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ABSTRACT 

The uncanny valley (UV) effect is a negative affective reaction to human-looking artificial entities. 

It hinders comfortable, trust-based interactions with android robots and virtual characters. Despite 

extensive research, a consensus has not formed on its theoretical basis or methodologies. We 

conducted a meta-analysis to assess operationalizations of human likeness (independent variable) 

and the UV effect (dependent variable). Of 468 studies, 72 met the inclusion criteria. The studies 

employed 10 different stimulus creation techniques, 39 affect measures, and 14 indirect measures. 

Based on 247 effect sizes, a three-level meta-analysis model revealed the UV effect had a large 

effect size, Hedges’ g = 1.01 [0.80, 1.22]. A mixed-effects meta-regression model with creation 

technique as the moderator variable revealed face distortion produced the largest effect size, g = 

1.46 [0.69, 2.24], followed by distinct entities, g = 1.20 [1.02, 1.38], realism render, g = 0.99 [0.62, 

1.36], and morphing, g = 0.94 [0.64, 1.24]. Affective indices producing the largest effects were 

threatening, likable, aesthetics, familiarity, and eeriness, and indirect measures were dislike 

frequency, categorization reaction time, like frequency, avoidance, and viewing duration. This 

meta-analysis—the first on the UV effect—provides a methodological foundation and design 

principles for future research. 

CCS Concepts 

• Human-centered computing → HCI design and evaluation methods; • Computer systems 
organization → External interfaces for robotics; • Computing methodologies → Animation 

Keywords 

Anthropomorphism, computer animation, face perception, robotics, uncanny valley 
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1 Introduction 
Royle (2003) gives an evocative and succinct description of the uncanny experience: 

The uncanny is ghostly. It is concerned with the strange, weird, and mysterious, with 

a flickering sense (but not conviction) of something supernatural. The uncanny 

involves feelings of uncertainty, in particular regarding the reality of who one is and 

what is being experienced. (p. 1) 

 

Figure 1. The uncanny valley as proposed by Mori in 1970. The affective reaction towards an 

entity (y-axis) is a function of its degree of human likeness (x-axis) and whether it is still or 

moving (solid or dashed line). Bunraku puppets play character roles in ningyō jōruri, a 

traditional form of musical puppet theater in Japan. Actors in nō theater wear masks: The yase 

otoko mask (literally, thin man) signifies a ghost from hell, and the okina mask signifies an old 

man. 

Objects, situations, and events that do not fit our everyday understanding of the world are often 

described as eerie, creepy, or uncanny. These ascriptions can be made regarding new technologies 

(Langer & König, 2018), unusual human behavior (McAndrew & Koehnke, 2016), or peculiar 

coincidences (Freud, 1919/2003). Negative evaluations can hinder the adoption of supportive 

products like healthcare robots (Olaronke, Ojerinde, & Ikono, 2017) or service chatbots 

(Ciechanowski, Przegalińska, Magnuski, & Gloor, 2019). As the robotics pioneer Mori proposed 
in 1970, human-looking androids and other objects could elicit a reaction unlike the one typically 

elicited by people or stylish technology. Mori (2012) illustrated this phenomenon with a graph 

(Figure 1). The y-axis depicts affinity, the dependent variable (DV), as a function of human 

likeness, the independent variable (IV), on the x-axis (Bartneck, Kulić, Croft, & Zoghbi, 2009b; 
Ho & MacDorman, 2010, 2017; MacDorman & Ishiguro, 2006). The stimulus sets in Figure 2 

show how different creation techniques have been used to operationalize the independent 

variable. 

According to Mori (2012), affinity for an entity increases with its human likeness but only up to a 

point. Beyond this point, affinity falls and becomes negative, and the entity elicits a cold, eerie, 
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repellant feeling. Then, affinity rises again, becoming positive, as human likeness increases 

toward indistinguishability. When graphed, the fall and rise in affinity resemble a valley—hence, 

the term uncanny valley (UV). 

Since Mori’s proposal, a substantial body of research has replicated a valley-shaped curve and 

found a significant effect (Burleigh, Schoenherr, & Lacroix, 2013; Ferrey, Burleigh, & Fenske, 

2015; Jung & Cho, 2018; MacDorman, Green, Ho, & Koch, 2009; Mäkäräinen, Kätsyri, & 

Takala, 2014; Mathur & Reichling, 2016; Mathur et al., 2020; McDonnell, Breidt, & Bülthoff, 

2012; Palomäki et al., 2018; Sasaki, Ihaya, & Yamada, 2017; Strait et al., 2017; Strait, Vujovic, 

Floerke, Scheutz, & Urry, 2015; Tinwell, Grimshaw, & Nabi, 2015; Tinwell, Grimshaw, Nabi, & 

Williams, 2011; Tinwell & Sloan, 2014; Yamada, Kawabe, & Ihaya, 2013). However, some 

studies have plotted functions other than a valley-shaped curve: For example, Kätsyri, de Gelder, 

and Takala (2019) found affinity increased with human likeness, an “uncanny slope”; Cheetham, 

Suter, and Jäncke (2014) interpreted increasing familiarity ratings with the transition from avatar 

to ambiguous morph to human as a “happy valley”; and Bartneck, Kanda, Ishiguro, and Hagita 

(2009a) and Cheetham, Wu, Pauli, and Jäncke (2015) found no difference in affective responses 

toward androids and humans. Although the UV effect is seldom disputed, its theoretical basis and 

methodologies have eluded consensus. This motivated us to examine how the independent and 

dependent variables in Mori’s graph have been operationalized in the literature. 

Although several reviews have examined the UV effect (Kätsyri, Förger, Mäkäräinen, & Takala, 

2015; Lay, Brace, Pike, & Pollick, 2016; Wang, Lilienfeld, & Rochat, 2015; Zhang et al., 2020), 

this is the first meta-analysis to do so. It confirmed the effect’s significance and determined its 

effect size. This is also, of course, the first meta-analysis to evaluate the uncanny valley’s 
stimulus creation methods and affect and indirect measures. The evaluation was accomplished 

using meta-regression models. From the results, we distill design principles for future 

experiments. 

The UV effect has been conceptualized in different ways. These conceptualizations often stem 

from different theories and their assumptions about elicitors of the effect (Diel & MacDorman, 

2021). They include 

1. a function like Mori’s graph that maps a given degree of human likeness to a level of affect 

(Bartneck et al., 2009a; Burleigh, Schoenherr, & Lacroix, 2013; Chen, Russel, Nakayama, & 

Livingstone, 2010; Gray & Wegner, 2012; Kätsyri, de Gelder, & Takala, 2019; Lin et al, 2021; 

Ramey, 2005; Sasaki, Ihaya, & Yamada, 2017; Schneider, Wang, & Yang, 2009; Schwind et 

al., 2018; Seyama & Nagayama, 2007); 

2. deviations from norms of human appearance and movement (Chaminade, Hodgins, & Kawato, 

2007; MacDorman & Ishiguro, 2006; Mathur & Reichling, 2016; Palomäki et al., 2018; 

Schoenherr & Burleigh, 2015; Seyama & Nagayama, 2007; Tinwell, 2009; Tinwell & 

Grimshaw, 2009; Tinwell, Grimshaw, & Nabi, 2014); 

3. violations of expectations of human appearance and behavior (Bartneck et al., 2009a; 

MacDorman & Ishiguro, 2006); 

4. sensitivity to nonhuman features that increases with an entity’s human likeness (Chattopadhyay 
& MacDorman, 2016; Green, MacDorman, Ho, & Vasudevan, 2008; MacDorman, Srinivas, & 

Patel, 2013); 
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5. a mismatch between human and nonhuman features (Ho & MacDorman, 2010; MacDorman, 

Green, Koch, & Ho, 2009; Mitchell et al., 2011b; Moore, 2012; Takahashi, Fukuda, Samejima, 

Watanabe, & Ueda, 2015; Tinwell & Sloan, 2014); 

6. entities that elicit the concept human but have nonhuman traits (Steckenfinger & Ghazanfar, 

2009); and 

7. difficulty distinguishing between categories, such as human and robot, or a conflict between 

categories (Cheetham, Pavlović, Jordan, Suter, & Jäncke, 2013; Cheetham, Suter, & Jäncke, 

2011, 2014; Cheetham, Wu, Pauli, & Jäncke, 2015; Matsuda, Okamoto, Ida, Okanoya, & 

Myowa-Yamakoshi, 2012). 

 
 

Figure 2. Different operationalizations of the independent variable human likeness (Feng et al., 

2018; Ferrey, Burleigh, and Fenske, 2015; MacDorman et al., 2009; Mäkäräinen, Kätsyri, & 

Talaka, 2014, derived from Langner et al., 2010; Mathur & Reichling, 2016; Schindler et al., 

2017). 

Ferrey, Burleigh, and Fenske, 2015  

MacDorman et al., 2009  

Mäkäräinen, Kätsyri, and Takala, 2014  

Mathur and Reichling, 2016  

Schindler et al., 2017  

     

     

      

Feng et al., 2018  



 5 

1.1 The independent variable 

1.1.1 Construct 

In experiments on the UV effect, the independent variable is typically human likeness or a similar 

term. However, it is unclear precisely how human likeness relates to the UV curve. Human 

likeness can be characterized along many dimensions, which interact to create an overall 

impression of humanness (Bartneck et al., 2009b; von Zitzewitz, Boesch, Wolf, & Riener, 2013). 

Mori (2012) examines both the outward appearance and the behavior of androids, corpses, and 

industrial and toy robots. In discussing mannequins, prostheses, and bunraku puppets, he draws in 

other dimensions, such as the setting, lighting, story, time of day, and the perceiver’s gender and 

distance. Research corroborates the multidimensionality of human likeness in exploring the 

relation between the UV effect and an entity’s physical (MacDorman & Ishiguro, 2006; Seyama 
& Nagayama, 2007), behavioral (MacDorman et al., 2005; Złotowski et al., 2015), and perceived 

mental similarity to humans (Gray & Wegner, 2012; Stein & Ohler, 2017). The perception of 

nonhuman animals can also elicit the UV effect (Chattopadhyay & MacDorman, 2016; Löffler, 

Dörenbächer, & Hassenzahl, 2020; Schwind et al., 2018; Takahashi et al., 2015; Yamada, 

Kawabe, & Ihaya, 2013). This result casts doubt on whether the independent variable solely 

concerns human likeness. Realism or zoomorphism have served as alternative concepts. 

Furthermore, Mori (2012) uses human likeness to denote interchangeably both an entity’s 

physical properties and how it is perceived. In research, however, the distinction is necessary. 

Physical properties, for example, can be directly manipulated as an independent variable. 

1.1.2 Stimulus range 

We compiled a list of categories to summarize stimulus creation techniques. The list derives from 

the stimuli appearing in publications of empirical research and descriptions of how they were 

created (e.g., Mitchell et al., 2011b; Seyama & Nagayama, 2007). We started with six a priori 

categories and added categories during the literature search when a paper’s stimuli did not fit in 
any existing category. Saturation was reached at 10 categories. The categories encompass the 

research reviewed, enabling its techniques to be easily classified, and reflect its theoretical and 

methodological breadth. The 10 categories of techniques are listed below: 

Distinct entities: Selecting images or videos of existing robots, androids, computer-animated 

characters, humans, or other entities (e.g., Mathur et al., 2020). This technique is theory-

independent and can be used with both still and moving entities, such as characters from films, 

video games, and virtual worlds. 

Emotion manipulation: Distorting affective expressions (e.g., Qiao & Roger, 2011; Qiao, Eglin, 

& Beck, 2011; Tinwell et al., 2014). This technique visually manipulates the emotional 

expression of the face. It has been used mainly to test empathy-related theories. 

Face distortion: Distorting facial features and proportions (e.g., Mäkäräinen et al., 2014). This 

technique visually manipulates facial features or the relations among them until the face no longer 

appears real. The emotional expression is not intentionally manipulated. This technique has been 

used to test theories related to configural processing (e.g., MacDorman et al., 2009). 
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Mismatch: Swapping facial features with those of another face that differs along one or more 

dimensions—typically animacy, human likeness, and realism (e.g., Seyama & Nagayama, 2007). 

This technique has been used to test theories related to perceptual mismatch (MacDorman & 

Chattopadhyay, 2016). 

Morphing: Varying the stimulus in a stepwise transition between a pair of images to create a 

range of stimuli (e.g., MacDorman & Ishiguro, 2006). This technique has been used to transform 

the stimulus gradually from one kind of entity to another, thus making it suitable for testing 

category-related theories (e.g., Cheetham et al., 2015; Sasaki, Ihaya, & Yamada, 2017). 

Motion manipulation: Distorting an animation’s biological motion (e.g., gait, Destephe et al., 

2014; Handzic & Reed, 2015; motion quality, Piwek, McKay, & Pollick, 2014; Thompson, 

Trafton, & McKnight, 2011). This technique has been used to test whether the UV effect occurs 

in motion perception. 

Realism render: Varying how real the stimuli appear by representing them as cartoons or as 

computer models with a reduced polygon count or simplified textures (e.g., McDonnell et al., 

2012; Muniady & Ali, 2020). This technique is theory-independent and relevant to practical 

applications of visual design. 

Real-life encounter: Presenting different embodied entities like robots, androids, and humans for 

observation or interaction (e.g., Złotowski et al., 2015). This technique encompasses multiple 

modalities and, thus, can be used to measure a holistic UV effect. It is also useful because a 

physical object could be perceived and evaluated differently from its two-dimensional depiction 

(Snow, Skiba, Coleman, & Berryhill, 2014). Moreover, this technique is ecologically valid. 

Visuo-auditory mismatch: Replacing a human voice with a synthesized voice or vice versa in an 

animation (e.g., Mitchell et al., 2011b; Stein & Ohler, 2018). Although typically motivated by 

perceptual mismatch theories, this technique differs from the mismatch category because the 

mismatch is crossmodal. 

Voice distortion: Distorting natural human voices as auditory stimuli (e.g., Baird et al., 2018; 

Kühne et al., 2020). This technique has been used to test whether the UV effect can occur solely 

within audition. 

1.1.3 Measurement 

To assess the degree of human likeness (or related concepts), either single-scale measures or 

indices consisting of multiple scales have been used (e.g., Burleigh, Schoenherr, & Lacroix, 

2013; Ho & MacDorman, 2010, 2017). Experiments typically vary the stimulus systematically in 

its degree of human similarity. Manipulations include distorting it (Mäkäräinen, Kätsyri, & 

Takala, 2014) or controlling its morphing proportion between two images (Cheetham & Jäncke, 

2013). Experiments may include a manipulation check, such as rating the stimulus on human 

likeness. For computer-modeled stimuli only, Burleigh, Schoenherr, and Lacroix (2013) proposed 

two objective properties, which they define as follows: texture resolution, the number of pixels 

per unit of surface area, and polygon count, the number of polygons constituting a three-

dimensional model. However, human likeness and realism are two different constructs. Thus, the 

results of a study measuring human likeness may not be comparable to the results of a study 
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measuring realism. Research has not compared how changes in these independent variables or 

others may influence affect measures differently. 

1.2 The dependent variable 

1.2.1 Construct 

Mori (2012) represents the y-axis with the term shinwakan, a neologism he translates as affinity. 

The y-axis had initially been translated as familiarity (Reichardt, 1978). Other proposed 

constructs include interpersonal warmth (or likability) and reverse-scaled eeriness (Bartneck et 

al., 2009b; Ho & MacDorman, 2010, 2017; Redstone, 2013). Eeriness and its synonym 

creepiness correlate with aversive experiences like disgust, fear, and anxiety (Ho, MacDorman, & 

Pramono, 2008). 

