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Purpose: Supervised machine learning (ML) provides a compelling alternative 
to traditional model fitting for parameter mapping in quantitative MRI. The aim 
of this work is to demonstrate and quantify the effect of different training data 
distributions on the accuracy and precision of parameter estimates when super-
vised ML is used for fitting.
Methods: We fit a two- and three-compartment biophysical model to diffusion 
measurements from in-vivo human brain, as well as simulated diffusion data, 
using both traditional model fitting and supervised ML. For supervised ML, we 
train several artificial neural networks, as well as random forest regressors, on 
different distributions of ground truth parameters. We compare the accuracy 
and precision of parameter estimates obtained from the different estimation ap-
proaches using synthetic test data.
Results: When the distribution of parameter combinations in the training set 
matches those observed in healthy human data sets, we observe high precision, 
but inaccurate estimates for atypical parameter combinations. In contrast, when 
training data is sampled uniformly from the entire plausible parameter space, 
estimates tend to be more accurate for atypical parameter combinations but may 
have lower precision for typical parameter combinations.
Conclusion: This work highlights that estimation of model parameters using 
supervised ML depends strongly on the training-set distribution. We show that 
high precision obtained using ML may mask strong bias, and visual assessment 
of the parameter maps is not sufficient for evaluating the quality of the estimates.
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1  |   INTRODUCTION

Quantitative MRI (qMRI) aims to quantify inherent tissue 
properties, such as T1- and T2-relaxation times, proton den-
sity, magnetization transfer, susceptibility and diffusivity. 
Quantifying physical tissue features has many potential ben-
efits, such as ease of interpretation, reproducibility across 
imaging setup, and straightforward comparisons between 
measurements made at different times or across different 
populations.1 However, to quantify the tissue features of inter-
est, it is necessary to define a model linking those features to 
the measured MRI signal and fit it to appropriately collected 
data. For example, in diffusion MRI (dMRI), a rich arsenal 
of biophysical models, signal representations and acquisition 
strategies have been proposed to quantify several tissue prop-
erties, such as mean diffusivity, microscopic anisotropy, neu-
rite density, and dispersion.2,3 One of the key challenges in 
qMRI is estimating tissue features accurately, precisely and in 
a reproducible way, given a model and MRI data.

Conventionally, model fitting is performed voxel-
by-voxel using optimization techniques, often based on 
minimizing a non-linear objective function. However, as 
models become more complex, conventional fitting ap-
proaches become slow and prone to local minima, and the 
estimation performance degrades with decreasing amount 
of available data and signal-to-noise ratio (SNR). These 
drawbacks can hamper the widespread use of qMRI in 
clinically relevant applications.

Recently, machine learning (ML) has emerged as a prom-
ising tool for improving model fitting for qMRI. For example, 
ML methods based on artificial neural networks have been 
used to reduce estimation time of myelin water fraction in 
the brain4 and to estimate T1 and T2 in a fast and robust way 
using sparse data from magnetic resonance fingerprinting5; 
whereas ML methods based on convolutional neural network 
approaches have been developed to estimate susceptibility 
using a single subject orientation.6 In dMRI, ML has been 
used, for example, to bridge the gap between data-hungry 
imaging techniques and clinically feasible scans, for exam-
ple by reconstructing super-resolved maps from low spatial 
resolution data,7,8 or by estimating advanced diffusion-based 
metrics from sparse q-space acquisitions.9–11

Most ML methods used in qMRI are “supervised,” i.e., 
rely on learning patterns from large training data sets of 
known corresponding inputs and outputs. A key issue with 
supervised ML is that in the absence of balanced training 
data, ML models may learn biased mappings. There are 
compelling examples of this in healthcare technology, 
where racial12 and gender13 biases arise from imbalances 
in training data. The performance of supervised ML tools 
is therefore only as good as the data used to train them.

Recent works that leverage supervised ML for model 
parameter estimation in qMRI typically employ one of 

two training data distributions: (1) parameter combi-
nations obtained from traditional model fitting and the 
corresponding measured qMRI signals,4,6,9,11,14–17 or (2) 
parameters sampled uniformly from the entire plausible 
parameter space with simulated qMRI signals.5,18–24 While 
(1) uses parameter combinations directly estimated from 
the data so likely quantifies the model parameters with 
higher accuracy and precision for a given specific dataset, 
(2) supports choice of training data distribution, which 
may help improve generalizability and avoid problems 
arising from imbalance.

Here, extending preliminary results in Ref. 25, we focus 
on dMRI as an exemplar case representing wider model-
based qMRI and investigate the effect of training data dis-
tribution on microstructural parameter estimates. To this 
end, we quantify bias and variance in estimates throughout 
the parameter space of two simple dMRI models where the 
complexity of the estimation task and the dimensionality 
of the parameter space are low. Specifically, we use a sim-
ple two-compartment model based on the spherical mean 
technique (SMT),26,27 which has only two independent 
parameters, and a three-compartment extension of SMT 
that includes a free water compartment and has three inde-
pendent parameters. We estimate the parameters of these 
models using both traditional non-linear optimization and 
supervised ML trained on different distributions of ground 
truth parameters. We visualize how bias and variance man-
ifest throughout the parameter space, and how regions of 
high and low estimation performance depend on the distri-
bution and noise level of the training data.

