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Abstract

The open-source movement promises to revolutionize the hardware world just as it has revolu-
tionized software. Thanks to the open-source RISC-V instruction set architecture (ISA), many
projects are making their way to offer an alternative in the hermetic and proprietary world of
computer architecture.

The DRAC project, whose acronym refers to Designing RISC-V-based Accelerators for next-
generation Computers, was created in this context. This project, led by the Barcelona Super-
computing Center (BSC), develops processors and accelerators based on RISC-V technology, and
their purpose is to accelerate security tasks, personalized medicine and autonomous navigation.

This thesis aims to design, implement and verify a bootrom for the 64-bit DRAC 22 nm
System on Chip (SoC). This SoC integrates an in-order 7-stage RISC-V core called Sargantana.
The SoC design, based on the previous tape-out PreDRAC, is divided into two parts. One part
contains all the ASIC-oriented components; the other contains the FPGA-oriented components.
One of the main reasons for this division is that there was no ASIC-oriented bootrom, and
therefore, it was necessary to use the FPGA to boot the chip. With the integration of the
bootrom developed in this thesis, the SoC will be able to boot by itself, eliminating the FPGA-
oriented part of the SoC design.
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Resum

El moviment de codi obert promet revolucionar el món del maquinari igual que el programari ha
revolucionat. Gràcies a l’arquitectura de conjunt d’instruccions o ISA (de l’anglès Instruction
Set Architecture) RISC-V de codi obert, molts projectes s’estan obrint camı́ per oferir una
alternativa a l’hermètic i privatiu món de l’arquitectura de computadors.

En aquest context neix el projecte DRAC, les sigles del qual fan referència, de l’anglès, a
Designing RISC-V-based Accelerators for next-generation Computers. Aquest projecte, liderat
pel Barcelona Supercomputing Center (BSC), desenvolupa processadors i acceleradors basats en
la tecnologia RISC-V, amb l’objectiu d’accelerar tasques de seguretat, medicina personalitzada
i navegació autònoma.

Aquesta tesi té com a propòsit dissenyar, implementar i verificar una bootrom pel SoC (de
l’anglès System on Chip) de 64 bits DRAC 22 nm. Aquest SoC integra un processador RISC-V
de 7 etapes anomenat Sargantana. El disseny del SoC, basat en l’anterior tape-out anomenat
PreDRAC, es divideix en dues parts. Una part conté tots els components orientats a l’ASIC;
l’altra conté els elements orientats a la FPGA. Una de les raons principals d’aquesta divisió és
que no existia una bootrom orientada a ASIC i, per tant, calia utilitzar la FPGA per arrencar
el xip. Amb la integració de la bootrom desenvolupada en aquesta tesi, el SoC serà capaç
d’arrencar per ell mateix, eliminant la part orientada a la FPGA del disseny del SoC.

Paraules clau: Bootrom, Bootloader, DRAC, RTL design, RISC-V, SoC
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Resumen

El movimiento de código abierto promete revolucionar el mundo del hardware igual que ha
revolucionado el software. Gracias a la arquitectura de conjunto de instrucciones o ISA (del inglés
Instruction Set Architecture) RISC-V de código abierto, muchos proyectos se están abriendo
camino para ofrecer una alternativa en el hermético y privativo mundo de la arquitectura de
computadores.

En este contexto nace el proyecto DRAC, cuyas siglas hacen referencia, del inglés, a De-
signing RISC-V-based Accelerators for next-generation Computers. Este proyecto, liderado por
el Barcelona Supercomputing Center (BSC), desarrolla procesadores y aceleradores basados en
la tecnoloǵıa RISC-V, y su objetivo es acelerar tareas de seguridad, medicina personalizada y
navegación autónoma.

Esta tesis tiene como objetivo diseñar, implementar y verificar una bootrom para el SoC
(del inglés System on Chip) de 64 bits DRAC 22 nm. Este SoC integra un procesador RISC-V
de 7 etapas llamado Sargantana. El diseño del SoC, basado en el anterior tape-out denominado
PreDRAC, se divide en dos partes. Una parte contiene todos los componentes orientados al
ASIC; la otra contiene los elementos orientados a la FPGA. Una de las principales razones de
esta división es que no exist́ıa una bootrom orientada a ASIC y, por tanto, era necesario utilizar
la FPGA para arrancar el chip. Con la integración de la bootrom desarrollada en esta tesis, el
SoC será capaz de arrancar por śı mismo, eliminando la parte orientada a la FPGA del diseño
del SoC.

Palabras clave: Bootrom, Bootloader, DRAC, RTL design, RISC-V, SoC
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1 Introduction

1.1 Context

This work is part of the Barcelona Supercomputing Cen-
ter DRAC (Designing RISC-V-based Accelerators for next-
generation Computers) project 1. In the DRAC project col-
laborates the Institute of Microelectronics of Barcelona, the
Barcelona Supercomputing Center, the Instituto Politécnico
Nacional (Mexico) and UPC, among others. DRAC’s prin-
cipal aim is to develop processors based on the RISC-V ISA.

In order to achieve that goal, BSC is developing System on Chip (SoC) that includes RISC-V
processors. The first SoC of these series, PreDRAC [1], was built at the end of 2019 as the first
open-source chip developed in Spain. So, at this point, the BSC team is improving the initial
design to manufacture the next SoC in early 2022. The work detailed on these thesis is designing
and implementing the hardware and software components required to boot a Linux kernel using
a custom bootrom controller.

1.2 Terms and concepts

As we want a self-contained document, we must introduce some terms and concepts.

1.2.1 Hardware Description Language

In the computer engineering field, a hardware description language (HDL) is used to describe
the structure and behavior of digital logic circuits. HDL gives a precise, formal description of a
digital circuit that enables an automated analysis and simulation. Also, a circuit described with
HDL can be synthesized into a netlist (a specification of physical, electronic components, and
the connecting rooting of the components), which can then be placed and routed to produce the
set of masks used to manufacture the integrated circuit.

1The DRAC project[7] (with file number 001-P-001723) has been 50% co-financed with e2,000,000.00 by
the European Union Regional Development Fund within the framework of the ERDF Operational Program of
Catalonia 2014-2020, with the support of Generalitat of Catalonia.
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1.2.2 SystemVerilog

SystemVerilog [32], standardized as IEEE 1800, aims to provide a well-defined and official IEEE
unified hardware design, specification, and verification standard language. It is commonly used
in the semiconductor and electronic design industry as an evolution of Verilog. The language
is designed to coexist and enhance the hardware description and verification languages (HD-
VLs) currently used by designers while providing the capabilities lacking in those languages.
SystemVerilog enables the use of a unified language for abstract and detailed specification of
the design, specification of assertions, coverage, and testbench verification based on manual or
automatic methodologies.

1.2.3 Chisel

Chisel [5] is an HDL that allows advanced circuit design and generation. The same design can be
reused for both Application-Specific Integrated Circuit (ASIC) and Field-Programmable Gate
Array (FPGA) implementations.

Chisel adds hardware construction primitives to the Scala programming language. It gives
the power of a modern programming language to the computer architects that enables designing
complex, parameterizable circuit generators that produce synthesizable Verilog. This generator
methodology allows the conception of re-usable components and libraries, increasing abstraction
in design while maintaining fine-grained control.

Chisel is powered by FIRRTL (Flexible Intermediate Representation for RTL), a hardware
compiler framework that performs optimizations of Chisel-generated circuits and supports cus-
tom user-defined circuit transformations.

1.2.4 RTL

In digital circuit design, Register-Transfer Level (RTL) is a design abstraction that models
a synchronous digital circuit in terms of the flow of digital signals (data) between hardware
registers and the logical operations performed on those signals.

Register-transfer-level abstraction is used in hardware description languages (HDLs) like
Verilog and VHDL to create high-level representations of a circuit, from which lower-level rep-
resentations and ultimately actual wiring can be derived. Design at the RTL level is typical
practice in modern digital design [39].

1.2.5 FPGA

A FPGA is an integrated circuit designed to be configured by a customer or a designer after
manufacturing – hence the term field-programmable. The FPGA configuration is generally
specified using a hardware description language (HDL), similar to that used for an ASIC. Circuit
diagrams were previously used to specify the configuration, but this is increasingly rare due to
the advent of electronic design automation tools.

FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable
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interconnects, allowing blocks to be wired together. Logic blocks can be configured to perform
complex combinational functions or act as simple logic gates like AND and XOR. In most
FPGAs, logic blocks also include memory elements, which may be simple flip-flops or more
complete memory blocks. Many FPGAs can be reprogrammed to implement different logic
functions, allowing flexible, reconfigurable computing as performed in computer software [37].

1.2.6 Bootrom

A bootrom (or bootROM) is a small Read-Only Memory (ROM) that contains the very first
code executed by a processor on a reset or power-on. Hence this code contains instructions
to configure the SoC to allow the execution of applications. The configurations performed by
bootrom include initialization of the core’s register and stack pointer, enablement of caches and
line buffers, programming of interrupt service routine, and clock configuration.

1.2.7 ISA

An Instruction Set Architecture (ISA) is an abstract model of a computer. It defines the in-
structions, registers, data types, the hardware support for managing memory or input/output
devices, and specifies the behavior of machine code running on that ISA [38].

1.2.8 ASIC

An application-specific integrated circuit is an integrated circuit (IC) chip customized for a
particular use rather than intended for general-purpose use. For example, a chip designed to
run in a digital voice recorder or a high-efficiency Bitcoin miner is an ASIC [36].

1.2.9 SoC

A system on a chip, also known as an SoC, is essentially an integrated circuit or an IC that
takes a single platform and integrates an entire electronic or computer system onto it. It is,
precisely as its name suggests, an entire system on a single chip. The components that an SoC
generally looks to incorporate within itself include a central processing unit, input and output
ports, internal memory, and analog input and output blocks. Depending on the kind of system
that has been reduced to the size of a chip, it can perform a variety of functions, including signal
processing, wireless communication, artificial intelligence, and more [2].

1.3 Problem to be resolved

In recent months, it has not gone unnoticed that the technology industry is currently suffering
from a severe shortage of chips. This fact has seriously affected many European countries that
in many cases have had to stop production, raise prices or take long delays in the distribution of
new products. The leading cause of this situation is that, until now, Europe could not create new
chips, as the vast majority of ISAs and designs were closed and privative. In recent years, the
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Open Source movement has reached the hardware design, which so far has resisted, promising
a revolution similar to the one that Open Source brought to the software.

Thanks to the open RISC-V ISA, nowadays, Europe is allowed to design and manufacture its
chips instead of buying them abroad [43]. Thus, acquiring technological sovereignty is necessary
to decide on the future of the technological industry, making it more competitive and secure.

1.4 Stakeholders

The project has many direct or indirect involved parties detailed below.

1.4.1 Barcelona Supercomputing Center

The primary stakeholder that will make the most out of this work is the DRAC team at the BSC.
DRAC is an experimental vehicle for academic purposes that can be used as a base platform to
perform research based on RISC-V processors or accelerators

1.4.2 Scientific community

The community of European Supercomputation is interested in the project results to evaluate
the viability of the RISC-V European Processor Initiative.

1.4.3 University education

The DRAC project aims to be provided under an open-source license. Therefore, academic
institutions could leverage the work done to aid students in getting familiar with RTL design
and RISC-V or as a base platform for computer architecture research.

1.5 Justification

The current SoC design is divided into two major parts: the ASIC and the FPGA implementa-
tion. There are specific components essential for running an operating system like Linux on the
SoC that cannot be implemented for ASIC due to economic or time constraints, for example,
the DDR3 controller. Figure 1.1 shows a diagram of the SoC to start making improvements for
the next tape-out.
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Figure 1.1: PreDRAC block diagram. Source: [1]

The main objective of this work is to implement a custom bootrom that allows the boot
process not to go through the FPGA. Making the SoCs entirely work alone is of significant
importance to the project. It would release, depending on the configuration, up to 68 pins used
by the ASIC-to-FPGA interface, called packetizer or the Pack/Unpack blocks in Figure 1.1,
which would be available for future improvements and functionalities of the chip.

1.6 Project scope

This section will define the global objectives and sub-objectives, the functional requirements,
and the possible obstacles and risks of the project.

1.6.1 Objectives

Next, the objectives that must be followed to accomplish the desired task.

• Understand the SoC implementation: Understanding in detail the basis is essential

5



CHAPTER 1. INTRODUCTION

to know all the options or limitations when developing and integrating the bootrom.

• Analyze similar existing projects: Analyzing what decisions have been made and
what criteria have been taken into account in other similar projects will serve as a guide
to define the parameters to be taken into account in the implementation of this project.

• Evaluate different bootrom technologies and sizes: Analyzing the advantages and
disadvantages of using a specific type of memory is crucial to avoid unwanted restrictions
in the future.

• Evaluate different implementation strategies: Analyze the different options for im-
plementing the bootrom. The implementation and integration of the bootrom should be
modular to allow suitable modifications in future phases of the project if needed.

• Be on time for the tape-out: Have a functional and verified bootrom for the SoC
tape-out, expected in early 2022. This way, it will be possible to verify that the proposed
design is correct definitively.

• Provide a backup mechanism in case of failure: The bootrom is a crucial element
of the SoC. Suppose, after chip fabrication, the boot process fails for some reason. In that
case, other SoC components and aspects developed in parallel with this project, such as
the hyperRAM controller, or core enhancements, cannot be evaluated. Therefore, it is
necessary to have an alternative plan.

• Ensure a boot-ready environment: We want to add an ASIC-oriented bootrom con-
troller capable of booting Linux for end-user usage. This implies possible changes in the
bootloader or other aspects of the SoC.

• Evaluate and verify the implementation: Once we have the bootrom controller inte-
grated, it is necessary to analyze what advantages and disadvantages it has brought to the
whole chip. If there are possible improvements, define how costly it would be to implement
them.

1.6.2 Requirements

There are only two fixed requirements, namely:

• The implementation of the bootrom should minimize the pins used and it must not exceed
the available pins of the chip.

• The implementation of the bootrom must be completed before the RTL freeze, estimated
in January 2022.

• The SoC after the bootrom integration must be able to boot the Linux operating system.
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1.6.3 Obstacles and risks

During the execution of the project, we can classify the obstacles and risks we may encounter
into two categories: technical problems and synchronization problems with the team. Possibles
obstacles in the first category are:

• Implementation errors

• Hardware failures

• Difficulties in tools environment set-ups

• Debug or verification environment limitations

Regarding the synchronization obstacles, some of them that we can expect are:

• Misunderstandings with other team parts

• Delays of depending tasks of the rest of the team

• Lack of documentation

It is worth mentioning that there is a risk that the current health situation may make it
more challenging to coordinate with the rest of the group, as it is very likely that either because
of recommendations from the authorities or because of Covid-19, we will have to stay at home.
We can also expect a lack of stock or delays in the shipment of material needed for the project.

1.7 Methodology and rigour

This section lists the different tools used to develop the project and coordinate with the team.

1.7.1 Trello

Trello [33] is a collaboration tool that organizes projects into boards. It is intended to be used
by team members, although it is also handy for only one person, as it allows to keep track of
the tasks carried out.

Figure 1.2: Trello organization boards
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In our case, we will follow a variant of the Kanban methodology consisting of the boards
shown in Figure 1.2:

• To Do: In this board, we will create a card for each unstarted task that remains to be
done.

• Doing: In this board, we will place the tasks of the previous group with which we have
started to work or are currently working.

• Blocked: This board is used to classify those tasks with which we were working, but for
some reason, we can not continue their development, and we must leave them for later.
In this way, this board will avoid us that the group of tasks in the Doing board is always
updated with the tasks we work on in a concrete moment.

• Done: In this board, we will put the finished tasks. We have decided to create a table for
each week. This way, we can keep the chronology of the project development.

1.7.2 Slack

Slack [30] is a communication tool that gives us access to real-time conversations with any team
or teammate. It is common for team members to work from home, which makes Slack a valuable
tool for coordinating and contacting someone when there is an emergency, and we expect a quick
response.

1.7.3 Git

Git is a code version manager. The DRAC team has a private Git server to see other teammates’
code and update the code as we advance in the development process.

Figure 1.3: GitFlow workflow branch diagram. Source: [4]
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Working with Git, we follow the GitFlow workflow (see Figure 1.3), a strategy for organizing
the different aspects of code development into five types of git branches: Main, Hotfix, Release,
Develop, Feature.