1.2.2 Measurement 

In experiments on the UV effect, the dependent variable is typically measured with single-scale 

measures or indices composed of self-reported affective items. Semantic differential scales are 

common. Semantically, some items like eerie, creepy, and uncanny are specific and, on face 

value, capture the distinctive experiential quality of the UV effect (Ho & MacDorman, 2010; 

Mangan, 2015; Palomäki et al., 2018; Redstone, 2013; Tinwell, Nabi, & Charlton, 2013). Other 

items like pleasantness or likability are nonspecific. An entity could rate low on them without 

being uncanny at all (e.g., items in Bartneck et al., 2009b; Ferrey, Burleigh, & Fenske, 2015; 

Rosenthal–von der Pütten & Krämer, 2014; Yamada, Kawabe, & Ihaya, 2013). 

Questionnaires that have been developed to evaluate robots in general have been repurposed to 

measure the UV effect. Examples include the Godspeed indices (Bartneck et al., 2009b) and the 

Robotic Social Attribution Scale (Carpinella, Wyman, Perez, & Stroessner, 2017). Ho and 

MacDorman’s (2010, 2017) set of indices includes humanness, interpersonal warmth, 

attractiveness, and eeriness. They developed the set to decorrelate these dimensions so they could 

be plotted against each other on orthogonal axes. 

Indirect measures may indicate a construct by measuring a different construct. For example, the 

UV effect may correlate with trust behavior (Mathur & Reichling, 2016). For simplicity, we 

categorize implicit measures as indirect measures. Implicit measures center on processes that are 

automatic, effortless, fast, goal-independent, stimulus-driven, uncontrolled, or unintentional. For 

example, response time and other performance measures of the UV effect typically are implicit 

measures. Implicit measures counter self-presentational bias, that is, respondents’ attempts to 

influence how others perceive them. Implicit measures may indicate the UV effect in otherwise 

inaccessible populations, such as infants or nonhuman animals. 

Apart from trust behavior, the UV effect has been measured by such indirect measures as 

avoidance behavior (Matsuda et al., 2012), perceived responsiveness (Tinwell et al., 2013), and 

cognitive conflict and categorization reaction time (RT, Cheetham & Jäncke, 2013). 

1.2.3 Other constructs 

Other constructs and their associated measures and theories include the following: 
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Aesthetics: Items measuring aesthetic appeal (Sansoni, Wodehouse, McFayden, & Buis, 2015; 

Schwind et al., 2018). These items conceptualize the UV effect as a lack of physical 

attractiveness. Thus, they can serve as a practical tool for design (Hanson et al., 2005; Ho & 

MacDorman, 2010, 2017). Research has used nonhuman (e.g., Schwind et al., 2018) as well as 

human stimuli with the latter leveraging on theories of evolutionary aesthetics. These theories 

frame the UV effect as resulting from a mechanism for avoiding mates with low fitness as 

determined by the absence of physical markers of fertility, health, and youthfulness (MacDorman 

et al., 2009; MacDorman & Ishiguro, 2006). 

Animacy and experience: Items measuring perceived animacy (Looser & Wheatley, 2010), 

responsiveness (Tinwell et al., 2014), and mind (Appel et al., 2016). These items relate to theories 

about how the perceived presence or absence of these qualities elicits the UV effect. For example, 

Gray and Wegner (2012) proposed that a machine having conscious experiences—or a human 

being lacking them—would be perceived as uncanny; the authors’ creation techniques are broad: 

android robot videos, text about a supercomputer, and a photo of a man. 

Anomaly: Items measuring an entity’s perceived deviation from the norm. Anomaly items, such 

as strange or weird, are associated with atypicality theories. These theories predict that the UV 

effect is elicited by an entity whose features cause it to deviate strongly from its prototype 

(Kätsyri et al., 2015; Strait et al., 2017). Anomalies are easily created in images, where features 

can be moved, reflected, rotated, and scaled (e.g., Diel & MacDorman, 2021). 

Disgust: Items measuring disgust, a predictor of the UV effect (Ho, MacDorman, & Pramono, 

2008). These items relate to the theory that the UV effect results from an evolved mechanism for 

pathogen avoidance (MacDorman & Entezari, 2015). 

Distinctive experience: Items measuring the UV effect as the subjective experience of 

uncanniness or eeriness, which may be correlated with fear, anxiety, and disgust (Bartneck et al., 

2009a; Ho, MacDorman, & Pramono, 2008). This research conceives of the UV effect as an 

experience distinct from general psychological discomfort or anxiety. Gahrn-Andersen (2020) 

and Mangan (2015) have related the phenomenological study of the uncanny to the theories of 

Martin Heidegger and William James. 

Familiarity: Items measuring the UV effect as feelings of unfamiliarity, based on Reichardt’s 
(1978) translation of shinwakan as familiarity. Typically, in cognitive psychology, familiarity is 

contrasted with novelty: 0% familiarity is 100% novelty. However, when inspecting the y-axis of 

Mori’s (2012) graph, the familiar–novel contrast leads to contradiction. On this interpretation, the 

bottom of the valley lies in negative familiarity, beyond 100% novelty, which cannot exist. One 

finds a different interpretation in Freud’s (1919/2003) theory of the uncanny. To Freud, the 
uncanny is not the perception of something novel or unfamiliar. Rather, it is the recollection of 

something intimately familiar, perhaps from early childhood, that has long been estranged 

through repression (MacDorman & Entezari, 2015; MacDorman & Ishiguro, 2006). Freud asserts 

that repression transforms every emotional affect—including uncanniness—into anxiety (Angst). 

General anxiety: Items measuring a state of anxiety or stress without relating it specifically to the 

subjective experience of the uncanny. The items are associated with theories based on category 

inhibition, cognitive conflict (Ferrey et al., 2015), and perceptual tension (Moore, 2012). Their 
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use may reflect the assumption that the experiential quality of the UV effect is no more specific 

than the psychological discomfort caused by cognitive dissonance or cognitive load. 

Interpersonal warmth: Items measuring the primary dimension of social perception, interpersonal 

warmth, which accounts for 53% of the variance in perceptions of social behaviors (Fiske, 

Cuddy, & Glick, 2007; Fiske, Cuddy, Glick, & Xu, 2002). This dimension is measured with 

positive affect items, like likable, pleasant, and friendly, which load on the same factor in factor 

analyses (Bartneck et al., 2009a; Ho & MacDorman, 2010). The construct is intended to measure 

how feelings about an entity change with its degree of human likeness. The dimension is roughly 

synonymous with affinity, the y-axis of Mori’s (2012) graph, though as a construct warmth has 

been more thoroughly investigated. The use of warmth items to measure the UV effect is 

grounded in the assumption that warmth and uncanniness are inversely related. However, feelings 

of coldness—the low end of the scale—differ from feelings of uncanniness. For example, we 

might have warm feelings for the conductor (Tom Hanks) in The Polar Express (2004) while also 

having uncanny feelings because of the way he is computer animated. Furthermore, the generality 

of warmth items makes them susceptible to confounds. Stimulus evaluation could be influenced 

by, for example, background, clothing, color, narrative and framing, verbal and nonverbal 

behavior, interactivity, personality, relationships, and culture (Brink et al., 2019; Kennedy, 2014; 

Łupkowski, Rybka, Dziedzic, & Włodarczyk, 2018; MacDorman, 2019; Shin, Kim, & Biocca, 

2019). Thus, warmth items do not indicate the UV effect but a related construct. 

Threat: Items measuring a negative emotional response to dead animals, ranked by the species’ 
similarity to living humans, motivated by theories that conceive of the UV effect as an evolved 

threat-avoidance mechanism (Moosa & Ud-Dean, 2010; Palomäki et al.,2018; Rosenthal et al., 

2014). The entities could also appear threatening because of their ambiguity (McAndrew & 

Koehnke, 2016). 

Trust: Numerical indicators of trust, such as the amount of money invested while playing a game, 

with a smaller investment indicating less trust. A decrease in trust could result from the UV effect 

in perceiving android robots or avatars. Mathur and Reichling (2016) relate this measure of trust 

to Hardin’s (2002) theory of encapsulated interest: We trust those whose interest encapsulates our 

own. In their game, they raise the question of whether human players were really taking an 

intentional stance toward the robot or merely acting as if they were. 

2 Methods 
The lack of consensus in the UV literature, both theoretical and methodological, should now be 

evident. It motivates our meta-analysis, the first of its kind. We evaluate the effectiveness of 

stimulus creation techniques as well as affect and indirect measures. Based on the results, we 

propose empirically derived design principles for future research. 

2.1 Inclusion criteria 

The meta-analysis only included a study if it met the criteria below based on the information 

given: 



 10 

Empirical study: The study contains the results of at least one data analysis conducted by its 

authors. 

Representative participants: The study uses healthy adults, children, or infants. Excluded were 

studies restricted to a specific subgroup, such as people with autism spectrum disorder. 

Relevant stimuli: The stimuli belong to at least one of the 10 creation techniques. 

Adequate stimuli: The stimuli lack obvious confounds like noise created by editing images. 

Affect or indirect measures: Affect measures include single-scale items or indices used to self-

report an affective appraisal of the stimulus. Indirect measures include everything else. Studies 

with either or both were included. 

Testing a UV hypothesis for statistical significance: The study has one or more hypotheses 

designed to test the UV effect. For each hypothesis, a test statistic is applied to the collected data. 

Studies with both significant and nonsignificant effects were included. 

Appropriate variables: Testing for a change in an affect or indirect measure resulting from a 

change in human likeness or a related variable (e.g., realism, zoomorphism). Thus, all studies 

were experiments. 

Effect size determinable: The study must give enough information to calculate an effect size and 

its variance. 

 

 

Figure 3. The flowchart depicts the process of study selection. 
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2.2 Study search and selection 

In March 2021, we searched on PubMed, Science.Gov, and the Web of Science for papers with 

uncanny valley in their title, abstract, or keywords. After removing 33 duplicates, 488 studies 

remained of which 155 included UV significance testing (see Data Availability). Although 98 met 

other review criteria, only 72 had determinable effect sizes. These studies appeared in 56 papers 

published from 2008 to 2021. Figure 3 summarizes the article selection process. 

From its description, we placed each IV operationalization under the best-fitting stimulus creation 

technique. 

For DV operationalizations, single items were generally grouped separately. Nouns formed from 

adjectives were grouped with those adjectives (e.g., eeriness with eerie). The item creepy and 

semantic differential scales like creepy–friendly and creepy–pleasant were group as creepy*. 

Affect measures were grouped separately from indirect measures. For example, the item 

trustworthy was counted as an affect measure, separate from trust behavior, an indirect measure. 

If a study used a negative variant of an often-used positive item, the item was grouped with the 

positive variant (e.g., unpleasant with pleasant). Indices used in multiple studies were counted as 

separate index items and marked with the suffix -i (e.g., those developed by Bartneck et al., 

2009b; Ho and MacDorman, 2010, 2017; Schwind et al., 2018). 

We then recorded or calculated effect sizes and effect size variances, labeling each with its 

corresponding IV and DV. If a study used more than one IV or DV operationalization, each effect 

size was recorded or calculated. 

2.3 Data analysis 

A random-effects model was selected for the meta-analysis because study populations and 

designs differed and affect and indirect measures were used in combination with different 

stimulus creation techniques. A three-level model was used with effect nested by study. The 

meta-regression for moderation analysis was performed using a mixed-effects model. The model 

was fitted by restricted maximum-likelihood estimation. 

Effect size is reported here as Hedges’ g. The effect size, its 95% confidence interval, and the 

number of measures from which it was derived, k, are all reported. Effect size is interpreted with 

small = 0.20, medium = 0.50, and large = 0.80 thresholds. 

If three or more conditions were compared, such as robot, android, and human, two separate g’s 
were calculated: one for the posited descent from the first peak in Mori’s graph to the base of the 

valley and the second for the posited ascent from the base of the valley to the second peak. For 

convenience, the descent is denoted as the UV’s nonhuman side and the ascent as the UV’s 
human side. 

The definition of an influential effect was adopted from Viechtbauer and Cheung (2010), as 

explained in the results section. 

Moderator variables for the independent variable were the creation technique. Moderator 

variables for the dependent variable were (separately) the side of the valley, side × valence 
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(positive or negative) × measure type (affect or indirect), affect measure, indirect measure, and 

other construct. Finally, paper was used as a moderator variable. 

2.3.1 Effect size calculation 

The meta-analysis used the standardized mean difference and its variance. Hedges’ g was used to 

correct for the positive bias of Cohen’s d in smaller studies, 

 𝑔 = 𝑑 (1 − 3
4 df−1

), (1) 

 𝑣𝑔 = 𝑣𝑑 (1 − 3
4 df−1

)2
, (2) 

where df indicates the degrees of freedom (Borenstein et al., 2011). If a study did not report g, it 

was calculated from the means and standard deviations or by converting another reported 

measure of effect size. For within-group studies, which were the majority, dav and vav were used, 

 𝑑av = 𝑚1−𝑚2
1
2(𝑠1+𝑠2), (3) 

 𝑣𝑑av = 1𝑛 + 𝑑2

2𝑛, (4) 

where n is the number of participants (Lakens, 2013). This approach leads to slightly wider 

confidence intervals than d for repeated measures. However, the calculation of drm requires the 

correlation between means, which no study reported. For ANOVAs, η2 was first calculated: 

 η2 = 𝐹×df1𝐹×df1+df2
 (5) 

Next, to calculate g, η2 was converted to d (Cohen, 1988): 

 𝑑 = 2√ η2

1−η2
 (6) 

R2, Pearson’s r, and Cramér’s V were plugged into the same formula. For the t statistic, d was 

calculated for between-groups studies by imputing r = 0.5 in the formula 

 𝑑 = 𝑡√2(1−𝑟)𝑛  (7) 

3 Results 
The 72 studies in the meta-analysis employed 10 different stimulus creation techniques and 53 

different measures, 39 of which were affect measures and 14 of which were indirect measures. 

In total, 61 studies included affect measures, and 23 included indirect measures. The studies 

ranged in size from 10 to 1,311 participants with a median size of 64.5 and an interquartile range 

of 34 to 203.5. Of the 249 measured effects, 85 involve the nonhuman side of the UV, 71 involve 

the human side, and 93 involve both sides simultaneously. 

The three-level meta-analysis model, including two outliers, revealed that the UV effect had a 

large effect size, g = 0.95 [0.76, 1.14], p < .001, k = 249, Akaike information criterion (AIC) = 
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724.92, QE(248) = 10241.38, p < .001, QM(1) = 93.30, p < .001. Excluding the two outliers, 

discussed below, increased the effect size, g = 1.01 [0.80, 1.22], p < .001, k = 247. 

3.1 Three-level model 

The meta-analysis often draws multiple effect sizes from the same paper and even from the same 

study. Thus, the effect sizes are not statistically independent (Cheung, 2019). To address this, we 

investigated different three-level models. 

The model with the lowest estimated prediction error, excluding outliers, has paper as its higher-

order grouping variable and effect as its nested lower-order grouping variable, QE(246) = 

9725.21, p < .001, QM(1) = 88.53, p < .001. The model has lower estimated prediction error 

(paper/effect: AIC = 675.17) than the other three-level models (study/effect: AIC = 683.05, 

technique/effect: AIC = 714.85, measure/effect: AIC = 715.20). Its prediction error is significantly 

lower than two-level models (effect: AIC = 717.57, p < .001, paper: AIC = 4915.67, p < .001). Of 

the total variance, 38.53% is between-paper heterogeneity, 60.34% is within-paper heterogeneity 

(total I² = 98.87), and 1.13% is sampling error. 

