2.5. The map

H̃−1
12 : x̄ =

1

b
x− 1

b
F (ȳ) + ε(x, ȳ), y =

1

b
ȳ − 1

b
F (x) + ε(ȳ, x) (13)

is a reversible perturbation of H−1
1 ◦H

−1
2 that keeps the involution h : (x, y)→ (y, x),

and

J
(
H̃−1

12

)
=

1 + bεx(x, ȳ)

1 + bεx(ȳ, x)
. (14)

3. Quispel-Roberts method for construction of reversible perturbations.
The basic elements of the theory of reversible systems were developed in the famous
paper [28] by Quispel and Roberts. In particular, in this paper general methods for
the construction of reversible perturbations of reversible maps were proposed. One
of such methods is based on the following two facts:

1) Any reversible map can be represented as a composition of its two involutions.

2) If ζ is an involution, then ζ̃ = T−1 ◦ ζ ◦ T is also involution, if the map T is a
diffeomorphism.

Indeed, for item 1), if ζ is an involution of a map f , we have f = ζ ◦ f−1 ◦ ζ =
ζ ◦
(
f−1 ◦ ζ

)
and the map f−1 ◦ ζ is also involution, since(

f−1 ◦ ζ
)2

= f−1 ◦ ζ ◦ f−1 ◦ ζ = f−1 ◦
(
ζ ◦ f−1 ◦ ζ

)
= f−1 ◦ f = id.

For item 2), we obtain

ζ̃2 = T−1 ◦ ζ ◦
(
T ◦ T−1

)
◦ ζ ◦ T = T−1 ◦ (ζ ◦ ζ) ◦ T = T−1 ◦ T = id.

The conservative Hénon-like map H given by (1) can be also presented as the
product H = h1 ◦ h2 of two involutions:

h1 = h :

{
x̄ = y,
ȳ = x

and h2 :

{
x̄ = −x+ F (y),
ȳ = y

(15)

Thus, we can construct reversible perturbations of H by means of changing
their involutions. For our goals, we keep the involution h1 = h and take the new
involution h̃2 as a perturbation h̃2 = T−1◦h2◦T of involution h2 by means of a map
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T that is close to the identity map x̄ = x, ȳ = y. The following lemma summarizes
results of the corresponding calculations.

Lemma 3.1. The map

Ĥ : x̄ = y+ ε2(x, y)− ε2(ȳ, x̄), ȳ = −x+F (y + ε2(x, y))− ε1(x, y)− ε1(ȳ, x̄) (16)

is a reversible perturbation of the conservative Hénon-like map H, given in (1),

that is constructed in the form Ĥ = h1 ◦ h̃2, where h̃2 = T−1 ◦ h2 ◦ T and the map
T : x̄ = x+ ε1(x, y), ȳ = y + ε2(x, y) is assumed to be a near identity map.

Proof. We find first the new involution h̃2 = T−1 ◦h2 ◦T . By (15), the composition
h2 ◦ T : (x, y)→ (x′, y′) can be written as

h2 ◦ T :

{
x′ = −x− ε1(x, y) + F (y + ε2(x, y)),
y′ = y + ε2(x, y).

We can write the map T−1 : (x′, y′) → (x̄, ȳ) as follows x̄ + ε1(x̄, ȳ) = x′, ȳ +

ε2(x̄, ȳ) = y′. Then for the new involution h̃2, we get the following expression

h̃2 = T−1 ◦ h2 ◦ T :

{
x̄+ ε1(x̄, ȳ) = −x− ε1(x, y) + F (y + ε2(x, y)),
ȳ + ε2(x̄, ȳ) = y + ε2(x, y).

After this, formula (16) for the map Ĥ = h1 ◦ h̃2 is easily obtained: we only need

to replace x̄↔ ȳ in this expression for h̃2 (x and y are not changed).

