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Abstract: The smart grid (SG) offers potential benefits for utilities, electric generators, and customers
alike. However, the prevalence of cyber-attacks targeting the SG emphasizes its dark side. In
particular, distributed denial-of-service (DDoS) attacks can affect the communication of different
devices, interrupting the SG’s operation. This could have profound implications for the power
system, including area blackouts. The problem is that few operational technology tools provide
reflective DDoS protection. Furthermore, such tools often fail to classify the types of attacks that have
occurred. Defensive capabilities are necessary to identify the footprints of attacks in a timely manner,
as they occur, and to make these systems sustainable for delivery of the services as expected. To
meet this need for defensive capabilities, we developed a situational awareness tool to detect system
compromise by monitoring the indicators of compromise (IOCs) of amplification DDoS attacks. We
achieved this aim by finding IOCs and exploring attack footprints to understand the nature of such
attacks and their cyber behavior. Finally, an evaluation of our approach against a real dataset of DDoS
attack instances indicated that our tool can distinguish and detect different types of amplification
DDoS attacks.

Keywords: IOC; industrial control systems; DDoS; situational awareness; smart grid

1. Introduction

Increasingly, critical infrastructure systems—such as power systems—are being linked
to other enterprise systems. These range from the desire to gather real-time business
analytics, thus optimizing operations and increasing efficiency, to the necessity for remotely
updating and maintaining systems to minimize the effort and time required, as well as the
number of difficult-to-access locations. Therefore, the assumption that such a system is
air-gapped from perimeter networks is increasingly being disproven.

As experts continue to build increasingly complicated and massive linked systems,
the scale of connection and complexity of such systems will only expand—resulting in an
increase in the scale and impact of attacks. The incidence of cyber-attacks on the smart
grid (SG) has increased in recent years, and these attacks have in certain cases resulted
in outages and the theft of personal information [1]. For instance, cyber-attacks against
Ukraine’s power grids in 2015 led to a widespread power outage spanning several hours.
According to previous research [2,3], a cyber-attack on London’s power grid alone could
cost up to GBP 111 million per day, and even unsophisticated attacks on the energy network
would negatively impact 1.5 million people. With the increasing digitalization of the SG,
measures must be taken to ensure that it remains safe and secure. Since DDoS (distributed
denial-of-service) attacks are one of the most difficult types of attacks to prevent [4], we
chose to focus on them in this paper.

1.1. Context and Motivation

SG technology is controlled through a collection of communication networks, embed-
ded systems, computer resources, and software. This enables the smart grid system to
monitor, analyze, and maintain the efficiency, cost, reliability, and sustainability of power
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generation and distribution [3]. Therefore, it is essential to understand the risks associated
with the digital exchange between SG operations [5]. Vulnerabilities in the SG can allow
threat actors to penetrate the network, access control systems, and inflict significant harm
by altering the system’s operational commands. The DDoS attack causes a so-called dis-
tributed denial of service, which is designed to use multiple devices to target a server by
overwhelming the network with numerous requests. Essentially, this attack is one of the
easiest to perform and hardest to detect, which explains its popularity.

A DDoS attack can reduce the overall health of power systems, as some of these
systems are not designed to withstand this sort of attack. In some cases, it can cause
power-flow interruptions, and the control system can only be restored manually by the
operator. For the present work, we consider scenarios where DDoS attacks can be targeted
at SG infrastructure. More specifically, the experiments performed in this study focused
primarily on three types of DDoS attacks—DNS amplification, NTP amplification, and
SNMP attacks—all of which can devastate the SG network. The major problem with DDoS
detection is that it is difficult to distinguish between legitimate and DDoS traffic. To detect
and distinguish between the types of such attacks on the power infrastructure, the SG
network must be capable of monitoring the indicators of compromise (IOCs) to make the
detection signal robust and reliable.

1.2. Problem Statement

In the current world scenario, the SG enclaves were air-gapped. This means that
they were isolated from the network and were consequently no longer at risk of being
cyber-attacked. However, with the implementation of Internet of Things devices into the SG
system, vulnerabilities in these devices can disrupt the normal operation of the grid. DDoS
reflective attacks are becoming more dangerous due to increasing internet connectivity
speeds. To illustrate, such attacks may jeopardize the availability of metering data, in
turn jeopardizing the smooth functioning of advanced metering infrastructure back-end
systems that are in charge of invoicing and other grid-control functions. In such a case,
demand-side management will be severely obstructed, and grid activities, such as power
quality monitoring, will be profoundly affected [6].

Some tools provide security solutions for operational technology. However, since
reflective attacks are gaining popularity, most tools do not provide appropriate protection.
Specifically, we noticed a lack of protection options against DDoS reflective attacks in the SG
environment. In this paper, the main problem that is addressed is detecting amplification
DDoS attacks on the power system and explaining the attack to an operator, based on IOCs.

1.3. Our Contributions

Large businesses typically have a specialized team with professional training to nav-
igate these incidents. However, many medium-sized and most small businesses likely
do not have the funding required to form their own teams [7]. This gave rise to incident-
response tools. However, to employ the response tools, users must possess considerable
technical knowledge. Our main objective in this work, therefore, is to build an easy-to-use
tool to aid in DDoS incident response that requires as little technical knowledge as possible.
Our main contributions are as follows:

• Analyze the dataset to predict and understand the behavior of DDoS reflective attacks.
• Enable not only the detection of possible DDoS attacks but also effectively classify

different types of DDoS reflection-based attacks. This ability to classify DDoS attacks
can help incident responders to generate the best and most relevant response strategy
as quickly as possible.

• Develop a situational awareness tool to evaluate the effectiveness of our approach in
detecting an attack, identifying IOCs and suggesting countermeasures.

