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Models and simulation details

Mpipi Model

For our simulations of FUS (see sequence below) and PR25 with poly-U, we employ the high-resolution
sequence-dependent coarse-grained (CG) model Mpipi [1], which describes almost quantitatively the
temperature-dependent LLPS phase behaviour of different protein condensates such as that of fused in sar-
coma (FUS). In addition, this model correctly predicts the multiphase behaviour of the PolyR/PolyK/PolyU
system, and recapitulates experimental LLPS trends for sequence mutations on FUS, DDX4 NTD and
LAF-1 RRG domain variants [1]. Within this force field, electrostatic interactions are modelled with a
Coulomb term with Debye–Huckel electrostatic screening [2], given by the sum over all particle-particle
(i,j) interactions as:

Eelec =
∑
i,j

qiqj
4πϵrϵ0rij

exp(−κrij) (1)

where q is the charge (being -0.75e for the different nucleotides: A, C, G, U; and +0.75e for amino
acids such as R and K, +0.375e for H, and -0.75e for D and E residues), ϵr = 80 is the relative dielectric
constant of water, ϵ0 is the electric constant, κ−1 = 795 pm is the Debye screening length, and rij
is the distance separating particles i and j. For these interactions, a Coulomb cut-off of 3.5 nm is
employed. The non-bonded interactions between protein/RNA beads are modelled via the Wang–Frenkel
potential [3]

EWF =
∑
i,j

ϵijαij

[(
σij

rij

)2µij

− 1

][(
σij

rij

)2µij

− 1

]2νij

(2)

where
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representing σ the molecular diameter of each residue/nucleotide and ϵ the interaction strength
between distinct amino acids and nucleotides (i and j). µij and Rij are constant model parameters set
to µij = 1 and Rij = 3σij for every interaction, while σij and ϵij are specified for each pair of interaction
in Ref. [1]. Finally, bond energy is computed with an harmonic bond potential of the following form:
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Ebond =
∑
b

1

2
k(rb − r0) (4)

where b is the total number of bonds, rb is the bond distance, k=8.03 Jmol−1pm−2 is the spring
constant and r0 is the bond reference position, set to 381 pm and 500 pm for protein and RNA bonds
respectively. For further details on this force field and the full list of the model parameters please see
Ref. [1].

FUS Sequence and PDB of the structured domains

Full-FUS sequence

MASNDYTQQATQSYGAYPTQPGQGYSQQSSQPYGQQSYSGYSQSTDTSGYGQSSYSSYGQ
SQNTGYGTQSTPQGYGSTGGYGSSQSSQSSYGQQSSYPGYGQQPAPSSTSGSYGSSSQSSSYGQ
PQSGSYSQQPSYGGQQQSYGQQQSYNPPQGYGQQNQYNSSSGGGGGGGGGGNYGQDQSSMS
SGGGSGGGYGNQDQSGGGGSGGYGQQDRGGRGRGGSGGGGGGGGGGYNRSSGGYEPRGRG
GGRGGRGGMGGSDRGGFNKFGGPRDQGSRHDSEQDNSDNNTIFVQGLGENVTIESVADYFKQ
IGIIKTNKKTGQPMINLYTDRETGKLKGEATVSFDDPPSAKAAIDWFDGKEFSGNPIKVSFATRR
ADFNRGGGNGRGGRGRGGPMGRGGYGGGGSGGGGRGGFPSGGGGGGGQQRAGDWKCPNP
TCENMNFSWRNECNQCKAPKPDGPGGGPGGSHMGGNYGDDRRGGRGGYDRGGYRGRGGDRG
GFRGGRGGGDRGGFGPGKMDSRGEHRQDRRERPY

The Uniprot code of the sequence is K7DPS7. The following Protein Data Bank (PDB) codes were
used to build the globular structured domains of FUS (residues from 285–371 (PDB code: 2LCW) and
from 422–453 (PDB code: 6G99)).