3.2 Bias 

Figure 4(a) shows a funnel plot of effect sizes against their standard errors for meta-analysis. 

Since standard error is inversely proportional to sample size, larger studies appear at the top and 

smaller studies at the bottom. In the absence of bias, sampling error should distribute effect sizes 

randomly but symmetrically about their weighted mean. In the funnel plot, however, the effect 

sizes tend to increase with their standard errors. A regression test with standard error as the 

predictor variable and Hedges’ g as the outcome variable indicated significant funnel plot 

asymmetry (z = 6.72, p < .001, k = 249). 

Funnel plot asymmetry could result from publication bias because the meta-analysis relied on 

published data only. In general, studies reporting a significant effect are more likely to be 

published. If a true effect exists, a smaller study will require a larger effect size to reach 

significance. Moreover, given that large studies constitute a major commitment of resources, they 

are more likely to be published even if their effects are nonsignificant. 

One approach to addressing bias is to limit the meta-analysis to larger studies and then to check 

whether bias is still present and whether the effect size is still large enough to be of substantive 

importance (Borenstein et al., 2009). We tried a version of this approach by excluding the effects 

with the largest standard errors and retesting for funnel plot asymmetry. After excluding 66 

effects—that is, 27% of the total, as shown in Figure 4(b)—funnel plot asymmetry for the 

remaining effects became nonsignificant (z = 1.95, p = .051, k = 183). The effect size, however, 

was reduced 28%, g = 0.68 [0.51, 0.85], k = 183. Though smaller, it remains of substantive 

importance. 
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Figure 4. The funnel plot graphs effect sizes from the meta-analysis against their standard 

errors: (a) all standard errors; (b) the lowest 73% of standard errors. Influential effects are 

indicated in red. 

 

Figure 5. The p-curve for the meta-analysis’s 249 effects. 

Bias was next assessed by p-curve analysis. A plot of p values against percentage of effects 

should be flat if there is no effect and right skewed if there is one. A left skew indicates bias, a 

publication environment in which obtaining significance at the .05 level is incentivized, but lower 

p values are unnecessary. This could result from publication bias or from p-hacking, mining the 

data for patterns and then failing to control for multiplicity in reporting significance. Of 249 

effects, p ≤ .05 for 213 (86%), and p ≤ .025 for 207 (83%). The right-skewness test, pbinomial < 

.001, zfull = –73.80, pfull < .001, zhalf = –72.50, phalf < .001, was significant, which indicates a true 

effect (Figure 5). The flatness test was nonsignificant, pbinomial > .999, zfull = 65.35, pfull > .999, zhalf 
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= 69.70, phalf > .999; thus, the test did not indicate insufficient power or the absence of a true 

effect. The power estimate is 0.99 [0.99, 1.00]. The tests were repeated, with similar results, for 

only the 66 effects with the largest standard errors. Thus, p-curve analysis supports the conclusion 

that the effect is true. It is not simply the result of publication bias or p-hacking. 

3.3 Influential effects 

Viechtbauer and Cheung (2010) proposed that an effect is influential if it meets one of the 

following four criteria: 

 |DFFITS| > 3√ 𝑝𝑘−𝑝, (8) 

where p is the number of model coefficients and k the number of effects, the Cook’s distance, 

 𝐷𝑖 > χ𝑝,50%2 , (9) 

where p is the model’s degrees of freedom, indicating the deletion if the i’th effect decreases the 
Mahalanobis distance between effects, 

 ℎ𝑎𝑡 > 3𝑝𝑘 , and any (10) 

 DFBETA > 1. (11) 

 

Figure 6. DFFITS and Cook’s D for the effects in the meta-analysis, sorted from lowest to 

highest standard error. Influential effects are indicated in red. 

 

Figure 7. Creation technique is the moderator variable in the meta-regression model. For each 

of its values, Hedges’ g, the 95% confidence interval, and number of effects (k) are listed. The 

position of the blue square depicts the effect size, and its relative size depicts the precision. The 

width of the diamond depicts the confidence interval of the summary effect size. 
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Two effects were identified as influential by the first two criteria (Figure 6), and both pertained to 

the UV’s nonhuman side: Rosenthal et al.’s (2014) unfamiliar-i,  g = –2.95, DFFITS = –0.224, D 

= 0.047, hat = 0.004, DFBETA = –0.224, and Wang et al.’s (2020) alive, g = –2.77, DFFITS = –
0.205, D = 0.040, hat =0.004, DFBETA = –0.205. They were treated as outliers for reasons 

discussed below and included in analyses selectively. 

3.4 Independent variable operationalizations 

3.4.1 Moderator: Creation techniques 

Moderation analysis was performed, excluding outliers, using a mixed-effects meta-regression 

model with effect as the random variable and creation technique as the moderator variable, AIC = 

701.33, QE(237) = 8984.08, p < .001, τ² = 0.91, I² = 98.62, QM(10) = 272.53, p < .001. Face 

distortion produced the largest effect size, followed by distinct entities, realism render, and 

morphing (Figure 7). 

Distinct entities studies typically used stimuli that could have confounding effects (e.g., body 

language, facial expressions, lighting, viewing perspective). To reduce their risk, a few studies 

applied standards for stimulus selection—for example, full face shown in frontal or three-fourths 

aspect, resolution sufficient to generate a final image three inches in height at 100 dpi, and no 

other body parts visible (Brink, Gray, & Wellman, 2017; Mathur & Reichling, 2016). When only 

distinct entities studies with standardized stimuli were considered, three in total, g fell to 0.82 [–
0.12, 1.77], k = 4, and the effect became nonsignificant, p = .089. 

Four studies used nonhuman animal stimuli, AIC = 32.95, QE(17) = 373.46, p < .001, QM(1) = 

32.95, p < .001 (MacDorman & Chattopadhyay, 2017; Schwind et al., 2018; Yamada et al., 

2013). Their 18 effects were all significant, g = 1.94 [1.28, 2.60], k = 18. Stimulus 

operationalization techniques for animal stimuli were comparable with those for human stimuli, 

including distinct entities (Rativa et al., 2020; Takahashi et al., 2015), emotion manipulation, face 

distortion, realism render (Chattopadhyay & MacDorman, 2016; Schwind et al., 2018), and 

morphing (Yamada et al., 2013). 

 

 

Figure 8. Side of the uncanny valley is the moderator variable in the meta-regression model. 
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3.5 Dependent variable operationalizations 

3.5.1 Moderator: Side of the uncanny valley, valence, and type of measure 

Moderation analysis was performed, including outliers, with effect as the random variable and 

side of the valley as the moderator variable, AIC = 731.92, QE(246) = 9942.04, p < .001, τ² = 
1.00, I² = 98.80, QM(3) = 239.92, p < .001. If possible, an effect size was calculated for each side 

of the uncanny valley. However, this was not possible for 37% of effect sizes, usually because the 

means and standard deviations were not reported. In these cases, a combined effect size for both 

sides of the valley was calculated (e.g., based on an F statistic). For the human side, g = 1.34 

[1.10, 1.57], p < .001, and k = 71, for the nonhuman side, g = 0.64 [0.43, 0.86], p < .001, and k = 

85, and for both sides, g = 0.98 [0.77, 1.19], p <.001, and k = 93. Thus, the effect size for the 

human side was more than double that of the nonhuman side. 

To investigate this disparity, we repeated the analysis with side × valence (positive or negative) × 

measure type (affect or indirect) as the moderator variable (Figure 8). The combined value human 

positive affect had the largest affect size, g = 1.69 [1.34, 2.03], p < .001, k = 32 and nonhuman 

positive affect had the smallest. Thus, among all measures, positive affect measures were the most 

effective at measuring the human side of the valley and the least effective at measuring the 

nonhuman side. A Wald-type test revealed this difference in effectiveness was significant, 

QM(12) = 276.73, p < .001. For the human side, affect measures were more effective than 

indirect measures. For the nonhuman side, indirect measures were more effective than affect 

measures, and negative measures were more effective than positive ones. 

3.5.2 Moderator: Affect measures 

Moderation analysis was performed, excluding outliers, with effect as the random variable and 

affect measure as the moderator variable, AIC = 537.05, QE(159) = 4544.64, p < .001, τ² = 0.92, 
I² = 98.51, QM(38) = 247.70, p < .001 (Figure 9). Indices producing effects that were larger than 

average include threatening-i (threatening, eerie, uncanny, dominant, harmless), likable-i 

(pleasant, likable, attractive, familiar, natural, intelligent), aesthetics-i (ugly–beautiful, 

unaesthetic–aesthetic), familiarity-i (uncanny–familiar, freaky–numbing), and eeriness-i (dull–
freaky, predictable–eerie, plain–weird, ordinary–supernatural, boring–shocking, uninspiring–
spine-tingling, predictable–thrilling, bland–uncanny, unemotional–hair-raising). Individual items 

include reassuring, threatening, believable, appealing, acceptable, alive, and eerie. However, 

when the two outliers are included, alive falls from the 12th highest effect size, g = 1.19 [0.33, 

2.06], p = .007, k = 5, to the 29th, g = 0.55 [–0.27, 1.37], p = .191, k = 6, and is no longer 

significant. The other outlier, unfamiliar-i (strange, unfamiliar) appears last, g = –2.95 [–4.94, –
0.95], p = .004, k = 1. 

3.5.3 Indices and multiple scale analyses 

A variety of terms have been used to measure different constructs underlying the UV effect. The 

relations among the terms can give insight into the UV effect’s experiential quality. In studies 
with several terms, we investigated their intercorrelations to determine whether they reflect the 

UV effect or instead a related construct. Table A1 in the Appendix lists the interscale correlations 

observed in the reviewed research. 
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Figure 9. Affect measure is the moderator variable in the meta-regression model. Creepy* 

combines the item creepy with scales including the term, such as creepy–pleasant and creepy–
friendly.  

As a measure of reliability, 15 studies in the meta-analysis reported the Cronbach’s α of the 

indices used. Ho and MacDorman’s (2010, 2017) eeriness and warmth indices and their 

derivations were generally reliable. Distinctive experience terms (e.g., creepy, eerie, and 

uncanny) tended to load on the same factor (e.g., Destephe et al., 2015; Lischetzke et al. 2017). In 

a principal component analysis (PCA), the items uncanny and eerie loaded on the same 

component as threat-related items, and the items strange and unfamiliar as anxiety-related items 

(Rosenthal–von der Pütten & Krämer, 2014; Ho, MacDorman, & Pramono, 2008, found fear and 

disgust to be stronger predictors of eerie and creepy than anxiety). In a similar vein, removing 

strange from an index consisting of eerie, unsettling, and strange improved its reliability (Kätsyri, 

Mäkäräinen, & Takala, 2017). This indicates uncanniness and strangeness may be different 

constructs. 
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Finally, likable, friendly, pleasant, and other warmth items typically comprise reliable indices 

(e.g., Kätsyri, Mäkäräinen, & Takala, 2017; Rosenthal–von der Pütten & Krämer, 2014; Tung, 

2016), which indicates an interpersonal warmth construct for the tested stimuli (e.g., Bartneck et 

al., 2009a). 

 

Figure 10. Indirect measure is the moderator variable in the meta-regression model. 

3.5.4 Moderator: Indirect measures 

Moderation analysis was performed, excluding outliers, with effect as the random variable and 

indirect measure as the moderator variable (Figure 10). Dislike frequency, which indicates the 

number of times disliked, had the largest effect size (Strait et al., 2019), followed by 

categorization reaction time (Carr et al., 2017; Cheetham & Jäncke, 2013; MacDorman & 

Chattopadhyay, 2017; Wang & Rochat, 2017; Yamada et al., 2013), like frequency (Strait et al., 

2019), avoidance behavior attributions to uncanniness (Perez et al., 2020), viewing duration 

(Strait et al., 2015, 2019), preference choice in a two-alternative forced-choice categorization task 

(Feng et al., 2018; Prakash & Rogers, 2015), and preferential looking, that is, preferring to view 

one stimulus more than another (Matsuda et al., 2015; Nitta & Hashiya, 2021). 

Nonsignificant effect sizes include lie detection, that is, frequency of rating a statement as a lie 

(McDonnell & Breidt, 2010), cognitive conflict, operationalized as number of reversals of 

direction when moving a stimulus with a mouse pointer towards one of two categories (Weis & 

Wiese, 2017), trust behavior, specifically the amount of money entrusted with an entity in an 

investment game (Mathur & Reichling, 2016), encounter duration, that is, viewing duration until 

the participant terminates the encounter (Perez et al., 2020), termination frequency, measured by 

the number of times terminated (Perez et al., 2020; Strait et al., 2015, 2017, 2019), information 

processing about an entity, as indicated by the number of personality judgments made (Shin, 

Kim, & Biocca, 2019), and ABX task, which entails visual same–different discriminations 

(Cheetham et al., 2014). 
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Figure 11. Construct is the moderator variable in the meta-regression model. 

3.6 Other constructs 

After grouping measures by other UV construct, moderation analysis was performed, excluding 

outliers, with effect as the random variable and other construct as the moderator variable, AIC = 

386.28, QE(122) = 2999.63, p < .001, τ² = 1.02, I² = 98.29, QM(10) = 119.67, p < .001 (Figure 

11). Animacy and experience had the largest effect size, g = 1.26 [0.44, 2.09], p = .003, k = 6. 

However, if outliers are included, this construct falls from first to eighth and becomes 

nonsignificant, g = 0.70 [–0.10, 1.51], p = .088, k = 7. Other constructs with significant effects, in 

decreasing order of effect size, were aesthetics, interpersonal warmth, distinctive experience, 

threat, trust, anomaly, and disgust. General anxiety and familiarity had nonsignificant effects. 

3.7 Papers 

For reference, a moderation analysis was performed, excluding outliers, with effect as the random 

variable and paper as the moderator variable, AIC = 585.95, QE(191) = 5058.35, p < .001, τ² = 
0.61, I² = 98.05, QM(56) = 552.95, p < .001 (Figure 12). 

3.8 Data availability 

The meta-analysis was performed in the R statistical computing environment with the metafor 

package. The p-curve analysis and variance distribution analysis of the three-level model were 

performed with the dmetar package. The remaining R packages were devtools, forestplot, 

ggplot2, and readxl. The dataset, R script, and other supplementary materials are available at 

https://doi.org/10.17605/osf.io/57sme. 

https://doi.org/10.17605/OSF.IO/57SME
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Figure 12. Paper is the moderator variable in the meta-regression model. 
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4 Discussion 

4.1 Independent variable operationalizations 

Among all the stimulus creation techniques, face distortion produced the largest effect size, 

followed by distinct entities, realism render, morphing, voice distortion, and motion 

manipulation. Techniques producing a nonsignificant effect include mismatch, visuo-auditory 

mismatch, emotion manipulation, and real-life encounter, though real-life encounter was based 

on only one paper. Nonhuman animal stimuli performed well. Our evaluation of stimulus creation 

techniques is summarized in Table A2 of the Appendix. 

Face distortion was only tested in four of the papers reviewed (Feng et al., 2018; MacDorman et 

al., 2009; Mäkäräinen et al., 2014; Schwind et al., 2018). Nevertheless, it is a promising 

technique to explore configural processing theories (Diel & MacDorman, 2021). 

Distinct entities were used in 46% of significance tests (114 out of 249), more than any other 

technique. This creation technique has greater ecological validity than all techniques except—at 

least for robots—real-life encounter. However, stimuli in these studies typically varied in body 

language, facial expression, familiarity, gaze direction, lighting, perspective, and other aspects. 

These potential confounding variables indicate a lack of experimental control, which could limit 

the generalizability of the results (Kätsyri, Förger, Mäkäräinen, & Takala, 2015; Kätsyri, de 

Gelder, & Takala, 2019). This interpretation aligns with our results. When the moderation 

analysis was limited to studies using standardized stimuli, distinct entities produced a 

nonsignificant effect. 

