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Cauchy-Rician Model for Backscattering

in Urban SAR Images
Oktay Karakuş, Ercan E. Kuruoğlu, Alin Achim, Mustafa A. Altınkaya,

Abstract

This paper presents a new statistical model for urban scene SAR images by combining the Cauchy distribution,

which is heavy tailed, with the Rician back-scattering. The literature spans various well-known models most of which

are derived under the assumption that the scene consists of multitudes of random reflectors. This idea specifically

fails for urban scenes since they accommodate a heterogeneous collection of strong scatterers such as buildings, cars,

wall corners. Moreover, when it comes to analysing their statistical behaviour, due to these strong reflectors, urban

scenes include a high number of high amplitude samples, which implies that urban scenes are mostly heavy-tailed.

The proposed Cauchy-Rician model contributes to the literature by leveraging non-zero location (Rician) heavy-tailed

(Cauchy) signal components. In the experimental analysis, the Cauchy-Rician model is investigated in comparison to

state-of-the-art statistical models that include G0, generalized gamma, and the lognormal distribution. The numerical

analysis demonstrates the superior performance and flexibility of the proposed distribution for modelling urban

scenes.

Index Terms

Urban modelling, SAR Imaging, Cauchy-Rician distribution.

I. INTRODUCTION

T
HE statistical distribution of a synthetic aperture radar (SAR) signal, that is received via a coherent summation

of many elementary echoes [1], is related to the spatial resolution, the wavelength of the sensor, and the

size of targets in the scene, which thus makes this problem scale-dependent. Specifically for the homogeneous

regions, having low-or-high resolution pixels can be easily neglected since the targets in a homogeneous scene have

similar statistical characteristics. However, speaking of heterogeneous regions (especially high-resolution ones),

these scenes will be highly complex for modelling issues since they will include various different targets with

different statistical characteristics such as buildings, grasslands, sea surface, etc. It is widely known in the literature

that some distributions that are considered to be robust for modeling homogeneous regions fail to model high-

resolution heterogeneous regions. Regarding the SAR sensor wavelength, since each of those creates different surface

penetrations, their corresponding radar return will surely be different, and hence their statistical characteristics. The

literature abounds with numerous statistical models, which are either based on the physics of the imaging process or

empirical, and all these models have advantages and disadvantages according to the scene type, spatial resolutions

and/or frequency band employed.

This paper concerns deriving a candidate statistical model with just two parameters for highly heterogeneous SAR

scenes and competing with the state-of-the-art. Particularly, we focus on the statistical modelling of urban areas in

SAR imagery, which are characterised by a high number of strong scatterers caused by man-made structures with

dihedral or trihedral configurations [2].

The standard model for the back-scattered SAR signal from a given area corresponds to a complex signal,

generically expressed as R = x1 + jx2 [3], [4]. The simplest model for SAR amplitude assumes the real (x1) and

imaginary (x2) parts are independent and identically distributed (i.i.d.) zero-mean Gaussian random variables. This
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Fig. 1. Surface scattering examples. (left): distributed scattering. (right): a number of strong scatterers.

determines a Rayleigh model for the SAR distribution of the amplitude r =
√

x2
1
+ x2

2
, which is valid provided

there are no dominating scatterers in the scene. When this assumption is violated, the real and imaginary signal

components become non-zero mean (δ ̸= 0) Gaussian, which then determines a Rician distribution for SAR images

in amplitude format. The Rician model is widely used to characterise SAR scenes containing many strong back-

scattered echoes. These include natural targets such as forest canopy, mountain tops, sea waves, as well as some

man-made structures with dihedral or trihedral configurations such as cars, buildings, or vessels [2], [5]–[8].

Notwithstanding their appealing theoretical properties and simple analytical structure, statistical models based on

the Gaussian assumption (Rayleigh-Rician) do not reflect real life phenomena such as those encountered when SAR

reflections exhibit impulsive behaviour indicative of underlying heavy-tailed distributions. Thus, numerous statistical

models in the literature were developed to account for non-Rayleigh cases, and proved to be effective for modeling

SAR imagery. A non-exhaustive list of models include Gamma [9], [10], Weibull [11], [12], lognormal [13], K [9],

[14], G0 [10], [15], [16], generalized gamma (GΓD) [17], [18], stable-Rayleigh [3], [19], and generalised-Gaussian

Rayleigh [4]. Incorporating into the Rician model the non-Gaussian and heavy-tailed characteristics of SAR signals

through a Laplace distribution, as in [20], [21], addresses many of the limitations of the above models. The resulting

Laplace-Rician model is based on the assumption that back-scattered SAR signal components are Laplace distributed

and was shown to achieve superior performance in modeling amplitude SAR images corresponding to various types

of scenes, such as sea surface, [20], forest, or agricultural [21].