2  |   METHODS

2.1  |  Data acquisition and pre-processing

After informed written consent, six healthy volunteers 
(ages  =  26.3  ±  1.5  y) were scanned on a 3T Siemens 
Prisma scanner using a 64-channel head coil. Ethical ap-
proval for the study was obtained from the UCL Research 
Ethics Committee. We acquired diffusion weighted im-
ages with b-values of [1000, 2000, 3500, 5000] s/mm2 and 
a total of 128 uniformly distributed gradient directions28 
with 32 gradient directions per b-value. We acquired 13 
b0 images with no diffusion weighting, including one b0 
image with reversed phase encoding. Measurement pa-
rameters include isotropic 2 mm resolution with acquisi-
tion matrix 128 × 128 × 70, partial Fourier imaging 0.75, 
TE  =  94  ms, TR  =  9.2  s and GRAPPA parallel imaging 
with acceleration factor 2. The SNR of the diffusion im-
ages was approximately 25 based on the b0 images and 
averaged across white and gray matter. Additionally, a 3D 
T1-weighted MPRAGE with 1  mm isotropic resolution 
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was acquired and segmented using FreeSurfer29 to iden-
tify white and gray matter regions in the brain.

To pre-process the diffusion data, we first removed 
Gibbs ringing artefacts.30 Using the FSL toolbox,31 we esti-
mated the susceptibility-induced off-resonance field with 
two b0 images with reversed phase encoding polarities32 
and corrected for susceptibility and eddy-current induced 
geometric distortions and subject motion.33 We created a 
binary mask to remove non-brain regions.34 Finally, we 
estimated the noise level in the diffusion data35 and cor-
rected for Rician noise bias.36

2.2  |  Biophysical models

2.2.1  |  2-compartment SMT

We use the two-compartment SMT model26,27 as a con-
venient example that consists of only two independent 
parameters, which makes visualization of the parameter 
space straightforward. This model assumes brain tissue 
consists of heterogeneously oriented cylindrical compart-
ments and the surrounding extra-cellular volume giving 
normalized signal 

where erf is the error function such that lim
x→0

erf (x) ∕x = 2∕� , 
S is the direction-averaged diffusion signal at a specific b-
value (b), S0 is the signal with no diffusion weighting, vcyl 
and vext are the cylindrical and extra-cellular volume frac-
tions, respectively, λcyl is the diffusivity parallel to cylindrical 
compartments, and �‖ext and 𝜆⊥ext are the parallel and perpen-
dicular extra-cellular diffusivities, respectively. The model 
assumes that within cylindrical compartments, perpendicu-
lar diffusivity is negligible, i.e., 𝜆⊥cyl = 0, that vcyl + vext = 1, 
and that the extra-cellular diffusivities may be approximated 
by a tortuosity approximation,37 whereby �‖ext = �cyl and 
𝜆
⊥

ext =
(
1 − vcyl

)
𝜆cyl. Thus, the model has two independent 

parameters: vcyl and λcyl.

2.2.2  |  Three-compartment SMT

To investigate a more complex estimation task, we extend 
the SMT model to include a free water compartment rep-
resenting cerebrospinal fluid (CSF): 

where vcsf is the volume fraction of CSF and λfree is the dif-
fusivity of free water, which is approximately 3 μm2/ms at 
body temperature. The model has three compartments, 
which satisfy vcyl + vext + vcsf = 1. As λfree is fixed and �‖ext, 
𝜆
⊥

ext are estimated as in the SMT model above, this model 
has three independent parameters, vcyl , vcsf and λcyl. We refer 
to this three-compartment model as 3-SMT and refer to the 
two-compartment model in Section 2.2.1. as 2-SMT.

2.3  |  Parameter estimation

We estimate the parameters of the biophysical models 
using two methods: (1) traditional model fitting via non-
linear least squares optimization (software available at 
https://github.com/ekade​n/smt) and (2) supervised ML 
consisting of artificial neural networks implemented 
using TensorFlow 2.0 (https://www.tenso​rflow.org) and 
random forest regressors implemented in Scikit-learn.38 
The following subsections detail the properties of the ML 
models, for which code is available upon request, and the 
training data.

2.3.1  |  Artificial neural network architecture

The inputs to the artificial neural networks are the 
direction-averaged and T2-normalized diffusion sig-
nals for the four b-values used: [S (b = 1000) ∕S0, 
S (b = 2000) ∕S0, S (b = 3500) ∕S0, S (b = 5000) ∕S0]. The 
networks consist of fully connected layers with recti-
fied linear unit (ReLU) activation functions. We in-
clude three fully connected layers (two hidden layers, 
output layer) for the artificial neural networks trained 
with noise and nine layers (eight hidden layers, output 
layer) for the artificial neural networks trained with-
out noise (ie, infinite SNR), as more learning capac-
ity is needed to map parameters to noise-free data, as 
we demonstrate in Supporting Information Figure S1, 
which is available online. Each hidden layer contains 
280 nodes to ensure that the model fitting is as good as 
possible and the comparison to traditional model fitting 
is fair. For training, we use a stochastic gradient de-
scent optimiser with learning rate = 0.001, momentum 
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0.9 and the mean squared error loss between the pre-
dicted and ground truth model parameter values. We 
used two batches with 218 samples per batch. To facili-
tate fair comparison between the different neural net-
works, each network was trained over 100 000 epochs, 
for which the neural networks show good convergence 
(Supporting Information Figure S2). The training time 
on a GPU was approximately 7  h for the three-layer 
networks and approximately 16  h for the nine-layer 
networks. Estimation performance is stable for differ-
ent network initializations, as shown in Supporting 
Information Figure S3.