Although morphing produced a large effect size in the meta-analysis, it was nonsignificant for 8 

out of 44 effects. Nonsignificance may stem from the choice of endpoint stimuli. Studies that did 

not find a UV effect used endpoint stimuli with the same shape, such as a human face and a 

matching avatar face (Cheetham et al., 2015; Kätsyri, de Gelder, & Takala, 2019; the same issue 

arises for realism render, MacDorman & Chattopadhyay, 2016). By contrast, studies that did find 

a UV effect used morphologically different endpoint stimuli to produce a robot-to-human, 

animal-to-human, or cartoon-to-real transition (Ferrey et al., 2015; Lischetzke et al., 2017; 

Palomäki et al., 2018; Sasaki, Ihaya, & Yamada, 2017). 

Creating stimuli from insufficiently distinct endpoint images may result in a morphing sequence 

with too narrow a range in human likeness to include the uncanny valley part of the graph. For 

example, although animals and robots have facial proportions that are atypical for humans, they 

are not judged by human standards. Morphing them with human faces may elicit human-specific 

processing, heightening sensitivity to those features that still deviate from human proportions, 

thus eliciting the UV effect. This effect could not occur if the facial proportions of the low human 

likeness endpoint stimuli were already human (e.g., human avatars). Thus, it is possible that, for 

morphing stimuli to elicit a UV effect reliably, they must distort an entity’s configural pattern, 
which would support theories predicting the UV effect results from configural processing 

(Chattopadhyay & MacDorman, 2016; Diel & MacDorman, 2021; Kätsyri, 2018). 

Alternatively, the large effect sizes for endpoint stimuli that differ greatly in their morphology 

may be an unintended consequence of the creation technique. Endpoint stimuli like robots and 
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dolls tend to be attractive because they are the product of design. Human beings, though not 

designed, tend to find each other attractive because their faces and bodies co-evolved with their 

perceptual systems. In this context, attractiveness serves a purpose: It supports mate bonds and 

parental bonds (see Kozak, Head, Lackey, & Boughman, 2013; Wyman, Charlton, Locatelli, & 

Reby, 2011). However, intermediate stimuli in a morphing sequence neither evolved nor were 

designed to be perceived as anything. This arbitrariness could heighten their uncanniness. 

We advise researchers to avoid using similar endpoint images when creating stimuli through 

morphing, or to use such techniques as morphing different regions of the face in different 

morphing steps (Seyama & Nagayama, 2007). However, it is also important to avoid creating 

strange or ghostly artifacts that could appear eerie for reasons other than their being intermediate 

in human likeness (discussed in MacDorman & Chattopadhyay, 2016). The effect of endpoint 

stimulus choice on the UV effect is a topic for investigation. 

In their review, Wang, Lilienfeld, and Rochat (2015) found evidence against the UV effect comes 

from studies using distinct entities, while evidence for the UV effect comes from studies using 

morphing. The reason is perhaps that Wang and colleagues cited studies our analysis excluded for 

not using a test statistic (Hanson et al., 2005) or for having image noise (e.g., one face with two 

sets of hair, Seyama & Nagayama, 2007). In addition, several distinct entities studies with 

supportive results were published after their review (Brink, Gray, & Wellman, 2017; Jung & Cho, 

2018; Kätsyri, de Gelder, & Takala, 2019; Mathur & Reichling, 2016; Mathur et al., 2020; 

Palomäki et al., 2018; Strait et al., 2017). 

Finally, Wang, Lilienfeld, and Rochat (2015) criticizes using face distortion as an independent 

variable because face distortion differs from human likeness. However, our review found face 

distortion can elicit UV-specific subjective experiences (e.g., Mäkäräinen et al., 2014). Moreover, 

our meta-analysis found a significant UV effect in perceiving animal stimuli (e.g., Löffler et al., 

2020; Schwind et al., 2017, 2018). Thus, human likeness alone cannot predict the range of 

observed UV effects. A more encompassing DV conceptualization, like norm deviation, would 

predict a broader range of UV effects. However, norm deviation is not necessarily uncanny. 

Sometimes it does harm aesthetics but rather improves it (e.g., supernormal stimuli, Diel & 

MacDorman, 2021). 

4.2 Dependent variable operationalizations 

The effect size of the uncanny valley’s human side was more than double that of its nonhuman 

side. This difference may seem to reflect Mori’s graph because the second peak is higher than the 
first. However, we also noted that, among all measures, positive affect produced the largest effect 

sizes for the human side and the smallest for the nonhuman side. Thus, a more plausible 

explanation is that positive affect is a poor measure of the UV effect. 

Setting aside the miraculous and the extraterrestrial, people tend to perceive human beings as 

superior to nonhuman entities. This applies to stimuli appearing in UV experiments to date, such 

as robots, animals, and dolls. Perceived limitations in present-day human artifacts or other species 

reinforce our ingroup bias, rooted in our common identity, to privilege the human (MacDorman 

& Entezari, 2015; Mitchell et al., 2011a). Humans are often seen as more appealing, attractive, 

friendly, likable, pleasant, reassuring, and warm than nonhuman alternatives, not to mention more 
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cultured, intelligent, and sociable. We can immediately see why positive affect measures are poor 

for measuring the UV effect because, despite how uncanny an android may appear, it will still 

appear more lifelike and less unfamiliar than a mechanical-looking robot of a novel design. Thus, 

it is important to focus on effective measures for the uncanny valley’s nonhuman side: negative 

affect measures and positive indirect measures. 

The effectiveness of negative affect measures like eerie, creepy, threatening, and disgusting align 

with the view that the UV effect is characterized by a distinctive experience of uncanniness rather 

than an overall decrease in positive affect (e.g., Ho, MacDorman, & Pramono, 2008; Mangan, 

2015; Redstone, 2013). This negative experience may still reduce positive affect, though 

indirectly (Patrick & Lavoro, 1997).  

The most frequently used item was eerie (e.g., Ho & MacDorman, 2010, 2017; Kätsyri, de 

Gelder, & Takala, 2019). Other negative items included creepy, disgusting, repulsive, strange, 

threatening, and weird. Concordantly, positive items with the largest effect sizes were 

nonspecific, such as interpersonal warmth items (likable, pleasant) or familiar (e.g., MacDorman 

& Ishiguro, 2006). Despite a correlation between the UV effect and feelings of disgust (e.g., Ho, 

MacDorman, & Pramono, 2008; MacDorman & Entezari, 2015), the item repulsive was 

nonsignificant. 

Among indirect measures, dislike frequency produced the largest effect size, followed by 

categorization RT, like frequency, avoidance, viewing duration, preference choice, and 

preferential looking. Indirect measures, such as performance measures, are not without their 

limitations. Although some research uses performance measures to quantify a construct related to, 

but distinct from, the UV effect, other research claims they measure the UV effect itself (e.g., 

Lewkowicz & Ghazanfar, 2012; Matsuda et al., 2015). Measures like preferential looking and 

preference choice reflect general avoidance behavior, which could be elicited by the UV effect or 

by extraneous factors that must be controlled for, such as an ugly appearance or inhospitable 

disposition. Furthermore, most studies measuring performance omitted affect. Those that 

measured it tended to find a UV effect for affect but not for performance (Strait et al., 2015; 

Strait, Urry, & Muentener, 2019; for the opposite case, see Wang & Rochat, 2017). 

These findings point to broader issues with measurement in UV research: First, many studies do 

not measure affect, but they should endeavor to do so insofar as it is possible. It is better to avoid 

relying solely on task performance measures (e.g., categorization RT, Cheetham, Suter, & Jäncke, 

2011; Cheetham et al., 2013; Cheetham, Suter, & Jäncke, 2014; Chen, Russell, & Nakayama, 

2010; Saygin, Chaminade, Ishiguro, Driver, & Frith, 2012; avoidance or preference, Lewkowicz 

& Ghazanfar, 2012; Matsuda et al., 2012; Steckenfinger & Ghazanfar, 2009). The reason is that 

we cannot infer affect and its influence on motivation solely from nonaffective behavior, though 

we can code it from displays of emotion. For example, in a study that used termination frequency 

to measure the UV effect, “the stimulus was boring” had a larger effect size than “the stimulus 
was unnerving” (Strait et al., 2015; Strait, Urry, & Muentener, 2019). However, boring has never 

been considered the dependent variable in Mori’s graph. In addition, task performance measures 
can diverge from affect measures (MacDorman & Chattopadhyay, 2016, 2017; Mathur et al., 

2020). Research should aim to validate performance measures by testing their specificity for the 

UV effect. 
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Second, although likability, pleasantness, and other nonspecific items used to measure overall 

affect tend to correlate with UV-specific items, they do not capture the experiential quality of the 

UV effect. Thus, unrelated factors could cause them to increase or decrease. This makes 

nonspecific items more susceptible to confounding variables. Perceptual variables that can 

influence stimulus evaluation include attractiveness (Ho & MacDorman, 2010, 2017; Principe & 

Langlois, 2011), atypical (Kätsyri et al., 2015; Strait et al., 2017), disgusting (Curtis, de Barra, & 

Aunger, 2011), or misaligned features (MacDorman & Chattopadhyay, 2016), background 

(Łupkowski et al., 2019), color (Kennedy, 2014; Valdez & Mehrabian, 1994), morphing artifacts 

(MacDorman & Chattopadhyay, 2016), realism (McDonnell et al., 2012), and size (Cesarei & 

Codispoti, 2006). These variables tend to be automatic and stimulus-driven. Perceptual-cognitive 

variables include categorization difficulty (Cheetham et al., 2013; Yamada et al., 2013), 

expectation violation (Saygin et al., 2012), frequency (Burleigh & Schoenherr, 2015; Moreland & 

Zajonc, 1982), inhibitory devaluation (Ferrey, Burleigh, & Fenske, 2015; Weis & Wiese, 2017), 

and multimodal mismatch (Mitchell et al., 2011b; Tinwell et al., 2015). Social variables include 

animacy (Koldewyn, Hanus, & Balas, 2014; Mäkäräinen et al., 2014), context (Jung & Cho, 

2018), facial expressions (Paulus & Wentura, 2015; Tinwell et al., 2011), mind (Gray & Wegner, 

2012), narrative structure (MacDorman, 2019), outgroup membership (Hugenberg, 2005), and 

perceived warmth or competence (MacDorman, 2019). Thus, studies should include UV-specific 

measures to mitigate potential confounds. 

Third, even when UV-specific measures are used, they can be influenced by the flow of the 

interaction and its narrative structure (Dai & MacDorman, 2018). Thus, it may be necessary to 

test for the UV effect before the interaction begins. 

Fourth, the UV effect is correlated with fear, anxiety, and disgust (Ho, MacDorman, & Pramono, 

2008). Thus, a UV measure should be able to discriminate UV stimuli from non-UV stimuli that 

elicit similar emotions. However, discriminant validity has not yet been demonstrated for a UV 

measure. 

Fifth, regardless of the strength of a change in affect, at least three stimulus conditions are 

necessary to produce measurements that could fit a U-shaped curve—the valley part of Mori’s 
graph. Even if those measurements fit, a dip in a measure like interpersonal warmth could occur 

for a myriad of reasons other than the UV effect. Thus, experimental control is vital. 

Sixth, what eeriness is and which situations elicit it has not been specified precisely. Redstone 

(2013) proposed that eeriness is elicited when the ontological nature of a stimulus is unclear. 

Langer and König (2018) differentiate between eeriness (which they assert is a fear-related 

response to humanoid entities) and creepiness (an anxiety-related response to novel or 

unpredictable people or situations). However, these claims are untested. In general, UV research 

lacks a common definition and conceptualization of the UV effect. 

4.3 Limitations 

4.3.1 Study exclusion 

This meta-analysis excluded a wide range of impactful UV studies that were never intended to 

replicate a UV curve. For example, Gray and Wegner (2012) found the UV effect was elicited by 
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a conscious machine or the philosophers’ zombie (a person lacking conscious experience). Their 

findings were replicated by Appel and colleagues (2020). Schein and Gray (2015) found that, 

among facial features, the UV effect was especially sensitive to the manipulation of the eyes. The 

review also excluded specific subgroups and nonhuman primates. For example, Steckenfinger 

and Ghazanfar (2009) found a UV effect in macaque monkeys. The meta-analysis also excluded 

studies on the neurophysiological correlates of the perception of humanlike appearance or 

behavior, which shed light on the neural mechanisms underlying the UV effect (e.g., Saygin et 

al., 2011; Urgen et al., 2018). 

The meta-analysis excluded interaction effects for simplicity. However, these effects have 

elucidated the UV effect. For example, Green and colleagues (2008) found an interaction between 

the degree of face distortion and realism render by showing that sensitivity to acceptable facial 

proportions increased as the stimulus appeared more human. Similarly, Mäkäräinen and 

colleagues (2014) showed that the strangeness of faces with exaggerated expressions increased as 

faces were rendered more realistically. Both studies indicate realism increases the perceiver’s 
sensitivity to human features. Thus, deviations from norms are more likely to be noticed and 

perceived as uncanny in realistic representations. Sensitivity increases with realism logistically 

(S-shaped curve), not linearly, indicating a perceptual magnet effect (Chattopadhyay & 

MacDorman, 2016) like the one found for animacy (Looser and Wheatley, 2010). In a similar 

vein, Deska and colleagues (2017) found that the perception of a mind occurs when a face 

appears nearly human and is processed configurally (cf. Gray & Wegner, 2012; Tinwell et al., 

2013). 

Smaller studies, which require a larger effect size to obtain significance, tended to have larger 

effect sizes in our meta-analysis. Specifically, the average effect size of smaller studies, those in 

the quartile with the largest standard errors, was more than double that of the other three quartiles. 

Typically, inflated effect sizes in smaller studies are explained by publication bias or p-hacking. 

Publication bias results from unpublished or unreported nonsignificant effects in a meta-analysis, 

and p-hacking is the failure to control for multiplicity in significance testing. However, p-curve 

analysis found no signs of publication bias or p-hacking. 

Twenty-six of 98 studies that met selection criteria, including significance testing, were excluded 

from the meta-analysis because they provided insufficient information to calculate effect sizes. 

This issue arose mainly for nonsignificant effect sizes. Nevertheless, the field has shown interest 

in nonsignificant and contrary effects, and papers reporting them have been well-cited (e.g., 

Cheetham, Suter, & Jäncke, 2014; Thompson, Trafton, & McKnight, 2011). Because this paper 

focuses on comparing methodologies, bias affecting relative comparisons between effect sizes is 

more worrisome than bias affecting their absolute magnitude. 

4.3.2 Diverse methodologies 

The diversity of UV methodologies impeded the meta-analysis. The volume of IV–DV 

combinations complicated the interpretation of effect sizes for creation techniques and for 

measures, especially for IV–DV combinations used in only a few studies. Precision in meta-

regression requires having enough combinations in each cell. At least five is one rule of thumb 

(Borenstein et al., 2009). However, three of 10 techniques, 23 of 39 affect measures, and 12 of 14 

indirect measures were used in fewer than five studies. The variety of experimental designs and 



 27 

other study-specific variables also complicates interpretation of the results. To draw conclusions 

about techniques and methods simultaneously requires enough significance tests or effect sizes to 

make comparisons (Lay, Brace, Pike, & Pollick, 2016). Future research could give priority to the 

validation of rarely used methods. 

5 Conclusion 
This is the first meta-analysis on the UV effect. We used meta-regression to evaluate the methods 

used to operationalize the axes of Mori’s graph. Our findings provide a methodological 

foundation for UV research. After discussing the conceptual foundations of the uncanny valley, 

we have presented successful research methodologies and raised methodological concerns. 