Perpetrators are not so considerate as to strike with one type of attack at a time.
Therefore, we aim to develop a tool that detects multiple types of attacks simultaneously.
The tool is intended to make the user understand what is happening in their network
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when it is being compromised. Consequently, the proposed tool should be able to provide
feedback to the operator and make recommendations for mitigating the impact of these
attacks in the future. At the end of the attack analysis, the operator might want to run
analytics or statistics on the data to understand the compromised state of the network,
which is why the tool should generate logs for further investigation.

2. Preliminaries and Related Works

This section explains the terms and context needed to understand this project’s scope,
including the constraints used to simplify the scope.

2.1. Preliminaries

Domain Name System (DNS). The DNS protocol allows the conversion of domain
names (e.g., example.com) into IP addresses. It works like a phonebook: the DNS protocol
registers IP addresses under domain names [8]. Any SCADA-connected device has an
IP address, allowing it to be monitored and controlled via the central DNS server. DNS
servers can be accessed to search for the IP address of a domain name, and traffic related
to the DNS usually travels through port 53. In terms of business demands, there is little
reason to allow DNS requests out of the control network to the corporate network.

Network Time Protocol (NTP). The NTP protocol synchronizes the time (often called
the true time) of many different computers and systems [9]. If a device is running concur-
rently in different locations, then it is desirable for the time to be the same on them all. The
NTP protocol operating over an existing Ethernet communication network can be used by
substation applications, such as SCADA or disturbance recorders, that require millisecond
timing accuracy [10]. Traffic related to NTP usually travels through port 123.

Simple Network Manager Protocol (SNMP). The SNMP is an application layer pro-
tocol used to send management information between network devices. SNMP is a well-
known protocol for managing and monitoring network components [11]. For example, in
ICS environments, SNMP connects a central management console to network devices such
as routers, printers, and PLCs. Even though SNMP is a very helpful service for maintaining
the ICS network, it is extremely insecure. The traffic related to SNMP typically travels
through port 161.

Botnet. A “botnet” is a network of computers linked for executing a specific activ-
ity [12]. In other words, a botnet is a collection of infected computers controlled by a single
attacker, referred to as the “bot-herder.” The bot-herder refers to each machine as a bot.

IP-Spoofing. IP-spoofing is the act of changing the source IP address from a packet.
The address is changed to conceal the identity of the attacker or impersonate another
system. The spoofing technique is used in DDoS attacks to redirect data to the victim. To
avoid this redirection, the spoofed packet’s origin should be compared to known anomalies
and rejected if it is suspicious [13].

Distributed Denial-of-Service (DDoS) Attack. The DDoS is a well-known cyber-
attack that targets availability and is intended to obstruct regular system operations. It is
popular because, despite its simplicity, a successful DoS attack can cause significant disrup-
tion. A DDoS attack approach may include a) flooding, which overloads a channel/device
with data, b) the exploitation of vulnerabilities in systems and protocols, or c) both. The
perpetrator of a DDoS attack needs a botnet under their control to launch their assault [14].
Therefore, the adversary commands the botnet to attack the victim’s server IP address so
that each bot sends requests to the server.

2.2. Related Works and Existing Tools

Cyber security threats in industrial environments are a relatively new phenomenon,
but some solutions have already been developed. A variety of defensive tools have been
designed to mitigate attacks in an ICS environment. Each has capabilities and limitations
according to market evolution and emerging threats. Table 1 summarizes some of the
well-known existing tools that detect attacks and perform incident responses against
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DDoS attacks in an ICS environment. The first solution is Forcepoint’s “Next-Generation
Firewall” [15], which provides visibility of the entire network and can be used against
most cyber-attacks. With this solution, however, the DDoS protection only covers flood
attacks, not amplification attacks. With the fast internet connections available today, an
amplification attack could significantly impact the system.

Table 1. Operational technology tools.

Tool Name Company Pros–Idea Cons–Limitations Impact on a System

Next-Generation
Firewall [15] Forcepoint

Provides good control
over the network and

helps with cyberattacks

DDoS protection does
not cover amplification

attacks
High

Tenable.ot [16] Tenable powered by
Indegy

Good visibility of all
incidents as they

happen

Does not specify if it
handles DDoS attacks Medium

Claroty Platform [17] Claroty
A comprehensive tool

that covers many
security aspects

Does not specify if it
handles DDoS attacks Medium

Tenable’s Tenable.ot [16] (powered by Indegy) also offers great visibility of all devices
in the industrial environment and a proactive approach for managing vulnerabilities.
Although the system delivers situational awareness across all sites and their respective
assets [16], it neither identifies the DDoS attack type nor describes the specific impacts
on the system. Claroty [17] is a comprehensive tool that can provide excellent protection
in almost all aspects of security (monitoring, visualization, and data collection. Some
researchers have, however, made refinements to DDoS attack detection. Table 2 describes
the existing detection methods, providing the research studies, advantages, disadvantages,
and gaps. The only work that detected the types of DDoS attacks was the one conducted
by Thomas et al. [18]. Not only does it improve detection rates by monitoring scanners
that indicate that an attack will happen, but it detects the protocol ports and identifies the
different types of attacks.

Table 2. DDoS detection methods.

Author, Year
Research Idea for
Detecting DDoS

Attacks
Pros Cons Impact Gap

Thomas et al., 2017 [18]
Monitor scanners before

attacks to predict and
prevent them

Research focuses on
amplification attacks,

has a very good
detection rate

– High –

Özer and İskefiyeli, 2017 [19]
Set the average number
of packets for real-time

detection

Many different types of
DDoS can be detected

No data on the type of
DDoS attack Medium Lack of attack

identification

Maheshwari et al., 2018 [20] Use MapReduce to
detect DDoS attacks

Fast detection and most
DDoS attacks are

detected

No data on the type of
DDoS attack Medium Lack of attack

identification

Yang et al.,2013 [21]