Lemma 3.2. The Jacobian of the perturbed map Ĥ is

J(Ĥ) =
(1 + ε2y(x, y)) (1 + ε1x(x, y))− ε2x(x, y)ε1y(x, y)

(1 + ε2y(ȳ, x̄)) (1 + ε1x(ȳ, x̄))− ε2x(ȳ, x̄)ε1y(ȳ, x̄)
(17)

Proof. We calculate the derivatives ∂x̄/∂x, ∂ȳ/∂x, ∂x̄/∂y and ∂ȳ/∂y from (16):

(1 + ε2y(ȳ, x̄))
∂x̄

∂x
= ε2x(x, y)− ε2x(ȳ, x̄)

∂ȳ

∂x
,

(1 + ε2y(ȳ, x̄))
∂x̄

∂y
= 1 + ε2y(x, y)− ε2x(ȳ, x̄)

∂ȳ

∂y
,

(1 + ε1x(ȳ, x̄))
∂ȳ

∂x
= −1 + F ′ (y + ε2(x, y)) · ε2x(x, y)− ε1x(x, y)− ε1y(ȳ, x̄)

∂x̄

∂x
,

(1 + ε1x(ȳ, x̄))
∂ȳ

∂y
= F ′ (y + ε2(x, y)) · (1 + ε2y(x, y))− ε1y(x, y)− ε1y(ȳ, x̄)

∂x̄

∂y
.

Solving this system for the partial derivatives, we get the formula (17) for the
Jacobian.

Notice that among the perturbations in the form (16) we can select more simple
ones which, nevertheless, preserve reversibility, with respect to the involution h,
and destroy conservativity. Let us consider two examples.

Example 1. We consider the case with ε2 ≡ 0. Then map (16) takes the form

Ĥ : x̄ = y, ȳ = −x+ F (y)− ε1(x, y)− ε1(ȳ, x̄) (18)

and the Jacobian of this map

J =
1 + ε1x(x, y)

1 + ε1x(ȳ, x̄)
(19)
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is not 1 generally. Moreover, if, for example, ε1(x, y) = a20x
2 + a11xy+ a02y

2, then
(since x̄ = y)

J =
1 + a11y + 2a20x

1 + a11x̄+ 2a20ȳ
=

1 + a11y + 2a20x

1 + a11y + 2a20ȳ
,

i.e. including quadratic terms xy and x2 into the perturbation ε1 makes the Jacobian
non-constant.4

Other particular case of function ε1(x, y) includes, for example, ε1(x, y) = xf1(y)+
f2(y), where f1(0) = 0, f2(0) = f ′2(0) = 0, i.e. ε1(x, y) being linear in x. Then
J = (1 + f1(y))(1 + f1(x̄))−1 ≡ 1.

Let us consider another perturbation with ε1(x, y) = p(x)+q(y) and p′(x) = v(x).
Then ε1x(x, y) = v(x), ε1x(ȳ, x̄) = v(ȳ) and, by (19),

J =
1 + v(x)

1 + v(ȳ)

Formally, it means that J 6≡ 1. However, for any periodic orbit, the Jacobian Jn
of its first return map will be equal to 1. Indeed, let Mi(xi, yi), i = 1, ..., n, be the
points of an n-periodic orbit P . Then, since xi = yi−1, we obtain that

Jn = J(Ĥn)
∣∣∣
M1

=

n∏
i=1

1 + v(yi−1)

1 + v(yi+1)
≡ 1 (20)

since the nominator and denominator of this product contain the same factors. This
means that any periodic orbit is conservative, any invariant sets with dense subsets
of periodic orbits (for instance, horseshoes) are also conservative etc.

Moreover, we can claim that the dynamics of the map Ĥ in the form (18) with
ε1(x, y) = p(x) + q(y) is totally conservative, since this map possesses a smooth
invariant measure.

Indeed, as known [31], a measure dµ = ρ(x, y)dxdy is invariant if and only if the
density ρ(x, y) is a fixed point of the Ruelle-Perron-Frobenius operator, i.e.

ρ(x, y) =
ρ ◦ Ĥ−1(x, y)

|J |
=

1 + v(ȳ)

1 + v(x)
· ρ ◦ Ĥ−1(x, y).

Let us check that the function ρ(x, y) = (1 + v(y)) · (1 + v(ȳ)) satisfies this relation.

For simplicity, take a point (x0, y0) and denote its image by (x1, y1) = H̃(x0, y0)

and the preimage by (x−1, y−1) = H̃−1(x0, y0). Then we have

ρ(x0, y0) = (1 + v(y0))(1 + v(y1)), ρ(x−1, y−1) = (1 + v(y−1))(1 + v(y0)).