To train the neural networks, we simulated the 
direction-averaged and T2-normalized diffusion signal, 
S∕S0, using Equation (1) or (2) for each b-value used in 
this work. Equations (1) and (2) provide one signal per 
b-value, whereas the in-vivo data has 32, one for each 
gradient direction. Here, we set all 32 measurements in 
the same b-shell to the same value. We then added noise 
from a Gaussian distribution with a fixed standard de-
viation (SD) corresponding to a specific SNR and com-
puted the average of the noised signals for each b-value. 
We implemented noise addition and direction-averaging 
as pre-processing layers in the neural network, as this 
ensures that a different instance of Gaussian noise is 
added at each epoch, which avoids overfitting to the 
noise. We trained neural networks with three different 
noise levels corresponding to SNR = [5, 25, ∞].

For the 2-SMT model, the neural network outputs are 
logit(vcyl) and logit(λcyl/λfree), where logit(x) = log(x) – 
log(1−x) and λfree is the diffusivity of free water, set to 3 
μm2/ms. The form of the outputs ensures that the param-
eter estimates lie within a biophysically plausible range, 
such that 0 ≤ vcyl ≤ 1 and 0 ≤ λcyl ≤ λfree. For the 3-SMT 
model, the network outputs are logit(vcyl + vcsf), logit(vcyl/
(vcyl + vcsf)) and logit(λcyl/λfree). This also ensures that vcyl 
+ vcsf ≤ 1.

2.3.2  |  Random forest regressor

We used the random forest regressors implemented in 
Scikit-learn38 with 200 trees and a maximum tree depth 
of 20, similarly to previous works.18,21 We added noise 
to the training data and computed the direction-average 
explicitly before training each random forest regressor. 
The inputs are the direction-averaged, T2-normalized sig-
nals, [S (b = 1000) ∕S0, S (b = 2000) ∕S0, S (b = 3500) ∕S0, 
S (b = 5000) ∕S0], whereas the outputs are logit(vcyl) and 
logit(λcyl/λfree) for the 2-SMT model and logit(vcyl + vcsf), 
logit(vcyl/(vcyl + vcsf)) and logit(λcyl/λfree) for the 3-SMT 
model.

2.3.3  |  Training data distributions

The ML models were trained on synthetic data simulated 
using the same set of b-values as in the in-vivo data de-
scribed in Section 2.1. For the 2-SMT model, 219 param-
eter combinations were drawn from the parameter space 
bounded by 0 ≤ vcyl ≤ 1 and 0 ≤ λcyl ≤ 3 μm2/ms, of which 
75% were used for training and 25% for validation. We 
drew samples from the following distributions for training: 

(i)	 Uniform distribution: vcyl drawn uniformly between 
[0, 1], and λcyl drawn uniformly between [0, 3] μm2/
ms. This distribution corresponds to one of the two 
approaches used in recent works that estimate tissue 
microstructure with supervised ML.

(ii)	 Healthy brain distribution: vcyl and λcyl sampled 
using parameter combinations obtained from tra-
ditional model fitting in five healthy subjects. We 
fit each of the five healthy data sets with traditional 
model fitting and pooled the resulting parameter 
combinations. The total number of parameter com-
binations was approximately 135  000, fewer than 
the 219 training data samples used in this work. To 
ensure that there were sufficient unique samples for 
training, we sampled proportionally to the density 
of the pooled parameter combinations. First, we 
computed the 2D histogram of available parameter 
combinations using 500 bins in both dimensions 
and used cubic interpolation to approximate the 
continuous density function d(vcyl, λcyl) throughout 
the vcyl − λcyl parameter space. We then performed 
rejection sampling by selecting a random sample d’ 
between the minimum and maximum of the den-
sity, as well as a random parameter combination 
vcyl’ and λcyl’. We computed d(vcyl’, λcyl’), and if d’ 
< d(vcyl’, λcyl’), the parameter combination was ac-
cepted, otherwise it was rejected. This distribution 
is an approximation of the second approach used in 
recent works, whereby ML models are trained on 
parameter combinations estimated via traditional 
model fitting and the corresponding measured sig-
nals. We make one necessary change which is to 
simulate the diffusion signals using Equation (1) 
instead of using the measured signals. This allows 
for increased flexibility in injecting noise into the 
training data.

(iii)	Mixed uniform and healthy brain distribution: half 
the samples drawn from (i) and half drawn from (ii).

To investigate extreme cases where we train on only 
white or gray matter parameter combinations, we test two 
further training data distributions: 
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(iv)	Healthy WM distribution: vcyl and λcyl sampled simi-
larly as in (ii), but for white matter (WM) voxels only, 
determined from the FreeSurfer29 segmentations.

(v)	 Healthy GM distribution: vcyl and λcyl sampled simi-
larly as in (ii), but for gray matter (GM) voxels only, 
determined from the FreeSurfer29 segmentations.