Use an IDS framework
to detect

man-in-the-middle
(MITM) and

denial-of-service (DoS)
attacks against

a practical
synchrophasor system

Ability to detect
zero-day attacks

Inability to detect
certain types of

attacks, such as packet
drop and injection and

GPS spoofing

High
Detection evaluation
against other DDoS

attacks is not discussed

Hussain,2020 [22] Use deep learning for
DDOS mitigation in 5G

Effective detection
process - Medium -

Khooi et al. [23]

Distribute mitigation
mechanism against

amplified
reflection DDoS attacks

Very good detection rate
The adoption of such a
system is cumbersome

and expensive
Medium Lack of evaluation on

real traces



Sustainability 2022, 14, 2730 5 of 18

Özer and İskefiyeli [19] performed deep packet analysis in real-time systems to detect
a DDoS attack. Firstly, their algorithm reads the packets and establishes a threshold value
for the number of packets received from the same address. The user can select what that
threshold is. When the number of packets is higher than average, the system flags it as a
DDoS. However, this detection algorithm does not differentiate one type of DDoS from
another, making attacks more difficult to prevent. Maheshwari et al. [20] identified that the
problem with DDoS identification is the speed at which the attacks are identified. This is
why they chose to use MapReduce; it allowed them to count the number of requests for
each source IP related to different protocols, such as HTTP, TCP, and ICMP, in each timeslot.
However, their method still does not identify the nature of the attack, and the validation
method used limited data.

Yang et al. [21] proposed a framework for detecting DDoS attacks in a synchrophasor
system, using protocol-based access control and network rules. Although the proposed
tool proved to be effective against known and unknown attacks, the detection system was
limited to IEEE C37.118 synchrophasor systems. Researchers have also utilized machine
learning capabilities, including Hussain et al. [22], who used it to develop a DDoS detection
system. The proposed method achieved 91% detection accuracy, based on deep convolu-
tional neural networks (CNNs) with real network data for 5G-enabled smart grids. Khooi
et al. [23] created a defense mechanism against amplified reflection DDoS attacks, called
DIDA (distributed in-network defense architecture). The authors proposed that the ISP
should replace the present access routers with stateful networking switches equipped with
DIDA. In the event of a suspected DDoS attack, ACLs would be used to block traffic near
the attacker. Claroty also provides alerts and actionable intelligence with recommended
mitigation to help optimize incident prioritization and response [24]. Nevertheless, this
solution does not specify anywhere what type of DDoS protection they offer.

The previous related works on DDoS detection techniques indicate that monitoring
IOC approaches is a good way to resolve issues. To ensure the smart grid’s long-term
sustainability, these approaches will be widely used. Nonetheless, these works were either
more specific when detecting the general type of DDoS attacks or were shown to misclassify
attacks. In contrast to these methods, our approach aims to gain a better insight into which
indicators are most relevant for distinguishing between the types of DDoS reflection-based
attacks.

3. System and Threat Models

This section illustrates system modeling in the SG and presents the threat model for
this work.

3.1. System Model

For any scenario in which this tool might be used, we consider two main actors:
operators and adversaries. During the normal operation of the SG, industrial devices send
data through the server back to the operators. If any action is required, the operators
send instructions to the control center via the server. If the utility server is faced with a
DDoS attack, the DDoS tool detects this and gives feedback to the operators. The operators
then need to act, based on this information, to mitigate the attack. Figure 1 overviews the
considered system model to show the flow of information between its different modules
and demonstrates how this information influences the SG’s operations.

Figure 2 comprehensively explains how the tool operates. When the tool is launched,
the user must import the network data capture that they want to analyze. The tool then
analyzes the data and detects whether any attacks have occurred.

If no attacks are detected, the tool goes on standby until the new data capture is
inputted. If attacks are detected, the tool displays the logs, IOC, and recommended actions
for each of the detected attacks. Finally, the generated logs and displayed indicators can
help the operator take suitable measures to maintain the power system’s secure and stable
operation. Analyzing data.
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Figure 1. A system model of the smart grid.

Figure 2. Information flow and the overall process.

3.2. Threat Model

Our threat model covers three types of DDoS attacks:

3.2.1. DNS Amplification Attack

Any SCADA-connected device has an IP address, such as the human–machine inter-
face (HMI), allowing it to be monitored and controlled by the central DNS infrastructure.
In a DNS amplification attack, we consider the scenario of an adversary compromising an
authoritative DNS server to mount such an attack [25]. The adversary can send UDP pack-
ets with forged IP addresses to a DNS resolver. The spoofed address on the packets is the
HMI’s actual IP address. Each of the UDP packets requests a DNS resolver, often passing
an argument such as “ANY” to receive the largest response possible. After receiving the
requests, the DNS resolver sends a large response to the HMI. The targeted system receives
the response, and the network becomes overwhelmed with the overflow of traffic, resulting
in disabling the alarms and notifications meant to alert operators about the health of the
power system.



Sustainability 2022, 14, 2730 7 of 18

3.2.2. NTP Amplification Attack

In the case of an SG, time synchronization is necessary to synchronize current and
voltage measurements from various devices in the distributed grid [26,27]. Distribution
and energy management systems (DEMSs) use precision time. Distribution management
systems (DMSs) rely on wide-area wireless synchronization for timestamping at the mo-
ment of sampling. Data from energy management systems (EMSs) are timestamped by
the server when they are synced to NTP at the time of receipt. In the NTP amplification
attack, we can assume that an attacker has gained initial access to the NTP server. The
attacker can mount an NTP reflection attack between the master nodes that receive packets
and the slave nodes in substations (e.g., intelligent electronic devices (IEDs). The attacker
uses a botnet to send UDP packets with spoofed IP addresses to an NTP server, using its
“monlist” command. The monlist command responds with the last 600 source IP addresses
of requests that have been made to the NTP server. The spoofed IP address on each packet
is the real IP address of the targeted system. Each UDP packet makes a request to the
NTP server using its monlist command, resulting in a massive response. The server then
responds to the spoofed address with the resulting data, the victim receives the response,
and the network becomes overwhelmed with the overflow of traffic [26].