1.7.4 Team meetings

Finally, Miquel Moretó, the team manager, organizes two weekly meetings. The first one is
focused on the physical and design group. We discuss the materials and resources that we need
to build our processor in this meeting. Also, we talk about the progress of each design project.
The other meeting intends each subgroup of the DRAC team to share its project progress.

1.8 Description of tasks

In this section, we will specify the definition of the tasks related to the realization of the project.
The project will last 670 hours, starting on October 1, and will end in late January. The tasks
are grouped into three categories: Project Management, Project Development, and Project
Conclusion. The tasks will be accompanied by a brief description, their dependencies, when
available, the resources needed, and an estimate of their duration.

1.8.1 Project Management

In this category, we can find those tasks before the start of project development, namely:

• PM1 - Project scope and context: This task will take 20 hours and a computer with
a text editor to write and detail the context and scope of the project.

• PM2 - Project planning: Defining the project planning will require 20 hours and a
computer with a text editor.

• PM3 - Budget and sustainability: Defining the budget and sustainability requires 20
hours and a computer with a text editor.

• PM4 - integration into a final document: This task requires the completion of the
previous tasks (PM1, PM2, and PM3). Writing a final document with all the project
information will demand 15 hours and a text editor.

• PM5 - Weekly meetings: One-hour weekly meetings will be held, a total of 15 hours.
This task requires the participation of the entire DRAC team and a computer to attend
the meetings.

1.8.2 Project Development

The tasks related to the development of the project are defined below. Most of these tasks have
detailed subtasks in the same way. Most of the tasks listed require a computer as the main
material resource.
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1.8.2.1 PD1 - Research and state of the art

• PD1.1 - Familiarize PreDRAC architecture: Understand the architecture limitations
and reevaluate the different options and strategies for the implementation of the bootrom.
This task will require 20 hours.

• PD1.2 - Learn about System-Verilog syntaxis: To read the project’s source code is
essential to understand how System-Verilog works and its syntaxis. This task will require
20 hours.

• PD1.3 - Research in bootrom implementations: Search information about how
bootroms are implemented in different projects. This task will require the completion of
task PM4 and will take 15 hours.

1.8.2.2 PD2 - Choose and analyze a bootrom

Choose a memory device that adapts to the project requirements. This task requires 10 hours
and the completion of tasks PD1.1 and PD1.3.

1.8.2.3 PD3 - Implement the bootrom controller

• PD3.1 - defining the controller: Define the module to perform a read operation to the
botroom and its interface to communicate with the core. This task will require 40 hours
and the completion of task PD2.

• PD3.2 - Implement the RTL module: Implement the RTL module defined in the
previous task (PD3.1). This task will require 30 hours and a computer with a code editor.

1.8.2.4 PD4 - Test and verify the controller

• PD4.1 - Implement a standalone testbench: Implement a testbench to verify the
controller behavior. This task will take 5 hours and requires the completion of task PD3.2
and a code editor.

• PD4.2 - Test the controller with an RTL simulation: Perform an RTL simulation
that stimulates the controller and assures the correct behavior. This task requires the
completion of the previous task (PD4.1) and some RTL simulation software. It can take
a maximum of 25 hours.

1.8.2.5 PD5 - Integrate the controller into the SoC

• PD5.1 - Place and connect: Place and connect the bootrom controller with the core.
This task requires the completion of task PD4.2 and a code editor. The task will take 30
hours.
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• PD5.2 - Test the integration: Test the correct behavior of the SoC using some tests
and benchmarks in an RTL simulation. This requires the completion of the previous task
(PD5.1) and an RTL simulation software. The task will take 40 hours.

• PD5.3 - Verify the integration with GLS: Perform a Gate-Level Simulation (GLS) on
the SoC with the bootrom integration. This task requires the completion of the previous
task (PD5.2) and some GLS software. The task will take 50 hours.

1.8.2.6 PD6 - Develop a bootloader

• PD6.1 - Write the bootrom code: Write a bootloader considering the current archi-
tecture support. This task will take 20 hours and requires the completion of PD5.3 and a
code editor.

• PD6.2 - Test the bootloader: Perform an RTL of the SoC with the bootloader. This
task requires the execution of the previous task (PD6.1) and some RTL simulation software.
The task will take 40 hours.

1.8.2.7 PD7 - Test on FPGA

• PD7.1 - Order the bootrom device: Order the bootrom device devkit and solder a
PMOD interface to connect to the FPGA. This task requires the completion of task PD2.
The task will take 5 hours.

• PD7.2 - Synthesize the whole SoC for the FPGA: Configure and monitor the
bitstream generation process for the FPGA. This task requires the completion of task
PD6.2 and the Xilinx Vivado software. The task will take 10 hours.

• PD7.3 - the SoC on the FPGA: Verify the correct behavior of the SoC on the FPGA.
This task requires the completion of the two previous tasks (PD7.1 and PD7.2), an FPGA
device, and the Xilinx Vivado software. The task will take 40 hours.

1.8.3 Project Conclusion

Next, we detail the tasks after the technical development of the project until the presentation
of the thesis.

• PC1 - Write Documentation: Document the bootrom controller implementation and
integration and its tests. This task requires the completion of task PD7.2 and a text editor.
The task will take 50 hours.

• PC2 - Confection of support material: Confection of support material for the thesis
or oral defense. This task requires the task PC1 to be started. The task will take 15 hours.

• PC3 - Prepare the oral defense: Prepare the oral defense of the project. This task
requires the execution of the previous task (PC2). The task will take 30 hours.
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ID Task Duration Predecessors Ressources
PM1 Project scope and context 20 PC, ed
PM2 Project planning 20 PC, ed
PM3 Budget and sustainability 20 PC, ed
PM4 Integration into a final document 15 PM1,PM2,PM3 PC, ed
PM5 Weekly meetings 15 PC, ed
PD1.1 Familiarize PreDRAC architecture 20 PC
PD1.2 Learn about System-Verilog syntax 20 PC
PD1.3 Research in bootrom implementations 15 PM4 PC
PD2 Choose and analyze a bootrom 10 PD1.1,PD1.2 PC
PD3.1 Defining the controller 40 PD2 PC, Ced
PD3.2 Implement the RTL module 30 PD3.1 PC
PD4.1 Implement a standalone testbench 5 PD3.2 PC, Ced
PD4.2 Test the controller with an RTL simulation 25 PD4.1 PC, RTL
PD5.1 Place and connect 30 PD4.2 PC, Ced
PD5.2 Test the integration 40 PD5.1 PC, RTL
PD5.3 Verify the integration with GLS 50 PD5.2 PC, GLS
PD6.1 Write the bootrom code 20 PD5.3 PC, Ced
PD6.2 Test the bootloader 40 PD6.1 PC, RTL
PD7.1 Order the bootrom device 5 PD2 PC
PD7.2 Synthesize the whole SoC for the FPGA 10 PD6.2 PC, Xil
PD7.3 Test the SoC on the FPGA 40 PD7.1,PD7.2 PC, Xil, FPGA
PC1 Write Documentation 50 PD7.2 PC, ed
PC2 Confection of support material 15 PC1 PC
PC3 Prepare the oral defense 30 PC2 PC, ed

Table 1.1: Estimate table

1.9 Estimates and Gantt

In this section, we have an overview of the estimation time in Table 1.1, and the Gantt diagram
in Figure 1.4

Resources legend:

PC: Computer

ed: Text editor software

Ced: Code editor software

RTL: RTL simulation software

GLS: Gate-Level simulation software
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Figure 1.4: Gantt diagram
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1.10 Risk management: alternative plans and obstacles

As already mentioned in the previous delivery, during the execution of the project, we may
encounter different obstacles that may impede the correct completion of the project. Some tasks
can take longer than estimated with ease, for example, the bootrom integration task (PD5.2). In
order to reduce the chances of this happening, it is necessary to do simple tests at the beginning
and gradually increase the complexity.

On the other hand, the task that requires the manipulation of an FPGA, can also involve
delays, as they are difficult devices to debug. In order to manage this risk, and others that may
arise, the project planning has been done taking into account that we should leave few weeks
of margin. In addition, we plan an alternative task to add in the SoC a mechanism to boot
without the bootrom, as does the original version, in case the botroom does not work correctly
before the deadline.

1.11 Budget

1.11.1 Identification of costs

In this section, the costs of the project are identified and detailed. We must first determine
what the resources are, their value, and their duration. First, we will refer to human resources
associated with each of the project’s tasks. We can differentiate the following roles:

• Project manager: It is the person in charge of proposing and safeguarding the correct
execution of the project. In this case, the BSC tutor, the directors, and the student will
play this role. The project manager role will be very relevant in all Project Management
tasks (PM1-PM3, PM5, and PC3).

• Technical writer: It is the person responsible for writing all the technical reports and
general documentation. The student will play this role, which will be present in the project
tasks PM4 and PC1-PC2.

• Hardware architect: It is the person responsible for designing the entire computer
architecture environment. The student will play this role, which essentially covers the
whole development of the project, specifically in tasks PD1-PD5, PD7, and all its subtasks.

• Embedded programmer: It is the person responsible for developing code considering
the different restrictions that may involve the hardware on which it will run. The student
will play this role, which is indispensable for the PD6 task and subtasks.
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Table 1.2: Budget summary
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Next, it is necessary to define the costs of the material resources. That is all the necessary
hardware and software for the project execution and the material to assure a suitable space for
the correct development. Finally, we will include transportation costs to travel to the workplace
within this category.

Table 1.2 details all the project costs, divided by Costs per Activity (CPA), General Costs
(GC), Contingency, and Incident Costs.

1.11.2 Cost estimates

We have estimated a consistent annual gross salary for each of the roles defined above to compute
personnel costs. The estimations are based on GlassDoor [12], a web portal that provides a
substantial role’s average salary. The price per hour column has been calculated assuming an
agreement of about 1780 hours per year. Table 1.3 shows the estimated annual gross salary, the
price per hour, the total hours, and the total cost of each role.

Table 1.3: Roles salary

Table 1.2 shows the cost for each task (CPA), which is the result of multiplying the hours
allocated for that task by the price per hour of the role that performs it. The total personnel
cost is 14.182,63 e.

As for the material costs, in particular, those relating to software and hardware must be
amortized. The formula we used to make this calculation is as follows:

(Purchase price * Total project hours) / (1780 hours * 4 years)

The cost of transport to the workspace and the essential elements, such as internet access or
electricity, are also part of the general costs (GC). Altogether they add up to a total of 1.547,45
e.

Once the two values have been calculated, we apply a contingency margin of 15%. Thus,
the sum of CPA and GC with the contingency margin is equivalent to 18,089.59 e.

Finally, we will add the costs that may result from the anticipated incidents. The two
incidents contemplated consist of delays, either in the implementation task or in the testing.
In both cases, it involves an expense corresponding to overtime, which the hardware architect
must dedicate. The values shown in the Table 1.2 are weighted to the risk associated with each
incident. The cost of the expected incidents is 1,246.80 e.
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1.11.3 Management control

In order to be able to evaluate the budget planned for the project, it is necessary to have a
control mechanism for it. We will define a series of indicators that will allow us to advertise
potential budget deviations. The project manager must check the indicators at the end of each
task. Following, we detail the indicators and how they are calculated:

• Human resources (CPA) deviation: When the personnel does less or more hours than
expected. We compute this deviation as shown below.

Human resources deviation = (Estimated cost per hour - Real cost per hour) * Total hours
consumed

• Amortization deviation: In case we use the hardware resource less or more time than
expected, the amortization cost will vary. We compute this deviation as shown below.

Amortization Deviation = (Estimated usage hours - Real usage hours) * Price per hour

• Electricity deviation: The electricity supply cost could change significantly, affecting
the budget. We compute this deviation as shown below.

Electricity cost deviation = (Estimated usage hours - Real usage hours) * Price per hour

• GC deviation: Given that the workplace will always be the same, no place or transport
deviations are contemplated. We compute this deviation as shown. below.

GC deviation = Electricity deviation + Amortization Deviation

• Incidental cost deviation: There could be more incidents than expected or none. We
compute this deviation as shown below.

Incidental cost deviation = (Estimated incidental hours - Real incidental hours) * Total inci-
dental hours

Finally, we need to add the CPA, GC, and incidental deviations to get an idea of the general
cost deviation:

General cost deviation = Human resources deviation + GC deviation + Incidental cost de-
viation

1.12 Sustainability report

Project sustainability is a fundamental element to consider. However, we do not know firsthand
what criteria and indicators we should use to assess the project’s sustainability, allowing us
to modify the initial planning to improve in this aspect. For this reason, we are grateful for
the survey provided to help the student to reflect on this matter. Below, we present the stu-
dent’s reflections on the project’s sustainability divided into environmental, social and economic
dimensions.
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1.12.1 Environmental dimension

1.12.1.1 PPP

Although we have not explicitly quantified the project’s environmental impact, we have deter-
mined the different aspects that affect the environment to reduce them. One of the most evident
aspects is the student’s transportation to the workplace. Although it has not always been pos-
sible, it has been preferable to use public transport. One of the actions taken to mitigate the
impact of transportation to the workspace has been to enable remote connections to the mate-
rial necessary to develop the project allowing the student to work from home. The material is
another aspect to consider. All possible material from other projects has been reused. Taking
this into account, we have reduced to the maximum, within our capabilities, the environmental
impact of the project’s development.

1.12.1.2 Exploitation

The project’s specific objective is to implement a bootrom to dispense using an FPGA to boot the
SoC. This directly affects the power consumption of the final chip since the power consumption
of the FPGA is much higher than that of the bootrom that will replace it. Furthermore, in
general terms, the research and development of an open-source chip that will one day match the
private alternatives on the market and, thus facilitating the local production of these chips, have
clear positive consequences for the environment, if only by reducing emissions to transportation.

1.12.1.3 Risks

We contemplate some situations that could affect the sustainability of the project. During
the execution of the project, the material may break and need to be replaced. However, this
risk is minor since most of the tools used during development are software. Therefore, their
replacement, updating or searching for alternatives would not impact the project’s sustainability.
The most significant risk is to discover, once the chip is manufactured, that the implemented
bootrom fails. Implementing a fallback boot mechanism using the FPGA again is envisaged to
avoid rendering the entire chip unusable. However, we would lose the power reduction of not
needing it.

1.12.2 Economic dimension

1.12.2.1 PPP

As detailed in Section 1.11, an exhaustive analysis of the budget for the project has been carried
out. Human and material resources have been taken into account. We have also adapted to
reuse material from other projects to reduce the budget. The total cost is 18.089,59e without
the 15% contingency margin. The only expense that has not been contemplated in the initial
budget is the purchase of the development boards for the EEPROM memory used as a bootrom.
We had considered this purchase because we did not know which memory we would use as a
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bootrom when calculating the budget. In addition, initially, we did not include testing with the
physical device in the project’s scope. However, the costs related to this purchase do not exceed
40e and are, therefore, within the planned contingency margin.

1.12.2.2 Exploitation

The project operation costs are directly related to the energy consumption of the final SoC and its
maintenance. If everything works correctly, we will considerably reduce the power consumption
since we will eliminate an FPGA from the equation. The power consumption introduced by the
bootrom controller and the bootrom itself is minimal in relation to the total power consumption
of the chip and much lower than that of the FPGA. In the worst case, the FPGA will still
be needed. Therefore, the final power consumption will increase significantly because the chip
design will include the bootrom controller even if it is not functional.

1.12.2.3 Risks

As we have repeated before, there is a critical risk that after the chip is manufactured, the
bootrom controller implemented and integrated during the realization of the project will not
work. As the bootrom is a crucial element to use the chip, and the manufacturing of the chip
is costly, it has been decided to implement an alternative option in case of failure. In this way,
we mitigate the cost due to the possible error having to assume only the increase of power
consumption due to the use of the FPGA.

1.12.3 Social dimension

1.12.3.1 PPP

The realization of this project has allowed the student to learn about the world of academic
research. In addition, the project covers different disciplines: from computer architecture to the
development of code for embedded systems or the different stages involved in the manufacture
of a processor. The student has been able to expand the knowledge acquired during his bachelor
by discovering an exciting sector within the field of computer engineering.