For the 3-SMT model, we drew 219 samples (of which 
75% were used for training and 25% for validation) from 
the plausible parameter space of this model, given by 0 ≤ 
λcyl ≤ 3 μm2/ms, 0 ≤ vcyl ≤ 1 and 0 ≤ vcsf ≤ 1, such that vcyl + 
vcsf ≤ 1. For this model, we drew samples from two differ-
ent distributions: 

(i)  Uniform distribution: λcyl was drawn uniformly between 
[0, 3] μm2/ms, whereas vcyl and vcsf were drawn uni-
formly on a two-simplex using a Dirichlet distribution.

(ii)	Healthy brain distribution: vcyl, vcsf and λcyl sampled 
using parameter combinations obtained from tradi-
tional model fitting in five healthy adult subjects, sam-
pled similarly as the healthy brain distribution in the 
2-SMT model.

Table 1 summarizes the ML estimators trained in this 
work and the names we use to refer to each estimator.

2.4  |  Test data

We tested the impact of the training strategy on four sets 
of test data. First, we use an in-vivo brain scan to com-
pare estimates from traditional model fitting and ML 
to test whether estimates are impacted by training data 
distribution. Second, to unpick estimation performance 
from the different estimators at different parameter 
combinations, we map bias and variance in estimates 
across the entire parameter space using synthetic data. 
Third, we test performance on various example abnor-
mal parameter combinations, motivated by potential 
pathological scenarios, to probe estimation accuracy 
for examples that are not well-represented in the train-
ing data. Finally, we simulate a lesion in a brain-like 
data set to investigate whether small abnormalities can 
be visually detected with the different estimators. We 
outline the data used for these four test cases in the fol-
lowing subsections.

2.4.1  |  In-vivo test data

We used the diffusion measurements of the sixth healthy 
volunteer that was not included in the training parameter 

pool used in distributions (ii)–(v) described in Section 2.3.3 
as a test set. The SNR of this data set was approximately 
25, and the images were pre-processed as described in 
Section 2.1.

2.4.2  |  Simulated data for different 
parameter combinations

We synthesized test data using Equations (1) and (2) for 
the 2-SMT and 3-SMT models, respectively, using the 
same set of b-values as in the in-vivo data described in 
Section 2.1. For the 2-SMT model, we chose 441 points on 
a 21 × 21 grid covering the parameter space, such that vcyl 
ranged from 0 to 1 at increments of 0.05, and λcyl ranged 
from 0 to 3 μm2/ms at increments of 0.15 μm2/ms. For 
each point on this grid, we synthesized 10 000 samples of 
the diffusion signals and added Gaussian noise. We cre-
ated three such data sets with SNR = [5, 25, ∞]. For each 
test set we used ML models trained with the correspond-
ing noise level to estimate parameters. For the 3-SMT 
model, we chose a total of 1617 points, such that vcyl and 
vcsf ranged from 0 to 1 at increments of 0.05 with vcyl + vcsf 
≤ 1, and λcyl ranged from 0.5 to 3 μm2/ms at increments of 
0.5 μm2/ms. We synthesized 10 000 samples of the diffu-
sion signals and added Gaussian noise with SNR = 25 for 
each test point.

2.4.3  |  Simulated abnormal parameter 
combinations

For the 2-SMT model, we synthesized the signals for four 
further parameter combinations representing different 
types of tissue abnormalities (Table 2). Abnormality 1 
is an extreme example where λcyl is very low, such as we 
might expect when macromolecules accumulate in tis-
sue. Abnormality 2 is an example where vcyl is very low, 
such as in extreme cases of chronic black holes in multi-
ple sclerosis.39 Abnormality 3 has slightly lower vcyl and 
λcyl than average WM in our data set (ages = 26.3 ± 1.5 
y), similar to normal white matter reported in a cohort 
of older subjects (ages = 41.7 ± 10 y).39 Abnormality 4 
also has lower vcyl and λcyl than average WM and exem-
plifies typical white matter lesions in multiple sclerosis 
reported in Ref. 40. We highlight that these abnormali-
ties are not exact representations of specific pathologies, 
which vary widely, but serve to demonstrate estimation 
performance in abnormal tissue configurations likely 
to arise in practice. For each combination, we synthe-
sized 10 000 samples and added Gaussian noise corre-
sponding to SNR = [5, 25].
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2.4.4  |  Simulated brain data with 
abnormality

We replaced a region of interest (ROI) in white matter of 
the 2-SMT parameter maps by the parameter combination 
of Abnormality 3. We then simulated diffusion signals to 
create a full synthetic brain-like data set. We added noise 
to the simulated signals corresponding to SNR = [5, 25].

3  |   RESULTS

3.1  |  In-vivo parameter maps

In Figure 1, we map in-vivo parameter estimates for the 2-
SMT model from traditional model fitting and differences 
for parameter maps obtained using Net-uniform-SNR25 
and Net-healthy-brain-SNR25. The maps demonstrate that 
different parameters are estimated with each model, sug-
gesting variation in the performance across the different 
methods. We show similar maps for estimates using Net-
mixed-SNR25, Net-healthy-WM-SNR25 and Net-healthy-
GM-SNR25 in Supporting Information Figure S4, which 
demonstrates that when we train only on parameter com-
binations typical in white matter, estimates in gray matter 
are substantially different from those obtained from tra-
ditional model fitting, and similarly vice versa. We show 
similar effects in estimates obtained using random forest 
regressors in Supporting Information Figure S5.