3.2.3. SNMP Amplification Attack

Central management consoles for ICSs use SNMP to manage and maintain PLCs [28,29].
In an SNMP amplification attack, the attack begins when the attacker scans a network looking
for connected devices that can be used as amplification factors [29]. Adversaries can access
the controllers over SNMP. Operators can configure and monitor the status of PLCs over
SNMP. Therefore, we assume that the adversary exploits the SNMP server. Once the attacker
gains access, they scan the local devices and create a list of all the devices that respond.
The attacker then creates a UDP packet with the spoofed IP address of the targeted system.
They then use a botnet to send a spoofed packet to each networked device, requesting as
much data as possible by setting certain flags. As a result, each device sends a reply to the
targeted system, such as PLC, with an amount of data that is up to 600 times larger than
the attacker’s request [30]. The controller then receives a large volume of traffic from all the
devices and becomes overwhelmed. In the worst-case scenario, this attack can disrupt the
control commands transfer process to relays, potentially triggering cascading failures in power
systems and blackouts.

In our threat models, the adversary can be anyone capable of performing malicious
activities over an insecure network. The level of effort needed to mount DDoS attacks
depends, naturally, on knowledge of the communication network and power system topolo-
gies. We assume that the adversary can perform such attacks by gaining unauthorized
remote access to SG devices. Any compromised device in the grid can be exploited to
perpetuate an internal DDoS attack that overwhelms the service of multiple nodes simulta-
neously.

4. Our Approach

This section presents the experimental setup used to develop the proposed tool and
specification. It explains how the tool works, including its different features and functionalities.

4.1. Experiment Design

All experiments were performed using a system with the latest version of Windows
10 and a 64-bit OS running on an Intel Core i7-7500U CPU 2.30 GHz quad-core processor
with 8 GB of primary memory and 1 TB of secondary memory. The Python programming
language with the required modules (pandas, NumPy, CSV, Tkinter, etc.) was used to
conduct all experiments. The CSV library allowed us to manipulate CSV files with actions
such as asking to open, write and read multiple files at the same time. In our system, the
CVS module was used to read the inputted dataset by the user and to write the logs after
the tool performed the analysis.
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The Tkinter module was used to develop the tool’s interface. Tkinter is very flexible
when placing objects into the GUI, offering three different placement methods: pack, grid,
and place. The place method uses absolute values but, for compatibility reasons, it was
not used in our system. Consequently, the grid was used extensively for the layout of the
GUI. As the name implies, the grid method allows for the straightforward arrangement
of objects. The pack is the simplest of the three methods because it places objects on the
widget without requiring many parameters. The pack method was excellent for testing
new objects; they were included in the tool without difficulties with object placement.

4.2. Overall Execution

Figure 3 overviews the structure of the tool. When the tool starts, the user can import a
CSV file containing the particular dataset they want to analyze. After the data are acquired,
they are analyzed, and the DDoS detection algorithms are run. At this stage, if any of the
three attacks are detected, the IOC, logs, and recommended actions are displayed. This
information can guide operators in taking immediate action to mitigate the impact of the
attack on the power system. If no attacks are detected, the tool gives feedback informing
operators that there is no suspicious activity.

Figure 3. The proposed approach.

4.3. Overall Functionality

The developed tool provides the operator with an interface with which to monitor
whether the power system has been compromised. The tool also generates a report of
the presence of potential cyber-attacks to alert an operator immediately. This can help
an operator take appropriate actions to lessen the damage before it materializes into
more significant security issues. This subsection demonstrates the functionalities that the
proposed tool could implement.

4.3.1. Dataset Access and Processing

The program must fetch data once during execution. To begin, the open_file function
receives the CSV file in the import file directory from the local computer. The attack_check
function is called upon to open the data of the CSV, which is then analyzed by the detection
algorithms.

4.3.2. Analysing the Data

When the dataset is imported into our application, the analysis function begins reading
the CSV file, row by row. For each row, it performs checks to determine the algorithm
with which it should be analyzed. In this work, we considered three IOCs to analyze while
detecting DDoS attacks:

• Response Sizes. If response sizes are abnormally large, this could mean a DDoS attack
is happening.
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• Mismatch in Port-Application. If the data are being sent from unusual ports, a
malicious attack could be occurring.

• DDoS Activity. An IP address sending multiple packets in a short amount of time
could be an indicator of a DDoS attack.

If there are signs of an NTP attack during the analysis phase, the tool calls upon
Algorithm 1 for analysis. The signs of an NTP attack in a packet are as follows: the protocol
is UDP, the source port is 123, the packet is inbound, and the packet size is larger than 440.
If the algorithm identifies signs of a DNS attack (DDoS signs, port 53, and a packet size
larger than 1000), it calls upon Algorithm 2 for analysis. If it then shows signs of an SNMP
attack (DDoS signs, port 161, and a packet size larger than 1000), it calls upon Algorithm 3
for analysis.

Algorithm 1. NTP detection

1: Variable(s)
2: Suspicious IP list–counts how many times an IP is counted as suspicious
3: If the source IP is not known and the server is the target IP
4: NTP attack has been detected
5: If source IP is in suspicious IP list
6: Update counter by 1
7: Else
8: Add source IP to list and set counter to 1

Algorithm 2. DNS detection

1: Variable(s)
2: Suspicious IP list–counts how many times an IP is deemed suspicious
3: If the source IP is unknown and the server is the target IP
4: DNS attack has been detected
5: If the attack was not previously detected
6: In a suspicious IP list, update the counter for the source IP with the number of counts in the unidentified
attack
7: Else
8: If source IP is in suspicious IP list
9: Update counter by 1
10: Else
11: Add source IP to list and set counter to 1

Algorithm 3. SNMP detection

1: Variable(s)
2: Suspicious IP list–Counts how many times an IP is counted suspicious
3: If the source IP is not known and the server is the target IP
4: SNMP attack has been detected
5: If the attack was not previously detected
6: In a suspicious IP list, update the counter for the source IP by the number of counts in the unidentified attack
7: Else
8: If source IP is in suspicious IP list
9: Update counter by 1
10: Else
11: Add source IP to list and set counter to 1

If the system does not show signs of a particular attack, it calls upon Algorithm 4.
Algorithm 4 then uses packet size and the frequency of incoming packets to determine if a
group of packets belong to an NTP, DNS, or SNMP attack.