1.12.3.2 Exploitation

The research and development of open-source chips have a very positive impact on society.
Opening the designs of these components that have been part of people’s daily lives for many
years offers security and the guarantee that the product that the user consumes is at the end
what it claims to be. The implementation and integration of the bootrom in the DRAC 22 nm
SoC is another step in this direction.
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1.12.3.3 Risks

If the bootrom controller does not work, it would directly affect the end-user, complicating
the use of the chip since it would require an FPGA with the extra costs that it implies at an
economic and technological level.
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2 Background

This chapter aims to provide the reader with the appropriate background to understand the
project better. First, we will discuss some of the open-source Hardware projects related to the
one detailed on this thesis. Then, we will review the RISC-V privilege architecture and a typical
boot process.

2.1 Open-source Hardware

Below we list a few open-source projects that have contributed to the development of Drac 22
nm SoC in one way or another. Some of these projects are widely known and used by the
entire RISCV-based hardware development community. These are just a few examples since the
community continuously grows and publishes new projects.

• Rocket: Rocket [3] is a 5-stage in-order scalar processor core generator, originally de-
veloped at UC Berkeley and currently supported by SiFive. The Rocket core supports
the open-source RV64GC RISC-V instruction set and is written in the Chisel hardware
construction language. It has an MMU that supports page-based virtual memory, a non-
blocking data cache, and a front-end with branch prediction. Rocket also supports the
RISC-V machine, supervisor, and user privilege levels. A number of parameters are ex-
posed, including the optional support of some ISA extensions (M, A, F, D), the number
of floating-point pipeline stages, and the cache and TLB sizes. Rocket is one of the most
widely used cores recently and is also usually used as a component library for more complex
processors such as the BOOM core [9].

• LowRISC: LowRISC chip is a Rocket-based 64-bit SoC design developed by lowRISC [20].
They offer an FPGA-ready SoC distribution, with open-source peripherals such as SD and
Ethernet.

• Ariane: Ariane [41] is a 64-bit RISC-V in-order 6-stage core from ETH Zurich. It is one
of the world’s best implementations of a RISC-V core. There are two tape-outs based on
the Ariane design: Kosmodron [42] and Poseidon [21].

• Lagarto: Lagarto [1] is a single-issue in-order 5-stage core developed by CIC-IPN, BSC,
IMB-CNM (CSIC), and UPC, which implements the 64bit RISC-V ISA with the M and
A extensions. It also implements the privilege ISA 1.7 with the machine, supervisor, and
user modes.
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• Spike: Spike [26] is a RISCV-V ISA simulator that suports RV32I and RV64I base ISAs
along with MAFDQCVP and hypervisor v1.0 extensions, machine, supervisor ans user
modes v.1.11 and much more.

• Verilator: Verilator [34] is a tool that converts Verilog to a cycle-accurate behavioral
model in C++ or SystemC. It is restricted to modeling the synthesizable subset of Ver-
ilog, and the generated models are cycle-accurate, 2-state, with synthesis (zero delays)
semantics. Consequently, the models typically offer higher performance than the more
widely used event-driven simulators, which can process the entire Verilog language and
model behavior within the clock cycle.

• OpenSBI: The goal of the OpenSBI project [25] is to provide an open-source reference
implementation of the RISC-V SBI specifications for platform-specific firmwares executing
in M-mode. An OpenSBI implementation can be easily extended by RISC-V platform and
system-on-chip vendors to fit a particular hardware configuration.

• OpenPiton: OpenPiton [6, 18] is the world’s first open-source, general purpose, mul-
tithreaded manycore processor. It is a tiled manycore framework scalable from one to
1/2 billion cores. It is a 64-bit architecture using SPARC v9 ISA [31] with a distributed
directory-based cache coherence protocol across on-chip networks. It is highly configurable
in both core and uncore components.

• JuxtaPiton: JuxtaPiton [19] is the first open-source, general-purpose, heterogeneous-ISA
processor. It is the first time a new RISC-V core has been integrated with the OpenPiton
framework

2.2 RISC-V privilege levels

This section will introduce some basic components and concepts of the RISC-V privileged ar-
chitecture. Refer to the RISC-V privileged architecture specification for more information [35].
We will first review privileged software stacks. Then, we will detail the different privilege levels
of a RISC-V-based system.

Figure 2.1: Different implementation stacks supporting various forms of privileged execution.
Source: [35]

Figure 2.1 shows three possible software stacks. We will focus only on the middle one since it
is applied in the PreDRAC chip boot process. This is the typical configuration with an Operating
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System (OS) capable of running multiple applications. These applications communicate with
the OS through the Application Binary Interface (ABI), providing an Application Execution
Environment (AEE). The ABI includes the supported user-level ISA, and a set of ABI calls
to interact with the AEE. The ABI hides the details of the AEE from the application to allow
greater flexibility in the implementation of the AEE.

Similarly, the OS communicates with an Supervisor Execution Environment (SEE) through
an Supervisor Binary Interface (SBI). An SBI comprises the user-level and supervisor-level ISA
along with a set of SBI function calls. The use of a single SBI in all SEE implementations
allows a single binary image of the OS to run on any SEE. The SEE can be a simple boot loader
and BIOS-like I/O system on a low-end hardware platform, or a virtual machine provided by a
hypervisor on a high-end server, or a thin translation layer on top of a host OS in an architectural
simulation environment.

It is important to note that at any time, a RISC-V hardware thread (a core) runs at some
privilege level encoded as a mode in a Control and Status Register (CSR). Table 2.1 shows the
privilege levels defined by the ISA.

Table 2.1: RISC-V privilege levels. Source: [35]

Privilege levels are used to provide protection between different software stack components,
and attempts to perform operations not permitted by the current privilege mode will cause an
exception to be raised. These exceptions will normally cause traps into an underlying execution
environment.

The machine level has the highest privileges and is the only mandatory privilege level for a
RISC-V hardware platform. Code run in machine-mode (M-mode) is usually inherently trusted,
as it has low-level access to the machine implementation. M-mode can be used to manage secure
execution environments on RISC-V. User-mode (U-mode) and supervisor-mode (S-mode) are
intended for conventional application and OS usage, respectively.

2.3 Boot process

All the steps that a hardware platform has to perform on a power-on to provide an environment
ready to run applications are part of the boot process. We will first briefly define this process and
the elements involved in it. Then we will talk about the specific boot process on the PreDRAC
SoC. Figure 2.2 shows the main software components to be considered during the boot process.
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Figure 2.2: Boot-realated software components

The bootloader is the first code to be executed on the system. Any designed chip will require
several hardware components to support the processor, such as memory devices or peripheral
controllers like the keyboard and display. The bootloader is usually stored in a ROM memory
and runs in machine mode. Its primary purpose is to initialize the hardware components of
the chip to prepare the environment needed to load the firmware (or BIOS) into the processor’s
memory hierarchy and run it.

The firmware is usually located in some on-chip storage device, such as flash or DDR memory.
It is responsible for configuring and preparing all the chip components and loading the OS.

The OS typically runs in supervisor mode. It prepares the environment for the execution of
applications and is responsible for programming them. Before switching to the context of an
application, it drops privileges by entering user mode.

2.3.1 PreDRAC bootloader

The PreDRAC chip bootloader is very straightforward. The Figure 2.3 shows a sequence diagram
of the most relevant actions performed by the bootloader. As mentioned before, the bootrom
that hosts the bootloader is a perfect memory implementation for an FPGA communicated
directly with the SoC.

Figure 2.3: PreDrac boot sequence diagram

In the diagram, we can recognize five distinct steps of the bootloader:
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1. Initializes the UART, thus allowing communication with the outside of the chip. The
bootloader implements a modified UART version of the classic printf() function. In this
way, we can comfortably obtain information for the rest of the bootloader execution.

2. Mounts the SD card. The SD card contains a single binary with OpenSBI and the Linux
Kernel together. The OpenSBI is firmware that offers an abstraction of the platform-
specific functionalities.

3. Parses and copies the binary from the SD card to the DRAM, the chip’s main memory.

4. Sets the mapping of the different memory and I/O devices. Table 2.2 shows the address
ranges that correspond to each of the devices.

5. Finally, it jumps to the first address of the DRAM giving the execution to the OpenSBI
that will later execute the Linux kernel.

Table 2.2: Device physical addresses mapping
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3 Design and implementation

This chapter covers the design and implementation of the bootrom controller. The final goal is
to create a SystemVerilog module, the language used in most of the project, so that it can be
instantiated in the SoC and, in this way, allow the processor to fetch and execute the instructions
the bootloader. However, for now, we will leave the SoC aside and focus on implementing a
module capable of processing read and write requests.

3.1 First steps

Since every device may differ in the way we should interface with it, the first step to designing a
bootrom controller is to choose which device we will use as a bootrom. Then, we will talk about
how we can interact with it; we will define its pinout and some of the instructions it supports.

3.1.1 Choose of the bootrom

When choosing which memory device to use, three key factors are, generally, the interface,
technology, and size. To evaluate the different options, we must take into account what are the
limitations we start with. In this case, the restriction is clear: we don’t have too many free pins
in the SoC pinout, and, therefore, we need to use as few pins as possible.

This requirement directly affects the type of interface the device has to have, thus discarding
any parallel protocol due to the number of pins it would require. However, within the most
common serial protocols, we have different options. The table 3.1 shows the number of pins
needed to implement each of the serial protocols we consider.

Protocol Sync/Async # Pins Duplex Max speed (Kbps)
I2C sync 2 half 3.400
SPI sync 4 full >1.000
Microwire sync 4 full >625
1-Wire async 1 half 16

Table 3.1: Serial protocols comparision [Self compilation]

Although it may seem that 1-Wire is the protocol best suited to the requirement of using
the minimum number of pins, this is not entirely true. The DRAC SoC already implements
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the SPI protocol to communicate with the SD card. Figure 3.1 shows a typical SPI connection
with three independent slaves sharing the data pins and the clock (MISO, MOSI, and SCLK).
Therefore, adding one more slave device, such as the bootrom in our case, would only cost a
single pin (SS), which is responsible for activating the new device when needed. In this way,
both SPI and 1-Wire only involve a 1-pin overhead, and in consequence we will choose the SPI
protocol for its simplicity and higher transmission speed.

Figure 3.1: Typical SPI bus: master and three independent slaves [40]

The technology of the memory device is not a critical factor in the development of the
chip. The two most commonly used options are Electrically Erasable Programmable Read-Only
Memory (EEPROM) and Flash memories. Both can be erased and reprogrammed. The main
difference between them is that Flash memories allow block erases, while EEPROM memories
erase byte by byte. This has an advantage in the erase speed of Flash over EEPROM, but, as it
does not affect the specific use case of the bootrom, it is a negligible advantage. Another aspect
to consider is that Flash memories have a data retention of approximately 40 years while the
data retention of EEPROMs is over 100 years.

Finally, memory size is the last factor to consider. Since the bootrom is, in the end, a
peripheral of the chip, we have no area or size limitation other than that the bootloader must
fit in the memory. Therefore, we have considered that with memories of approximately 512 KB,
we will have enough space.

With all this in mind, the memory we will use as bootrom is the 4-Mbit SPI serial EEPROM
25CSM04 [14], which fits the project’s technical needs and has a free SystemVerilog model that
will allow us to test the implementation of the controller in simulation.

3.1.2 Understanding the 25CSM04 pinout

As shown in the Figure 3.2, the device has six pins, excluding ground and power supply pins.
The ones involved in the SPI interface, as mentioned above, are only four, and we will talk about
them later: SI, SO, SCLK and CS.
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(a) 25CSM04 block diagram

(b) 25CSM04 pin function table

Figure 3.2: 25CSM04 EEPROM pin details. Source: [14]

The HOLD and WP pins serve to control two functionalities the device provides. The first,
the hold function, allows us to pause an operation without having to stop or restart the serial
clock sequence. This pause does not affect the write cycle, which means that if we trigger this
function during a write operation, it will continue till the write completes.

The WP pin activates the write-protect function. This function allows us to divide the mem-
ory into nine partitions and define them as read-only, blocking writes at hardware or software
level as desired. We will not go into more detail about these two features since we will not use
them. As we only want to be able to read instructions stored in the device, we can hardwire
these pins high to deassert them.

Next, we will detail the pins related to SPI communication. The SO is the slave data output
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pin, so the memory contents at the requested address will be shifted through this pin. The SI
is the slave input pin, and we will use it to specify the operation (see Table 3.2), addresses, and
data when needed. The CS pin selects the device, which is required to be able to interact with
it; otherwise, the slave will remain in Stand-By mode. In the Stand-By mode, the device ignores
the SI pin and sets the SO pin in a high-impedance state.

Finally, the SCLK is the serial clock, this is an input of the device, so the controller must
generate it. The maximum clock frequency is 8MHz if we power the device from 3.0V to 5.5V,
or 5MHz if we power it from 2.5V to <3.0V. We must also consider that data on the SO pin is
always clocked out on the falling edge of SCK, and the data on the SI pin is always latched on
the rising edge.

3.1.3 25CSM04 basic operations

Once we select the device, driving the CS pin low, the first byte sent must be the opcode of the
instruction we want the device to perform. The Table 3.2 shows the 19 instructions implemented
by the 25CSM04 along with their 8-bit serial opcode. All instructions, addresses, or data must
be transmitted starting with the most significant bit.

Table 3.2: 25CSM04 EEPROM instructions with their operation opcode. Source: [14]

We will not discuss the sequence of all the instructions but only the ones we will use. We
will start with the simplest one, the WREN (Write Enable) instruction. If the device is not
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write-enabled, it will ignore the write instructions. As seen in the Figure 3.3, the sequence is
straightforward and only transfers the opcode.

Figure 3.3: 25CSM04 write enable (WREN) instruction sequence. Source: [14]

The following is the WRITE instruction, which will allow us to write the contents of the
memory. The writing sequence is a bit more complex. Once we transfer the opcode, the direction
of the write is specified. The addresses are 3 bytes long, but the device will ignore the 5 most
significant bits since only 19 are needed to address 512KB of memory. Finally, as shown in the
Figure 3.4, we must transfer the data. The internal write cycle time is five milliseconds.

Figure 3.4: 25CSM04 byte write (WRITE) instruction sequence. Source: [14]

When a write finishes, we must consider that the device will disable the writes again. There-
fore, it will be necessary to re-enable them using the WREN instruction before performing a
new write.

The 25CSM04 also allows writes of up to 256 bytes, so it is unnecessary to enable the
writes, specify the opcode and address for each byte to write. However, the writes must be of
contiguous addresses and must belong to the same page of the memory array (where the bits
from 18 through 8 of the address are the same). After writing each byte, the device increments
only the lowest 8 bits of the address, keeping the rest of the address constant. In the case of
providing more data than will fit in the page, the address counter will return to the beginning
of the same page. The Figure 3.5 shows a page write sequence.
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Figure 3.5: 25CSM04 page write (WRITE) instruction sequence. Source: [14]

The last we will discuss is the READ instruction. It is the most crucial instruction since
it is the one that will allow us to read the EEPROM contents. The read sequence, shown in
the Figure 3.6, is very similar to the write instruction sequence. In this case, however, once we
transfer the address, the device will ignore the SI pin and shift out the contents of the specified
address onto the SO pin. The address is automatically incremented, and the sequence continues,
shifting the data onto the SO pin. To terminate the sequence, we have to drive de CS line high.

Figure 3.6: 25CSM04 read (READ) instruction sequence. Source: [14]

3.2 Bootrom controller implementation

Next, we will explain the implementation of the bootrom controller. To do this, we will first talk
about the controller’s interface and, then, some implementation details, such as the handshake
or state machine.

3.2.1 25CSM04 controller design

Once we know how to interact with the memory, we can design and implement the controller.
To do this, we will start from the outside in, defining the inputs and outputs of the component.
Then, we will detail some relevant aspects of the implementation.
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3.2.1.1 Controller interface details

For simplicity, we will separate the controller module interface into two groups. First, the
Controller-Slave interface is the one that is established directly with the EEPROM, and then
the Master-Controller interface, which in our case is the one that communicates with the SoC.
Note that referring to the signals’ names, we will use the suffix ’ i’ for the module inputs and
’ o’ for the outputs for better readability.

The Controller-Slave interface will consist of only four signals, all of them of one bit.

• mo o: The master output, which we will use to serially transfer opcodes, addresses, and
data in case of writes.