T A B L E  1   Summary of the ML models trained in this work indicating whether we used the artificial neural network or the random 
forest regressor, the training data distribution and noise levels used in each trained model

Estimator name ML model Training data distribution SNR of training data Model

Net-uniform-SNRINF Artificial neural network Uniform distribution ∞ 2-SMT

Net-uniform-SNR25 Artificial neural network Uniform distribution 25 2-SMT

Net-uniform-SNR5 Artificial neural network Uniform distribution 5 2-SMT

Net-healthy-brain-SNRINF Artificial neural network Healthy brain distribution ∞ 2-SMT

Net-healthy-brain-SNR25 Artificial neural network Healthy brain distribution 25 2-SMT

Net-healthy-brain-SNR5 Artificial neural network Healthy brain distribution 5 2-SMT

Net-healthy-WM-SNR25 Artificial neural network Healthy WM distribution 25 2-SMT

Net-healthy-GM-SNR25 Artificial neural network Healthy GM distribution 25 2-SMT

Net-mixed-SNR25 Artificial neural network Mixed uniform and healthy brain 
distribution

25 2-SMT

Net-mixed-SNR5 Artificial neural network Mixed uniform and healthy brain 
distribution

5 2-SMT

RF-uniform-SNRINF Random forest regressor Uniform distribution ∞ 2-SMT

RF-uniform-SNR25 Random forest regressor Uniform distribution 25 2-SMT

RF-uniform-SNR5 Random forest regressor Uniform distribution 5 2-SMT

RF-healthy-brain-SNRINF Random forest regressor Healthy brain distribution ∞ 2-SMT

RF-healthy-brain-SNR25 Random forest regressor Healthy brain distribution 25 2-SMT

RF-healthy-brain-SNR5 Random forest regressor Healthy brain distribution 5 2-SMT

RF-mixed-SNR25 Random forest regressor Mixed uniform and healthy brain 
distribution

25 2-SMT

Net-3SMT-uniform-SNR25 Artificial neural network Uniform distribution 25 3-SMT

Net-3SMT-healthy-brain-
SNR25

Artificial neural network Healthy brain distribution 25 3-SMT

RF-3SMT-uniform-SNR25 Random forest regressor Uniform distribution 25 3-SMT

RF-3SMT-healthy-brain-
SNR25

Random forest regressor Healthy brain distribution 25 3-SMT

Abbreviations: GM, gray matter; WM, white matter.

T A B L E  2   Specific parameter combinations chosen to illustrate 
performance in abnormal parameter combinations for the 2-SMT 
model

Parameter combination 
name vcyl

λcyl (μm2/
ms)

Abnormality 1 0.67 0.5

Abnormality 2 0.05 1.5

Abnormality 3 0.60 1.8

Abnormality 4 0.47 1.9
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3.2  |  Accuracy and precision using 
synthetic test data

Figure  2 maps bias in parameter estimation for differ-
ent combinations of vcyl and λcyl for the 2-SMT model 

for SNR = [5, 25] using the uniform and healthy brain 
training distributions. As SNR is reduced, bias in the pa-
rameter estimates increases for each estimation method, 
with traditional model fitting providing the lowest over-
all bias. Estimates obtained from the neural networks 

F I G U R E  1   (A) Uniform and healthy brain parameter distributions used to train the ML models for the two-compartment SMT model. 
(B) vcyl and λcyl parameter maps obtained from traditional model fitting. (C) The difference between parameter maps obtained from the 
neural networks and traditional model fitting. We indicate the mean absolute error (MAE) between estimates from the neural networks and 
traditional model fitting for white and gray matter regions
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trained on the healthy brain distribution have higher 
overall bias compared to the neural networks trained on 
the uniform distribution, and bias is consistently high 
in the low vcyl and high λcyl region where the training 
data has low density. Interestingly, certain regions of the 
parameter space act as ‘sinks’, towards which estimates 
of nearby parameters are biased. The location of these 
sinks depends on both the training data distribution and 
the noise level. For example, in the networks trained on 
in-vivo parameter combinations a sink forms near the 
highest training data density region. For each fitting ap-
proach, biases are high when λcyl = 0, as the biophysical 
model is degenerate when there is no diffusion. The pull 
of the sinks becomes stronger as the SNR is reduced, but 
interestingly for the healthy brain distribution, sinks ap-
pear even when the training and testing data is noise-
free (Supporting Information Figure S6). For estimators 
trained on healthy white and gray matter parameter 
combinations, even stronger biases manifest (Supporting 
Information Figure  S7). We obtained similar results 

using random forest regressors (Supporting Information 
Figure S8).

In Figure 3, we illustrate biases for the 3-SMT model 
trained and tested on data with SNR = 25 using traditional 
model fitting, Net-3SMT-uniform-SNR25 and Net-3SMT-
healthy-brain-SNR25 across the vcyl − vcsf plane for two 
different values of λcyl (the full set of tested λcyl are shown 
in Supporting Information Figure S9 and S10 for the neu-
ral networks and random forest regressors, respectively). 
Biases in vcyl and vcsf are marked with arrows that point 
from the ground truth to the estimates, whereas the colour 
of the arrows marks biases in λcyl. Figure 3 demonstrates 
that for a more complex model, biases are substantially 
higher throughout the parameter space, even for data with 
reasonable SNR. In particular, complex biases manifest for 
Net-3SMT-healthy-brain-SNR25, where the arrows mark-
ing biases in vcyl − vcsf may overlap.