Algorithm 4. Identifying the DDoS attack type

1: If the packet is UDP, is inbound, the source IP is unknown, and the target is the server IP
2: If packet size is 440
3: See Algorithm 5
4: Else if packet size is bigger than 1000
5: If attack is unidentified
6: See Algorithm 5
7: Else if attack is identified as DNS
8: See Algorithm 5
9: Else if attack is identified as SNMP
10: See Algorithm 5
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Once the type of attack is identified, Algorithm 5 is called upon to detect such an
attack and provide a high-level explanation of the attack to an analyst.

Algorithm 5. Attack detection

1: Variable(s)
2: Suspicious IP list–Counts how many times an IP is counted suspicious
3: If the packet belongs to the ongoing attack
4: If five seconds have passed since the start
5: If the source IP was already in a suspicious IP list, add the number of packets in attack to list
6: Else
7: Add source IP to list with count set as the number of packets detected in the attack
8: Else
9: Set packet as the start of a new ongoing attack
10: Else
11: Set packet as the start of new ongoing attack

For all aforementioned attacks, if every source IP address sent packets from outside the
network or showed any signs of a DDoS attack, the packets were counted. These packets
were recorded to avoid counting any packets sent by the devices within the network, which
cannot cause a DDoS attack. Likewise, if a packet is considered to constitute an attack,
based on our attack analysis, then we log the suspicious IPs. In detection Algorithm 5,
we set the attack threshold to 5 s. Therefore, if the number of suspicious data exceeds the
detection threshold time, it is indicated that the IP address corresponding to the abnormal
data is making an attack attempt. Then, the attack decision engine will add that IP address
to the suspicions IPs list so that the operator can use it for further analysis.

4.3.3. IOC and Recommended Actions

For IOC detection, a list was created to highlight any rows showing signs of DDoS
activity, as illustrated in Figure 4.

Figure 4. Recommended actions, IOCs, and logs.

Depending on the size of the packet, the response sizes indicator is flagged during
the log generation. For the mismatch port-application indicator, if a suspicious IP address
sends packets from unknown/unusual ports (ports with numbers greater than 1023), these
packets are also flagged. The recommended actions for each attack are then displayed
depending on the specific attacks detected.

4.3.4. Logs Analysis

This feature was specifically designed for operators to comprehensively analyze infor-
mation, based on the different observations provided after attack analysis. The program
creates four files for each attack detected. The first three files each contain the data. with
indicators of response size, mismatch port-applications, and DDoS activity, respectively.
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The last contains all traffic from the suspicious IPs listed. This tool is available online at
https://github.com/CyCISlab/Incident-Response-Tool (Accessed 17th December 2021).

5. Results and Evaluation

This section describes the dataset used, the attacks that were considered, and why.
The findings on the three chosen attacks are evaluated and then compared. This includes a
comparison of the duration and number of packets sent by each attack.

5.1. Dataset

Investigating and implementing new solutions directly into the smart grid’s complex
infrastructure is time-consuming, tedious, and may involve unforeseen difficulties. Access
to SG operations data is further hampered by security and privacy concerns. To accom-
modate these issues, we used the dataset (2019) produced by the Canadian Institute for
Cybersecurity [31]. We chose this dataset for our work because it is currently one of the few
datasets that provide data on DDoS reflective attacks. Moreover, the dataset contains attacks
that can target SG security and that make it suitable for the study of SGs. The taxonomy of
attacks in the dataset was performed in terms of exploitation-based and reflection-based
attacks. DDoS attacks are considered to be both reflection- and exploitation-based. In
reflection-based DDoS attacks, the identity of the attacker remains hidden by utilizing a
legitimate third-party component to perform an attack that overwhelms the target. The
attackers create reflection by magnifying the malicious traffic and obscuring the source
of the attack traffic. In this category, attacks based on the transmission control protocol
(TCP) include a simple service discovery protocol (SSDP), while attacks based on the user
datagram protocol (UDP) include the network time protocol (NTP) and the trivial file
transfer protocol (TFTP). In exploitation-based attacks, the identity of the attacker remains
hidden by utilizing a legitimate third-party component and exploiting the protocols to
create a large volume for perpetrating attacks. Exploitation attacks based on the TCP
include the SYN flood, and UDP-based attacks include the UDP flood and UDP lag. UDP
flood attacks are initiated on the remote host by sending a large number of UDP packets.

The dataset was collected in two sets, one for training and one for testing the evalua-
tions. The first set contained 12 different types of DDoS attacks, separated into 12 different
attack types in a PCAP file. The training set included multiple types of attacks, such as
NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-Lag, WebDDoS, SYN, and
TFTP. However, the testing data was generated on 11 March 2019 and included seven DDoS
attack types: SYN, MSSQL, UDP-Lag, LDAP, UDP, PortScan, and NetBIOS.

The dataset contained naturalistic traffic, mixed with illegitimate traffic, to give a
realistic network traffic scenario during a DDoS attack. It offered data on many different
types of attacks ranging from reflection- to exploitation-based types. The dataset presented
the network captures in both pcap and CSV formats. In this work, we chose to analyze
DNS, NTP, and simple network management protocol (SNMP) reflective attacks due to
their prevalence. Figure 5 depicts the distribution of the attacks in the dataset.

https://github.com/CyCISlab/Incident-Response-Tool
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Figure 5. The distribution of attacks in the CICDDoS2019 dataset.

