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Abstract

The transformer manufacturing sector often suffers explosions originated in the oil-
filled tanks due to arcing faults that generate flammable gas as the oil surrounding the
electrical arc vaporizes. In a matter of milliseconds, the volume containing the gas is
pressurized as the oil inertia prevents it from growing and reducing its pressure. This
phenomena leads to the formation of pressure waves due to the strong pressure gradient
at the oil-gas interface, which propagate and interact with the transformer structure.
The tank walls may sustain the first pressure peak, of dynamic nature, which tends to
be the highest in magnitude, but has a short period. On the contrary, the static pressure
which builds up in the tank as the reflecting pressure waves interact with the incoming
waves may generate the highest hazard and lead to explosions, tank rupture, pollution
and expensive human and material costs.
In this work, a weakly-compressible multi-fluid flow formulation simulates with the
Finite Element implementation of the Navier-Stokes equations the phenomena detailed
above in order to have a proper understanding of the physical conditions in the tank
and devise adequate depressurization strategies.
This thesis will show the capabilities of the code, developed by reusing existing code
from the FluidDynamicsApplication of Kratos Multiphysics code, in order to ease the
designing steps of the transformer geometries, and localize critical points which may
contribute to amplify the effect of the pressurized bubbles.
An equation-of-state model, together with a constitutive law and a customized solver ca-
pable of dealing with the convection of the bubble interface will be developed. Moreover,
the capability of simulating the elastic response of the walls by means of a partitioned
fluid-structure interaction was also requested. As it will be seen, the nature of the prob-
lem will imply a strong coupling given the large displacements that may be produced in
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the structure in a single time-step.
This thesis will be characterized by high computational cost simulations, due to the
necessity to refine the mesh on the interface region. For that reason, a few significant
problems have been chosen to be solved in order to assess the performance of the im-
plemented strategies. However, exact reference problems in literature are not available
given the uncommon quasi-incompressible methodology chosen to solve the problem.



Resum

El sector dels transformadors elèctrics està afectat per possibles explosions en l’interior
dels tancs plens d’oli que aïllen els components elèctrics a causa de malfuncionaments
elèctrics que generen un gas inflamable a mesure que l’oli que envolta l’arc elèctric
es vaporitza. En questió de mili-segons, el volum de gas és pressuritzat donat que la
inèrcia del fluid que l’envolta prevé la bombolla d’incrementar el seu volum i reduir-
ne la pressió. Aquest fenòmen comporta la formació d’ones de pressió a causa del fort
gradient de pressió a la interfície entre el gas i el líquid, que es propaguen i interaccionen
amb l’estructura del transformador. Les parets del tanc poden suportar el primer pic
de pressió, de caràcter dinàmic, que tendeix a ser el més gran en magnitud però de curt
període. Tot i això, la pressió estàtica que es genera en el tanc a mesura que les ones de
pressió interaccionen amb les ones emergents de la bombolla és la més perillosa i la que
pot generar explosions, trencament del tanc, contaminació i costs tant materials com
humans.
En aquesta tesis, una formulació multi-fluid i quasi-incompressible simula a través de
la implementació de les equacions de Navier-Stokes amb el mètode d’Elements Finits el
fenòmen detallat per tal de tenir coneixement i entendre les condicions físiques dins del
tanc i implementar estratègies de depressurització adequades.
Aquesta tesis mostrarà les capacitats del codi desenvolupat a partir de la reutilització
d’altres fragments de codi ja existents a l’aplicació FluidDynamicsApplication de
Kratos Multiphysics, amb l’objectiu de facilitar les etapes de disseny de la geometria dels
transformadors elèctrics, i localitzar els punts crítics que puguin contribuir a amplificar
l’efecte de les bombolles de gas.
Un model d’equació d’estat, juntament amb una llei constitutiva i un solver adaptat amb
la possibilitat d’incloure la convecció de la interfície de la bombolla seran desenvolupats.
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A més a més, la possibilitat de simular la resposta elàstica de les parets del tanc a partir
de la interacció fluid-estructura també es va incloure entre els objectius del treball. Com
es veurà, la naturalesa del problema imposarà fortes restriccions a l’acoblament donats
els grans desplaçaments que es poden produir en l’estructura en espais molt curts de
temps.
Les simulacions desenvolupades estan caracteritzades per un elevat cost computacional,
donada la necessitat de refinar la malla en la zona de grans gradients de pressió i en
l’entorn de la bombolla. Per aquest motiu, una sèrie de problemes significatius s’han
seleccionat per a ser resolts i mostrats per tal d’avaluar l’eficiència de les estratègies
implementades. Tot i això, no es mostraran comparacions exactes amb problemes ja
resolts ja que aquests no estan disponibles donada la metodologia escollida per resoldre
el problema.
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Chapter 1
Introduction

The purpose of this thesis is on simulating pressure waves in a compressible fluid flow
characterized by the effect of a gas-liquid interface in a transformer tank. This interface
separates a liquid from a highly pressurized gas product of the evaporation of a small
volume of liquid. Yet, it is not the goal of this investigation to model phase changes,
but rather how the multi-phase flow may interact with the surrounding structures by
the generation of pressure waves.
Next, a motivation for carrying out this work is stated that remarks the importance
of studying transformer tank explosions and their numerical treatment in research and
industrial applications.
Then, a general overview over the prerequisites of numerical simulations is given. The
different steps of a numerical simulation are clarified in general and for the simulation of
multi-phase flows in particular. Afterwards, an introduction to the numerical simulation
of two-phase flows is given, including references to already existing work in the literature.
Finally, the objectives of this work are listed and an outlook on the structure of this
thesis is given.

1.1 Motivation

It is well known that electrical power systems have been deployed all over the world
as a natural consequence of the increasing demand on electrical energy but also as a
success product of the development of electrical devices such as transformers. As long
as renewable solar energy does not constitute the source of electrical energy generation
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as a key action against the impact of climate change, transformers will be needed to
enable transmission lines carry electricity at high AC voltages from nuclear or thermal
power plants to city substations. The voltage conversion process requires of the use of
insulating fluids to absorb the heat from the electrical resistance [16]. This fluid will be
referred to as an insulant or dielectric liquid, and in most modern electrical transformers,
mineral oil derived from petroleum crude oil is used. Therefore, the oil has the purpose
of both absorbing heat and insulating the transformer tank from sparks between the
high voltage windings. An image of a reference transformer is given in Fig. 1.1.

Figure 1.1: Real transformer and tank. Courtesy of Siemens Energy.

Oil-filled transformers are regarded as being safely operational devices and explosion
events or other catastrophic failures are highly uncommon [16]. However, a series of
events may trigger an increase the temperature in the tank, its most usual causes being
overcharging or lightning strikes. When this happens, an excessive electrical current
is transmitted into the transformer, which generates enough heat to increase the oil’s
temperature. In such circumstances, when the temperature oscillates between 150 and
300ºC the hydrocarbon compounds found in the oil are decomposed into hydrogen and
methane, which generate a flammable vapour. These vapour tends to dissolve partially
or entirely in the mineral oil [20], but if sufficient amount of gas is generated, the
overpressure inside the sealed tank may lead to its rupture, which would not only pose a
severe environmental problem due to the toxicity of the leaked oil-gas mixture but also
a hazardous situation since the contact with any high-voltage component could ignite
the gas and generate an explosive event.
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Although the chances of such events to occur are very low, cases have been reported
of leaking oil due to gasketing, cracked insulation or loose manhole covers [19], which
may lead to environmental pollution. However it has been reported that 70% to 80% of
transformer failures are due to internal winding insulation failure [18], which may trigger
the creation of sparks from the electrical coil and the subsequent formation of gas bubbles
and overcharge of the transformer tank. The latter occurs for two reasons, the first being
unsuitable dielectric properties of the insulant, which favour the generation of electric
currents through the oil, and the second the liquid inertia preventing the expansion of
the generated gas, which leads to its pressurization and the subsequent propagation of
the dynamic pressure peak and its interaction with the tank walls [6].
This problematic does not only compromise the structural integrity of the tank but
also increases the possibility of an explosion. As mentioned, cases have been reported of
explosions affecting neighbouring transformers, with oil fires that can last up to 28 hours
and thermal radiation with oil temperatures from 960 to 1200ºC (Fig. 1.2). Unfortu-
nately, these cases also jeopardize human security, as probably the worst transformer
accident occurred in a a coalmine in western Turkey in 2014 certifies [21]. An electrical
fault resulted in a transformer explosion and a fire. More than 200 people were killed
in the disaster, and 80 were injured.

Figure 1.2: Projected chimney due to an internal fault. A chimney in its normal configuration
can be seen on the right in the background. Extracted from [12].

This information underlines the consequences of the tank explosions, and emphasize
the necessity to study the behavior of the fluids when over-pressure occurs, with the
ultimate analysis of transformer protection systems and and the advantages of their
operation.
In front of this scenario, investigations on the response of transformer tanks and their
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design in the presence of a potential gas bubble appearing in certain points of the
geometry need to be undertaken. Some authors have conducted experimental results
to validate their own models [27], but this is dangerous, cumbersome and expensive
at the same time. Moreover, another reason that advises against such an approach is
the fact that it is complicated to measure the pressure distribution inside gas bubbles
and it is also hard to determine an internal velocity distribution there [5]. The natural
alternative are the numerical methods, which introduce a physical model to simulate
the real phenomena.
As will be seen, the gas-liquid treatment will play an important role when constructing
the numerical model. Many physical phenomena require of the use of multi-phase flows
and its use has become extensive in applications of diverse kinds. Just to mention some
gas-liquid examples, the motion undergone by rain drops in air is studied in meteorology,
whereas cavitation is a common circumstance when studying aerodynamic behavior of
hydro turbine airfoils. This phenomena occurs when a liquid flowing over a surface
generates vapor bubbles due to a reduction of its pressure, and will grow as long as
they remain in the low pressure region. The generation of such vapor bubbles and,
by extension, its collapse at some point on the surface might indeed cause structural
damage and even failure of the materials, apart from the fact that the resulting pressure
distribution is such as to cause an increase in drag and a lift loss in airfoils.
There is clearly a strong motivation to employing numerical approaches to resolve the
pressure gradients around the bubble interface, since this particular problem would be
incapable of solution without them, at least in terms of level of detail. Its usage has
recently been intensified in industry and research with the development of the computer
science, which allows reducing experimental investigations to longer and often unneces-
sary processes except if motivated by the model validation. This thesis will be devoted
to fully numerical modelling, since no experimental tests will be done. However, work
by others will serve as comparison.
The long and short of it is that some companies have been required to invest resources in
order to prevent transformer explosions. Specifically, transformer manufacturers have
focused on improving performance of their designs, and a tool that enables them to
quickly detect possible conflicting parts in the geometry that could give rise to an over-
pressure and possible rupture of the tank would be helpful. This tool would also facilitate
the process of setting up a complete simulation in any CFD program, since this is a
cumbersome process.
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1.2 Numerical simulation

The workflow characterizing a numerical simulation consists of several steps that allow
the transition from an observable phenomena to the visualization of the results that
model its nature. Each step introduces simplifications and errors in some degree and its
assessment will be key to validating the results.
The first step would be choosing an appropriate mathematical model and the corre-
sponding set of equations. The present case requires equations to be posed in up to
three-dimensional domains and capable of capturing discontinuities across an interface.
For this reason, a set of nonlinear equations such as the viscous Navier-Stokes or the
Euler equations would be a suitable choice, with the obvious inconvenient that they
require a numerical method for their resolution, thus lacking analytical solutions. In
fact, only simplified sets of Partial Differential Equations within geometrically trivial
boundaries offer analytical solutions.
The second step is thus clear, that is, the need to discretize the domain on a computa-
tional mesh. The object of the discretization will be the Finite Element, instead of other
popular choices such as Finite Differences or Finite Volumes. This forces the appearance
of discrete values for the main quantities, which will be defined on the nodes, and by
means of a linear interpolation the result is mapped onto the element. The continuity
in time will also be replaced by a discretization, given the clear unsteady nature of the
problem.
The last step of the workflow is the running of the simulation and post-processing the
results, where the results are assessed according to the simplifications and assumptions
made in the last steps.

1.3 Objectives

The main objective of this work is the development of a compressible multi-phase solver
in Kratos Multiphysics framework that is able to accurately simulate the propagation
and interaction of pressure waves in domains up to three-dimensional. The next topics
will be studied:

• The development of a weakly-compressible Navier-Stokes formulation starting
from an existing quasi-incompressible element. The symbolic and automatic dif-
ferentiation and stabilization will be carried out by considering density and sound



6 Introduction

velocity as nodal variables, thus allowing these quantities to change as a function
of space and time.

• The implementation of a shock capturing method and the corresponding develop-
ment of a new constitutive law that allows artificial viscosities.

• The creation of an equation-of-state process that allows selecting the Tait equation
for the density and sound velocity calculations at every time step.

• The derivation of a new solver starting from the Two-Fluid solver that incorporates
the particularities of the new element and addresses the computation of a pressure-
based method with a level-set approach for two-phase flows.

• The coupling of the new features in the Fluid Dynamics Applications with the
Structural Mechanics Application, so that the deformation and stresses on the
tank walls may be computed.

These objectives imply dedication into each of the phases of the numerical workflow,
starting from the mathematical model derived for the compressible approach, to the
numerical methods implemented for the resolution of the interface problem. Eventually,
the overall method is assessed with 2D and 3D numerical simulations with respect to
single and two-phase problems.

1.4 Contents

In the following lines, the contents of the present document are briefly depicted.
Chapter 2 contains a review on the State of the Art regarding the use of numerical
methods for compressible multi-phase flows and for tracking the evolution of a mov-
ing interface. It also explains the literature trends when approaching Fluid-Structure
interaction and also the techniques required to update the mesh.
Chapter 3 serves as an introduction to the mathematical treatment of the problem,
a general overview is given on the boundary conditions and the flow field particulari-
ties. The used frames of references and governing equations are presented in a general
way. Eventually, the mathematical development of the phenomena that will appear in
the methodology is presented, so that the reader can be used to the formulation and
derivations employed.
Chapter 4 collects the methodology employed to solve the proposed objectives. In it, a
detailed derivation of the stabilized Finite Element formulation is given, together with
the chosen techniques to track the interface and capture the pressure shocks.
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Eventually, chapter 5 summarizes the results of all the tests performed, including vali-
dation tests.
Finally, chapter 6 states the conclusions and the future work lines.





Chapter 2
Literature review

This chapter is aimed to be a review on the state of the art of the propagation of
pressure waves in a multi-phase flow environment. The chapter has been divided into
four parts. The first and second sections approach the two main phenomena associated
with the formation of a pressurized gas bubble, meaning pressure wave propagation and
bubble motion. While the first one describes the compressible treatment of multi-phase
flows, and the difficulties arising from using numerical methods, the second studies the
interface between two compressible immiscible fluids. A description will be given in the
third section on fluid-structure interaction methods found in literature to work out this
simulation, and in the fourth a summary of mesh-updating techniques.

2.1 Numerical methods for compressible multi-phase
flows

The study of a pressure wave propagating through a fluid proceeds by assuming a
physical and mathematical model able to describe the flow. This is not straightforward,
since each model will present assumptions and limitations that need to be considered
when interpreting the results.
Many studies have been carried out regarding the topic of numerical models for fluid dy-
namics, encompassing different approaches to enhancing the understanding of complex
flow problems. Many research and industrial areas, such as aerospace or automotive,
have placed interest on the development of techniques for computing the propagation of
shock waves. This implies the introduction of a density variation in the spatial domain
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and compressibility effects so that jumps in the material properties can be obtained
through the solution of the motion equations, in contrary to what would be obtained
by an incompressible approach.
In the general case, it is considered a wave propagating in a fluid which is both viscous
and heat-conducting. This is clearly a complex flow problem in which there is a strong
transient phenomena. This problem can be undertaken by using the Navier-Stokes or the
Euler equations, where the latter typically exclude viscous effects and heat conduction
since shock wave dynamics are assumed to have a predominant effect over viscosity and
heat conduction. The fact that it is heat-conducting would imply that the pressure is
no longer a function of the density alone, but of the temperature as well. This naturally
arises if compressibility is assumed, where the thermodynamics description of the fluid is
included through coupling the energy equation to the mass and momentum, and closing
the system by adding an equation of state, relating the pressure to the temperature
and the density. The incompressible approach allows decoupling the energy equation
from the others and thus there is no need to use an equation of state, since the pressure
does not have a thermodynamic meaning. In fact, by using an incompressible approach
the pressure waves are forced to propagate at infinite speed and cannot be described
in this manner. In addition, the incompressibility condition would add another source
of numerical difficulty since the pressure takes the role of fulfilling the divergence-free
condition.
Considering these aspects, it is clear that all the models investigated need to be derived
from a compressible theory. The following subsections define the main models found
in literature, which, in some extent, explore the capabilities of the Navier-Stokes, Euler
and acoustic theory models to physically describe how to compute the propagation of
pressure waves from the oil-gas interface.

2.1.1 The seven-equation model

The most complete method found in literature, in which both gas and liquid phases are
considered compressible and share equal values for pressure and velocity only at a single
point defined at the interface, is extensive in literature and was first devised by Baer and
Nunziato in the field of detonation. The model is developed as a combination of any set
of seven independent equations from the mass, momentum and energy balance for each
phase. This model accurately computes the pressure wave propagation within fluid-gas
flows considering gravitational, viscous and thermal effects. Some of the equations are
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concerned with one of the phases and others refer to the mixture subject to the volume
fractions of each phase, so that for instance, the mixture quantities are


ρ = ρfαf + ρgαg

u = αf
ρf

ρ
uf + αg

ρg

ρ
ug

p = pfαf + pgαg

(2.1)

Being αf and αg are the volume fractions of fluid and gas, respectively, subject to the
saturation constraint αf + αg = 1.
The seven set of PDEs chosen, for instance, in [7] (financed by an advanced company
solving complex 3D transformer geometries using finite volumes on unstructured meshes)
are:

∂αg
∂t

+ u ·∇αg = 0 (2.2a)
∂ρ

∂t
+∇ · (ρu) = 0 (2.2b)

∂(αgρg)
∂t

+∇ · (αgρgu) = 0 (2.2c)

∂(ρu)
∂t

+∇ · (ρu : u + pI) = Φu
g + Φu

µ (2.2d)
∂E

∂t
+∇ · (E + p)u = ΦE

g + ΦE
µ + ΦE

T (2.2e)

These equations describe numerically and theoretically the global phenomena. g refers
to gravitational effects, µ to viscous and T to thermal. Equations of state are also
required for each phase to give consistency to the thermodynamic closure.

2.1.2 Compressible non-viscous method

The field of underwater explosions is a common engineering problem in which the gas
bubble formed generates an initial shock wave propagating at fast speeds (approximately
1 m within 500 microseconds) [9]. For this reason, the Euler equations may be used with-
out loss of accuracy to describe the fluid as non-viscous, non-heating and compressible.
The specific form of the Euler equations, extracted from [9] is

Ut + Fx + Gy + Hz = 0 (2.3)
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in which

U = (ρ ρu ρv ρw E)T (2.4a)
F = (ρu ρu2 + p ρuv ρuw u(E + p))T (2.4b)
G = (ρv ρvu ρv2 + p ρvw v(E + p))T (2.4c)

H = (ρw ρwu ρwv ρw2 + p w(E + p))T (2.4d)

E = ρe+ 1
2ρ(u2 + v2 + w2) (2.4e)

Where u = (u, v,w) are the velocity components, U is the matrix form of the state
variables (varying along time), F, G and H are the matrices of the numerical fluxes
along the indicated axis directions. E represents the total energy of a unit volume and
e is the specific total energy. Then, as usual, an equation of state closes the system of
equations for both faces. The choice of equation is important, as if the pressure and
internal energy are only a function of density (and not temperature) in the fluid, the
energy equation is not necessary to be solved for the liquid phase. The discretization of
the system (2.4) is done in [9] by using the Total Variation Diminishing scheme.
It is important to consider that this method is devised for the underwater explosions’
field, which presents large pressure ratios between gas/oil (order of 1000 or more). The
tank explosion problem does not typically present such large ratios. In the same paper,
the level-set method is used to track the interface and the Real Ghost Fluid Method is
chosen to compute the variables at the interface by means of ghost points, thus allowing
such high ratios between gas and oil without leading to divergence.

2.1.3 Lagrangian weakly-compressible model

In [33], a monolithic Lagrangian approach is used for the fluid domain with the addition
of a slight fluid compressibility, which relates the continuity equation with the mechani-
cal pressure. A local volume variation is assumed instead of null velocity-field diverge in
such a way that thermal effects are not assumed to have an important influence, there-
fore the energy conservation equation remains uncoupled. A complete development of
this approach is shown in Appendix A, where the eventual matrix system resulting from
this model is shown. Moreover, the same resulting equation are derived analytically.
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2.1.4 Transient pressure acoustic model

Some authors also face the problem of studying the transient behavior of tank over-
pressure by a single acoustic equation, which may then be coupled with a mechanical
code. This approach considers viscous attenuation due to the insulating oil, which
prevents the gas bubble from expanding due to its inertia. Therefore, the equation
governing the propagation and superposition of pressure waves described in [38] is

1
ρc2

∂pt
∂t
−∇

[
∇pt
ρ
− 1
ρc2

(4µ
3 + µB

)
∂∇pt
∂t

]
= 0 (2.5)

where ρ refers to the density, c denotes the sound speed, pt is the pressure field, µ the
dynamic viscosity and the bulk viscosity µB. In [38] this equation is discretized with
3D FEM and coupled with a tank wall mechanical model.

2.2 Numerical methods to describe the bubble mo-
tion

The generation of an electrical arc in a tank full of oil causes a complex sequence of
physical events to occur. An internal fault electric model has to be combined with a
multi-fluid flow solver in order to track the interface of the bubble and compute the
pressure inside it based on the energy released by the arc.

2.2.1 Internal bubble pressure

According to [38], the arc energy may be computed as a function of the voltage drop
across the arc and the current on the assumption of a low impedance turn-to-turn fault.
With this energy, a dynamic heating process at constant volume takes place and the
internal pressure on the bubble may be computed using the perfect gas equation

PgasdVgas = mgasRdTgas (2.6)

Once the energy is computed, either by the electrical model or known beforehand, the
volume of gas is needed to compute the pressure in (2.6). A logarithmic expression
was proposed by SERGI [27]. In the experimental investigation they conducted, it was
shown that the gas volume increased slower with the accumulation of arc energy through
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the expression

Vgas = 0.44ln(Warc + 5474.3)− 3.8 (2.7)

Equation (2.7) relates the energy and generated gas of volume. Then, with the gas
mass flow rate, which will be assumed to be 5Kg/s, and the volume of gas which is
going to be computed at each time step through the update of the bubble surface, it
is obtained the density of the gas ρgas. On the other hand, the energy injected to the
liquid is needed in order to know the gas temperature. The energy will be used to heat
the surrounding liquid to vaporization temperature, to change its state and eventually
heat the gas. The following workflow summarizes the process.

Gas tem-
perature

Energy
injected to
the liquid

Mass
of gas

generated

Volume
of gas

generated

Gas
densityPressure

inside the
bubble

Figure 2.1: Steps to compute the gas pressure.

If the energy is not known, then the temperature must be assumed to be close to the
temperature of vaporization of the liquid, around 200 ºC.
Another common approach in literature regarding this workflow is to assume that the
gas bubble has already been created by the arc and the gas is already under pressure.
Eventually, (2.6) turns into

p = ρ(γ − 1)e (2.8)

Where ρ is the gas density, γ = Cp/Cv is a constant relating specific heat capacity and
e = CpT/γ is the internal specific internal energy.
After the arcing occurs, the increasing volume of gas generates an approximately spher-
ical or circular (if 2D) shape at high pressure, which interacts with the surrounding oil
and generates pressure waves due to the high pressure gradient.
Although the shape of the bubble will tend to be symmetrical, the interaction of the
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pressure waves with the interface will distort its shape and render it irregular. For this
reason, a method will be needed to track the interface position at each time step, so
that the bubble volume may be computed with precision. The main Lagrangian and
Eulerian multi-fluid flow techniques are reviewed next.

2.2.2 Multi-fluid flow methods

Particularities of dealing with multi-fluid flows are extensive and common in many
problems in engineering, when analyzing problems with two immiscible fluids, such as
simulating air and water in free surface problems. In the present case, both Eulerian
and Lagrangian methods are available, as we aim to solve the Navier-Stokes problem
in the gas and oil domains with the appropriate transmission conditions, that is, equal
stresses and velocities at the interface. The P-FEM, VOF and Level-Set Methods are
considered with a two-phase flow.

The Particle Finite Element Method (P-FEM)

The P-FEM employs an updated Lagrangian description to describe the motion of par-
ticles in the different sub-domains. As usual, using a Lagrangian framework allows
getting rid of the non-linear and non-symmetric convective terms in the Navier-Stokes
equations, while requiring an efficient technique to update the nodes’ position [29].
The Lagrangian approach is not the usual choice but still it is employed in several
applications. In a Lagrangian tracking of the interface, ALE techniques are used, and
the nodes representing the interface are treated in a purely Lagrangian way, therefore
matching the interface and generating distorted elements. If the flow is not too complex
this is reasonable, as the advantages are sharp tracking and capturing the discontinuity
of the velocity gradients, which are different since the fluids in contact have different
viscosities. If the pressure space is also discontinuous, it also allows capturing pressure
discontinuities, and this is specially beneficial for the present case. Nevertheless, it is
due repeating that this only convenient if the problem is not too complex, otherwise the
mesh is distorted and the elements fold.
The P-FEM, which considers each of the nodes of the mesh as particles, remeshes at
each time step, while keeping the connectivities the same. In essence, once the boundary
has been identified, the mesh is generated so that the problem may be solved by the
standard FEM. In this way, the state variables are solved at time tn+1, and the particles
are moved afterwards to obtain the cloud of nodes at the new time. The complication in
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this is that an algorithm is needed to identify boundary nodes, since the interface shape
may be complex, and therefore computational time is required for these algorithmic
steps. In this regard, the Alpha Shape method may be used for the boundary definition
[29]. Figure 2.2 details the process, where the red nodes would be the gas nodes.

Figure 2.2: Sequence of steps to update the particles in a problem consisting of fluid and solid
sub-domains.

Volume of Fuid Method

The VOF method is a numerical technique for tracking the position and shape of the
interface with an Eulerian configuration. It is an advection scheme based on a scalar
fraction function extending over the whole computational domain, so that when there
is a fluid interface in the cell, the function C takes values between 0 and 1. For a cell
full of gas, C = 1, and for a cell full of oil C = 0, as shown in Fig. 2.3. This function is
then advected following the flow-field velocity, according to the transport equation

∂Cm
∂t

+ u ·∇Cm = 0 (2.9)
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Where Cm refers to the fraction of the m-th fluid in the present cell in a system of n-th
fluids. In this way, for each cell

n∑
m=1

Cm = 1 Φ =
n∑

m=1
ΦmCm (2.10)

Which means that, in each cell, the volume of fluid is constant, and the state variables
are computed as a weighted sum. The disadvantage of this method is that the function
is discontinuous, so that the interface is not sharp.

Figure 2.3: Discretized VOF function values. Extracted from [31].

The Level Set Method

The Level-Set method overcomes the difficulties present in the VOF method by allowing
a sharp tracking of the interface, so that, instead of having a discontinuous fraction, a
signed distance function is defined in each point of the flow field to the interface, so
that it is exactly 0 at the interface (see Fig. 2.4). With that, the flow field at each time
step is solved at both sides of the interface. Furthermore, as in the VOF method, the
advancement of the location of the interface is performed according to the advection
equation (2.9).
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Figure 2.4: Distance function used for the definition of the gas bubble in a 2D domain.

According to [9], the level-set method successfully captures the interface in an under-
water explosion simulation, as well as the interaction between the fluid-fluid interface
and shock waves. As a drawback, the distance function tends to be distorted after a
few steps, reason why it is commonly reinitialized every time step. This process will be
automatically carried out by the solver.