Since x0 = y−1 we obtain

1 + v(y1)

1 + v(x0)
· ρ(x−1, y−1) =

1 + v(y1)

1 + v(x0)
· (1 + v(x0))(1 + v(y0)) = ρ(x0, y0).

Therefore, the measure

µ(A) =

∫
A

(1 + v(y)) · (1 + v(ȳ))dxdy

is invariant for the map H̃.
Example 2. Consider the case with ε1(x, y) ≡ 0. Then map (16) takes the form

Ĥ(2) : x̄ = y + ε2(x, y)− ε2(ȳ, x̄), ȳ = −x+ F (y + ε2(x, y)), (21)

4In particular, we use such perturbations in Section 4.3 in order to show that nonsymmetric
orbits can be non-conservative, see formula (32) below for a special reversible perturbation of the

conservative Hénon map.
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and

J(Ĥ(2)) =
1 + ε2y(x, y)

1 + ε2y(ȳ, x̄)
,

i.e., J is not 1 generally. However, not any perturbations ε2 are suitable. For
example, let function ε2y(x, y) = v(x, y) be symmetric, i.e. v(x, y) = v(y, x) (as for

ε2 = xy2). In this case, J(Ĥ(2)|(xi,yi)) = (1 + v(xi, yi))(1 + v(xi+1, yi+1))−1, and
when calculating the Jacobian of a periodic orbit as in (20) we get Jn = 1. At the
same time, the perturbation ε2 = αxy is quite suitable. Indeed, the Jacobian J =
(1+αx)(1+αȳ)−1 is not constant and, moreover, since the function ε2(x, y) is linear
in y, map (21) can be represented in the explicit form. Note that such perturbations
were considered in [11] while studying effects of reversible perturbations on the 1:3
resonance in the conservative cubic Hénon maps.

3.1. Perturbations of nonorientable conservative Hénon-like maps. In this
section we show that nonorientable conservative Hénon-like maps also admit re-
versible perturbations of the same types that have been considered in the previous
sections for orientable maps.

We consider the nonorientable conservative Hénon-like map of the form

H−1 : x̄ = −y, ȳ = −x+ F (y). (22)

It is easily to show that this map is reversible with respect to the involution h :
(x, y)→ (y, x), if function F (y) is even, i.e. F (−y) = F (y) (in particular, it follows
from Lemma 3.3 below). By analogy with Lemma 3.1, we consider the following
perturbation

Ĥ−1 : x̄ = −y, ȳ = −x+ F (y)− ε(x, y)− ε(ȳ, x̄), (23)

where ε(x, y) is some smooth function.

Lemma 3.3. If F (y) is an even function, F (y) = F (−y), then map Ĥ−1 (given
in (23)) is reversible with respect to the involution h : (x, y)→ (y, x), and

J(Ĥ−1) = −1 + εx(x, y)

1 + εx(ȳ, x̄)
. (24)

Proof. The inverse map (Ĥ−1)−1 takes the form

(Ĥ−1)−1 : x̄ = −y + F (−x)− ε(x̄, ȳ)− ε(y, x), ȳ = −x. (25)

After the interchange x ↔ y, x̄ ↔ ȳ in (25) we obtain the map h ◦ Ĥ−1 ◦ h that
coincides with map (23) if F (−y) = F (y), i.e., when F (y) is an even function.

For map Ĥ−1 in the form (23), we have that J(Ĥ−1) = −∂x̄/∂y · ∂ȳ/∂x, since
∂x̄/∂x ≡ 0. Then we have

∂x̄

∂y
= −1,

∂ȳ

∂x
= −1− εx(x, y)− εx(ȳ, x̄)

∂ȳ

∂x
.

This gives us the desired formula (24).
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4. Symmetry breaking bifurcations in reversible perturbations of Hénon-
like maps. In this section we consider several examples of two-dimensional re-
versible maps that are perturbations of Hénon-like maps and demonstrate reversible
symmetry breaking bifurcations [22] of fixed points or periodic orbits. Even with ar-
bitrarily small perturbations, such bifurcations lead to the appearance of dissipative
elements of dynamics, although these bifurcations closely follow the corresponding
bifurcations in the unperturbed area-preserving maps. For example, a symmetric
couple of elliptic or saddle orbits for an area-preserving map is transformed into a
symmetric couple containing sink and source or saddles with the Jacobians greater
and less than 1 in the perturbed map, etc. The knowledge of these bifurcations
and conditions of their realization is very relevant to understand such phenomenon
as the appearance of mixed dynamics at (reversible) perturbations of conservative
systems [10, 12, 35].

