Supplementary Figures and Tables

Single-cell transcriptomics links malignant T cells to the tumor immune

landscape in cutaneous T cell lymphoma

Xiangjun Liu^{1,2,3,13}, Shanzhao Jin^{4,5,13}, Simeng Hu^{4,6,13}, Ruoyan Li^{4,7}, Haihao Pan^{1,2,3}, Yi Liu⁴, Pan Lai^{1,2,3}, Deshu Xu⁴, Jingru Sun^{1,2,3}, Ziyang Liu⁴, Yumei Gao^{1,2,3}, Yifan Zhao⁴, Fengjie Liu^{1,2,3}, Yu Xiao^{1,2,3}, Yingyi Li^{1,2,3}, Yujie Wen^{1,2,3}, Zhuojing Chen^{1,2,3}, Bufang Xu^{1,2,3}, Yuchieh Lin^{1,2,3}, Menglong Ran^{1,2,3}, Qianxi Li^{1,2,3}, Shuxia Yang^{1,2,3}, Hang Li^{1,2,3}, Ping Tu^{1,2,3}, Muzlifah Haniffa^{7,8,9}, Sarah A. Teichmann^{7,10}, Fan Bai^{4,11,12*}, Yang Wang^{1,2,3*}

¹Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.

²Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China.

³National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China.

⁴Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing 100871, China.

⁵BioMap (Beijing) Intelligence Technology Limited, Block C Information Center Haidian District, Beijing, 100086, China

⁶Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University– Tsinghua University–National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing 100871, China

⁷Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.

⁸Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.

⁹Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK.

¹⁰Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.

¹¹Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China

¹²Center for Translational Cancer Research, First Hospital, Peking University, Beijing 100871, China.

¹³These authors contributed equally to this manuscript.

*Address correspondence to: Yang Wang (<u>yangwang_dr@bjmu.edu.cn</u>) and Fan Bai (<u>fbai@pku.edu.cn</u>)

Supplementary Figure 1. Single-cell transcriptional profiles of all cells from the 5' UMI Smart-Seq2 dataset.

(a) FACS gating strategy of CD45⁻, CD45⁺CD3⁻ and CD45⁺CD3⁺ subsets from skin lesions of CTCL patients, related to Fig. 1a.

(**b** and **c**) UMAP plot shows 1, 398 high-quality cells in the 5' UMI Smart-Seq2 dataset. Three cell types were defined by cell-specific markers as described previously, with each cell colored by cell type as annotated (**b**), and malignant T cells were further identified (**c**).

(d) Heatmap shows the expression of the top 10 signature genes in each cell type from the 5' UMI Smart-Seq2 dataset. The expression level was measured as the z-score normalized log₂ level (count+1).

(e) Boxplot shows the comparison of the detected cell numbers per sample (left) and the median gene numbers per cell (right) between the $10 \times$ Genomics (a total of 58926 cells \times 24864 genes) and 5' UMI Smart-Seq2 (a total of 24864 cells \times 4733 genes) datasets after quality control filtering. Boxes represent median and interquartile ranges (IQRs), whiskers are $1.5 \times$ IQR, and dots represent subjects outside the IQR range.

(f) Large-scale CNVs of single cells from all samples. CNVs were inferred from the 5' UMI Smart-Seq2 dataset.

(g) The CNV patterns of 13 samples inferred from whole exome sequencing.

(h) The productivity of TCR α and β chain pairs in all T cells of each sample.

Supplementary Figure 2. Intra-tumor heterogeneous transcriptional properties of malignant T cells.

(a) UMAP plot shows the expression of canonical T cell markers in all T cells from the $10 \times$ Genomics dataset. The color scale represents normalized expression. Gray to red: low to high expression.

(b) Large-scale CNVs of single cells from sample MF28-1. CNVs were inferred from the transcriptome.

(c) Heatmap shows five gene expression programs deciphered from a representative patient (MF30) using NMF.

(d) PFS analysis of an independent cohort of 15 pcALCL patients. Patients were stratified into low and high expression groups according to median values of scores corresponding to the gene signatures of four meta-programs. *P*-values were calculated using the log-rank test.

Supplementary Figure 3. Molecular subtyping with malignant T cell-intrinsic features.

(a) UMAP plots show the gene expression patterns of all T cells from the 10× Genomics dataset. Two subgroups identified in Fig. 4A are highlighted by dashed circles. The color scale represents normalized expression. Gray to red: low to high expression.

(b) Immunofluorescence staining of CD45RA (green) and CD27 (red) on paraffinembedded tissue of patient MF14. DAPI (blue) was used to visualize cell nuclei. Scale bar = $50 \mu m$. Results are representative of three different samples.

(c) Heatmap of unsupervised hierarchical clustering shows the average expression of the DEGs between malignant T cells and their respective reactive CD4⁺ or CD8⁺ T cells in each sample from 3 patients in the 5' UMI Smart-Seq2 dataset (log₂ fold-change >1.5, p < 0.05). The bars above the heatmap show the tumor type, LCT information and disease stage. LCT, large cell transformation.