• mi i: The master input, where we will receive the data after a read operation.

• sclk o: The serial clock that the controller must provide for synchronization. The 25CSM04
supports SPI modes 0 and 3. These define the polarity and phase of the serial clock. We
will implement mode 0, which states that the clock must be low when the device is not
asserted.

• sclk en o: We will use this bit as chip select to assert or deassert the EEPROM.

The Master-Controller interface is a bit more complex. The module will be parameterized
to be able to adapt to different needs easily without wasting resources. We will first detail the
interface and then discuss how to use the parameters to modify it when instantiating the module.

• clk i: Reference clock from which the serial clock will be generated.

• rstn i: Active low asynchronous reset signal.

• req opcode i: 8-bit bus for the opcode of the operation that the controller will transfer
to the serial device.

• req address i: 24-bit bus for the write or read address.

• req data i: Bus, of variable size, for the data in case of a write operation.

• req bytes i: Variable size bus to specify the name of the bytes to be written or read.

• req valid i: Signal to inform that the input fields are valid. This signal is synchronous to
the reference clock. As long as the controller is not busy, for each rising clock edge where
this signal is up, the controller will start the communication process with the data present
at that moment.

• ready o: Signal to indicate if the controller is free or not. When the controller is busy, it
will ignore the req valid i signal.

• resp data o: 8-bits signal for the data in case of a read operation.
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• resp valid o: Signal, synchronized with the reference clock, that indicates when the read
data is valid. This signal will be driven high as many times as the number of bytes
requested in the read operation.

In summary, Figure 3.7 shows a diagram with the controller interface and the connections
to the 25CSM04 EEPROM.

Figure 3.7: Controller interface diagram

As mentioned above, we are interested in doing a parameterized implementation. Keeping
the interface and implementation simple, we want to take advantage that the memory supports
page writes, which will be helpful when writing the bootloader. However, this is a rare situation
since no writes will be performed for the most general use case; reading instructions from mem-
ory. That is why, to avoid wasting resources, we will use the MAX REQ BYTES parameter.
This parameter indicates the size in bytes of the req data i bus and determines the size of the
req bytes i bus that matches the number of bits needed to represent that value. We will discuss
this and other parameters in more detail below.

3.2.1.2 Controller implementation details

Although you can find the entire implementation in the Appendix A.1, it is appropriate to point
out some implementation details. First, however, we will see how we have defined the port map
of the controller module. The Listing 3.1 shows the input and output signals mentioned above
and two parameters.

1 module spi_eeprom_req
2 #(
3 parameter CLK_DIV_FACTOR = 32,
4 parameter MAX_REQ_BYTES = 4)
5 (
6 // Master - Controller interface
7 input logic clk_i ,
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8 input logic rstn_i ,
9 input logic [7:0] req_opcode_i ,

10 input logic [23:0] req_address_i ,
11 input logic [( MAX_REQ_BYTES *8) -1:0] req_data_i ,
12 input logic [ $clog2 ( MAX_REQ_BYTES ):0] req_bytes_i ,
13 input logic req_valid_i ,
14 output logic ready_o ,
15 output logic [7:0] resp_data_o ,
16 output logic resp_valid_o ,
17 // Controller -Slave interface
18 output logic sclk_o ,
19 output logic sclk_en_o ,
20 output logic mo_o ,
21 input logic mi_i);

Listing 3.1: 25CSM04 custom controller port map declaration

The first parameter, CLK DIV FACTOR, is the reference clock division factor. By default, it
takes the value of 32. The second one is the already mentioned MAX REQ BYTES parameter.
Its purpose is to dimension the signals req data i and req bytes i to take better advantage of the
resources. By default, it takes the value of 4, so the sizes are 32 bits and 3 bits, respectively.
The default values of the parameters can be overwritten in the module instantiation.

The clock signal generation is an example of a detail to be further explored. Listing 3.2
shows the implementation of the clock frequency reduction. We have chosen to generate only
clocks using powers of 2 as frequency divisors. We use a counter sized with the value of the
CLK DIV FACTOR parameter, which increments at each rising edge of the reference clock. In
this way, we get a more stable signal by taking the most significant bit of the counter. Since it
is very simple logic, it involves fewer logic gates than other implementations that would allow
us to choose the frequency accurately.

1 localparam DIV_CLK_COUNT_LEN = $clog2 ( CLK_DIV_FACTOR );
2 ...
3 logic [ DIV_CLK_COUNT_LEN -1:0] clk_div_cnt ;
4

5 always_ff @( posedge clk_i , negedge rstn_i ) begin
6 if (˜ rstn_i ) begin
7 clk_div_cnt <= 0;
8 end else begin
9 clk_div_cnt <= clk_div_cnt + 1;

10 end
11 end
12

13 assign clk = clk_div_cnt [ DIV_CLK_COUNT_LEN -1];
14 ...
15 assign sclk_o = ( sclk_en_o )? clk: 0;

Listing 3.2: Serial clock frequency division

Another reason that leads us to make this design decision is that achieving the maximum
frequency at which the 25CSM04 can operate is not crucial. This memory is accessed only to
load and run the bootloader in our use case. Once the code is in the main memory, the access
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latency will be that of the instruction cache, and therefore, we can afford this latency increase
since it is only at boot time.

Figure 3.8: Handshake logic

The handshake is also an essential element. It is the mechanism through which, on the one
hand, the controller indicates that it is ready to process a request or to deliver data, and the
master, on the other hand, informs the controller that the data of the request is valid.

Figure 3.8 shows the combinational logic that implements the handshake. The signals shown
in bold are composed of more than one bit. Although it is omitted in the diagram, we must
consider that we have implemented a bit counter,which increments every cycle of the serial clock,
and a byte counter. These will allow controlling the state machine, which we will talk about
next, among other things. A change of the state clears these counters.

The controller is ready when it is in an idle state, and there is no reset. The resp valid o
signal is only high when the controller has read a byte. At that time, there is valid data on the
resp data o port. This implies two things; on the one hand, by depending on the bit counter,
the resp valid o signal remains high one cycle of the serial clock, and on the other hand, the
consumer must wait for this signal to go high as many times as bytes it has requested to read.
Note that WRITE and WREN operations do not have a response from the controller. Finally,
when the consumer raises the req valid i signal, as long as the controller is idle, the request’s
data is stored in registers to keep the information until the subsequent request.

The FSM of the controller, shown in Figure 3.9, is a Moore state machine. The initial state,
which is reached asynchronously on reset, is the STATE IDLE state. The remaining states have
the purpose of either serially transferring opcode, address, and data or receiving the data bit by
bit from a read operation. The three conditions that influence the change of states are:
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1. The request is valid.

2. The byte counter matches the number of bytes expected to receive or transfer in that state.

3. The opcode of the instruction.

Figure 3.9: State machine

The controller will remain in STATE IDLE until it receives a valid request, at which time it will
change to the STATE T OP state. The controller enables the serial clock and starts transferring
the opcode. After eight cycles of the serial clock, i.e., after transferring the opcode byte, it will
return to the STATE IDLE state in case of a WREN instruction. Otherwise, if it is a READ or
WRITE instruction, it will switch to the STATE T ADDR state. After 24 cycles dedicated to
the address, it will proceed to the STATE R READ or STATE T WRITE state, depending on
whether the opcode corresponds to the READ or WRITE instruction, respectively. The cycles
in which the controller will remain in these two states depend on the bytes requested. Finally,
we return to the idle state at the end of the operation.

Shifter registers are fundamental in our implementation to perform serial communication.
They are registers that shift the data in each cycle. As shown in the Listing 3.3, we use them
to interact with the output and input signals of the SPI EEPROM.

1 always_ff @( posedge clk) begin : shift_regs
2 dataShifterI <= { dataShifterI [6:0] , mi_i };
3 if ( bitcount_q == 7) begin
4 resp_data_o <= { dataShifterI [6:0] , mi_i };
5 end
6 end
7

8

9 always_ff @( negedge clk) begin
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10 if ( bitcount_q == 0) begin
11 if ( is_opcode ) begin
12 dataShifterO <= req_opcode_q ;
13 end else if ( is_addr ) begin
14 dataShifterO <= req_address_q [ bytecount_q ];
15 end else if ( is_write ) begin
16 dataShifterO <= req_data_q [ bytecount_q ];
17 end
18 end else if ( sclk_en_o ) begin
19 dataShifterO <= dataShifterO [6:0] << 1;
20 end
21 end
22

23 assign mo_o = dataShifterO [7];

Listing 3.3: Shiter registers

The data input register is shifted on the rising edges of the serial clock, and each shifted byte
is propagated to the resp data o port. In contrast, the data output register is shifted on the
falling edges. At the beginning of the byte, it takes value with the opcode, the corresponding
byte of the address, or the data to be written depending on the controller’s state.
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4 Bootrom controller verification

In this chapter, we will detail the process followed to ensure that the behavior of the 25CSM04
controller complies with the intention of its implementation. This procedure is called verification,
and for this purpose, we will create a module exclusively to test and verify the correct behavior
of the controller detailed in the previous chapter. These modules are commonly known as
testbenches and are generally used to verify designs through RTL simulations. Next, we will
document the process of creating the testbench, and we will see how it can be handy to visualize
and prove that the implemented design meets the requirements.

4.1 Writing the testbench

The testbench must provide the module to be verified with the necessary environment to perform
the verification. On the one hand, that is generating the signals that stimulate the Device Under
Test (or DUT) and, on the other hand, checking the results for these stimuli. In our case, the
DUT is the bootrom controller.

4.1.1 25CSM04 simulation model

Generating the stimuli and checking logic for the Controller-Slave interface of the controller
(shown in the Figure 3.7) is a costly and complex task. Instead, we will use a model of the
25CSM04 memory obtained from the resource bank of the Microchip website [16]. The model
is an HDL module that behaves exactly like the device. This module uses non-synthesizable
Verilog statements and is therefore only valid for simulations. In addition, in this case, the
model includes a series of checks that indicate whether the input signals, such as input data and
serial clock, have the latency and frequency supported by the physical device.

1 ‘timescale 1ns/1ps
2 wire TimingCheckEnable = (RESET == 0) & (CS_N == 0);
3 specify
4 specparam
5 tHI = 40, // SCK pulse width - high
6 tLO = 40, // SCK pulse width - low
7 tSU = 10, // SI to SCK setup time
8 tHD = 10, // SI to SCK hold time
9 tHS = 10, // HOLD_N to SCK setup time

10 tHH = 10, // HOLD_N to SCK hold time
11 tCSD = 30, // CS_N disable time
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12 tCSS = 30, // CS_N to SCK setup time
13 tCSH = 30, // CS_N to SCK hold time
14 tCLD = 50, // Clock delay time
15 tCLE = 50; // Clock enable time
16

17

18 $width ( posedge SCK , tHI);
19 $width ( negedge SCK , tLO);
20 $width ( posedge CS_N , tCSD);
21

22 $setup (SI , posedge SCK &&& TimingCheckEnable , tSU);
23 $setup ( negedge CS_N , posedge SCK &&& TimingCheckEnable , tCSS);
24 $setup ( negedge SCK , negedge HOLD_N &&& TimingCheckEnable , tHS);
25 $setup ( posedge CS_N , posedge SCK &&& TimingCheckEnable , tCLD);
26

27 $hold ( posedge SCK &&& TimingCheckEnable , SI , tHD);
28 $hold ( posedge SCK &&& TimingCheckEnable , posedge CS_N , tCSH);
29 $hold ( posedge HOLD_N &&& TimingCheckEnable , posedge SCK , tHH);
30 $hold ( posedge SCK &&& TimingCheckEnable , negedge CS_N , tCLE);
31 endspecify

Listing 4.1: 25CSM04 model timing checks

The Listing 4.1 shows the existing timing checks in the model. All specified parameters are
expressed in nanoseconds and are defined in the 25CSM04 datasheet [14].

The $width task checks that the time elapsed between the transition specified in the first
parameter and the subsequent transition of that signal is at least the time specified in the second
parameter. This task checks that the signal pulses comply with the constraints. For example,
lines 18 and 19 checks that the serial clock’s positive and negative pulses are not less than 40
nanoseconds. The statement in line 20, on the other hand, ensures that the time between two
device assertions is greater than 30 nanoseconds.

The $setup task verifies that at least the time defined in the third parameter elapses between
the change in the signal specified in the first parameter and the reference time specified in the
second parameter.

Finally, the $hold task works similarly to the previous one; the only difference is that the
reference time is defined in the first parameter and the signal in the second. Therefore, line 22
verifies that the input data is stable 10 nanoseconds before the rising edge of the serial clock,
while line 27 ensures no change in the signal 10 nanoseconds after the edge.

4.1.2 Test definition and implementation

Apart from the timing check provided by the model, it is necessary to define what other aspects
of the controller implementation we want to check. Above all, we must ensure that the READ,
WREN, and WRITE instructions work as expected. For this purpose, we will perform the
following tests:

• Single-byte read operations.

• 4-byte read operations.
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• One page write operations.

We are specifically interested in testing the 4-byte reads since, being the size of the instruc-
tions the core works with, it will be the most common and crucial use case. To generate the
stimuli for the Master-Controller interface (shown in the Figure 3.7), we will create a task for
each test we want to perform.

1 task do_read ;
2 input [23:0] addr;
3 begin
4 req_opcode = ‘READ;
5 req_address = addr;
6 req_bytes = 9’h1;
7 # CLK_PERIOD ;
8 wait(ready);
9 req_valid = 1;

10 # CLK_PERIOD ;
11 req_valid = 0;
12 wait (˜ ready);
13 check_read (addr);
14 end
15 endtask
16

Listing 4.2: Singly-byte read stimuli
generation task

1 task do_read_4 ;
2 input [23:0] addr;
3 input [31:0] chk_val ;
4 begin
5 req_opcode = ‘READ;
6 req_address = addr;
7 req_bytes = 9’h4;
8 # CLK_PERIOD ;
9 wait(ready)

10 req_valid = 1;
11 # CLK_PERIOD ;
12 req_valid = 0;
13 wait (˜ ready);
14 check_read_4 (addr , chk_val );
15 end
16 endtask

Listing 4.3: 4-byte read stimuli generation
task

Listings 4.2 and 4.3 show the stimulus generation tasks for the single-byte and 4-byte
read operation, respectively. The first one has the address of the byte we want to read as a
parameter. The task prepares the opcode, the address, and the number of bytes requested for
at least one cycle before raising the valid request signal. This signal is driven high for only
one cycle when the controller is ready, and then the results of the read operation are checked
by calling the check read() task, which we will examine later. The second one is very similar;
the most relevant change is that the bytes requested are 4. The chk val parameter is used to
check that the read operation is correct. It contains the data expected to be read and is passed
directly to the check read 4() task, which verifies the 4 byte reads.

1 task check_read ;
2 input [24:0] addr;
3 begin
4 wait( resp_valid );
5 if( resp_data === test_mem [addr ]) begin
6 $display ("Test 1-byte read [%d] addr %h: OK (read: %h, exepected : %h)",

cnt , addr , resp_data , test_mem [addr ]);
7 end else begin
8 $display ("Test 1-byte read [%d] addr %h: FAIL (read: %h, expected : %h)",

cnt , addr , resp_data , test_mem [addr ]);
9 $stop ;

10 end
11 end
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12 endtask

Listing 4.4: Singly-byte read stimuli generation task

As we can see in Listing 4.4, the task check read() waits until the controller sets the resp valid
signal high, at which time it checks that the data in the controller’s resp data o output port is
as expected. To determine which is the desired data, we use a perfect memory array of the same
size as the EEPROM: test mem. SystemVerilog provides a system function called $readmemh( ),
which allows us to dump the hexadecimal contents of a file in our system into the memory array.
Since the internal memory of the 25CSM04 model is uninitialized, it is necessary to modify it
by adding this system function so that the contents of the model memory and the testbench
memory are the same at the start of the simulation. If the response data from the controller
does not match the data in the memory array at the same address, the $stop function call will
stop the simulation, helping the developer find the bug.

