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Abstract

State-of-the-art neural network architectures continue to scale in size and deliver impres-
sive results on unseen data points at the expense of poor interpretability. In the deep
layers of these models we often encounter very high dimensional feature spaces, where
constructing graphs from intermediate data representations can lead to the well-known
curse of dimensionality. We propose a channel-wise graph construction method that works
on lower dimensional subspaces and provides a new channel-based perspective that leads
to better interpretability of the data and relationship between channels. In addition,
we introduce a novel generalization estimate based on the proposed graph construction
method with which we perform local polytope interpolation. We show its potential to re-
place the standard generalization estimate based on validation set performance to perform
progressive channel-wise early stopping without requiring a validation set.
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Resum

Les arquitectures de xarxes neuronals més avançades segueixen augmentant la seva mida
i oferint resultats impressionants en noves dades a costa d’una escassa interpretabilitat.
A les capes profundes d’aquests models ens trobem sovint amb espais de caracteŕıstiques
de molt alta dimensió, en què la construcció de grafs a partir de representacions de dades
intermèdies pot portar al conegut curse of dimensionality. Proposem un mètode de cons-
trucció de grafs per canal que treballa en subespais de menor dimensió i proporciona una
nova perspectiva basada en canals, que porta a una millor interpretabilitat de les dades
i de la relació entre canals. A més, introdüım un nou estimador de generalització basat
en el mètode de construcció de grafs proposat amb el qual realitzem interpolació local en
poĺıtops. Mostrem el seu potencial per substituir l’estimador de generalització estàndard
basat en el rendiment en un set de validació independent per a realitzar early stopping
progressiu per canals i sense necessitat d’un set de validació.
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Resumen

Las arquitecturas de redes neuronales más avanzadas siguen aumentando en tamaño y
ofreciendo resultados impresionantes en nuevos datos a costa de una escasa interpretabi-
lidad. En las capas profundas de estos modelos nos encontramos a menudo con espacios
de caracteŕısticas de muy alta dimensión, en los que la construcción de grafos a partir de
representaciones de datos intermedias puede llevar al conocido curse of dimensionality.
Proponemos un método de construcción de grafos por canal que trabaja en subespacios de
menor dimensión y proporciona una nueva perspectiva basada en canales, que lleva a una
mejor interpretabilidad de los datos y de la relación entre canales. Además, introducimos
un nuevo estimador de generalización basado en el método de construcción de grafos
propuesto con el que realizamos interpolación local en politopos. Mostramos su potencial
para sustituir el estimador de generalización estándar basado en el rendimiento en un
set de validación independiente para realizar early stopping progresivo por canales y sin
necesidad de un set de validación.
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que ho he necessitat, donant-me l’oportunitat de dedicar-me al que m’agrada sense haver
de preocupar-me de res més.

iv



Revision history and approval record

Revision Date Purpose
0 14/05/2021 Document creation
1 20/06/2021 Document revision
2 21/06/2021 Document approval

DOCUMENT DISTRIBUTION LIST

Name e-mail
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Chapter 1

Introduction

1.1 Motivation

Graphs play an important role in many machine learning applications, and are mainly
used to model data structures and similarities in a dataset [2]. Powerful properties such as
their compositional nature and ability to define relationships between information pieces
make graphs the tool of choice for representing a wide variety of rich and complex data
[3], e.g. chemical compounds, social networks, buying behaviours or 3D point clouds. This
and the increasing availability of computational resources has motivated a recent surge in
interest in processing graphs with deep learning models. Graph Neural Networks [4] and
recently Graph Convolutional (Neural) Networks [5] are some of the predominant models
that have overcome the big challenges of processing graphs in an adaptive fashion, includ-
ing expressiveness and computational complexity, compared to the standard processing
with vectorial data. Other works use graphs as a tool to understand the topology of inter-
mediate data representations of neural networks. Specifically, they can be used for various
tasks, such as, interpretation of how the model is learning [1, 6], enforcement of desirable
properties on intermediate representations [7], improvement of knowledge distillation [8]
or increased model robustness [9].

In the intermediate layers of deep neural networks we find feature vectors, i.e., learned
representations of the input data that are suitable for the task at hand. In the specific
case of convolutional neural networks, we encounter very high dimensional feature spaces,
formed by the aggregation of lower dimensional channels. Graph construction methods
based on node similarity such as local linear embedding (LLE) [10] and non negative
kernel (NNK) regression graphs [11] can capture valuable information about the relative
position of data points in these feature spaces, providing useful insights for the various
above mentioned tasks. However, neural networks are being designed with an increased
number of parameters in pursuit of higher accuracies [12, 13, 14]. This poses a problem
because it becomes more difficult to extract relevant information from graph constructions
in high dimensions, owing to the curse of dimensionality leading to poorer interpretability
in these higher dimensional feature spaces.

A second problem in the deep learning field is that although state-of-the-art models
have been shown to generalize very well to new data, our understanding of why this hap-
pens is somewhat limited [15, 16]. To achieve good generalization results, different explicit
or implicit regularization methods are used to avoid overfitting the model to the training
data [17], including the widely used early stopping method [18] which consists of stopping
model optimization based on continuous monitoring of a selected metric performance on
a separate validation set. However, this practice requires selecting part of the labeled data
for a validation set, which may introduce biases or lead to lower performance when little
labeled data is available [19].

1



1.2 Main Contributions

The main contributions of this thesis are:

1. We propose a novel channel-wise approach to graph construction based on NNK
graphs, which we call CW-NNK graphs, that tackles the high dimensional graph
construction problem by acting on well-defined feature subspaces of lower dimen-
sionality.

2. We study the influence of dimension and the relationship between channels with
our proposed channel-wise graph construction based on local polytope geometry,
providing better interpretability with interesting geometric properties.

3. We develop a channel-wise extension of DeepNNK [1] (CW-DeepNNK), a non-
parametric local interpolation framework that induces instance-based explainability
for deep learning models.

4. We present a new generalization estimate to perform channel-wise progressive early
stopping without the need for a validation set.

1.3 Overview

The structure of this thesis is as follows.

In Chapter 2 we introduce the basic concepts of Graph Signal Processing (GSP),
and a review of the state-of-the-art graph construction methods based on node similarity.
We also provide a brief introduction to Convolutional Neural Networks as they are the
application focus of this work.

In Chapter 3 we discuss the curse of dimensionality and we present the first two main
contributions. We develop an in-depth analysis of interesting properties of NNK graphs
that provide a better understanding the low intrinsic dimensionality of real data and the
relationships between channels.

In Chapter 4 we introduce a new channel-wise perspective of generalization, based on
graph local geometry properties and the last two main contributions. We also compare
our proposal with the standard method to perform early stopping.

In Chapter 5 we detail the budget to develop the project.

Finally, we conclude by discussing the main findings and open challenges for future
work in Chapter 6.
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1.4 Work plan

The work on this thesis was organized according to the following schedule:

Phases of the Project
2021

Jan Feb Mar Apr May June
Research

100% completeRead literature

100% completeReplicate results
Analysis

100% completeChannel graphs
Coding

100% completeTensorFlow

100% completeExperiments
Writing

100% completeThesis/Paper

Figure 1.1: Gantt diagram of the project.

There have been no major changes with respect to the initial planning. The begin-
ning of the project was very exploratory, understanding this new perspective of building
channel-wise graphs in depth and analyzing the different paths it could open. At the ex-
perimental level, in the last three months we finished defining the final objectives of the
project and how we could use this new method to improve interpretability and general-
ization in neural networks. Finally, the last month has been mostly devoted to writing
this thesis report and preparing a paper submission for a signal processing conference.
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Chapter 2

Fundamentals

2.1 Graph Signal Processing

We start by introducing basic concepts and notation of Graph Signal Processing (GSP)
[20]. GSP is the study of how to analyze and process data associated with graphs.

2.1.1 Basic definitions

A graph G = (V , E) is a discrete structure that consists of a set of nodes, V = {v1, v2, . . . , vN}
and a set of edges, E = {e1, e2, . . . , eM}. The graph is weighted if real positive weights
wij are associated with each edge eij that connects nodes i and j, or unweighted if all
edges have weight equal to 1. If two nodes i and j are not connected, then wij = 0. A
graph is undirected if eij exists whenever eji exists and wij = wji. Conversely, a graph
is directed if eij or eji may not exist and in general wij 6= wji. The adjacency ma-
trix W of the graph is an N ×N matrix that captures all connectivity and edge weight
information, with W ij = wij.

A graph with N nodes is considered dense if the number of edges per node is close
to N , and sparse if the number of edges incident to any node is much smaller than N .