5.2. NTP Attack Evaluation

In the NTP detection method, each packet showing any sign of an NTP attack was
flagged for every source IP address that appeared in the dataset. The packets were flagged
if the source port was 123 or the packet size was 440, which is the typical length of a packet
in an NTP attack. In Figure 6, a visual inspection of traffic from the IP address 172.16.0.5
shows that the flow of traffic was excessive compared to other IP addresses.

Figure 6. The number of suspicious NTP packets sent.

Figure 7 displays the total number of inbound packets sent from different sources. To
identify the IOC from a mismatch in ports, the inbound packets of size 440 sent through
all source ports were counted. Most of these ports are not officially recognized and were
sending repeated packets showing the characteristics of DDoS activity. For example,
port number 634 was used repeatedly to transmit the packets, as Figure 8 illustrates.
Furthermore, the response size from these packets indicated an NTP attack. Attackers can
acquire a list of open NTP servers and it is fairly easy for them to generate a destructive
high-bandwidth and high-volume DDoS attack. Detection of this type of NTP attack
prevents the smart grid system from being targeted, as connections between computers
and NTP servers are rarely encrypted and there are possibilities that attackers can target
such critical systems to create wider disturbances and interruptions.
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Figure 7. Total of inbound packets sent from different sources.

Figure 8. The number of 440-sized inbound packets, shown by port, from the NTP attack.

5.3. DNS Attack Evaluation

A DNS amplification attack can only succeed by continuously requesting a record that
is routed to a spoofed return address. Figure 9 shows that, when evaluating the underlying
data associated with the DNS attack, the IP address 172.16.0.5 sent a large number of
packets. The periodicity and repetition of packets made the traffic definitively anomalous.

Figure 9. Total inbound packets sent from different sources during a DNS attack.
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Each packet showing any sign of a DNS attack was flagged. Consequently, the packets
were flagged if the source port was 53 or the packet size was greater than 1000 since large
packets are a sign of a reflective attack. Figure 10 illustrates the inbound packets sent by
the suspicious IP address.
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Figure 10. The number of suspicious DNS packets sent.

To check for mismatches in the ports, we counted all inbound packets sized greater
than 1000 that were sent through open ports. Figure 11 shows high volumes of traffic on
unusual ports, which pretended to be legitimate traffic. As a result, the packet indicated
a packet size typical of a DNS attack, which is another IOC corresponding to response
sizes. DNS amplification attacks are easy for attackers to carry out because there are several
publicly accessible DNS resolvers on the Internet. The detection of such attacks avoids
smart grid communication system destruction, which is paramount for critical systems.

Figure 11. The number of size-1000 inbound packets, shown by port in a DNS attack.

5.4. SNMP Attack Evaluation

We used the identified indicators discussed in Section 4 to evaluate and detect the
SNMP attack. Firstly, each packet sent through port number 161, or the packets sized greater
than 1000 were flagged because large packets are a sign of a reflective attack. Secondly,
the inbound packets with a size greater than 1000, sent through that port, were analyzed
to identify port-specific behavior. This was performed because non-standard port surges
could be a sign of false traffic masquerading as legitimate traffic. As Figure 12 illustrates,
the review of the ports’ connections showed signs of DDoS activities, which is another
IOC. Finally, the size of all captured packets was analyzed and evaluated to determine the
typical packet size of an SNMP attack, as displayed in Figure 13. Attackers can transmit
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spoofed SNMP “getbulk” requests to publicly accessible SNMP-enabled devices, triggering
responses more than 1700 times larger than the original requests. Vulnerable devices return
their SNMP responses to the victims on the same port, flooding their HTTP services. On
the safe side, legitimate SNMP traffic must not leave the enterprise network, to prevent
such attacks. The detection of such attacks helps the smart grid communication system
to maintain accurate network statistics, along with the managing and monitoring of the
network-connected devices.
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Figure 13. The number of size-1000 inbound packets by port from the SNMP attack.

Through these results, it was discovered that the relevant IOCs can be utilized to
successfully detect the attacks described in Section 3.2. This allows the forensic analyst to
construct a timeline of events and identify further indicators that will lead to attribution.
Further, it helps to identify the source of the attack and the impact the attack had upon the
targeted asset.

5.5. Computing Complexity Analysis

For time complexity, we proposed to inspect the traffic through individual flow anal-
ysis. Consequently, all detection algorithms had an equal number of inputs (flows) with
the same number of features. The approach, then, took O(m) time to detect DDoS attacks
for each number of flows within a sample, where m is the number of bits processed in the
messages. Although the main goal of our work involved classifying amplification DDoS
attacks and was not execution time, our proposed detection methods achieved a good level
of low computation complexity.
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5.6. Key Highlights and Discussion

After analyzing all attack results, traffic flow from only one IP address, 172.16.05, was
found to be malicious, as Figure 14 shows. Accordingly, this can generate many packets in
the flow.

Figure 14. The number of malicious packets in the CICDDoS2019 dataset for different DDoS attack types.

Comparing the number of malicious packets sent in each attack showed that more
packets are sent in an SNMP attack than in other attacks, at a rate of nearly 5 million
packets. In contrast, the attack that sent the fewest packets, NTP, did so at a rate of nearly
1.2 million packets. Moreover, each attack’s total number of packets revealed that the
SNMP attack sent the most packets per second: 8200. The DNS and NTP attacks sent 4700
and 1300 packets per second, respectively.

Table 3 summarizes the findings from our experiments. The attack that held the longest
streak was SNMP, which held for 495 s. The duration of a streak was based on how many
seconds passed with the attack remaining uninterrupted. The NTP attack came second,
with its longest streak being 190 s, and, at 70 s, the DNS attack had the shortest streak. The
duration of each attack was also analyzed, with the DNS attack showing the longest attack
duration. The DNS, NTP, and SNMP attacks lasted 994, 932, and 594 s, respectively.

Table 3. Attacks summary and patterns.