4.1. Symmetry breaking bifurcations in the product of two quadratic
Hénon maps. Note that the product of two non-conservative asymmetric Hénon
maps H1 and H2 of the form (11) with F (y) = M − y2 appears naturally as the
normal forms of first return maps near symmetric quadratic homoclinic or hetero-
clinic tangencies to symmetric periodic orbits of reversible diffeomorphisms [4, 5].
Accordingly, their local bifurcations under reversible perturbations can play a role
of global symmetry breaking bifurcations leading to the onset of reversible mixed
dynamics.

In this section we consider bifurcations of this type. They are bifurcations of fixed
points in some one-parameter family of reversible maps that unfolds the product of
two non-conservative Hénon maps

H1 : x̄ = y, ȳ = M − bx− y2 and H2 : x̄ = y, bȳ = M − x− y2

with the Jacobians equal to b and b−1, respectively. Their compositions H2 ◦ H1

and H−1
1 ◦ H−1

2 are both area-preserving maps, and, moreover, the latter map
T2 = H−1

1 ◦H−1
2 can be written in the following cross-form (compare with (12))

T2 : x̄ =
1

b
x− M

b
+

1

b
ȳ2, y =

1

b
ȳ − M

b
+

1

b
x2.

To study symmetry breaking bifurcations appearing at reversible perturbations
of this map we embed it in the following one-parameter family

T2µ : x̄ = −M
b

+
1

b
x+

1

b
ȳ2 + µxȳ, y = −M

b
+

1

b
ȳ +

1

b
x2 + µx̄y, (26)

where µ is a (small) parameter. This family is a representative of the class (13) of
reversible perturbations given by Lemma 2.5, and, thus, it preserves the reversibility
with respect to the involution h : (x, y)→ (y, x).

In Figure 1 the main elements of bifurcation diagrams for fixed points of maps T2

and T2µ are represented in the (b,M)-parameter plane: in Figure 1(a) for µ = 0 and
in Figure 1(b) for a sufficiently small fixed µ. We exclude a small strip containing
the axis b = 0 from the consideration since maps T2 and T2µ are not defined for
b = 0. The main bifurcation curves are the following: the fold bifurcation curves F1

and F2, the reversible pitchfork bifurcation curves PF1 and PF2 as well as several
period-doubling curves PD that are shown as gray dashed lines in Figure 1. The
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Figure 1. Elements of the bifurcation diagram in the (b,M)-
parameter plane for the maps (a) T2 and (b) T2µ with small fixed µ.

equations of the curves are as follows:

F1 : 4(1 + bµ)M = −(b− 1)2, where b < 0,
F2 : 4(1 + bµ)M = −(b− 1)2, where b > 0,

PF1 : 4M = (3 + bµ)(b− 1)2, where b < 0
PF2 : 4M = (3 + bµ)(b− 1)2, where b > 0.

Curves F1 and F2 correspond to a creation of fixed points of T2 and T2µ. There
appears a symmetric parabolic fixed point which is nondegenerate for all values of
(b,M) in F1 and F2, except for the point Q∗(b = 1,M = 0) ∈ F2. The parabolic
point bifurcates into 2 symmetric elliptic and saddle fixed points. The transition
through point Q∗(b = 1,M = 0) corresponds to a codimension 2 bifurcation which
consists in the emergence of 4 fixed points: 2 symmetric elliptic and 2 saddle fixed
points which compose a symmetric couple of points.

In the perturbed case µ 6= 0, the character of the fold and period-doubling
bifurcations is not changed qualitatively if µ is sufficiently small. However, the
pitchfork bifurcations can give rise to non-conservative fixed points. It follows from
Lemma 2.5 that the Jacobian of (26) is

J =
1 + bµȳ

1 + bµx
(27)

In order to find the fixed points of (26), we equate x̄ = x, ȳ = y and obtain the
following system

x(b− 1) = y2 −M + bµxy, y(b− 1) = x2 −M + bµxy. (28)

Subtracting and adding up the equations and taking into account that x 6= y (for
asymmetric fixed points) gives us

x+ y = 1− b, xy =
(1− b)2 −M

1− bµ
.
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Thus, if

D =
4M − (1− b)2(3 + bµ)

4(1− bµ)
> 0,

then two asymmetric fixed points M1 and M2 appear for T2µ:

M1 =

(
1− b

2
+
√
D,

1− b
2
−
√
D

)
and M2 =

(
1− b

2
−
√
D,

1− b
2

+
√
D

)
.