1 task check_read_4 ;
2 input [24:0] addr;
3 input [31:0] chk_val ;
4 begin
5 wait( resp_valid );
6 resp_data4 [7:0] <= resp_data ;
7 wait (˜ resp_valid ); wait( resp_valid );
8 resp_data4 [15:8] <= resp_data ;
9 wait (˜ resp_valid ); wait( resp_valid );

10 resp_data4 [23:16] <= resp_data ;
11 wait (˜ resp_valid ); wait( resp_valid );
12 resp_data4 [31:24] <= resp_data ;
13 wait (˜ resp_valid );
14 if( resp_data4 === chk_val ) begin
15 $display ("Test 4-byte read [%d] addr %h: OK (read: %h, expected : %h)", cnt

, addr , resp_data4 , chk_val );
16 end else begin
17 $display ("Test 4-byte read [%d] addr %h: FAIL (read: %h, expected : %h)",

cnt , addr , resp_data4 , chk_val );
18 $stop ;
19 end
20 end
21 endtask

Listing 4.5: 4-byte read stimuli generation task

Listing 4.5 shows the implementation of the check read 4() task. When checking a four-byte
read operation, the controller must drive high the resp valid signal four times, and each one of
them, the task saves the value so that it obtains the complete data at the end. Once we have the
entire data, the comparison is made with the chk val input, which must contain the expected
value. In this case, the fact that the desired value comes as a parameter allows us, as we will
see below, to reuse this task to check the correct behavior of the writes operations.

1 task do_write ;
2 begin
3 req_opcode = ‘WREN;
4 # CLK_PERIOD ;
5 wait(ready)
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6 req_valid = 1;
7 # CLK_PERIOD ;
8 req_valid = 0;
9 wait (˜ ready)

10 req_opcode = ‘WRITE;
11 req_address = 24’b0;
12 req_bytes = 9’d256;
13 req_data = {2048{1 ’ b1 }};
14 wait(ready)
15 # CLK_PERIOD ;
16 req_valid = 1;
17 # CLK_PERIOD ;
18 req_valid = 0;
19 wait (˜ ready); wait(ready);
20 $display ("Test page write [%d] write 0xff in page %h", cnt , req_address );
21 #5000000
22 do_read_4 ( $urandom_range (’h0 , ’hfc), 32’ hffffffff );
23 end
24 endtask

Listing 4.6: Page write stimuli generation task

Listing 4.6 shows the do write() task. This task generates the stimuli to perform a write of
a page. To do so, it first generates a WREN request, necessary to enable writes. Then it
prepares the WRITE request to write ones to all memory locations of the first page. Once the
write operation has finished and the controller raises the ready signal, the task waits for five
milliseconds corresponding to the EEPROM internal write cycle time. After this time, the write
has already propagated to the device’s internal memory. We perform the write check using the
do read 4() task described above. The first parameter, the address, is a random position within
the first page, and the expected value, defined in the second parameter, is 4 bytes with all its
bits set to 1. If the read result does not match, we know that either the WREN operation or
the WRITE operation has not been performed correctly.

1 spi_eeprom_req # (. MAX_REQ_BYTES (256) , . CLK_DIV_FACTOR (4))
2 DUT ( // Master - Controller interface
3 .clk_i (clk), . rstn_i (˜ reset), . req_opcode_i ( req_opcode ), . req_address_i (

req_address ), . req_data_i ( req_data ), . req_bytes_i ( req_bytes ), . req_valid_i
( req_valid ), . ready_o (ready), . resp_data_o ( resp_data ), . resp_valid_o (

resp_valid ),
4 // Controller -Slave interface
5 .mo_o (mo), . sclk_o ( spi_clk ), . sclk_en_o ( spi_clk_en ), .mi_i (mi));
6

7 M25CSM04 mem0 (. CS_N (cs_n), .SO (mi), .WP_N (1’h1), .SI (mo), .SCK ( spi_clk ),
. HOLD_N (1’h1), .RESET(reset));

8

9 always # CLK_PULSE clk = ˜clk;
10 assign cs_n = ˜ spi_clk_en ;
11

12 initial begin
13 clk = 1;
14 reset = 1;
15 req_valid = 0;
16 $readmemh (" bootrom_content .hex", test_mem );

42



CHAPTER 4. BOOTROM CONTROLLER VERIFICATION

17 #120
18 reset = 0;
19 cnt = 0;
20 while (cnt < ‘N_TESTS ) begin
21 do_read ( $urandom_range (‘ADDR_MIN , ‘ADDR_MAX ));
22 cnt ++;
23 end
24 ...
25 end

Listing 4.7: Module instantiations and conections in the testbench

Finally, it is necessary to instantiate the bootrom controller module and the memory model
and interconnect them (see Listing 4.7). The initial clause is the core of our testbench. First, we
generate the reset signal and initialize the test mem memory to perform the subsequent tests.
Then we use the tasks to generate the different stimuli detailed above.

4.2 Visualization and behavioral testing

We can run the testbench and analyze the results using an HDL language simulator. In our
case, we have used ModelSim [17], which allows us to perform RTL simulations and observe the
changes of different signals through a waveform.

Figure 4.1: Single-byte read request waveform

Figure 4.1 shows the signals from the bootrom controller interface during a 1-byte read
operation. The start and end of the operation are marked with markers. To better visualize the
image, we have used a clock division factor of 2, defined by the parameter CLK DIV FACTOR.
This means that the period of the serial clock is twice that of the reference clock. When the
master raises the req valid i signal, the opcode at the controller input is 3, which corresponds
to the READ operation, the specified address is 0x82, and only 1 byte is requested. When the
controller sees the valid request, it drives the ready o signal low, switches to the STATE T OP
state, and enables the serial clock, thus activating the EEPROM. This state lasts for eight cycles
of the serial clock, and in the mo o signal, we can see that the bit corresponding to the opcode
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is transmitted at each cycle, starting with the most significant one. Immediately after, the
controller switches to the address transmission state. This state, as expected, lasts for 24 serial
clock cycles, in which we can see the corresponding bit of the address on the same signal. Then,
the controller switches to the STATE R READ state, wherein the subsequent eight serial clock
cycles, the input signal mi i is fetched. Once the operation finishes, the data is at the output
port resp data o, and the controller raises the resp valid o signal for one cycle. In addition, the
controller is in an idle state and, accordingly, disables the serial clock and sets the ready o port
high again.

Figure 4.2: Four-byte read request waveform

Figure 4.2 shows the waveform resulting from a 4-byte read operation. Unlike the previous
example, the STATE R READ state lasts for 32 serial clock cycles, since now we requested four
bytes instead of only one. The data remains in the resp data o port for each byte read, and the
valid response signal is raised for one cycle. In this case, assuming the memory is little-endian,
the data stored at address 0xC7 is 0x7A4C5E76.

Figure 4.3: Write enable (WREN) request waveform

44



CHAPTER 4. BOOTROM CONTROLLER VERIFICATION

The WREN operation, whose opcode is 6, is required before writing. Figure 4.3 shows the
waveform corresponding to this operation. In this case, the waveform allows us to observe that
even if the inputs change once the request is valid, it does not affect the procedure. When the
controller starts to process the WREN operation, driving the ready o signal low, we observe how
the input opcode value immediately changes to 2, which corresponds to the WRITE operation.
However, we can observe that a six is transmitted during the opcode transmission state and that
the next state transition is to STATE IDLE, which, as shown in Figure 3.9 is to be expected for
the WREN operation.

Figure 4.4 shows the waveform corresponding to the write operation. The req bytes i port
when the request is valid is 256 bytes, and the address is 0x00 so that this request will write the
entire first page of the EEPROM. As we see in the req data i port, the data to write is 256 bytes
with all its bits at 1. The procedure is identical to the reads detailed above until the address
is transmitted. Then, the controller enters the STATE T DWRITE state, where, during the
subsequent 2048 cycles of the serial clock, it transmits bit by bit the data to be written by the
mo o signal. Once the controller finishes transmitting the 256 bytes of data, it changes to the
idle state, driving the ready o signal high again and disabling the serial clock.

Figure 4.4: Page write (WRITE) request waveform

Finally, this process of verifying and checking the behavior does not need to be done manually
by viewing the waveform; by adding the $display Verilog statements in the testbench, we can
print information as the simulation runs. In Figure 4.5 we can identify, underlined in red, the
messages corresponding to the waveforms shown in this chapter.
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Figure 4.5: Modelsim transcript window output

46



5 Bootrom controller integration

With the bootrom controller implemented and verified, we can proceed to the next step: inte-
gration into DRAC’s 22 nm SoC. However, we will first analyze specific details of the SoC and
processor to evaluate different integration strategies. Next, we will see what changes will need
to be made to the current implementation.

5.1 DRAC SoC

The DRAC 22 nm is an SoC based on the lowRISC SoC project, developed by the lowRISC
company. The lowRISC project is a 64-bit SoC design that integrates the Rocket core [13] to
offer an FPGA-ready SoC distribution with open-source peripherals.

Figure 5.1: PreDRAC connected to an FPGA [1]

The DRAC SoC modifies the lowRISC project caches to enable a SIMD pipeline and incor-
porates Advanced eXtensible Interface (AXI) peripherals. In addition, the design of the SoC is
divided into two differentiated parts: fpga top and asic top. As mentioned before, the asic top
is the ASIC-oriented implementation of the SoC. At the same time, the fpga top contains all
those modules that, either because it was not possible to implement it for ASIC or to keep a
backup option in case the ASIC fails, will be burned into an FPGA that will be connected to
the rest of the SoC. This environment, shown in Figure 5.1, is already used in preDRAC, the
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predecessor of DRAC 22 nm.

Figure 5.2: DRAC 22nm SoC simplified block diagram
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This SoC has a modular design, allowing us to add different functionalities without significant
structural changes. Figure 5.2 shows a simplified block diagram of the DRAC 22 nm SoC.
Compared to the implementation of its predecessor, the current design includes the hyperRAM,
SDRAM and SerDes controllers, and the timer module. In addition, it also has a CSU and two
PLLs, along with other components that we have not added to the schematic for simplicity.

This design has not been manufactured yet; it has only been verified in simulation and FPGA
emulation. The DRAC 22 nm tape-out is scheduled for January 2022. As mentioned above, one
of the key objectives for this tape-out is to make the SoC fully functional without connecting it
to an FPGA. However, we prefer to be conservative and keep in the design the components for
connecting the asic top to the fpga top. For example, the hyperRAM and SDRAM controllers
provide access to the chip’s main memory. However, should it turn out during the bring-up
process that these modules do not work correctly, in this case, the SoC would maintain a fallback
option for this exact purpose: accessing the dram ctl module present in the fpga top through the
packetizer interface, as was done in preDRAC, its predecessor. Therefore, it is worth mentioning
that we must guarantee a backup option in case of failure of the bootrom controller.

5.2 Sargantana core

Sargantana [11], represented by the Top Rocket block in the Figure 5.2, is the next generation
of the Lagarto core [1], present in the preDRAC SoC. Sargantana is a 7-stage single-stream
RISC-V core that supports the base integer instruction set RV64I, the G and V extensions, and
the privileged instruction set v.1.11. It also features a floating-point pipeline and SIMD. In the
CoreMark benchmark [10], Sargantana gets 2 CoreMark/MHz. Next, as the integration of a
bootrom should not affect the back-end of the kernel, we will detail only the front-end pipeline.

Figure 5.3: Sargantana Front-End pipeline
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5.2.1 Sargantana Front-End

The Sargantana front-end, as shown in Figure 5.3, has three stages: two fetch stages and a decode
stage. The front-end and back-end are decoupled by an instruction queue. The operations
performed in each of the stages are as follows:

• Fetch1: Send a request with the current Program Counter (PC) to the instruction cache
through the cache interface.

• Fetch2: Receive through the icache interface the response from the instruction cache. This
response can be a page exception. In case of an instruction cache miss, the front-end will
pause until the response from the cache arrives. Finally, the Branch Target Buffer (BTB)
and Branch History Table (BHT) are accessed to predict the next PC.

• Decode: In this stage, the instruction obtained in the previous stage is decoded, and then
it is pushed to the instruction queue. In addition, the JAL instructions update the PC
with the destination address of the jump.

5.3 Approach evaluation

The objective of integrating the botroom controller detailed in the previous chapters is to provide
the chip with a mechanism to bring the data read from the 25CSM04 memory to the Sargantana
core pipeline. To do this, we had to decide which of the following strategies was the most
appropriate.

Figure 5.4: Sargantana Front-End pipeline after the Custom Path strategy integration
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The AXI Wrapper strategy consists of providing the bootrom controller with an AXI-
lite interface. We consider the Bootrom an I/O device due to its high access latency. The
first-level data cache provides a mechanism for getting data from the I/O devices since they
are not present in the memory hierarchy. This mechanism consists of requesting through an
AXI-lite bus hierarchy. The request would be handled by the AXI-lite wrapper of the bootrom
controller instead of by the memory hierarchy. However, the first-level instruction cache does
not implement this mechanism.

The Custom Path strategy consists of creating a dedicated path for the data read through
the bootrom controller to the Sargantana core front-end. Although this option is more straight-
forward, it has some limitations; for example, the bootrom content does not pass through the
memory hierarchy. Therefore, no data read ( nor write) operations should be performed on the
address range reserved for the bootrom. This restriction will mainly affect the bootloader.

Finally, we have decided to implement the custom path strategy. We consider that the AXI
Wrapper strategy would be extremely challenging to meet the project constraint of being on
time for the RTL freeze date for the next tape-out. Furthermore, this would require replicating
to the instruction cache the mechanism provided by the data cache for I/O accesses, and we
believe that this is beyond the project’s scope. Figure 5.4 shows what the front-end pipeline
would look like after integrating the bootrom controller following the Custom Path strategy.
Note that, in any case, the bootrom controller is not part of the core but of the SoC.

5.4 RTL design modifications

To integrate the bootrom controller, we need to modify the RTL design of both the Sargantana
core and the SoC. In the core design, we need to adjust the front-end to make the bootrom
address range requests not to the instruction cache but to the bootrom controller. On the SoC
side, it will be necessary to instantiate the controller and connect it correctly with the core in
the SoC RTL design.

5.4.1 Sargantana Front-End modifications

Figure 5.5 shows the name of the most relevant front-end modules of the RTL design part. In
this way, the reader can situate the design changes that we will show next. The top drac module
is the top of the Sargantana core, where the datapath module, which contains the entire core
pipeline, is instantiated. The first core stage, the Fetch 1, is located in the if stage 1 module
and has all the necessary submodules to perform this stage’s operations. In the same way, the
modules if stage 2 and id stage correspond to the Fetch 2 and Decode stages, respectively.

The if stage 1 module, once it knows the value of the new PC, requests the 32-bit instruction
corresponding to the PC from the icache interface module. This module manages the requests
made to the instruction cache. For example, it selects the requested instruction from the 128
bits that the cache responds to offer it to the if stage 2 module. The dashed lines shown in the
Figure 5.5 represent the data paths that we will add to integrate the bootrom. These paths will
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Figure 5.5: Sargantana front-end module names

go from the icache interface module to the SoC and vice versa.

The instruction cache has a latency of 1 cycle on a hit since it follows a Virtually Indexed,
Physically Tagged (VIPT) structure and accesses the Translation Lookaside Buffer (TLB) in
parallel with the tag array. Note that this adds a limitation: in the icache interface module,
we do not know the physical address, only the virtual one. It could be the case that the virtual
address corresponds to the bootrom range but once translated, the physical address does not.

Regarding the fallback option, we will implement a CSR dedicated to selecting the boot flow,
as we will detail later. For now, it is only necessary to know that we will use a signal to indicate
if we want to boot through the bootrom controller or if we prefer to boot as the preDRAC SoC
did, with an FPGA that provides the data to the memory hierarchy through the packetizer. We
will call the CSR containing this information CSR SPI CONFIG.

In summary, the additional data we will need in the icache interface module are:

• If the address translation is enabled or not.

• The value of CSR SPI CONFIG.

• If the address belong to the bootrom address range.

Listing 5.1 shows all the inputs and outputs we have added to the icache interface module.
The en translation i signal is 1 when address translations are enabled. When the csr spi config i
signal equals 0, it will boot through the bootrom controller. Otherwise, the controller is disabled
and the fallback option is chosen. We have also added all the necessary signals to interface to
the bootrom controller: the address and the valid request signal, as outputs; and the data and
the valid response signal together with the bootrom controller status (ready/busy), as inputs.