Attack No. of Total Packets Sent/Sec No. of Malicious Packets Sent Streak Duration/Sec Attack Duration/Sec

NTP 1300 ≈1.2 million 19 932
DNS 4700 ≈4.7 millions 70 994

SNMP 8200 ≈5 millions 495 594

6. Conclusions and Future Work

This paper presented and developed an approach (and a tool) that provides protection
against the amplification of DDoS attacks. We proposed a system architecture covering the
functional requirements and system modules, and we described the implementation of the
developed tool using Python. The results show that the developed tool successfully detects
any of the three DDoS attacks—NTP, DNS, and SNMP in the smart grid network—using
the IOCs associated with each attack. Based on the different observations provided after
attack detection, the operator ended up with recommended actions for mitigating the attack
and understanding how the attack was being performed. A limitation of our solution is
that it only takes pre-recorded network data captures as input. Consequently, the attack
would only be detected after it has already happened, at which point it may be too late to
act upon the findings. In addition, our tool cannot detect encrypted DDoS attacks. In such
cases, the tool will fail to analyze the encrypted packet header. Future work should involve
extending this approach and testing the developed tool on other types of DDoS attacks.



Sustainability 2022, 14, 2730 17 of 18

Further, we intend to improve our tool to automatically detect and respond to any IOCs
within the power system, thus reducing the response time by collecting data in real time.

Author Contributions: Conceptualization, N.S. and J.C.M.; methodology, N.S.; software, J.C.M.;
validation, N.S., J.C.M. and M.A.; formal analysis, N.S., J.C.M. and M.A.; writing—original draft
preparation, J.C.M. and N.S.; writing—review and editing, N.S., M.A.; supervision, N.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rashid, A.; Gardiner, J.; Green, B.; Craggs, B. Everything is awesome! or is it? Cyber security risks in critical infrastructure. In

Proceedings of the Critical Information Infrastructures Security-14th International Conference, CRITIS 2019, Linköping, Sweden,
23–25 September 2019; pp. 3–17.

2. Oughton, E.J.; Ralph, D.; Pant, R.; Leverett, E.; Copic, J.; Thacker, S.; Dada, R.; Ruffle, S.; Tuveson, M.; Hall, J.W. Stochastic
Counterfactual Risk Analysis for the Vulnerability Assessment of Cyber-Physical Attacks on Electricity Distribution Infrastructure
Networks. Risk Anal. 2019, 39, 2012–2031. [CrossRef] [PubMed]

3. Gellings, C.W. The Smart Grid: Enabling Energy Efficiency and Demand Response; CRC Press: Boca Raton, FL, USA, 2020.
4. Mohammadi, F. Emerging Challenges in Smart Grid Cybersecurity Enhancement: A Review. Energies 2021, 14, 1380. [CrossRef]
5. Saxena, N.; Chukwuka, V.; Xiong, L.; Grijalva, S. CPSA: A Cyber-Physical Security Assessment Tool for Situational Awareness in

Smart Grid. In Proceedings of the CCS ’17: 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas,
TX, USA, 30 October–3 November 2017; pp. 69–79.

6. Diovu, R.C.; Agee, J.T. Quantitative analysis of firewall security under DDoS attacks in smart grid AMI networks. In Proceedings
of the IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), Owerri, Nigeria, 7–10
November 2017; pp. 696–701.

7. Asiri, M.; Saxena, N.; Burnap, P. Investigating Usable Indicators against Cyber-Attacks in Industrial Control Systems. In
Proceedings of the Seventeenth Symposium on Usable Privacy and Security (SOUPS) 2021, Vancouver, BC, Canada, 8–10 August
2021; pp. 1–5.

8. Arends, R.; Austein, R.; Larson, M.; Massey, D.; Rose, S. DNS Security Introduction and Requirements; RFC 4033, Proposed Standard;
The Internet Society: Reston, VA, USA, 2005.

9. Malhotra, A.; Cohen, I.E.; Brakke, E.; Goldberg, S. Attacking the network time protocol. Cryptol. Eprint Arch. 2015. [CrossRef]
10. Crossley, P.A.; Guo, H.; Ma, Z. Time synchronization for transmission substations using GPS and IEEE 1588. CSEE J. Power Energy

Syst. 2016, 2, 91–99. [CrossRef]
11. Barbosa, R.R.R.; Sadre, R.; Pras, A. A first look into SCADA network traffic. In Proceedings of the IEEE Network Operations and

Management Symposium, Maui, HI, USA, 16–20 April 2012; pp. 518–521.
12. Vormayr, G.; Zseby, T.; Fabini, J. Botnet communication patterns. IEEE Commun. Surv. Tutor. 2017, 19, 2768–2796. [CrossRef]
13. Fonseca, O.; Cunha, Í.; Fazzion, E.; Meira, W.; da Silva, B.A.; Ferreira, R.A.; Katz-Bassett, E. Identifying Networks Vulnerable to IP

Spoofing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 3170–3183. [CrossRef]
14. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and other botnets. Computer 2017, 50, 80–84. [CrossRef]
15. NGFW Enterprise Firewall. Forcepoint. 2021. Available online: https://www.forcepoint.com/product/ngfw-next-generation-

firewall (accessed on 26 December 2021).
16. Tenable.ot. Tenable®. 2020. Available online: https://www.tenable.com/products/tenable-ot (accessed on 26 December 2021).
17. Claroty. Claroty: The Industrial Cybersecurity Company. Available online: https://www.claroty.com/comprehensive-platform-

overview/ (accessed on 26 December 2021).
18. Thomas, D.R.; Clayton, R.; Beresford, A.R. 1000 days of UDP amplification DDoS attacks. In Proceedings of the APWG Symposium

on Electronic Crime Research (eCrime), Phoenix, AZ, USA, 25–27 April 2017; pp. 79–84.
19. Özer, E.; Iskefiyeli, M. Detection of DDoS attack via deep packet analysis in real time systems. In Proceedings of the International

Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, 5–8 October 2017; pp. 1137–1140.
20. Maheshwari, V.; Bhatia, A.; Kumar, K. Faster detection and prediction of DDoS attacks using MapReduce and time series analysis.