Minimal protein/RNA model

For the minimal coarse-grained simulations, we employ a patchy particle model [4–7] in which proteins
are described by a pseudo hard-sphere (PHS) potential [8] that accounts for their excluded volume:

EPHS =
∑
i<j
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where λa =49 and λr=50 are the exponents of the attractive and repulsive terms respectively, and
εR accounts for the energy shift of the pseudo hard-sphere. On top of this, we add a continuous
square-well (CSW) potential for modeling the different protein binding sites, therefore mimicking protein
multivalency:

ECSW =
∑
i<j
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[
1− tanh(

rij − rw
α

)

]
(6)

where ϵCSW is the depth of the potential energy well, rw the radius of the attractive well, and α
controls the steepness of the well. We choose α = 0.005σ and rw = 0.12σ so that each binding site
can only interact with another single one. RNA-protein interactions are modeled with a standard
Lennard-Jones (LJ) potential [9]:
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∑
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where ϵLJ measures the depth of potential and σ the excluded volume between proteins and RNA.
The Lennard-Jones potential is employed between proteins and RNA beads, while RNA-RNA interactions

January 21, 2022 2/10



are modelled via the PHS potential [8]. In this way, we model RNA as a self-repulsive polymer of bonded
hard spheres, and protein-RNA interactions via sites that are not the protein-protein binding sites, hence,
if one protein is bonded to RNA, it can still bind to other proteins. The mass of each patch is a 5%
of the central PHS particle mass, which is set to 3.32x10−26kg, despite being this choice irrelevant for
equilibrium simulations. This 5% ratio fixes the moment of inertia of the patchy particles (our minimal
proteins). The molecular diameter of the proteins, both scaffold and cognate proteins, as well as the RNA
beads is σ = 0.3405 nm, and the value of εR/kB is 119.81K. With this model, we express magnitudes in
reduced units: reduced temperature is defined as T ∗ = kBT/ϵCSW , reduced density as ρ∗ = (N/V )σ3,
reduced pressure as p∗ = pσ3/(kBT ), and reduced time as

√
σ2m/(kBT ). In order to keep the PHS

interaction as similar as possible to a pure HS interaction, we fix kBT/εR at a value of 1.5 as suggested
in Ref. [8] (fixing T = 179.71K). We then control the effective strength of the binding protein attraction
by varying ϵCSW such that the reduced temperature, T ∗ = kBT/ϵCSW , is of the order of O(0.1). The
cut-off distance for the interactions in this model are 1.17σ for the PHS and CSW potentials and 5σ for
the LJ interactions. The ϵLJ/kB for LJ interactions is set to 152.5K.

This model has been proven to qualitatively reproduce the effect of protein valency in LLPS [5],
the enhancement of RNA-mediated LLPS with RNA-binding proteins [10] or the size conservation of
condensates through interfacial free energy reduction [7].

Simulation details

Our Direct Coexistence simulations are performed in the NVT ensemble (i.e. constant number of particles
(N), volume (V) and temperature (T)), for which we use a Nosé–Hoover thermostat [11, 12] with a
relaxation time of 5 ps for the Mpipi model simulations and 0.074 in reduced units for the patchy particle
simulations. Since all our potentials are continuous and differentiable, we perform all our simulations
using the LAMMPS Molecular Dynamics package [13]. Periodic boundary conditions are used in the
three directions of space. The timestep chosen for the Verlet integration of the equations of motion is 10
fs for the Mpipi model and 3.7x10−4 in reduced time units for the patchy particle model. In Table A, we
summarise all the simulation details regarding the employed systems for both resolution models.

Computing phase diagrams via Direct Coexistence

To calculate the coexisting densities of the phase diagrams, we employ the Direct Coexistence method
[14–16]. Within this scheme, the two coexisting phases are simulated by preparing periodically extended
slabs of the two phases, the condensed and the diluted one, in the same simulation box. We use an
implicit solvent model; accordingly, the diluted phase (protein-poor liquid phase) and the condensed
phase (protein-rich liquid phase) are effectively a vapour and a liquid phase, respectively. Once our DC
simulations have reached equilibrium, we compute the density profile along the long axis of the box,
and thus, we extract the density of the two coexisting phases (as shown in the Supporting Material
of Ref. [10]). From the plateau of the condensed phase and the diluted one, we measure the density
(avoiding the interfaces between both phases). To estimate the critical point of the phase diagrams, we
use the universal scaling law of coexistence densities near a critical point [17], and the law of rectilinear
diameters [18]:

(
ρl(T )− ρv(T )

)3.06
= d

(
1− T

Tc

)
(8)

and

(ρl(T ) + ρv(T ))/2 = ρc + s2(Tc − T ) (9)

where ρl and ρv refer to the coexisting densities of the condensed and diluted phases respectively,
while ρc is the critical density, Tc is the critical temperature, and d and s2 are fitting parameters.
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System NP NN NRNA,chain LRNA Net charge Box dimensions Tc/K (or T ∗
c )