2.3 Numerical methods on Fluid-Structure Interac-
tion

The problematic inherent in potential transformer tank rupture is the sustained over-
pressures, which may damage the structure and result in a tank explosion. That is the
reason why many companies are developing depressurization devices that may avoid
static pressure increments over structural withstand limits. However, before the protec-
tion technology is activated, dynamic peaks of pressure interact with the tank walls for
a short period of time. For this reason it has been necessary to simulate by means of
computational tools its effect over the structure.
The solid mechanics problem, which computes the mechanical stress and displacements
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on the wall, is governed by a three-equation model, containing the constitutive equation
(stress-strain), the compatibility and the transient equilibrium equation (load-stress)
[38]. The three relations are, respectively

ρt
∂2u
∂t2
−∇ · σt = F (2.11a)

σt − σ0 = CCC : (εt − ε0)− εp (2.11b)

ε = 1
2
[
(∇u) + (∇u)T

]
(2.11c)

Where ρt is the material density, u are the displacements, σt is the stress tensor, F is
the total load, ε0 and σ0 are the initial stress and strain, εp is the plastic strain tensor
and CCC is the fourth-order elasticity tensor.
When coupling the computation of the fluid with the stresses on the walls, the com-
plexity increases substantially. Some of the reasons may be listed below [34]:

• Complex and dynamic boundaries immersed in the fluid domain.
• The structure needs to be modeled in more detail, including the effect of bolted

and welded assemblies.
• Typically involving material and geometric non-linearity.

For these reasons, advanced strategies are devised for computing the inner pressure
waves on the wall [23].
The most usual approach for dealing with the tank explosion is to use the shell the-
ory, since the thickness of the walls are negligible compared to the tank height and
length. The temporal and spatial evolution of the mechanical stresses and deformations
are also computed through transient time-dependent simulations. Other common tech-
niques are to use Lagrangian and Arbitrary Lagrangian-Eulerian frameworks for the
Solid and Fluid Mechanics problems, respectively. Another important ingredient is the
consideration of non-overlapping domains, so both sub domains’ meshes are connected
through an interface. As for the transmission conditions, Dirichlet-Neumann technique
is typically chosen, where the Dirichlet case enforces the continuity of either velocities
or displacements and the Neumann case enforces the continuity of tractions.
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2.3.1 Coupling the flow and structure solvers

The coupling in time, however, plays the most important part. The two common choices
are the following:
Monolithic, in which the degrees of freedom for the solid and fluid domains are solved
in a single discrete equation system, thus the possibility to use different software pack-
ages for each problem is rejected. If the meshes are matching, it is common to solve
the whole system in terms of displacements. Then, while considered to be more robust,
since no partitioning-domain errors are introduced, are indeed more expensive to solve
and the system matrix is commonly poorly conditioned, since a single matrix contains
variables of different nature and magnitude [30].
Partitioned, or staggered approach exploit the fact that individual solvers for the fluid
and solid parts are usually available to split the coupling and solve one problem at a
time. Now the effort is put in the coupling algorithm, that exchanges the information
between boundaries to enforce continuity of variables. As a drawback, the adaptability
of the method incurs in the convergence rate, as both solvers advance in time iteratively.
Then, when considering partitioned methods, largely used for the problem at hand,
there are important concepts regarding the coupling of multi-physics transient physics.
To introduce those, it is important to state the flow control procedure first, which
consists in solving the pressure field with the hydrodynamics code to later compute the
mechanical stresses and deformations with the structural mechanics code. The number
of computations done at each time step for either solver defines the coupling as weak or
as strong.
In [23], both coupling techniques are presented for a description of the mechanical
behavior of 3D complex geometries by coupling an already developed multi-phase flow
hydrodynamic compressible (HYCTEP) code with an structural analysis code (ASTER)
[1]. Fig. 2.5 shows a comparison between both procedures.
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Figure 2.5: Workflow for strong and weak coupling for the tank deformation problem. Ex-
tracted from [23]

In the weak coupling, several iterations are done to compute the pressure on the walls,
until the structural time-step is reached. Then, the structural code receives as input
the loads on the walls from the pressure field, so that the displacements and stresses
are extracted. However, the tank-deformation problem must necessarily consider the
effect of such deformations onto the pressure field, since a sustained and controlled
deformation of the walls could lead to a sufficient depressurization of the fluid volume
and avoid using depressurization devices. For this reason, the strong coupling seems a
more suitable approach, where the displacements are accounted for in the hydrodynamics
code after the structural computations. As several interactions between solvers are done
at each time step, contrary to the weak coupling (where the exchange of information is
produced once) it is easier to achieve synchronization between solutions [36]. In fact,
the number of interactions depends on the convergence criteria, which is satisfied when
enough level of coupling is reached.
The latter already introduced some of the advantages of strong coupling, which are bet-
ter stability of the coupled algorithm, second order time accuracy and the unique manner
(for Partitioned schemes) to satisfy energy conservation at the fluid-structure interface.
The computational cost, however, is larger, since more iterations are performed. It is
important to underline that the iterations are a necessary condition, as advancing in
time both solvers successively is not enough, but rather explicit time-marching schemes
or implicit methods may be used if information is shared frequently [36].
The fluid-structure density ratio ρs/ρf also plays an important role. While weak cou-
pling may be subject to numerical stability constraints based on this ratio, the strong
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coupling does not introduce stability constraints and is well suited for small ratios [39].
For large-scale deformation problems, to ensure numerical stability of the FSI solver,
strong coupling is typically used [3]. This, combined with the fact that partitioned
approaches require a computational time of the same order as monolithic approaches,
gives the preferred choice: strong coupling with a partitioned scheme (see Fig. 2.6).

Figure 2.6: (A) shows the partitioned approach, whereas (B) details the exchange of informa-
tion between solvers at each time step. Extracted from [3].

2.3.2 Main FSI algorithms

Several algorithms have been developed for the numerical computation of the fluid-
structure interaction that also include wave propagation phenomena. All focus primarily
on satisfying the continuity conditions at the interface, which is the main concerning
topic in this kind of problems.

Arbitrary Lagrangian–Eulerian (ALE)

Already introduced, this method was first devised in (Donea, 1982) [13]. A conforming
mesh fits the structural interface, and the Solid Mechanics problem is then solved by a
Lagrangian formulation, with the Eulerian formulation for the Navier-Stokes equations
for the flow. By enforcing continuity of velocities and surface tractions on the interface,
the problem is solved for the fluid and the structure at the interface [34]. Eventually, the
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mesh is mapped to the deformed domain by means of a remeshing algorithm at each time
step. An example of applying ALE methods for pressure-wave propagation problems is
given in [22]. This method is widely used when discretizing spatially problems in fluid
and structural dynamics in which large deformations in both domains are expected.

Smoothed particle hydrodynamics (SPH)

The SPH method is another technique commonly used in dealing with fluid-solid inter-
faces, with the difference that it is a mesh-free method, in which the physical quantities
of the state variables in every particle are computed by weighting the contribution of
the surrounding particles inside a basin of attraction [30]. The fluid and solid equations
are solved in a Lagrangian framework and the continuity conditions at the interface
are satisfied based on appropriate SPH kernel functions [34]. The choice of these inter-
polation functions (which are typically Gaussian or cubic splines) signify the principal
difference of these methods over standard FE methods. Further information on SPH
may be found in [24].

Ghost Fluid Method (GFM)

The GFM method for tracking fluid/structure interfaces was created by Liu et al. (2003)
as an enhanced version of a fluid/fluid interface problem for shock wave impacts, in
which a number of ghost points are created at the other side of the flow interface to
satisfy continuity requirements [34]. While it is commonly used to track multi-fluid
problems, it is also suited to describe solid deformations. Once the ghost media is
created, the characteristic quantities are approximated at the fluid/solid interface by
solving a Riemann problem. The difference of this method with respect to the others,
in terms of mesh procedures, is that it does not require remeshing, as in the ALE, since
an implicit level-set representation is adopted. This is an advantage, since frequent
remeshing can affect the solution accuracy at points next to the interface [34].

2.4 Mesh-updating procedures

The principal drawback when dealing with ALE techniques is the need to re-mesh, which
may be complex and be computationally expensive. Mesh-regularization and mesh-
adaption are two strategies that may influence the success of the algorithm. In any case,
the problem at hand will be characterized by not knowing a priori the mesh movement.
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Then, as explained, the procedure is described by a Lagrangian frame at the boundaries
(solid nodes), while after a suitable transition zone, an Eulerian formulation is employed
[14] for the fluid. The nodes on the transition zone are interpolated. The method can
be used with 2D and 3D triangular, quadrilateral, tetrahedral and hexahedral elements,
among others.
The mesh-regularization method updates the mesh at each time-step so that the
pattern is regular and element distortion is reduced. This way, the error associated to
entangled computing zones is reduced.
On the other hand, themesh-adaptionmethod focuses on improving accuracy through
a better management of the current mesh, by concentrating nodes on high-gradient
regions while keeping the overall number of elements the same. An error indicator is
then provided which is used to maintain an equally distribution on the domain.
This problem needs to satisfy the following boundary conditions

u(x, t) = uD, x ∈ ΓD (2.12a)
n · σ = t, x ∈ ΓN (2.12b)

(2.12c)

which are kinematic and dynamic conditions at the boundary of the domain. More
specifically, at the fluid-structure interface, the particles are linked to the flexible (or
rigid) walls, therefore the particles cannot cross them and there must be a continuous
stress across the surface. Whilst the first condition simply translates into n·umesh = n·u,
the second is accounted for in the weak formulation of the conservation equation. For
the mesh, the boundary conditions are

umesh(x, t) = u(x, t) , x ∈ Γint (2.13a)
umesh(x, t) = 0 , x ∈ Γ\Γint (2.13b)

While the first equation states that the mesh is attached to the interface, the sec-
ond prescribes null movement normal to the surfaces of the rest of the fluid boundary.
Moreover, on the interface, equality of velocities and displacements between fluid and
structure must hold.
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Problem formulation

It has been mentioned that the two main aspects concerning transformer tank explosions
due to internal arcing faults are the motion of the gas bubble and the propagation of
pressure waves. Here the mathematical basis for describing the fluid flow is explained,
alongside with all the concepts needed to understand the methodology adopted to carry
out the simulations. A description of the frames of reference, governing equations and
the main features of weakly compressibility is given.
The Navier-Stokes equations are employed to describe many problems in fluid mechan-
ics, as they account for the transient equilibrium between internal and external forces
on a fluid particle. The problem to be modeled is complex and will require of the use of
other methods, though the Navier-Stokes equations will be the essential building block
of the development.

3.1 The description of the flow field

The domain in which the physical description of the problem will be formulated is
referred to as Ω, characterized by being a nonempty connected subset of the space Rn,
with n being the number of space dimensions. The bounded domain Ω is assumed to
be filled up with some fluid, which in the present case will be water, gas or an oil with
thermodynamic properties similar to standard transformer oils.
The flow region will be delimited by a boundary ∂Ω, in which are assumed certain
smoothness conditions. If the domain is particularized into a transformer tank, ∂Ω is
associated with the solid wall. Then, if the gas bubble is included, its surface S will
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also belong to the boundary (i.e. S ∈ ∂Ω). As for the normal vectors, the convection
is followed to define them positive to the exterior of the surface, and with that it is
important to notice that the normal vector of the gas bubble surface will point inwards.
The bubble surface S may undergo a motion in the flow domain and its surface expected
to vary in time. When this occurs, the shape of the flow domain will evolve, meaning
that its deformation will have to be considered when writing the conservation laws (see
Fig. 3.1 for clarification). In this case, the domain will be referred to as Ωt to emphasize
its dependence with the time variable t, the time interval being [0,T ) and t ∈ [0,T ).
Then, the state of the fluid will be characterized by the state variables: T (x, t), p(x, t)
and u(x, t), which are, respectively, the temperature, pressure and velocity of the fluid at
(t, x) = (t,x1, . . . ,xn), with t ∈ [0,T ) and x ∈ Ω. The chosen physical model to describe
the motion of the fluid will allow establishing relations among the state variables. As it
will be seen, assumptions on the fluid behavior will discard the temperature as a state
variable to be solved in the domain.
Eventually, although it is clear that a solution of the flow field is to be found both in
the fluid and in the gas parts of the domain, the nature of the problem will require
considering the bubble as a moving boundary condition, exerting a pressure force on the
fluid. In particular, the pressure will be given by the arc energy, but the velocity will
have to be solved within the bubble. For this reason, when formulating the conservation
laws in the domain, the control volume will be considered to be the liquid part, with oil
or water.

3.1.1 Frame of reference

The numerical simulation of the fluid dynamics problem at hand will have to deal with
distortion of the flow region when the gas bubble propagates while keeping a smooth
track of the fluid-gas and fluid-structure interfaces. For this reason, it is not a trivial
decision weather to use a Lagrangian or an Eulerian viewpoint when working with fluid-
structure interaction or even fluid mechanics problems, although the latter is mainly
formulated with the Eulerian formulation. Since the kinematical description of the
domain relates the continuum region with the nodal discretization, choosing one or the
other will condition the ability of the numerical code to deal with large mesh distortion.
The basic concepts related to the kintematical description of the flow field are assumed
to be known. However, the reader is referred to [15] for a mathematical description of
the continuum mechanics’ concepts of the description of motion.
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Figure 3.1: Schematic representation of the domain.

In a Lagrangian context, the material points are coincident with the mesh nodes at all
times, therefore the local derivative replaces the material derivative and no convective
velocities are needed. For this reason, the fact that the nodes contain the same particles
during the simulation renders this framework suitable for tracking structural deforma-
tions, in which there is a clear history-dependent behavior. Free-surfaces and interface
between two or more materials are easily dealt with under a Lagrangian perspective,
and as it will be seen, the multi-fluid flow methods considered for tracking the gas-oil
interface will contemplate Lagrangian choices. However, large deformations may fold
excessively the mesh or force a re-meshing, otherwise the algorithm may undergo a loss
in accuracy or finish abruptly the computation [15].
By considering an Eulerian framework, the mesh nodes are fixed and the material
particles pass through. Therefore, the variation of the quantities at the nodes as the
simulation evolves will imply a local and a convective treatment, thus the gradient of
the quantities will be advected with the velocity of the material particles at the nodes.
The advantages found in the Lagrangian framework, namely the easy tracking of moving
interfaces, will become drawbacks, whereas the disadvantages will be easily handled in
the Eulerian framweork, where the continuum can be deformed to a larger extent without
compromising the accuracy or stability of the simulation. Another issue emerging from
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the addition of convective terms is the non-symmetry character the formulation evolves
into, compensated through the introduction of stabilization techniques. However, the
stabilized finite element formulation is a price to be paid if reliable numerical results are
sought [14].
These two approaches are widely used in Structural Mechanics or Fluid Mechanics
problems when they are not combined. However, in Fluid-Structure Interaction prob-
lems, the Arbitrary Lagrangian-Eulerian (ALE) framework will encompass the benefits
of both in the same problem, so their advantages are kept. It has been seen the spatial
configuration x, used for the Eulerian problems, in which the nodes of the mesh are fixed
in space, and then the material configuration X, in which the mesh nodes follow the
particles. The new ALE frame of reference X will have a movement of its own, where
the coordinates identify the grid points, not spatial points nor material particles. For
the problem at hand, the Eulerian approach will be comprised in the fluid part, whereas
the boundaries (the tank walls) will be solver through a Lagrangian approach, and the
governing equations written in the ALE method will allow a smooth connection between
both parts. In this manner, the convective velocity used for the governing equations will
be

c := v− v̂ = ∂x
∂X ·w (3.1)

Where the following definitions are employed

v = ∂x
∂t

∣∣∣∣∣
X

v̂ = ∂x
∂t

∣∣∣∣∣
X

w = ∂X
∂t

∣∣∣∣∣
X

(3.2)

In this way, v is the material velocity and v̂ is the mesh velocity. The physical meaning
of w is the variation of the nodal coordinate associated with a fixed material particle
with time. The latter shows that, if X is coincident with x, the mesh velocity is zero and
the ALE frame evolves into the Eulerian approach, whereas if X coincides with X, the
mesh velocity and material velocity are the same and the ALE recovers the Lagrangian
algorithm.
In this thesis, the three mentioned descriptions of motion will be used. The Eulerian
viewpoint, is, in agreement with the general trend, the one used for cases in which there
is no structure interaction, as it is contained in the ALE description only by setting
um = 0. For the cases in which a structural coupling is present, the ALE description
is automatically activated with the grid motion, and for this reason it is convenient to
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write the equations in the ALE framework. On the other hand, the Lagrangian frame-
work is used only as a complementary part to propose an alternative physical model in
which a single equation for the pressure is obtained. This approach intended to solve
the in-homogeneous acoustic wave equation in time domain with a finite-element dis-
cretization, and a single equation is obtained after adopting the Lagrangian framework.
The development of it is present in Appendix 6.2.
A clear one-dimensional example of the three cases is shown in Fig. 3.2, and in Fig.
3.3 the ALE improvements over the Lagrangian framework by handling distortion of the
continuum without folding the elements or failing to reproduce the interface. This case
is especially meaningful for the Thesis since it has been extracted from the modeling of
an explosive in a water vessel. This shows the difficulties in approaching such a problem
from a Lagrangian context.

Figure 3.2: Comparison between frames of reference. Extracted from [15].
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Figure 3.3: Lagrangian versus ALE descriptions: (a) initial FE mesh; (b) ALE mesh at t =
1 ms; (c) Lagrangian mesh at t = 1 ms; (d) details of interface in Lagrangian
description. Extracted from [15].

3.2 Governing equations

The governing equations for the problem are extracted from the integral form of the
conservation laws. The analysis of a finite region in space, by balancing the incoming and
outgoing flux and its effects will allow formulating a description of the fluid movement
from the differential point of view, in which a detailed description of the fluid in each
point of the flow field is conducted. When establishing integral relations in the flow
region, it is necessary to define a control volume. The election of this control volume is
important since it will condition the relative velocities between the fluid and the control
surfaces. The current election of the control volume is that which coincides with the
material volume at all time steps, hence the conservation laws will have to be derived
considering a deforming control volume. To do this, the rate of change of the scalar and
vector quantities will have to be taken outside the integral, hence arising the need of
using the common Reynolds transport theorem for a smooth function f(x, t)

d

dt

∫
Ωt

f(x, t) dΩ =
∫
Vc≡Ωt

∂f(x, t)
∂t

dV +
∫
Sc≡∂Ωt

f(x, t)u · n dS (3.3)



Governing equations 31

Where Vc is a control volume coinciding with the material volume Ωt at the considered
time t. Similarly, the integral over the control surface Sc represents the flux of the
quantity f(x, t) across a fixed curve coinciding at time t with the boundary of the
material volume. Since St ∈ ∂Ωt is the only moving boundary of the domain, the
integral will be over Sc ≡ St. Then, u = u(x, t) represents the material velocity of the
particles which at time t occupy a spatial position such that x ∈ Sc. A similar form
holds for the conservation of a vector quantity.
By further noting that

∫
Sc

f(x, t)u · n dS =
∫
Vc

∇ · (fu) dV (3.4)

it is possible to obtain the Eulerian differential forms of the conservation equations for
mass, momentum and energy.
The mass conservation equation (f(x, t) = ρ) reads

∂ρ

∂t
+ u ·∇ρ = −ρ∇ · u (3.5)

with ρ being the density.
The momentum conservation equation (f(x, t) = ρu) reads

ρ

(
∂u
∂t

+ (u · ∇)u
)

=∇ · σ + ρu (3.6)

where σ is the Cauchy stress tensor and b is the specific body force vector.
Eventually, the energy conservation equation (f(x, t) = e) reads

ρ

(
∂e

∂t
+ u · ∇e

)
=∇ · (σ · u) + u · ρu (3.7)

where e is the specific total energy.
Once the Eulerian form is obtained, the same equations written in ALE form are ob-
tained by modifying the convective velocities in the left-hand side, since this is the term
accounting for the relative velocities between the grid points and the material particles.
Since the convective velocity for the Eulerian form is the material velocity u itself, the
ALE form will employ another convective velocity, namely a = u−um, where um is the
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mesh velocity.


∂ρ
∂t

+−a ·∇ρ = −ρ∇ · u
ρ
(
∂u
∂t

+ (a · ∇)u
)

=∇ · σ + ρu

ρ
(
∂e
∂t

+ u · ∇e
)

=∇ · (σ · u) + a · ρu

(3.8)

It is seen the similarity with the original Eulerian form, the only changes being the
convective velocities and the local derivatives, which now will be taken in another frame
of reference. It is therefore understood why it is convenient to work with this form, since
it is a hybrid approach that allows recovering the fully Lagrangian (a = 0) or Eulerian
(a = u) forms by modifying the convective term.
The ALE differential forms of the conservation laws in (3.8) will be used as the strong
form of the stabilized finite-element formulation to discretize the problem. It is im-
portant no notice that these equations have been formulated only under the premise
of continuity of density, velocity and energy. That means that the flow may still be
incompressible or compressible, stationary or unstationary, viscous or inviscid, and may
also be discretely used in other reference systems different than cartesian.
Moreover, the physical description of the physical field will have to considerate the a
compressible fluid, since the propagation of shock waves.
To complete the system of equations in (3.8), an equation of state has to be added,
relating the density to the temperature (or entropy) and the pressure, i.e. ρ = ρ(p,T ).
The relations between the main thermodynamic properties will depend on the nature of
the fluid and will have to be able to capture the complete physics of the problem also
when the pressure range tends to the compressible region.
The model thus obtained will be similar to the complete flow models used in compress-
ible frameworks in terms of complexity, since the mechanical and thermodynamic aspects
of the fluid are taken into account (viscosity, thermal, gravity, etc.). As mentioned, in
this approach the energy equation is coupled to the rest of the governing equations as
the density is not a function of the pressure only. The resulting system of equations is
therefore strongly coupled and highly non-linear, and requires high computational cost.
In the next subsection some assumptions will be made that will allow removing part of
the system’s complexity by uncoupling the energy equation.
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3.2.1 Pressure-density relations

So far, the general case of a wave propagating in a fluid which is both viscous and heat-
conducting has been subject to study. The fact that it is heat-conducting implies that
the pressure is not a function of the density alone, but of the temperature as well. The
speed of sound will be a function of c(p,T ).
If the Mach number of the problem is introduced as M = U/c0, where U is the speed
of propagation of the pressure wave and c0 is the sound speed of the undisturbed fluid
ahead of the shock, it is noted that, under the assumption of a weak shock, the Mach
number is close to one and entropy changes may be neglected [4]. This is a common
approach in the field of underwater explosions, where the expected pressure shocks are
expected to be higher. However, the fact that the shock is weak being justified by a
small Mach number does not deprive the model from allowing high pressure gradients,
since the latter will be greatly influenced by how the compressibility of the fluid is dealt
with.
Thus, according to the latter, the local sound speed is defined as

c =

√√√√(∂p
∂ρ

)
S

(3.9)

the subscript S denoting the dependence of pressure on density and entropy. Now,
if in the shock is weak in the vicinity of the bubble, the entropy changes throughout
the fluid may be neglected and the pressure considered as a function of density alone
[4]. To model it as a compressible liquid requires relations which connect the main
thermodynamic properties: pressure, density and temperature. These relations have to
be able to capture the complete physics of the problem also when the pressure range
tends to the compressible region. For this reason, an equation of state describing the
thermodynamic properties of the fluid in the form p = p(ρ) is sought. The Tait equation
of state (EOS) is proposed in [10] alongside with the Stiffened Gas EOS and the Nobel-
Abel Stiffened Gas(NASG) EOS for the prediction of thermodynamic properties of water
over a wide range of pressures (1 × 105 Pa to 1 × 109 Pa) and temperatures (280 K to
370 K).
The Tait equation relates the pressure and the density as follows,

p = K0

( ρ
ρ0

)θ
− 1

+ p0 (3.10)
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Where p0 and ρ0 are respectively the pressure and the density of water at the reference
temperature. Parameters K0 = 3× 108 Pa and θ = 7 are weak functions of temperature
and pressure and are held constant.
The Stiffened Gas EOS relates pressure, density and temperature as follows:

p = ρ(γ − 1)cvT − p∞ (3.11)

where p∞ is a constant parameter representing the molecular attraction between water
molecules, cv is the specific heat at constant volume and γ is the ratio of specific heats.
The Tait EOS is able to produce accurate results within the stipulated pressure range
and does not require the prior knowledge on temperature. Although [10] disserts on the
superiority of the modified NASG EOS over the Tait EOS in modelling non-isothermal
flow problems with high accuracy, the former is more complex and is primarily meant
for the prediction of the saturation properties of certain liquids, which is not the purpose
of the sought EOS.
Eventually, if the Tait equation is chosen as the EOS to model the compressibility of
the fluid, the sound speed can be computed according to (3.9).

c =

√√√√(∂p
∂ρ

)
S

=

√√√√√K0θ
(
ρ
ρ0

)θ−1

ρ0
(3.12)

With (3.12), density and sound speed can be computed at each time step only as a
function of pressure.
At this point, with the chosen EOS, it is time to look closely at the relation between
temperature and entropy. The net heat added per unit time to a fluid particle is given
by

ρT
ds

dt
= κ∇2T (3.13)

where κ is the coefficient of thermal conduction (here idealized as a constant). This
relation tells that, in order to assume ds/dt ≈ 0, the process must be either isothermal
or adiabatic. Neither is exactly true, but according to [32], for freely propagating acous-
tic waves with typical frequencies of interest, the numerical implications of assuming
isothermal flow are equal to ds/dt ≈ 0, for which the fluid flow of the present problem
will be considered adiabatic. This assumption, as mentioned, will allow suppressing
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the temperature as a state variable and thus uncoupling the energy equation from the
general system (3.8), so that only the continuity and momentum equations will have to
be solved for the velocity and pressure.

3.2.2 Energy conservation in fluids

The fact that the energy equation is uncoupled from the system does not mean that it
can not be solved, specially when it may serve as a tool to check that there is no energy
loss in the system. This will help validating the model once the simulations are set up,
and will contribute to asserting that the numerical treatment for the fluid-gas interface
has been tackled correctly, or at lest up to a point in which the energy transmitted by
the pressure force is conserved in the domain. For that, it is necessary to recover the
energy equation in its most general form,

dQ

dt
− dW

dt
= dE

dt
= d

dt

(∫
Vc

eρ dV
)

+
∫
Sc

eρ(u · n) dS (3.14)

Where E is the total energy and e is the specific total energy. The convention is
followed such that Q positive means heat transmitted to the system and W positive
means work done by the system. In equation (3.14), it is important to note that the
material derivative is taken for the energy variation in the control volume and therefore
it has to be computed outside the integral. As for the surface integral, since there is
no energy flux to the control volume crossing through its boundaries, this term will be
zero.
We neglect any source of heat Q to the system and assume that the only contribution to
the work term Ẇ is the work of the pressure forces Ẇp, where the dot indicates temporal
derivative. Ẇp is only produced on the surface, and its total value, per unit time, is the
integral over the control surface of the elemental force per the normal component of the
velocity towards the control volume, and accounts for the rate of work done per unit
area and by the fluid on the control surface.

Ẇp =
∫
Sc

p(u · n) dS (3.15)

Since the normal vector has been defined towards the bubble, and the work is done on
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the system, (3.14) transforms into

d

dt

(∫
Vc

eρ dV
)

= −
∫
Sc

p(u · n) dS (3.16)

Now the total energy per unit volume E = eρ can be expressed as

E = 1
2ρ|u|

2 + ρUp Up =
∫ 1/ρ0

1/ρ
pd

1
ρ

(3.17)

Here p is total pressure and Up is the specific internal energy relative to the ambient
state. Since the Tait equation in (3.10) states the relation between the pressure and
density, the integral is straightforwardly computed to obtain

Up = K0ρ
θ−1

(θ − 1)ρθ0
+ K0 − p0

ρ
(3.18)

Eventually, by integrating eq. (3.16) in time from tn to tn+1 renders a discrete conser-
vation law for the energy, in which E is the total energy

|En+1| − |En| =
∫ tn+1

tn

∫
Sc

p(u · n) dS (3.19)

3.2.3 Energy conservation for a perfect fluid

During the development of the thesis, a new formulation was derived for the energy
conservation in a fluid that would allow checking with a lower programming effort if
the interface was conserving energy in the domain. For that, the starting point was the
same as in the previous subsection, i.e. eq. (3.16),

d

dt

(∫
Vc

eρ dV
)

= −
∫
Sc

p(u · n) dS (3.20)

The purpose was to simplify further the left-hand side of (3.20), by making use of the
following simplifications,

• The fluid is perfect, i.e. it is inviscid and compressible.
• There are no gravitational effects.
• The control volume is not deformable, thus the temporal derivative can be taken

inside the integral.
Considering the latter, the momentum equation transforms into following, where the
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mechanical constitutive equation is replaced by the isotropic pressure tensor so that

ρ
du
dt

= −∇p (3.21)

As for eq. (3.20) it will be

d

dt

(∫
Vc

eρ dV
)

=
∫
Vc

d

dt
(eρ) dV ) =

∫
Vc

ρ
d

dt

(1
2u · u + Up

)
dV (3.22)

By analyzing separately the terms in (3.22), and using (3.17)

ρ
d

dt

(1
2u · u

)
= ρu · du

dt
= −u ·∇p = −∇ · (pu) + p∇ · u (3.23a)

d

dt
(ρUp) = d

dρ
(ρUp)

dρ

dt
= p

ρ

dρ

dt
(3.23b)

Now, by replacing the continuity equation in (3.23a), and substituting back in (3.22) it
is obtained that

d

dt

(∫
Vc

eρ dV
)

= −
∫
Vc

∇ · (pu) dV = −
∫
Sc

p(u · n) dS (3.24)

When evaluating the balance between energy influx and energy variation in the fluid do-
main, both equations (3.16) and (3.24) will be programmed to see whether the assumed
simplifications (specially the fact that the control volume is not deforming) introduce a
tolerable error. In fact, (3.24) reaches the divergence theorem applied to the integral of
the pressure forces on the boundary, so the computation of both terms should be equal.