In Proceedings of the International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12 January 2018;
pp. 556–561.

http://doi.org/10.1111/risa.13291
http://www.ncbi.nlm.nih.gov/pubmed/30812052
http://doi.org/10.3390/en14051380
http://doi.org/10.14722/ndss.2016.23090
http://doi.org/10.17775/CSEEJPES.2016.00040
http://doi.org/10.1109/COMST.2017.2749442
http://doi.org/10.1109/TNSM.2021.3061486
http://doi.org/10.1109/MC.2017.201
https://www.forcepoint.com/product/ngfw-next-generation-firewall
https://www.forcepoint.com/product/ngfw-next-generation-firewall
https://www.tenable.com/products/tenable-ot
https://www.claroty.com/comprehensive-platform-overview/
https://www.claroty.com/comprehensive-platform-overview/


Sustainability 2022, 14, 2730 18 of 18

21. Yang, Y.; McLaughlin, K.; Sezer, S.; Littler, T.; Pranggono, B.; Brogan, P.; Wang, H.F. Intrusion detection system for network
security in synchrophasor systems. In Proceedings of the IET International Conference on Information and Communications
Technologies (IETICT 2013), Beijing, China, 27–29 April 2013; pp. 246–252. [CrossRef]

22. Hussain, Y.S. Network Intrusion Detection for Distributed Denial-of-Service (DDoS) Attacks Using Machine Learning Classifica-
tion Techniques. Master’s Thesis, University of Victoria, Victoria, BC, Canada, 2020. Available online: https://dspace.library.uvic.
ca/handle/1828/11679 (accessed on 26 December 2021).

23. Khooi, X.Z.; Csikor, L.; Divakaran, D.M.; Kang, M.S. DIDA: Distributed In-Network Defense Architecture Against Amplified
Reflection DDoS Attacks. In Proceedings of the 2020 6th IEEE Conference on Network Softwarization (NetSoft), Ghent, Belgium,
29 June–3 July 2020; pp. 277–281.

24. Erez, N. How threat actors abuse ICS-specific file types. Netw. Secur. 2020, 2020, 10–13. [CrossRef]
25. MacFarland, D.C.; Shue, C.A.; Kalafut, A.J. Characterizing optimal DNS amplification attacks and effective mitigation. In Passive

and Active Measurement; Springer: Cham, Switzerland, 2015; Volume 8995, pp. 15–27.
26. Rudman, L.; Irwin, B. Characterization and analysis of NTP amplification based DDoS attacks. In Proceedings of the Information

Security for South Africa (ISSA), Johannesburg, South Africa, 12–13 August 2015; pp. 1–5.
27. Borenius, S.; Costa-Requena, J.; Lehtonen, M.; Kantola, R. Providing network time protocol based timing for smart grid

measurement and control devices in 5G networks. In Proceedings of the IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21–23 October 2019; pp. 1–6.

28. Wright, J.; Wolthusen, S. Time Accuracy De-Synchronisation Attacks Against IEC 60870-5-104 and IEC 61850 Protocols. In
Proceedings of the IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA,
18–21 February 2019; pp. 1–5.

29. Stouffer, K.; Falco, J.; Scarfone, K. Guide to Industrial Control Systems (ICS) Security; National Institute of Standards and Technology:
Gaithersburg, MA, USA, 2008.

30. What is SNMP Reflection and Amplification, Imperva. Available online: https://www.imperva.com/learn/ddos/snmp-
reflection/#:~{}:text=SNMP%20reflection%20is%20a%20volumetric,infrastructure%20to%20withstand%20the%20attack.
&text=Learn%20more%20about%20Imperva%20DDoS%20Protection%20services (accessed on 26 December 2021).

31. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing Realistic Distributed Denial of Service (DDoS) Attack
Dataset and Taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai,
India, 1–3 October 2019; pp. 1–8.

http://doi.org/10.1049/cp.2013.0059
https://dspace.library.uvic.ca/handle/1828/11679
https://dspace.library.uvic.ca/handle/1828/11679
http://doi.org/10.1016/S1353-4858(20)30117-3
https://www.imperva.com/learn/ddos/snmp-reflection/#:~{}:text=SNMP%20reflection%20is%20a%20volumetric,infrastructure%20to%20withstand%20the%20attack.&text=Learn%20more%20about%20Imperva%20DDoS%20Protection%20services
https://www.imperva.com/learn/ddos/snmp-reflection/#:~{}:text=SNMP%20reflection%20is%20a%20volumetric,infrastructure%20to%20withstand%20the%20attack.&text=Learn%20more%20about%20Imperva%20DDoS%20Protection%20services
https://www.imperva.com/learn/ddos/snmp-reflection/#:~{}:text=SNMP%20reflection%20is%20a%20volumetric,infrastructure%20to%20withstand%20the%20attack.&text=Learn%20more%20about%20Imperva%20DDoS%20Protection%20services

	Introduction 
	Context and Motivation 
	Problem Statement 
	Our Contributions 

	Preliminaries and Related Works 
	Preliminaries 
	Related Works and Existing Tools 

	System and Threat Models 
	System Model 
	Threat Model 
	DNS Amplification Attack 
	NTP Amplification Attack 
	SNMP Amplification Attack 


	Our Approach 
	Experiment Design 
	Overall Execution 
	Overall Functionality 
	Dataset Access and Processing 
	Analysing the Data 
	IOC and Recommended Actions 
	Logs Analysis 


	Results and Evaluation 
	Dataset 
	NTP Attack Evaluation 
	DNS Attack Evaluation 
	SNMP Attack Evaluation 
	Computing Complexity Analysis 
	Key Highlights and Discussion 

	Conclusions and Future Work 
	References