Figure 4 shows SDs in the 2-SMT vcyl and λcyl estimates 
obtained from traditional model fitting and from the neu-
ral networks for SNR = [5, 25] (for SDs for infinite SNR 

F I G U R E  2   Bias mapped using quiver plots for traditional model fitting (A), neural networks trained using the uniform distribution 
(B), and neural networks trained using the healthy brain distribution (C). The arrows point from the ground truth values to the mean of 
the estimated values. In column (C), the red contours show the training data density. Each row shows the biases at different values of SNR, 
according to which Gaussian noise was added to both the training data and test data
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see Supporting Information Figure  S11). Parameters are 
estimated precisely using all three methods when the 
training and test data are noise-free. As SNR is reduced, 
the precision of the parameter estimates from traditional 
model fitting degrades more than using the artificial neu-
ral networks. We obtained similar results using random 
forest regressors (see Supporting Information Figure S12) 
and we summarize the overall RMSE, bias, and SD using 
the different 2-SMT parameter estimation methods when 
SNR = 25 in Table 3. For the 3-SMT model, Supporting 
Information Figures S13 (neural networks) and S14 (ran-
dom forest) reveal that precision is high for the ML esti-
mators, even for the more complex model.

In Figure  5, we probe estimation performance in the 
2-SMT model for the specific parameter combinations 
representing tissue abnormalities. When SNR  =  25, 
Abnormality 1 is estimated inaccurately with the ML mod-
els and in particular with Net-healthy-brain-SNR25, and 
with low precision for the other methods. Abnormalities 
2–4 are estimated with high precision with all the methods, 
but for Abnormality 3, estimates are slightly inaccurate for 
Net-mixed-SNR25 and Net-healthy-brain-SNR25, whereas 
for Abnormality 4, estimates are slightly inaccurate for 

Net-uniform-SNR25. When SNR  =  5, all three ML esti-
mators substantially over-estimate λcyl in Abnormalities 2 
and 3. Importantly, in Abnormality 3, this over-estimation 
pushes parameter estimates closer to typical white mat-
ter parameter combinations, making it difficult to dis-
tinguish the abnormality from healthy white matter. In 
Abnormality 4, estimates are more accurate, and strong 
bias is only apparent in λcyl as estimated by Net-uniform-
SNR5, suggesting that not all abnormalities are equally 
affected. Parameter estimates obtained from traditional 
fitting remain remarkably accurate across the abnormal-
ities but have substantially lower precision compared to 
ML estimates.

Figure 6 highlights visually the potential for high bias 
and low variance in parameter estimates to obscure le-
sions such as Abnormality 3. When SNR = 25, estimates 
are accurate and precise for all estimators. Contrarily, 
when SNR  =  5, estimates from traditional model fitting 
are noisy throughout the brain, whereas estimates from 
ML are strongly biased but smooth, particularly for Net-
mixed-SNR5 and Net-healthy-brain-SNR5. The lesion is 
obscured for both traditional fitting and ML at low SNR, 
but for ML, poor estimation performance is not visually 

F I G U R E  3   Bias mapped using quiver plots for the 3-SMT model. We compare biases for traditional model fitting (A), neural networks 
trained using the uniform distribution (B), and neural networks trained using the healthy brain distribution (C). Arrows indicate biases in 
vcyl and vcsf, whereas the colours indicate bias in λcyl. The two rows show biases at two different diffusivities (further diffusivities shown in 
Figure S8). The SNR in both the training and test data was 25
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obvious unlike in traditional model fitting, making the 
inaccurate parameter estimates appear convincing. We 
show similar results to Figures 4 and 5 for random forest 
regressors in Supporting Information Figures S15 and S16, 
respectively.

4  |   DISCUSSION

This work highlights two key properties of supervised 
ML-based fitting techniques, which differ from traditional 
model fitting. First, we show that parameter estimates are 

F I G U R E  4   Standard deviation (SD) in vcyl and λcyl estimates using traditional model fitting (A), neural networks trained using the 
uniform distribution (B), and neural networks trained using the healthy brain distribution (C). SDs are shown for two different noise levels 
in both the training and test data sets
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significantly affected by the distribution of training data. 
Second, we demonstrate that smooth parameter maps ob-
tained via ML may be deceptive, as high precision may 
hide strong biases. This is in contrast with traditional 
fitting, where low reliability in estimates is typically re-
flected by noisy parameter maps. Although here we focus 
on dMRI, we expect similar results for other qMRI tech-
niques that use supervised ML methods for model fitting.

In Section 3.2. we focus on three different training data 
distributions: healthy parameter combinations obtained 
using traditional model fitting, uniformly distributed pa-
rameter combinations, and healthy parameter combina-
tions augmented with uniformly distributed parameter 
combinations. Recently, authors in Ref. 41 compared the 
fitting performance of the first two training strategies, and 
authors in Ref. 42 assessed the trade-off between accuracy 
and generalizability when combining them to analyze 
diffusion-relaxation data. Our results show that training 
on healthy parameter combinations facilitates precise esti-
mates in healthy tissue but may yield strong biases in atyp-
ical parameter combinations not represented in training. 
This bias is mitigated when healthy data are combined 
with atypical parameter combinations in training, in line 
with recent findings in Ref. 42. However, here we show 
that even when healthy training data is combined with 
atypical parameter combinations, and in fact even when 
the full parameter space is uniformly represented in the 
training data, supervised ML may still introduce substan-
tial biases that can hamper the clinical utility of qMRI 
techniques.