5.1 Recommendations 

We end by proposing the following design principles for stimulus creation techniques and 

measures in UV research: 

Items that measure the UV experience as a distinct experience of uncanniness, such as uncanny 

and eerie, or of strangeness, such as weird or strange, are preferred to nonspecific items. They 

also have face validity. In this vein, negative items are preferred to positive ones. Negative items 

can always be reverse scaled to plot the valley. 

Affect or preference measures are necessary to assess the UV effect. Although indirect measures 

may complement them, a study should not rely solely on indirect measures, if possible. The 

validity of performance measures warrants further investigation. 

The stimulus creation techniques producing the largest effect sizes were face distortion, distinct 

entities, realism render, and morphing. 

A drawback of morphing is that, if the endpoint images are too similar, the x-axis may not include 

the uncanny valley. Morphing that disrupts the configural pattern may produce a larger effect; 

however, it should avoid creating visual artifacts from the morphing process. How best to 

approach morphing is a topic for future research. 

Useful stimulus creation techniques include distorting facial features, rendering at different 

realism levels, and using different emotional expressions. Their choice depends on theoretical 

considerations and the research question. Further investigation is needed on realism rendering 

and how it influences UV-specific negative measures compared with nonspecific positive 

measures. 

When using distinct entities, researchers should apply standards for stimulus selection (e.g., 

similar size, perspective, facial expression, and lighting). The effect of stimulus standardization 

on the UV effect also warrants investigation. 

  



 28 

REFERENCES 

Markus Appel, David Izydorczyk, Silvana Weber, Martina Mara, and Tanja Lischetzke. 2020. The 

uncanny of mind in a machine: Humanoid robots as tools, agents, and experiencers. Computers 

in Human Behavior, 102 (Jan. 2020), 274–286. https://doi.org/10.1016/j.chb.2019.07.031 

Markus Appel, Silvana Weber, Stefan Krause, and Martina Mara. 2016. On the eeriness of service 

robots with emotional capabilities. In The Eleventh ACM/IEEE International Conference on 

Human Robot Interaction. IEEE Press, 411–412. 

Alice Baird, Emilia Parada-Cabaleiro, Simone Hantke, Felix Burkhardt, Nicholas Cummins, and 

Björn Schuller. 2018. The perception and analysis of the likeability and human likeness of 

synthesized speech. Proceedings of Interspeech 2018 (Sep. 2018), 2863–2867. 

https://doi.org/10.21437/Interspeech.2018-1093 

Christoph Bartneck, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. 2009a. My robotic 

Doppelgänger: A critical look at the uncanny valley theory. Proceedings of the 18th IEEE 

International Symposium on Robot and Human Interactive Communication (Nov. 2009) (RO-

MAN, pp. 269–276). Toyama, Japan. https://doi.org/10.1109/roman.2009.5326351 

Christoph Bartneck, Dana Kulić, Elizabeth Croft, and Susana Zoghbi. 2009b. Measurement 

instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and 

perceived safety of robots. International Journal of Social Robotics 1, 71–81. 

https://doi.org/10.1007/s12369-008-0001-3 

Kimberley A. Brink, Kurt Gray, and Henry M. Wellman. 2017. Creepiness creeps in: Uncanny 

valley feelings are acquired in childhood. Child Development, 90, 4 (Jul. 2019), 1202–1214. 

https://doi.org/10.1111/cdev.12999 

Michael Borenstein, Larry V. Hedges, Julian P. T. Higgins, and Hannah R. Rothstein. 2009. 

Introduction to meta-analysis. Hoboken, NJ: Wiley. 

Elizabeth Broadbent, Vinayak Kumar, Xingyan Li, John Sollers, III, Rebecca Q. Stafford, and 

Bruce A. MacDonald. 2013. Robots with display screens: A robot with a more humanlike face 

display is perceived to have more mind and a better personality. PLOS One, 8, 8 (Aug. 2013), 

1–10. https://doi.org/10.1371/journal.pone.0072589 

Tyler J. Burleigh and Jordan R. Schoenherr. 2015. A reappraisal of the uncanny valley: Categorical 

perception or frequency-based sensitization? Frontiers in Psychology, 5 (Jan. 2015), 1488. 

https://doi.org/10.3389/fpsyg.2014.01488 

Tyler J. Burleigh, Jordan R. Schoenherr, & Guy L. Lacroix. 2013. Does the uncanny valley exist? 

An empirical test of the relationship between eeriness and the human likeness of digitally 

created faces. Computers in Human Behavior, 29, 3 (May 2013), 759–771. 

https://doi.org/10.1016/j.chb.2012.11.021 

Colleen Carpinella, Alisa Wyman, Michael Perez, and Steven Stroessner. 2017. The Robotic Social 

Attributes Scale (RoSAS): Development and validation. ACM/IEEE International Conference 

on Human–Robot Interaction. (pp. 254–262). New York, NY, USA. 

https://doi.org/10.1145/2909824.3020208 

https://doi.org/10.1016/j.chb.2019.07.031
https://doi.org/10.21437/Interspeech.2018-1093
https://doi.org/10.1109/roman.2009.5326351
https://doi.org/10.1111/cdev.12999
https://doi.org/10.1371/journal.pone.0072589
https://doi.org/10.3389/fpsyg.2014.01488
https://doi.org/10.1016/j.chb.2012.11.021


 29 

Evan W. Carr, Galit Hofree, Kayla Sheldon, Ayse P. Saygin, and Piotr Winkielman. 2017. Is that 

a human? Categorization (dis)fluency drives evaluations of agents ambiguous on human-

likeness. Journal of Experimental Psychology: Human Perception and Performance, 43, 4 

(Jan. 2017), 651–666. https://doi.org/10.1037/xhp0000304 

Andrea de Cesarei and Maurizio Codispoti. 2006. When does size not matter? Effects of stimulus 

size on affective modulation. Psychophysiology, 43, 2 (Mar. 2006), 207–215. 

https://doi.org/10.1111/j.1469-8986.2006.00392.x 

Thierry Chaminade, Jessica K. Hodgins, and Mitsuo Kawato. 2007. Anthropomorphism influences 

perception of computer-animated characters’ actions (Sep. 2007). Social Cognitive and 

Affective Neuroscience, 2, 3, 206–216. https://doi.org/10.1111/j.1469-8986.2006.00392.x  

Debaleena Chattopadhyay and Karl F. MacDorman. 2016. Familiar faces rendered strange: Why 

inconsistent realism drives characters into the uncanny valley (Sep. 2016). Journal of Vision, 

16, 11:7, 1–25. https://doi.org/10.1167/16.11.7 

Marcus Cheetham and Lutz Jäncke. 2013. Perceptual and category processing of the uncanny valley 

hypothesis’ dimension of human likeness (Jun. 2013): Some methodological issues. Journal of 

Visualized Experiments, 76, 4375. https://doi.org/10.3791/4375 

Marcus Cheetham, Ivana Pavlović, Nicola J. Jordan, Pascal Suter, and Lutz Jäncke. 2013. Category 
processing and the human likeness dimension of the uncanny valley hypothesis: Eye-tracking 

data. Frontiers in Psychology, 4, 108. https://doi.org/10.3389/fpsyg.2013.00108 

Marcus Cheetham, Pascal Suter, and Lutz Jäncke. 2011. The human likeness dimension of the 

“uncanny valley hypothesis”: Behavioral and functional MRI findings (Nov. 2011). Frontiers 

in Human Neuroscience, 5, 125, 126. https://doi.org/10.3389/fnhum.2011.00126 

Marcus Cheetham, Pascal Suter, and Lutz Jäncke. 2014. Perceptual discrimination difficulty and 

familiarity in the uncanny valley: More like a “happy valley”. Frontiers in Psychology, 5 (Nov. 

2014), 1219. https://doi.org/10.3389/fpsyg.2014.01219 

Marcus Cheetham, Lingdan D. Wu, Paul Pauli, and Lutz Jäncke. 2015. Arousal, valence, and the 

uncanny valley: Psychophysiological and self-report findings. Frontiers in Psychology, 6 (Jul. 

2015), 981. https://doi.org/10.3389/fpsyg.2015.00981 

Haiwen Chen, Richard Russell, Ken Nakayama, and Margaret Livingstone. 2010. Crossing the 

‘uncanny valley’: Adaptation to cartoon faces can influence perception of human faces. 

Perception, 39, 3 (Aug. 2010), 378–386. https://doi.org/10.1068/p6492 

Mike W.-L. Cheung. 2019. A guide to conducting a meta-analysis with non-independent effect 

sizes. Neuropsychology Review, 29 (Aug. 2019), 387–396. https://doi.org/10.1007/s11065-

019-09415-6 

Leon Ciechanowski, Aleksandra Przegalińska, Mikolaj Magnuski, and Peter Gloor. 2019. In the 
shades of the uncanny valley: An experimental study of human–chatbot interaction. Future 

Generation Computer Systems, 92 (Mar. 2019), 539–548. 

https://doi.org/10.1016/j.future.2018.01.055 

https://doi.org/10.1037/xhp0000304
https://doi.org/10.1111/j.1469-8986.2006.00392.x
https://doi.org/10.1111/j.1469-8986.2006.00392.x
https://doi.org/10.1167/16.11.7
https://doi.org/10.3791/4375
https://doi.org/10.3389/fpsyg.2013.00108
https://psycnet.apa.org/doi/10.3389/fnhum.2011.00126
https://doi.org/10.3389/fpsyg.2014.01219
https://doi.org/10.3389/fpsyg.2015.00981
https://doi.org/10.1068/p6492
https://doi.org/10.1007/s11065-019-09415-6
https://doi.org/10.1007/s11065-019-09415-6
https://doi.org/10.1016/j.future.2018.01.055


 30 

Jacob Cohen. 1988. Statistical power analysis for the behavioral sciences (2nd ed).. New Jersey: 

Lawrence Erlbaum Associates, Inc. 

Valerie Curtis, Mícheál de Barra, and Robert Aunger. 2011. Disgust as an adaptive system for 

disease avoidance behavior. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 366 (Feb. 2011), 389–401. https://doi.org/10.1098/rstb.2010.0117 

Zhengyan Dai and Karl F. MacDorman. 2018. The doctor’s digital double: How warmth, 
competence, and animation promote adherence intention. PeerJ Computer Science, 4 (2018), 

e168, 1–29. https://doi.org/10.7717/peerj-cs.168 

Jason C. Deska, Steven M. Almaraz, and Kurt Hugenberg. 2017. Of mannequins and men: 

Ascriptions of mind in faces are bounded by perceptual and processing similarities to human 

faces. Social Psychological and Personality Science, 8, 2 (Sep. 2016), 183–190. 

https://doi.org/10.1177/1948550616671404 

Matthieu Destephe, Massimiliano Zecca, Kenji Hashimoto, and Atsuo Takanishi. 2014. Uncanny 

valley, robot and autism: Perception of the uncanniness in an emotional gait. Proceedings of 

the IEEE International Conference on Robotics and Biomimetics (pp. 1152–1157), Bali, 

Indonesia, 2014. https://doi.org/10.1109/ROBIO.2014.7090488. 

Matthieu Destephe, Martim Brandao, Tatsuhiro Kishi, Massimiliano Zecca, Kenji Hashimoto, and 

Atsuo Takanishi. 2015. Walking in the uncanny valley: Importance of the attractiveness on the 

acceptance of a robot as a working partner. Frontiers in Psychology, 6 (Feb. 2015), 204. 

https://doi.org/10.3389/fpsyg.2015.00204 

Alexander Diel and Karl F. MacDorman. 2021. Creepy cats and strange high houses: Support for 

configural processing in testing predictions of nine uncanny valley theories. Journal of Vision. 

Shuyuan Feng, Xueqin Wang, Qiandong Wang, Jing Fang, Yaxue Wu, Li Yi, and Kunlin Wei. 

2018. The uncanny valley effect in typically developing children and its absence in children 

with autism spectrum disorders. PLoS ONE, 13 (Nov. 2018), e0206343. 

https://doi.org/10.1371/journal.pone.0206343 

Francesco Ferrari, Maria Paola Paladino, and Jolanda Jetten. 2016. Blurring human–machine 

distinctions: Anthropomorphic appearance in social robots as a threat to human distinctiveness. 

International Journal of Social Robotics, 8, 2 (Jan. 2016), 287–302. https://10.1007/s12369-

016-0338-y 

Anne E. Ferrey, Tyler J. Burleigh, and Mark J. Fenske. 2015. Stimulus-category competition, 

inhibition, and affective devaluation: A novel account of the uncanny valley. Frontiers in 

Psychology, 6 (Mar. 2015), 249. https://doi.org/10.3389/fpsyg.2015.00249 

Susan T. Fiske, Amy J. C. Cuddy, & Peter Glick. 2007. Universal dimensions of social cognition: 

Warmth and competence. Trends in Cognitive Sciences, 11 (Feb. 2007), 77–83. 

https://doi.org/10.1016/j.tics.2006.11.005 

Susan T. Fiske, Amy J. C. Cuddy, Peter Glick, & Jun Xu. 2002. A model of (often mixed) 

stereotype content: Competence and warmth respectively follow from perceived status and 

competition. Journal of Personality and Social Psychology, 82 (Jun. 2002), 878–902. 

https://doi.org/10.1037/0022-3514.82.6.878 

https://doi.org/10.1098/rstb.2010.0117
https://doi.org/10.7717/peerj-cs.168
https://doi.org/10.1177/1948550616671404
https://doi.org/10.3389/fpsyg.2015.00204
https://doi.org/10.1371/journal.pone.0206343
https://10.0.3.239/s12369-016-0338-y
https://10.0.3.239/s12369-016-0338-y
https://doi.org/10.3389/fpsyg.2015.00249
https://doi.org/10.1016/j.tics.2006.11.005
https://doi.org/10.1037/0022-3514.82.6.878


 31 

Rasmus Gahrn-Andersen. 2020. Seeming autonomy, technology and the uncanny valley. AI & 

Society  (Aug. 2020). https://doi.org/10.1007/s00146-020-01040-9 

Kurt Gray and Daniel M. Wegner. 2012. Feeling robots and human zombies: Mind perception and 

the uncanny valley. Cognition, 125 (Oct. 2012), 125–130. 

https://doi.org/10.1016/j.cognition.2012.06.007 

Robert D. Green, Karl F. MacDorman, Chin-Chang Ho, and Sandosh K. Vasudevan. 2008. 

Sensitivity to the proportions of faces that vary in human likeness. Computers in Human 

Behavior, 24, 5 (Sep. 2008), 2456–2474. https://doi.org/10.1016/j.chb.2008.02.019 

Sigmund Freud. 1919/2003. The uncanny [das Unheimliche] (D. McClintock, Trans.). Penguin, 

New York. 

Ismet Handzic and Kyle B. Reed. 2015. Perception of gait patterns that deviate from normal and 

symmetric biped locomotion. Frontiers in Psychology, 6 (Feb. 2015). 

https://doi.org/10.3389/fpsyg.2015.00199 

David Hanson, Andrew Olney, Steve Prilliman, Eric Mathews, Marge Zielke, Derek Hammons, 

Raul Fernandez, and Harry E. Stephanou. 2005. Upending the uncanny valley. Proceedings of 

the Twentieth National Conference on Artificial Intelligence (Jan. 2005), 1728–1729. AAAI 

Press, Menlo Park, CA. 

Russell Hardin. 2002. Trust and trustworthiness. New York: Russell Sage Foundation. 