Below we will show fragments of the module’s implementation before and after the integra-
tion, either in diagrams or listings. The goal is not to give the reader a perfect understanding
of the original implementation but to understand how the introduced changes modify the mod-
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ule’s behavior. Table 5.1 details some of the signals of the icache interface module interface to
facilitate the understanding of these fragments.

1

2 module icache_interface (
3 ...
4 input logic en_translation_i ,
5 input logic csr_spi_config_i ,
6 ...
7 // Response input signals from bootrom
8 input logic brom_ready_i ,
9 input logic [31:0] brom_resp_data_i ,

10 input logic brom_resp_valid_i ,
11

12 // Request output signals to bootrom
13 output logic [23:0] brom_req_address_o ,
14 output logic brom_req_valid_o ,
15 ...
16 );

Listing 5.1: Inputs and outputs added to the icache interface module

Table 5.1: Source and destination modules, and a brief description of the relevant signals of the
icache interface module interface.

As we can see in Figure 5.6a, initially, the request is propagated to the instruction cache when
it is ready to accept a new request and the address is valid. However, we must now discriminate
the requests corresponding to the bootrom from those that must reach the instruction cache.
We have defined the following instructions to consider that a request must access the bootrom:

• Address translations must be disabled.

• The value of the csr spi config must be 0.

• The access address, according to Table 2.2, must be less than 0x80000.

The first of these conditions simplifies the paradigm: by not translating the addresses, we
are working with physical addresses, avoiding the problems already mentioned of working with
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(a) Request-related logic in icache interface module before the integration

(b) Request-related logic in icache interface module after the integration

Figure 5.6: Comparison of request-related logic before and after integration

virtual addresses. Moreover, the management of address translations has much more to do with
operating systems than with bootloaders. In this way, when an operating system or program
activates the translation, it has already been loaded into the main memory of the chip. Therefore,
it does not need to access the bootrom anymore, and consequently, there is no reason to work
with virtual addresses when discriminating bootrom accesses.

The intermediate signal is brom access in Figure 5.6b indicates whether or not the current
request meets the three conditions we have defined to determine if the access corresponds to the
bootrom. However, to propagate the request, we must first determine that the address coming
from the if stage 1 module is valid and that the bootrom controller is ready to handle the new
request. If the petition fulfills all the conditions, the output brom req valid o is driven high.
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(a) Response-related logic in icache interface module before the integration

(b) Response-related logic in icache interface module after the integration

Figure 5.7: Comparison of response-related logic before and after integration

The bootrom access address, contained in the brom req address o output, is the 19 bits of
the address provided by the Fetch 1 stage padded with zeros to reach the 24 bits required
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by the bootrom controller. Recall that only 19 bits are needed to address all the EEPROM
memory space, and therefore the rest are ignored. Finally, to the valid request signal for the
instruction cache, icache req valid o, we add the condition that the access does not correspond
to the bootrom.

Figure 5.7a shows the pre-integration logic related to the responses. The third and fourth
bits of the last instruction cache access address are used to choose the word from the 128-bit
block of the cache response that the icache interface module must propagate to the Fetch 2
stage. Note that an instruction page fault exception is also a valid response.

The changes made during integration are shown in Figure 5.7b. The modifications consist
of adding three multiplexers, one for each of the original output ports. The multiplexers prop-
agate to the Fetch 2 stage, either the bootrom controller response or the one coming from the
instruction cache, depending on whether the last request access was a bootrom access or not.

1 module top_drac (
2 ...
3 input logic brom_ready_i ,
4 input logic [31:0] brom_resp_data_i ,
5 input logic brom_resp_valid_i ,
6 output logic [23:0] brom_req_address_o ,
7 output logic brom_req_valid_o ,
8 input logic csr_spi_config_i ,
9 input logic en_translation_i );

10 ...
11 icache_interface icache_interface_inst (
12 ...
13 . en_translation_i ( en_translation_i ),
14 . csr_spi_config_i ( csr_spi_config_i ),
15 // Inputs Bootrom
16 . brom_ready_i ( brom_ready_i ),
17 . brom_resp_data_i ( brom_resp_data_i ),
18 . brom_resp_valid_i ( brom_resp_valid_i ),
19 // Outputs Bootrom
20 . brom_req_address_o ( brom_req_address_o ),
21 . brom_req_valid_o ( brom_req_valid_o ));
22 ...

Listing 5.2: Ports added to the top drac module and icache interface instance

Finally, it is necessary to establish the paths that interconnect the new inputs and outputs
of the icache interface module to the inputs and outputs of the top drac module, the core. To
do so, we will add the signals to the port definition of the Sargantana core module and modify
the instance of the icache interface module to interconnect them, as shown in Listing 5.2.

5.4.2 DRAC SoC modifications

Figure 5.8 shows the diagram of the most relevant modules for the implementation with their
respective names. The dashed lines represent those elements that do not exist in the original
design. The gray boxes are part of the Lowrisc chip project, which allows generating SoCs from
a modular design written in Chisel. However, this language supports black-boxing functionality,
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which allows defining the interface of a module but provides its implementation using another
language. Thus, the DRAC and csr bsc modules are black boxes, and SystemVerilog modules
give their implementation: top drac module, the Sargantana core mentioned above; and csr bsc
module, respectively.

The TOP module corresponds to the processor, while the RocketTile module corresponds
to the tile: the core, the L1 caches, the CSRs, etc. The design is scalable and allows instan-
tiating multiple tiles. A Processor Control Register (PCR) is a subset of CSRs shared among
all the processor’s cores and they are managed by the PCRcontrol module. Note that the
CSR SPI CONFIG in charge of choosing the boot mechanism is actually a PCR since it is a
configuration value of the SoC and not of a specific core. When the core tries to access a CSR,
it sends the request to the csr bsc module. In case that the access corresponds to a PCR, the
request is redirected to the PCRcontrol module.

Figure 5.8: Modules related to the DRAC SoC bootrom controller integration

Next, we will detail the necessary changes to implement the bootrom controller module by
module.

The DRAC module only requires changing the black box interface to match the changes
made in the previous section to the top drac module port definition. To do this, we will create
an interface for the bootrom signals to reuse it in the interfaces of the RocketTile and TOP
modules, which must also propagate those signals. Listing 5.3 shows this interface in Chisel.

1 class BootromReq extends CoreBundle {
2 val address = Bits(width = 24)
3 }
4 class BootromResp extends CoreBundle {
5 val data = Bits(width = 32)
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6 }
7 class BootromIO extends Bundle {
8 val req = Decoupled (new BootromReq )
9 val resp = Valid(new BootromResp ).flip

10 }
11

Listing 5.3: BootromIO interface Chisel definition

Figure 5.9: BootromIO interface diagram

Figure 5.9 shows a diagram of the resulting BootromIO interface. In addition, as shown in
Listing 5.4, it is necessary to add the en translation and csr spi config signals to the DRAC
module interface. As this is a black box module, we define the corresponding names of the
top drac module for each of the added signals.

1 class Drac (id:Int , resetSignal :Bool = null) extends BlackBox
2 {
3 val io = new Bundle {
4 ...
5 val brom = new BootromIO
6 val en_translation = Bool(INPUT)
7 val csr_spi_config = Bool(INPUT)
8

9 }
10 io.brom.resp.bits.data. setName (" brom_resp_data_i ")
11 io.brom.resp.valid. setName (" brom_resp_valid_i ")
12 io.brom.req.ready. setName (" brom_ready_i ")
13 io.brom.req.bits. address . setName (" brom_req_address_o ")
14 io.brom.req.valid. setName (" brom_req_valid_o ")
15 io. en_translation . setName (" en_translation_i ")
16 io. csr_spi_config . setName (" csr_spi_config_i ")
17 ...
18 moduleName = " top_drac "
19 }

Listing 5.4: Changes made to the Chisel definition of DRAC black box module
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The PCRcontrol module, as shown in Figure 5.10, incorporates a new register called
reg spi config corresponding to the CSR SPI CONFIG PCR. The CSR address reserved to access
this register is 0x7F2. The lowest bit of the register is connected to the new io.spi config output
of the module.

Figure 5.10: PCRcontrol module implementation modifications

The RocketTile module incorporates the bootromIO interface that interconnects to the
DRAC module and an input for the CSR SPI CONFIG value obtained from the PCRcontrol,
which interfaces with the corresponding input of the DRAC module. It also interfaces the output
of the csr bsc module that carries the information whether translations are enabled or not with
the corresponding input of the DRAC module.

Figure 5.11: TOP module implementation modifications

The TOP module instantiates one or more tiles. However, the bootloader execution and
SoC setup is a single-core task. We add the BootromIO interface and connect it only to the first
instantiated tile, as shown in Figure 5.11. In the same way, the information contained in the
PCR in charge of choosing the boot mechanism will only need to be connected to this tile. As
we will see later, this information will also be required in the asic top module, so we will create
a new output on the TOP module interface to propagate this signal outwards.

The asic top module is the module where all ASIC-oriented SoC components are instanti-
ated. It is here where we instantiate the bootrom controller. However, we implement a wrapper
to simplify its interface. The wrapper implementation is shown in Appendix A.2. The primary
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purpose of the wrapper module is to accumulate four bytes of responses from the bootrom con-
troller (see Section3.2.1.1) to obtain the complete instruction. Table 5.2 shows the comparison
of the wrapper and bootrom controller interfaces. Note that the Master-Controller interface of
the wrapper, ignoring the clock and reset signals, is essentially the BootromIO interface shown
in Figure 5.9.

Table 5.2: Comparison of wrapper and bootrom controller interfaces.

Figure 5.12 shows a diagram with the changes made in the design of the top asic mod-
ule. The CSU block is the Clock Selector Unit and offers clocks at different frequencies. We
use the 100 MHz clock for the bootrom controller. We instantiate the controller with the
CLK DIV FACTOR parameter value set to 32. Therefore the resulting serial clock sclk o is
3.3MHz.

It is important to note that the SoC used the SPI ports to communicate with the SD card,
where the system that the bootloader must load to the main memory of the processor is stored.
We used the PCR value csr spi config to choose between the bootrom controller and SD card
controller outputs. Note that the initialization value of the PCR is 0, so the SoC will be able
to communicate with the bootrom after a reset. However, this implies that the bootloader will
have to set this PCR before accessing the SD card, thus losing access to the bootrom.The only
port added to the pinout of the chip is the spi cs brom output, which will allow us to assert the
25CSM04 EEPROM.
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Figure 5.12: Diagram with the changes in the asic top module implementation

5.5 Boot process modifications

The new bootrom, unlike the one used by the predecessor PreDRAC, is fetch-only. This forces
us to modify the actual boot process, explained in section 2.3.1. We will need a loader to load
the bootloader into the processor’s memory hierarchy, thus allowing us to maintain read access
to the bootloader. Figure 5.13 shows a diagram of the new boot paradigm.

Figure 5.13: DRAC boot process

The loader code writes the bootloader to the end of the processor’s main memory, the DRAM
(see Table 2.2). Note that we use the term writes and not copies because there is no read paths
to the bootrom. Therefore, the loader can only load the bootloader to the DRAM combining
the li (load immediate) and sw (store word) RISC-V instructions. It is also important to note
that in order to write the bootloader, the bootloader needs to have it in its code.

Listing 5.5 shows an example of loader code. In it, we can see that the second parameter of the
li instructions is, in fact, the hexadecimal encoding of a bootloader instruction. Appendix B.1
shows a script to generate the loader code from the bootloader hex dump automatically.

1 .align 6
2 .globl _start
3 _start :
4 .equ WR_ADDR , 0 xbff00000
5 li t5 , WR_ADDR
6
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7 # Starting the write
8 li t0 , 0 x00000093
9 sw t0 , 0(t5)

10 li t0 , 0 x00000113
11 sw t0 , 4(t5)
12 ...
13 li t0 , 0 x00000000
14 sw t0 , 140( t5)
15 # Write finished , jump to bootloader
16 li t5 , WR_ADDR
17 jr t5

Listing 5.5: Loader sample code

Figure 5.14 shows a simplified sequence diagram of the new boot process. The white rectan-
gles above the vertical lines represent the code execution flow.Apart from adding the loader, the
bootloader needs to be modified to add the instruction csrwi 0x7f2, 1. This instruction writes a
1 to the csr spi config PCR (see Section 5.4.2), enabling access to the SD card and thus allowing
the bootloader to copy the OpenSBI and Linux kernel.

Figure 5.14: Simplified DRAC boot sequence diagram
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6 Final verification

This chapter details the different verification process stages of the bootrom integration into the
SoC. First, we will discuss the modifications made to the SoC design. Then, we will simulate
the chip with the bootrom controller and the 25CSM04 simulation model, and finally, we will
emulate it with an FPGA with a 25CSM04 EEPROM device connected to it.

6.1 SoC design modifications verification

The objective of this verification stage is not to check the correct behavior of the SoC with the
bootrom controller but to ensure that the different paths implemented during the integration
process do not break the original design of the chip. For this reason, we will use a bootrom
controller stub to mask possible errors introduced by the bootrom controller wrapper or even
the controller itself. The stub is a perfect memory that receives the same inputs as the bootrom
controller wrapper and returns the expected data. However, we have added four delay cycles that
symbolize the latency of the bootrom controller. Note that the actual latency of the bootrom
controller is much higher, but we have decided to reduce it to speed up the simulations.

The verification environment consists of Verilator [34], a tool for RTL simulations. This
tool transforms modules written in Verilog or SystemVerilog to C++ models. This makes the
user’s control of design stimulation or behavior checking more flexible. To evaluate the correct
operation of the SoC, we first use ISA RISC-V intensive unit tests [24]. If all tests pass, we
run the EEMBC AutoBench Performance Benchmark Suite [23]. These benchmarks are more
complex than the unit tests allowing us to observe errors in more specific cases. In addition,
the benchmarks also allow us to evaluate whether the SoC design modifications to integrate the
bootrom are in any way detrimental to the performance of the processor. Finally, we run the
Linux kernel to observe that the chip can still boot Linux despite the design changes.

On the other hand, we can also visualize the processor behavior using Konata [29], which
graphically displays the instruction pipeline. Thanks to the flexibility offered by the Verilator
simulation environment, we can easily integrate this tool into the verification process to facilitate
the analysis of the chip behavior.

Figure 6.1 shows an example of a Konata visualization of the execution of the last instructions
of the loader. We can observe that the Fetch1 stage of the instructions belonging to the loader
has 5-cycles latency. Note that the four extra cycles correspond to the symbolic delay added to
the stub of the bootrom controller. The last instruction executed by the loader is the jump to
the end of the main memory, where the bootloader is loaded: the address 0xbff00000.

63



CHAPTER 6. FINAL VERIFICATION

Figure 6.1: Konata loader instructions visualization

Figure 6.2 shows the bootloader execution. We can observe that now the latency of the
Fetch1 stage is generally one cycle since the bootloader instructions are fetched through the
instruction cache. The Verilator verification environment loads the test or benchmark to the
first DRAM address (see Table 2.2). Thus, the bootloader should simply cede execution to the
already loaded test or benchmark.

Figure 6.2: Konata bootloader instructions visualization

Figure 6.3 shows the complete picture of a test run. We have added markers to identify the
different steps of the boot process. On the left, identified by marker 1, is the execution of the
loader. Marker 2, in the middle, is the bootloader execution. Finally, marker 3 is the execution
of the test.

Figure 6.3: Konata zoomed-out visualization

Note that this representation gives us information about the chip’s performance: the more
vertical the line is, the higher the number of instructions per cycle; a relatively horizontal line
indicates that the instruction loses cycles at some stage during its execution. Comparing the
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Konata execution images with the SoC version before and after the bootrom integration lets us
quickly see if we have introduced a performance-affecting change in the design.

6.1.1 Fallback option verification

We have written a specific test to check that the secondary boot mechanism works in case of
bootrom controller failure. In Appendix C.1, you will find the test source code. The test changes
the boot mechanism four times, writing a one or a zero alternatively to the PCR csr spi config.
After each boot mechanism change, the test prints the contents of an array of characters at a
given offset. When compiling the test, we generate two completely identical binaries except for
one thing: the offset value is different.