3.2.4 Constitutive relations

The analysis of the governing equations is here expanded by interpreting the term σ in
eq. (3.8). In order to specify the nature of the considered fluid in Ω, let us decompose
the momentum equation in the chosen system

∂ρ

∂t
+ a ·∇ρ = −ρ∇ · u (3.25a)

ρ

(
∂u
∂t

+ (a · ∇)u
)

=∇ · σ + ρu (3.25b)
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Assuming the oil inside the transformer tank as a Newtonian fluid, eq. (3.25) auto-
matically translates into the Navier-Stokes equations, and the mechanical constitutive
equation is computed as

σ = −pI + s = −pI +CCC :∇Su (3.26)

where −pI is the isotropic pressure tensor and s is the viscous stress tensor. In its most
general form, the viscous tress tensor is assumed to depend linearly on the rate of change
of the strains of an elementary volume of fluid, determined by the symmetric part of
∇u. Therefore it is expressed as the product of a fourth-order constant constitutive
tensor CCC and the strain rate tensor ∇Su . In isotropic media, CCC has the form

Cijkl = λδijδkl + µ(δikδjl + δilδjk) i, j, k, l ∈ 1, 2, 3 (3.27)

Here, µ is the dynamic viscosity coefficient and λ is the second viscosity coefficient.
Both depend, slightly, on the density and the temperature of the fluid. The double
contraction of a fourth-order tensor CCC with a second-order tensor ∇Su is defined as
sij = Cijkldkl where sij are the components of s = CCC :∇Su and dkl are the components
d = ∇Su. Now, in order to separate the Cauchy stress tensor into the isotropic and
deviatoric parts, the same is done with d.

dij = 1
3
∂uk
∂xk

+
(
∂ui
∂xj
− 1

3
∂uk
∂xk

)
(3.28)

Replacing (3.27) and (3.28) in the constitutive equation (3.26) yields

σij =
(
−p+ κ

∂uk
∂xk

)
δij + µ

(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)
(3.29)

The parameter κ =
(
λ+ 2

3µ
)
is the bulk viscosity, and as it is seen in (3.29), κ influences

the addition of a viscous term into the isotropic part of the Cauchy stress tensor. As
noted in [8], the assumption that κ is negligible (i.e. Stokes’s hypothesis) is a common
approach in the analysis of compressible fluids since it simplifies the isotropic part of
the tensor. In those cases, however, it is not being neglected by assuming κ ≈ 0 (as it
tends to be of the same order of magnitude than µ or λ) but rather by the fact that
p >> κ∂uk

∂xk
δij. Although it is true that the pressure term will be higher in magnitude

than the divergence term in the vast majority of cases, using this assumption would
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underestimate the temporal variations of density in a problem in which pressure waves
are expected. Indeed, the acoustic waves are associated with an oscillatory isotropic
change in volume between opposite values [8] and therefore the Stokes’ assumption is
not considered in this case.

3.3 Extension to the weakly compressible regime

Eventually, the problem formulation for the fluid is concluded by outlining the strategy
to tackle the fluid compressibility, or rather to overcome the issues emerging from the
numerical implications of an incompressible regime. The difficulties in constructing a
numerical method characterized by a divergence-free constraint on the velocity field are
detailed in [14] and are characterized by the fact that the pressure role is to adjust
itself on the domain to satisfy the incompressibility condition and therefore cannot be
regarded as a state variable associated to a constitutive equation. Another difficulty,
more concerting taking into account the nature of the problem at hand, is that the fluid
flow would not sustain large pressure gradients, nor changes in the density due to the
compressibility effects. The latter forces the propagation speed of the pressure waves
to rise to large values (infinite if ∇ · u = 0) and accentuated in the low Mach number
regime. Since this physical interpretation of the problem has detrimental effects on
the validity of the results, the numerical simulation has to be extended to the weakly
compressible regime, in which the hyperbolic-elliptic equations are kept in contrast to
the usual compressible hyperbolic system.
Regarding time stepping schemes in numerical simulation of unsteady compressible
problems, the explicit approach is rather common [28], although the tight constraint
on the time step ∆t such techniques pose make them highly inefficient for low Mach
numbers. The CFL condition for such a case is

∆t
h
max(c+ |u|) ≤ 1 (3.30)

which means that the time step is subject to the bulk modulus, very high when dealing
with quasi incompressible flows. In accordance, very low time steps would have to
be employed to satisfy the condition. On the other hand, if the convection terms are
approximated in an implicit manner, then the ideal time step is limited by [28]

∆t
h
max(|u|) ≤ 1 (3.31)
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By treating the convective terms implicitly, it is meant that in treating the nonlinear
convective term (a · ∇)u, a and u are evalauted at tn+1. The interesting features of
an implicit approach are the the unconditional stability of the scheme and relaxation of
the time-stepping constraint, although they increase the computational cost associated
with the nonlinearity of the convective term [14].
Such implicit treatments in compressible solvers are formulated via the so-called density-
based methods or pressure-based methods. While in density-based methods the pressure
is computed through the equation of state from the conservative variables, pressure-
based methods seem to be more robust [28]. This is a consequence of the fact that
density becomes a constant in incompressible flows, and pressure adapts to satisfy this
constraint, thus stating the need to avoid density as a primary variable. Pressure-based
methods, in which pressure is the primary variable and density is obtained from the
equation of state, do not have any such limitations and may be used regardless of the
compressibility of the problem, also when shocks are present [2]. In using pressure-based
methods, the mentioned divergence-free constraint will be replaced by the continuity
equation of a compressible fluid, while keeping the momentum equation as originally.
For this reason it will be referred to as the weakly-compressible approach, and is obtained
after replacing the density partial time derivative by

∂ρ

∂t
= 1
ρc2

∂p

∂t
(3.32)

In conclusion, the final form of the weakly-compressible Navier-Stokes equations is

1
ρc2

∂p

∂t
+ a ·∇ρ+ ρ∇ · u = 0 (3.33a)

ρ

(
∂u
∂t

+ (a · ∇)u
)
−∇ · (C : ∇su) +∇p = ρb (3.33b)

Then, to complete the system, the EOS will be used to compute the density. Several
commentaries may be made regarding eq. (3.33):

• The term ρc2, also called bulk modulus, indicates the amount of compressibility
present. For neraly incompressible flows, the pressure signals propagate fast so
that ∇ · u ≈ 0, with the flow conditions approaching the incompressible regime,
without posing the mentioned problems related to it being exactly 0.

• The pressure and velocity fields are related, as in the momentum equation.
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• The term ∇ρ is not being neglected.
• Since the EOS does not depend on the temperature, the weakly-compressibility

allows uncoupling the energy equation.
• For correct prediction of the physical phenomenon the velocities encountered in

the modeled problem should be several orders of magnitude smaller than the finite
sound speed introduced by the compressibility [30]. As shall be seen, this will be
the case for the simulation.

This closes the problem formulation chapter. Next, it will be seen how the numerical
approximation of this system is done by means of the Galerkin finite element discretiza-
tion, and how and why the method will be stabilized.





Chapter 4
Methodology

4.1 Numerical approximation

4.1.1 The variational problem

In this section, the notation that will be used in order to describe the variational form
of the problem in the domain is introduced. Let us define for k = 1, 2, ...

Hk(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω) |α| ≤ k} (4.1)

The Sobolev space Hk(Ω) consists of all functions v on Ω, that, together with its partial
derivatives of order α, belong to the Hilbert space L2(Ω). Let us define this space of
square integrable functions as

L2(Ω) = {v : v is defined on Ω and
∫

Ω
v2dx <∞} (4.2)

In order to reduce the continuity constraint on the derivatives of the unknowns in the
Navier-Stokes equations, the weak form requires the introduction of classes of functions
for the velocity field and the pressure field. With respect to the velocity u the space of
admissible solutions is denoted by SSS. Since the velocity must satisfy Dirichlet boundary
conditions on the no-slip walls of the domain, the trial solution space SSS containing the
approximating functions for the velocity will be:

SSS := {u ∈ H1(Ω) |u = uD onΓD} (4.3)



44 Methodology

The weighting functions of the velocity, w, belong to the space VVV , which has the same
properties as SSS except that w need to vanish on the boundary in which velocity is
prescribed, so that

VVV := {w ∈ H1(Ω) |w = 0onΓD} (4.4)

Eventually, the space of functions for the pressure is defined as Q. As will be seen,
spatial derivatives of pressure will not appear in the weak form of the problem, therefore
the trial solutions for pressure are only required to be square-integrable. So far the
procedure has been identical to what would be expected in a typical incompressible
Navier-Stokes scenario. However, for the present case, two circumstances alter the
common approach taken. First, pressure may be explicitly prescribed in the boundary,
therefore the space for trial and weighting functions will not be the same. Second, an
initial condition for the pressure field will have to be specified. This is a consequence
of the fact that the pressure-based method for weakly-compressible flows introduces a
temporal variation on the pressure, and thus it will have to be specified everywhere in
the domain. In other words, the pressure will not be defined in a single point as in the
case of purely Dirichlet boundary conditions for the velocity and incompressible flow
but on the entire domain.
The trial solution space for pressure functional approximations will be

Q := {q ∈ H0(Ω) | p = pD onΓD} (4.5)

To conclude with the notation, the symbol 〈·, ·〉, is used to denote the integral of the
product of two functions on the boundary Γ. The L2(Ω) inner product in Ω is denoted
by (·, ·). With that, the weak form of the problem is obtained by testing (3.33) against
arbitrary test functions w and q . The weak form can be written as: find u and p

belonging to the space of unknowns, such that

(
q, 1
ρc2

∂p

∂t

)
+ (q,∇ · u) = 0 ∀q ∈ Q (4.6a)(

w, ρ∂u
∂t

)
+ (w, ρ(a · ∇)u)− (w,∇ · (C : ∇su)) = (w, ρb) ∀w ∈ VVV (4.6b)

together with appropriate sets of boundary and initial conditions. As for the initial
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conditions, it will be setting the pressure field equal to the atmospheric pressure, and
the boundary conditions will be the no-slip conditions and the bubble pressure fixed on
some nodes of the domain.

4.1.2 The Galerkin finite element discretization

The Finite Element Method (FEM) approximation of the continuous variational problem
in (4.6) is done by discretizing the domain Ω into element domains Ωe, characterized by
a mesh size h so that diam(Ωe) ≤ h. The following is to define the interpolating spaces
of continuous picewise polynomial test functions, so it is defined VVVh ⊂ VVV ,Qh ⊂ Q and
their associated Galerkin projection of the solution by

VVVh ≡ span{N1, ...,NNu}; Qh ≡ span{N̂1, ..., N̂Np}; (4.7)

with Nj and N̂j being the shape functions associated with node j of the element.
The Galerkin FEM problem will thus consist of finding a finite element solution uh, ph
belonging to the interpolating space, and satisfying equation (4.6). The interpolation of
the different variables will be

u(x, t) ≈ uh(x, t) =
Nu∑
j=1

uj(t)Nj(x)

p(x, t) ≈ ph(x, t) =
Np∑
j=1

pj(t)N̂j(x)

∂tu(x, t) ≈ ∂tuh(x, t) =
Nu∑
j=1

∂tuj(t)Nj(x)

(4.8)

The velocity and pressure interpolations for the whole set of simulations will be made
on a simplex element, in which both velocity and pressure are continuous linear, making
olny use of the base element nodes, as shown in Fig. 4.1.
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Figure 4.1: Simplex element used.

The choice of this element, clearly being convenient in terms of computational cost,
does not satisfy the LBB condition on coupling the velocity and pressure FE spaces.
This condition states that velocity and pressure spaces cannot be chosen arbitrarily, and
in order to obtain a stable finite element approximate solution uh and ph, a suitable pair
of spaces, VVVh and Qh, must be chosen [14]. As this is not the case, the FE Galerkin
formulation will be unstable and a stabilization technique will be necessary to circumvent
this drawback. This technique will also be of use to overcome the unstable nature of
the non-symmetric operators, when the convection is dominant.

4.1.3 The space discrete variational multi-scale stabilized finite
element formulation

As an alternative to the classic SUPG or GLS stabilization techniques, the variational
multi-scale method (VMS) is used to construct what will later evolve into the sub-grid
scale (SGS) method. The VMS exploits the idea that the discretisation of the domain
into a FE mesh can only provide a coarse-scale part of the solution (uh, ph), while there
is another fine-scale component that completes the solution and cannot be computed by
means of a FE mesh (us, ps). Instead, it is resolved analytically.
The additive decomposition of the solution and the corresponding test functions,

u = uh + us, w = wh + ws (4.9a)
p = ph + ps, q = qh + qs (4.9b)
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needs to be accompanied by the corresponding splitting of the functional spaces VVV =
VVVh

⊕VVVs and Q = Qh
⊕Qs.

At this point it is introduced the residual vector R(u, p) = (Rρ(u, p), Rm(u, p)), which
is composed by the residuals of the two equations in (3.33),

Rρ(u, p) = −
(

1
ρc2

∂p

∂t
+ 1
ρ

a ·∇ρ+∇ · u
)

(4.10a)

Rm(u, p) = ρb− ρ
(
∂u
∂t

+ (a · ∇)u
)

+∇ · (C : ∇su)−∇p (4.10b)

Now, as an attempt to minimize the weighted sum of the residuals, the following FE
functional is proposed

Ψ(w, q, u, p) = (q,Rρ(u, p)) + (w, Rm(u, p)) (4.11)

Because of the linearity of the problem considered so far, the weak form of the problem
now becomes: find uh and ph such that

−
(
qh,

1
ρc2

∂ph + ps
∂t

)
+
(
qh,

1
ρ

a ·∇ρ
)

+ (qh,∇ · (uh + us)) + (wh, ρb)

−
(

wh, ρ
∂(uh + us)

∂t

)
− (wh, ρa ·∇(uh + us)) + (wh,∇ · (C : ∇s(uh + us)))

−(wh, (∇(ph + ps))) = 0 ∀qh ∈ Qh, wh ∈ VVVh

(4.12a)

−
(
qs,

1
ρc2

∂ph + ps
∂t

)
+
(
qs,

1
ρ

a ·∇ρ
)

+ (qs,∇ · (uh + us)) + (ws, ρb)

−
(

ws, ρ
∂(uh + us)

∂t

)
− (ws, ρa ·∇(uh + us)) + (ws,∇ · (C : ∇s(uh + us)))

−(ws, (∇(ph + ps))) = 0 ∀qs ∈ Qh, ws ∈ VVVs

(4.12b)

Eq. (4.12a) determines the resolved scales, whereas (4.12b) governs the problem for the
unresolved scales. The goal is to solve (4.12b) analytically as a function of the coarse
scale solution and substitute it back to (4.12a) to get rid of the fine scale solution.
So far, the solution for the fine scale problem has not been computed, but it is clear that
in determining the coarse solution, the fine scale problem must first be translated into
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a problem that can be solved. Given the particularities of the fine scale finite element
space, an analytical solution is not available and an approximation will have to be taken
[11]. The algebraic equation that results of approximating the exact solution of the fine
scale problem is

ps = τ1Rρ(uh, ph) (4.13a)
us = τ2Rm(uh, ph) (4.13b)

Where τ1, τ2 are stabilization parameters and are sought to be an approximation of the
inverse of the differential operator in eq. (4.12b). Specifically

τ1 =
(
c1µ

h2 + c2ρ||a||
h

)−1

τ2 = h2

c1τ1
= µ+ c2ρh||a||

c1
(4.14)

where c1 = 4, c2 = 2 and h is the characteristic element size.
Before substituting this result into the coarse scale problem, another commonly used,
and computationally efficient assumption is taken regarding the partial time derivative
of the subscales. The subscales are termed dynamic or quasi-static if they are considered
to be time-dependent or not, respectively. As shown in (Codina, Principe, Guasch, and
Badia, 2007), the dynamic treatment leads to a correct behavior of time integration
schemes and better accuracy, as could be expected [11]. However, this is at the expense
of the computational cost, therefore the quasi-static treatment of partial time derivatives
is selected. Therefore, ∂us

∂t
≈ 0 and ∂ps

∂t
≈ 0. It is also standard to impose us, ps = 0

along the finite element edges in order to localize the fine-scale problem in the interior
of each finite element [14].
Once this is done, there is already a space discrete variational multi-scale stabilized
finite element formulation. However, in order to adapt the formulation to the linear
element and reduce the order on the pressure and subscale terms, integration by parts
is required. In detail, the terms that will undergo a modification are the following:
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(qh,∇ · (uh + us)) = (qh,∇ · uh)− (∇qh, us) + 〈qh, us · n〉︸ ︷︷ ︸
≈0

(4.15a)

(wh, ρa ·∇(uh + us)) = (wh, ρa ·∇uh)− (∇wh, ρaus)− (wh, ρus ·∇a) + 〈wh, ρaus · n〉︸ ︷︷ ︸
≈0

(4.15b)

(wh,∇ · (C : ∇s(uh + us))) = −(∇wh,C : ∇s(uh + us)) + 〈wh, (C : ∇s(uh + us))〉
(4.15c)

(wh,∇(ph + ps)) = −(∇ ·wh, ph)− (∇ ·wh, ps) + 〈ph, wh · n〉+ 〈ps, wh · n〉︸ ︷︷ ︸
≈0

(4.15d)

It is interesting to note that the integration of the sub-scale terms on the boundary
are approximated to zero, so that the only contribution to the boundary integral comes
from the Cauchy traction vector, i.e. 〈wh, t〉 = 〈wh, (C : ∇suh − phI) · n〉. Eventually,
by inserting eqs. (4.15) into (4.12a) and adopting the quasi-static consideration, it is
obtained the final Galerkin functional to be implemented.

−
(
qh,

1
ρc2

∂ph
∂t

)
−
(
qh,

1
ρ

a ·∇ρ
)
− (qh,∇ · uh) + (∇qh, us) + (wh, ρb)

−
(

wh, ρ
∂uh
∂t

)
− (wh, ρa ·∇uh) + (∇wh, ρaus) + (wh, ρus ·∇a)

−(∇wh,C : ∇s(uh + us)) + 〈wh, t〉+ (∇ ·wh, ph) + (∇ ·wh, ps) = 0

(4.16)

It will be implemented symbolically with Python, and a template in C++ will also be
created so that the new element, WeaklyCompressibleNavierStokes, may be compiled
inside the Custom Elements folder of the Kratos Multiphysics repository. The template
contains the LHS and RHS derivation of the element, include the nodal data variables
in their array and matrices form. It also contains the stabilization parameters.

4.2 Shock-capturing methods

During the analysis of the first simulations, the presence of overshoots and undershoots
around the pressure waves and the bubble interface is early observed. While some
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simulations may seek to reduce the numerical diffusion to achieve a proper reproduction
of the differential equations, it will be of interest in the present case to add artificial
diffusion to smooth out the pressure sharp features. In resolving these high-gradient
features, also referred to as unstable subgrid-scale (SGS), the difficulties presented in
the numerical code to maintain accurate, stable and physical results are reduced.
The goal sought when applying such shock capturing methods, a particular branch of
SGS that deals with the numerical oscillations and nonlinear stability associated with
large pressure differences from node to node [17], is to alleviate the resolution constraint
when capturing such sharp features, as the artificial diffusion added helps increasing
the discretization distance occupied by the singularity, thus giving the numerical code
a higher scope of action to stabilize and avoid non-physical results such as negative
pressures around the bubble interface.
The stabilization approach selected for the problem is to increase the physical values of
the bulk viscosity (κ) and shear viscosity (µ) over the smallest distance allowed by the
discretization [17]. In particular,

κ = κf + κ∗, µ = µf + µ∗ (4.17)

Here, the subindex f and ∗ indicate physical and artificial values, respectively. The
pressure waves are stabilized through κ∗, whereas µ∗ serves to stabilize the shear gra-
dient. The detailed procedures to compute the artificial values are complex and are
detailed in [17]. As a summary, the unstable SGS features are detected through the
use of shock and shear sensors, and the artificial values are applied in this zones ac-
cordingly. The goal of such sensors is thus to identify pressure waves and high-gradient
shear layers.
In order to take into account the new values for κ and µ, the constitutive laws will
have to be subect to modifications. In particular, the Newtonian Constitutive law im-
plemented in Kratos has taken into consideration the Stokes’ hypothesis, hence κ is not
considered. For that reason, the constitutive equation in (3.29) will be re-implemented
inside the following files:

• fluid_constitutive_law: it will compute the fourth-order constitutive order CCC,
written in Voigt notation.

• newtonian_compressible_{2,3}d_law: computes the viscous stress tensor s in
equation (3.26).

First, let us focus on the constant fourth-order (viscosity) constitutive tensor CCC. It
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was stated in eq. (3.27), as a function of the dynamic viscosity µ and second viscosity
coefficient λ. Now, by replacing λ = κ− 2

3µ, it is obtained

Cijkl = κδijδkl + µ
(
δikδjl + δilδjk −

2
3δijδkl

)
(4.18)

Writing it in Voigt form, the general 3D form of the tensor is obtained

CCC =



κ+ 4µ
3 κ− 2µ

3 κ− 2µ
3 0 0 0

κ− 2µ
3 κ+ 4µ

3 κ− 2µ
3 0 0 0

κ− 2µ
3 κ− 2µ

3 κ+ 4µ
3 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


(4.19)

For a 2D case, the tensor will be

CCC =


κ+ 4µ

3 κ− 2µ
3 0

κ− 2µ
3 κ+ 4µ

3 κ− 2µ
3 0

0 0 µ

 (4.20)

As for the viscous stress tensor, let us retrieve eq. 3.29 and separate its terms into the
pressure and viscous parts. From this equation, the stress tensor in index notation is
given by

sij = µ

(
∂vi
∂xj

+ ∂vj
∂xi
− 2

3
∂vk
∂xk

δij

)
+ κ

∂vk
∂xk

δij (4.21)

The viscous stress vector will then be, in Voigt form

sss =


2µ
([
∇Su

]
i
− Tr(∇Su)

3

)
+ κTr

(
∇Su

)
i ∈ (0, 1, 2)

µ
[
∇Su

]
i
i ∈ (3, 4, 5)

(4.22)

Whereas, for a 2D case, it will have the form

sss =


2µ
([
∇Su

]
i
− Tr(∇Su)

3

)
+ κTr

(
∇Su

)
i ∈ (0, 1)

µ
[
∇Su

]
i
i ∈ (2)

(4.23)

The general form of the equations for the constitutive tensor and stress vector will allow
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us to compute them either in case shock capturing techniques are applied or not. The
latter will only require substituting the physical values, without presence of articifial
additions, whereas the former will require substituting κ and µ by their new expressions
in eq. 4.17. When doing so, it is assumed that κf = 0.

4.3 Numerical treatment of the interface

The multi-fluid technique which has been selected to track the position and shape of
the interface is the Level-Set method, for the clear benefits it presents. Moreover, and
particularly for the present problem, the initialization of the distance function is trivial
and does not require an iterative algorithm to find the closest distance to the interface of
each node. Rather, it computes the distance to the interface as the difference of radius.
Once the position of the interface is obtained, the volume of gas may be updated and
the gas pressure (considered homogeneous in the gas domain) may be computed with
the perfect gas law according to algorithm 1.

Algorithm 1 Bubble pressure computation.
1: t = 0
2: Initial bubble radius R0

3: Initial bubble center (xc, yc, zc)
4: Initial mass m = m0

5: Initialize Level-Set function di =
√

(xi − xc)2 + (yi − yc)2 + (zi − zc)2 −R2
0

6:

7: while t ≤ tend do:
8: Compute bubble volume→ Get Vgas
9: Check time:

10: if t < 50× 10−3 then:
11: m+ = 5∆t
12: end if
13: ρgas = m/Vgas

14: e = cpT/γ

15: pgas = ρgase(γ − 1)
16: end while
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The previous steps allow computing the pressure value in one part of the domain.
For this reason, the nodes belonging to this part of the domain are assigned this pres-
sure for the step computations, as of a Dirichlet boundary condition. The density
ρgas is also fixed in the nodes of the bubble. The way it is done requires of a proce-
dure to prepare these boundary conditions before solving for the state variables, in the
ApplyBoundaryConditions step· There are two approaches to apply these conditions,
related to the treatment of the nodes of the elements cut by the interface.

• The first consists of fixing the pressure on all the nodes of the cut element, as
shown in Fig. 4.2. This means that, at each time step, all nodes are imposed free
degrees of freedom for the pressure and velocity (except those at the wall, which
have prescribed velocity from the no-slip condition). Then, the nodes with a red
and blue dots are imposed fixed pressure degrees of freedom and assigned the gas
pressure pgas.

• The second approach consists of the same procedure but instead of fixing the
pressure on the blue dotted node, it is rather fixed on the red dotted nodes only,
that is, the gas pressure pgas is imposed only on the nodes which are inside the
interface, or, in other words, which have negative distance values.

Figure 4.2: Interface element.

The second approach has been observed to give better results in terms of stability, apart
from the fact that is less computationally expensive. The first approach, requires, on
the other hand, a loop through all the nodes to compute its distance function and then
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another loop through all the elements to assign pgas to all its nodes.
Now let us focus on line 10 of the algorithm. It has been assumed that a constant
mass inflow of 5 Kg/s is added to the bubble volume during the first 50 ms. This is
in accordance with the data provided by Siemens Energy in order to model the gas
bubble.
The fact that there are elements cut by the interface requires the use of Modified Shape
functions that appear after generating new elements from the cut element. This can be
seen clearly in Fig. 4.2, where the blue region represents the gas (Level-Set function
ψ < 0), the yellow region represents the oil (ψ > 0) and the red line is the interface
(ψ = 0). In that case, the element cut is rearranged into new triangular elements (2D
in this case) and new Gauss points are generated for each new sub-element. This will
later be of use to determine, for instance, the area or volume of the gas, the energy
contained in the fluid or the normal vectors to the surface. In order to compute the
normal vectors, the interface shape functions and gradients are also needed.
The latter is needed for better accuracy in the results, since not doing so would im-
ply losing the contribution of the Gauss points belonging to the cut elements. Then,
the weights and location of the new Gauss Points in Fig. 4.3b are used to integrate
the density, pressure and velocity over the modified regions to compute its energy, for
instance.

(a) Representation of a cut element on the do-
main. Extracted from [26].

(b) Detailed of the Modified Gauss Points for the
cut element.

Figure 4.3: Modified integration rule for an element cut by the interface.
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4.4 Modified python solver

A compressible solver which allows the resolution of this problem requires the cus-
tomization of already existing python solvers in Kratos, with the goal of combining all
the numerical particularities which the problem presents. Indeed, if comparing the new
solver to the navier_stokes_vms_monolithic.py, the new solver presents the following
modifications:

• Include the variables that are defined as being Nodal, so that the solver may access
the value at each node. Examples of such variables are DENSITY,SOUND_VELOCITY
and DISTANCE. In this case, the Distance variable is needed for tracking the in-
terface. The other variables are those which were defined at the beginning when
defining the new Element.

• Include the ShockCapturingProcess. This process, called at the Initialize
step before constructing and initializing the solution strategy, is necessary for
computing the values of ARTIFICIAL_BULK_VISCOSITY and
ARTIFICIAL_DYNAMIC_VISCOSITY.

• Perform the level-set convection according to the previous step velocity.
• Recompute the distance field according to the new level-set position

The main functions regarding the level-set convection process are extracted from the
Navier-Stokes two-fluid solver. During the InitializeSolutionStep process the level-
set convection as well as the Distance re-initialization processes are performed. The
re-initialization of the variable is necessary, as was explained in 2.2.2, as the level-
set function tends to be distorted after a few computational steps. Eventually, in the
FinalizeSolutionStep, the level-set convection process is performed again to complete
the solution step.