FUS+polyU 48 800 1 800 -42e 210 x 210 x 860 367
FUS+polyU 48 800 2 400 -42e 210 x 210 x 860 365.5
FUS+polyU 48 800 4 200 -42e 210 x 210 x 860 364
FUS+polyU 48 800 8 100 -42e 210 x 210 x 860 364.5
FUS+polyU 48 800 16 50 -42e 210 x 210 x 860 365
FUS+polyU 48 800 32 25 -42e 210 x 210 x 860 363
PR25+polyU 98 2400 3 800 0 150 x 150 x 560 432
PR25+polyU 98 2400 6 400 0 150 x 150 x 560 360
PR25+polyU 98 2400 30 80 0 150 x 150 x 560 337
PR25+polyU 98 2400 60 40 0 150 x 150 x 560 330
PR25+polyU 98 2400 120 20 0 150 x 150 x 560 307
Scaffold+RNA 1000 250 1 250 - 30 x 30 x 270 0.14
Scaffold+RNA 1000 250 2 125 - 30 x 30 x 270 0.137
Scaffold+RNA 1000 250 5 50 - 30 x 30 x 270 0.139
Scaffold+RNA 1000 250 10 25 - 30 x 30 x 270 0.136
Scaffold+RNA 1000 250 25 10 - 30 x 30 x 270 0.131
Cognate+RNA 1000 250 1 250 - 33 x 33 x 250 0.121
Cognate+RNA 1000 250 2 125 - 33 x 33 x 250 0.125
Cognate+RNA 1000 250 5 50 - 33 x 33 x 250 0.122
Cognate+RNA 1000 250 10 25 - 33 x 33 x 250 0.118
Cognate+RNA 1000 250 25 10 - 33 x 33 x 250 0.097
Cognate+RNA 1000 250 50 5 - 33 x 33 x 250 0.081

Table A. Summary of the simulation details of the employed systems: Total number of proteins (NP ),
total number of RNA nucleotides (or RNA beads in the minimal model; NN ), total number of RNA
chains (NRNA,chain), length of the RNA chains (LRNA), net charge of the system, box dimensions (in
x/Å, y/Å, z/Å), and estimated critical temperature (Tc in K for the high-resolution Mpipi model and in
reduced units for the minimal CG model).
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Fig A. Snapshot of a pure PR25 Direct coexistence simulation at T/Tc,FUS=0.5. As it can be seen, in
absence of RNA, PR25 cannot undergo LLPS (even at low temperatures). The same colour code
employed in Fig. 1 of the main text has been employed here.

Fig B. Snapshot of a pure cognate system Direct Coexistence simulation at T/Tc,Scaffold=0.6. As it
can be seen, in absence of RNA, the cognate protein cannot undergo LLPS (even at low temperatures).
The same colour code employed in Fig. 1 of the main text has been employed here.

Results with the HPS & KH models for FUS and PR25

Additionally to the results presented in the main text of this article, we perform simulations of FUS and
PR25 in presence of RNA with different lengths at a constant RNA/protein concentration employing
the hydrophobicity scale (HPS) model for the FUS-polyU systems, and the Kim-Hummer (KH) model
for those of PR25 with polyU. Both models are detailed in Ref. [19]. In these models, the solvent is
also implicit as in the Mpipi force field [1]. The simulation details are the same provided for the Mpipi
simulations in Section 1D. Here, polyU RNA strands are mimicked as chains of glutamic acid (and so its
mass) as shown in Ref. [20]. In Fig D (a) we show how the phase behaviour of FUS and polyU RNA
deeply resembles the one observed in the main document using the Mpipi model (Fig 3 (a) of the main
text): the critical temperature of FUS-RNA mixtures marginally depends on the length of the added
polyU strands. However, for PR25-polyU systems (Fig D (b)), there is a remarkable difference of a factor
of 2 (almost 200K) between the shortest (20-nucleotide long RNA chains) and the longest ones (800-
nucleotide long RNA chains) as observed in the main text for the Mpipi model (Fig 3 (b) of the main text).

Moreover, the same intermolecular contact analysis of Fig 4 of the main text was also performed
for these simulations, providing similar results to those computed from the Mpipi model calculations.
In Fig E(a), it can be seen how FUS-FUS contacts are mostly responsible of holding the protein
condensates (displaying about 4 times more contacts per nm3 than the RNA-FUS contacts), while
in the PR25-RNA condensates, heterotypic PR25-RNA interactions are predominant respect to those
of PR25-PR25 (Fig E (b)). Lastly, the length dependent behaviour of the critical temperature for
PR25 condensates is held as in the case of the Mpipi model (main document, Fig 4(d)), while for FUS-
poly-U systems the critical temperature remains roughly constant independently of the RNA chain length.