Parameter estimates obtained from traditional model 
fitting are overall more accurate than the estimates ob-
tained from the ML models at each noise level tested in 
this work. However, at low SNR, traditional fitting suffers 
from high variance, which manifests as noisy appearing 
parameter maps. Maps obtained using the ML estimators 
appear less noisy, which may mistakenly convince users 
that the estimates are reliable even at low SNR. In Figure 6 

we show that this apparent improvement can be mislead-
ing. Specifically, a small abnormality, linked for example 
to aging, may be obscured in ML estimates when SNR is 
low, even for the simple 2-SMT model. This issue is par-
ticularly pronounced for ML models trained on healthy 
parameter combinations, but maps obtained using the 
uniform distribution may also mislead users. We empha-
size that the abnormal parameter combinations we use 
to show these effects are not exact representations of any 
particular pathology but are designed to highlight that dif-
ferent bias effects may arise in different types of atypical 
tissue. We also show that biases may be exacerbated with 
more complex models such as the 3-SMT model, even 
though precision remains high with ML fitting.

We show results for two different ML estimators: artifi-
cial neural networks and random forest regressors. While 
we observe similar effects with both ML models, several 
differences also arise. For example, in regions of the pa-
rameter space that are not well represented in the training 
data, biases tend to be high in both cases, but the direction 
of the bias may be different. Additionally, in some regions 
of the parameter space, variance is higher for random for-
est than for neural network estimates. A possible reason 
for these discrepancies is the different noise handling in 
the two ML approaches. In the neural networks, noise is 
injected at every epoch, and hence each noise instance is 
unique, whereas for the random forest regressors noise is 
injected only once.

The analysis and visualization approaches proposed 
here (Figures 2–6) provide tools to quantify the expected 
impact of a chosen estimation strategy and to aid the inter-
pretation of resulting parameter estimates. For example, 
parameter estimates near ‘sinks’ in the bias quiver plots 
should be interpreted with caution, as these parameter 
combinations may mask substantial biases. The location 
and evolution of these sinks can inform future experimen-
tal design and training strategies optimized to mitigate 
their impact.

T A B L E  3   The mean RMSE, bias and standard deviation (SD) in vcyl and λcyl over the entire parameter space for the 2-compartment 
SMT estimation methods using SNR = 25

Estimation method
Mean vcyl 
RMSE

Mean λcyl RMSE 
(μm2/ms)

Mean vcyl 
bias

Mean λcyl bias 
(μm2/ms)

Mean vcyl 
SD

Mean λcyl SD 
(μm2/ms)

Traditional fitting 0.0883 0.1106 0.0313 0.0130 0.0742 0.1087

Net-uniform-SNR25 0.0642 0.1082 0.0338 0.0386 0.0449 0.0965

Net-healthy-brain-SNR25 0.1191 0.1386 0.1017 0.0724 0.0324 0.1030

Net-mixed-SNR25 0.0663 0.1116 0.0367 0.0404 0.0476 0.0975

RF-uniform-SNR25 0.0670 0.1109 0.0342 0.0400 0.0490 0.0980

RF-healthy-brain-SNR25 0.1209 0.1390 0.1008 0.0806 0.0358 0.0930

RF-mixed-SNR25 0.0683 0.1114 0.0340 0.0405 0.0529 0.0978

Note: Bold values highlight the lowest value in each column.
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Our findings highlight that training strategies for pa-
rameter estimation should not be used blindly and suggest 
that further consideration and development is required. 
For example, certain applications might be tolerant of bias 
as long as it is well-characterized as in Figures 2 and 3, 

but where accuracy is important perhaps the role of super-
vised ML may simply be to provide close starting points 
for iterative search that reduces overall computation time. 
Computing uncertainty in ML-based estimation, cf.,43 
may also help assess estimation reliability, particularly 

F I G U R E  5   (A) Different training data distributions: uniform data distribution, healthy brain distribution, and a mixed distribution 
where 50% of the samples are from the uniform distribution, and 50% of the samples are from the healthy brain distribution. We mark four 
atypical parameter combinations: Abnormality 1 with low λcyl exemplifying accumulation of macromolecules, Abnormality 2 exemplifying 
extreme cases of chronic black holes, Abnormality 3 exemplifying normal white matter in an older cohort, and Abnormality 4 exemplifying 
white matter lesions in multiple sclerosis. We also mark typical white matter (WM) and grey matter (GM) parameter combinations for 
reference. (B,C) Box plots of the estimates for the four using synthetic data with SNR = 25 and with SNR = 5, respectively. The dashed 
red line marks the ground truth, and for Abnormality 3, the black line marks average WM in our data set. Stars indicate where effect size 
comparing the distribution of estimates to the distribution of noised ground truth is medium or large, ie, the magnitude of Cohen's d > 0.5
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when ML is used to compensate for lower quality data. 
Training strategies that iteratively augment the training 
data distributions in regions of high bias may ameliorate 
the issues we raise. To avoid the impact of training data 
distribution altogether, unsupervised learning44 may be 
used as an alternative to supervised learning, but this may 
come at the expense of lower estimation accuracy, partic-
ularly in the presence of Rician noise.41 Future work will 
explore these ideas.