Chapter 5
Tests and results

This chapter collects all the tests carried out to validate the implementation of the
methodologies described in the previous chapters. First of all, the Kratos Multiphysics
framework as well as the main aspects of the implementation are described. Secondly,
the differents tests carried out are described together with the results.
Regarding the developed simulations, they are divided into 2D and 3D. First, a series
of tests to validate the implementation are presented, such as convergence and energy
conservation tests. Secondly, 2D cases are shown to evaluate the implemented code.
Eventually, a series of 3D cases are included to assert the performance of the implemen-
tation in an FSI context as well as a rigid-wall context.
Unless otherwise stated, the parameters used to model the liquid in the tank are the
following:

Parameter Symbol Value
Density ρ 880 Kg/m3.

Dynamic viscosity µ 0.02 Ns/m2.
Specific heat c 1860 (J/Kg)/K

Heat capacity ratio γ 1.4
Gas temperature T 200 ºC

Table 5.1: General simulation parameters.

Whilst the three last parameters are needed in the FluidParameters.json, the first
one is needed for the Tait Equation of State.
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5.1 Code implementation

5.1.1 Kratos Multiphysics and GiD framework

The code developed in this work has been implemented using Kratos Multiphysics
(Kratos) open-source framework for the implementation of numerical methods in multi-
disciplinary simulation software. The programming languages have been Python, for
the running scripts and simple tasks, and C++, for the development of more advanced
utilities and processes, which require to be run faster. The code has been created in the
FluidDynamicsApplication, and some of it has already been merged into the Master
branch of the repository.
Moreover, the professional version of the GiD commercial software has been used as pre
and post-processor. GiD includes a friendly user interface that allows generating the
Model Part files, as well as the simulation files, thanks to a specific problemtype. In this
way, the problem-type allows to introduce all the problem settings such as materials,
boundary conditions or solution strategies needed to perform the simulation, which is
then executed with Kratos through the MainKratos.py file.

5.2 Validation tests

5.2.1 Energy conservation in the domain with MMS

The purpose of this test is to ensure that the power emitted from the bubble interface
through pressure forces is in accordance with the rate of change of the total energy
for the material volume described in Fig. 3.1. That is, the rate of change of the fluid
particles’ energy at each time step has to be equal to the power of the pressure forces
at the interface nodes, as indicated by eq. (3.16).

Problem description

In order to check the latter, the method of manufactured solutions will be used. That
is, by defining analytically a solution field for the state variables (pressure and velocity)
and assuming density and sound velocity to remain constant, the energy conservation
computed analytically will be compared to the numerical procedure developed in a
separate utility. For that we propose a circular domain, such as that in Fig. 5.1, with
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a circular hole in the middle representing the bubble, whose radius varies in time. The
fluid properties in the domain are also imposed to vary in time through the following
relations

p(R, t) = 100t(1 +R), v(R) = 1
1 +R2 (5.1)

Where

R(t) = 0.1 + αct, with α = 7× 10−3, c = 1.5× 103 (5.2)

The velocity is assumed to be in the radial direction, so its vector already contains the
normal direction. Hence, the power emitted from the bubble will be

P (R, t) =
∫ θ=2π

θ=0
u(R)p(R, t)Rdθ (5.3)

p(r, t)u(r) ∂Ωt

R(t)

Figure 5.1: Schematic representation of the domain.

Equation (5.7) may be integrated symbolically to obtain an expression for the power at
each time step, once the radius has been substituted. On the other hand, the analytical
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value for the energy may be computed as

E(r, t) =
∫ r=Rd

r=R

(
p(r, t) + 1

2ρu(r)2
)

2πr dr (5.4)

Where Rd is the radius of the entire domain. Once the analytical values are obtained,
the numerical energy and power rate is obtained by imposing the manufactured velocity
and pressure fields to the nodal degrees of freedom at each time step. For that, a
substitution is again required and also a change of base, from cylindrical to Cartesian,
since for the numerical utility both ux and uy are needed. Once the state variables are
set, the utility is called and the numerical values for the energy and pressure rate are
obtained. In order to compare both values, the power rate per unit time is modified as
follows: W n = En−1 + P∆t, so that at each time step W n has to be equal to the total
energy in the domain En.
The total energy in the domain is composed by two parts: the contribution of the
elements which are inside the fluid domain, and the contribution of the part of those
which are cut by the interface, so that

Etotal =
Ne∑
e=1

Ee, Ee =
np∑
p=1

Wp

(1
2ρpup · up + pp

)
(5.5)

Being np the number of Gauss points on the element, Ee the elemental energy and Ne

the number of elements. Depending on whether the elements are fully inside the fluid
or cut by the interface, Wp will be the standard or the positive-side integration points’
weight, referring to the positive side the part of the elements belonging to the fluid part
(outwards of the interface). In order to compute the value of the variables in the Gauss
points, a similar approach is followed

Φp =
Nn∑
i=1

N
(p)
i Φi (5.6)

Where Φi is the variable evaluated at node i and N (p)
i contains the shape function for

node i, evaluated at the Gauss point p. Again, depending on the element, the standard
or the positive side shape functions will be used. Then, the work rate is computed as
follows

Wtotal =
Ne∑
e=1

We, We =
n̂p∑
p=1

Ŵp

(
ûp ·

np
|np|

p̂p

)
(5.7)
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Here n̂p is the number of interface Gauss points and np are the positive-side area normal
vectors at Gauss point p. ûp and p̂p are computed in the same way as in the elements with
the difference that now the shape functions are evaluated at the Gauss points of the in-
terface. This is achieved through the ComputeInterfacePositiveSideShapeFunctions
function.
The results are assessed by comparing the numerical and analytical values of the total
energy rate of change and the work of pressure forces per unit time. For that, the
relative error is computed using the analytical values as reference. Fig. 5.2 shows
the error during 10 ms, when the radius bubble has increased from 0.1 to 0.205. The
simplified energy rate explained in 3.2.3 is also shown, and it is concluded that it is
equal to the work of pressure forces per unit time, as it was shown to be the application
of the divergence theorem. The error shows the same decreasing trend for both values.

Figure 5.2: Comparison between analytical and numerical computations.
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5.2.2 Energy conservation in a non-symmetric 3D domain

Problem description

Once the utility generated to asses the energy conservation has been proven to be valid
with the MMS method, now it is applied to the simulation of a 3D domain in which a
pressurized bubble changes its shape and transmits energy to the domain. In this case,
the same goal is devised, as the rate of change of the energy in the fluid domain will be
compared to the power of the pressure forces.
The main parameters used for this test are

Parameter Symbol Value
Initial radius R0 0.03 m ,
Initial mass m0 5.6× 10−3 Kg

Initial bubble center [6, 1, 3] m
Tank dimensions 10× 4× 5 m

Table 5.2: Simulation parameters for 3D energy conservation.

The results are shown in Fig. 5.3, where it can be concluded that, although the relative
errors are negligible, the simplified version of the divergence theorem still provides better
accuracy. The oscillations may be attributed to the sudden shape change of the bubble,
which is no longer spherical once the simulation starts. The point is that, with two
different methods, the energy is conserved if using the new formulation.
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Figure 5.3: Comparison between energy numerical computations.

5.2.3 Convergence assessment in a non-symmetric 3D domain

The purpose of this test is to evaluate the error magnitude in a convergence graph when
refining the mesh on a three-dimensional domain with a pressurized bubble located at
a third of the diagonal of a unitary cube. All meshes are run up to 2 ms and the results
at that time are used for comparison.
It is important to note that the solution fields are approximated using linear shape
functions and that the domain is discretized using tetrahedral elements. This implies
that the error of the state variables is quadratic with respect to the mesh size, so that,
for instance, for the pressure field it holds that p = ph +O(h2). Then, considering that
the error estimates for the L2 space is expected to be of the form

||u− uh||L2 ≤ Chp+1 (5.8)

The theoretical convergence rate will be assessed not by analytical results, since they
are not available, but by a refined enough mesh (h −→ 0). This way, different mesh
sizes will be tested against the finest mesh the computer allows. The finest mesh with
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which the case could be run was h = 0.015 m, so that it will be considered the reference
value.
The error estimate will be of the form

||u− uh||(e)L2 =
np∑
p=1


√√√√(u− uh)2Wp

u2Wp

 (5.9)

Where uh is the approximated nodal solution and u is the solution of the finest mesh.
The process to compute the errors requires the mapping from the finest to the coarse
mesh, so that in each node of the coarser meshes the numerical and exact values are
available. This requires the use of the mapping application and the setting up of the
case accordingly. The mapped solutions are written into a text file, which is then
loaded by the created utility that computed the errors, compute_errors.h. This util-
ity reads the reference values on the nodes and compares them to the approximated
values by integrating the error over the element. For the elements which are not cut
by the interface, rGeom.ShapeFunctionsValues is used, whereas for the nodes cut,
positive_side_sh_func and negative_side_sh_func are used.
The parameters used to model the initial gas bubble are the following:

Parameter Symbol Value
Initial radius R0 0.1 m ,
Initial pressure p0 7.43 bar

Initial bubble center [2, 2, 2]/3 m
Tank dimensions 1× 1× 1 m

Table 5.3: Simulation parameters for convergence analysis.

The mesh sizes chosen to perform the analysis have been, from finer to coarser: 0.03,
0.06, 0.1 and 0.2. The results for the error magnitude for the density, velocity norm
and pressure and are presented in Fig. 5.4. As may be observed, the error decreases
with the refinement of the mesh. Only for the sake of judging the mapping process, the
errors obtained when mapping the solution field to the finest mesh have been included,
and as can be seen, they are 0 at machine precision. The convergence graphs have been
included in Fig. 5.4. Only for the velocity a straight line is obtained, and if a liner
interpolation is performed, a slope of 1.925 is obtained, very close to the theoretical 2
for linear elements. For the pressure and density, the coarsest mesh gives wrong results,
so it should not be used when interpolating linearly the results. All the same, the error
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is decreased with the mesh refinement. If an interpolation is performed only for the
linear range, slopes of 0.924 and 0.695 are obtained for density and pressure, in Fig.
5.4b and 5.4a, respectively.
To complete the information, the resulting pressure field at a plane cutting through the
bubble of the 3D domain is shown for all the meshes in Fig. 5.5. As seen, the results
start looking similar for meshes of size h = 0.06 and higher. For coarser meshes, there
are not enough nodes inside the bubble and its interface cannot be tracked consistently.
In any case, this gives an indication on which mesh size to use, the correct one being
h = 0.0015.

Convergence table

Mesh
size h

Nº
nodes

||u−uh||L2 ||ρ−ρh||L2 ||p−ph||L2

0.2 298 3.5937 5.780e−3 2.1753

0.1 1997 0.6718 1.109e−4 0.0505

0.06 8759 0.2534 9.017e−5 0.0285

0.03 66469 0.0931 4.804e−5 0.0166

0.015 518722 2.389e−13 2.420e−16 2.738e−15

Table 5.4: Error magnitudes for the convergence analysis.
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(a) Pressure convergence.

(b) Density convergence.

(c) Velocity convergence.

Figure 5.4: Convergence analysis.
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(a) Pressure field with h = 0.2 m. (b) Pressure field with h = 0.1 m.

(c) Pressure field with h = 0.06 m. (d) Pressure field with h = 0.03 m.

(e) Pressure field with h = 0.0015 m.

Figure 5.5: Comparison between pressure field cut of the domain.
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5.2.4 Evolution of a pressurized fluid region

The purpose of this test was to observe the evolution of a circular region with twice the
atmospheric pressure than the rest of the domain. In this case, there is no interface,
but the same fluid which is initialized with two different pressure values. This means
that an initial pulse will be propagated through the domain until an steady state is
obtained, since no energy will be added to the domain. Moreover, in this case, since
there are no pressure forces acting on the domain boundary, the energy will remain
constant throughout the simulation.
The initial pressure is set to be 2 × 105 Pa in a circular region of radius 0.2 m at
the center of a 10 × 4 domain. Once the simulation starts, an initial pressure wave is
generated and propagates outwards in a symmetrical manner given the circular shape of
the pressurized region and absence of gravity. The expansion of the compressed region
introduces energy in the rest of the domain, and as a result the medium is compressed, as
opposed to the central region, which reduces its density and pressure (Fig. 5.6). Then,
when the wave interacts with the solid walls, the pressure is reflected and superimposed
to the incoming wave.

Figure 5.6: Evolution of the pressure ring.

The energy in this case was perfectly conserved, since there was no interface and the
whole domain could be considered as a single fluid (see Fig. 5.7). Interestingly, this
configuration only allowed setting up a pressure of 2 × 105 Pa in the circular region at
the center, since higher pressures would lead to divergence problems. When modeling
the bubble with the interface, the pressure in the bubble can be set to be much higher.
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Figure 5.7: Assessment of energy conservation in the sealed tank.

5.2.5 Two-dimensional simulation of a double underwater ex-
plosion

This test is extracted from [37] as a tool to evaluate the level-set representation of a more
complicated distance function. In this case, two underwater explosions are simulated
by generating two highly pressurized gas bubbles of the same radius, symmetrically
positioned with respect to the domain, which has dimensions 4 × 4. Regarding the
bubbles, their position is (1.4, 2) and (2.6, 2) with 0.3 radius each. A representation of
the case can be seen in Fig. 5.7. The initial pressure and density for the bubbles is
p = 59 bars, ρ = 17.7 Kg/m3, whereas the initial pressure and density for the water
part is 1 bar and 1000 Kg/m3. These are not the parameters of the original problem,
as it contains a pressure ratio of 1000, which is not a feasible value for the developed
code. As mentioned in the state of the art, the ghost fluid method used in this paper
allows for higher pressure ratios.
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Figure 5.8: Schematics of the problem setup.

In any case, the values set for this problem will allow a fair comparison in terms of
contour pressure lines during the first time steps of the simulation, since its purpose
is not to compute the bubble pressures but the efficiency of the level-set technique in
generating a symmetric and uniform solution.
At the initial time steps, two pressure waves are generated from the bubble surfaces
and expand to the walls. At time t = 1.8 × 10−4, shortly after the situation depicted
in 5.9, the contact of the waves produces two reflected pressure waves traveling in the
opposite direction, and the pressure increases in the contact region, see Fig. 5.10. In
Fig. 5.11, the reflected waves reach the gaseous interface and originate further waves
inside the bubbles, which will change its shape shortly afterwards. Fig. 5.12 shows the
level-set contours at the same time step.
By observing the similarity between the results, it can be concluded that the weakly
compressible approach is capable, first, of describing the propagation of pressure waves
at the correct sound speed, and second, of modeling correctly the interaction between
equal waves and their reflection. As mentioned, the results were not expected to be
completely the same since the reference pressure ratio has not been selected and the
modeling approach is not fully compressible but quasi-compressible. On the other hand,
the efficiency of the level-set when tracking the position of the interfaces and the contours
after shock collision has been assessed positively.

5.3 Two-dimensional tests

These tests constitute the fist approximation towards computing the pressures on the
walls of a tank, assuming it is 2D. The tank is modeled as a 10 × 4 rectangle and the
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(a) Reference pressure contours [37]

. (b) Pressure contours with Kratos.

Figure 5.9: Comparison at t = 1.2× 10−4.

(a) Reference pressure contours [37]

. (b) Pressure contours with Kratos.

Figure 5.10: Comparison at t = 2.9× 10−4.
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(a) Reference pressure contours [37]

. (b) Pressure contours with Kratos.

Figure 5.11: Comparison at t = 4.6× 10−4.

(a) Reference level-set contours [37]

. (b) Level-set contours with Kratos.

Figure 5.12: Comparison at t = 4.6× 10−4.
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explosion is located at the center. The results are presented in the next subsections.

5.3.1 Bubble modeled as external pressure in surface

The fist contact with a 2D simulation was intended to evaluate the response of the new
developed Weakly-compressible element. For that reason, the constitutive law and the
Level-Set modeling of the bubble (with the corresponding customized solver) were not
added in the simulation. Instead, the 2D Newtonian constitutive law and the Monolithic
one-fluid solver were selected. As a consequence, the bubble had to be modeled in an
alternative way, which was to think of it as an static circular contour with no fluid inside.
The pressure was held fixed throughout the simulation and it was applied through the
EXTERNAL_PRESSURE variable. Optionally, the PRESSURE variable might be constrained
to be the value of the EXTERNAL_PRESSURE in order to help the solver reach the desired
boundary condition coming from the circular source.
The fact that the circular source is in direct contact with the fluid nodes, that is, that
there is no multi-fluid interface that separates both regions difficult the capability to
rise the external pressure applied, so that a maximum of 100 bars was seen to be the
computational limit. Another difficulty is that there are no shock capturing methods
applied, so that there is no artificial viscosity added.
The results shown for the pressure, velocity and density in Fig. 5.13 are in accordance
with what has been explained. The pressurized region compresses the fluid, with higher
density around the ring. As for the velocity (not the sound velocity), the fluid particles
move at higher speed also around the ring.
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(a) Pressure field.

(b) Density field.

(c) Velocity field.

Figure 5.13: Simulation with external pressure applied at t = 2 ms.
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5.3.2 Bubble modeled with level-set technique

This section presents the results for the same problem, with the difference that all the
developed features are put to use. In addition to the last case, the new constitutive law
and the customized solver are chosen, which means that now the bubble is modeled with
the Perfect Gas equation, and its interface tracked with the level-set method. As can be
expected, the emission of pressure waves will now be of variable nature, both in shape
and magnitude, since the bubble will be changing its area. Moreover, a mass inflow ratio
of 5 Kg/s is added to the bubble, to simulate the arcing phenomena, which typically
lasts around 50 to 100 ms. This requires the implementation of the algorithm detailed
in 4.3 in the MainKratos.py file. Other necessary modifications are the addition of the
CompressibleNewtonian2DLaw as the new constitutive law in FluidMaterials.json
and the use of the customized Monolithic solver explained in 4.4.
The parameters used to model the initial gas bubble are the following:

• Initial mass m0 = 0.5 Kg.
• Initial radius R0 = 0.1 m.

The results of the simulation are briefly depicted in Fig. 5.14, where the evolution of
the pressure field is given for two different time-steps. In Fig. 5.14a the pressure field is
shown at the same time instant as in Fig. 5.13, where the external pressure was used,
and the results are very similar, except as in pressure magnitude, as different parameters
have been used. The pressure profiles across a horizontal line spanning the bubble are
shown in Fig. 5.15 for both cases. The effect of the artificial viscosity is seen in the
pressure over-shots. Its activation can also be seen in Fig. 5.14c, where, as could be
expected, the maximum values are concentrated around the bubble, where the sharp
pressure gradients form.
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(a) Pressure field at t = 2 ms.

(b) Pressure field at t = 30 ms.

(c) Artificial dynamic viscosity field at t = 30 ms.

Figure 5.14: Simulation with full level-set modeling.
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(a) Reference profile with external pressure. (b) Pressure profile with multi-fluid simulation.

Figure 5.15: Comparison between horizontal pressure line graphs.

Now it is necessary to see which is the effect of this pressure bubble on the tank walls,
i.e. how the pressure field evolves in the domain faces and how it is influenced by the
arc energy. Also, how does the bubble radius change in time.

5.4 Three-dimensional tests

5.4.1 Bubble modeled with level-set technique

So far, all the presented tests were 2D cases. In this section a 3D case is performed to
show the further capabilities of the developed code. Due to the large computational cost
of solving a 3D case, the accuracy when meshing the domain is reduced compared to the
2D cases, and as a consequence, more convergence problems appear. The same element
and solver are used, and the only difference is that the CompressibleNewtonian3Dlaw
is here used instead.
The problem here presented consists of a model of a real transformer tank provided by
Siemens Energy. This model had to be edited with GiD as the model was exported to
Parasolid and difficulties were found when trying to mesh it directly. For that reason,
a simplified model of the real tank was created by removing the unnecessary parts and
keeping the main parts as simpler shapes. The resulting transformer can be seen in Fig.
5.16.
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(a) Exterior view. (b) Interior parts.

Figure 5.16: Simplified model of the transformer.

It has to be pointed out that the purpose of this problem is not to study the deformation
of the tank but to further test the code in Kratos in a 3D more complicated geometry,
and to place the bubble in complicated zones such as in the turrets where there is not
space for the pressure waves to extend radially.
Regarding the geometry, it consists in a transformer tank of dimensions 10× 4× 5, not
including the turrets. The fluid parameters are those mentioned in the beginning. The
other parameters are those in the next table.

Parameter Symbol Value

Initial radius R0 0.06 m ,

Initial mass m0 5× 10−3 Kg

Initial bubble density ρ0 5.68 Kg/m 3

Initial bubble pressure p0 8.69 bar

Table 5.5: Simulation parameters for 3D test.

Then, an unstructured mesh of 565553 nodes and 3345471 elements has been used in
the fluid.
Last but not least, the bdf2 scheme in Kratos has been used for time discretization.
The total time of the simulation is t = 150 ms while the time increment is set as an
automatic value between 1× 10−4 and 1× 10−7 to satisfy 1 CFL condition.
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5.4.2 Results assessment

The results are shown in terms of pressure bubble and radius evolution. During the first
time steps, the bubble adjusts to the surrounding conditions, and thus a sharp variation
is observed in Fig. 5.17. After that, a smooth variation is observed for the pressure,
whose oscillating character is not seen in the radius evolution, which holds between 10
and 12 for the majority of the time. There is not an observable difference either when
the gas inflow stops after 50 ms.

(a) Radius evolution. (b) Pressure evolution.

Figure 5.17: Evolution on the bubble center.

Then, a plane cutting through the bubble at different time steps is observed in Fig.
5.18. Only at 150 ms the pressure around the bubble is higher that the tank pressure,
which indicated that the pressure walls evolve correctly and are transmitted through all
the domain. However, the most critical point is in the vertical turret where the bubble
is located, as the high values of pressure are constant in time.
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(a) t = 50 ms.

(b) t = 100 ms.

(c) t = 150 ms.

Figure 5.18: Evolution of the pressure field.
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5.4.3 FSI with cubic structure

Problem description

In this section the coupling approaches explained in chapter 2 are used to perform an
analysis on a unitary cubic domain with a pressurized bubble located at a third of
the diagonal. As now the walls will be elastic, this test will be appropriate to assess
the deformations on the walls and weather the pressures on the walls are significantly
reduced when compared to a case with the same parameters but non-deforming walls.
The problem will consist on solving the Navier-Stokes equations considering that the
solution field will be coupled at the wall interface for the solid mechanics problem. The
boundary conditions for the problem will consist on zero displacements and rotations
for the edges of the cube, plus a zero mesh-displacement on the lower surface, where
the tank does not present any deformation. Regarding the mesh, an unstructured mesh
of 13071 nodes and 69532 elements has been set. The time as well as the material
parameters of the simulation are listed below.

Parameter Symbol Value

Wall thickness t 7 cm

Steel density ρ 7850 Kg/m 3

Young Modulus E 200 GPa

Poisson ratio ν 0.3

Initial bubble density ρ0 2.6 Kg/m 3

Initial bubble pressure p0 4.6 bar

Total time t 30 ms

Time-step ∆t 1× 10−4sec.

Table 5.6: Simulation parameters for FSI test.

Finally, the analysis has been set to be of implicit non-linear dynamic type, whit a
residual criterion for the convergence criterion, so that ‖r‖ = ‖vΓ,1 − vΓ,2‖ ≤ 1× 10−5.
As for the coupling strategy settings, the MVQN solver type with has been selected with
w0 = 0.825.
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Last but not least, the reader may notice the high thickness on the walls. This is the
minimum value that could be set without leading to a simulation failure, whereas the
desired values would have been 1 or 2 cm. This will be left as future work. However,
the purpose of the simulation was to demonstrate that the wall deformation could help
on reducing the pressure on the walls, while on the elastic region.

Results assessment

First, the stresses and displacements are shown in Fig. 5.19, which denote the correct
application of boundary conditions. The asymmetry of the results in both cases goes in
accordance with the position of the bubble, which means that some faces will be more
affected. The results show, after 20 ms of simulation, that the maximum displacement
is of the order of 14 mm, whereas the maximum stress is 3 GPa, a stress much larger
that the yielding tensile strength, which can be assumed to be 300 MPa.

(a) Von Mises stress on top surface. (b) Displacement modulus.

Figure 5.19: Structural deformation for t = 20 ms.

Now, with the increment of volume produced by the deformation of the walls, it could
be expected a global reduction of the pressure values on the faces. For that, the faces
are numbered according to Fig. 5.20, where the bubble is initially located at [2, 2, 2]/3,
which is the corner of faces 2,3 and 6.
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1

2

3

4

5
6

Figure 5.20: Faces numbering.

Once the faces are numbered, the pressure evolution on the faces is studied by comparing
the FSI case with the rigid-wall case. The purpose is to show that the deformation on
the walls relaxes the pressure levels on the walls. In Fig. 5.22 faces 1 to 3 are shown, and
in Fig. 5.23 faces 4 to 6. The highest pressure is found on the top wall, i.e. face 2, which
is a result that could be expected given that the top wall is where the depressurization
devices are typically located.
For the rigid-wall case, the simulation was run up to 200 ms, whereas for the FSI
case, only 30 ms, as that was decided to be the critical point. For the rigid case, it
is interesting to see how the pressure reaches an steady value once the gas flow stops.
On the other hand, it can be seen that although the thickness of the walls is 7 cm, the
pressure levels on the walls drop to near 60% if compared to the rigid-wall case.
Eventually, the critical point on the surface of top face is studied through the Von Mises
stress and displacements. This is useful to have an idea of the amount of energy released
from the explosion and how it can deform the walls and rupture a cubic domain of 1m
side even if its thickness is 7 cm. The deformations are large and the stresses are far
over the yielding point.
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(a) Displacement evolution. (b) Stress evolution.

Figure 5.21: Critical point analysis.
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(a) Rigid wall. (b) Elastic wall.

(c) Rigid wall. (d) Elastic wall.

(e) Rigid wall. (f) Elastic wall.

Figure 5.22: Pressure comparison at the wall’s center.
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(a) Rigid wall. (b) Elastic wall.

(c) Rigid wall. (d) Elastic wall.

(e) Rigid wall. (f) Elastic wall.

Figure 5.23: Pressure comparison at the wall’s center.



Chapter 6
Conclusions

The aim of this thesis was to develop a compressible solver capable of dealing with
multi-fluid flow at high pressures. To do that, the NavierStokes element in Kratos
Multiphysics was used as a starting point to develop the particularities of the new
element. All the aspects of creating a new element and its respective tests have been
covered. In particular, the following topics have been covered when working with the
FluidDynamicsApplication.

• Derivation of the weakly_compressible_navier_stokes_element in the sym-
bolic generation context, together with its template. The corresponding tests have
also been created and its execution checks the correctness of the new element.

• In the custom_constitutive folder, a new constitutive law has been generated
that allows taking into consideration the artificial values for the dynamic and
bulk viscosity, which results from the ShockCapturingProcess. The new law is
newtonian_compressible_3d_law and newtonian_compressible_2d_law. The
respective tests have also been created and checked. The fluid constitutive law
fluid_constitutive_law has also been modified in order to use these values.

• An apply_equation_of_state_process.py which lets the user choose the equa-
tion for the fluid. The tait_equation_process implements the Tait equation for
the fluid, with positive results.

• A customized solver, navier_stokes_solver_levelset, that encompasses the
Monolithic solver with the convection process of the Two Fluids solver to move
the level-set function.

• Customized utilities that served to the project at some point, although they are
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not going to be implemented into the repository. They are calculate_cut_area,
which computes the area or volume occupied by the bubble,
calculate_normal_vector, which computes the energy rate and power emitted
from the interface and calculate_errors, which computes the L2 norm errors of
the simulations.

Important parameters to take into account are:
• Mesh resolution: The mesh has to be fine inside and around the bubble, so that 20

elements may fit along its diameter. The mesh on the fluid does not require to be
as fine although values of the order of 0.03m are needed in order to get accurate
results, as shown in the convergence tests.

• Time discretization: An automatic time increment is to be set as a value between
1× 10−4 and 1× 10−7 to satisfy 1 CFL condition.

• The convergence criteria is to be more accurate, with 10 maximum iterations for
the fluid solver, and relative and absolute tolerances of 1 × 10−5 and 1 × 10−7,
respectively.

• Eulerian error compensation must be set to True.
• The use of Restart Files may come in useful when dealing with large simulations.