These two points are symmetric with respect to the line y = x and they merge with
the corresponding symmetric fixed point under a reversible pitchfork bifurcation
(which occurs when D = 0).

It follows from (27) that the Jacobian at fixed points M1 and M2 is

J1 = 1− 4bµ
√
D

2 + bµ(1− b+ 2
√
D)

, J2 = 1 +
4bµ
√
D

2 + bµ(1− b− 2
√
D)

,

respectively. Thus, if bµ > 0, then J1 < 1 and J2 = J−1
1 > 1.

The topological type of these points (for small µ) is easily determined from the
conservative approximation µ = 0, see Figure 1a. In the case b < 0, points M1 and
M2 compose a symmetric couple of elliptic fixed points for µ = 0. For µ 6= 0, they
are transformed into a symmetric couple of “sink-source” fixed points: points M1

and M2 become stable and unstable foci, respectively, if µ > 0. In the case b > 0,
points M1 and M2 become non-conservative saddles for µ 6= 0: with the Jacobians
J1 < 1 and J2 > 1, respectively, if µ > 0.

We also note that in the case |b| = 1 map T2µ of the form (26) gives an example of
a reversible perturbation for the second iteration of the conservative Hénon map, the
orientable one at b = −1 and nonorientable at b = +1. However, these perturbations
are not suitable for the Hénon maps themselves. Thus, at b = −1, the curve PF1

is, in fact, the period-doubling curve for a symmetric fixed point which means that
proper reversible perturbations can not lead to symmetry breaking. In the next
sections, we consider questions on correct reversible perturbations for the Hénon
maps, nonorientable and orientable, and on the structure of the accompanying
symmetry breaking bifurcations.

4.2. Symmetry breaking bifurcations in the nonorientable reversible
Hénon maps. In this section we consider now the nonorientable Hénon map H−1

of the form
x̄ = −y, ȳ = −M − x+ y2, (29)

that is a particular case of map (22).
For M < 0, map (29) has no fixed points or periodic orbits. However, they

appear immediately for M > 0 under the so-called fold-flip bifurcation occurring
at M = 0 when the map has a fixed point P (0, 0) with eigenvalues +1 and −1.
For M > 0, this point splits into 4 points, see Figure 2, two of them are fixed
points S1 and S2, and the other two points form a 2-periodic orbit (Q1, Q2), i.e.
H−1(Q1) = Q2, H−1(Q2) = Q1. Note that points Q1 and Q2 are elliptic 2-periodic
orbits, and they are also symmetric since they both belong to the symmetry line
x = y. In contrast, points S1 and S2 are saddles and they compose a symmetric
couple of points, i.e. h(S1) = S2 and h(S2) = S1. The coordinates of these points
are

Q1 = (−
√
M,−

√
M), Q2 = (

√
M,
√
M), S1 = (−

√
M,
√
M), S2 = (

√
M,−

√
M).

All these points are conservative points of map (29).
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Figure 2. Main bifurcations in maps (29) and (30) when µ is
small and fixed and M changes. The points Q1 and Q2 are sym-
metric elliptic 2-periodic orbits, while the points S1 and S2 are
nonorientable saddle fixed points that compose a symmetric cou-
ple of points. The points S1 and S2 are conservative with the
Jacobian −1 for µ = 0 and non-conservative with the Jacobians
−1 < J1 < 0 and J2 < −1, respectively, for µ > 0.

However, due to Lemma 3.3, adding reversible perturbations we can destroy the
conservativity of fixed points S1 and S2. For example, let us consider the following
perturbed map

H̃−1µ : x̄ = −y, ȳ + µx̄ȳ = −M − x+ y2 − µxy, (30)

where we have chosen the perturbation ε(x, y) = µxy, being µ a small parameter.
By Lemma 3.3, this map is reversible with respect to the involution h : (x, y) →
(y, x), however, it is no longer conservative for µ 6= 0. Indeed, formula (24) for the
Jacobian reads as

J = −1 + µy

1 + µx̄
= −1 + µy

1− µy
.