The graph signal is composed ofN data points with feature vectors {x1,x2, . . . ,xN} ∈
RD. Each feature vector x has dimension D and can be viewed as the aggregation of S
lower-dimensional subvectors xsi ∈ RDs where

∑S
s=1Ds = D:

xi =


x1
i

x2
i
...
xSi

 ∈ RD (2.1)

In this work, nodes represent data points that are part of a dataset, and the edges
represent similarity between data points. In a supervised classification setting, each data
point belongs to a category, i.e., it has a label associated to it. The goal is for a model to
learn a function that best approximates to which category a new sample of data belongs to.
As the feature vectors corresponding to each data point we can use either the features at
the input of the model (e.g., original images of the training set) or the learned intermediate
representations in convolutional layers, so that the separation of the features into channels
is natural and complete.
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2.1.2 Similarity-based Graph Construction Methods

We can define a notion of node similarity based on a pairwise similarity metric, e.g.,
distance, d(i, j) = ‖xi − xj‖. If good feature vectors have been chosen to represent the
data, it is expected that the labels of points that are close to each other are more likely
to be the same. This would result in a label signal that is smooth on the similarity graph,
i.e., where large wij are generally associated with nodes that fall into the same category,
i.e., d(i, j) small. A common method to do this is to define edge weights based on the
Gaussian kernel:

k(xi,xj) = exp

(
−d(i, j)2

2σ2

)
(2.2)

where σ is the bandwidth of the Gaussian Kernel. Another option is to use the range
normalized cosine kernel:

k(xi,xj) =
1

2

(
1 +

〈xi,xj〉
‖xi‖‖xj‖

)
(2.3)

Note that, if we directly select all wij = k(xi,xj), both kernels will produce a complete
weighted graph, since it is very unlikely to obtain exactly zero weights. In order to obtain
a sparser graph with fewer connections we can apply different optimizations, which we
discuss next.

Neighborhood optimization

Weighted K-Nearest Neighbor (K-NN) graphs [21] and ε-neighborhood graphs (ε-graphs)
[22] are among the the most commonly used graph construction methods. K-NN graphs
are constructed by connecting every node v ∈ V to its K most similar nodes in V . Thus,
only K pairwise distances d(i, j) are needed. If (2.2) is used as the similarity metric, K
and σ have to be chosen. In ε-graphs we also have to choose the parameter ε.

The choice of parameters usually depends on the dataset distribution or the task at
hand. Defining dmin = mini,j‖xi − xj‖, if σ is much larger than dmin, edge weights will
collapse to 1. Conversely, if σ is much smaller than dmin, most weights will be very small.
A common solution is to choose σ based on statistics of local distances (e.g. minimum or
average distance for each point in the dataset). For some tasks, the choice of K, σ or ε is
usually heuristic or based on a cross-validation strategy to obtain the best performance
in a task [23].

A downside of this methods is that they do not consider the possibility of two nodes be-
ing redundant. Other approaches such as kernel learning [24] and adaptive edge weighting
(AEW) [25] try to optimize the weights of K-NN/ε-graphs to the data without modifying
the connectivity. Alternative techniques described below address this problem by taking
into account relative distances.

Local linear embedding (LLE)

In local linear embedding [10], for each node i, a K-NN search is done and XS is the
matrix containing in columns the feature vectors of the K nearest neighbors of xi whose

5



indices are denoted by set S. Then, LLE solves:

min
θ: θ≥0

‖xi −XSθ‖22 (2.4)

where the solution θ corresponds to the weights of the edges connecting node i and
all the nodes in S. If two nodes j, k ∈ S are very close, they may be redundant in
terms of linear approximation (2.4), resulting in wij or wik being zero. State-of-the-art
graph construction methods [26, 27] also aim to be locality-inducing using explainable
regularization techniques.

Non Negative Kernel (NNK) regression graphs

Positive definite kernels k(xi,xj) such as (2.2) and (2.3) correspond to a transformation
of data points in RD to a non linearly transformed feature space H referred to as the
reproducing kernel Hilbert space [28], such that similarities can be interpreted as dot
products in this transformed space (generally known as the kernel trick), i.e., k(xi,xj) =
φTi φj, where φ : RD → H and φi represents the transformed observation of xi.

Non-negative kernel graph construction [11] also starts finding theK nearest neighbors
of each node denoted by the set S. Then, the NNK optimization at each node solves:

θS = min
θ: θ≥0

‖φi −ΦSθ‖22 (2.5)

where ΦS contains the transformed neighbors. Using the kernel trick, the NNK problem
can be rewritten as:

θS = argmin
θ: θ≥0

1

2
θTKS,Sθ −KT

S,iθ (2.6)

where Ki,j = k(xi,xj). Finally, the i-th row of the adjacency matrix W is given by
W i,S = θS and W i,SC = 0.

An advantage of NNK over other methods such as K-NN, which select the K largest
inner products φTi φj and can be viewed as a thresholding-based representation, is its
robustness to sparsity parameters such as K.

NNK also has a geometric interpretation based on the Kernel Ratio Interval (KRI)
theorem: In a three-node scenario, for any positive definite kernel with range [0, 1], the
necessary and sufficient condition for two data points xj and xk to be connected to xi in
an NNK graph is

Kj,k <
Ki,j

Ki,k

<
1

Kj,k

(2.7)

In words, the interval for both nodes to be connected to i is large if the two nodes, j
and k, are dissimilar. But if the two nodes are very similar, the interval for both edges to
exist is very small, and only one node of the two will be connected to the query node i.

In the case of the Gaussian kernel (2.2), considering the edge θij connecting node i
and node j, we can define a hyperplane with normal in the edge direction. As shown in
Figure 2.1a this hyperplane divides the space in two, a region Rij that contains xi, and

6



(a) (b)

Figure 2.1: (a) KRI hyperplane corresponding to connected neighbor xj . (b) KRI boundary associated
to the convex polytope formed by NNK neighbors around xi. From [1], with permission.

its complement Rij. Then, the third node k will be connected to i only if xk ∈ Rij. If
xk ∈ Rij in a three-node scenario, θik = 0 and we say that k has been eliminated by the
hyperplane created by j.

Inductive application of the KRI connects to other points while producing a closed
decision boundary around xi, i.e., the NNK optimization at each node constructs a convex
polytope around node i disconnecting all the other points outside the polytope, see Figure
2.1b. The resulting set of NNK neighbors for each node is denoted by N . Also note that
N ⊆ S.

2.2 Convolutional Neural Networks

Convolutional Neural Networks are one of the most popular types of Deep Neural Net-
works (DNN). They have multiple layers and they are often composed of convolutional
layers, non-linearity layers, pooling layers and a fully-connected layer [29]. Input data of
the model used usually consists of several channels, with each channel being the observa-
tion of a different quantity at some point in space or time [17]. Convolutional layers filter
its multi-channel (aggregate of channels) input several times with multiple filters, com-
monly between 16 and 512, resulting also in a multi-channel output, where each channel
captures different features of the input of the layer. Note that in each layer we encounter
very high dimensional feature spaces, formed by the aggregation of large numbers of chan-
nels. In this work we use the terms ”subvector” and ”channel” interchangeably, since a
convolutional channel is a subvector of a convolutional layer.

ReLU is the most used non-linear function, both for its function and gradient sim-
plicity. Also for its capability to avoid ”vanishing gradients” and to create sparser repre-
sentations. Other activations functions such as sigmoid or tanh always obtain non-zero
values, while ReLU collapse a lot of dimensions to complete zeros.

7



Chapter 3

CW-NNK graphs and their aggrega-
tion
Dealing with high dimensional data can lead to the well-known curse of dimensionality
[30], which refers to the fact that volume in the space increases very fast with dimension,
make available data sparse, unless the amount of data also increases significantly. Under
these conditions, distances between points can become meaningless or not very informative
[31], e.g., we might find that most of the points appear to be at similar distances with
respect to each other. This is a problem to keep in mind when building graphs with edge
weights based on node similarity, since if all the weights have similar values and we get a
complete graph, it does not give us useful information about the data [20]. However, most
state of the art machine learning models work with high dimensional data, and still obtain
very competitive results [14]. This is because, in practice, the curse of dimensionality
is effectively avoided [32, 33, 34]. The problem in this case is that it is not clear how
the dimensionality problem is alleviated. Many theoretical results [35, 36] indicate that
the data lies in a low-dimensional manifold and its intrinsic dimension (ID) is much
lower than the nominal one, defining ID as the number of ”degrees of freedom” that are
necessary to generate the observed data. Other works try to estimate the ID to facilitate
understanding and analysis in high dimensional spaces [37, 38, 39]. Nevertheless, we lack
a clear understanding of how the manifold can be characterized in such high dimensional
spaces. Most works analyze data feature vectors as a whole, i.e., as a single indivisible
feature vector. In this work we seek a new perspective where we can understand the feature
space as the aggregation of well-defined, low-dimensional feature subspaces. For example,
we consider the activations of a convolutional layer of a neural network, where hundreds
of outputs from different convolutional filters are aggregated to represent a single input
image, as a concatenation of multiple subvectors, each associated with the output of one
of the channels in the deep neural network.

In this thesis a feature vector corresponds to a complete representation of an item
(e.g., an image). Each feature vector contains subvectors, each generated by a distinct
computation in the feature extraction (e.g., the output of one of the channels comprising
a convolution, non-linearity and pooling operations in a neural network). The feature
vectors are contained in a feature space, were we can also refer to the independent subspaces
induced by specific subvectors.

Shekkizhar and Ortega [11] observed the number of connections resulting from the
NNK optimization, where redundant neighboring points are neglected, to be indicative of
the ID of the data manifold. Thus, we take the average number of NNK neighbors as a
proxy for ID. Constructing channel-wise NNK (CW-NNK) graphs we can study the ID in
each subspace, which allows us to develop a better understanding of why the ID is much
lower than what would have been predicted based on the overall dimension of the feature
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vectors. In particular, CW-NNK graphs also allow us to derive overall interrelationships
between independent feature subspaces from common neighboring NNK points.