In recent work [22], we have extended the Laplace-Rician model by proposing a much more general framework,

whereby the back-scattered SAR signal components are non-zero mean Generalized-Gaussian (GG) distributed. We

have demonstrated the flexibility and accuracy of the GG-Rician model in modelling both amplitude and intensity

SAR images corresponding to a variety of contents, including urban scenes, agricultural, land cover, and the sea

surface.

Despite the success of the GG-Rician and Laplace-Rician distributions, we observed that GG-Rician’s modelling

performance can sometimes be lower than the GΓD and G0 models. Such is the case for urban SAR scenes, which

include a high number of strong scatterers. We attribute this to the fact that the heavy-tailed characteristics of most
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of the generalized Gaussian family densities (e.g. Laplace, and the ones with α > 1) might not be impulsive enough

to faithfully capture the characteristics of scenes with a high number of large intensity values. Consequently, in

this paper, we propose the use of the Cauchy distribution for modelling the backscattered SAR signal real and

imaginary components in urban images whilst keeping the Rician base model via non-zero location parameter of

the Cauchy density.

II. THEORETICAL BACKGROUND

A. On the Rician Assumption

As was mentioned in the previous section, the fundamental Rayleigh backscattering idea relies on the assumption

that the scene does not have any dominating scatterer whilst having a distributed scattering mechanism. However,

in various scenes such as urban ones, the illuminated area may include one (or a small number of) dominating

scatterer(s) (Fig. 1 - (upper right)), and a large number of non-dominant ones [23]. This phenomenon can also

be seen in a real SAR image in Fig. 1. The displayed scene within the rectangle on the left is a good example

of the distributed scattering, whilst radar returns in the rectangle on the right include various urban scene targets

(buildings, wall corners, etc.). Therefore, the scene on the right includes quite a lot of high intensity returns,

resulting in non-distributed scattering. Hence, the assumption on which the Rayleigh backscattering model is based

upon would no longer be valid. From a statistical point of view, this corresponds to a situation whereby the signal

components x and y are still i.i.d. random variables, but with non-zero-means. When the signal components are

Gaussian, this determines Rician backscattering.

To motivate the Rician assumption employed in this letter, two different patches (urban and sea surface) from

a SAR scene were investigated. The COSMO-SkyMed SAR data used for this purpose includes an intensity SAR

scene as well as in-phase (I) and quadrature (Q) components of the back-scattered SAR signal. For both urban and

sea patches, histograms of I and Q components were calculated and they are depicted in Fig. 2. It is clear from

Fig. 2 that sea and urban scenes have characteristically different component distributions. Sea surface components

are centred around the origin (potentially Rayleigh based) with a mostly symmetric form whilst distributions for

urban components are skewed and centred around a ”non-zero” data value. This simple example provides a physical

support to the use of Rician backscattering specifically for urban SAR scenes.

B. On the Choice of Cauchy Distribution

The Cauchy distribution is known to be heavy-tailed and to promote (statistical) sparsity in various applications.

From a purely theoretical viewpoint, our preference for the Cauchy model over other candidate models stems

from its membership of the α-Stable family of distributions. Specifically, unlike other empirical distributions able

to faithfully fit distributions with heavy-tails, α-stable distributions are motivated by the generalised central limit

theorem (CLT) similarly to the way Gaussian distributions are motivated by the classical CLT. Contrary to the

general α-stable family, the Cauchy distribution has a closed-form probability density function, with dispersion

(scale) parameter γ, which controls the spread of the distribution, and the location parameter δ.

Despite the remarkable performance of the Laplace-Rician model [20], [21] in modelling various types of SAR

scenes, our motivation is to provide an amplitude model for urban SAR scenes, which clearly show heavy-tailed

characteristics, since they have more pronounced single reflectors when compared to, for example, sea surface

images. In the mini-figure of Fig. 2, we compare tail behaviours of Laplace and Cauchy distributions for equal

location parameters. It is clear from this visual representation that the Cauchy model has more mass in the tails

indicating better potential for modelling impulsive characteristics. It is also interesting to note that the differences

between Laplace and Cauchy pdfs in terms of tails depicted in the mini figure in Fig. 2 resemble the differences

between sea and urban scenes in Fig. 2. To this end, Fig. 2 also provides support to the need for heavier tailed

density for the urban scene modelling.