Chin-Chang Ho, and Karl F. MacDorman. 2010. Revisiting the uncanny valley theory: Developing 

and validating an alternative to the Godspeed indices. Computers in Human Behavior, 26 (Nov. 

2010), 1508–1518. https://doi.org/10.1016/j.chb.2010.05.015 

Chin-Chang Ho and Karl F. MacDorman. 2017. Measuring the uncanny valley effect: Refinements 

to indices for perceived humanness, attractiveness, and eeriness. International Journal of 

Social Robotics, 9 (Jan. 2017), 129–139. https://doi.org/10.1007/s12369-016-0380-9 

Chin-Chang Ho, Karl F. MacDorman, and Zacharias A. D. Pramono. 2008. Human emotion and 

the uncanny valley: A GLM, MDS, and ISOMAP analysis of robot video ratings. Proceedings 

of the Third ACM/IEEE International Conference on Human-Robot Interaction (Jan. 2008), 

pp. 169–176, March 11–14, 2008. Amsterdam, Netherlands. 

https://doi.org/10.1145/1349822.1349845 

Kurt Hugenberg. 2005. Social categorization and the perception of facial affect: Target race 

moderates the response latency advantage for happy faces. Emotion, 5, 3, 267–
276. https://doi.org/10.1037/1528-3542.5.3.267 

Yoonhyuk Jung and Eunae Cho. 2018. Context-specific affective and cognitive responses to 

humanoid robots. Proceedings of the 22nd ITS Biennial Conference, Beyond the Boundaries: 

Challenges for Business, Policy and Society (Jun. 2018). International Telecommunications 

Society (ITS). Seoul, Korea. 

Hiroko Kamide, Koji Kawabe, Satoshi Shigemi, and Tatsuo Arai. 2013. Development of a 

psychological scale for general impressions of humanoid. Advanced Robotics, 27, 1, 3–17, 

https://doi.org/10.1080/01691864.2013.751159 

https://doi.org/10.1007/s00146-020-01040-9
https://doi.org/10.1016/j.cognition.2012.06.007
https://doi.org/10.1016/j.chb.2008.02.019
https://doi.org/10.3389/fpsyg.2015.00199
https://doi.org/10.1016/j.chb.2010.05.015
https://doi.org/10.1007/s12369-016-0380-9
https://doi.org/10.1145/1349822.1349845
https://psycnet.apa.org/doi/10.1037/1528-3542.5.3.267
https://doi.org/10.1080/01691864.2013.751159


 32 

Jari Kätsyri. 2018. Those virtual people all look the same to me: Computer-rendered faces elicit a 

higher false alarm rate than real human faces in a recognition memory task. Frontiers in 

Psychology, 9, 1362. https://doi.org/10.3389/fpsyg.2018.01362 

Jari Kätsyri, Beatrice de Gelder, and Apio Takala. 2019. Virtual faces evoke only a weak uncanny 

valley effect: An empirical investigation with controlled virtual face images. Perception, 48, 

10 (Aug. 2019), 968–991. https://doi.org/10.1177/0301006619869134 

Jari Kätsyri, Klaus Förger, Meeri Mäkäräinen, and Tapio Takala. 2015. A review of empirical 

evidence on different uncanny valley hypotheses: Support for perceptual mismatch as one road 

to the valley of eeriness. Frontiers in Psychology, 6 (Apr. 2015), 390. 

https://doi.org/10.3389/fpsyg.2015.00390 

Jari Kätsyri, Meeri Mäkäräinen, and Tapio Takala. 2017. Testing the ‘uncanny valley’ hypothesis 
in semirealistic computer-animated film characters: An empirical evaluation of natural film 

stimuli, International Journal of Human-Computer Studies, 97 (Jan. 2017), 149–161. 

https://doi.org/10.1016/j.ijhcs.2016.09.010. 

Andrew Kennedy. 2014. The effect of color on emotions in animated films. Open Access Theses, 

201 (Spring 2014). https://docs.lib.purdue.edu/open_access_theses/201 

Marino Kimura and Yuko Yotsumoto. 2018. Auditory traits of “own voice.” PLOS One, 13, 6 (Jun. 

2016), Article e0199443. https://doi.org/10.1371/journal.pone.0199443 

Kami Koldewyn, Patricia Hanus, and Benjamin Balas. 2014. Visual adaptation of the perception 

of “life”: Animacy is a basic perceptual dimension of faces. Psychonomic Bulletin and Review, 

21, 4 (2014), 969–975. https://doi.org/10.3758/s13423-013-0562-5 

Genevieve M. Kozak, Megan L. Head, Alycia C. R. Lackey, and Janette W. Boughman. 2013. 

Sequential mate choice and sexual isolation in threespine stickleback species. Journal of 

Evolutionary Biology, 26 1 (Jan. 2013), 130–140. https://doi.org/10.1111/jeb.12034 

Katharina Kühne, Martin H. Fischer, and Yuefang Zhou. 2020. The human takes it all: Humanlike 

synthesized voices are perceived as less eerie and more likable: Evidence from a subjective 

ratings study. Frontiers in Neurorobotics, 14:593732. 

https://doi.org/10.3389/fnbot.2020.593732 

Oliver Langner, Ron Dotsch, Gijsbert Bijlstra, Daniel H. J. Wigboldus, Skyler T. Hawk, and Ad 

van Knippenberg. 2010. Presentation and validation of the Radboud Faces Database. Cognition 

& Emotion, 24, 8 (Nov. 2010), 1377—1388. https://doi.org/10.1080/02699930903485076 

Markus Langer and Cornelius J. König. 2018. Introducing and testing the creepiness of situation 

scale (CRoSS). Frontiers in Psychology, 9 (Nov. 2018), 2220. 

https://doi.org/10.3389/fpsyg.2018.02220 

Stephanie Lay, Nicola Brace, Graham Pike, and Frank Pollick. 2016. Circling around the uncanny 

valley: Design principles for research into the relation between human likeness and eeriness. i-

Perception, 7(6), 1–11. https://doi.org/10.1177/2041669516681309 

David J. Lewkowicz and Asif A. Ghazanfar. 2012. The development of the uncanny valley in 

infants. Developmental Psychobiology, 54, 2, 124–132. https://doi.org/10.1002/dev.20583 

https://doi.org/10.3389/fpsyg.2018.01362
https://doi.org/10.1177/0301006619869134
https://doi.org/10.3389/fpsyg.2015.00390
https://docs.lib.purdue.edu/open_access_theses/201
https://doi.org/10.1371/journal.pone.0199443
https://doi.org/10.3758/s13423-013-0562-5
https://doi.org/10.1111/jeb.12034
https://doi.org/10.3389/fnbot.2020.593732
https://doi.org/10.1080/02699930903485076
https://doi.org/10.3389/fpsyg.2018.02220
https://doi.org/10.1177/2041669516681309
https://doi.org/10.1002/dev.20583


 33 

Chaolan Lin, Selma Šabanović, Lynn Dombrowski, Andrew D. Miller, Erin Brady and Karl F. 
MacDorman. 2021. Parental acceptance of children’s storytelling robots: A projection of the 

uncanny valley of AI. Frontiers in Robotics and AI, 8 (May 2021), 579993, 1–15. 

https://doi.org/10.3389/frobt.2021.579993 

Tanja Lischetzke, David Izydorczyk, Christina Hüller, and Markus Appel. 2017. The topography 

of the uncanny valley and individuals’ need for structure: A nonlinear mixed effects analysis. 
Journal of Research in Personality, 68 (Jul. 2011), 96–113. 

https://doi.org/10.1016/j.jrp.2017.02.001 

Lukasz Piwek, Lawrie S. McKay, and Frank E. Pollick. 2014. Empirical evaluation of the uncanny 

valley hypothesis fails to confirm the predicted effect of motion. Cognition, 130, 3 (2014), 

271–277. https://doi.org/10.1016/j.cognition.2013.11.001. 

Diana Löffler, Judith Dörrenbächer, and Marc Hassenzahl. 2020. The uncanny valley effect in 

zoomorphic robots: The U-shaped relation between animal likeness and likeability. In 

Proceedings of the 2020 ACM/IEEE International Conference on Human–Robot Interaction 

(pp. 261–270). New York, NY: ACM. https://doi.org/10.1145/3319502.3374788 

Christine E. Looser and Thalia Wheatley. 2010. The tipping point of animacy: How, when, and 

where we perceive life in a face. Psychological Science, 21, 12 (Dec. 2010), 1854–1862. 

https://doi.org/10.1177/0956797610388044 

Paweł Łupkowski, Marek Rybka, Dagmara Dziedzic, and Wojciech Włodarczyk. 2019. The 

background context condition for the uncanny valley hypothesis. International Journal of 

Social Robotics, 11 (Sep. 2018), 25–33. https://doi.org/10.1007/s12369-018-0490-7 

Goh Matsuda, Hiroshi Ishiguro, and Kazuo Hiraki. 2015. Infant discrimination of humanoid robots. 

Frontiers in Psychology, 6 (Sep. 2015), 1397. https://doi.org/10.3389/fpsyg.2015.01397 

Yoshi-Taka Matsuda, Yoko Okamoto, Misako Ida, Kazuo Okanoya, and Masako Myowa-

Yamakoshi. 2012. Infants prefer the faces of strangers or mothers to morphed faces: An 

uncanny valley between social novelty and familiarity. Biology Letters, 8 (Oct. 2012), 725–
728. https://10.1098/rsbl.2012.0346 

Karl F. MacDorman and Debaleena Chattopadhyay. 2016. Reducing consistency in human realism 

increases the uncanny valley effect; increasing category uncertainty does not. Cognition, 146 

(Jan. 2016), 190–205. https://doi.org/10.1016/j.cognition.2015.09.019 

Karl F. MacDorman and Debaleena Chattopadhyay. 2017. Categorization-based stranger 

avoidance does not explain the uncanny valley. Cognition, 161 (Jan. 2017), 129–135. 

https://doi.org/10.1016/j.cognition.2017.01.009 

Karl F. MacDorman and Steven O. Entezari. 2015. Individual differences predict sensitivity to the 

uncanny valley. Interaction Studies, 16(2), 141–172. https://doi.org/10.1075/is.16.2.01mac 

Karl F. MacDorman, Robert D. Green, Chin-Chang Ho, and Clinton T. Koch. 2009. Too real for 

comfort? Uncanny responses to computer generated faces. Computers in Human Behavior, 25, 

3 (Dec. 2014), 695–710. https://doi.org/10.1016/j.chb.2008.12.026 

https://doi.org/10.3389/frobt.2021.579993
https://doi.org/10.1016/j.jrp.2017.02.001
https://doi.org/10.1145/3319502.3374788
https://doi.org/10.1177/0956797610388044
https://doi.org/10.1007/s12369-018-0490-7
https://doi.org/10.3389/fpsyg.2015.01397
https://10.0.4.74/rsbl.2012.0346
https://psycnet.apa.org/doi/10.1016/j.cognition.2015.09.019
https://doi.org/10.1016/j.cognition.2017.01.009
https://doi.org/10.1075/is.16.2.01mac
https://doi.org/10.1016/j.chb.2008.12.026


 34 

Karl F. MacDorman and Hiroshi Ishiguro. 2006. The uncanny advantage of using androids in 

cognitive and social science research. Interaction Studies, 7, 3 (Jan. 2006), 297–337. 

https://doi.org/10.1075/is.7.3.03mac 

Karl F. MacDorman, Takashi Minato, Michihiro Shimada, Shoji Itakura, Stephen Cowley, and 

Hiroshi Ishiguro. 2005. Assessing human likeness by eye contact in an android 

testbed. Proceedings of the XXVII Annual Meeting of the Cognitive Science Society (Jul. 2005), 

pp. 1373–1378. 

Karl F. MacDorman, Preethi Srinivas, and Himalaya Patel. 2013. The uncanny valley does not 

interfere with level 1 visual perspective taking. Computers in Human Behavior, 29, 4 (Jul. 

2013), 1671–1685. https://doi.org/10.1016/j.chb.2013.01.051 

Meeri Mäkäräinen, Jari Kätsyri, and Tapio Takala. 2014. Exaggerating facial expressions: A way 

to intensify emotion or a way to the uncanny valley? Cognitive Computation, 6, 4 (May 2014), 

708–721. https://doi.org/10.1007/s12559-014-9273-0 

Bruce Mangan. 2015. The uncanny valley as fringe experience. Interaction Studies, 16, 2 (Sep. 

2015), 193–199. https://doi.org/10.1075/is.16.2.05man 

Maya B. Mathur and David B. Reichling. 2016. Navigating a social world with robot partners: A 

quantitative cartography of the uncanny valley. Cognition, 146 (Jan. 2016), 22–32. 

https://doi.org/10.1016/j.cognition.2015.09.008 

Maya B. Mathur, David B. Reichling, Francesca Lunardini, Alice Geminiani, Alberto Antonietti, 

Peter A. M. Ruijten, Carmel A. Levitan, Gideon Nave, Dylan Mafredi, Brandy Bessette-

Symons, Attila Szuts, and Balazs Aczel. 2020. Uncanny but not confusing: Multisite study of 

perceptual category confusion in the uncanny valley. Computers in Human Behavior, 103 (Feb. 

2020), 21–30. https://doi.org/10.1016/j.chb.2019.08.029 

Koh Matsuda, Hiroshi Ishiguro, and Kazuo Hiraki. 2015. Infant discrimination of humanoid robots. 

Frontiers in Psychology, 6, 1397. https://doi.org/10.3389/fpsyg.2015.01397 

Yoshi-Taka Matsuda, Yoko Okamoto, Misako Ida, Kazuo Okanoya, and Masako Myowa-

Yamakoshi. 2012. Infants prefer the faces of strangers or mothers to morphed faces: An 

uncanny valley between social novelty and familiarity. Biology Letters, 8, 5 (Oct. 2012), 725–
728. https://doi.org/10.1098/rsbl.2012.0346 

Francis T. McAndrew and Sara S. Koehnke. 2016. On the nature of creepiness. New Ideas in 

Psychology, 43 (Dec. 2016), 10–15. https://doi.org/10.1016/j.newideapsych.2016.03.003 

Rachel McDonnell and Martin Breidt. 2010. Face reality: Investigating the uncanny valley for 

virtual faces. In Marie-Paule Cani and Alla Sheffer (Eds.), ACM SIGGRAPH Asia Sketches 

(Jan. 2010), pp. 1–2. ACM Press, New York, NY, USA. 

Rachel McDonnell, Martin Breidt, M., and Heinrich H. Bülthoff. 2012. Render me real? 

Investigating the effect of render style on the perception of animated virtual humans. ACM 

Transactions on Graphics, 31 (Jul. 2012), 1–11. https://doi.org/10.1145/2185520.2185587 

Lianne F. S. Meah and Roger K. Moore. 2014. The uncanny valley: A focus on misaligned cues. 

In Michael Beetz, Benjamin Johnston, & Mary-Anne Williams (Eds.), Social Robotics: 6th 

https://doi.org/10.1075/is.7.3.03mac
https://doi.org/10.1016/j.chb.2013.01.051
https://doi.org/10.1007/s12559-014-9273-0
https://doi.org/10.1075/is.16.2.05man
https://doi.org/10.1016/j.cognition.2015.09.008
https://doi.org/10.1016/j.chb.2019.08.029
https://doi.org/10.3389/fpsyg.2015.01397
https://doi.org/10.1098/rsbl.2012.0346
https://doi.org/10.1016/j.newideapsych.2016.03.003
https://doi.org/10.1145/2185520.2185587


 35 

International Conference (Oct. 2014), pp. 256–265. ICSR Proceedings. Sydney, NSW, 

Australia. October 27–29. 