January 21, 2022 5/10



(a) (b) 
FUS PR25

Fig C. Radius of gyration (Rg) distribution function for: a) FUS within a FUS-polyU(400-nt)
condensate (green curve) and FUS in the dilute phase (black curve) at T/Tc,FUS=0.96. b) PR25 within
a PR25-polyU(400-nt) condensate (green curve) and PR25 in the dilute phase (black curve) at
T/Tc,FUS=0.85. The polyU/FUS mass ratio is kept constant at a value of 0.096, while the polyU/PR25

mass ratio at a value of 1.20.

(a)                  (b) 

Fig D. Temperature–density phase diagrams of FUS with polyU of different lengths at a constant
polyU/FUS mass ratio of 0.16, and for a pure system of FUS (black curve). (b) Temperature–density
phase diagrams of PR25 with RNA at different lengths at a constant RNA/PR25 mass ratio of 0.57. In
both (a) and (b) panels, filled circles represent the coexisting densities evaluated from DC simulations
while empty circles depict the critical temperatures estimated from the law of rectilinear diameters and
critical exponents [17] near the critical temperature. Temperature in both panels has been normalized by
the critical temperature of pure FUS, Tc,FUS=309K (black empty circle in (a)).
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(a)                   (b)                 (c) 

Fig E. Density of LLPS-stabilizing intermolecular contacts within condensates as a function of RNA
length plotted separately for protein–protein interactions (black symbols) and protein–RNA interactions
(green symbols) for FUS-polyU (a) and PR25-polyU mixtures (b). The temperature at which the
intermolecular contacts were computed was T/Tc,FUS=1.13 for FUS–RNA systems and T/Tc,FUS=0.924
for PR25–RNA mixtures (the highest temperature at which all systems with distinct RNA lengths can
phase separate). (c) Critical temperature versus RNA length for FUS–RNA (black) and PR25–RNA
(blue) systems.

Computing the number of intermolecular contacts

In Figs 4 and 6 of the main document, we provide the number of intermolecular contacts per unit of
volume. To compute such magnitude, we consider two amino acids to be in contact under a distance of
7.7Å, which is the average of all the possible σij (Eq. 2) multiplied by a factor 1.2 (typical value in σ at
which the attractive LJ/Wang-Frenkel interactions become mild). The RNA-protein interactions are
considered as contacts when the distance between a nucleotide and an amino acid is lower than 8.95Å,
which is the average σij between uridine and any other amino acid, multiplied also by a factor of 1.2. The
number of total contacts is averaged throughout entire converged simulations of about 2 µs. Then, the
contacts density is obtained by dividing the total number of contacts within the condensed phase by the
condensate volume. The density of LLPS-stabilizing intermolecular contacts within the condensates as a
function of temperature for FUS+polyU(400-nt) and PR25+polyU(400-nt) is provided in Fig. F (a) and
(b) respectively. Moreover, the electrostatic vs. non-electrostatic contribution to the attractive potential
interactions sustaining the phase-separated condensates as a function of RNA length for FUS+polyU
condensates (filled circles) and PR25+polyU condensates (empty squares) is given in Fig. G.
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(a) (b)

Fig F. Density of LLPS-stabilizing intermolecular contacts within the condensates (plotted separately
for protein–protein interactions, black circles, and protein–RNA interactions, red circles) as a function of
temperature (T/Tc,FUS) for: a) FUS+polyU(400-nt), and b) PR25+polyU(400-nt) condensates. The
polyU/FUS mass ratio was kept constant at a value of 0.096 for all FUS simulations, while the
polyU/PR25 mass ratio at a value of 1.20 for all PR25 simulations at every studied temperature.

Fig G. Electrostatic (black symbols) vs. non-electrostatic (red symbols) contribution to the potential
attractive interactions (molecular contacts sustaining phase-separated condensates) as a function of RNA
length for FUS+polyU condensates (filled circles) and PR25+polyU condensates (empty squares). The
temperature at which the intermolecular contacts were computed was T/Tc,FUS=0.99 for FUS–RNA
systems, and T/Tc,FUS=0.85 for PR25–RNA mixtures. Error bars depict the computed standard
deviation in the percentage contribution of electrostatic vs. non-electrostatic interactions. The
polyU/FUS mass ratio was kept constant at a value of 0.096 for FUS-polyU simulations, and at a
polyU/PR25 mass ratio of 1.20 in PR25-polyU simulations.
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