III. THE CAUCHY-RICIAN DENSITY

We first start by assuming that the signal components, x1 and x2 are non-zero Cauchy distributed as x1 ∼ Ca(δ, γ)
and x2 ∼ Ca(δ, γ). Consider the bivariate isotropic Cauchy distribution, whose characteristic function has the form
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Cauchy

Laplace

Fig. 2. Comparison for I and Q components of different SAR scenes. Mini-figure with darker background: Laplace pdf vs. Cauchy pdf.

of ψ(t1, t2) = exp(jδ(t1 + t2)− γ|t|), where t1 and t2 are components of the vector t, and |t| is the magnitude.

The probability density function (pdf) can be evaluated by taking the 2D Fourier transform as

(1)f(x1, x2) =
1

(2π)2

∫

t1

∫

t2

exp(jδ(t1 + t2)) exp(−γ|t|) exp(−j(x1t1 + x2t2))dt1dt2.

We make a change of variables and rewrite x1 and x2 in terms of variables y1 and y2, respectively as y1 = x1− δ,
and y2 = x2 − δ, which leads to

(2)f(y1 + δ, y2 + δ) =
1

(2π)2

∫

t1

∫

t2

exp(−γ|t|) exp{−j[t1y1 + t2y2]}dt1dt2.

We now convert this integral into the polar coordinates via t1 = u cosφ and t2 = u sinφ

(3)f(y1 + δ1, y2 + δ2) =

∫

2π

0

∫

∞

0

u exp(−γu)
(2π)2

exp{−ju[y1 cosφ+ y2 sinφ]}dudφ.

where u = |t| and φ = arctan(t1/t2). If we reorganise (3), we further obtain

f(y1 + δ1, y2 + δ2) =
1

2π

∫

∞

0

u exp(−γu)
[

1

2π

∫

2π

0

exp (−ju[y1 cosφ+ y2 sinφ]) dφ

]

du. (4)

From [24], the expression in square brackets becomes J0(u|y|), where J0 is the zeroth order Bessel function of

the first kind. We then rewrite (4) as [3]

f(y1 + δ1, y2 + δ2) =
1

2π

∫

∞

0

u exp(−γuα)J0(u|y|)du. (5)

We now have a bivariate density, and to derive the density function in amplitude form, we take the following polar

transformation

f(r, θ) = rf(y1 + δ = r cos θ, y2 + δ = r sin θ), (6)

where r ≥ 0 and 0 ≤ θ ≤ 2π. Then, marginalising over θ leads to

f(r) =
r

2π

∫

2π

0

∫

∞

0

u exp(−γu)J0(uA(r, θ))dudθ. (7)
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where A(r, θ) =
√

r2 + 2δ2 − 2rδ(cos θ + sin θ). Reorganising (7), we have

f(r) =
r

2π

∫

2π

0

dθ

∫

∞

0

u exp(−γu)J0(uA(r, θ))du. (8)

Using the identity below [25]
∫

∞

0

zn+1 exp(−az)Jn(bz)dz =
a2n+1bnΓ(n+ 3/2)√
π(a2 + b2)n+3/2

(9)

where a > 0, b > 0 and n > −1, we rewrite (8) for n = 0 as

f(r) =
rγ

2π

∫

2π

0

dθ

[γ2 + r2 + 2δ2 − 2rδ(cos θ + sin θ)]3/2
(10)

which corresponds to the Cauchy-Rician distribution. For δ = 0, it is straightforward to show that the distribution in

(10) reduces to Cauchy-Rayleigh distribution from [3] as f(r) = rγ/(r2 + γ2)3/2. The Cauchy-Rician distribution

has the capability to model multi-look SAR imagery and also has a form for modelling intensity SAR images.

However, due to page limitations, we thus leave presenting these capabilities of the proposed model as future work.

Since the pdf expression in (10) is not in a compact analytical form and it does not seem to be possible to invert

it to obtain parameter values, we employ a Bayesian sampling methodology in order to estimate model parameters

of γ and δ. For this reason, in this paper, we adjusted the method presented in [20], for the Cauchy-Rician

density parameter estimation by simply replacing the likelihood densities from Laplace-Rician to Cauchy-Rician.

In particular, the method is a Metropolis-Hastings (MH) algorithm, and in each iteration, it applies one of 3 different

moves: M1: Update δ for fixed γ, M2: Update γ for fixed δ, M3: Update γ and δ where the probabilities of

which are selected as 0.4, 0.4 and 0.2 for M1, M2 and M3, respectively.