The curse of dimensionality also implies a greater difficulty in terms of computation,
since nearest neighbor methods can have an exponential dependence on dimensions when
executing a search query [23]. We show how solving the NNK optimization per channel
and combining the results allows skipping steps in the aggregate problem and reduce
complexity. This holds not only in the case of convolutional layers, but in any scenario
where we have defined channels or sub-features.

In real datasets or data representations not all dimensions have the same importance
[40]: some of them play an important role for the specific task, while others are charac-
terized by small variations that may be irrelevant to the analysis. In the specific case of
neural networks, ID has been studied for full layer intermediate representations [33, 32].
This work, to the best of our knowledge, is the only one that studies ID by considering
each of the channels separately and then aggregating information, to better explain the
behaviour in individual channels. show how an in-depth analysis of the subvectors with
CW-NNK graphs helps us to determine better the relative importance of the various di-
mensions, as compared to what can be achieved with a general approach. We analyze how
there are dimensions that practically do not contribute to the task and how they imply a
direct reduction of the ID.

Ultimately, our work tries to explain why even though systems of interest operate
in high dimension we do not really suffer a performance penalty due to the curse of
dimensionality.

3.1 K -NN analysis

From the channel-wise graph construction, we can have a better understanding of how it
is possible for the intrinsic dimensionality of the data to be relatively low even in a high
dimensional space. A theoretical analysis that builds on the information obtained from
the NNK optimization in each of the independent channels allows us to better understand
the relationship between the channels. From the sets of nearest neighbors and the NNK
neighbors in the subvectors, we can study the relationship between the channels and infer
relevant information and properties of the graph that we would obtain in the aggregate
high dimensional space. For simplicity, we consider a scenario of two subvectors and their
aggregate:

xi =

[
x1
i

x2
i

]
∈ RD

xi = (xi(0), xi(1), . . . , xi(D − 1))T = (x1i (0), . . . , x1i (D1 − 1), x2i (0), . . . , x2i (D2 − 1))T

where x1
i ∈ RD1 and x2

i ∈ RD2 are the two defined subvectors of xi and D1 + D2 = D,
but all the results presented in this section can be extended to the multiple channel case.

The first step to build an NNK graph is to find the K nearest neighbors to node
i (complexity of the algorithms we describe will be discussed in Section 3.3.5). As an
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example, in the full space the query is xi and {x1,x2, . . . ,xN} ∈ RD are the train-
ing data points, excluding xi from the training set. Given some norm ‖ · ‖ on RD, let
x(1), . . . ,x(K),x(K+1), . . . ,x(N) be a reordering of the training data such that

‖x(1) − xi‖ ≤ · · · ≤ ‖x(K) − xi‖ ≤ ‖x(K+1) − xi‖ ≤ · · · ≤ ‖x(N) − xi‖.

Note that
‖x(1) − xi‖2 ≤ · · · ≤ ‖x(K) − xi‖2 ≤ · · · ≤ ‖x(N) − xi‖2

can also be written as

‖x1
(1) − x

1
i ‖2 + ‖x2

(1) − x
2
i ‖2 ≤ · · · ≤ ‖x1

(K) − x
1
i ‖2 + ‖x2

(K) − x
2
i ‖2 ≤ · · · ≤ ‖x1

(N) − x
1
i ‖2 + ‖x2

(N) − x
2
i ‖2.

The indices of the K nearest neighbors to xi in the aggregate space are denoted by set SA,
while the the K nearest neighbors to x1

i and x2
i are denoted by S1 and S2, respectively.

We now analyze which properties of the set SA can be inferred from the sets S1 and
S2. Then, we analyze the properties of the set of NNK neighbors NA we can infer from
N1 and N2. Assume < instead of ≤ for simplicity.

Lemma 3.1.1. If j /∈ S1 and j /∈ S2 then j /∈ SA.

Proof. Let us consider the edge case where for the sets S1 and S2, we have that x1
k ∈ S1

and x2
k ∈ S2 as the (K)th neighbor in both sets, while x1

j /∈ S1 and x2
j /∈ S2 is the

(K + 1)th neighbor in both sets:

‖x1
k − x1

i ‖2 < ‖x1
j − x1

i ‖2

‖x2
k − x2

i ‖2 < ‖x2
j − x2

i ‖2

In the aggregate:

‖x1
k − x1

i ‖2 + ‖x2
k − x2

i ‖2 < ‖x1
j − x1

i ‖2 + ‖x2
j − x2

i ‖2

Let ‖x1
k − x1

i ‖2 = a, ‖x1
j − x1

i ‖2 = a+ γ, ‖x2
k − x2

i ‖2 = b and ‖x2
j − x2

i ‖2 = b+ ε,

a+ b < a+ γ + b+ ε

γ + ε > 0

where γ, ε > 0

This result leads to the following corollary.

Corollary 3.1.1.1. If the number of neighbors K is the same for both subvectors and for
the aggregate and if S1 = S2, then S1 = S2 = SA.

Lemma 3.1.2. If j ∈ S1∩S2, k /∈ S1 and k ∈ S2, it is possible that j /∈ SA while k ∈ SA.
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Proof. Let i be the query, we know:

‖x1
j − x1

i ‖2 < ‖x1
k − x1

i ‖2

Consider the edge case selecting the last neighbor (Kth neighbor) in SA. If j is selected,
k 6∈ SA, and vice versa.

Since both x2
j and x2

k are in S2, there are two possibilities: if ‖x2
j−x2

i ‖2 < ‖x2
k−x2

i ‖2,
xj will be selected as a neighbor in the aggregate, j ∈ SA. But if ‖x2

j−x2
i ‖2 > ‖x2

k−x2
i ‖2,

xj will be selected as a neighbor only if ‖x1
j − x1

i ‖2 + ‖x2
j − x2

i ‖2 < ‖x1
k − x1

i ‖2 + ‖x2
k −

x2
i ‖2.

Corollary 3.1.2.1. Every point j ∈ S1∩S2 will be selected in the aggregate if ‖x1
j−x1

i ‖2+
‖x2

j −x2
i ‖2 < ‖x1

k−x1
i ‖2 +‖x2

k−x2
i ‖2 ∀k ∈ S14S2, where S14S2 = (S1∪S2)\ (S1∩S2).

In words, a point j ∈ S1∩S2 can be eliminated of SA by other points found in S14S2.
If the above condition is satisfied for all points k ∈ S14S2, we can be sure that j will
be selected in the aggregate. The main relevance of this result is that the complexity of
the K-NN search in the aggregate could be reduced, since those points guaranteed to be
selected can be added directly to the aggregate neighborhood.

3.2 NNK analysis

Proposition 3.2.1. Gaussian kernel in the aggregate space is the product of Gaussian
kernels in the subvectors.

Proof. In the aggregate space, Ki,j = k(xi,xj) = exp
(
−‖xi−xj‖2

2σ2

)
. Where

‖xi − xj‖2 =
S∑
s=1

‖xsi − xsj‖2 (3.1)

and S is the number of subvectors. Then,

Ki,j =
S∏
s=1

Kis,js (3.2)

In a two-subvector scenario:

Ki,j = exp

(
−
‖x1

i − x1
j‖2 + ‖x2

i − x2
j‖2

2σ2

)
Ki,j = Ki1,j1Ki2,j2

(3.3)

Theorem 3.2.2. If j ∈ N1 and j ∈ N2 then j ∈ NA.
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Proof. Consider a three-node scenario with j, k, and query i. We know that θi1,j1 > 0 and
θi2,j2 > 0. Based on KRI theorem (2.7):

θi1,j1 > 0⇐⇒Kj1,k1 <
Ki1,j1

Ki1,k1

(3.4)

θi2,j2 > 0⇐⇒Kj2,k2 <
Ki2,j2

Ki2,k2

(3.5)

Then, in the aggregate:

θi,j > 0⇐⇒Kj,k <
Ki,j

Ki,k

∀k ∈ SA (3.6)

Using Proposition 3.2.1:

Kj,k <
Ki,j

Ki,k

can be expressed as

Kj1,k1Kj2,k2 <
Ki1,j1Ki2,j2

Ki1,k1Ki2,k2

. (3.7)

Let Kj1,k1 = a, Kj2,k2 = b,
Ki1,j1

Ki1,k1
= a+ γ and

Ki2,j2

Ki2,k2
= b+ ε. Then, we can substitute

terms in (3.7):

ab < (a+ γ)(b+ ε)

aε+ bγ + γε > 0⇐⇒ θi,j > 0

where 0 ≤ a, b ≤ 1 and γ, ε > 0 considering (3.4) and (3.5).

j ∈ NA ⇐⇒ j ∈ N1, j ∈ N2, j ∈ SA (3.8)

In words, if j is not eliminated by any other hyperplane created by a third point k in
the subvectors (is an NNK neighbor in all subvectors), then j ∈ NA (θi,j > 0). The only
condition in the aggregate is that j has to be selected in the initial set of neighbors SA.