6.1 Achievements

In this work a weakly-compressible element has been generated, together with all the
required additions mentioned above. The element has been successfully tested in a wide
range of tests and validated by convergence and energy conservation tests and proved
capable of simulating different geometries, from a cube to a full tank. All the tests have
proven the new element and processes to be adequate to predict the values of pressure on
the tank walls with more celerity than if using a full compressible approach. Thus, the
developed method has been shown to be an efficient strategy to analyze the transformer
tank explosions, which has not been developed before.
It is a robust formulation, and all the coded processes have also been tested and checked.
The result is a level-set tracking of a fluid-gas interface which can sustain very large
pressure gradients thanks to the addition of artificial viscosity and a correct tuning of
the parameters and settings.
Knowledge has been gained on all the aspects of the process, from programming in
Python and C++ to meshing procedures in Gid. Understanding of a finite element
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formulation has also been extensively improved and studied throughout this time.
Finally, it is interesting to point out that some of the developed code of this work
will remain in Kratos Multiphysics repository, which is open source and available to
download.

6.2 Future work-lines

The work to be done next is to manage to perform a full simulation with the correct
thickness on the walls, that is, 1 or 2 cm. If sufficient computational resources are
provided, the 3D test that was developed on the full tank could also be modeled with
FSI. With that, it could be possible to have an idea of which regions are more vulnerable
of rupture if a bubble is formed nearby.
The other point of study, which was developed also during this thesis but without
success, was the inclusion of a rupture disk capable of opening to the atmosphere if
enough pressure levels are reached. Then, the goal would be to set the nodes pertaining
to the surface of the pressure relief device a fixed atmospheric pressure. The nodes at
the center would open first and progressively towards the contour of the disk. This could
be very helpful when assessing if the elastic limit on the tanks is reached and compare
the FSI cases whenever relief devices are used or not.





Appendix A
Derivation of a Lagrangian approach
for pressure-wave propagation

This appendix shows the numerical techniques followed to derive the Lagrangian descrip-
tion of motion for the pressure-waves formulation. Both the derivation in the continua
and in the numerical fields are done.
Recalling the insentropic condition, which allows uncoupling the Energy equation, the
Navier-Stokes system in the Lagrangian form is obtained as


∂p
∂t

+ k∇ · u = 0
ρut − µ∇2u +∇p = ρf

(A.1)

It has been introduced here the bulk modulus, k = ρc2. Again, the continuity equation
is the condition for quasi-incompressibility, where the divergence of the velocity is no
longer zero. For a clear understanding of this term, the reader is referred to Section
3.3.
Now it is introduced a FE discretization. The time dependent variational form of the
problem is

(q, ∂tp) + (q, k∇ · u) = 0 ∀q ∈ Q

(v, ρ∂tu) + µ(∇v,∇u)− 〈v, n ·∇u〉Γ = 〈v, ρf〉 ∀v ∈ V
(A.2)

so it is defined Vh ⊂ V ,Qh ⊂ Q and their associated Galerkin projection of the solution
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by

Vh ≡ span{N1, ...,NNu}; Qh ≡ span{N̂1, ..., N̂Np}; (A.3)

u(x, t) ≈ uh(x, t) =
Nu∑
j=1

uj(t)Nj(x)

p(x, t) ≈ ph(x, t) =
Np∑
j=1

pj(t)N̂j(x)

∂tu(x, t) ≈ ∂tuh(x, t) =
Nu∑
j=1

∂tuj(t)Nj(x)

(A.4)

and considering the weight functions equal to the element shape functions, will lead to
obtaining the following matrices that will fill the algebraic system defined above. The
matricial notation is the following, considering the standard system-reduction as the
method to solve it.

Lij =
∫

Ω
∇Ni ·∇Nj; Gij =

∫
Ω
∇ · (Niek) N̂j; Dij = Gji

Mij =
∫

Ω
NiNj; Mpij =

∫
Ω
N̂j N̂j;

(A.5)

The semi-discrete form of these equations once discretized read
Mp

∂ph

∂t
+ kDuh = 0

ρM∂uh

∂t
− µLuh + Gph = F

(A.6)

A monolithic scheme is used to perform the time integration, with a second order
approximation

Mp
pn+1

h
−pn

h

∆t + kDun+1
h = 0

ρMun+1
h
−un

h

∆t − µLun+1/2
h + Gpn+1

h = Fn+1/2
(A.7)
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The matricial system is then,


ρ

∆tM−
µ
2 L G

kD 1
∆tMp


un+1

pn+1

 =

F + ( ρ
∆tM + µ

2 L)un

pn

∆tMp

 (A.8)

Now it is possible to write un+1 as

un+1 = ∆t
ρ

M−1(F−Gpn+1)− un (A.9)

If this expression is introduced into the continuity equation it is obtained

1
∆t2 Mp(pn+1 − pn) + k

ρ
DM−1(F−Gpn+1)− k

∆tDun = 0 (A.10)

Where M is the mass matrix, Mp the pressure mass matrix both used in the lumped
format, L the Laplacian, G the gradient and D the divergence matrix.

A.1 The discrete laplacian operator

Now let us focus on the matrices that appeared in equation (A.10). The operator
DM−1Gph is a discrete operator acting on the pressure. On the present section it will
be shown how it is possible to approximate this operator as a continuous Laplacian
acting on the nodal level, or, in other words, as the divergence of the projection of the
gradient of the pressure into the nodes. That is, DM−1G ≈ L.

Gij = −
∫

Ω
∇·(Niek) N̂j −→ Gijpj = −

∫
Ω
∇·(Niek) N̂jpj =

∫
Ω
Ni∇N̂jpj−

∫
Γ
Ni N̂j ·npj

(A.11)
Where ∇ · (Niek) = ∂Ni

∂xk
and the term ∇(N̂jpj) can be seen as the components of the

gradient of the pressure, which is computed inside the element. It will be referred to as
∇pel.
Now let us think of a continuous vector π that belongs to the finite element space Vh.
Now let us define a functional Ψ(π) which has the form

Ψ(π) =
∫

Ω
(π −∇pel)2 (A.12)
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πh =
Np∑
k=1
πkN̂k; (A.13)

Now it is clear that if Ψ(π) is minimized with respect to π, π will be the best continuous
approximation to the elemental gradient of pressure, which is discontinuous.

∂Ψ(π)
∂πi

=
∫

Ω
2Ni(N̂jπj −∇N̂jpj) = 0 −→

∫
Ω
NiN̂jπj =

∫
Ω
Ni∇N̂jpj −→Mπ = Gp

(A.14)
Therefore it has been found that π = M−1Gp is the best nodal approximation to the
gradient of pressure. Now returning to eq. (A.10),

DM−1Gph ≡ Dπ ≡∇ · π −→ DM−1Gph ≈ Lph (A.15)

With this it is stated that the divergence operator applied on the continuous vector
(which has meaning of a gradient) has the meaning of a continuous Laplacian applied to
the pressure field. Therefore it is evolving from the discontinuous level at the elements
to the discrete level at nodes. The equation that has to be solved for each time step for
the pressure variable is:

1
∆t2 Mp(pn+1 − pn) + k

ρ
(DM−1F− Lpn+1)− k

∆tDun = 0 (A.16)

This equation could also be obtained from the system
Mp

∂ph

∂t
+ kDuh = 0

ρM∂uh

∂t
− µLuh + Gph = F

(A.17)

by simply deriving the continuity equation with respect to time and substitute it in
the momentum equation. This is obtained by considering that both the bulk modulus
and the discrete operators do not depend on time, which is a wrong assumption, except
under the premise of small deformations

∂uh

∂t
= −1

ρ
M−1Gph −→Mp dp

h t− k
ρ

DM−1Gph = 0 −→Mp dp
h t− k

ρ
Lph ≈ 0 (A.18)
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A.2 Derivation of the same expression in the con-
tinuum

The same equation that was used to derive the matricial form of the problem is now
stated:


∂p
∂t

+ k∇ · u = 0
ρut − µ∇2u +∇p = ρf

(A.19)

So far no assumptions have been made, so eq. (A.19) refers to the motion of a fluid in
the presence of gravity. For most applications in acoustics, the effects of gravity can be
neglected, as they account for spatial variations of mean values of pressure, density and
temperature [35]. It will therefore be neglected.
The derivation will be made by disturbing an equilibrium state of the fluid by means
of an isentropic compression. For this reason, the properties of the fluid will oscillate
about equilibrium in a small period of time, so that

ρ = ρ0(x) + ρ′(x, t); p = p0(x) + p′(x, t) (A.20)

the deviation from equilibrium is such that |ρ′| << ρ0, |p′| << p0. The oscillatory
velocity of the fluid u can also be expected to be small. With these considerations,
when substituting (A.20) into (A.19), only the first-order terms will be retained. Also
the sound velocity, c2 = ∂p

∂ρ
, can be expanded about the equilibrium value of the density.

First the continuity equation:

∂(p0(x) + p′(x, t))
∂t

+ (ρ0(x) + ρ′(x, t))(c2
0 +O(ρ2))∇ · u = 0 (A.21)

Simplifying,

∂p′(x, t)
∂t

+ ρ0(x)c2
0(x)∇ · u = 0 −→ 1

ρ0(x)c2
0(x)

∂p′(x, t)
∂t

+∇ · u = 0 (A.22)

If the time derivative is applied,

1
ρ0(x)c2

0(x)
∂2p′(x, t)
∂t2

+∇ · ut = 0 (A.23)
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As for the momentum equation,

(ρ0(x) + ρ′(x, t))ut − µ∇2u +∇(p0(x) + p′(x, t)) = (ρ0(x) + ρ′(x, t))g (A.24)

Retaining only first order terms

ρ0(x)ut +∇(p0(x) + p′(x, t)) = (ρ0(x) + ρ′(x, t))g (A.25)

Now, by acknowledging that the equilibrium pressure and density satisfy the condition
∇p0 = ρ0g

ρ0(x)ut +∇p′(x, t) = ρ′

ρ0
∇p0 ≈ 0 −→ ut + 1

ρ0(x)∇p
′(x, t) ≈ 0 (A.26)

Now, if the divergence operator is applied,

∇ · ut + 1
ρ0(x)∇ ·∇p

′(x, t) ≈ 0 (A.27)

Eventually, by combining equations (A.27) and (A.23),

∂p′(x, t)
∂t

= c2
0(x)∇2p′(x, t) (A.28)

Our purpose is to solve the in-homogeneous acoustic wave equation in time domain.
The ordinary differential system is

Mp
d2p
dt2

(t) + Lp(t) = 0 (A.29)

A classical approximation is obtained by a centered second-order finite difference scheme
as follows

Mp
pn+1 − 2pn + pn−1

∆t2 + Lpn = 0 (A.30)

If using a mass-lumping technique it would avoid the computation of the inverse of the
mass matrix.



Appendix B
Bubble pressure through acoustic
theory

This option was explored as a tool to compute the bubble pressure by means of a
theoretical approach, instead of using the perfect gas equation. This option relies on the
acoustic theory to estimate the gas bubble expansion, which is of slow nature compared
to the relative sound-speed of the surrounding medium.
The wave dynamics of the pressure pulse are solved with the acoustic wave equation,
which has solution for the velocity potential of outward facing waves

φ = f(r − ct)
r

u = ∂φ

∂r
= 1
r
f ′(r − ct)− 1

r2f(r − ct)

p = −ρ∂φ
∂t

= ρc
f ′(r − ct)

r

(B.1)

Where φ is the potential and c is the sound velocity. Particularizing the expression for
the velocity at the value of r = R, where R is the radius of the gas-bubble

dR

dt
= −f(R− ct)

R2 + f ′(R− ct)
R

(B.2)

The time-evolution of the bubble radius can be used to obtain an expression for the
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pressure field as a function of position and time. Making a change of variable w = R−ct

dR

dt
= −f(w)

w2

(
1− ct

R

)2
+ f ′(w)

w

(
1− ct

R

)
; (B.3)

Now it is possible to solve the ODE for the condition f(w = 0) = 0. For that we need
an expression for the evolution of the radius of the sphere with respect to time. To
options have been found in literature,

R(t) = A(1− e−t/τ ); R(t) = αct (B.4)

One is exponential and the other is linear. They have been extracted from [25], which
compare in an interesting study the evolution of the pressure waves emitted from a
bubble generated in an aqueous environment by means of experimental tests and the
acoustic theory. The exponential fit is very close to the actual evolution. In both
cases A, τ ,α are fitting parameters. With the time-evolution of the bubble radius, the
pressure field as a function of position and time is obtained, and a value for the pressure
at the radial coordinate r = R, which corresponds to the bubble pressure. [25] gives the
following pressure field for the exponential law of radius evolution.

p(r, t) = ρ

4πrQ
′
(
t− r

c

)
(B.5)

Where Q′ is the volumetric expansion. However, this approach may only be useful for
the first instants of the simulation, but as will be seen, the radius variation will depend
greatly on the interaction with the reflected waves.
One is exponential and the other is linear. They have been extracted from [25], which
compare in an interesting study the evolution of the pressure waves emitted from a
bubble generated in an aqueous environment by means of experimental tests and the
acoustic theory. The exponential fit is very close to the actual evolution. In both cases
A, τ ,α are fitting parameters. With the



Appendix C
Developed code

In this appendix the most important and representative Python and C++ files developed
during this work are collected.

C.1 Symbolic generation

1 from sympy import ∗
2 from K r a t o s M u l t i p h y s i c s import ∗
3 from K r a t o s M u l t i p h y s i c s . s y m p y _ f e _ u t i l i t i e s import ∗
4
5 ## S e t t i n g s e x p l a n a t i o n
6 # DIMENSION TO COMPUTE:
7 # This symbol ic g e n e r a t o r i s v a l i d f o r both 2D and 3D c a s e s . S i n c e the element has been programed

with a dimension template i n Kratos ,
8 # i t i s a d v i s e d to s e t the dim_to_compute f l a g as " Both " . In t h i s c a s e the g e n e r a t e d . cpp f i l e w i l l

c o n t a i n both 2D and 3D implementat ions .
9 # LINEARISATION SETTINGS :

10 # FullNR c o n s i d e r s the c o n v e c t i v e v e l o c i t y as " v−vmesh " , hence v i s taken i n t o account i n the
d e r i v a t i o n o f the LHS and RHS.

11 # Picard ( a . k . a . QuasiNR ) c o n s i d e r s the c o n v e c t i v e v e l o c i t y as " a " , thus i t i s c o n s i d e r e d as a
c o n s t a n t i n the d e r i v a t i o n o f the LHS and RHS.

12 # DIVIDE BY RHO:
13 # I f s e t to true , d i v i d e s the mass c o n s e r v a t i o n e q u a t i o n by rho i n o r d e r to have a b e t t e r c o n d i t i o n e d

matrix . Otherwise the o r i g i n a l form i s kept .
14 # ARTIFICIAL COMPRESSIBILITY :
15 # I f s e t to true , the time d e r i v a t i v e o f the d e n s i t y i s i n t r o d u c e d i n the mass c o n s e r v a t i o n e q u a t i o n

t o g e t h e r with the s t a t e e q u a t i o n
16 # dp/ drho=c ^2 ( being c the sound v e l o c i t y ) . Besides , the v e l o c i t y d i v e r g e n c e i s not c o n s i d e r e d to be

0 . These assumptions add some e x t r a terms
17 # to the u s u a l Navier−Stokes e q u a t i o n s that act as a weak c o m p r e s s i b i l i t y c o n t r o l l e d by the value o f

" c " .
18 # CONVECTIVE TERM:
19 # I f s e t to true , the c o n v e c t i v e term i s taken i n t o account i n the c a l c u l a t i o n o f the v a r i a t i o n a l

form . This a l l o w s g e n e r a t i n g both
20 # Navier−Stokes and Stokes e lements .
21
22 ## Symbolic g e n e r a t i o n s e t t i n g s
23 mode = " c "
24 d o _ s i m p l i f i c a t i o n s = F a l s e
25 dim_to_compute = " Both " # S p a t i a l dimensions to compute . Options : "2D" , " 3D" , " Both "
26 divide_by_rho = True # Divide the mass c o n s e r v a t i o n e q u a t i o n by rho
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27 ASGS_stabi l izat ion = True # Consider ASGS s t a b i l i z a t i o n terms
28 f o r m u l a t i o n = " WeaklyCompressibleNavierStokes " # Element type . Options : "

WeaklyCompressibleNavierStokes " , " Stokes "
29
30 i f f o r m u l a t i o n == " WeaklyCompressibleNavierStokes " :
31 convective_term = True
32 a r t i f i c i a l _ c o m p r e s s i b i l i t y = True
33 l i n e a r i s a t i o n = " Picard " # Convective term l i n e a r i s a t i o n type . Options : " Picard " , " FullNR "
34 output_fi lename = " weakly_compress ible_navier_stokes . cpp "
35 template_fi lename = " weakly_compressible_navier_stokes_cpp_template . cpp "
36 e l i f f o r m u l a t i o n == " Stokes " :
37 convective_term = F a l s e
38 a r t i f i c i a l _ c o m p r e s s i b i l i t y = F a l s e
39 output_fi lename = " symbol ic_stokes . cpp "
40 template_fi lename = " symbolic_stokes_cpp_template . cpp "
41 e l s e :
42 err_msg = " Wrong f o r m u l a t i o n . Given \ ' " + f o r m u l a t i o n + " \ ' . A v a i l a b l e o p t i o n s ar e \ '

WeaklyCompressibleNavierStokes \ ' and \ ' Stokes \ ' . "
43 r a i s e Exception ( err_msg )
44
45 info_msg = " \n "
46 info_msg += " Element g e n e r a t o r s e t t i n g s : \ n "
47 info_msg += " \ t − Element type : " + f o r m u l a t i o n + " \n "
48 info_msg += " \ t − Dimension : " + dim_to_compute + " \n "
49 info_msg += " \ t − ASGS s t a b i l i z a t i o n : " + s t r ( ASGS_stabi l izat ion ) + " \n "
50 info_msg += " \ t − Pseudo−c o m p r e s s i b i l i t y : " + s t r ( a r t i f i c i a l _ c o m p r e s s i b i l i t y ) + " \n "
51 info_msg += " \ t − Divide mass c o n s e r v a t i o n by rho : " + s t r ( divide_by_rho ) + " \n "
52 p r i n t ( info_msg )
53
54 #TODO: DO ALL ELEMENT TYPES FOR N−S TOO
55 i f f o r m u l a t i o n == " Navi erSt okes " or f o r m u l a t i o n == " WeaklyCompressibleNavierStokes " :
56 i f ( dim_to_compute == " 2D" ) :
57 dim_vector = [ 2 ]
58 nnodes_vector = [ 3 ] # t r i a
59 e l i f ( dim_to_compute == " 3D" ) :
60 dim_vector = [ 3 ]
61 nnodes_vector = [ 4 ] # t e t
62 e l i f ( dim_to_compute == " Both " ) :
63 dim_vector = [ 2 , 3 ]
64 nnodes_vector = [ 3 , 4 ] # t r i a , t e t
65 e l i f f o r m u l a t i o n == " Stokes " :
66 # a l l l i n e a r e lements
67 i f ( dim_to_compute == " 2D" ) :
68 dim_vector = [ 2 , 2 ]
69 nnodes_vector = [ 3 , 4 ] # t r i a , quad
70 e l i f ( dim_to_compute == " 3D" ) :
71 dim_vector = [ 3 , 3 , 3 ]
72 nnodes_vector = [ 4 , 6 , 8 ] # tet , prism , hex
73 e l i f ( dim_to_compute == " Both " ) :
74 dim_vector = [ 2 , 2 , 3 , 3 , 3 ]
75 nnodes_vector = [ 3 , 4 , 4 , 6 , 8 ] # t r i a , quad , tet , prism , hex
76
77 ## I n i t i a l i z e the o u t s t r i n g to be f i l l e d with the template . cpp f i l e
78 p r i n t ( " Reading template f i l e \ ' "+ template_fi lename + " \ '\ n " )
79 t e m p l a t e f i l e = open ( template_fi lename )
80 o u t s t r i n g = t e m p l a t e f i l e . read ( )
81
82 f o r dim , nnodes i n z i p ( dim_vector , nnodes_vector ) :
83
84 i f ( dim == 2) :
85 s t r a i n _ s i z e = 3
86 e l i f ( dim == 3) :
87 s t r a i n _ s i z e = 6
88
89 impose_partion_of_unity = F a l s e
90 N,DN = DefineShapeFunctions ( nnodes , dim , impose_partion_of_unity )
91
92 ## Unknown f i e l d s d e f i n i t i o n
93 v = DefineMatrix ( ' v ' , nnodes , dim ) # Current s t e p v e l o c i t y ( v ( i , j ) r e f e r s to v e l o c i t y o f

node i component j )
94 vn = DefineMatrix ( ' vn ' , nnodes , dim ) # Previous s t e p v e l o c i t y
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95 vnn = DefineMatrix ( ' vnn ' , nnodes , dim ) # 2 p r e v i o u s s t e p v e l o c i t y
96 p = Def ineVector ( ' p ' , nnodes ) # P r e s s u r e
97 pn = Def ineVector ( ' pn ' , nnodes ) # Previous s t e p p r e s s u r e
98 pnn = Def ineVector ( ' pnn ' , nnodes ) # 2 p r e v i o u s s t e p p r e s s u r e
99

100 ## Fluid p r o p e r t i e s
101 i f a r t i f i c i a l _ c o m p r e s s i b i l i t y :
102 # I f weak−c o m p r e s s i b i l i t y i s on , the d e n s i t y ( rho ) and speed o f sound ( c ) become nodal

v a r i a b l e s
103 rho_nodes = Def ineVector ( ' rho ' , nnodes ) # Nodal d e n s i t y
104 c_nodes = Def ineVector ( ' c ' , nnodes ) # Nodal sound speed
105 rho = rho_nodes . t r a n s p o s e ( ) ∗N # Density Gauss pt . i n t e r p o l a t i o n
106 c = c_nodes . t r a n s p o s e ( ) ∗N # Sound speed Gauss pt . i n t e r p o l a t i o n
107 rho = rho [ 0 ]
108 c = c [ 0 ]
109 e l s e :
110 # With no weak−c o m p r e s s i b i l i t y , the d e n s i t y ( rho ) i s r e t r i e v e d from the element p r o p e r t i e s

and t h e r e i s no speed o f sound need
111 rho = Symbol ( ' rho ' , p o s i t i v e = True ) # Density
112
113 ## Test f u n c t i o n s d e f i n i t i o n
114 w = DefineMatrix ( 'w ' , nnodes , dim ) # V e l o c i t y f i e l d t e s t f u n c t i o n
115 q = Def ineVector ( ' q ' , nnodes ) # P r e s s u r e f i e l d t e s t f u n c t i o n
116
117 ## Other data d e f i n i t i o n s
118 f = Def ineMatrix ( ' f ' , nnodes , dim ) # Forcing term
119
120 ## C o n s t i t u t i v e matrix d e f i n i t i o n
121 C = DefineSymmetricMatrix ( 'C ' , s t r a i n _ s i z e , s t r a i n _ s i z e )
122
123 ## S t r e s s v e c t o r d e f i n i t i o n
124 s t r e s s = Def ineVector ( ' s t r e s s ' , s t r a i n _ s i z e )
125
126 ## Other s i m b o l s d e f i n i t i o n
127 dt = Symbol ( ' dt ' , p o s i t i v e = True ) # Time increment
128 nu = Symbol ( ' nu ' , p o s i t i v e = True ) # Kinematic v i s c o s i t y (mu/ rho )
129 mu = Symbol ( 'mu ' , p o s i t i v e = True ) # Dynamic v i s c o s i t y
130 h = Symbol ( ' h ' , p o s i t i v e = True )
131 dyn_tau = Symbol ( ' dyn_tau ' , p o s i t i v e = True )
132 stab_c1 = Symbol ( ' stab_c1 ' , p o s i t i v e = True )
133 stab_c2 = Symbol ( ' stab_c2 ' , p o s i t i v e = True )
134
135 ## Backward d i f f e r e n c e s c o e f f i c i e n t s
136 bdf0 = Symbol ( ' bdf0 ' )
137 bdf1 = Symbol ( ' bdf1 ' )
138 bdf2 = Symbol ( ' bdf2 ' )
139
140 ## Data i n t e r p o l a t i o n to the Gauss p o i n t s
141 f_gauss = f . t r a n s p o s e ( ) ∗N
142 v_gauss = v . t r a n s p o s e ( ) ∗N
143
144 ## Convective v e l o c i t y d e f i n i t i o n
145 i f convective_term :
146 i f ( l i n e a r i s a t i o n == " Picard " ) :
147 vconv = DefineMatrix ( ' vconv ' , nnodes , dim ) # Convective v e l o c i t y d e f i n e d a symbol
148 e l i f ( l i n e a r i s a t i o n == " FullNR " ) :
149 vmesh = DefineMatrix ( ' vmesh ' , nnodes , dim ) # Mesh v e l o c i t y
150 vconv = v − vmesh # Convective v e l o c i t y d e f i n e d as a v e l o c i t y

dependent v a r i a b l e
151 e l s e :
152 r a i s e Exception ( " Wrong l i n e a r i s a t i o n \ ' " + l i n e a r i s a t i o n + " \ ' s e l e c t e d . A v a i l a b l e

o p t i o n s are \ ' Picard \ ' and \ ' FullNR \ ' . " )
153 vconv_gauss = vconv . t r a n s p o s e ( ) ∗N
154
155 ## Compute the s t a b i l i z a t i o n parameters
156 i f convective_term :
157 stab_norm_a = 0 . 0
158 f o r i i n range ( 0 , dim ) :
159 stab_norm_a += vconv_gauss [ i ] ∗ ∗ 2
160 stab_norm_a = s q r t ( stab_norm_a )
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161 tau1 = 1 . 0 / ( ( rho ∗dyn_tau ) / dt + ( stab_c2 ∗ rho ∗stab_norm_a ) /h + ( stab_c1 ∗mu) /( h∗h ) ) #
S t a b i l i z a t i o n parameter 1

162 tau2 = mu + ( stab_c2 ∗ rho ∗stab_norm_a∗h ) / stab_c1 #
S t a b i l i z a t i o n parameter 2