Figure 6.4: Test buffer with its two possible print offsets

One of the two almost identical binaries will be loaded to the bootrom and the other
to the FPGA memory. Referring to Figure 6.4, the offset value in the bootrom binary is
BROM OFFSET, while in the binary loaded to the FPGA memory is OFFSET. In this way,
when the PCR csr spi config is 0, the primary boot mechanism is active, the instructions will be
fetched from the bootrom, and when printing the array of characters from the offset, we will be
able to see the word BOOTROM. On the other hand, when the test sets the PCR csr spi config
to 1, the fallback boot mechanism will be activated, obtaining the instructions through the
packetizer, thus seeing the word PACKETIZER as a result of the print.

Figure 6.5: Fallback boot test output

Figure 6.5 shows the test execution output using the Verilator verification environment, and
Figure 6.6 the Konata trace of the same execution. In the Konata trace, we have identified
the different boot mechanisms activated at each moment, easily recognizable by the slope of
the instruction execution flow. Observing both figures, we can corroborate that the PCR that
manages the selection of the boot mechanism works correctly, allowing the user to choose whether
to fetch from the bootrom or the memory instantiated in the FPGA.
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Figure 6.6: Selected boot mechanism in Konata trace of the fallback boot test execution

6.2 Bootrom controller integration verification

So far, we have only performed RTL simulations on the design. RTL simulations create a
model of the RTL design and calculate cycle by cycle the value of each signal in the model.
However, they are not able to provide information at the subcycle level. The objective of this
verification stage is to perform a Gate-Level Simulation (GLS) on the new SoC design with the
bootrom controller. These simulations are very accurate, as they include information about the
technology node to be used for manufacturing. With this information, we can observe delays at
the logic gate level, find glitches, propagations of X values (indeterminate values, for example,
due to an uninitialized register), or timing constraint violations.

We execute the same tests and benchmarks again as in the previous stage using this verifi-
cation environment. Figure 6.7 shows the waveform of a GLS of the new SoC design with the
signals from the bootrom controller wrapper interface. Note that, although the output signal
mo o is clocked out on falling edges of the serial clock sclk o (See Listing 3.3), there is a delay
of approximately 0.02 ns from the falling edge of the clock until the signal is updated.

Figure 6.7: Bootrom controller GLS waveform
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6.3 FPGA emulation

This verification stage aims to check that the chip can boot through the bootrom. To do this, we
will connect the EEPROM 25CSM04 to an FPGA, where we will emulate the new SoC design.
However, to create this verification environment, it is necessary to perform some previous steps,
such as programming the EEPROM or connecting it to the I/O ports of the FPGA.

6.3.1 Environment setup

Next, we will detail all the material used during this verification stage. We will use the Xilinx
Kintex kc705 FPGA [15]. Figure 6.8 shows all the components included in the board. During
the verification process, we will use only the following elements:

• The FPGA Mezzanine Card (FMC) connectors, identified by number 30 (HPC) and 31
(LPC), allow us to connect the FPGA with peripherals.

• The push-button in the south of the button group identified by number 23 acts as the
reset.

• The LEDs identified by number 22 allow us to obtain debugging information.

Figure 6.8: KC705 Board Components. Source: [15]

The two FMC connections are different. The FPC-HPC (High Pin Count) connection con-
tains 400 pins, while the FMC-LPC (Low Pin Count) connection contains only 160 pins. We
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do not need many pins to connect peripherals, so we will reserve the FPC-HPC connection to
connect the FPGA to another. This way, we can emulate the ASIC-oriented SoC design on one
of them and the FPGA-oriented design on the other, creating an environment very similar to
the real one once we have the SoC manufactured. Then, we will use the FMC-LPC connection
to connect the rest of the peripherals, such as the EEPROM 25CSM04 in our case.

(a) PMOD to FMC adapter PCB front view (b) PMOD to FMC adapter PCB back view.

Figure 6.9: PMOD to FMC adapter PCB

However, to connect the EEPROM, we will use an FMC to PMOD adapter developed in
previous stages of the DRAC project [8, 27]. This adapter, shown in Figure 6.9, decouples the
160 pins of the FMC-LPC connection into four 2x15 PMOD sockets at different voltages.

To connect the bootrom to the adapter, we used the 25CSM04 EEPROM Platform Evalua-
tion Expansion Board from MikroElektronika [22] soldered to a PMOD connector, as shown in
Figure 6.10. We connect the bootrom to the PMOD2 socket of the adapter, powered at 3.3V
since the voltage range supported by the bootrom is 2.5V to 5V.

Finally, we used the Saleae logic analyzer [28] to monitor the voltage levels received on each
sampled pin, allowing us to verify its behaviour. Figure 6.11 shows the final assembly of all the
elements involved in the verification process using the FPGA. Note that we have connected the
MISO, MOSI, SCLK and CS N pins of the EEPROM to the logic analyzer, the black box in
Figure 6.11. This will allow us to capture 3 GB of SPI transactions at a frequency of up to 50
MS/s.
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(a) 25CSM04 devkit front view (b) 25CSM04 devkit back view

Figure 6.10: 25CSM04 devkit soldered to a PMOD connector

Figure 6.11: FPGA verification environment hardware setup
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6.3.2 Program the 25CSM04 EEPROM

To emulate boot sequences using the environment described above, first, we need to write the
loader to the EEPROM. To do this, we will create a module that writes page by page (256 bytes,
the maximum write size supported by the 25CSM04 memory) the contents of the loader binary
to the EEPROM. This module will instantiate the bootrom controller detailed in Section 3.2.1.1
and the state machine shown in Figure 6.12.

Figure 6.12: EEPROM programmer module’s simplified state machine

Remember that it is necessary to enable writes with the WREN operation before performing
any write on the device. It is important to note that the internal write cycle can take up to
5 ms. Any writes performed before completing the previous internal write cycle will be ignored.
After each write, we reach the WAIT state, which increments a cycle counter and the address.
The FPGA clock frequency is 200MHz. We can control the time between two write operations
knowing de cycle period and the cycle counter value. After 5 ms, when it is sure that the last
write has been propagated, the process is repeated if there is still data to write. Otherwise,
we reach the FIN state. This state turns on an FPGA LED to inform the completion of the
EEPROM programming.

Figure 6.13 shows a Saleae capture performed during the writing of the second EEPROM
page using the module described above. From top to bottom, we can observe the logic levels
of the SCLK, CS N, MOSI and MISO signals. For each byte of the SPI transactions, there is
a label above the data lines with the values transmitted. Thus we can see that, following the
flow defined by the state machine in Figure 6.12, the byte transmitted in the first transaction
values 0x06, which corresponds to the WREN opcode (see Table 3.2). The next SPI transaction
starts with the value 0x02, corresponding to the WRITE opcode, then the three following bytes
corresponds to the write address, followed by the 256 bytes to be written, starting with the
lowest address.
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Figure 6.13: Saleae capture of the EPEPROM pins during the second page programming

(a) Saleae capture of the EPEPROM pins during the boot process

(b) Loader ELF binary dump

Figure 6.14: Comparison of the instructions read during boot and those present in the original
binary of the loader

Figure 6.14a shows a Saleae capture during the boot process. In this case, we have synthesized
the SoC design for the FPGA and captured the logic levels on the EEPROM pins when triggering
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the reset. We have added labels at the top of the capture indicating each of the elements
involved in the transaction, from left to right: the opcode, the access address (PC), and the
32-bit instruction obtained.

Figure 6.14b shows a dump of the loader executable. The first column corresponds to the PC,
the second to the instruction encoding in hexadecimal and the third to the decoded instruction.
We can observe that the instructions observed in the capture of Figure 6.14a correspond to the
one that appears in the dump of the executable.
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7 Conclusions

The main objective of this thesis was to implement an ASIC-oriented boot mechanism that
would allow the DRAC 22 nm System on Chip (SoC) to boot standalone without requiring the
originally used Field-Programmable Gate Array (FPGA). We consider that the objective has
been successfully achieved, considering the constraints of using the minimum number of pins
available on the chip, reaching the tape-out on time, and maintaining the ability to boot the
Linux operating system.

In order to carry out this work, it has been necessary to comprehend the design of the
DRAC SoC and the Sargantana RISC-V core to choose the right strategy for the integration.
This process has been valuable not only for acquiring knowledge in the field of computer archi-
tecture and Register-Transfer Level (RTL) design but also for learning about the international
semiconductor research scene and the different stages existing in the processor manufacturing
process.

During this thesis, we have evaluated the different parameters to be taken into account
to choose the most suitable bootrom for the project: the SPI 25CSM04 EEPROM. We have
designed, implemented and verified a parameterizable SPI controller able to perform read and
write operations. We have implemented a testbench to verify the controller by performing RTL
simulations. Then, we have integrated the controller into the SoC design. The strategy followed
for the integration has been to create a dedicated path from the front-end of the Sargantana
core to the bootrom controller instantiated in the ASIC design of the SoC. This decision has
consequences: there is no longer a data path to the bootrom; therefore, the processor will not
be able to read the bootrom contents but only fetch instructions. This new paradigm forces us
to adapt the boot process adding the loader: the code in charge of writing the bootloader to the
processor’s main memory.

We cannot forget that this processor has an academic purpose and includes in its design
several improvements, compared to its predecessor PreDRAC, implemented by other members
of the DRAC team. For this reason, as the bootrom is a critical element to evaluate the work
done by the rest of the team, we have implemented a backup boot mechanism in case of failure.
This mechanism allows using the original boot mode, i.e. through an FPGA, by writing a
Control and Status Register (CSR).

Finally, we have performed Gate-Level Simulations (GLS) on the new SoC design to ensure
that the changes introduced behaves as expected and do not add any critical path to the design
nor affect the processor’s performance. Then, we emulated the SoC using the Xilinx Kintex
kc705 FPGA. Currently, the final DRAC SoC design is finishing the verification process. This
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is an exhaustive and iterative process, especially now, close to the tape-out deadline.

7.1 Future work

The next steps in the context of this project are as follows. First of all, after the chip manufac-
turing, we will have to perform the board bring-up, debugging and verifying that the chip can
boot Linux using the new boot process implemented in this thesis.

Secondly, we could improve the verification process on the EEPROM controller write logic.
Since it is not involved in the boot process and is not triggered by the SoC, all the exhaustive
simulations performed on the chip at RTL, GLS or FPGA-level, did not cover this part of the
controller. Performing further verification on the write logic of the controller will avoid possible
undesired behaviour in some corner cases.

Finally, for the next tape-out, it would be desirable to re-evaluate the integration strategy
of the AXI Wrapper, so we could use smaller bootloaders since the processor could read the
bootrom content and copy it to the main memory more efficiently. However, the changes needed
to implement this strategy are not trivial. It would involve modifying the implementation of the
instruction cache to allow, in some cases, the cache to request data from the AXI bus and not
from the memory hierarchy.
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Doblas, Roger Figueras, Alberto González, Carles Hernández, César Hernández, Vı́ctor
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A Bootrom controller SystemVerilog
implementation

A.1 25CSM04 controller implementation

1 /* -----------------------------------------------
2 * Project Name : DRAC
3 * File : spi_eeprom_req .sv
4 * Organization : Barcelona Supercomputing Center
5 * Author (s) : Jordi Garcia
6 * Email(s) : jordi. garcia@bsc .es
7 * -----------------------------------------------
8 */
9

10 module spi_eeprom_req
11 #(
12 parameter CLK_DIV_FACTOR = 32,
13 parameter MAX_REQ_BYTES = 4)
14 (
15 input logic clk_i , // serial data clock
16 input logic rstn_i , // reset
17 input logic [7:0] req_opcode_i , // request opcode
18 input logic [23:0] req_address_i , // request address , for read and

writes
19 input logic [( MAX_REQ_BYTES *8) -1:0] req_data_i , // request data
20 input logic [ $clog2 ( MAX_REQ_BYTES ):0] req_bytes_i , // request data

size in bytes - max 256
21 input logic req_valid_i , // request inputs valid state
22 output logic mo_o , // SPI master output
23 output logic ready_o , // eeprom ready
24 output logic sclk_o , // spi clock - mode 0
25 output logic sclk_en_o , // spi clock - mode 0
26 output logic [7:0] resp_data_o , // response data bus
27 output logic resp_valid_o , // response valid
28 input logic mi_i); // SPI master input
29

30 // ///////////////////////////////////////////////////////////////////////
31 // DECLARATIONS
32 // ///////////////////////////////////////////////////////////////////////
33 localparam DIV_CLK_COUNT_LEN = $clog2 ( CLK_DIV_FACTOR );
34
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35 typedef enum logic [2:0] {STATE_IDLE , STATE_T_OP , STATE_T_ADDR , STATE_R_DREAD ,
STATE_T_DWRITE } e_state ;

36

37 e_state state;// = STATE_IDLE ;
38 e_state next_state ;// = STATE_IDLE ;
39

40 logic cnt_finish ;
41 logic is_idle ;
42 logic is_opcode ;
43 logic is_addr ;
44 logic is_read ;
45 logic is_write ;
46 logic [9:0] max_cnt_byte ;
47

48 logic [7:0] req_opcode_q ;
49 logic [0:2][7:0] req_address_q ;
50 logic [8:0] req_bytes_q ;
51 logic [ MAX_REQ_BYTES -1:0][7:0] req_data_q ;
52 logic [2:0] bitcount_q ;
53 logic [2:0] bitcount_d ;
54 logic [8:0] bytecount_q ;
55 logic [8:0] bytecount_d ;
56 logic resp_valid_d ;
57 logic resp_valid_q ;
58 logic [7:0] resp_data_q ;
59 logic [ DIV_CLK_COUNT_LEN -1:0] clk_div_cnt ;
60 logic clk;
61 logic [7:0] dataShifterO ;
62 logic [7:0] dataShifterI ;
63

64 /* 25 CSM04 EEPROM opcodes */
65 ‘define OP_RDSR 8’ b0000_0101 // Read Status Register instruction
66 ‘define OP_WRBP 8’ b0000_1000 // Write Ready/Busy Poll instruction
67 ‘define OP_WREN 8’ b0000_0110 // Set Write Enable Latch instruction
68 ‘define OP_WRDI 8’ b0000_0100 // Reset Write Enable Latch instruction
69 ‘define OP_WRSR 8’ b0000_0001 // Write Status Register instruction
70 ‘define OP_READ 8’ b0000_0011 // Read EEPROM Array instruction
71 ‘define OP_WRITE 8’ b0000_0010 // Write EEPROM Array instruction
72 ‘define OP_RDEX 8’ b1000_0011 // Read Security Register instruction
73 ‘define OP_WREX 8’ b1000_0010 // Write Security Register instruction
74 ‘define OP_LOCK 8’ b1000_0010 // Lock Security Register instruction
75 ‘define OP_CHLK 8’ b1000_0011 // Check Security Register Lock Status

instruction
76 ‘define OP_RMPR 8’ b0011_0001 // Read Memory Partition Registers instruction
77 ‘define OP_PRWE 8’ b0000_0111 // Set MPR Write Enable Latch instruction
78 ‘define OP_PRWD 8’ b0000_1010 // Reset MPR Write Enable Latch instruction
79 ‘define OP_WMPR 8’ b0011_0010 // Write Memory Partition Registers instruction
80 ‘define OP_PPAB 8’ b0011_0100 // Protect Partition Address Boundaries

instruction
81 ‘define OP_FRZR 8’ b0011_0111 // Freeze Memory Protection Configuration

instruction
82 ‘define OP_SPID 8’ b1001_1111 // Read Manufacturer ID instruction
83 ‘define OP_SRST 8’ b0111_1100 // Software Device Reset instruction
84
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85 // ///////////////////////////////////////////////////////////////////////
86 // STATE MACHINE LOGIC
87 // ///////////////////////////////////////////////////////////////////////
88 /* next state logic */
89 always_comb begin : next_state_logic
90 if (˜ rstn_i ) begin
91 next_state = STATE_IDLE ;
92 end else begin
93 case (state)
94 STATE_IDLE : begin
95 // $display (" TIME %t: READY: %b VALID: %b", $time (), ready_o ,

req_valid_i );
96 if ( ready_o & req_valid_i ) begin
97 next_state = STATE_T_OP ;
98 end
99 end