There are no extra conditions for the initial sets of neighbors S1 and S2. We know
that j ∈ S1 ∩ S2. If a third point k ∈ S1 and k /∈ S2, but k ∈ SA, we want to verify (3.6)
for this third point but Kj2,k2 is not known.

But we know that 0 ≤ Ki,j ≤ 1, and Ki2,k2 < Ki2,j2 because j ∈ S2 and k /∈ S2.
Then,

Kj2,k2 <
Ki2,j2

Ki2,k2

so (3.5) is fulfilled and (3.4) is also fulfilled since k ∈ S1, therefore (3.6) is also fulfilled.
Also, condition j ∈ SA can be easily met by selecting SA = S1 ∪ S2
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Corollary 3.2.2.1. N1 ∩N2 ⊆ NA if N1 ∩N2 ⊆ SA.

Any point j ∈ N1 verifies (3.4) and any point j ∈ N2 verifies (3.5). Thus, (3.6) is
verified for j.

If |N1 ∩ N2| is large relative to |N1| and |N2|, then N1 ∩ N2 can be used as a good
dictionary to approximate NA. Then, from the NNK solutions in the subvectors we could
construct the NNK graph on the aggregate without having to solve the NNK regression in
the aggregate, which could involve more complexity. We will discuss complexity in Section
3.3.5.

Theorem 3.2.3. In a three-node scenario, if j ∈ N1, j ∈ N2 and k /∈ N1, k /∈ N2, then
k /∈ NA.

Proof. If θi1,k1 = 0 because of the hyperplane created by θi1,j1 > 0, and θi2,k2 = 0 because
of the hyperplane created by θi2,j2 > 0, from KRI theorem (2.7):

θj1,k1 = 0⇐⇒ 1

Kj1,k1

<
Ki1,j1

Ki1,k1

(3.9)

θi2,k2 = 0⇐⇒ 1

Kj2,k2

<
Ki2,j2

Ki2,k2

(3.10)

Then, in the aggregate:

θi,k > 0⇐⇒ 1

Kj,k

>
Ki,j

Ki,k

(3.11)

1

Kj,k

?
>
Ki,j

Ki,k

1

Kj1,k1Kj2,k2

?
>
Ki1,j1Ki2,j2

Ki1,k1Ki2,k2

Let 1
Kj1,k1

= a, 1
Kj2,k2

= b,
Ki1,j1

Ki1,k1
= a+ γ and

Ki2,j2

Ki2,k2
= b+ ε. Then,

ab
?
> (a+ γ)(b+ ε)

aε+ bγ + γε ≮ 0⇐⇒ θi,k = 0

where 0 ≤ a, b ≤ 1 and γ, ε > 0 considering (3.9) and (3.10).

In words, if a point k is eliminated by a hyperplane created by the same point j in
all subvectors, k will not be connected as an NNK neighbor in the aggregate.

Lemma 3.2.4. If k /∈ N1 and k /∈ N2, but in a three-node scenario with i and j, θi1,k1 = 0
and θi2,k2 > 0, then it is possible that k ∈ NA.

13



Proof. Consider node k which is not selected as an NNK neighbor in any of the two
subvectors. In a three-node scenario with points i and j in subspace 1, θi1,k1 = 0 because
of the hyperplane created by θi1,j1 . But in a three-node scenario with the same points in
subspace 2, θi2,k2 > 0, so k is eliminated in subspace 2, not because of the hyperplane
created by θi2,j2 , but by the hyperplane created by a fourth point q, denoted by its normal
θi2,q2 > 0. Then, in the aggregate:

θi,k = 0⇐⇒ 1

Kj,k

<
Ki,j

Ki,k

(3.12)

1

Kj,k

?
<
Ki,j

Ki,k

1

Kj1,k1Kj2,k2

?
<
Ki1,j1Ki2,j2

Ki1,k1Ki2,k2

Let 1
Kj1,k1

= a, 1
Kj2,k2

= b+ ε,
Ki1,j1

Ki1,k1
= a+ γ and

Ki2,j2

Ki2,k2
= b. Then,

a(b+ ε)
?
< (a+ γ)b

aε
?
< bγ

where 0 ≤ a, b ≤ 1 and γ, ε > 0 considering (3.9) and (3.10).

Therefore, we cannot ensure that k is disconnected, and can be selected as an NNK
neighbor in the aggregate.

3.3 Experiments

In this section, we start by demonstrating empirically the effects of the curse of dimen-
sionality when dealing with high dimensional data. We also show a better interpretation
of why the ID of the data can be much lower than the nominal dimension of the feature
vectors when data can be seen as a collection of subvectors that are related to each other,
and how it is connected to several properties of the NNK graphs. Finally, we study the ID
of the subvectors and their aggregation in the specific case of CNN data representations
using NNK graphs. In our experiments we consider a 7 layer CNN model composed of
6 convolutional layers of 16 depth channels with ReLU activations, max-pooling and 1
fully connected softmax layer. A more detailed description of the architecture and the
implementation can be found in Appendix A.

3.3.1 Curse of dimensionality illustration with Distance Ratio

In order to have a clearer and more visual understanding of the curse of dimensionality,
we use the Distance Ratio (DR) [41], a dimensionality metric described in Algorithm 1.
For each point i we find the distance to the farthest and closest points in the dataset and
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DR is the average of the ratio of these two distances. Thus DR is small when all pairwise
distances in the dataset are similar, which could be the case in high-dimensional scenarios
where distances are not informative. We show empirical results for both real and synthetic
datasets.

Algorithm 1 Distance Ratio metric

Input: Data points {x1,x2, . . . ,xN} ∈ RD

1: D ← pairwiseDistances({x1,x2, . . . ,xN}) . pairs i, j with i 6= j, D ∈ RN×(N−1)
2: for i = 1 : N do
3: mi ← max1≤j≤N−1Dij

4: ni ← min1≤j≤N−1Dij

5: ri ←mi/ni
6: end for
7: DR← mean(r)

Output: Distance Ratio DR

Generating 1000 10-dimensional random data points uniformly sampled from N (0, I),
we get DR = 4.1, where ID ≈ 10. In contrast, if we generate 1000 100-dimensional data
points sampled from the same distribution, DR = 1.5, where ID ≈ 100. This means that
on average, the farthest data point from each other point is only ∼ 50% farther than
the closest data point. The DR converges to 1 as the ID of the data increases. Also, it
depends on the sample size, a larger dataset is prone to higher DR.

Figure 3.1: Distance Ratio as a function of relationship between subvectors controlled by λ, bounded by
edge cases. Elementary: all subvectors are identical (min ID). Full: no relationship between subvectors

(max ID).

Moving to a scenario with an aggregation of subvectors, we generate 10 10-dimensional
subvectors to create a 100-dimensional aggregate. Again we use a sample set with 1000
data points and, for each data point, we generate random subvectors by first finding a
subvector xinit

i ∈ R10, sampled from N (0, I), and then assigning to each subvector

xsi = xinit
i +ws

i (3.13)
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where ws
i ∼ N (0, λI) and λ is a parameter that controls the variance of the gaussian

noise added to each subvector independently. Thus, all subvectors are related and they
are closer to each other for smaller values of λ. If λ = 0 the subvectors are identical, while
a large λ leads the subvectors to be virtually independent. In Figure 3.1 we can see how
the DR of an aggregate of subvectors depends on the relationship between subvectors,
which is bounded by the DRs mentioned above. If all the subvectors are initialized with
the same 10-dimensional primary random vector (λ = 0), ID ≈ 10. As more noise is
added to each subvector independently, DR decreases, reaching no relationship between
subvectors, where ID ≈ 100.

Figure 3.2: Distance Ratio for CIFAR-10 classes, random generated class and lower bound.

We can also compute DR for real datasets and random examples. In Figure 3.2 we
show the DR obtained for each of the image classes in the CIFAR-10 dataset (D =
32 × 32 × 3), together with the lower bound of completely random data (ID ≈ D). We
also add an additional class (“Random”) of generated random examples that have the
CIFAR-10 images size and where each pixel value is sampled from U(0, 1). We see how
the DR of the CIFAR-10 classes is much higher than that of completely unstructured
random noise, and it is also different between classes.

Going one step further, we analyze the dimensionality in the intermediate representa-
tions of a CNN. Note that in Figure 3.2 original images of the classes “plane”, “truck” and
“random” produce very different DR, i.e., the ID is different between classes. In Figure
3.3, we show the DR obtained across the CNN layers, where the first intermediate repre-
sentations are the ones with higher dimension. We can see how the ranking of ID between
classes is preserved end-to-end: from input space (right) to last layer feature space (left),
across all layers of the model. Also note that the obtained DR for the generated class of
random examples is minimal for the original images, whereas the DR for their interme-
diate representation vectors in the model is higher than that obtained with completely
random data (lower bound).
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Figure 3.3: Distance Ratio of deep representations across CNN layers. Difference between classes is
preserved end-to-end.