Wade J. Mitchell, Chin-Chang Ho, Himalaya Patel, and Karl F. MacDorman. 2011. Does social 

desirability bias favor humans? Explicit–implicit evaluations of synthesized speech support a 

new HCI model of impression management. Computers in Human Behavior, 27(1), 402–412. 

https://doi.org/10.1016/j.chb.2010.09.002 

Wade J. Mitchell, Kevin A. Szerszen, Amy Shirong Lu, Paul W. Schermerhorn, Matthias Scheutz, 

and Karl F. MacDorman. 2011b. A mismatch in the human realism of face and voice produces 

an uncanny valley. i-Perception, 2, 1 (Mar. 2011), 10–12. https://doi.org/10.1068/i0415 

Roger K. Moore. 2012. A Bayesian explanation of the ‘uncanny valley’ effect and related 
psychological phenomena. Scientific Reports, 2 (Nov. 2012), 864. 

https://doi.org/10.1038/srep00864 

Mahdi Muhammad Moosa and S. M. Minhaz Ud-Dean. 2010. Danger avoidance: An evolutionary 

explanation of uncanny valley. Biology Theory, 5 (Apr. 2010), 12–14. 

https://doi.org/10.1162/BIOT_a_00016 

Richard L. Moreland and Robert B. Zajonc. 1982. Exposure effects in person perception: 

Familiarity, similarity, and attraction. Journal of Experimental Social Psychology, 18, 5 (Dec. 

1980), 395–415. https://doi.org/10.1016/0022-1031(82)90062-2 

Masahiro Mori. 2012. The uncanny valley (Karl F. MacDorman & Norri Kageki, Trans.). IEEE 

Robotics and Automation, 19, 2 (Jun. 2012), 98–100. (Original work published in 1970). 

https://doi.org/10.1109/MRA.2012.2192811 

Vicneas Muniady and Ahmad Zamzuri Mohamad Ali. 2020. The effect of valence and arousal on 

virtual agent’s designs in quiz based multimedia learning environment. International Journal 

of Instruction, 13(4), 903-920. https://doi.org/10.29333/iji.2020.13455a 

Hiroshi Nitta and Kazuhide Hashiya. 2021. Self-face perception in 12-month-old infants: A study 

using the morphing technique. Infant Behavior and Development, 62 (Feb. 2021), 101479. 

https://doi.org/10.1016/j.infbeh.2020.101479 

Iroju Olaronke, Oluwaseun A. Ojerinde, and Rhoda Ikono. 2017. State of the art: A study of 

human–robot interaction in healthcare. International Journal of Information Engineering & 

Electronic Business, 9, 3 (May 2017), 43–55. https://doi.org/10.5815/ijieeb.2017.03.06 

Maike Paetzel, Christopher E. Peters, Ingela Nyström, and Ginevra Castellano. 2016. Effects of 

multimodal cues on children’s perception of uncanniness in a social robot. In Proceedings of 

the 18th ACM International Conference on Multimodal Interaction (Oct. 2016), pp. 297–301. 

Association for Computing Machinery. https://doi.org/10.1145/2993148.2993157 

Jussi P. Palomäki, Anton Kunnari, Marianna Drosinou, Mika Koverola, Noora Lehtonen, Juho 

Halonen, Marko Repi, and Michael Laakasuo. 2018. Evaluating the replicability of the uncanny 

valley effect. Heliyon, 4, 11 (Nov. 2018). https://doi.org/10.1016/j.heliyon.2018.e00939 

https://doi.org/10.1068%2Fi0415
https://doi.org/10.1038/srep00864
https://doi.org/10.1162/BIOT_a_00016
https://doi.org/10.1016/0022-1031(82)90062-2
https://doi.org/10.1109/MRA.2012.2192811
https://doi.org/10.29333/iji.2020.13455a
https://doi.org/10.1016/j.infbeh.2020.101479
https://doi.org/10.5815/ijieeb.2017.03.06
https://doi.org/10.1145/2993148.2993157
https://doi.org/10.1016/j.heliyon.2018.e00939


 36 

Christopher J. Patrick and Stacey A. Lavoro. 1997. Ratings of emotional response to pictorial 

stimuli: Positive and negative affect dimensions. Motivation and Emotion, 21 (Dec. 1997), 

297–321. https://doi.org/10.1023/A:1024432322584 

Andrea Paulus and Dirk Wentura. 2015. It depends: Approach and avoidance reactions to emotional 

expressions are influenced by the contrast emotions presented in the task. Journal of 

Experimental Psychology: Human Perception and Performance, 42, 2, 197–212. 

https://doi.org/10.1037/xhp0000130 

Jaime Alvarez Perez, Hideki Garcia Goo, Ana Sánchez Ramos, Virginia Contreras, and Megan 

Strait. Companion of the 2020 ACM/IEEE International Conference on Human–Robot 

Interaction (pp. 101–103), March 2020. https://doi.org/10.1145/3371382.3378312 

Lukasz Piwek, Lawrie S. McKay, and Frank E. Pollick. 2014. Empirical evaluation of the uncanny 

valley hypothesis fails to confirm the predicted effect of motion. Cognition, 130(Mar. 2014), 

271–277. https://doi.org/10.1016/j.cognition.2013.11.001 

Ellen Poliakoff, Natalie Beach, Rebecca Best, Toby Howard, and Emma Gowen. 2013. Can looking 

at a hand make your skin crawl? Peering into the uncanny valley for hands. Perception, 42, 9 

(Aug. 2015), 998–1000. https://doi.org/10.1068/p7569 

Akanaksha Prakash and Wendy A. Rogers. 2015. Why some humanoid faces are perceived more 

positively than others: Effects of human-likeness and task. International Journal of Social 

Robotics, 7, 2, 309–331. https://doi.org/10.1007/s12369-014-0269-4 

Connor P. Principe and Judith H. Langlois. 2011. Faces differing in attractiveness elicit 

corresponding affective responses. Cognition & Emotion, 25, 1 (2011), 140–148. 

https://doi.org/10.1080/02699931003612098 

Si Qiao and Roger Eglin. 2011. Accurate behaviour and believability of computer generated images 

of human head. Proceedings of the 10th International Conference on Virtual Reality 

Continuum and Its Applications in Industry (pp. 545–548), December 2011. 

https://doi.org/10.1145/2087756.2087860 

Si Qiao, Roger Eglin, and Ariel Beck. 2011. Audience perception of computer generated human 

facial behaviour. GSTF International Journal on Computing, 1, 3 (April 2011), 61–65. 

Christopher H. Ramey. 2005. The uncanny valley of similarities concerning abortion, baldness, 

heaps of sand, and humanlike robots. In Proceedings of Views of the Uncanny Valley 

Workshop: IEEE-RAS International Conference on Humanoid Robots (Dec. 2005), pp. 8–13. 

Tsukuba, Japan. 

Alexandra S. Rativa, Marie Postma, and Menno van Zaanen. 2019. The uncanny valley of the 

virtual (animal) robot. In Munir Merdan, Wilfried Lepuschitz, Gottfried Koppensteiner, 

Richard Balogh, and David Obdržálek (Eds.), Robotics in Education. RiE 2019. Advances in 

Intelligent Systems and Computing, vol. 1023. Springer, Cham. https://doi.org/10.1007/978-3-

030-26945-6_38 

Josh D. Redstone. 2013. Beyond the uncanny valley: A theory of eeriness for android science 

research. Master’s thesis. https://doi.org/10.22215/etd/2013-09987 

https://psycnet.apa.org/doi/10.1023/A:1024432322584
https://doi.org/10.1037/xhp0000130
https://doi.org/10.1145/3371382.3378312
https://doi.org/10.1016/j.cognition.2013.11.001
https://doi.org/10.1068/p7569
https://doi.org/10.1007/s12369-014-0269-4
https://doi.org/10.1080/02699931003612098
https://doi.org/10.1145/2087756.2087860
https://doi.org/10.1007/978-3-030-26945-6_38
https://doi.org/10.1007/978-3-030-26945-6_38
https://doi.org/10.22215/etd/2013-09987


 37 

Jasia Reichardt. 1978. Human reactions to imitation humans, or Masahiro Mori‘s uncanny valley. 
In Jasia Reichardt, Robots: Fact, fiction, and prediction (1st ed., pp. 26–27). Viking, New 

York. 

Anne Reuten, Maureen van Dam, and Marnix Naber. 2018. Pupillary responses to robotic and 

human emotions: The uncanny valley and media equation confirmed. Frontiers in Psychology, 

23, 9 (Mar. 2018), 774. https://doi.org/10.3389/fpsyg.2018.00774 

Astrid M. Rosenthal-von der Pütten and Nicole C. Krämer. 2014. How design characteristics of 

robots determine evaluation and uncanny valley related responses. Computers in Human 

Behavior, 36 (Jul. 2014), 422–439. https://doi.org/10.1016/j.chb.2014.03.066 

Astrid M. Rosenthal-von der Pütten, Nicole Krämer, Stefan Maderwald, Matthias Brand, and 

Fabian Grabenhorst. 2019. Neural mechanisms for accepting and rejecting artificial social 

partners in the uncanny valley. The Journal of Neuroscience, 39, 33 (Aug. 2019), 6555–
6570. https://doi.org/10.1523/JNEUROSCI.2956-18.2019 

Nicholas Royle. 2003. The Uncanny: An Introduction. Manchester University Press, New York. 

Stefania Sansoni, Andrew Wodehouse, Angus K. McFadyen, and Arjan Buis. 2015. The aesthetic 

appeal of prosthetic limbs and the uncanny valley: The role of personal characteristics in 

attraction. International Journal of Design, 9, 67–81. 

Kyoshiro Sasaki, Keiko Ihaya, and Yuki Yamada. 2017. Avoidance of novelty contributes to the 

uncanny valley. Frontiers in Psychology, 8 (Mar. 2018), 

1792. https://doi.org/10.3389/fpsyg.2017.01792 

Ayse Pinar Saygin, Thierry Chaminade, Hiroshi Ishiguro, Jon Driver, and Chris Frith. 2012. The 

thing that should not be: Predictive coding and the uncanny valley in perceiving human and 

humanoid robot actions. Social Cognitive and Affective Neuroscience, 7, 4 (Apr. 2011), 413–
422. https://doi.org/10.1093/scan/nsr025 

 

Sebastian Schindler, Eduard Zell, Mario Botsch, and Johanna Kissler. 2017. Differential effects of 

face-realism and emotion on event-related brain potentials and their implications for the 

uncanny valley theory. Scientific Reports, 7 (Mar. 2017), 45003. 

https://doi.org/10.1038/srep45003 

Edward Schneider, Yifan Wang, and Shanshan Yang. 2009. Exploring the uncanny valley with 

Japanese video game characters. In B. Akira (Ed.), Proceedings of the Digital Games Research 

Association (DiGRA): Situated Play (Oct. 2017), pp. 546–549. 

Jordan Schoenherr and Tyler J. Burleigh. 2015. Uncanny sociocultural categories. Frontiers in 

Psychology, 5 (Jan. 2015), 1456. https://doi.org/10.3389/fpsyg.2014.01456 

Valentin Schwind, Pascal Knierim, Cagri Tasci, Patrick Franczak, Nico Haas, and Niels Henze. 

Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, May 2017, 

Pages 1577–1582. https://doi.org/10.1145/3025453.3025602 

Valentin Schwind, Katharina Leicht, Solveigh Jäger, Katrin Wolf, and Niels Henze. 2018. Is there 

an uncanny valley of virtual animals? A quantitative and qualitative 

https://doi.org/10.3389/fpsyg.2018.00774
https://psycnet.apa.org/doi/10.1016/j.chb.2014.03.066
https://psycnet.apa.org/doi/10.1523/JNEUROSCI.2956-18.2019
https://psycnet.apa.org/doi/10.3389/fpsyg.2017.01792
https://doi.org/10.1093/scan/nsr025
https://www.aminer.cn/pub/53e9bbbbb7602d9704804776/exploring-the-uncanny-valley-with-japanese-video-game-characters
https://www.aminer.cn/pub/53e9bbbbb7602d9704804776/exploring-the-uncanny-valley-with-japanese-video-game-characters
https://doi.org/10.3389/fpsyg.2014.01456
https://doi.org/10.1145/3025453.3025602


 38 

investigation. International Journal of Human-Computer Studies, 111 (Mar. 2018), 49–61. 

https://doi.org/10.1016/j.ijhcs.2017.11.003 

Jun’ichiro Seyama and Ruth S. Nagayama. 2007. The uncanny valley: Effect of realism on the 

impression of artificial human faces. Presence: Teleoperators and Virtual Environments, 16 

(Aug. 2007), 337–351. https://doi.org/10.1162/pres.16.4.337 

Mincheol Shin, Se Jung Kim, and Frank Biocca. 2019. The uncanny valley: No need for any further 

judgments when an avatar looks eerie. Computers in Human Behavior, 94 (May 2019), 100–
109. https://doi.org/10.1016/j.chb.2019.01.016 

Mincheol Shin, Stephen W. Song, and Tamara M. Chock. 2019. Uncanny valley effects on 

friendship decisions in virtual social networking service. Cyberpsychology, Behavior, and 

Social Networking. Advance online publication (Nov. 2019). 

https://doi.org/10.1089/cyber.2019.0122 

Jacqueline C. Snow, Rafal M. Skiba, Taylor L. Coleman, and Marian E. Berryhill. 2014. Real-

world objects are more memorable than photographs of objects. Frontiers in Human 

Neuroscience, 8, 837. https://doi.org/10.3389/fnhum.2014.00837 

Shawn A. Steckenfinger and Asif A. Ghazanfar. 2009. Monkey visual behavior falls into the 

uncanny valley. Proceedings of the National Academy of Sciences of the United States of 

America (PNAS), 106, 43 (Oct. 2009), 18362–18366. 

https://doi.org/10.1073/pnas.0910063106 

Jan-Philipp Stein and Peter Ohler. 2017. Venturing into the uncanny valley of mind—The influence 

of mind attribution on the acceptance of human-like characters in a virtual reality 

setting. Cognition, 160 (Mar. 2017), 43–50. https://doi.org/10.1016/j.cognition.2016.12.010 

Jan-Philipp Stein and Peter Ohler. 2018. Uncanny...but convincing? Inconsistency between a 

virtual agent’s facial proportions and vocal realism reduces its credibility and attractiveness, 
but not its persuasive success. Interacting With Computers, 30 (Nov. 2018), 480–491. 

https://doi.org/10.1093/iwc/iwy023  

Megan K. Strait, Victoria A. Floerke, Wendy Ju, Keith Maddox, Jessica D. Remédios, Malte F. 

Jung, and Heather L. Urry. 2017. Understanding the uncanny: Both atypical features and 

category ambiguity provoke aversion toward humanlike robots. Frontiers in Psychology, 8 

(Aug. 2017), 1366. https://doi.org/10.3389/fpsyg.2017.01366 

Megan Strait and Matthias Scheutz. 2014. Measuring users’ responses to humans, robots, and 
human-like robots with functional near infrared spectroscopy. The 23rd IEEE International 

Symposium on Robot and Human Interactive Communication (Aug. 2014), 1128–1133. 

https://doi.org/10.1145/2702123.2702415 

Megan Strait, M., Lara Vujovic, Victoria Floerke, Matthias Scheutz, and Heather L. Urry. 2015. 