Fixed points of map (30) are easily found: S1 = (−a(µ), a(µ)), S2 = (a(µ),−a(µ)),

where a(µ) =
√
M/(1 + 2µ). Then we have that the Jacobians J1 and J2 at points

S1 and S2 are

J1 = −1− 2µ
√
M

√
1 + 2µ− µ

√
M
, J2 = −1 +

2µ
√
M

√
1 + 2µ+ µ

√
M
,

respectively. Thus, if M > 0 and µ > 0 is not very large, the points S1 and S2

compose a symmetric couple of (nonorientable) saddles with the Jacobians J1 < −1
and −1 < J2 = J−1

1 < 0.

4.3. Symmetry breaking bifurcations in the orientable reversible Hénon
maps. In this section we consider the standard area-preserving and orientable
Hénon map H1+ of the form

x̄ = y, ȳ = M − x− y2, . (31)

Bifurcations of its fixed points are well-known and include a parabolic bifurcation
at M = −1, giving rise to symmetric elliptic and saddle fixed points, and a con-
servative period-doubling bifurcation of the fixed elliptic point at M = 3, after
which the elliptic fixed point becomes saddle and an elliptic 2-periodic orbits are
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born. Besides, when M changes from M = −1 to M = 3, the symmetric elliptic
fixed point undergoes infinitely many bifurcations related to the appearance of res-
onant periodic orbits of period q in its neighbourhood – whenever the eigenvalues
e±iϕ pass through the values ϕ = 2π pq , where p and q are mutually prime natural

numbers and p < q.
However, as it is well-known, the fixed points and 2-periodic orbits in the Hénon

map are symmetric. The resonant periodic points are also symmetric if the res-
onances are nondegenerate. Thus, 3-periodic and 5-periodic resonant orbits are
symmetric. Although, the 1:4 resonance (related to eigenvalues e±iπ/2 = ±i) is de-
generate in the Hénon map [2, 33] (the so-called Arnold degeneracy [1] takes place
here), this bifurcation is not of symmetry breaking type.

A simple calculation of the number of points in periodic orbits of periods n = 1,
2, 3 and 4 (this number cannot be greater than 2n, by Bezout’s theorem, even if we
include all points of periodic orbits of periods divisors of n)

• period 1 (fixed points) – two points;
• period 2 – two points (not including 2 fixed points) that compose one 2-

periodic orbit appearing after the period-doubling bifurcation of the elliptic
fixed point;

• period 3 – 6 points (we exclude 2 fixed points and the remaining 6 points
compose two (elliptic and saddle) 3-periodic orbits accompanying the 1:3 res-
onance);

• period 4 – 12 points (we exclude 2 fixed points and 2 points of the 2-periodic
orbits and, thus, the remaining 12 points form two 4-periodic orbits born from
the 1:4 resonance and one 4-periodic orbit appearing after a period-doubling
bifurcation of the elliptic 2-periodic orbit);

shows that there are no asymmetric periodic orbits of these periods.
The case of period 5 points is more delicate. If two fixed points are excluded,

then 30 more points remain. 20 such points compose four 5-periodic orbits born
from the 1:5 and 2:5 resonances. Concerning remaining 10 points, they appear at
a symmetric parabolic bifurcation of a 5-periodic orbit. The last bifurcation we
have found numerically at M = 5.5517. The y-coordinates of the corresponding
symmetric parabolic point is y1 = y2 = −2.243751084, y3 = y5 = 2.761032157, y4 =
0.172152512.

The calculation of the number of points of 6-periodic orbits shows the following.
There are 64 such points in total. They include 10 points of smaller periods: 2 fixed
points, 2 points of the 2-periodic orbit and 6 points of the 3-periodic orbits. The
remaining 54 points form 9 orbits of period 6. Among them, 5 orbits are symmetric
– two 6-periodic orbits are born from the 1:6 resonance, one periodic orbit appears
via a period-doubling bifurcation of the elliptic 3-periodic orbit, and two orbits arise
due to the 1:3 resonance of a 2-periodic elliptic orbit.