3.3.2 NNK neighbors overlap between channels

In Section 3.2 we have seen what information we can extract when different subvectors
share the same NNK neighbors. However, we do not know how common this is and the
effect it has on the dimensionality of the full space. To quantify the number of neighbors
appearing in various subvectors, we compute the subvector neighbor Overlap Score
(OS):

OS =
S∑
s=2

s

S

P (s)

T
(3.14)

where S is the number of subvectors, P (s) is the number of points overlapping in s
subvectors, and T is the total union of neighbors in all subvectors. If the features are
the same between subvectors, the neighbors are the same in all subspaces and OS = 1.
If the features are completely independent between subspaces and there is no overlap of
neighbors, OS = 0.

Figure 3.4: Number of NNK neighbors in aggregate space as a function of the subvector OS for
synthetic data.
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We perform an experiment with synthetic data to see how the OS is related with
the number of NNK neighbors in the aggregate. We generate 150 data points, in 500
different realizations. Each data point is composed of 10 subvectors of dimension 2. Each
subvector is constructed as in (3.13), with xinit

i ∈ R2 ∼ U(0, 1) and ws
i ∼ N (0, σrealization)

where σrealization ∼ Exp(λ = 5). In Figure 3.4 we can see how the NNK dimension in the
aggregate feature space is a function of the relationship between subvectors. When the
NNK neighbors are the same in all subvectors, the dimension of the full NNK graph is
minimal. On the other hand, when the channels are more independent, OS is much lower,
while the number of neighbors in the NNK graph and the ID of the aggregate space both
increase.

Figure 3.5: Number of NNK neighbors in the full last layer of a CNN as a function of the channel OS
during a training of 500 epochs.

We also quantify the level of neighbor set overlap between subvectors in a practical
setting for the CNN representations from the CIFAR-10 dataset. We focus on the last
layer channels and their aggregation (full layer). While the data is different from the
previous random examples (in particular, it is non-negative because of ReLU, and many
dimensions are zero), we verify that the maximum number of NNK neighbors obtained in
the aggregate is also directly related to the amount of neighbor set overlap in the channels,
see Figure 3.5. This is an interesting scenario because even though every subspace is
generated by different filtering, pooling and other nonlinear operations, there is overlap
of neighbors. Also, we can observe how the maximum overlap cases appear in the first
epochs of training. Then, as the training proceeds, each channel specializes to some specific
features, resulting in a lower overlap and a higher maximum of NNK neighbors in the full
layer.
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3.3.3 Sufficient K to construct the NNK polytope

As described in Section 2.1.2, NNK graphs construct a convex polytope around each
query point xi using the Gaussian kernel (2.2), where the only point in the intersection
of all Rij regions is xi. When the decision boundary is closed, no additional points can be
connected to xi and we consider the graph construction procedure completed. But there
is the possibility that the decision boundary may not be completely closed, due to the
hyperplanes created by the edges θij not being sufficient to enclose Rij. In this scenario,
the NNK graph could continue to grow if new points were added.

Figure 3.6: Number of NNK neighbors as a function of K̄suf. 20 realizations with 1000 train points per
case and per dimension, where xi ∈ RD ∼ N (0, I), except for ”D = 50, ID � 50” where there are 5

subvectors with xinit
i ∈ R10 ∼ N (0, I) and each subvector xs

i = xinit
i +w,w ∼ N (0, 0.1I).

A sufficient K, which we call Ksuf, is the number of initial neighbors with which the
number of connections in the NNK graph saturates. That is, when we reach Ksuf, the
decision boundary is normally closed if there exist data points in all directions, and even
if we increase the initial set of neighbors, the NNK graph will not grow any more. Since
Ksuf is specific for each data point, we use K̄suf as the average Ksuf for a particular set
of data points. In Figure 3.6, we show how K̄suf grows with the ID of the data manifold.
Starting with a small K and increasing it, we reach a point where the number of NNK
neighbors converges, reaching K̄suf. The number of NNK neighbors converges at different
K̄suf for ID ≈ 5 and ID ≈ 10. But for ID ≈ 50, K̄suf � 500, i.e., K̄suf is related to ID and
quantifying K̄suf can help us estimating ID. In addition, experiments show that even in a
high dimensional space, if ID � D, K̄suf will be much lower, proportional to the ID.

In general,
∑C

c=1Ksuf,c < Ksuf,A, i.e., we need more neighbors than the union of
channel neighbors to build the NNK graph in the aggregate space. As an example, Figure
3.7 shows a specific case where SA = S1 ∪S2 is not sufficient to build the full NNK graph
in the aggregate.

Generating synthetic random data where each data point xi ∈ RD ∼ N (0, I), ID ≈ D.
In Figure 3.8, we can see how the number of NNK neighbors also provides information
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Figure 3.7: NNK graph on the aggregate using the union of sufficient sets SA = S1 ∪ S2. Points 1 and 4
are not selected in the subvectors but should be selected in the aggregate to build the full NNK graph.

about the ID. To obtain the maximum number of NNK neighbors in each graph con-
struction, we need a large enough K, which is related to the ID as previously described.
Otherwise, we obtain a result similar to the cases of K = 50 or K = 100, where we see
that the number of NNK neighbors starts to converge to K, since K < K̄suf and we need
more initial neighbors to build the NNK polytope. When K is large enough, the number
of NNK neighbors increases proportionally with the ID.

Figure 3.8: Number of NNK neighbors as a function of the ID of the data, for different K in the initial
search of neighbors. 20 realizations per dimension and per K, with 1000 training points

xi ∈ RD ∼ N (0, I), where ID ≈ D.
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3.3.4 Dimension significance and overall dimensionality reduc-
tion effect

The activations of CNN layers are usually high dimensional due to the large number of
channels in each layer. Each feature map represents certain features extracted with filter-
ing from the layer input, after going through different nonlinear operations. However, not
all dimensions contribute equally to the final output [42, 43]. Only a portion of the acti-
vations are constantly contributing to the classification, while the rest of the dimensions
are noisy, or are activated in very isolated cases.

Figure 3.9: Nonzero heatmaps of the feature maps in the third layer of the CNN. In the first row, all
CIFAR-10 test set is used as input, while in the second row we use random examples ∼ U(0, 1).

Especially in the case of CNNs where the ReLU is commonly used [17], we may
find many dimensions that are completely zero, and in certain cases, full zero channels
independently of the input, see Figure 3.9. This leads to a direct reduction of the intrinsic
dimensionality of the data representations and can be found in a wide variety of models,
particularly in overparametrized or non-regularized models. Moreover, this is a special
case to take into account when constructing the NNK graph: we find multiple data points
that have the same feature vector (full zero) in some channels. In this case, we keep only
one data point of these characteristics (it can also be the query), since the rest of the
points would not provide information in new orthogonal directions.

It has been demonstrated that adversarial examples have activations that are dis-
tributed more uniformly among channels, and have higher magnitude [44]. In Figure 3.9
we show that this is true, but only in the significant channels. Note that the artifacts
generated on the edges are caused by zero padding. Conversely, in the rest of the dimen-
sions, we see that the results are very similar to those obtained with normal examples: the
dimensions fail to activate and undergo very little variation. Nonzero heatmaps for the
different CIFAR-10 classes for both regularized and non-regularized models are provided
in Appendix B.

In Figure 3.10 we show how the NNK dimension (number of connected neighbors)
depends on the number of zeros in the activations. One of the main reasons for having
fewer NNK neighbors in some cases is that the number of common zeros reduces the
dimension of the space. Also, the number of neighbors in the aggregate of channels is very
close to the channel-wise case, although the crude dimension of the activation is much
larger. This demonstrates that channels are highly dependent and in the overall feature
space the ID is very low.
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Figure 3.10: Average number of NNK neighbors and normalized number of zeros per CIFAR-10 class
and per activation in layers 4 and 5 of the model.

.

3.3.5 Complexity

The NNK graph construction consists of two steps. First, finding the set S of K nearest
neighbors out of N training data points. Although there exist some efficient algorithms
that find an approximate solution in O(N1.14) [21], the exact solution can always be found
by brute force and it requires O(N2KD) for each query. Second, solving a non-negative
kernel regression (2.6) that runs in O(K3).

With our proposed CW-NNK graphs method, we could alleviate complexity when
constructing the graph in the full space by combining the channel results. For example,
we could skip the first step in the aggregate, and use the union of the obtained K-
NN in the channels as the aggregate neighbor initial set SA. In the full space, the first
step is O(N2KAD), and in the channel-wise case O(N2KCDCC). Since DCC = D, the
complexity is lower in the channel-wise approach only if KC < KA, i.e. we use a lower K
in the individual channels than in the aggregate. As described in Section 3.3.3, we should
always select KC � KA, since K̄suf to build the NNK graph is proportional to the ID
of the data, which will be higher in the full feature space than in the lower dimensional
channels. Therefore, by selecting a suitable K, we can reduce the complexity of NNK
graph construction with the channel-wise approach. We also have to ensure that when
selecting SA as the union of channel neighbors, |SA| is of the same order of magnitude
as K̄suf for the full space or lower, thus maintaining or reducing the complexity in the
second step of NNK (2.6). Also, in a practical application, (e.g., label interpolation from
the neighboring nodes, which we will address in the next Chapter) using NNK graphs or
related algorithms, we can still get many of the benefits of these methods without having
to compute the exact solution, so that much faster approximate approaches can still be
very useful.
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3.4 Discussion

We presented a channel-wise graph construction approach as an extension to NNK graphs.
To the best of our knowledge, no prior work had formally studied this setting. Although
encountering very high dimensional data, we can often divide the feature vectors into
subvectors in a consistent and interpretable way, as is the case for the channels in convo-
lutional layers. We studied how properties of the NNK solution in the aggregate can be
inferred from the solutions in each of the channels, which leads us to a better understand-
ing of the information relationship between channels. We also analyzed the complexity
of the proposed approach, and by doing so we were able to see how we could find an
approximate solution in the aggregate from the channels with a lower computational cost.