163 e l s e :
164 tau1 = 1 . 0 / ( ( rho ∗dyn_tau ) / dt + ( stab_c1 ∗mu) /( h∗h ) ) # S t a b i l i z a t i o n parameter 1
165 tau2 = ( h∗h ) / ( stab_c1 ∗ tau1 ) # S t a b i l i z a t i o n parameter 2
166
167 ## Compute the r e s t o f magnitudes at the Gauss p o i n t s
168 a c c e l _ g a u s s = ( bdf0 ∗v + bdf1 ∗vn + bdf2 ∗vnn ) . t r a n s p o s e ( ) ∗N
169
170 p_gauss = p . t r a n s p o s e ( ) ∗N
171 i f a r t i f i c i a l _ c o m p r e s s i b i l i t y :
172 pder_gauss = ( bdf0 ∗p + bdf1 ∗pn + bdf2 ∗pnn ) . t r a n s p o s e ( ) ∗N
173
174 w_gauss = w. t r a n s p o s e ( ) ∗N
175 q_gauss = q . t r a n s p o s e ( ) ∗N
176
177 ## Gradients computation ( f l u i d dynamics g r a d i e n t )
178 grad_w = DfjDxi (DN,w)
179 grad_q = DfjDxi (DN, q )
180 grad_p = DfjDxi (DN, p )
181 grad_v = DfjDxi (DN, v )
182 i f a r t i f i c i a l _ c o m p r e s s i b i l i t y :
183 grad_rho = DfjDxi (DN, rho_nodes )
184
185 div_w = div (DN,w)
186 div_v = div (DN, v )
187 i f convective_term :
188 div_vconv = div (DN, vconv )
189
190 grad_sym_v = grad_sym_voigtform (DN, v ) # Symmetric g r a d i e n t o f v i n Voigt n o t a t i o n
191 grad_w_voigt = grad_sym_voigtform (DN,w) # Symmetric g r a d i e n t o f w i n Voigt n o t a t i o n
192 # R e c a l l that the grad (w) : sigma c o n t r a c t i o n e q u a l s grad_sym (w) ∗ sigma i n Voigt n o t a t i o n s i n c e

sigma i s a symmetric t e n s o r .
193
194 # Convective term d e f i n i t i o n
195 i f convective_term :
196 convective_term_gauss = ( vconv_gauss . t r a n s p o s e ( ) ∗grad_v )
197 rho_convective_term_gauss = vconv_gauss . t r a n s p o s e ( ) ∗ grad_rho
198
199 ## Compute g a l e r k i n f u n c t i o n a l
200 # Navier−Stokes f u n c t i o n a l
201 i f ( divide_by_rho ) :
202 r v _ g a l e r k i n = rho ∗w_gauss . t r a n s p o s e ( ) ∗ f_gauss − rho ∗w_gauss . t r a n s p o s e ( ) ∗ a c c e l _ g a u s s −

grad_w_voigt . t r a n s p o s e ( ) ∗ s t r e s s + div_w∗ p_gauss − q_gauss ∗div_v
203 i f a r t i f i c i a l _ c o m p r e s s i b i l i t y :
204 r v _ g a l e r k i n −= ( 1 / ( rho ∗ c ∗ c ) ) ∗ q_gauss ∗ pder_gauss
205 i f convective_term :
206 r v _ g a l e r k i n −= (1/ rho ) ∗ q_gauss ∗ rho_convective_term_gauss
207 i f convective_term :
208 r v _ g a l e r k i n −= rho ∗w_gauss . t r a n s p o s e ( ) ∗ convective_term_gauss . t r a n s p o s e ( )
209 e l s e :
210 r v _ g a l e r k i n = rho ∗w_gauss . t r a n s p o s e ( ) ∗ f_gauss − rho ∗w_gauss . t r a n s p o s e ( ) ∗ a c c e l _ g a u s s −

grad_w_voigt . t r a n s p o s e ( ) ∗ s t r e s s + div_w∗ p_gauss − rho ∗ q_gauss ∗div_v
211 i f a r t i f i c i a l _ c o m p r e s s i b i l i t y :
212 r v _ g a l e r k i n −= ( 1 / ( c ∗ c ) ) ∗ q_gauss ∗ pder_gauss
213 i f convective_term :
214 r v _ g a l e r k i n −= q_gauss ∗ rho_convective_term_gauss
215 i f convective_term :
216 r v _ g a l e r k i n −= rho ∗w_gauss . t r a n s p o s e ( ) ∗ convective_term_gauss . t r a n s p o s e ( )
217
218 ## S t a b i l i z a t i o n f u n c t i o n a l terms
219 # Momentum c o n s e r v a t i o n r e s i d u a l
220 # Note that the v i s c o u s s t r e s s term i s dropped s i n c e l i n e a r e lements ar e used
221 v e l _ r e s i d u a l = rho ∗ f_gauss − rho ∗ a c c e l _ g a u s s − grad_p
222 i f convective_term :
223 v e l _ r e s i d u a l −= rho ∗ convective_term_gauss . t r a n s p o s e ( )
224
225 # Mass c o n s e r v a t i o n r e s i d u a l
226 i f ( divide_by_rho ) :
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227 mas_residual = −div_v
228 i f a r t i f i c i a l _ c o m p r e s s i b i l i t y :
229 mas_residual −= ( 1 / ( rho ∗ c ∗ c ) ) ∗ pder_gauss
230 i f convective_term :
231 mas_residual −= (1/ rho ) ∗ rho_convective_term_gauss
232 e l s e :
233 mas_residual = −rho ∗div_v
234 i f a r t i f i c i a l _ c o m p r e s s i b i l i t y :
235 mas_residual −= ( 1 / ( c ∗ c ) ) ∗ pder_gauss
236 i f convective_term :
237 mas_residual −= rho_convective_term_gauss
238
239 v e l _ s u b s c a l e = tau1 ∗ v e l _ r e s i d u a l
240 mas_subscale = tau2 ∗ mas_residual
241
242 # Compute the ASGS s t a b i l i z a t i o n terms u s i n g the momentum and mass c o n s e r v a t i o n r e s i d u a l s above
243 i f ( divide_by_rho ) :
244 rv_stab = grad_q . t r a n s p o s e ( ) ∗ v e l _ s u b s c a l e
245 e l s e :
246 rv_stab = rho ∗grad_q . t r a n s p o s e ( ) ∗ v e l _ s u b s c a l e
247 i f convective_term :
248 rv_stab += rho ∗ vconv_gauss . t r a n s p o s e ( ) ∗grad_w∗ v e l _ s u b s c a l e
249 rv_stab += rho ∗ div_vconv ∗w_gauss . t r a n s p o s e ( ) ∗ v e l _ s u b s c a l e
250 rv_stab += div_w∗ mas_subscale
251
252 ## Add the s t a b i l i z a t i o n terms to the o r i g i n a l r e s i d u a l terms
253 i f ( ASGS_stabi l izat ion ) :
254 rv = r v _ g a l e r k i n + rv_stab
255 e l s e :
256 rv = r v _ g a l e r k i n
257
258 ## Def ine DOFs and t e s t f u n c t i o n v e c t o r s
259 d o f s = Matrix ( z e r o s ( nnodes ∗( dim+1) , 1) )
260 t e s t f u n c = Matrix ( z e r o s ( nnodes ∗( dim+1) , 1) )
261
262 f o r i i n range ( 0 , nnodes ) :
263
264 # V e l o c i t y DOFs and t e s t f u n c t i o n s
265 f o r k i n range ( 0 , dim ) :
266 d o f s [ i ∗( dim+1)+k ] = v [ i , k ]
267 t e s t f u n c [ i ∗( dim+1)+k ] = w[ i , k ]
268
269 # P r e s s u r e DOFs and t e s t f u n c t i o n s
270 d o f s [ i ∗( dim+1)+dim ] = p [ i , 0 ]
271 t e s t f u n c [ i ∗( dim+1)+dim ] = q [ i , 0 ]
272
273 ## Compute LHS and RHS
274 # For the RHS computation one wants the r e s i d u a l o f the p r e v i o u s i t e r a t i o n ( r e s i d u a l based

f o r m u l a t i o n ) . By t h i s r ea s o n the s t r e s s i s
275 # i n c l u d e d as a symbol ic v a r i a b l e , which i s assumed to be passed as an argument from the p r e v i o u s

i t e r a t i o n database .
276 p r i n t ( " Computing " + s t r ( dim ) + "D RHS Gauss p o i n t c o n t r i b u t i o n \n " )
277 rhs = Compute_RHS( rv . copy ( ) , t e s t f u n c , d o _ s i m p l i f i c a t i o n s )
278 rhs_out = OutputVector_Col lect ingFactors ( rhs , " rhs " , mode )
279
280 # Compute LHS (RHS( r e s i d u a l ) d i f f e r e n c t i a t i o n w. r . t . the DOFs)
281 # Note that the ' s t r e s s ' ( symbol ic v a r i a b l e ) i s s u b s t i t u t e d by 'C∗grad_sym_v ' f o r the LHS

d i f f e r e n c t i a t i o n . Otherwise the v e l o c i t y terms
282 # w i t h i n the v e l o c i t y symmetryc g r a d i e n t would not be c o n s i d e r e d i n the d i f f e r e n c t i a t i o n , meaning

that the s t r e s s would be c o n s i d e r e d as
283 # a v e l o c i t y independent c o n s t a n t i n the LHS .
284 p r i n t ( " Computing " + s t r ( dim ) + "D LHS Gauss p o i n t c o n t r i b u t i o n \n " )
285 S u b s t i t u t e M a t r i x V a l u e ( rhs , s t r e s s , C∗grad_sym_v )
286 l h s = Compute_LHS( rhs , t e s t f u n c , dofs , d o _ s i m p l i f i c a t i o n s ) # Compute the LHS ( c o n s i d e r i n g s t r e s s

as C∗(B∗v ) to d e r i v e w. r . t . v )
287 lhs_out = OutputMatrix_Col lect ingFactors ( lhs , " l h s " , mode )
288
289 ## Replace the computed RHS and LHS i n the template o u t s t r i n g
290 o u t s t r i n g = o u t s t r i n g . r e p l a c e ( " // s u b s t i t u t e _ l h s _ " + s t r ( dim ) + 'D ' + s t r ( nnodes ) + 'N ' , lhs_out )
291 o u t s t r i n g = o u t s t r i n g . r e p l a c e ( " // subst i tute_rhs_ " + s t r ( dim ) + 'D ' + s t r ( nnodes ) + 'N ' , rhs_out )
292
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293 ## Write the m o d i f i e d template
294 p r i n t ( " Writing output f i l e \ ' " + output_fi lename + " \ ' " )
295 out = open ( output_filename , 'w ' )
296 out . w r i t e ( o u t s t r i n g )
297 out . c l o s e ( )

C.2 Example MainKratos.py file

1 from __future__ import p r i n t _ f u n c t i o n , absolute_import , d i v i s i o n #makes K r a t o s M u l t i p h y s i c s backward
compatible with python 2 . 6 and 2 . 7

2
3 import K r a t o s M u l t i p h y s i c s
4 from K r a t o s M u l t i p h y s i c s . FluidDynamicsAppl icat ion . f l u i d _ d y n a m i c s _ a n a l y s i s import FluidDynamicsAnalysis
5 from K r a t o s M u l t i p h y s i c s . FluidDynamicsAppl icat ion import CalculateCutArea
6 from K r a t o s M u l t i p h y s i c s . FluidDynamicsAppl icat ion import CalculateNormalVector
7
8 import s y s
9 import time

10 import numpy as np
11
12 c l a s s FluidDynamicsAnalysisWithFlush ( FluidDynamicsAnalysis ) :
13
14 d e f __init__ ( s e l f , model , project_parameters , f l u s h _ f r e q u e n c y =10.0) :
15 super ( FluidDynamicsAnalysisWithFlush , s e l f ) . __init__ ( model , project_parameters )
16 s e l f . f l u s h _ f r e q u e n c y = f l u s h _ f r e q u e n c y
17 s e l f . l a s t _ f l u s h = time . time ( )
18 s e l f . time_vec = np . array ( [ ] )
19 s e l f . energy_vec = np . array ( [ ] )
20 s e l f . work_vec = np . array ( [ ] )
21 s e l f . bubble_radius = 0 . 0 3
22 s e l f . bubble_center = np . array ( [ 1 , 1 , 2 ] ) /3
23
24 d e f I n i t i a l i z e ( s e l f ) :
25 super ( FluidDynamicsAnalysisWithFlush , s e l f ) . I n i t i a l i z e ( )
26 s e l f . w a l l = s e l f . model [ ' FluidModelPart . NoSlip3D_Wall ' ]
27 K r a t o s M u l t i p h y s i c s . CalculateNodalAreaProcess ( s e l f . _GetSolver ( ) . main_model_part , 2 ) . Execute ( )
28 f o r node i n s e l f . _GetSolver ( ) . GetComputingModelPart ( ) . Nodes :
29 d i s t a n c e = ( ( node .X − s e l f . bubble_center [ 0 ] ) ∗∗2 + ( node .Y − s e l f . bubble_center [ 1 ] ) ∗∗2 + (

node . Z − s e l f . bubble_center [ 2 ] ) ∗∗2) ∗ ∗ 0 . 5 − s e l f . bubble_radius
30 node . S e t S o l u t i o n S t e p V a l u e ( K r a t o s M u l t i p h y s i c s .DISTANCE, d i s t a n c e )
31 s e l f . mass = 3e−4
32 s e l f . E0 = 0
33
34 d e f ApplyBoundaryConditions ( s e l f ) :
35 super ( FluidDynamicsAnalysisWithFlush , s e l f ) . ApplyBoundaryConditions ( )
36 gamma = 1 . 4 7
37 mu = 5 . 6 8 e6
38 cp = 1860
39 T = 200 + 273
40
41 c a l c _ t o t a l _ a r e a=CalculateCutArea ( s e l f . _GetSolver ( ) . GetComputingModelPart ( ) )
42 t o t a l _ a r e a = c a l c _ t o t a l _ a r e a . Execute ( )
43 i f ( s e l f . _GetSolver ( ) . GetComputingModelPart ( ) . P r o c e s s I n f o [ K r a t o s M u l t i p h y s i c s .TIME] < 50 e −3) :
44 s e l f . mass += 5∗ s e l f . _GetSolver ( ) . GetComputingModelPart ( ) . P r o c e s s I n f o [ K r a t o s M u l t i p h y s i c s .

DELTA_TIME]
45 rho_gas = s e l f . mass/ t o t a l _ a r e a
46 e1 = cp /gamma∗T
47 p1 = rho_gas ∗(gamma − 1) ∗ e1
48
49
50 f o r node i n s e l f . _GetSolver ( ) . GetComputingModelPart ( ) . Nodes :
51 d = node . GetSolut ionStepValue ( K r a t o s M u l t i p h y s i c s .DISTANCE)
52 node . Free ( K r a t o s M u l t i p h y s i c s .PRESSURE)
53 node . Free ( K r a t o s M u l t i p h y s i c s . DENSITY)
54 i f ( d <= 0) :
55 node . Fix ( K r a t o s M u l t i p h y s i c s .PRESSURE)
56 node . S e t S o l u t i o n S t e p V a l u e ( K r a t o s M u l t i p h y s i c s .PRESSURE, p1 )
57 node . Fix ( K r a t o s M u l t i p h y s i c s .PRESSURE)
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58 node . S e t S o l u t i o n S t e p V a l u e ( K r a t o s M u l t i p h y s i c s . DENSITY, rho_gas )
59
60
61 d e f F i n a l i z e S o l u t i o n S t e p ( s e l f ) :
62 super ( FluidDynamicsAnalysisWithFlush , s e l f ) . F i n a l i z e S o l u t i o n S t e p ( )
63
64 i f s e l f . p a r a l l e l _ t y p e == "OpenMP" :
65 now = time . time ( )
66 i f now − s e l f . l a s t _ f l u s h > s e l f . f l u s h _ f r e q u e n c y :
67 s y s . s t d o u t . f l u s h ( )
68 s e l f . l a s t _ f l u s h = now
69
70
71
72 i f __name__ == "__main__" :
73
74 with open ( " Pr o je c tP ar a me t er s . j s o n " , ' r ' ) as p a r a m e t e r _ f i l e :
75 parameters = K r a t o s M u l t i p h y s i c s . Parameters ( p a r a m e t e r _ f i l e . read ( ) )
76
77 model = K r a t o s M u l t i p h y s i c s . Model ( )
78 s i m u l a t i o n = FluidDynamicsAnalysisWithFlush ( model , parameters )
79 s i m u l a t i o n . Run ( )

C.3 Equation of state

C.3.1 Tait equation

1 #i n c l u d e " t a i t _ e q u a t i o n _ p r o c e s s . h "
2
3 namespace Kratos
4 {
5 /∗ Publ ic f u n c t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
6 TaitEquat ionProcess : : TaitEquat ionProcess (
7 ModelPart& rModelPart ,
8 Parameters& rParameters ) :
9 mrModelPart ( rModelPart )

10 {
11 // Read s e t t i n g s from parameters
12 KRATOS_ERROR_IF_NOT( rParameters . Has ( " rho_0 " ) ) <<
13 " In Tait Equation P r o c e s s : \ ' rho_0 \ ' not found i n parameters . " << std : : endl ;
14
15 Parameters rhoParam = rParameters . GetValue ( " rho_0 " ) ;
16 mrho_0 = rhoParam . GetDouble ( ) ;
17
18 KRATOS_ERROR_IF( mrho_0 <= 0 . 0 ) <<
19 " In Tait Equation P r o c e s s : I n c o r r e c t value f o r \ ' rho_0 \ ' parameter : " << std : : endl <<
20 " Expected a p o s i t i v e double , got " << mrho_0 << std : : endl ;
21
22 KRATOS_ERROR_IF_NOT( rParameters . Has ( "p_0" ) ) <<
23 " In Tait Equation P r o c e s s : \ 'p_0\ ' not found i n parameters . " << std : : endl ;
24
25 Parameters PressureParam = rParameters . GetValue ( "p_0" ) ;
26 mp_0 = PressureParam . GetDouble ( ) ;
27
28 KRATOS_ERROR_IF( mp_0 <= 0 . 0 ) <<
29 " In Tait Equation P r o c e s s : I n c o r r e c t value f o r \ 'p_0\ ' parameter : " << std : : endl <<
30 " Expected a p o s i t i v e double , got " << mp_0 << std : : endl ;
31
32 KRATOS_ERROR_IF_NOT( rParameters . Has ( " k_0 " ) ) <<
33 " In Tait Equation P r o c e s s : \ 'k_0\ ' not found i n parameters . " << std : : endl ;
34
35 Parameters kParam = rParameters . GetValue ( " k_0 " ) ;
36 mk_0 = kParam . GetDouble ( ) ;
37
38 KRATOS_ERROR_IF_NOT( rParameters . Has ( " t h e t a " ) ) <<
39 " In Tait Equation P r o c e s s : \ ' t h e t a \ ' not found i n parameters . " << std : : endl ;
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40
41 Parameters ThetaParam = rParameters . GetValue ( " t h e t a " ) ;
42 mtheta = ThetaParam . GetDouble ( ) ;
43 }
44
45 TaitEquat ionProcess : : ~ TaitEquat ionProcess ( )
46 {
47
48 }
49
50 void TaitEquat ionProcess : : Execute ( )
51 {
52 t h i s −>AssignTaitEquation ( ) ;
53 }
54
55 void TaitEquat ionProcess : : E x e c u t e I n i t i a l i z e ( )
56 {
57 t h i s −>ValidateModelPart ( ) ;
58 }
59
60 void TaitEquat ionProcess : : E x e c u t e I n i t i a l i z e S o l u t i o n S t e p ( )
61 {
62 t h i s −>AssignTaitEquation ( ) ;
63 }
64
65 std : : s t r i n g TaitEquat ionProcess : : I n f o ( ) c o n s t
66 {
67 r e t u r n " TaitEquat ionProcess " ;
68 }
69
70 void TaitEquat ionProcess : : P r i n t I n f o ( std : : ostream& rOStream ) c o n s t
71 {
72 rOStream << " TaitEquat ionProcess " ;
73 }
74
75 void TaitEquat ionProcess : : PrintData ( std : : ostream& rOStream ) c o n s t
76 {
77 }
78
79 /∗ P r o t e c t e d f u n c t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
80
81 void TaitEquat ionProcess : : ValidateModelPart ( )
82 {
83 // Nodal v a r i a b l e s
84 KRATOS_ERROR_IF_NOT( mrModelPart . G e t N o d a l S o l u t i o n S t e p V a r i a b l e s L i s t ( ) . Has (DENSITY) ) <<
85 " \ 'DENSITY\ ' v a r i a b l e i s not added to the ModelPart nodal data . " << std : : endl ;
86
87 KRATOS_ERROR_IF_NOT( mrModelPart . G e t N o d a l S o l u t i o n S t e p V a r i a b l e s L i s t ( ) . Has (SOUND_VELOCITY) ) <<
88 " \ 'SOUND_VELOCITY\ ' v a r i a b l e i s not added to the ModelPart nodal data . " << std : : endl ;
89
90 KRATOS_ERROR_IF_NOT( mrModelPart . G e t N o d a l S o l u t i o n S t e p V a r i a b l e s L i s t ( ) . Has (PRESSURE) ) <<
91 " \ 'PRESSURE\ ' v a r i a b l e i s not added to the ModelPart nodal data . " << std : : endl ;
92 }
93
94 void TaitEquat ionProcess : : Ass ignTaitEquation ( )
95 {
96 i n t num_nodes = mrModelPart . NumberOfNodes ( ) ;
97 // #pragma omp p a r a l l e l f o r f i r s t p r i v a t e ( num_nodes , ambient_temperature )
98 f o r ( i n t i = 0 ; i < num_nodes ; ++i )
99 {

100 ModelPart : : N o d e I t e r a t o r iNode = mrModelPart . NodesBegin ( ) + i ;
101 double p r e s s u r e = iNode−>FastGetSolut ionStepValue (PRESSURE) ;
102 double mod_rho = mrho_0∗ std : : pow ( ( p r e s s u r e − mp_0) /mk_0 + 1 ,1/ mtheta ) ;
103 double modified_c = std : : pow(mk_0∗ mtheta ∗ std : : pow( mod_rho/mrho_0 , mtheta − 1) /mrho_0 , 0 . 5 ) ;
104 iNode−>FastGetSolut ionStepValue (DENSITY) = mod_rho ;
105 iNode−>SetValue (SOUND_VELOCITY, modified_c ) ;
106 }
107
108 }
109
110 /∗ External f u n c t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
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111
112 // / output stream f u n c t i o n
113 i n l i n e std : : ostream& o p e r a t o r << (
114 std : : ostream& rOStream ,
115 c o n s t TaitEquat ionProcess& rThis )
116 {
117 rThis . PrintData ( rOStream ) ;
118 r e t u r n rOStream ;
119 }
120
121 }

C.4 Constitutive laws

C.4.1 Fluid Constitutive law

1 // | / |
2 // ' / __| _` | __| _ \ __|
3 // . \ | ( | | ( | \__ `
4 // _| \_\_| \__,_| \__| \___/ ____/
5 // Multi−Phys ics
6 //
7 // L i c e n s e : BSD L i c e n s e
8 // Kratos d e f a u l t l i c e n s e : k r a t o s / l i c e n s e . t x t
9 //

10 // Main authors : J o r d i Cotela
11 //
12
13 #i n c l u d e " f l u i d _ c o n s t i t u t i v e _ l a w . h "
14
15 namespace Kratos {
16
17 // L i f e c y c l e /////////////////////////////////////////////////////////////////
18
19 FluidConst i tut iveLaw : : FluidConst i tut iveLaw ( ) :
20 Constitut iveLaw ( ) {}
21
22 FluidConst i tut iveLaw : : FluidConst i tut iveLaw ( c o n s t FluidConst i tut iveLaw& rOther ) :
23 Constitut iveLaw ( rOther ) {}
24
25 FluidConst i tut iveLaw : : ~ FluidConst i tut iveLaw ( ) {}
26
27 // Publ ic o p e r a t i o n s //////////////////////////////////////////////////////////
28
29 ConstitutiveLaw : : P o i n t e r FluidConst i tut iveLaw : : Clone ( ) c o n s t {
30 KRATOS_ERROR << " C a l l i n g base FluidConst i tut iveLaw : : Clone method . This "
31 " c l a s s should not be i n s t a n t i a t e d . P l e a s e check your "
32 " c o n s t i t u t i v e law . "
33 << std : : endl ;
34 r e t u r n Kratos : : make_shared<FluidConst itut iveLaw >(∗ t h i s ) ;
35 }
36
37 void FluidConst i tut iveLaw : : CalculateMater ia lResponseCauchy ( Parameters& rValues ) {
38 KRATOS_ERROR << " C a l l i n g base "
39 " FluidConst i tut iveLaw : : CalculateMater ia lResponseCauchy "
40 " method . This c l a s s should not be i n s t a n t i a t e d . P l e a s e "
41 " check your c o n s t i t u t i v e law . "
42 << std : : endl ;
43 }
44
45 i n t FluidConst i tut iveLaw : : Check ( c o n s t P r o p e r t i e s& r M a t e r i a l P r o p e r t i e s ,
46 c o n s t GeometryType& rElementGeometry ,
47 c o n s t P r o c e s s I n f o& r C u r r e n t P r o c e s s I n f o ) {
48 KRATOS_ERROR << " C a l l i n g base "
49 " FluidConst i tut iveLaw : : Check "
50 " method . This c l a s s should not be i n s t a n t i a t e d . P l e a s e "



108 Developed code

51 " check your c o n s t i t u t i v e law . "
52 << std : : endl ;
53 r e t u r n 9 9 9 ;
54 }
55
56 // Access /////////////////////////////////////////////////////////////////////
57
58 i n t& FluidConst i tut iveLaw : : C a l c u l a t e V a l u e ( ConstitutiveLaw : : Parameters& rParameters , c o n s t Variable <

int>& r T h i s V a r i a b l e , i n t& rValue ) {
59 r e t u r n ConstitutiveLaw : : C a l c u l a t e V a l u e ( rParameters , r T h i s V a r i a b l e , rValue ) ;
60 }
61
62 double& FluidConst i tut iveLaw : : C a l c u l a t e V a l u e ( Constitut iveLaw : : Parameters& rParameters , c o n s t Variable

<double>& r T h i s V a r i a b l e , double& rValue ) {
63 rValue = t h i s −>G e t E f f e c t i v e V i s c o s i t y ( rParameters ) ;
64 r e t u r n rValue ;
65 }
66
67 Vector& FluidConst i tut iveLaw : : C a l c u l a t e V a l u e ( Constitut iveLaw : : Parameters& rParameters , c o n s t Variable

<Vector>& r T h i s V a r i a b l e , Vector& rValue ) {
68 r e t u r n ConstitutiveLaw : : C a l c u l a t e V a l u e ( rParameters , r T h i s V a r i a b l e , rValue ) ;
69 }
70
71 Matrix& FluidConst i tut iveLaw : : C a l c u l a t e V a l u e ( ConstitutiveLaw : : Parameters& rParameters , c o n s t Variable

<Matrix>& r T h i s V a r i a b l e , Matrix& rValue ) {
72 r e t u r n ConstitutiveLaw : : C a l c u l a t e V a l u e ( rParameters , r T h i s V a r i a b l e , rValue ) ;
73 }
74
75 array_1d<double , 3 > & FluidConst i tut iveLaw : : C a l c u l a t e V a l u e ( Constitut iveLaw : : Parameters& rParameters ,

c o n s t Variable <array_1d<double , 3 > >& r T h i s V a r i a b l e , array_1d<double , 3 > & rValue ) {
76 r e t u r n ConstitutiveLaw : : C a l c u l a t e V a l u e ( rParameters , r T h i s V a r i a b l e , rValue ) ;
77 }
78
79 array_1d<double , 6 > & FluidConst i tut iveLaw : : C a l c u l a t e V a l u e ( Constitut iveLaw : : Parameters& rParameters ,

c o n s t Variable <array_1d<double , 6 > >& r T h i s V a r i a b l e , array_1d<double , 6 > & rValue ) {
80 r e t u r n ConstitutiveLaw : : C a l c u l a t e V a l u e ( rParameters , r T h i s V a r i a b l e , rValue ) ;
81 }
82
83 // I n q u i r y ////////////////////////////////////////////////////////////////////
84
85 ConstitutiveLaw : : SizeType FluidConst i tut iveLaw : : WorkingSpaceDimension ( ) {
86 KRATOS_ERROR << " C a l l i n g base "
87 " FluidConst i tut iveLaw : : WorkingSpaceDimension "
88 " method . This c l a s s should not be i n s t a n t i a t e d . P l e a s e "
89 " check your c o n s t i t u t i v e law . "
90 << std : : endl ;
91 r e t u r n 0 ;
92 }
93
94 ConstitutiveLaw : : SizeType FluidConst i tut iveLaw : : G e t S t r a i n S i z e ( ) {
95 KRATOS_ERROR << " C a l l i n g base "
96 " FluidConst i tut iveLaw : : G e t S t r a i n S i z e "
97 " method . This c l a s s should not be i n s t a n t i a t e d . P l e a s e "
98 " check your c o n s t i t u t i v e law . "
99 << std : : endl ;