This work presents a limited case study of parame-
ter estimation in dMRI. We focus on two simple mod-
els, which represent a broader set of strategies that use 
direction-averaged signals and, hence, benefit from sim-
pler models that are less dependent on specific acqui-
sition protocols than strategies that use the raw signal. 
While such strategies are commonly used in the dMRI 
community, direction-averaging the diffusion signals 
likely results in loss of information. Future work might 
investigate whether richer, direction-sensitive data may 
reduce biases observed in this work. Our analysis was 
also limited to a single set of b-values, and different num-
bers and combinations of b-values would likely affect 

both the overall accuracy and the position of ‘sinks’ in 
the parameter space towards which nearby parameter 
combinations are biased. We chose simple ML archi-
tectures similar ones used in previous works. We inves-
tigated how estimation performance depends on, for 
example, network depth, but a detailed investigation of 
the impact of architecture and hyperparameter choice on 
parameter estimation remains future work. We removed 
the Rician noise floor from the in-vivo data and added 
Gaussian noise to the synthetic training and test data, 
as this simple strategy best avoids any concern that the 
issues we raise are specific to a particular noise profile. 
Rician noise and other noise-like behavior arising for ex-
ample from residual motion artefacts likely exacerbate 
the effects we observe here.

ML is a promising tool for enhancing medical imaging 
technology, where resources are often limited, and the po-
tential impact may be life changing. qMRI may benefit in 
particular, as advanced MRI acquisitions and subsequent 
model fitting may be time-consuming. However, work still 
needs to be done to mitigate biases and assess estimation 
reliability in order to use ML effectively.

F I G U R E  6   Parameter estimates for SNR = 25 (A) and SNR = 5 (B). The data sets used here were simulated using parameter values 
obtained from traditional fitting with Abnormality 3 applied to an ROI shown in the top row. Abnormality 3 is highlighted in the red box 
and shown in adjacent zoomed plots
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FIGURE S1 RMS errors in vcyl and λcyl estimates using dif-
ferent numbers of network layers when there is no noise in 
the training data (top) and when noise is added with SNR 
= 25 (bottom). In both cases, we used uniformly distrib-
uted parameter combinations to train the neural networks

FIGURE S2 Example loss curves for Net-uniform-
SNRINF showing that MSE in both the training and vali-
dation sets is decreasing, and hence the neural network is 
not overfitting within 100 000 epochs even when no noise 
is injected into the training data
FIGURE S3 Biases mapped for estimates obtained from 
three different versions of Net-uniform-SNR25. In each 
case the network was trained on the same data, but with 
different initialisation and batch-shuffling. Estimation 
performance appears largely stable across the networks
FIGURE S4 Panel (A): mixed, healthy WM and healthy 
GM parameter distributions for the 2-SMT model. Panel 
(B): maps from traditional model fitting. Panel (C): 
Difference between estimates obtained from the neural 
networks trained on parameter combinations shown in 
panel (A) and the parameter maps from traditional model 
fitting in panel (B)
FIGURE S5 Training data distributions for the 2-SMT 
model (panel A), maps from traditional fitting (panel B) 
and differences between estimates from random forest re-
gressors trained on the different parameter distributions 
(panel C)
FIGURE S6 Biases for the 2-SMT model when no noise is 
added to the training or testing data
FIGURE S7 Biases for the 2-SMT model for mixed, 
healthy WM and healthy GM distributions at different 
noise levels. The red contours show the data density for 
each of the underlying training data distributions
FIGURE S8 Biases mapped for the 2-SMT model obtained 
from the random forest regressors for all the tested train-
ing data distributions
FIGURE S9 Bias maps obtained for the 3-SMT model 
at all the tested values of λcyl using traditional model fit-
ting (A) and neural networks trained on uniform (B) and 
healthy brain (C) data distributions. Noise corresponding 
to SNR = 25 was added to both the training and test data
FIGURE S10 Bias maps obtained for the 3-SMT model at 
all the tested values of λcyl using random forest regressors 
trained on uniform (A) and healthy brain (B) data distri-
butions. Noise corresponding to SNR = 25 was added to 
both the training and test data
FIGURE S11 Standard deviation in vcyl and λcyl esti-
mates of the 2-SMT model for traditional fitting (A) and 
neural networks trained on uniform (B) and healthy 
brain (C) distributions when no noise is added to the 
training or testing data. We highlight the different scale 
in the colour bar compared to similar plots in Figure 4 
for noisy data
FIGURE S12 Standard deviation in vcyl and λcyl estimates 
of the 2-SMT model for random forest regressors trained 
on uniform (A) and healthy brain (B) distributions at dif-
ferent noise levels. We highlight the different scale in the 
colour bar for SNR = ∞ compared to SNR = [5, 25]
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FIGURE S13 Standard deviation in vcyl, vcsf and λcyl esti-
mates of the 3- SMT model for traditional fitting (A) and 
neural networks trained on uniform (B) and healthy brain 
(C) distributions when both the training and test data sets 
have SNR = 25
FIGURE S14 Standard deviation in vcyl, vcsf and λcyl esti-
mates of the 3- SMT model for random forest regressors 
trained on uniform (A) and healthy brain (B) distributions 
when both the training and test data sets have SNR = 25
FIGURE S15 Equivalent to results in Figure 5, but for 
random forest regressors instead of neural networks

FIGURE S16 Equivalent to results in Figure 6, but for ran-
dom forest regressors instead of neural networks
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