We illustrated the effects of the curse of dimensionality and how it is significantly
eased in real data scenarios. From the construction of NNK graphs, we showed that some
polytope properties such as the required number of initial neighbors and the number of
NNK neighbors are directly related to the intrinsic dimensionality of the data, which is
usually much lower than the actual dimension of the vector in real data or deep represen-
tations in neural networks. Finally, with the channel-wise graph construction approach
we obtain a better estimates of the ID through finding the number of neighbors.
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Chapter 4

CW-DeepNNK generalization estimate
without validation set
During the training of a neural network, the goal is to minimize a loss function given a
finite training dataset. One of the main challenges in this optimization is for the model
to be able to generalize and perform well on unseen data. The problem is that there will
come a point in the training where the model may stop generalizing and will start to
learn the statistical noise of the finite training dataset, which could lead to decreasing
performance on new data, even though the loss function continues to be decreased by
additional training [17]. But how can we detect when this happens in order to avoid it,
and save the model that generalizes better? The most common approach is to hold out
part of the training set (a validation set) with which we will not train, but on which
we will evaluate the performance of the model so as to obtain a generalization estimate.
Then, we can perform early stopping [18], which consists in stopping the training when
we detect that the generalization on the validation set does not improve after some given
epochs. Finally, we keep the copy of the model in the iteration where we obtained the
best generalization performance.

Although these methods are very effective in practice and lead to state-of-the-art re-
sults, there are some drawbacks [19]. The choice of validation set size carries with it a
trade-off: a small validation set has a large stochastic error and may introduce biases,
which can result in a poor generalization estimate. On the other hand, a larger validation
set yields a more robust generalization estimate but deprives the model of valuable infor-
mation by reducing significantly the amount of training data. If there is scarcity of labeled
data, the selection of the validation set is critical and its use would be more valuable if
all the data could be used to train the model. In addition, while validation strategies
can be used in practice, there are still difficulties in achieving a good understanding and
interpretation of why large neural networks generalize well in practice [15].

Motivated by the previously proposed DeepNNK approach [1], we introduce a novel
approach for channel-wise generalization estimation (CW-DeepNNK) that allows us to
perform channel-wise early stopping effectively without the need for a validation set. This
method is based on leave one out estimation using local polytope label interpolation. In
addition, it can be easily integrated with an existing training setup, replacing the existing
generalization estimate, e.g., validation accuracy.

We propose a generalization estimate that can be decomposed into multiple estimates,
in this case by convolutional channels, rather than having a single metric as in most stan-
dard methods, such as performance on a validation set. We also show that the point at
which additional training can worsen generalization occurs at different stages in differ-
ent channels. Thus, when detecting that generalization performance decreases in some
channels it is possible to stop training some channels while continuing to train the others.
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A comparison with other state of the art methods is carried out, showing how this
channel-wise monitoring can be equally or more effective in detecting generalization in
some scenarios. Finally, we discuss different options for reducing the complexity of our
algorithm while maintaining a good estimate of generalization.

4.1 Related work

Most successful deep learning models include some kind of regularization in their architec-
tures to ensure a small generalization error [15]. Among them, we find data augmentation,
weight decay [45], dropout [46] and batch normalization [47]. Regularization may also be
implicit as in the case of early stopping.

Many early stopping criteria have been proposed [18, 48, 49, 19], most of which are
based on the validation set performance, usually using the loss or accuracy curve. The
most used criterion is to stop training the model when the validation performance has not
improved over the best one recorded for a given number of epochs, usually called patience.
Other stopping conditions focus on an absolute change in performance, an average change
over a given number of epochs, or the worsening of performance in consecutive epochs.
An alternative is to stop training when the validation performance is under the best
one recorded by a given threshold, while the model error on the training set no longer
improves much [18]. But again, these are all different stopping criteria that are generally
constructed around the performance curve of an independent validation set, which is the
state-of-the-art generalization estimator.

Other generalization estimates to perform early stopping have been proposed without
the need for a validation set. Duvenaud et al. [49] proposed an interpretation of stochastic
gradient descent in the variational inference framework. This motivated a generalization
estimate that can be used to construct a stopping rule. It is based on estimating the
marginal likelihood, by tracking the change in entropy of the posterior distribution of the
network parameters at each optimization step. However, this method requires computing
the Hessian diagonals, which may be impractical for large neural networks. Mahsereci et
al. [19] proposed an estimate based on fast-to-compute local statistics of the computed
gradient, aimed at detecting when it represents statistical noise of the finite training
set, instead of an informative gradient direction. These two proposed methods for early
stopping are based on gradient-related statistics, thus, they are sensitive to hyperparam-
eter selection, e.g., learning rate, batch size or optimizer selection. In addition, they are
also sensitive to neural network parameters, i.e., weights and biases, converging at very
different speeds during optimization.

4.2 DeepNNK: generalization estimate using poly-

tope interpolation

DeepNNK [1] is a non parametric interpolation framework based on local polytopes ob-
tained using NNK graphs [11] on neural network data representations. Other methods
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such as K-NN-based interpolation can be biased if the data density is different in differ-
ent directions in space. In contrast, NNK selects only relevant points for interpolation,
eliminating redundant points that do not provide new (orthogonal) information.

To integrate this interpolation framework with an existing neural network setup, we
replace the last classification layer with the DeepNNK interpolator framework, using as
input the features of the transformed space of the penultimate layer. We can continue using
the loss obtained with the last layer to perform backpropagation, while the framework can
be used to evaluate during training or testing. In this way, we perform label interpolation
based on the relative positions of the training data in the output transformed space,
instead of defining a classification boundary in the space. As previously mentioned, we
do not have to set aside part of the training set to create a validation set to evaluate the
model during training.

Now, the input data xi is transformed by a non linear mapping h denoting the deep
neural network. We can rewrite the Gaussian kernel (2.2) as

kDNN(xi,xj) = exp

(
−‖h(xi)− h(xj)‖2

2σ2

)
(4.1)

Given K nearest neighbors of a sample x, S = {(x1, y1), (x2, y2) . . . (xK , yK)} the
unbiased NNK interpolation estimate is defined as

η̂(x) = E(Y |X = x) =
K̂∑
i=1

θi∑K̂
j=1 θj

yi (4.2)

where θ are the K̂ non zero recomputed NNK weights obtained from the minimization
of (2.6). Most of the initial K nearest neighbor weights are set to zero and we end up
performing the label interpolation with the stable set of NNK neighbors.

In order to evaluate the performance of the estimator, we perform the leave one
out (LOO) procedure, which is unbiased and widely used [50]. Given the training data
Dtrain = {(x1, y1), (x2, y2) . . . (xN , yN)}, the NNK interpolation estimator for xi is based
on the set containing all training points except xi, which we denote by Ditrain. Formally,

RLOO(η̂|Dtrain) =
1

N

N∑
i=1

l(η̂(xi)|Ditrain, yi) (4.3)

where l(ŷi, yi) is the error associated in regression or classification. Shekkizhar and Ortega
[1] demonstrated that LOO performance can be a better indicator of generalization than
the empirical model performance on training data.

4.2.1 CW-DeepNNK

The interpolation framework just described aims at estimating generalization error with
the LOO procedure. In this work, continuing with the channel-wise spirit of Chapter 3, we
formulate the local polytope label interpolation in individual channels (CW-DeepNNK).
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Instead of using the transformed data representations of the full last convolutional layer
hlast(x), which consists of the aggregation of outputs of C convolutional channels, we
suggest dividing the feature space into channels:

hlast(xi) =


h1

last(xi)
h2

last(xi)
...

hClast(xi)

 ∈ RDlast (4.4)

which are well defined and have a better interpretability on their own. Then, the
first step for the CW-DeepNNK LOO procedure is to perform the K-NN search in each
channel, obtaining S1,S2, . . . ,SC for each train data point xi. The second step is to use
the subvectors hclast(xi) to construct the similarity matrix KSc with the Gaussian kernel
(4.1), and solve the NNK regression (2.6) obtaining θSc in each channel c. Then, we
perform the NNK interpolation (4.2) per instance and per channel. Finally, we compute
the LOO estimation (4.3) per channel, obtaining the CW-DeepNNK label interpolation
errors R1

LOO,R2
LOO, . . . ,RC

LOO.

By computing the CW-DeepNNK procedure at each training epoch we obtain a CW-
DeepNNK label interpolation error curve for each channel. Using these curves to monitor
the generalization of the model during training, we propose a novel channel-wise early
stopping method, which does not require a validation set and the stopping is performed
in stages. Starting from the standard patience criterion, we monitor the generalization
performance in the last convolutional layer channels and we use a patience parameter in
each channel. When a channel stops generalizing we freeze the model parameters of the
channel and stop training it. The rest of the model continues learning until each of the
channels stops generalizing, where we consider that we have reached the optimal point
and the overall generalization of the model no longer improves. Finally, we save the model
parameters where the last minimum generalization error is detected.