Too much humanness for human–robot interaction: Exposure to highly humanlike robots elicits 

aversive responding in observers. Proceedings of the 33rd Annual ACM Conference on Human 

Factors in Computing Systems (Apr. 2015), 3593–3602. Seoul, Republic of Korea. 

https://doi.org/10.1145/2702123.2702415 

https://doi.org/10.1016/j.ijhcs.2017.11.003
https://doi.org/10.1162/pres.16.4.337
https://psycnet.apa.org/doi/10.1016/j.chb.2019.01.016
https://doi.org/10.1089/cyber.2019.0122
https://doi.org/10.3389/fnhum.2014.00837
https://doi.org/10.1073/pnas.0910063106
https://doi.org/10.1016/j.cognition.2016.12.010
https://doi.org/10.1093/iwc/iwy023
https://doi.org/10.3389/fpsyg.2017.01366
https://doi.org/10.1145/2702123.2702415
https://doi.org/10.1145/2702123.2702415


 39 

Megan Strait, Heather L. Urry, and Paul Muentener. 2019. Children’s responding to humanlike 
agents reflects an uncanny valley. In Proceedings of the 14th ACM/IEEE International 

Conference on Human–Robot Interaction (Mar. 2019), pp. 506–515. 

https://doi.org/10.1109/HRI.2019.8673088  

Kohske Takahashi, Haruaki Fukuda, Kazuyuki Samejima, Katsumi Watanabe, and Kazuhiro Ueda. 

2015. Impact of stimulus uncanniness on speeded response. Frontiers in Psychology, 6 (May 

2015), 662. https://doi.org/10.3389/fpsyg.2015.00662 

James C. Thompson, J. Gregory Trafton, and Patrick McKnight. 2011. The perception of 

humanness from the movements of synthetic agents. Perception, 40, 6 (Jan. 2011), 695–704. 

https://doi.org/10.1068/p6900 

Angela Tinwell. 2009. Uncanny as usability obstacle. In A. Ant Ozok and Panayiotis Zaphiris 

(Eds.), Online Communities and Social Computing. Lecture Notes in Computer Science, vol. 

5621 (Jul. 2009). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02774-1_67 

Angela Tinwell and Mark N. Grimshaw. 2009. Survival horror games—An uncanny modality. 

Thinking After Dark, 23 (Apr. 2009). Retrieved from: http://ubir.bolton.ac.uk/id/eprint/235 

Angela Tinwell, Mark N. Grimshaw, and Deborah A. Nabi. 2015. The effect of onset asynchrony 

in audio-visual speech and the uncanny valley in virtual characters. International Journal of 

Mechanisms and Robotic Systems, 2, 2 (Apr. 2015), 97–110. 

https://doi.org/10.1504/IJMRS.2015.068991 

Angela Tinwell, Mark N. Grimshaw, and Deborah A. Nabi. 2014. The uncanny valley and 

nonverbal communication in virtual characters. In Theresa Jean Tanenbaum, Magy Seif el-

Nasr, & Michael Nixon (Eds.), Nonverbal Communication in Virtual Worlds: Understanding 

and Designing Expressive Characters (Jan. 2014), pp. 325–341. Carnegie Mellon University 

Press, Pittsburgh, PA. 

Angela Tinwell, Mark N. Grimshaw, Deborah A. Nabi, and Andrew Williams. 2011. Facial 

expression of emotion and perception of the uncanny valley in virtual characters. Computers 

in Human Behavior, 2 (Nov. 2010), 741–749. https://doi.org/10.1016/j.chb.2010.10.018 

Angela Tinwell, Deborah A. Nabi, and John P. Charlton. 2013. Perception of psychopathy and the 

uncanny valley in virtual characters. Computers in Human Behavior, 29, 4 (Mar. 2013), 1617–
1625. https://doi.org/10.1016/j.chb.2013.01.008 

Angela Tinwell and Robin J. S. Sloan. 2014. Children’s perception of uncanny human-like virtual 

characters. Computers in Human Behavior, 36 (May 2014), 286–296. 

https://doi.org/10.1016/j.chb.2014.03.073 

Fangwu Tung. 2016. Child perception of humanoid robot appearance and behavior. International 

Journal of Human–Computer Interaction, 32 (Apr. 2016), 493–502. 

https://doi.org/10.1080/10447318.2016.1172808 

Burcu A. Urgen, Marta Kutas,  & Ayse P. Saygin. 2018. Uncanny valley as a window into 

predictive processing in the social brain. Neuropsychologia, 114, 181–185. 

https://doi.org/10.1016/j.neuropsychologia.2018.04.027 

https://doi.org/10.1109/HRI.2019.8673088
https://doi.org/10.3389/fpsyg.2015.00662
https://doi.org/10.1068/p6900
https://doi.org/10.1007/978-3-642-02774-1_67
http://ubir.bolton.ac.uk/id/eprint/235
https://doi.org/10.1504/IJMRS.2015.068991
https://doi.org/10.1016/j.chb.2010.10.018
https://doi.org/10.1016/j.chb.2013.01.008
https://doi.org/10.1016/j.chb.2014.03.073
https://doi.org/10.1080/10447318.2016.1172808
https://doi.org/10.1016/j.neuropsychologia.2018.04.027


 40 

Patricia Valdez and Albert Mehrabian. 1994. Effects of color on emotions. Journal of Experimental 

Psychology: General, 123, 4 (Jul. 2015), 394–409. https://doi.org/10.1037/0096-

3445.123.4.394 

Wolfgang Viechtbauer and Mike W.-L. Cheung. 2010. Outlier and influence diagnostics for meta-

analysis. Research Synthesis Methods, 1, 2 (April/June 2010), 112–25.  

Shensheng Wang, Scott O. Lilienfeld, and Philippe Rochat. 2015. The uncanny valley: Existence 

and explanations. Review of General Psychology, 19 (Dec. 2015), 393–407. 

https://doi.org/10.1037/gpr0000056 

Shensheng Wang and Philippe Rochat. 2017. Human perception of animacy in light of the uncanny 

valley phenomenon. Perception, 46, 12 (Dec. 2017), 1386–1411. 

https://doi.org/10.1177/0301006617722742 

Shensheng Wang, Yuk F. Cheong, Daniel D. Dilks. and Philippe Rochat. 2020. The uncanny valley 

phenomenon and the temporal dynamics of face animacy perception. Perception, 49(2020), 

1069–1089. https://doi.org/10.1177/0301006620952611 

Patrick P. Weis and Eva Wiese. 2017. Cognitive conflict as possible origin of the uncanny valley. 

Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 61 (Sep. 2017), 

1599–1603. https://doi.org/10.1177/1541931213601763 

Megan T. Wyman, Benjamin D. Charlton, Yann Locatelli, and David Reby. 2011. Variability of 

female responses to conspecific vs. heterospecific male mating calls in polygynous deer: An 

open door to hybridization? PLOS One, 6, 8 (Aug. 2011). 

https://doi.org/10.1371/journal.pone.0023296 

Yuki Yamada, Takahiro Kawabe, and Keiko Ihaya. 2013. Categorization difficulty is associated 

with negative evaluation in the “uncanny valley” phenomenon. Japanese Psychological 

Research, 55, 1 (Aug. 2011), 20–32. https://doi.org/10.1111/j.1468-5884.2012.00538.x 

Joachim von Zitzewitz, Patrick M. Boesch, Peter Wolf, and Robert Riener. 2013. Quantifying the 

human likeness of a humanoid robot. International Journal of Social Robotics, 5 (Jan. 2013), 

263–276. https://doi.org/10.1007/s12369-012-0177-4 

Angela Tinwell. 2009. Uncanny as usability obstacle. In A. Ant Ozok and Panayiotis Zaphiris 

(Eds.), Online Communities and Social Computing. Lecture Notes in Computer Science, vol. 

5621 (Jul. 2009). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02774-1_67 

Eduard Zell, Carlos Aliaga, Adrian Jarabo, Katja Zibrek, Diego Gutierrez, Rachel McDonnell, and 

Mario Botsch. 2015. To stylize or not to stylize? The effect of shape and material stylization 

on the perception of computer-generated faces. ACM Transactions on Graphics, 34, 6 (Nov., 

2015), 184, 1–12. https://doi.org/10.1145/2816795.2818126 

Jie Zhang, Shuo Li, Jing-Yu Zhang, Feng Du, Yue Qi, and Xun Liu. 2020. A literature review of 

the research on the uncanny valley. In Rau, P. L. (Ed.), Cross-Cultural Design: User 

Experience of Products, Services, and Intelligent Environments. Lecture Notes in Computer 

Science, vol. 12192 (July 2020). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-

030-49788-0_19 

https://doi.org/10.1037/0096-3445.123.4.394
https://doi.org/10.1037/0096-3445.123.4.394
https://doi.org/10.1037%2Fgpr0000056
https://doi.org/10.1177/0301006617722742
https://doi.org/10.1177/0301006620952611
https://doi.org/10.1177%2F1541931213601763
https://doi.org/10.1371/journal.pone.0023296
https://doi.org/10.1111/j.1468-5884.2012.00538.x
https://doi.org/10.1007/s12369-012-0177-4
https://doi.org/10.1007/978-3-642-02774-1_67
https://doi.org/10.1145/2816795.2818126
https://doi.org/10.1007/978-3-030-49788-0_19
https://doi.org/10.1007/978-3-030-49788-0_19


 41 

Jakub A. Złotowski, Hidenobu Sumioka, Shuichi Nishio, Dylan F. Glas, Christoph Bartneck, and 

Hiroshi Ishiguro. 2015. Persistence of the uncanny valley: The influence of repeated 

interactions and a robot’s attitude on its perception. Frontiers in Psychology, 6 (Jun. 2015), 

883. https://doi.org/10.3389/fpsyg.2015.00883 

  

https://doi.org/10.3389/fpsyg.2015.00883


 42 

A.  APPENDIX 

Table A1. Indices and Cronbach’s α’s of UV studies. 

Authors (year) 

[study no.] 

Indices: separate scales UV effect 

significance? 

Cronbach’s α 
per condition 

Stimulus 

creation 

technique 

Bartneck et al. 

(2009a) 

Likability: awful–nice, 

unfriendly–friendly, unkind–
kind, and unpleasant–
pleasant 

No .92, .88, .84 Real-life 

encounter 

Destephe et al. 

(2015) 

Eeriness: eerie–reassuring, 

freaky–numbing, 

supernatural–ordinary, spine-

tingling–uninspiring, 

thrilling–boring, mortal–
predictable, uncanny–bland, 

and hair-raising–unemotional 

Yes .85 Motion 

manipulation 

Ho & 

MacDorman 

(2017) 

Eeriness: dull–freaky, 

predictable–eerie, plain–
weird, ordinary–supernatural, 

boring–shocking, 

uninspiring–spine-tingling, 

predictable–thrilling, bland–
uncanny, and unemotional–
hair-raising 

Yes .86 Distinct 

entities 

Ho & 

MacDorman 

(2010) 

Eeriness: reassuring–eerie, 

numbing–freaky, ordinary–
supernatural, and 

uninspiring–spine-tingling 

Yes .74 Distinct 

entities 

 Warmth: cold-hearted–
warm-hearted, hostile–
friendly, spiteful–well-

intentioned, ill-tempered–
good-natured, and grumpy–
cheerful 

Yes .88  

Kätsyri, 

Mäkäräinen, & 

Takala (2017) 

Likable: likable, aesthetic, 

and pleasant 

No .90 Distinct 

entities 

Eerie: eerie and unsettling No .70  
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Eerie: eerie, unsettling, and 

strange 

No .64  

Lischetzke et 

al. (2017) 

Index: creepy, eerie, and 

uncanny 

Yes .92 Morphing 

MacDorman & 

Chattopadhyay 

(2016) 

Eeriness: ordinary–creepy, 

plain–weird, and 

predictable–eerie 

No N.A. Realism render 

 Warmth: cold-hearted–
warm-hearted, hostile–
friendly, and grumpy–
cheerful 

No N.A.  

Mitchell et al. 

(2011b) 

Eeriness (see Ho & 

MacDorman, 2010) 

Yes .70 Visuo-auditory 

mismatch 

 Warmth (see Ho & 

MacDorman, 2010) 

Yes .88  

Rosenthal–von 

der Pütten & 

Krämer (2014) 

Threatening: threatening, 

eerie, uncanny, dominant, 

and harmless 

Maybe .89 Distinct 

entities 

 Likable: pleasant, likable, 

attractive, familiar, natural, 

and intelligent 

Maybe .83  

 Submissive: incompetent, 

weak, and submissive 

No .66  

 Unfamiliar: strange and 

unfamiliar 

No .67  

Schwind et al. 

(2018) 

Familiarity: uncanny–
familiar and freaky–numbing 

Yes N.A. Distinct 

entities (cats) 

 Aesthetics: ugly–beautiful 

and unaesthetic–aesthetic 

Yes N.A.  

Shin, Kim, & 

Biocca (2019) 

Eeriness: reassuring–eerie, 

numbing–freaky, and 

ordinary–supernatural 

Yes .76 Realism render 

Stein & Ohler 

(2018) 

Eeriness (n.a.) Yes .74 Emotion 

manipulation, 

face distortion, 

realism render, 

visuo-auditory 

mismatch 
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Tinwell et al. 

(2013) 

Uncanniness: eerie, 

nonhumanlike, repulsive, 

unattractive, unlikable, and 

unresponsive 

Yes .74, .80, .80 Emotion 

manipulation 

Tung (2016) 

[1][2] 

Social attraction: friendly, 

likable, and pleasant 

Yes [1] 

No [2] 

≥ .70 Distinct 

entities 

Zlotowski et 

al. (2015) 

Eeriness (n.a.) Yes .62 (lowest of 

three 

measurements) 

Real-life 

encounter 

Note. Eeriness and Warmth denote the indices developed by Ho and MacDorman (2010, 

2017) and their derivations. We did not find studies with information on correlations 

between individual scale items. 

Table A2. Summary and evaluation of stimulus creation 

techniques. 

Stimulus 

creation 

technique 

Exemplar 

studies 

Advantages Disadvantages Further 

considerations 

Distinct entities Mathur et al., 

2020 

Rosenthal–von 

der Pütten & 

Krämer, 2014 

Relatively high 

ecological 

validity, 

variable 

stimulus 

control, easy 

access 

Confounding 

variables, no 

gradual range 

Additional control 

when selecting 

stimuli can 

decrease 

confounding 

variables 

Emotion 

manipulation 

Tinwell et al., 

2014 

Specific, 

controllable 

stimulus 

manipulation 

stimulus noise  

Face distortion Mäkäräinen et 

al., 2014 

MacDorman et 

al., (2009) 

Controllable 

stimulus 

manipulation, 

gradual range  

Stimulus noise Strength of 

distortion should 

have a sufficient 

range 
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Morphing Lischetzke et 

al., 2017 

Sasaki, Ihaya, & 

Yamada 

Controllable 

stimulus 

manipulation, 

gradual range 

Results depend on 

endpoint stimuli 

choice, stimulus 

noise 

Endpoint stimuli 

should be 

sufficiently 

distinct 

Mismatch Seyama & 

Nagayama, 

2007 

Controllable 

stimulus 

manipulation 

Stimulus noise, no 

gradual range 

Selection of 

mismatched 

features (e.g., 

eyes) 

Lack of research 

Motion 

manipulation 

Handzic & 

Reed, 2015 

  Lack of research 

Realism render McDonnell et 

al., 2012 

MacDorman & 

Chattopadhyay, 

2017 

Controllable 

stimulus 

manipulation 

Stimulus noise  

Real-life 

encounter 

Zlotowski et al., 

2015 

Bartneck, 

Kanda, 

Ishiguro, & 

Hagita, 2009 

High ecological 

validity for 

android science 

Low internal 

validity, difficult 

setup and stimulus 

acquisition 

Android/robotic 

and human 

counterpart stimuli 

should match 

Lack of research 

Visuo-auditory 

mismatch 

Mitchell et al., 

2011b 

  Lack of research 

Voice distortion Baird et al.,2018   Lack of research 
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