The remaining 4 orbits of period 6 may be asymmetric. For example, some of
these orbits can appear as a result of a symmetry breaking bifurcation when a
symmetric couple of two parabolic 6-periodic orbits appears and then splits into
two symmetric couples of elliptic and saddle 6-periodic orbits. Other possible cases
can be related to two bifurcations of symmetric 6-periodic orbits and at least one of
these bifurcations is a pitchfork bifurcation. We show below, see Section 4.4, that
the second possibility is indeed realized in the Hénon map H+1.

We have found numerically a couple of such orbits O1
6 and O2

6 (appearing after
the pitchfork bifurcation). In particular, for M = 4, the orbit O1

6 = {(xi, yi)},
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i = 1, ..., 6, where xi+1 = yi, has the following y-coordinates

y1 = −1.860805853, y2 = 2.472833909, y3 = −0.254101688,
y4 = 1.462598423, y5 = 2.114907541, y6 = −1.935432332.

The orbit O2
6 = {(x̃i, ỹi)}, i = 1, ..., 6 is symmetric to O1

6 and, thus, has coordinates
x̃i = yi and ỹi = x̃i = yi−1.

Now we consider the reversible perturbation of Hénon map H+1 as follows

H̃+1µ : x̄ = y, ȳ + µ(x̄ȳ + ȳ2) = M − x− y2 − µ(xy + x2), (32)

that preserve reversibility with respect to the involution h : (x, y) → (y, x) due to
Lemma 3.1, see also Example 1 in Section 3 for ε1(x, y) = µ(xy + y2).

We find that, in the perturbed map (32), the orbit O1
6 has at M = 4, µ = 0.01

the following yi-coordinates (here again xi+1 = yi)

y1 = −1.833980679, y2 = 2.460965013, y3 = −0.2062196180,
y4 = 1.423687035, y5 = 2.107429699, y6 = −1.911473368.

We calculate the Jacobian of map (32) at O1
6

J1 =

6∏
i=1

1 + µyi + 2µyi−1

1 + µyi + 2µyi+1

and obtain that J1 = 0.9999999555. By the symmetry, the orbitO2
6 has the Jacobian

J2 = J−1
1 .

4.4. Search of the asymmetric 6-periodic orbit in H1+. It is quite surprising
that symmetry breaking bifurcations in the conservative Hénon map H1+, given in
(31), begin only from 6-periodic orbits and, moreover, it is even more surprising
that such bifurcations can be studied analytically.5

The corresponding bifurcation scenario, including a pitchfork bifurcation of a 6-
periodic orbit, starts at the value M = M1 = 5

4 when an elliptic 3-periodic orbit O3

undergoes a supercritical period-doubling bifurcation after which the orbit O3 be-
comes a symmetric saddle 3-periodic orbit and a symmetric elliptic 6-periodic orbit
O6 is born in its neighbourhood, see Figures 3 and 4 (a) and (b). When increas-
ing M , two successive period-doubling bifurcations with the orbit O6, supercritical
(at M = M2 ≈ 1.2813) and subcritical (at M = M3 ≈ 2.98038), take place. For

M2 < M < M3 the orbit Õ6 is saddle, and for M > M3 it becomes elliptic again.
The mentioned above pitchfork bifurcation occurs at M = M4 = 3 when the orbit
O6 becomes a symmetric saddle 6-periodic orbit and a symmetric couple of elliptic
6-periodic orbits O1

6 and O2
6 is born, see Figures 3 and 4 (c) and (d).6

Consider now the orbit O6 and its bifurcations in more detail. We use the fact
that this orbit is symmetric and has two intersection points with the line x = y.

5We are not aware of the corresponding results, although it is possible that they exist some-

where, since the Hénon map and its bifurcations are one of the most popular topics in the theory
of dynamical systems. In this regard, we consider to be rather necessary and in any case useful

to include in this article some results of the analytical study of symmetry breaking bifurcations in

the conservative Hénon map.
6Note that the orbit O3 appears in H1+ at M = 1 as a result of a parabolic bifurcation

leading to the birth of symmetric 3-periodic elliptic and saddle orbits O3 and S3. When further

increasing M , the orbits O3 and S3 undergo first bifurcations simultaneously, at M = 5/4. But
these bifurcations are completely different: for O3, this is the above period-doubling bifurcation;
for S3, this is a bifurcation of creation of the 1:3 resonance, when 3 points of S3 collapse into one

point, the fixed point O1:3( 1
2
, 1
2

) with eigenvalues e±2π/3 (the 1:3 resonance).
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Figure 3. A schematic tree for the bifurcation scenario of the
appearance of a symmetric couple of 6-periodic orbits in the third
power of Hénon map H1+.