4.3 Experiments

In this section, we focus on binary classification using 2 classes of CIFAR-10: “plane”
and “ship”. We use a CNN architecture of 4 conv layers with 5 depth channels, ReLU
and max-pooling and a last fully connected layer. Details of the model architecture and
implementation are provided in Appendix A. We compare the model performance with
the DeepNNK interpolation on train data, using the data representations from the full
last convolutional layer or the individual channels. Some channels learn features more
valuable than others for the classification task, and we study how this can be detected
based on the NNK polytope local geometry and activation patterns. We also analyze the
behaviour of the proposed generalization estimate when we do and do not apply explicit
regularization to the model.

Additionally, we compare the NNK-based generalization estimates with the standard
method [18] to perform early stopping and we discuss their complexity.
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4.3.1 Interpretation of channel-wise generalization estimates

A convolutional layer is composed of various channels that are outputs of different filtering
operations. Each channel defines a feature subspace where we should be able to quantify
how useful the information from that channel is for the classification task, and have a
better interpretation of the captured features in each channel. We can assume that each
filter captures different features, although they are not completely independent between
channels.

Figure 4.1: DeepNNK, CW-DeepNNK and model error on the train set during training with no
regularization.

Figure 4.1 shows a comparison between model error on training data, DeepNNK and
CW-DeepNNK label interpolation error with LOO estimation. In this case, the model
is trained with no regularization. In the standard case using all channels (full layer),
the error gap between the model on train data and LOO DeepNNK increases with the
epochs, indicating that the generalization performance is worsening and the model starts
to overfit to the train data. We can see how CW-DeepNNK has a much better performance
than the model when only a single channel is activated. Note that an error of 0.5 in a
binary classification is as bad as doing random classification. We also observe how the
interpolation error in the channels soon reaches a minimum, and then the classification
error increases again. This minimum may indicate the optimal point of generalization in
each channel, from which the learned features begin to fit the training data noise.

Although the last fully connected layer of the model is trained to use the full com-
bination of features from all channels, we wanted to see what happens if the model has
to perform classification when relying only on partial information. We demonstrate how
our method is able to perform much better in each independent channel subspace, and
the model is not capable of performing at a decent level when some feature channels are
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deactivated. Thus, we now have a new point of view, where we can estimate properly how
useful each of the individual channels is for the task.

Generalization estimation in regularized vs. non-regularized models

With this new channel generalization estimate based on LOO label interpolation, we can
analyze how it performs in different scenarios. With the same setup as the one used for
experiments in Figure 4.1, in Figure 4.2 we compare the previous results obtained with no
regularization with the results obtained adding a dropout layer after each convolutional
block, with a dropout rate of 0.2.

(a) (b)

(c) (d)

Figure 4.2: Metrics shown every 5 epochs, binary classification. (a) DeepNNK, CW-DeepNNK and
model error on the train set with no regularization. (b) DeepNNK, CW-DeepNNK and model error on
the train set using dropout. (c) Loss on train and test data with no regularization. (d) Loss on train

and test data using dropout.

In both cases we see individual channels that fail to learn features of the data relevant
to the task, obtaining almost maximum error in binary classification RLOO ≈ 0.5. In the
following study we focus on the channels with an error RLOO < 0.4.

Figure 4.2a shows how in a non-regularized model, our CW-DeepNNK generalization
error estimate finds a minimum and from then on it gets worse with more training itera-
tions. If we compare it with the test performance in Figure 4.2c, we see that channel-wise
LOO performances peak at a similar place to the peak of the test loss, where early stop-
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ping would occur using the standard method based on validation set performance. On
the contrary, by monitoring this generalization estimator in a well regularized network
that does not overfit, our estimator keeps improving, as well as the test performance, as
shown in Figures 4.2b and 4.2d. All this indicates that this metric is a good estimator
of generalization and could replace other estimators such as validation accuracy for per-
forming early stopping. In addition, channel minimum error detection in different points
in time suggests that we could stop training each channel when it has reached its best
generalization performance, and stop training all the network when we have reached best
performance in all channels.

We can also detect that in the non-regularized case, the active channels have a very
similar, but very poor, performance with an error between 0.2 and 0.3. Instead, in the
regularized case we can see that in the main channels we reach an error below 0.2.

4.3.2 Relevant channel detection based on NNK polytope local
geometry

As seen in Section 4.3.1, only some channels of a convolutional layer concentrate the data
features that are key for the task, and we can detect these channels before performing the
LOO interpolation based on the NNK polytope local geometry and zero patterns in the
activations.

(a) No. zeros per channel,
non-regularized case.

(b) No. NNK neighbors per channel,
non-regularized case.

(c) Weight same class NNK neighbors,
non-regularized case.

(d) No. zeros per channel, regularized
case.

(e) No. NNK neighbors per channel,
regularized case.

(f) Weight same class NNK neighbors,
regularized case.

Figure 4.3: Number of zeros in activation, number of NNK neighbors and weight of same class neighbors
per channel in the last convolutional layer of a CNN, for both regularized and non-regularized scenarios.

In Figure 4.3 we can see how in the non-regularized case (first row), there is a very
noticeable binary behavior. 4 out of 5 channels present very few zeros in their activations
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due to ReLU, i.e. in most dimensions we will find positive values. In these same channels,
we connect with a high number of NNK neighbors, obtaining a high weight of NNK
neighbors of the same class to the instance. In the remaining channel, we observe that most
dimensions are always zero so the ID is very low, we connect with very few neighbors and
the weight of neighbors of the same class is very low, since the information in that channel
is very poor. These properties will lead to a bad label interpolation. In the regularized
case (second row) we observe an heterogeneous behavior: there are channels with less zero
dimensions than others, in which we will connect with more NNK neighbors and we will
obtain a higher weight of neighbors of the same class. What is relevant in this case is that,
in the channels with higher NNK dimensionality we obtain a higher weight of neighbors
of the same class, surpassing the weight obtained in the non-regularized case, thus leading
to lower NNK label interpolation error, which is indicative of a better generalization in
the regularized case.

In short, we can predict the channel LOO label interpolation performance of 4.2 by
analyzing the dimensionality and NNK graph local geometry in each channel. In channels
with fewer zero dimensions we will obtain a higher dimensional NNK graph with higher
same-class weights, which will lead to better interpolation. Besides, the non-regularized
networks have a more homogeneous behavior between channels but with worse perfor-
mance in general, while for regularized models, the most relevant channels drive a better
overall result.

4.3.3 Comparison of generalization estimates for early stopping

We compare our generalization estimate with the standard and state-of-the-art estimate,
i.e., validation set performance, as well as with the DeepNNK estimate on the full layer [1],
to perform early stopping. In this case, we use a patience parameter as stopping rule for
the validation-based estimate and for the full layer LOO DeepNNK interpolation. For our
estimate, we use a patience stopping rule in each channel, as described in Section 4.2.1.
Note that other proposed stopping criterions [18, 48] could be applied to our generalization
estimate as well, replacing the validation curve, but we leave these experiments for future
work.

Figure 4.4 shows the results obtained using the different generalization estimates for
early stopping, with a patience of 20 epochs. We can see how both NNK methods obtain
test accuracies comparable to that of the standard validation method. Although the best
models are obtained in the full layer case, it requires a lot of epochs to find the optimal
stopping point whereas the other methods are able to detect overfitting in a much ear-
lier stage. In the two proposed methods based on NNK interpolation, using a patience
parameter that is too small can lead to not finding the global minimum of generalization
error, leading to premature stopping and lower test accuracy, as in the case of the out-
liers. Therefore, choosing a higher patience can ensure a high test accuracy, but at the
cost of a longer training, often unnecessary. The proposed channel-wise generalization es-
timate is the alternative that obtains the best trade-off between performance and training
iterations. This method may be the most effective and the preferred one when dealing
with small datasets or when test performance is a priority, since we can train the model
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Figure 4.4: Test accuracy, stopping epoch and training elapsed time for different early stopping
methods, using 20 epochs of patience and 10 different initializations. Note that test accuracy refers to

the accuracy obtained in the test set with the best model according to each criterion, i.e., where we find
the last minimum generalization error, not the last version where we stop training. Parameters: K = 15
for NNK-based methods, and validation set consisting of 20% of the original train set for the standard

method.

with all labeled data available without the need of separating data for a validation set.
However, the channel-wise approach baseline entails a higher complexity, which may not
be desirable in certain scenarios where lightweight training is a priority. In the following
section we discuss several different ways to speed up our proposed method and reduce
complexity while maintaining good results.

Even if in the channel-wise method we stop training weights of last layer convolutional
channels, the number of epochs is comparable to that of the other criterions, since the
fraction of parameters that we stop training in intermediate stages is not significant. An
extension of this method to the rest of the layers of the model could speed up the training
iterations.

4.3.4 Complexity

The channel-wise leave one out label interpolation baseline is computationally expensive,
since it requires constructing an NNK graph per training instance, per channel, and per
epoch. Nonetheless, several optimizations can be applied to it to create a more efficient
yet equally competitive early stopping method.