100 r e t u r n 0 ;
101 }
102
103 // I n f o ///////////////////////////////////////////////////////////////////////
104
105
106 std : : s t r i n g FluidConst i tut iveLaw : : I n f o ( ) c o n s t {
107 r e t u r n " FluidConst i tut iveLaw " ;
108 }
109
110 void FluidConst i tut iveLaw : : P r i n t I n f o ( std : : ostream& rOStream ) c o n s t {
111 rOStream << t h i s −>I n f o ( ) ;
112 }
113
114 void FluidConst i tut iveLaw : : PrintData ( std : : ostream& rOStream ) c o n s t {
115 rOStream << t h i s −>I n f o ( ) ;
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116 }
117
118 // P r o t e c t e d o p e r a t i o n s ///////////////////////////////////////////////////////
119
120 void FluidConst i tut iveLaw : : NewtonianConstitutiveMatrix2D (
121 double E f f e c t i v e V i s c o s i t y ,
122 Matrix& rC ) {
123
124 c o n s t e x p r double two_thirds = 2 . / 3 . ;
125 c o n s t e x p r double f o u r _ t h i r d s = 4 . / 3 . ;
126
127 rC ( 0 , 0 ) = E f f e c t i v e V i s c o s i t y ∗ f o u r _ t h i r d s ;
128 rC ( 0 , 1 ) = −E f f e c t i v e V i s c o s i t y ∗ two_thirds ;
129 rC ( 0 , 2 ) = 0 . 0 ;
130 rC ( 1 , 0 ) = −E f f e c t i v e V i s c o s i t y ∗ two_thirds ;
131 rC ( 1 , 1 ) = E f f e c t i v e V i s c o s i t y ∗ f o u r _ t h i r d s ;
132 rC ( 1 , 2 ) = 0 . 0 ;
133 rC ( 2 , 0 ) = 0 . 0 ;
134 rC ( 2 , 1 ) = 0 . 0 ;
135 rC ( 2 , 2 ) = E f f e c t i v e V i s c o s i t y ;
136 }
137
138 void FluidConst i tut iveLaw : : NewtonianConstitutiveMatrix3D (
139 double E f f e c t i v e V i s c o s i t y ,
140 Matrix& rC ) {
141
142 rC . c l e a r ( ) ;
143
144 c o n s t e x p r double two_thirds = 2 . / 3 . ;
145 c o n s t e x p r double f o u r _ t h i r d s = 4 . / 3 . ;
146
147 rC ( 0 , 0 ) = E f f e c t i v e V i s c o s i t y ∗ f o u r _ t h i r d s ;
148 rC ( 0 , 1 ) = −E f f e c t i v e V i s c o s i t y ∗ two_thirds ;
149 rC ( 0 , 2 ) = −E f f e c t i v e V i s c o s i t y ∗ two_thirds ;
150
151 rC ( 1 , 0 ) = −E f f e c t i v e V i s c o s i t y ∗ two_thirds ;
152 rC ( 1 , 1 ) = E f f e c t i v e V i s c o s i t y ∗ f o u r _ t h i r d s ;
153 rC ( 1 , 2 ) = −E f f e c t i v e V i s c o s i t y ∗ two_thirds ;
154
155 rC ( 2 , 0 ) = −E f f e c t i v e V i s c o s i t y ∗ two_thirds ;
156 rC ( 2 , 1 ) = −E f f e c t i v e V i s c o s i t y ∗ two_thirds ;
157 rC ( 2 , 2 ) = E f f e c t i v e V i s c o s i t y ∗ f o u r _ t h i r d s ;
158
159 rC ( 3 , 3 ) = E f f e c t i v e V i s c o s i t y ;
160 rC ( 4 , 4 ) = E f f e c t i v e V i s c o s i t y ;
161 rC ( 5 , 5 ) = E f f e c t i v e V i s c o s i t y ;
162 }
163
164 void FluidConst i tut iveLaw : : NewtonianConstitutiveMatrix2D (
165 double DynamicViscosity , double B u l k V i s c o s i t y , Matrix& rC ) {
166
167 c o n s t e x p r double two_thirds = 2 . / 3 . ;
168 c o n s t e x p r double f o u r _ t h i r d s = 4 . / 3 . ;
169
170 rC ( 0 , 0 ) = DynamicViscosity ∗ f o u r _ t h i r d s + B u l k V i s c o s i t y ;
171 rC ( 0 , 1 ) = −DynamicViscosity ∗ two_thirds + B u l k V i s c o s i t y ;
172 rC ( 0 , 2 ) = 0 . 0 ;
173 rC ( 1 , 0 ) = −DynamicViscosity ∗ two_thirds + B u l k V i s c o s i t y ;
174 rC ( 1 , 1 ) = DynamicViscosity ∗ f o u r _ t h i r d s + B u l k V i s c o s i t y ;
175 rC ( 1 , 2 ) = 0 . 0 ;
176 rC ( 2 , 0 ) = 0 . 0 ;
177 rC ( 2 , 1 ) = 0 . 0 ;
178 rC ( 2 , 2 ) = DynamicViscosity ;
179 }
180
181 void FluidConst i tut iveLaw : : NewtonianConstitutiveMatrix3D (
182 double DynamicViscosity , double B u l k V i s c o s i t y , Matrix& rC ) {
183
184 rC . c l e a r ( ) ;
185
186 c o n s t e x p r double two_thirds = 2 . / 3 . ;
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187 c o n s t e x p r double f o u r _ t h i r d s = 4 . / 3 . ;
188
189 rC ( 0 , 0 ) = DynamicViscosity ∗ f o u r _ t h i r d s + B u l k V i s c o s i t y ;
190 rC ( 0 , 1 ) = −DynamicViscosity ∗ two_thirds + B u l k V i s c o s i t y ;
191 rC ( 0 , 2 ) = −DynamicViscosity ∗ two_thirds + B u l k V i s c o s i t y ;
192
193 rC ( 1 , 0 ) = −DynamicViscosity ∗ two_thirds + B u l k V i s c o s i t y ;
194 rC ( 1 , 1 ) = DynamicViscosity ∗ f o u r _ t h i r d s + B u l k V i s c o s i t y ;
195 rC ( 1 , 2 ) = −DynamicViscosity ∗ two_thirds + B u l k V i s c o s i t y ;
196
197 rC ( 2 , 0 ) = −DynamicViscosity ∗ two_thirds + B u l k V i s c o s i t y ;
198 rC ( 2 , 1 ) = −DynamicViscosity ∗ two_thirds + B u l k V i s c o s i t y ;
199 rC ( 2 , 2 ) = DynamicViscosity ∗ f o u r _ t h i r d s + B u l k V i s c o s i t y ;
200
201 rC ( 3 , 3 ) = DynamicViscosity ;
202 rC ( 4 , 4 ) = DynamicViscosity ;
203 rC ( 5 , 5 ) = DynamicViscosity ;
204 }
205
206 // P r o t e c t e d a c c e s s ///////////////////////////////////////////////////////////
207
208 double FluidConst i tut iveLaw : : G e t E f f e c t i v e V i s c o s i t y ( Constitut iveLaw : : Parameters& rParameters ) c o n s t {
209 KRATOS_ERROR << " A c c e s s i n g base c l a s s FluidConst i tut iveLaw : : G e t E f f e c t i v e V i s c o s i t y . " << std : : endl ;
210 r e t u r n 0 . 0 ;
211 }
212
213 double FluidConst i tut iveLaw : : GetValueFromTable (
214 c o n s t Variable <double> &r V a r i a b l e I n p u t ,
215 c o n s t Variable <double> &rVariableOutput ,
216 Constitut iveLaw : : Parameters &rParameters ) c o n s t
217 {
218 // Get m a t e r i a l p r o p e r t i e s from c o n s t i t u t i v e law parameters
219 c o n s t P r o p e r t i e s &r _ p r o p e r t i e s = rParameters . G e t M a t e r i a l P r o p e r t i e s ( ) ;
220
221 double gauss_output ;
222 i f ( r _ p r o p e r t i e s . HasTable ( r V a r i a b l e I n p u t , rVariableOutput ) ) {
223 // Get geometry and Gauss pt . data
224 c o n s t auto &r_geom = rParameters . GetElementGeometry ( ) ;
225 c o n s t auto &r_N = rParameters . GetShapeFunctionsValues ( ) ;
226
227 // Compute the input v a r i a b l e Gauss pt . value
228 double gauss_input = 0 . 0 ;
229 f o r ( unsigned i n t i_node = 0 ; i_node < r_N . s i z e ( ) ; ++i_node ) {
230 c o n s t double &r_val = r_geom [ i_node ] . FastGetSolut ionStepValue ( r V a r i a b l e I n p u t ) ;
231 gauss_input += r_val ∗ r_N [ i_node ] ;
232 }
233
234 // R e t r i e v e the output v a r i a b l e from the t a b l e
235 c o n s t auto &r_table = r _ p r o p e r t i e s . GetTable ( r V a r i a b l e I n p u t , rVariableOutput ) ;
236 gauss_output = r_table . GetValue ( gauss_input ) ;
237 } e l s e {
238 KRATOS_ERROR << " FluidConst i tut iveLaw " << t h i s −>I n f o ( ) << " has no t a b l e with v a r i a b l e s " <<

r V a r i a b l e I n p u t << " " << rVariableOutput << std : : endl ;
239 }
240
241 r e t u r n gauss_output ;
242 }
243
244 // S e r i a l i z a t i o n //////////////////////////////////////////////////////////////
245
246 void FluidConst i tut iveLaw : : save ( S e r i a l i z e r& r S e r i a l i z e r ) c o n s t {
247 KRATOS_SERIALIZE_SAVE_BASE_CLASS( r S e r i a l i z e r , Constitut iveLaw ) ;
248 }
249
250 void FluidConst i tut iveLaw : : load ( S e r i a l i z e r& r S e r i a l i z e r ) {
251 KRATOS_SERIALIZE_LOAD_BASE_CLASS( r S e r i a l i z e r , Const itut iveLaw ) ;
252 }
253
254 }
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C.4.2 2D weakly-compressible law

1 // | / |
2 // ' / __| _` | __| _ \ __|
3 // . \ | ( | | ( | \__ `
4 // _| \_\_| \__,_| \__| \___/ ____/
5 // Multi−Phys ics
6 //
7 // L i c e n s e : BSD L i c e n s e
8 // Kratos d e f a u l t l i c e n s e : k r a t o s / l i c e n s e . t x t
9 //

10 // Main authors : Ruben Z o r r i l l a
11 //
12
13 // System i n c l u d e s
14 #i n c l u d e <iostream >
15
16 // External i n c l u d e s
17
18 // P r o j e c t i n c l u d e s
19 #i n c l u d e " i n c l u d e s / c f d _ v a r i a b l e s . h "
20 #i n c l u d e " i n c l u d e s / checks . h "
21 #i n c l u d e " c u s t o m _ c o n s t i t u t i v e / newtonian_compressible_2d_law . h "
22 #i n c l u d e " f l u i d _ d y n a m i c s _ a p p l i c a t i o n _ v a r i a b l e s . h "
23
24 namespace Kratos
25 {
26
27 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
28 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
29
30 CompressibleNewtonian2DLaw : : CompressibleNewtonian2DLaw ( )
31 : FluidConst i tut iveLaw ( )
32 {}
33
34 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗COPY CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
35 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
36
37 CompressibleNewtonian2DLaw : : CompressibleNewtonian2DLaw ( c o n s t CompressibleNewtonian2DLaw& rOther )
38 : FluidConst i tut iveLaw ( rOther )
39 {}
40
41 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗CLONE∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
42 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
43
44 ConstitutiveLaw : : P o i n t e r CompressibleNewtonian2DLaw : : Clone ( ) c o n s t {
45 r e t u r n Kratos : : make_shared<CompressibleNewtonian2DLaw >(∗ t h i s ) ;
46 }
47
48 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗DESTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
49 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
50
51 CompressibleNewtonian2DLaw : : ~ CompressibleNewtonian2DLaw ( ) {}
52
53 ConstitutiveLaw : : SizeType CompressibleNewtonian2DLaw : : WorkingSpaceDimension ( ) {
54 r e t u r n 2 ;
55 }
56
57 ConstitutiveLaw : : SizeType CompressibleNewtonian2DLaw : : G e t S t r a i n S i z e ( ) {
58 r e t u r n 3 ;
59 }
60
61 void CompressibleNewtonian2DLaw : : CalculateMater ia lResponseCauchy ( Parameters& rValues )
62 {
63 c o n s t Flags& o p t i o n s = rValues . GetOptions ( ) ;
64 c o n s t Vector& r _ s t r a i n _ r a t e = rValues . GetStrainVector ( ) ;
65 Vector& r _ v i s c o u s _ s t r e s s = rValues . G e t S t r e s s V e c t o r ( ) ;
66 double mu_star = 0 . 0 ;
67 double beta_star = 0 . 0 ;
68
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69 c o n s t double mu = t h i s −>G e t E f f e c t i v e V i s c o s i t y ( rValues ) ;
70 G e t A r t i f i c i a l V i s c o s i t i e s ( beta_star , mu_star , rValues ) ;
71
72 c o n s t double t r a c e = r _ s t r a i n _ r a t e [ 0 ] + r _ s t r a i n _ r a t e [ 1 ] ;
73 c o n s t double volumetr ic_part = t r a c e / 3 . 0 ; // Note : t h i s should be s m a l l f o r an i n c o m p r e s s i b l e

f l u i d ( i t i s b a s i c a l l y the i n c o m p r e s s i b i l i t y e r r o r )
74
75 r _ v i s c o u s _ s t r e s s [ 0 ] = 2 . 0 ∗ (mu + mu_star ) ∗( r _ s t r a i n _ r a t e [ 0 ] − volumetr ic_part ) + beta_star ∗ t r a c e ;
76 r _ v i s c o u s _ s t r e s s [ 1 ] = 2 . 0 ∗ (mu + mu_star ) ∗( r _ s t r a i n _ r a t e [ 1 ] − volumetr ic_part ) + beta_star ∗ t r a c e ;
77 r _ v i s c o u s _ s t r e s s [ 2 ] = (mu + mu_star ) ∗ r _ s t r a i n _ r a t e [ 2 ] ;
78
79 i f ( o p t i o n s . I s ( Const itutiveLaw : : COMPUTE_CONSTITUTIVE_TENSOR ) )
80 {
81 t h i s −>NewtonianConstitutiveMatrix2D (mu + mu_star , beta_star , rValues . G e t C o n s t i t u t i v e M a t r i x ( ) ) ;
82 }
83 }
84
85 i n t CompressibleNewtonian2DLaw : : Check (
86 c o n s t P r o p e r t i e s& r M a t e r i a l P r o p e r t i e s ,
87 c o n s t GeometryType& rElementGeometry ,
88 c o n s t P r o c e s s I n f o& r C u r r e n t P r o c e s s I n f o )
89 {
90 // Check v i s c o s i t y value
91 KRATOS_ERROR_IF( r M a t e r i a l P r o p e r t i e s [DYNAMIC_VISCOSITY] <= 0 . 0 )
92 << " I n c o r r e c t or m i s s i n g DYNAMIC_VISCOSITY provided i n p r o c e s s i n f o f o r Newtonian2DLaw : " <<

r M a t e r i a l P r o p e r t i e s [DYNAMIC_VISCOSITY] << std : : endl ;
93
94 r e t u r n 0 ;
95 }
96
97 std : : s t r i n g CompressibleNewtonian2DLaw : : I n f o ( ) c o n s t {
98 r e t u r n " CompressibleNewtonian2DLaw " ;
99 }

100
101 double CompressibleNewtonian2DLaw : : G e t E f f e c t i v e V i s c o s i t y ( Constitut iveLaw : : Parameters& rParameters )

c o n s t
102 {
103 c o n s t P r o p e r t i e s &r_prop = rParameters . G e t M a t e r i a l P r o p e r t i e s ( ) ;
104 c o n s t double e f f e c t i v e _ v i s c o s i t y = r_prop [DYNAMIC_VISCOSITY ] ;
105 r e t u r n e f f e c t i v e _ v i s c o s i t y ;
106 }
107
108 void CompressibleNewtonian2DLaw : : G e t A r t i f i c i a l V i s c o s i t i e s ( double& rbeta_star , double& rmu_star ,

Const itut iveLaw : : Parameters& rParameters )
109 {
110 c o n s t SizeType n_nodes = 3 ;
111 c o n s t GeometryType& r_geom = rParameters . GetElementGeometry ( ) ;
112 c o n s t array_1d<double , n_nodes>& rN = rParameters . GetShapeFunctionsValues ( ) ;
113
114 // Compute Gauss pt . i n t e r p o l a t i o n value
115 f o r ( unsigned i n t i = 0 ; i < n_nodes ; ++i ) {
116 r b e t a _ s t a r += rN [ i ] ∗ r_geom [ i ] . GetValue (ARTIFICIAL_BULK_VISCOSITY) ;
117 rmu_star += rN [ i ] ∗ r_geom [ i ] . GetValue (ARTIFICIAL_DYNAMIC_VISCOSITY) ;
118 }
119 }
120
121 void CompressibleNewtonian2DLaw : : save ( S e r i a l i z e r& r S e r i a l i z e r ) c o n s t {
122 KRATOS_SERIALIZE_SAVE_BASE_CLASS( r S e r i a l i z e r , FluidConst i tut iveLaw )
123 }
124
125 void CompressibleNewtonian2DLaw : : load ( S e r i a l i z e r& r S e r i a l i z e r ) {
126 KRATOS_SERIALIZE_LOAD_BASE_CLASS( r S e r i a l i z e r , Flu idConst i tut iveLaw )
127 }
128
129 } // Namespace Kratos

C.4.3 3D weakly-compressible law

1 // | / |
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2 // ' / __| _` | __| _ \ __|
3 // . \ | ( | | ( | \__ `
4 // _| \_\_| \__,_| \__| \___/ ____/
5 // Multi−Phys ics
6 //
7 // L i c e n s e : BSD L i c e n s e
8 // Kratos d e f a u l t l i c e n s e : k r a t o s / l i c e n s e . t x t
9 //

10 // Main authors : Riccardo R o ss i
11 //
12
13 // System i n c l u d e s
14 #i n c l u d e <iostream >
15
16 // External i n c l u d e s
17
18 // P r o j e c t i n c l u d e s
19 #i n c l u d e " i n c l u d e s / c f d _ v a r i a b l e s . h "
20 #i n c l u d e " i n c l u d e s / checks . h "
21 #i n c l u d e " c u s t o m _ c o n s t i t u t i v e / newtonian_compressible_3d_law . h "
22 #i n c l u d e " f l u i d _ d y n a m i c s _ a p p l i c a t i o n _ v a r i a b l e s . h "
23
24 namespace Kratos
25 {
26
27 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
28 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
29
30 CompressibleNewtonian3DLaw : : CompressibleNewtonian3DLaw ( )
31 : FluidConst i tut iveLaw ( )
32 {}
33
34 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗COPY CONSTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
35 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
36
37 CompressibleNewtonian3DLaw : : CompressibleNewtonian3DLaw ( c o n s t CompressibleNewtonian3DLaw& rOther )
38 : FluidConst i tut iveLaw ( rOther )
39 {}
40
41 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗CLONE∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
42 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
43
44 ConstitutiveLaw : : P o i n t e r CompressibleNewtonian3DLaw : : Clone ( ) c o n s t {
45 r e t u r n Kratos : : make_shared<CompressibleNewtonian3DLaw >(∗ t h i s ) ;
46 }
47
48 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗DESTRUCTOR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
49 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
50
51 CompressibleNewtonian3DLaw : : ~ CompressibleNewtonian3DLaw ( ) {}
52
53 ConstitutiveLaw : : SizeType CompressibleNewtonian3DLaw : : WorkingSpaceDimension ( ) {
54 r e t u r n 3 ;
55 }
56
57 ConstitutiveLaw : : SizeType CompressibleNewtonian3DLaw : : G e t S t r a i n S i z e ( ) {
58 r e t u r n 6 ;
59 }
60
61 void CompressibleNewtonian3DLaw : : CalculateMater ia lResponseCauchy ( Parameters& rValues )
62 {
63 c o n s t Flags& o p t i o n s = rValues . GetOptions ( ) ;
64 c o n s t Vector& r _ s t r a i n _ r a t e = rValues . GetStrainVector ( ) ;
65 Vector& r _ v i s c o u s _ s t r e s s = rValues . G e t S t r e s s V e c t o r ( ) ;
66 double mu_star = 0 . 0 ;
67 double beta_star = 0 . 0 ;
68
69 c o n s t double mu = t h i s −>G e t E f f e c t i v e V i s c o s i t y ( rValues ) ;
70 G e t A r t i f i c i a l V i s c o s i t i e s ( beta_star , mu_star , rValues ) ;
71
72 c o n s t double t r a c e = r _ s t r a i n _ r a t e [ 0 ] + r _ s t r a i n _ r a t e [ 1 ] + r _ s t r a i n _ r a t e [ 2 ] ;



114 Developed code

73 c o n s t double volumetr ic_part = t r a c e / 3 . 0 ; // Note : t h i s should be s m a l l f o r an i n c o m p r e s s i b l e
f l u i d ( i t i s b a s i c a l l y the i n c o m p r e s s i b i l i t y e r r o r )

74
75 // computation o f s t r e s s
76 r _ v i s c o u s _ s t r e s s [ 0 ] = 2 . 0 ∗ (mu + mu_star ) ∗( r _ s t r a i n _ r a t e [ 0 ] − volumetr ic_part ) + beta_star ∗ t r a c e ;
77 r _ v i s c o u s _ s t r e s s [ 1 ] = 2 . 0 ∗ (mu + mu_star ) ∗( r _ s t r a i n _ r a t e [ 1 ] − volumetr ic_part ) + beta_star ∗ t r a c e ;
78 r _ v i s c o u s _ s t r e s s [ 2 ] = 2 . 0 ∗ (mu + mu_star ) ∗( r _ s t r a i n _ r a t e [ 2 ] − volumetr ic_part ) + beta_star ∗ t r a c e ;
79 r _ v i s c o u s _ s t r e s s [ 3 ] = (mu + mu_star ) ∗ r _ s t r a i n _ r a t e [ 3 ] ;
80 r _ v i s c o u s _ s t r e s s [ 4 ] = (mu + mu_star ) ∗ r _ s t r a i n _ r a t e [ 4 ] ;
81 r _ v i s c o u s _ s t r e s s [ 5 ] = (mu + mu_star ) ∗ r _ s t r a i n _ r a t e [ 5 ] ;
82
83 i f ( o p t i o n s . I s ( Const itutiveLaw : : COMPUTE_CONSTITUTIVE_TENSOR ) )
84 {
85 t h i s −>NewtonianConstitutiveMatrix3D (mu + mu_star , beta_star , rValues . G e t C o n s t i t u t i v e M a t r i x ( ) ) ;
86 // basetype : :
87 }
88 }
89
90 i n t CompressibleNewtonian3DLaw : : Check (
91 c o n s t P r o p e r t i e s& r M a t e r i a l P r o p e r t i e s ,
92 c o n s t GeometryType& rElementGeometry ,
93 c o n s t P r o c e s s I n f o& r C u r r e n t P r o c e s s I n f o )
94 {
95
96 // Check v i s c o s i t y value
97 KRATOS_ERROR_IF( r M a t e r i a l P r o p e r t i e s [DYNAMIC_VISCOSITY] <= 0 . 0 )
98 << " I n c o r r e c t or m i s s i n g DYNAMIC_VISCOSITY provided i n p r o c e s s i n f o f o r Newtonian2DLaw : " <<

r M a t e r i a l P r o p e r t i e s [DYNAMIC_VISCOSITY] << std : : endl ;
99

100 f o r ( unsigned i n t i = 0 ; i < rElementGeometry . s i z e ( ) ; i ++) {
101 c o n s t Node<3>& rNode = rElementGeometry [ i ] ;
102 KRATOS_ERROR_IF( rNode . GetValue (ARTIFICIAL_DYNAMIC_VISCOSITY) < 0 . 0 )
103 << "ARTIFICIAL_DYNAMIC_VISCOSITY was not c o r r e c t l y a s s i g n e d to nodes f o r C o n s t i t u t i v e Law

. \ n " ;
104 KRATOS_ERROR_IF( rNode . GetValue (ARTIFICIAL_BULK_VISCOSITY) < 0 . 0 )
105 << "ARTIFICIAL_BULK_VISCOSITY was not c o r r e c t l y a s s i g n e d to nodes f o r C o n s t i t u t i v e Law . \ n

" ;
106 }
107 r e t u r n 0 ;
108 }
109
110 std : : s t r i n g CompressibleNewtonian3DLaw : : I n f o ( ) c o n s t {
111 r e t u r n " CompressibleNewtonian3DLaw " ;
112 }
113
114 double CompressibleNewtonian3DLaw : : G e t E f f e c t i v e V i s c o s i t y ( Constitut iveLaw : : Parameters& rParameters )

c o n s t
115 {
116 c o n s t P r o p e r t i e s &r_prop = rParameters . G e t M a t e r i a l P r o p e r t i e s ( ) ;
117 c o n s t double e f f e c t i v e _ v i s c o s i t y = r_prop [DYNAMIC_VISCOSITY ] ;
118 r e t u r n e f f e c t i v e _ v i s c o s i t y ;
119 }
120
121 void CompressibleNewtonian3DLaw : : G e t A r t i f i c i a l V i s c o s i t i e s ( double& rbeta_star , double& rmu_star ,

Const itut iveLaw : : Parameters& rParameters )
122 {
123 c o n s t GeometryType& r_geom = rParameters . GetElementGeometry ( ) ;
124 c o n s t SizeType n_nodes = r_geom . s i z e ( ) ;
125 c o n s t auto& rN = rParameters . GetShapeFunctionsValues ( ) ;
126
127 // Compute Gauss pt . i n t e r p o l a t i o n value
128 f o r ( unsigned i n t i = 0 ; i < n_nodes ; ++i ) {
129
130 r b e t a _ s t a r += rN [ i ] ∗ r_geom [ i ] . GetValue (ARTIFICIAL_BULK_VISCOSITY) ;
131 rmu_star += rN [ i ] ∗ r_geom [ i ] . GetValue (ARTIFICIAL_DYNAMIC_VISCOSITY) ;
132 }
133 }
134
135 void CompressibleNewtonian3DLaw : : save ( S e r i a l i z e r& r S e r i a l i z e r ) c o n s t {
136 KRATOS_SERIALIZE_SAVE_BASE_CLASS( r S e r i a l i z e r , FluidConst i tut iveLaw )
137 }
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138
139 void CompressibleNewtonian3DLaw : : load ( S e r i a l i z e r& r S e r i a l i z e r ) {
140 KRATOS_SERIALIZE_LOAD_BASE_CLASS( r S e r i a l i z e r , FluidConst i tut iveLaw )
141 }
142
143 } // Namespace Kratos

C.5 Custom processes

C.5.1 Bubble area

1 #i f ! d e f i n e d (KRATOS_CALCULATE_CUT_AREA_H_INCLUDED)
2 #d e f i n e KRATOS_CALCULATE_CUT_AREA_H_INCLUDED
3
4
5 // System i n c l u d e s
6 #i n c l u d e <s t r i n g >
7 #i n c l u d e <iostream >
8
9

10 // External i n c l u d e s
11
12
13 // P r o j e c t i n c l u d e s
14 #i n c l u d e " i n c l u d e s / d e f i n e . h "
15 #i n c l u d e " i n c l u d e s / kratos_parameters . h "
16 #i n c l u d e " i n c l u d e s / model_part . h "
17 #i n c l u d e " p r o c e s s e s / p r o c e s s . h "
18 #i n c l u d e " modif ied_shape_functions / tetrahedra_3d_4_modified_shape_functions . h "
19 #i n c l u d e " modif ied_shape_functions / triangle_2d_3_modif ied_shape_functions . h "
20
21
22 namespace Kratos
23 {
24 c l a s s CalculateCutArea
25 {
26 p u b l i c :
27
28 KRATOS_CLASS_POINTER_DEFINITION( CalculateCutArea ) ;
29
30 t y p e d e f Node<3> NodeType ;
31 t y p e d e f Geometry<NodeType> GeometryType ;
32
33 CalculateCutArea ( ModelPart& model_part )
34 : mr_model_part ( model_part ) //mr_model_part i s saved as p r i v a t e v a r i a b l e ( d e c l a r e d

at the end o f the f i l e )
35 {
36 KRATOS_TRY
37 KRATOS_CATCH( " " )
38 }
39
40
41 ~ CalculateCutArea ( )
42 {}
43
44
45 double C a l c u l a t e ( )
46 {
47 KRATOS_TRY
48
49 double neg_vol = 0 . 0 ;
50 #pragma omp p a r a l l e l f o r r e d u c t i o n (+: neg_vol )
51
52 // g e t t i n g data f o r the given geometry
53 f o r ( i n t i_elem = 0 ; i_elem < s t a t i c _ c a s t <int >(mr_model_part . NumberOfElements ( ) ) ; ++

i_elem ) { // i t e r a t i o n over a l l e lements
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54
55 c o n s t auto i e l e m = mr_model_part . ElementsBegin ( ) + i_elem ;
56
57 Matrix shape_funct ions ;
58 GeometryType : : ShapeFunctionsGradientsType s h a p e _ d e r i v a t i v e s ;
59 Geometry<Node<3>> & rGeom = ielem −>GetGeometry ( ) ;
60 unsigned i n t pt_count_neg = 0 ;
61
62 // i n s t e a d o f u s i n g data . isCut ( )
63 f o r ( unsigned i n t pt = 0 ; pt < rGeom . Points ( ) . s i z e ( ) ; pt++){
64 i f ( rGeom [ pt ] . FastGetSolut ionStepValue (DISTANCE) <= 0 . 0 ) {
65 pt_count_neg++;
66 }
67 }
68
69 i f ( pt_count_neg == rGeom . PointsNumber ( ) ) {
70 // a l l nodes a re n e g a t i v e ( p o i n t e r i s n e c e s s a r y to maintain polymorphism o f