100 STATE_T_OP : begin
101 if ( cnt_finish ) // opcode transmitted
102 begin
103 case ( req_opcode_q )
104 ‘OP_READ ,
105 ‘OP_WRITE : next_state = STATE_T_ADDR ;
106 default : next_state = STATE_IDLE ;
107 endcase
108 end
109 end
110 STATE_T_ADDR : begin
111 if ( cnt_finish )
112 case ( req_opcode_q )
113 ‘OP_READ : next_state = STATE_R_DREAD ;
114 ‘OP_WRITE : next_state = STATE_T_DWRITE ;
115 default : next_state = STATE_IDLE ;
116 endcase
117 end
118 STATE_R_DREAD : begin
119 if ( cnt_finish )
120 next_state = STATE_IDLE ;
121 end
122 STATE_T_DWRITE : begin
123 if ( cnt_finish )
124 next_state = STATE_IDLE ;
125 end
126 default : next_state = STATE_IDLE ;
127 endcase
128 end
129 end
130

131 assign cnt_finish = ( bytecount_d == max_cnt_byte && bitcount_q == 7);
132

133 /* state output logic */
134 always_comb begin : state_output
135 max_cnt_byte = 0;
136 is_idle = 0;
137 is_opcode = 0;
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138 is_addr = 0;
139 is_read = 0;
140 is_write = 0;
141 case (state)
142 STATE_IDLE : begin
143 max_cnt_byte = 0;
144 is_idle = 1;
145 end
146 STATE_T_OP : begin
147 max_cnt_byte = 1;
148 is_opcode = 1;
149 end
150 STATE_T_ADDR : begin
151 max_cnt_byte = 3;
152 is_addr = 1;
153 end
154 STATE_R_DREAD : begin
155 max_cnt_byte = req_bytes_q ;
156 is_read = 1;
157 end
158 STATE_T_DWRITE : begin
159 max_cnt_byte = req_bytes_q ;
160 is_write = 1;
161 end
162 default : ;
163 endcase
164 end
165

166 /* slck enable */
167 always_ff @( negedge clk , negedge rstn_i ) begin
168 if (˜ rstn_i ) begin
169 sclk_en_o <= 0;
170 end else begin
171 sclk_en_o <= ˜ is_idle ;
172 end
173 end
174

175 /* state logic */
176 always_ff @( posedge clk , negedge rstn_i ) begin: state_reg
177 if (˜ rstn_i ) begin
178 state <= STATE_IDLE ;
179 end else begin
180 state <= next_state ;
181 end
182 end
183 // ///////////////////////////////////////////////////////////////////////
184 // Counters
185 // ///////////////////////////////////////////////////////////////////////
186 always_ff @( posedge clk , negedge rstn_i ) begin: update_counters
187 if (˜ rstn_i ) begin
188 bytecount_q <= 0;
189 bitcount_q <= 0;
190 end else begin
191 if ( next_state != state) begin
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192 bytecount_q <= 0;
193 bitcount_q <= 0;
194 end else begin
195 if ( bitcount_q == 7)
196 bytecount_q <= bytecount_d ;
197 bitcount_q <= bitcount_d ;
198 end
199 end
200 end
201

202 assign bitcount_d = bitcount_q + 1;
203 assign bytecount_d = bytecount_q + 1;
204 // ///////////////////////////////////////////////////////////////////////
205 // Shifters
206 // ///////////////////////////////////////////////////////////////////////
207 always_ff @( posedge clk) begin: shift_regs
208 dataShifterI <= { dataShifterI [6:0] , mi_i };
209 if ( bitcount_q == 7) begin
210 resp_data_q <= { dataShifterI [6:0] , mi_i };
211 end
212 end
213

214 always_ff @( posedge clk_i) begin
215 if ( is_idle & req_valid_i ) begin
216 req_opcode_q <= req_opcode_i ;
217 req_address_q <= req_address_i ;
218 req_data_q <= req_data_i ;
219 req_bytes_q <= req_bytes_i ;
220 end
221 end
222

223 always_ff @( negedge clk) begin
224 if ( bitcount_q == 0) begin
225 if ( is_opcode ) begin
226 dataShifterO <= req_opcode_q ;
227 end else if ( is_addr ) begin
228 dataShifterO <= req_address_q [ bytecount_q ];
229 end else if ( is_write ) begin
230 dataShifterO <= req_data_q [ bytecount_q ];
231 end
232 end
233 else if ( sclk_en_o ) begin
234 dataShifterO <= dataShifterO [6:0] << 1;
235 end
236 end
237 // ///////////////////////////////////////////////////////////////////////
238 // Ready/valid logic
239 // ///////////////////////////////////////////////////////////////////////
240 assign ready_o = rstn_i & is_idle ;
241 assign resp_valid_d = is_read & ( bitcount_q == 7);
242 always_ff @( posedge clk , negedge rstn_i ) begin
243 if (˜ rstn_i )
244 resp_valid_q <= 0;
245 else begin
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246 resp_valid_q <= resp_valid_d ;
247 end
248 end
249 // ///////////////////////////////////////////////////////////////////////
250 // Clock divider
251 // ///////////////////////////////////////////////////////////////////////
252 always_ff @( posedge clk_i , negedge rstn_i ) begin
253 if (˜ rstn_i ) begin
254 clk_div_cnt <= ’0;
255 end else begin
256 clk_div_cnt <= clk_div_cnt + 1;
257 end
258 end
259

260 assign clk = clk_div_cnt [ DIV_CLK_COUNT_LEN -1];
261 // ///////////////////////////////////////////////////////////////////////
262 // Basic output assignments
263 // ///////////////////////////////////////////////////////////////////////
264 assign sclk_o = ( sclk_en_o )? clk: 0;
265 assign resp_valid_o = resp_valid_q ;
266 assign resp_data_o = resp_data_q ;
267 assign mo_o = dataShifterO [7];
268

269 endmodule

A.2 Bootrom controller wrapper implementation

1 /* -----------------------------------------------
2 * Project Name : DRAC
3 * File : bootrom_ctrl .sv
4 * Organization : Barcelona Supercomputing Center
5 * Author (s) : Jordi Garcia
6 * Email(s) : jordi. garcia@bsc .es
7 * -----------------------------------------------
8 */
9

10 module bootrom_ctrl (
11 // Core interface
12 input logic clk_i , // core clock
13 input logic clk100_i , // 100 MHz clock
14 input logic rstn_i , // reset
15 input logic [23:0] req_address_i , // request address , for read and

writes
16 input logic req_valid_i , // request inputs valid state
17 output logic ready_o , // eeprom ready
18 output logic [31:0] resp_data_o , // response data bus
19 output logic resp_valid_o , // response valid
20 // Memory interface
21 output logic sclk_o , // SPI clock - mode 0
22 output logic cs_n_o , // SPI chip select
23 output logic mo_o , // SPI master output
24 input logic mi_i); // SPI master input
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25

26

27 // ///////////////////////////////////////////////////////////////////////
28 // DECLARATIONS
29 // ///////////////////////////////////////////////////////////////////////
30

31 logic ready_ser ;
32 logic last_byte ;
33 logic resp_valid_byte_d ;
34 logic resp_valid_byte_q ;
35 logic resp_valid_q ;
36 logic resp_valid_d ;
37 logic [2:0] bytecount_d ;
38 logic [7:0] resp_data_ser ;
39 logic [2:0] bytecount_q ;
40 logic [31:0] resp_data_q ;
41 logic [31:0] resp_data_d ;
42 logic cs;
43 logic [23:0] req_address_q ;
44 logic req_valid_q ;
45 logic sclk;
46

47 ‘define OP_READ 8’ b0000_0011 // Read EEPROM
Array

48

49 spi_eeprom_req ser (
50 .clk_i ( clk100_i ), // serial data clock
51 . rstn_i ( rstn_i ), // reset
52 . req_opcode_i (‘ OP_READ ), // request opcode
53 . req_address_i ( req_address_q ), // request address , for read and writes
54 . req_bytes_i (9’h4), // request data size in bytes - max 256
55 . req_data_i (8’h0),
56 . req_valid_i ( req_valid_q ), // request inputs valid state
57 .mo_o (mo_o), // SPI master output
58 . ready_o ( ready_ser ), // eeprom ready
59 . sclk_o (sclk), // spi clock - modei 0
60 . sclk_en_o (cs), // spi clock enable
61 . resp_data_o ( resp_data_ser ), // response data bus
62 . resp_valid_o ( resp_valid_d ), // response valid
63 .mi_i (mi_i)); // SPI master input
64

65 // ///////////////////////////////////////////////////////////////////////
66 // CORE LOGIC
67 // ///////////////////////////////////////////////////////////////////////
68

69 always_ff @( posedge clk_i , negedge rstn_i ) begin
70 if (˜ rstn_i ) begin
71 req_address_q <= 0;
72 end else if ( req_valid_i ) begin
73 req_address_q <= req_address_i ;
74 end
75 end
76

77 always_ff @( posedge clk_i , negedge rstn_i ) begin
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78 if (˜ rstn_i ) begin
79 req_valid_q <= 0;
80 end else begin
81 req_valid_q <= ( req_valid_i | req_valid_q ) & ready_ser ;
82 end
83 end
84

85 always_ff @( posedge clk_i , negedge rstn_i ) begin
86 if (˜ rstn_i ) begin
87 ready_o <= 1;
88 end else if ( req_valid_i ) begin
89 ready_o <= 0;
90 end else if ( resp_valid_byte_d & last_byte ) begin
91 ready_o <= 1;
92 end
93 end
94

95 always_ff @( posedge clk_i , negedge rstn_i ) begin
96 if (˜ rstn_i ) begin
97 bytecount_q <= 0;
98 end else if ( req_valid_i ) begin
99 bytecount_q <= 0;

100 end else if ( resp_valid_byte_q ) begin
101 bytecount_q <= bytecount_d ;
102 end
103 end
104

105 always_ff @( posedge clk_i , negedge rstn_i ) begin
106 if (˜ rstn_i ) begin
107 resp_valid_q <= 0;
108 resp_valid_byte_q <= 0;
109 resp_data_q <= 0;
110 end else begin
111 resp_valid_q <= resp_valid_d ;
112 resp_valid_byte_q <= resp_valid_byte_d ;
113 if ( resp_valid_byte_d ) begin
114 resp_data_q <= resp_data_d ;
115 end
116 end
117 end
118

119 assign last_byte = bytecount_q == 3;
120 assign resp_data_d = { resp_data_ser , resp_data_q [31:8]};
121 assign bytecount_d = bytecount_q + 1;
122 assign resp_valid_byte_d = resp_valid_d & ˜ resp_valid_q ; // positive edge

detection
123 assign resp_valid_o = resp_valid_byte_q & last_byte ;
124 assign cs_n_o = ˜cs;
125 assign sclk_o = sclk;
126 assign resp_data_o = resp_data_q ;
127

128 endmodule
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B Loader generation script

B.1 Loader generation python script

1 #! /usr/bin/ python
2 import sys
3 import os
4 import re
5

6 def usage ():
7 print("Usage: {} binari .hex". format (sys.argv [0]))
8 exit ()
9

10 def exitOnError (error):
11 print("Error: {}". format (error))
12 exit ()
13

14 if len(sys.argv) != 2:
15 usage ()
16

17

18 COPY_HEX_FILE = sys.argv [1]
19 if not os.path. isfile ( COPY_HEX_FILE ):
20 exitOnError ("File {} not found". format ( COPY_HEX_FILE ))
21

22 MAX_OFFSET =2047
23

24 with open( COPY_HEX_FILE , "r") as fd:
25 lines = fd.read ().split("\n")
26

27 #while lines [-1] == "00000000" or lines [-1] == "":
28 # lines.pop ()
29

30 lines. append (" 00000000 ")
31 lines. append (" 00000000 ")
32 lines. append (" 00000000 ")
33 lines. append (" 00000000 ")
34

35 offset = 0
36 instr_count = 0
37 print("""
38 .align 6
39 .globl _start
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APPENDIX B. LOADER GENERATION SCRIPT

40 _start :
41 .equ MAIN_MEM , 0 x80000000
42 li t5 , MAIN_MEM
43 """)
44 print("# Starting the copy")
45 for line in lines:
46 if len(line) == 8:
47 # if instr_count > Ninstr :
48 # break
49 instr_count +=1
50 print("li t0 , 0x"+line)
51 if ( offset <= MAX_OFFSET ):
52 print("sw t0 , {}( t5)". format ( offset ))
53 offset += 4
54 else:
55 print("addi t5 , t5 , {}". format (offset -4))
56 print("sw t0 , 4(t5)")
57 offset = 8
58

59 #print ("j MAIN_MEM ")
60 print("# Copy finished : {}". format ( instr_count ))
61 print("li t5 , MAIN_MEM ")
62 print("jr t5")
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C Verification tests

C.1 Fallback boot option test implementation

1 # include <stdio.h>
2 # include <stdint .h>
3 # include <stdlib .h>
4

5 # define BROM_OFFSET 11
6 # define OFFSET 0
7

8 uint32_t __attribute__ (( noinline )) checkBuff ( uint32_t spi_brom_csr , uint32_t
offset , char* buff) {

9 uint32_t ret;
10 printf ("Print via %s\n",buff+ offset );
11 if( spi_brom_csr ) {
12 ret = ( offset == OFFSET );
13 }
14 else {
15 ret = ( offset == BROM_OFFSET );
16 }
17 return ret;
18 }
19

20 void printResult ( uint32_t ok) {
21 if(ok) {
22 printf (" successful !\n");
23 }
24 else {
25 printf ("FAIL !\n");
26 }
27 }
28

29 int main(void){
30 #ifdef BROM
31 uint32_t offset = BROM_OFFSET ;
32 #else
33 uint32_t offset = OFFSET ;
34 #endif
35 uint32_t result = 1;
36 char buff [20] = " PACKETIZER \0 BOOTROM ";
37

38 __asm__ ("csrwi 0x7f2 , 0");
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APPENDIX C. VERIFICATION TESTS

39 result &= checkBuff (0, offset , buff);
40 __asm__ ("csrwi 0x7f2 , 1");
41 result &= checkBuff (1, offset , buff);
42 __asm__ ("csrwi 0x7f2 , 0");
43 result &= checkBuff (0, offset , buff);
44 __asm__ ("csrwi 0x7f2 , 1");
45 result &= checkBuff (1, offset , buff);
46

47 printResult ( result );
48

49 return ! result ;
50 }

90


	Abstract
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Context
	Terms and concepts
	Hardware Description Language
	SystemVerilog
	Chisel
	RTL
	FPGA
	Bootrom
	ISA
	ASIC
	SoC

	Problem to be resolved
	Stakeholders
	Barcelona Supercomputing Center
	Scientific community
	University education

	Justification
	Project scope
	Objectives
	Requirements
	Obstacles and risks

	Methodology and rigour
	Trello
	Slack
	Git
	Team meetings

	Description of tasks
	Project Management
	Project Development
	PD1 - Research and state of the art
	PD2 - Choose and analyze a bootrom
	PD3 - Implement the bootrom controller
	PD4 - Test and verify the controller
	PD5 - Integrate the controller into the SoC
	PD6 - Develop a bootloader
	PD7 - Test on FPGA

	Project Conclusion

	Estimates and Gantt
	Risk management: alternative plans and obstacles
	Budget
	Identification of costs
	Cost estimates
	Management control

	Sustainability report
	Environmental dimension
	PPP
	Exploitation
	Risks

	Economic dimension
	PPP
	Exploitation
	Risks

	Social dimension
	PPP
	Exploitation
	Risks



	Background
	Open-source Hardware
	RISC-V privilege levels
	Boot process
	PreDRAC bootloader


	Design and implementation
	First steps
	Choose of the bootrom
	Understanding the 25CSM04 pinout
	25CSM04 basic operations

	Bootrom controller implementation
	25CSM04 controller design
	Controller interface details
	Controller implementation details



	Bootrom controller verification
	Writing the testbench
	25CSM04 simulation model
	Test definition and implementation

	Visualization and behavioral testing

	Bootrom controller integration
	DRAC SoC
	Sargantana core
	Sargantana Front-End

	Approach evaluation
	RTL design modifications
	Sargantana Front-End modifications
	DRAC SoC modifications

	Boot process modifications

	Final verification
	SoC design modifications verification
	Fallback option verification

	Bootrom controller integration verification
	FPGA emulation
	Environment setup
	Program the 25CSM04 EEPROM


	Conclusions
	Future work

	Bibliography
	Bootrom controller SystemVerilog implementation
	25CSM04 controller implementation
	Bootrom controller wrapper implementation

	Loader generation script
	Loader generation python script

	Verification tests
	Fallback boot option test implementation