Performing NNK independently in every epoch is very costly, but features learned in
the channels are similar between consecutive epochs. Thus, we could reduce the complexity
by half by performing the leave one out estimation every other epoch. Another option is
to monitor if the dictionary of neighbors is deviating from a good dictionary and only
recompute the search when needed.

Other improvements in efficiency are in the direction of reducing the number of queries
and channels with which the interpolation is performed. We could perform the interpo-
lation only on the most relevant channels with the lowest error, described in Section
4.3.2. We could also perform random subsampling of training data points instead of doing
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the full LOO procedure. As a result, computing time would be drastically reduced, but
the generalization estimate would become more stochastic. This could be helped by aug-
menting the patience parameter, thus avoiding curve oscillations and finding the global
generalization error minimum with higher probability.

Additionally, in the channel-wise method itself, we already find some complexity ben-
efits over the whole-layer approach. K̄suf is much larger in the aggregate space than in
the subspaces of each channel KA � KC . This leads to a remarkably faster NNK graph
construction starting point in the channel-wise case, since the NNK regression (2.6) runs
in O(K3). Also, while selecting K for the experiments we observed that both NNK-based
methods are very robust with respect to the selection of this single hyperparameter.
Therefore, K could be chosen as the minimum K that yields stable results, significantly
reducing the complexity. Exploring all these ideas for further efficiency improvement of
the proposed method is left for future work.

4.4 Discussion

We introduced a new generalization estimate based on channel-wise local polytope inter-
polation that can be used to perform early stopping without the need for a validation set.
We provided an interpretation for the channel-wise approach, that focuses on selecting
relevant information on multiple well-defined feature subspaces. By doing so, we were able
to find a new and more precise perspective on the generalization of neural networks.

From an in-depth analysis of the polytope local geometry and data representation
patterns, we showed how to detect the channels that are the most relevant for the task and
obtain best interpolation performance. Our experiments suggest that a lot of computation
can be saved based on this observations. Key insights can be obtained from the overall
channel interpolation error during training, detecting very different behaviors between
regularized models that generalize well and models that overfit.

Our proposal may be the preferred for early stopping in situations where very little
labeled data is available, since we could use it all for training without the need to save
data for validation. Also, when using small size neural networks where test performance
is key, e.g. embedded systems. However, our method may not be as useful for large scale
problems, because if we already have a lot of labeled data, it is not a big impact on
training to have to separate a validation set.
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Chapter 5

Budget
For the student we assume a salary of 9 e/h, which is the standard undergraduate in-
ternship salary, and we estimate a salary of 30 e/h for the supervisors.

We estimated the computation cost based on Google Cloud rates1 for the NVIDIA
Tesla T4. Overall GPU usage has been approximately 60 hours per week, with a project
duration of 25 weeks.

Amount Cost/hour Time Total

Junior engineer 1 9,00 e/h 625h 5.625,00 e
Senior engineer 3 30,00 e/h 25h 2.250,00 e
GPU usage 1 0,34 e/h 1.500h 510,00 e

Total 8.385,00 e

Table 5.1: Project budget.

1https://cloud.google.com/compute/gpus-pricing
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Chapter 6

Conclusions and Future Work
The first goal of this project was to tackle the high dimensional graph construction prob-
lem while having a better understanding of the intrinsic dimensionality of the data. We
achieved this with a channel-wise approach, as an extension of the existing NNK graphs
method. We performed an in-depth study of the benefits of this new method and the
insights we can extract about the dimensionality of the data from the local geometry of
the polytope and the relationship between channels.

Secondly, we employed the proposed graph construction method to derive a new gener-
alization estimator in convolutional neural networks, based on channel-wise local polytope
interpolation. Then we used it to detect the best generalization performance using only
train data, and stop the training before converging to zero train error. We shown how
this estimator can replace the standard generalization estimator (i.e. validation set perfor-
mance) to perform early stopping and thus prevent overfitting. This method may be the
preferred in cases of small datasets or small size neural networks where test performance
is crucial.

Future work should focus on developing new efficient implementations of this gener-
alization estimator, taking full advantage of the information between consecutive epochs
and between channels, since on both axes we have detected a great opportunity to reduce
complexity while maintaining a good generalization estimate. This could lead our method
to standardize in other scenarios of different nature. Future research could also be in the
direction of neural network pruning based on the CW-DeepNNK interpolation error, since
we have seen that in certain channels we have practically no useful information to per-
form the interpolation, and those channels could be pruned, resulting in a more compact
network with less computational cost.

Another line of research could involve a progressive early stopping of the full model,
achieving a significant saving of gradient computation and backpropagation throughout
the training. It would be interesting to investigate this new approach of improving gen-
eralization in stages, and the hypothesis that the low-level features learned in the first
layers are very general and are learned quickly in the first few epochs of training, while
the higher-level features learned in the deeper layers that are more specific to the train-
ing set reach their optimal point later. Obviously, all weights continue to update as a
whole throughout training, but excessive training can overfit each group of weights to the
training data without realizing it. By performing this progressive early stopping of the
full model we could stop at the point of highest generalization each channel of each layer,
perhaps thus avoiding the overfitting of the model to the training data in a more dedicated
way and with a much better interpretation than the standard black box approach.

Finally, the work reported in this thesis reflects the main contributions of a scientific
publication under progress that will be submitted to a signal processing conference.
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Appendix A

Experiment Details

A.1 Section 3.3 model

Group
name

Operation
Number
of filters

Filter
size

Stride
size

Padding
size

Output size

Input image – – – – 32× 32× 3

Layer 0
Convolution

ReLU
16
–

3× 3× 3
–

1× 1
–

1× 1
–

32× 32× 16
32× 32× 16

Layer 1
Convolution

ReLU
Max pooling

16
–
1

3× 3× 16
–

2× 2

1× 1
–

2× 2

1× 1
–
0

32× 32× 16
32× 32× 16
16× 16× 16

Layer 2
Convolution

ReLU
16
–

3× 3× 16
–

1× 1
–

1× 1
–

16× 16× 16
16× 16× 16

Layer 3
Convolution

ReLU
Max pooling

16
–
1

3× 3× 16
–

2× 2

1× 1
–

2× 2

1× 1
–
0

16× 16× 16
16× 16× 16
8× 8× 16

Layer 4
Convolution

ReLU
16
–

3× 3× 16
–

1× 1
–

1× 1
–

8× 8× 16
8× 8× 16

Layer 5
Convolution

ReLU
Max pooling

16
–
1

3× 3× 16
–

2× 2

1× 1
–

2× 2

1× 1
–
0

8× 8× 16
8× 8× 16
4× 4× 16

Output
Fully connected

Softmax
–
–

–
–

–
–

–
–

No. classes
No. classes

Table A.1: CNN architecture used in Section 3.3.
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A.2 Section 4.3 model

Group
name

Operation
Number
of filters

Filter
size

Stride
size

Padding
size

Output size

Input image – – – – 32× 32× 3

Layer 0
Convolution

ReLU
5
–

5× 5× 3
–

1× 1
–

0
–

28× 28× 5
28× 28× 5

Layer 1
Convolution

ReLU
Max pooling

5
–
1

5× 5× 5
–

2× 2

1× 1
–

2× 2

0
–
0

24× 24× 5
24× 24× 5
12× 12× 5

Layer 2
Convolution

ReLU
5
–

5× 5× 5
–

1× 1
–

0
–

8× 8× 5
8× 8× 5

Layer 3
Convolution

ReLU
Max pooling

5
–
1

3× 3× 5
–

2× 2

1× 1
–

2× 2

0
–
0

6× 6× 5
6× 6× 5
3× 3× 5

Output
Fully connected

Softmax
–
–

–
–

–
–

–
–

No. classes
No. classes

Table A.2: CNN architecture used in Section 4.3.

A.3 Hyperparameters

Parameters Description

Data split 20% of the train set is held out for validation
(only when not using NNK interpolation framework)

Weight initialization He uniform [51]
Regularization Dropout with rate = 0.2 in each layer

(if non-regularized model not stated in experiment)
Loss Cross-entropy loss
Batch size 50
Epochs 20 (if not stated in experiment)
Learning rate 0.001
Optimizer Adam [52] with β1 = 0.9, β2 = 0.999

Table A.3: Hyperparameters for thesis experiments, using CIFAR-10 dataset.
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Appendix B

Nonzero heatmaps of CNN activations
This appendix contains a graphical representation of the behavior of convolutional layers
using nonzero heatmaps of their feature maps, both for a regularized model and a non-
regularized model, using the same weight initialization and trained for the same epochs
as detailed in Appendix A.1. In the regularized case, there is a large proportion of zero
dimensions in the activations. But we also see that as expected, the patterns of active
dimensions are different between classes. In the non-regularized case, we encounter an
extreme binary behaviour: regardless of the input class, certain channels are always active,
i.e. non-negative due to ReLU, while other channels are completely deactivated at zero.

Figure B.1: Nonzero heatmaps of layer 2 of model A.1 using regularization during training, for the
different CIFAR-10 classes.
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Figure B.2: Nonzero heatmaps of layer 2 of model A.1 using no regularization during training, for the
different CIFAR-10 classes.
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