DomainSize ( ) )
71 neg_vol += ielem −>pGetGeometry ( )−>DomainSize ( ) ;
72 }
73 e l s e i f ( 0 < pt_count_neg ) {
74 // element i s cut by the s u r f a c e ( s p l i t t i n g )
75 Kratos : : unique_ptr<Modif iedShapeFunctions> p_modified_sh_func = n u l l p t r ;
76 Vector w_gauss_neg_side ( 3 , 0 . 0 ) ;
77
78 Vector Distance ( rGeom . PointsNumber ( ) , 0 . 0 ) ;
79 f o r ( unsigned i n t i = 0 ; i < rGeom . PointsNumber ( ) ; i ++){
80 // Control mechanism to avoid 0 . 0 ( i s n e c e s s a r y because "

d i s t a n c e _ m o d i f i c a t i o n " p o s s i b l y not yet executed )
81 double& r _ d i s t = rGeom [ i ] . FastGetSolut ionStepValue (DISTANCE) ;
82 i f ( std : : abs ( r _ d i s t ) < 1 . 0 e −12) {
83 c o n s t double aux_dist = 1 . 0 e−6∗ rGeom [ i ] . GetValue (NODAL_H) ;
84 i f ( r _ d i s t > 0 . 0 ) {
85 #pragma omp c r i t i c a l
86 r _ d i s t = aux_dist ;
87 } e l s e {
88 #pragma omp c r i t i c a l
89 r _ d i s t = −aux_dist ;
90 }
91 }
92 Distance [ i ] = rGeom [ i ] . FastGetSolut ionStepValue (DISTANCE) ;
93 }
94
95
96 i f ( rGeom . PointsNumber ( ) == 3 ) { p_modified_sh_func = Kratos : : make_unique<

Triangle2D3Modif iedShapeFunctions >(ielem −>pGetGeometry ( ) , Distance ) ; }
97 e l s e i f ( rGeom . PointsNumber ( ) == 4 ) { p_modified_sh_func = Kratos : : make_unique<

Tetrahedra3D4ModifiedShapeFunctions >(ielem −>pGetGeometry ( ) , Distance ) ; }
98 e l s e { KRATOS_ERROR << " The p r o c e s s can not be a p p l i e d on t h i s kind o f element "

<< std : : endl ; }
99

100 // C a l l the n e g a t i v e s i d e m o d i f i e d shape f u n c t i o n s c a l c u l a t o r
101 // Object p_modified_sh_func has f u l l knowledge o f s l i t geometry
102 p_modified_sh_func−>ComputeNegativeSideShapeFunctionsAndGradientsValues (
103 shape_functions , // N
104 s h a p e _ d e r i v a t i v e s , // DN
105 w_gauss_neg_side , // i n c l u d e s the weights o f the GAUSS

p o i n t s ( ! ! ! )
106 GeometryData : : GI_GAUSS_1) ; // f i r s t o r d e r Gauss i n t e g r a t i o n
107
108 f o r ( unsigned i n t i = 0 ; i < w_gauss_neg_side . s i z e ( ) ; i ++){
109 neg_vol += w_gauss_neg_side [ i ] ;
110 }
111 }
112 }
113 r e t u r n neg_vol ;
114 KRATOS_CATCH( " " )
115 }
116
117
118 p r o t e c t e d :
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119
120
121 p r i v a t e :
122
123 ModelPart& mr_model_part ;
124
125 } ;
126 } // namespace Kratos .
127
128 #e n d i f // KRATOS_CALCULATE_CUT_AREA_H_INCLUDED d e f i n e d

C.5.2 Energy rate and work

1 #i f ! d e f i n e d (KRATOS_CALCULATE_NORMAL_VECTOR_H_INCLUDED)
2 #d e f i n e KRATOS_CALCULATE_NORMAL_VECTOR_H_INCLUDED
3
4
5 // System i n c l u d e s
6 #i n c l u d e <s t r i n g >
7 #i n c l u d e <iostream >
8 #i n c l u d e <vector >
9 #i n c l u d e <array>

10 #i n c l u d e <tuple >
11
12 // External i n c l u d e s
13
14
15 // P r o j e c t i n c l u d e s
16 #i n c l u d e " i n c l u d e s / d e f i n e . h "
17 #i n c l u d e " i n c l u d e s / kratos_parameters . h "
18 #i n c l u d e " i n c l u d e s / model_part . h "
19 #i n c l u d e " p r o c e s s e s / p r o c e s s . h "
20 #i n c l u d e " u t i l i t i e s / math_utils . h "
21 #i n c l u d e " u t i l i t i e s / divide_triangle_2d_3 . h "
22 #i n c l u d e " u t i l i t i e s / divide_tetrahedra_3d_4 . h "
23 #i n c l u d e " modif ied_shape_functions / triangle_2d_3_modif ied_shape_functions . h "
24 #i n c l u d e " modif ied_shape_functions / tetrahedra_3d_4_modified_shape_functions . h "
25
26 namespace Kratos
27 {
28 c l a s s CalculateNormalVector
29 {
30 p u b l i c :
31
32 KRATOS_CLASS_POINTER_DEFINITION( CalculateNormalVector ) ;
33
34 t y p e d e f Node<3> NodeType ;
35 t y p e d e f Geometry<NodeType> GeometryType ;
36
37 CalculateNormalVector ( ModelPart& model_part )
38 : mr_model_part ( model_part ) //mr_model_part i s saved as p r i v a t e v a r i a b l e ( d e c l a r e d

at the end o f the f i l e )
39 {
40 KRATOS_TRY
41 KRATOS_CATCH( " " )
42 }
43
44
45 ~ CalculateNormalVector ( )
46 {}
47
48
49 std : : tuple <double , double , double> C a l c u l a t e ( )
50 {
51 KRATOS_TRY
52
53 double work_rate {0} , t o t a l _ e n e r g y {0} , t o t a l _ e n e r g y _ s i m p l i f i e d {0};
54 c o n s t double A {1 e5 } , B {3 e8 } , gamma { 7 . 1 5 } , rho_0 {880};
55
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56 // g e t t i n g data f o r the given geometry
57 f o r ( ModelPart : : ElementsContainerType : : i t e r a t o r i e l e m = mr_model_part . ElementsBegin ( ) ; // l o o p i n g

the elements
58 i e l e m !=mr_model_part . ElementsEnd ( ) ; i e l e m++)
59 {
60 Matrix shape_funct ions ;
61 GeometryType : : ShapeFunctionsGradientsType s h a p e _ d e r i v a t i v e s ;
62 c o n s t GeometryType & rGeom = ielem −>GetGeometry ( ) ;
63 GeometryType : : P o i n t e r p_geom = ielem −>pGetGeometry ( ) ;
64 unsigned i n t pt_count_neg = 0 ;
65 double elemental_energy {0};
66 double e l e m e n t a l _ e n e r g y _ s i m p l i f i e d {0};
67
68 c o n s t unsigned i n t NumNodes = 4 ;
69
70 Vector d i s t a n c e s _ v e c t o r ( NumNodes , 0 . 0 ) ;
71 Vector p r e s s u r e _ v e c t o r ( NumNodes , 0 . 0 ) ;
72 Vector d e n s i t y _ v e c t o r ( NumNodes , 0 . 0 ) ;
73 std : : vector <array_1d<double , NumNodes>> v e l o c i t y _ v e c t o r ;
74
75 f o r ( unsigned i n t i = 0 ; i < NumNodes ; i ++){
76 d i s t a n c e s _ v e c t o r [ i ] = rGeom [ i ] . FastGetSolut ionStepValue (DISTANCE) ;
77 p r e s s u r e _ v e c t o r [ i ] = rGeom [ i ] . FastGetSolut ionStepValue (PRESSURE) ;
78 d e n s i t y _ v e c t o r [ i ] = rGeom [ i ] . FastGetSolut ionStepValue (DENSITY) ;
79 v e l o c i t y _ v e c t o r . push_back (rGeom [ i ] . FastGetSolut ionStepValue (VELOCITY) ) ;
80 i f ( d i s t a n c e s _ v e c t o r [ i ] <= 0 . 0 ) {
81 pt_count_neg++;
82 }
83 }
84
85 i f ( pt_count_neg > 0 && pt_count_neg < NumNodes) {
86 // element i s cut by the s u r f a c e ( s p l i t t i n g )
87
88 // Construct the m o d i f i e d shape f u c n t i o n s u t i l i t y
89 Modif iedShapeFunctions : : P o i n t e r p_modified_sh_func = n u l l p t r ;
90 i f (NumNodes == 4) {
91 p_modified_sh_func = Kratos : : make_shared<Tetrahedra3D4ModifiedShapeFunctions

>(p_geom , d i s t a n c e s _ v e c t o r ) ;
92 } e l s e i f (NumNodes == 3) {
93 p_modified_sh_func = Kratos : : make_shared<Triangle2D3Modif iedShapeFunctions >(

p_geom , d i s t a n c e s _ v e c t o r ) ;
94 } e l s e { KRATOS_ERROR << " The p r o c e s s can not be a p p l i e d on t h i s kind o f element "

<< std : : endl ; }
95
96 Modif iedShapeFunctions : : ShapeFunctionsGradientsType

pos it ive_side_sh_func_gradients , i n t _ p o s i t i v e _ s i d e _ s h _ f u n c _ g r a d i e n t s ;
97 Vector p o s i t i v e _ s i d e _ w e i g h t s , i n t _ p o s i t i v e _ s i d e _ w e i g h t s ;
98 Matrix posit ive_side_sh_func , int_posit ive_side_sh_func ;
99

100 // C a l l the i n t e r f a c e outwards normal area v e c t o r c a l c u l a t o r
101 std : : vector <Vector> posit ive_side_area_normals ;
102
103 p_modified_sh_func−>ComputePosit iveSideInter faceAreaNormals (
104 posit ive_side_area_normals ,
105 GeometryData : : GI_GAUSS_2) ;
106
107 p_modified_sh_func−>ComputeInter facePosit iveSideShapeFunct ionsAndGradientsValues (
108 int_posit ive_side_sh_func ,
109 int_posit ive_side_sh_func_gradients ,
110 i n t _ p o s i t i v e _ s i d e _ w e i g h t s ,
111 GeometryData : : GI_GAUSS_2) ;
112
113 unsigned i n t NGauss = int_posit ive_side_sh_func . s i z e 1 ( ) ;
114
115 f o r ( unsigned i n t g = 0 ; g < NGauss ; g++)
116 {
117 array_1d<double , NumNodes> v_gauss_i = 0∗rGeom [ 0 ] . FastGetSolut ionStepValue (

VELOCITY) ;
118 double p_gauss_i {0} , p r o j _ i {0};
119 f o r ( unsigned i n t iNode = 0 ; iNode < NumNodes ; ++iNode )
120 {
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121 v_gauss_i += int_posit ive_side_sh_func ( g , iNode ) ∗rGeom [ iNode ] .
FastGetSolut ionStepValue (VELOCITY) ;

122 p_gauss_i += int_posit ive_side_sh_func ( g , iNode ) ∗rGeom [ iNode ] .
FastGetSolut ionStepValue (PRESSURE) ;

123 }
124 p r o j _ i = MathUtils<double >:: Dot ( v_gauss_i , pos it ive_side_area_normals . at ( g ) )

/ norm_2 ( pos it ive_side_area_normals . at ( g ) ) ;
125 work_rate += p r o j _ i ∗ p_gauss_i ∗ i n t _ p o s i t i v e _ s i d e _ w e i g h t s ( g ) ;
126 }
127
128 //ENERGY OF THE POSITIVE SIDE
129 p_modified_sh_func−>ComputePosit iveSideShapeFunctionsAndGradientsValues (
130 posit ive_side_sh_func ,
131 pos it ive_side_sh_func_gradients ,
132 p o s i t i v e _ s i d e _ w e i g h t s ,
133 GeometryData : : GI_GAUSS_2) ;
134 NGauss = pos it ive_side_sh_func . s i z e 1 ( ) ;
135 f o r ( unsigned i n t g = 0 ; g < NGauss ; g++)
136 {
137 array_1d<double , NumNodes − 1> v_gauss_p = ZeroVector (NumNodes) ; // (0∗rGeom

[ 0 ] . FastGetSolut ionStepValue (VELOCITY) ;
138 array_1d<double , NumNodes − 1> p_grad_p = prod ( t r a n s (

p o s i t i v e _ s i d e _ s h _ f u n c _ g r a d i e n t s [ g ] ) , p r e s s u r e _ v e c t o r ) ;
139 double p_gauss_p {0} , div_vp_p {0} , rho_gauss_p {0};
140 f o r ( unsigned i n t iNode = 0 ; iNode < NumNodes ; ++iNode )
141 {
142 div_vp_p += p o s i t i v e _ s i d e _ s h _ f u n c _ g r a d i e n t s [ g ] ( iNode , 0 ) ∗

v e l o c i t y _ v e c t o r . at ( iNode ) ( 0 )+ p o s i t i v e _ s i d e _ s h _ f u n c _ g r a d i e n t s [ g ] ( iNode , 1 ) ∗ v e l o c i t y _ v e c t o r . at (
iNode ) ( 1 ) ;

143 v_gauss_p += posit ive_side_sh_func ( g , iNode ) ∗rGeom [ iNode ] .
FastGetSolut ionStepValue (VELOCITY) ;

144 p_gauss_p += posit ive_side_sh_func ( g , iNode ) ∗rGeom [ iNode ] .
FastGetSolut ionStepValue (PRESSURE) ;

145 rho_gauss_p += posit ive_side_sh_func ( g , iNode ) ∗rGeom [ iNode ] .
FastGetSolut ionStepValue (DENSITY) ;

146 }
147
148 double e = B∗ std : : pow( rho_gauss_p /rho_0 , gamma) /(gamma − 1) + B − A;
149 // double e = p_gauss_p ;
150 elemental_energy += p o s i t i v e _ s i d e _ w e i g h t s ( g ) ∗ ( 0 . 5 ∗ MathUtils<double >:: Dot (

v_gauss_p , v_gauss_p ) ∗ rho_gauss_p + e ) ;
151 e l e m e n t a l _ e n e r g y _ s i m p l i f i e d += p o s i t i v e _ s i d e _ w e i g h t s ( g ) ∗( MathUtils<double >::

Dot ( v_gauss_p , p_grad_p ) + p_gauss_p∗div_vp_p ) ;
152 }
153 } e l s e i f ( pt_count_neg == 0) {
154 c o n s t GeometryType : : I n t e g r a t i o n P o i n t s A r r a y T y p e& I n t e g r a t i o n P o i n t s = rGeom .

I n t e g r a t i o n P o i n t s ( GeometryData : : GI_GAUSS_2) ;
155 c o n s t unsigned i n t NumGauss = I n t e g r a t i o n P o i n t s . s i z e ( ) ;
156
157 Matrix N = rGeom . ShapeFunctionsValues ( GeometryData : : GI_GAUSS_2) ;
158 Vector DetJ ;
159 GeometryType : : ShapeFunctionsGradientsType DN_DX;
160 rGeom . S h a p e F u n c t i o n s I n t e g r a t i o n P o i n t s G r a d i e n t s (DN_DX, DetJ , GeometryData : :

GI_GAUSS_2) ;
161
162 f o r ( unsigned i n t g = 0 ; g < NumGauss ; g++)
163 {
164 double Weight = DetJ ( g ) ∗ I n t e g r a t i o n P o i n t s [ g ] . Weight ( ) ; // " Jacobian " i s 2 . 0 ∗

A f o r t r i a n g l e s
165 array_1d<double , NumNodes − 1> vgauss = 0∗rGeom [ 0 ] . FastGetSolut ionStepValue (

VELOCITY) ;
166 array_1d<double , NumNodes − 1> p_grad = prod ( t r a n s (DN_DX[ g ] ) , p r e s s u r e _ v e c t o r )

;
167 double pgauss {0} , div_vel {0} , rho_gauss {0};
168
169 f o r ( unsigned i n t iNode = 0 ; iNode < NumNodes ; ++iNode )
170 {
171 div_vel += DN_DX[ g ] ( iNode , 0 ) ∗ v e l o c i t y _ v e c t o r . at ( iNode ) ( 0 )+ DN_DX[ g ] (

iNode , 1 ) ∗ v e l o c i t y _ v e c t o r . at ( iNode ) ( 1 ) ;
172 vgauss += N( iNode , g ) ∗rGeom [ iNode ] . FastGetSolut ionStepValue (VELOCITY

) ;
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173 pgauss += N( iNode , g ) ∗rGeom [ iNode ] . FastGetSolut ionStepValue (PRESSURE
) ;

174 rho_gauss += N( iNode , g ) ∗rGeom [ iNode ] . FastGetSolut ionStepValue (DENSITY)
;

175 }
176
177 double e = B∗ std : : pow( rho_gauss /rho_0 , gamma) /(gamma − 1) + B − A;
178 // double e = pgauss ;
179 elemental_energy += Weight ∗ ( 0 . 5 ∗ MathUtils<double >:: Dot ( vgauss ,

vgauss ) ∗ rho_gauss + e ) ;
180 e l e m e n t a l _ e n e r g y _ s i m p l i f i e d += Weight ∗( MathUtils<double >:: Dot ( vgauss , p_grad )

+ pgauss ∗ div_vel ) ;
181 }
182 }
183
184 t o t a l _ e n e r g y += elemental_energy ;
185 t o t a l _ e n e r g y _ s i m p l i f i e d += e l e m e n t a l _ e n e r g y _ s i m p l i f i e d ;
186 }
187 r e t u r n std : : make_tuple ( total_energy , work_rate , t o t a l _ e n e r g y _ s i m p l i f i e d ) ;
188 KRATOS_CATCH( " " )
189 }
190
191
192 p r o t e c t e d :
193
194
195 p r i v a t e :
196
197 ModelPart& mr_model_part ;
198
199 } ;
200 } // namespace Kratos .
201
202 #e n d i f // KRATOS_CALCULATE_NORMAL_VECTOR_H_INCLUDED d e f i n e d

C.5.3 FE errors

1 #i f ! d e f i n e d (KRATOS_CALCULATE_NORML_H_INCLUDED)
2 #d e f i n e KRATOS_CALCULATE_NORML_H_INCLUDED
3
4
5 // System i n c l u d e s
6 #i n c l u d e <s t r i n g >
7 #i n c l u d e <iostream >
8 #i n c l u d e <vector >
9 #i n c l u d e <array>

10 #i n c l u d e <tuple >
11 #i n c l u d e <sstream>
12 #i n c l u d e <fstream>
13
14 // External i n c l u d e s
15
16
17 // P r o j e c t i n c l u d e s
18 #i n c l u d e " i n c l u d e s / d e f i n e . h "
19 #i n c l u d e " i n c l u d e s / kratos_parameters . h "
20 #i n c l u d e " i n c l u d e s / model_part . h "
21 #i n c l u d e " p r o c e s s e s / p r o c e s s . h "
22 #i n c l u d e " u t i l i t i e s / math_utils . h "
23 #i n c l u d e " u t i l i t i e s / divide_triangle_2d_3 . h "
24 #i n c l u d e " u t i l i t i e s / divide_tetrahedra_3d_4 . h "
25 #i n c l u d e " modif ied_shape_functions / triangle_2d_3_modif ied_shape_functions . h "
26 #i n c l u d e " modif ied_shape_functions / tetrahedra_3d_4_modified_shape_functions . h "
27
28 namespace Kratos
29 {
30 c l a s s CalculateNormL
31 {
32 p u b l i c :
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33
34 KRATOS_CLASS_POINTER_DEFINITION( CalculateNormL ) ;
35
36 t y p e d e f Node<3> NodeType ;
37 t y p e d e f Geometry<NodeType> GeometryType ;
38
39 CalculateNormL ( ModelPart& model_part )
40 : mr_model_part ( model_part ) //mr_model_part i s saved as p r i v a t e v a r i a b l e ( d e c l a r e d

at the end o f the f i l e )
41 {
42 KRATOS_TRY
43 KRATOS_CATCH( " " )
44 }
45
46
47 ~ CalculateNormL ( )
48 {}
49
50
51 double C a l c u l a t e ( )
52 {
53 KRATOS_TRY
54 std : : s t r i n g inFileName = " /home/pau/ Desktop /TESTS/3 D_convergence / rho003 . t x t " ;
55 std : : i f s t r e a m i n F i l e ;
56 i n F i l e . open ( inFileName . c_str ( ) ) ;
57 std : : vector <double> e x a c t _ p r e s s u r e ;
58 std : : s t r i n g l i n e ;
59 long double number ;
60
61 i f ( i n F i l e . is_open ( ) )
62 {
63 w h i l e ( ! i n F i l e . e o f ( ) ) {
64 g e t l i n e ( i n F i l e , l i n e ) ;
65 std : : i s t r i n g s t r e a m i s s ( l i n e ) ;
66
67 w h i l e ( i s s >> number ) {
68 e x a c t _ p r e s s u r e . push_back ( number ) ;
69 }
70 }
71
72 i n F i l e . c l o s e ( ) ; // CLose input f i l e
73 }
74 i n t n = e x a c t _ p r e s s u r e . s i z e ( ) ;
75 std : : cout << n ;
76 std : : cout << std : : s e t p r e c i s i o n ( 1 5 ) << e x a c t _ p r e s s u r e . at ( 0 ) ;
77 KRATOS_WATCH( e x a c t _ p r e s s u r e . at ( 0 ) )
78
79 // g e t t i n g data f o r the _given geometry
80 double err_L2 {0} , norm_L2 {0};
81 f o r ( ModelPart : : ElementsContainerType : : i t e r a t o r i e l e m = mr_model_part . ElementsBegin ( ) ; // l o o p i n g

the elements
82 i e l e m !=mr_model_part . ElementsEnd ( ) ; i e l e m++)
83 {
84 Matrix shape_funct ions ;
85 GeometryType : : ShapeFunctionsGradientsType s h a p e _ d e r i v a t i v e s ;
86 c o n s t GeometryType & rGeom = ielem −>GetGeometry ( ) ;
87 GeometryType : : P o i n t e r p_geom = ielem −>pGetGeometry ( ) ;
88 unsigned i n t pt_count_neg = 0 ;
89 double errL2_e {0} , normL2_e {0};
90
91 c o n s t unsigned i n t NumNodes = 4 ;
92
93 Vector d i s t a n c e s _ v e c t o r ( NumNodes , 0 . 0 ) ;
94 Vector p r e s s u r e _ v e c t o r ( NumNodes , 0 . 0 ) ;
95 Vector d e n s i t y _ v e c t o r ( NumNodes , 0 . 0 ) ;
96
97 std : : vector <array_1d<double , NumNodes>> v e l o c i t y _ v e c t o r ;
98
99 f o r ( unsigned i n t i = 0 ; i < NumNodes ; i ++){

100 d i s t a n c e s _ v e c t o r [ i ] = rGeom [ i ] . FastGetSolut ionStepValue (DISTANCE) ;
101 p r e s s u r e _ v e c t o r [ i ] = rGeom [ i ] . FastGetSolut ionStepValue (PRESSURE) ;
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102 d e n s i t y _ v e c t o r [ i ] = rGeom [ i ] . FastGetSolut ionStepValue (DENSITY) ;
103 v e l o c i t y _ v e c t o r . push_back (rGeom [ i ] . FastGetSolut ionStepValue (VELOCITY) ) ;
104 i f ( d i s t a n c e s _ v e c t o r [ i ] <= 0 . 0 ) {
105 pt_count_neg++;
106 }
107 }
108
109 i f ( pt_count_neg > 0 && pt_count_neg < NumNodes) {
110 // element i s cut by the s u r f a c e ( s p l i t t i n g )
111
112 // Construct the m o d i f i e d shape f u c n t i o n s u t i l i t y
113 Modif iedShapeFunctions : : P o i n t e r p_modified_sh_func = n u l l p t r ;
114 i f (NumNodes == 4) {
115 p_modified_sh_func = Kratos : : make_shared<Tetrahedra3D4ModifiedShapeFunctions

>(p_geom , d i s t a n c e s _ v e c t o r ) ;
116 } e l s e i f (NumNodes == 3) {
117 p_modified_sh_func = Kratos : : make_shared<Triangle2D3Modif iedShapeFunctions >(

p_geom , d i s t a n c e s _ v e c t o r ) ;
118 } e l s e { KRATOS_ERROR << " The p r o c e s s can not be a p p l i e d on t h i s kind o f element "

<< std : : endl ; }
119
120 Modif iedShapeFunctions : : ShapeFunctionsGradientsType

pos it ive_side_sh_func_gradients , i n t _ p o s i t i v e _ s i d e _ s h _ f u n c _ g r a d i e n t s ;
121 Vector p o s i t i v e _ s i d e _ w e i g h t s , i n t _ p o s i t i v e _ s i d e _ w e i g h t s ;
122 Matrix posit ive_side_sh_func , int_posit ive_side_sh_func ;
123
124 //ENERGY OF THE POSITIVE SIDE
125 p_modified_sh_func−>ComputePosit iveSideShapeFunctionsAndGradientsValues (
126 posit ive_side_sh_func ,
127 pos it ive_side_sh_func_gradients ,
128 p o s i t i v e _ s i d e _ w e i g h t s ,
129 GeometryData : : GI_GAUSS_2) ;
130
131 unsigned i n t NGauss = pos it ive_side_sh_func . s i z e 1 ( ) ;
132
133 f o r ( unsigned i n t g = 0 ; g < NGauss ; g++)
134 {
135 double cexact_gauss {0} , cnum_gauss {0};
136
137 f o r ( unsigned i n t iNode = 0 ; iNode < NumNodes ; ++iNode )
138 {
139 cnum_gauss += posit ive_side_sh_func ( g , iNode ) ∗rGeom [ iNode ] .

FastGetSolut ionStepValue (DENSITY) ;
140 // cnum_gauss += posit ive_side_sh_func ( g , iNode ) ∗norm_2 (rGeom [ iNode ] .

FastGetSolut ionStepValue (VELOCITY) ) ;
141 cexact_gauss += posit ive_side_sh_func ( g , iNode ) ∗ e x a c t _ p r e s s u r e [ rGeom [

iNode ] . Id ( ) − 1 ] ;
142 }
143
144 errL2_e += ( cnum_gauss − cexact_gauss ) ∗( cnum_gauss − cexact_gauss ) ∗

p o s i t i v e _ s i d e _ w e i g h t s ( g ) ;
145 normL2_e += ( cexact_gauss ) ∗( cexact_gauss ) ∗ p o s i t i v e _ s i d e _ w e i g h t s ( g ) ;
146 }
147 } e l s e i f ( pt_count_neg == 0)
148 {
149 c o n s t GeometryType : : I n t e g r a t i o n P o i n t s A r r a y T y p e& I n t e g r a t i o n P o i n t s = rGeom .

I n t e g r a t i o n P o i n t s ( GeometryData : : GI_GAUSS_2) ;
150 c o n s t unsigned i n t NumGauss = I n t e g r a t i o n P o i n t s . s i z e ( ) ;
151
152 Matrix N = rGeom . ShapeFunctionsValues ( GeometryData : : GI_GAUSS_2) ;
153 Vector DetJ ;
154 GeometryType : : ShapeFunctionsGradientsType DN_DX;
155 rGeom . S h a p e F u n c t i o n s I n t e g r a t i o n P o i n t s G r a d i e n t s (DN_DX, DetJ , GeometryData : :

GI_GAUSS_2) ;
156
157 f o r ( unsigned i n t g = 0 ; g < NumGauss ; g++)
158 {
159 double Weight = DetJ ( g ) ∗ I n t e g r a t i o n P o i n t s [ g ] . Weight ( ) ; // " Jacobian " i s 2 . 0 ∗

A f o r t r i a n g l e s
160 double exact_gauss {0} , num_gauss {0};
161
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162 f o r ( unsigned i n t iNode = 0 ; iNode < NumNodes ; ++iNode )
163 {
164 num_gauss += N( iNode , g ) ∗rGeom [ iNode ] . FastGetSolut ionStepValue (DENSITY) ;
165 //num_gauss += N( iNode , g ) ∗norm_2 ( rGeom [ iNode ] . FastGetSolut ionStepValue (

VELOCITY) ) ;
166 exact_gauss += N( iNode , g ) ∗ e x a c t _ p r e s s u r e [ rGeom [ iNode ] . Id ( ) − 1 ] ;
167 }
168
169 errL2_e += ( num_gauss − exact_gauss ) ∗( num_gauss − exact_gauss ) ∗Weight ;
170 normL2_e += ( exact_gauss ) ∗( exact_gauss ) ∗Weight ;
171 }
172 }
173
174 err_L2 += errL2_e ;
175 norm_L2 += normL2_e ;
176 }
177 err_L2 = std : : pow( err_L2 , 0 . 5 ) / std : : pow(norm_L2 , 0 . 5 ) ;
178 r e t u r n err_L2 ;
179 KRATOS_CATCH( " " )
180 }
181
182
183 p r o t e c t e d :
184
185
186 p r i v a t e :
187
188 ModelPart& mr_model_part ;
189
190 } ;
191 } // namespace Kratos .
192
193 #e n d i f // KRATOS_CALCULATE_NORMAL_VECTOR_H_INCLUDED d e f i n e d
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