IV. EXPERIMENTAL RESULTS

To test the proposed parameter estimation method, we created 100 simulated Cauchy-Rician sequences (1500

samples for each) for randomly selected parameters in intervals of δ → (0, 50] and γ → (0, 20]. For each simulated

data set, the parameter estimation method was used to estimate δ and γ, and the results are presented in Figure

3. Evaluating the boxplot in Figure 3-(a), we can state that the parameter estimation method shows remarkable

performance as e.g. Kullback-Leibler (KL) divergence values are relatively small (less than 0.1) whilst Kolmogorov-

Smirnov (KS) p-values are greater than 0.9999 for all data sets. Evaluating the boxplot in Figure 3-(a) for the first

four boxes, the parameter estimation values show that the location parameter δ estimates are generally close to

the real values whilst overestimation can sometimes be observed for the scale parameter γ estimation results. This

overestimation might cause by the number of samples utilised in this first simulation case. Increasing the number of

samples, we believe, might reduce γ estimation results. In Figure 3-(b), we show that the estimation performance

of the method is independent of the initial values of δ and γ, where the MCMC based approach reaches the correct

values via a random walk by performing an accept/reject based sampling.

The proposed statistical model was tested on various urban SAR data. We subsequently conducted experiments to

determine the best fitting distribution for a given real urban SAR images. Since each goodness of fit method to be

utilised to measure modeling performance can have various advantages or disadvantages due to such as sample size,

estimated parameters, spatial resolution, in order to compensate for this, we used (1) KL divergence, (2) residual

standard error (RSE), (3) the corrected Akaike information criterion (AICc) [26], (4) Anderson-Darling (AD) test

[27], (5) KS p-value and (6) the log-likelihood (logLHD). The proposed method was tested on 20 different urban

SAR images coming from TerraSAR-X, COSMO-SkyMed and ICEYE. The performance of the Cauchy-Rician

model was compared to Laplace-Rician, Lognormal, G0, and GΓD distributions. It is worth noting that other

common models such as the Rayleigh, Gamma, and K distributions have been left aside from our simulations,

since our previous work has shown that they are less successful than the utilised reference models [22]. The results

are depicted in Figures 4 and 5.

On evaluating the sub-figures in Fig. 4-(a)-(c), the superiority of the proposed method can been seen from the

RSE, p-value heatmaps. The Cauchy-Rician model is the best model for all urban SAR scenes in terms of the RSE

and AICc values, whilst p-values are mostly distributed between Cauchy-Rician, G0 and Lognormal models. In

terms of the KL divergence results in Fig. 4-(d) for overall percentages, we can see that even though the proposed
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(a) (b)

Fig. 3. MCMC-based parameter estimation results. (a) Performance metrics. (b) Random-walks for three different initial [δ, γ] pairs.

model is the best model for 35% of the total 20 SAR scenes, G0 and Laplace-Rician models also perform well in

terms of AD test scores.

Fig. 5 presents SAR image of an example urban scene and is modeling results in logarithmic scale. The log-scale

pdf modeling results in Fig. 5 (b)-(left) confirm the numerical results presented in Fig. 4. Despite resulting in slight

overestimation around the peak of the histogram, the Cauchy-Rician outperforms most of the reference models

utilised in this study due to its accuracy in modelling the tails of the distribution.

In order to quantitatively evaluate the tail modelling performance of the Cauchy-Rician model, we also performed

a simulation experiment for only the tails of the image histograms for CDF (Ii) ≥ 0.75 and CDF (Ii) ≥ 0.90.

In order to measure how accurate the tail modelling is, we used negative log-likelihood ratio (− logLHD) and

decided the best model which minimises the − logLHD. Fig. 4-(d) presents the percentages of SAR scenes for two

different experiments. It can be seen from the barplots that the proposed Cauchy-Rician density achieves better tail

modelling compared to state-of-the-art models such as G0, and GΓD despite having only two model parameters.

Fig. 5 (b)-(right) also provides a visual demonstration of the tail modelling performance.

V. CONCLUSION

This paper introduced the Cauchy-Rician distribution to characterise the amplitude of the complex back-scattered

SAR signal from urban scenes. Following the theoretical and physical aspects of the urban SAR scenes, the proposed

approach leverages both heavy-tailed distributions and the Rician back-scattering. Thanks to Cauchy distribution’s

ability to model heavy-tails, the proposed model further extends the idea behind GG-Rician density [22] for SAR

scenes that require heavier tails than that of GG-Rician. Despite having only two model parameters and exploiting

only one member of α-Stable distributions, the Cauchy-Rician density demonstrates considerable improvement in

performance compared to the state-of-the-art advanced models such as G0 and GΓD.
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