Let {pi(xi, yi)}, i = 1, 2, ..., 6, be successive points of O6, i.e., pi+1 = H1+(pi) and
p1 = H1+(p6). Then the coordinates (xi, yi) satisfy the following equations

xi+1 = yi, yi+1 = M − xi − y2
i , i = 1, ..., 5, x1 = y6, y1 = M − x6 − y2

6 .

Since xi+1 = yi, we can reduce this system to the following system of 6 quadratic
equations

y2 = M − y6 − y2
1 , y3 = M − y1 − y2

2 , y4 = M − y2 − y2
3 ,

y5 = M − y3 − y2
4 , y6 = M − y4 − y2

5 , y1 = M − y5 − y2
6 .

(33)

Assume that the point p1(x1, y1) of O6 belongs to the symmetry line x = y, i.e.
x1 = y1. Then the point p4 = H3

1+(P1) is also symmetric, i.e. x4 = y4. Since
x1 = y6 and x4 = y3, it follows that y6 = y1 and y3 = y4. Then we get from
the first and the last equations of (33) that y2 = y5 and, thus, the system (33) is
reduced to the following system of three equations

y1 + y2 = M − y2
1 , y1 + y3 = M − y2

2 , y2 + y3 = M − y2
3 , (34)

From the first and last equations of (34) we obtain the relation y1 − y3 = (y3 −
y1)(y3 + y1). Since y1 6= y3 (when y1 = y3 the corresponding orbit has period
3), it follows that y1 + y3 = −1. Then the second equation of (34) gives us that
y2

2 = M + 1. Thus, y1 and y3 satisfy the following relations

y2
1 + y1 −M ±

√
M + 1 = 0, y2

3 + y3 −M ±
√
M + 1 = 0.

Among various solutions of this system of quadratic equations, only the solution

y1 =
1

2

(
−1−

√
1− 4

√
M + 1 + 4M

)
, y3 =

1

2

(
−1 +

√
1− 4

√
M + 1 + 4M

)
(or that the one when y1 and y3 are swapped) is suitable for O6. Indeed, both these
solutions exist at M ≥ 5

4 and y1 6= y3 if M > 5
4 . Thus, we have found the following

yi-coordinates of points pi of the orbit O6:

y1 = y6 =
1

2

(
−1−

√
1− 4

√
M + 1 + 4M

)
, y2 = y5 =

√
M + 1,
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p1

p4

p5

p6

p2

p3

Figure 4. Phase portraits of 3- and 6-periodic orbits for the
Hénon map H+1: the bottom plots are magnifications of some
important details of the top plots.

y3 = y4 =
1

2

(
−1 +

√
1− 4

√
M + 1 + 4M

)
.

For analysis of bifurcations of the orbit O6, we calculate, first, the trace Tr of
the characteristic matrix for the map H6

1+ at some point of O6. As result, we obtain
that

Tr = 86 + 24
√
M + 1 + 116M − 128

√
M + 1M + 96M2 − 128

√
M + 1M2 + 64M3.

If we denote
√
M + 1 = x (x > 0), we obtain the polynomial

Tr(x) = 2+24x+116x2+128x3−96x4−128x5+64x6 = 2+4x(2x+1)3(2x−3)(x−2)

Thus, the equation Tr(x) = 2 has the solutions x = 0, x = − 1
2 (the triple root)

and two positive solutions x = 3
2 and x = 2. The root x = 3

2 corresponds to the

value M = 5
4 when the orbit O6 is born. The root x = 2 corresponds to the value

M = 3 when the symmetric elliptic orbit O6 undergoes a pitchfork bifurcation –
the elliptic orbit becomes symmetric saddle and a symmetric couple of elliptic 6-
periodic orbits O1

6 and O2
6 emerges, see Figures 4(e)-(h). Namely, the orbits O1

6 and
O2

6 are considered in Section 4.3.
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