(d) Venn diagram illustrates a 19-gene signature from CD4⁺ MF patients in the T_{CyEM} group.

(e) 2D density plots show the cytotoxicity score and exhaustion score of malignant T cells in each sample from the $10 \times$ Genomics dataset.

(f) Violin plots show that malignant T_{CM} cells expressed a higher level of *PDCD1*, *CTLA4*, *TIGIT*, and *TCF7* in comparison with malignant T_{CyEM} cells; Two-sided Mann-Whitney U-test. ***p < 0.001. P = 0 (all genes).

(g) Violin plots show the scores of the four meta-programs in the T_{CyEM} and T_{CM} group; Two-sided Mann-Whitney U-test. $P \le 2.00 \times 10^{-16}$ in the four meta-programs.

(h) PFS analysis of an independent cohort of 49 tumor-stage MF patients. Patients were stratified into low expression and high expression groups according to median values of scores corresponding to the 19-gene signature of the T_{CyEM} groups identified in Supplementary Fig. 4d. *P*-values were calculated using the log-rank test.

(i) Immunofluorescence staining of CD45RO (green) and CD27 (red) on thin plaque tissue isolated in 2010 (upper) and tumor tissue isolated in 2018 (lower) from patient MF7. DAPI (blue) was used to visualize cell nuclei. Scale bar = 50 μ m. Results are representative of three different samples.

(j) Violin plots show that TCR-loss malignant T cells in the T_{CyEM} group express higher levels of T cell activation-related genes in comparison with TCR-competent malignant T cells (log₂ fold-change >0.14, ^{***}p < 0.001); Two-sided Mann-Whitney U-test. $P = 1.11 \times 10^{-10}$ (*PTPRC*), 4.68 × 10⁻⁴ (*AHNAK*), 2.82 × 10⁻⁷ (*ITK*), 6.73 × 10⁻⁷ (*ZAP70*) and 8.28 × 10⁻⁴ (*FYN*).

(k) Violin plots show that TCR-loss malignant T cells in the T_{CM} group express higher levels of *GAPDH*, *GTSF1* and *PTTG1* in comparison with TCR-competent malignant T cells (log₂ fold change >0.15, ***p < 0.001); Two-sided Mann-Whitney U-test. $P = 2.20 \times 10^{-16}$ (*GAPDH*), 1.60 × 10⁻⁵ (*GTSF1*) and 2.20 × 10⁻¹⁶ (*PTTG1*).

Source data for (d) are provided in the Source Data file

Supplementary Figure 4. The interaction between malignant T cells and the TME in each subtype.

(a) UMAP plot shows the expression of canonical cell type markers in non-T cells from the $10\times$ Genomics dataset. The color scale represents normalized expression. Gray to red: low to high expression.

(b) The mean optical density of CD163 and CD20 in the T_{CyEM} (n=8) and T_{CM} (n=5) groups. Data are presented as median \pm interquartile range. Two-sided Mann-Whitney U-test, **p < 0.01. Each experiment was repeated three times independently with similar results. $P = 2.20 \times 10^{-3}$ (CD163) and 1.60×10^{-3} (CD20).

(c) Representative immunohistochemical staining of CD163 (left) and CD20 (right) on paraffin-embedded tissue from the T_{CyEM} and T_{CM} groups. Scale bar = 50 μ m. Results are representative of three different samples.

(d) Correlation analysis of the mRNA expression of *MS4A1* and *CD40LG* in an independent cohort of 49 tumor-stage MF patients. *P*-values were calculated using the Spearman rank correlation test.

(e and f) Immunofluorescence staining demonstrate that FOXP3⁺ Tregs (green) in the T_{CM} group exhibit higher expression of LAG3 (red) (e) and TIGIT (red) (f) compared with the T_{CyEM} group. DAPI (blue) was used to visualize cell nuclei. Scale bar = $50 \mu m$. Results are representative of three different samples.

(g) Multicolor IHC staining of tumor tissue samples show different TMEs in the two subgroups. (Panel 1) Granzyme A⁺ CD4⁺ tumorous cells were surrounded by abundant CD163⁺ macrophages and CD8⁺ T cells within the T_{CyEM} group (exemplified by patient MF17), whereas only CD8⁺ T cells were found in the surrounding microenvironment in the T_{CyEM} group (exemplified by patient MF4). (Panel 2) Few CD20⁺ B cells and LAG3⁺ FOXP3⁺ Tregs were found within the TME of the T_{CyEM} group (exemplified by patient MF17), whereas TOX⁺ tumorous cells were surrounded by abundant CD20⁺ B cells and LAG3⁺ FOXP3⁺ Tregs in the T_{CM} group (exemplified by patient MF17), whereas TOX⁺ tumorous cells were surrounded by abundant CD20⁺ B cells and LAG3⁺ FOXP3⁺ Tregs in the T_{CM} group (exemplified by patient MF28). DAPI (blue) was used to visualize cell nuclei. Scale bar = 100 µm. Results are representative of three different samples.

M1	M2
CD86	CSF1R
IL1B	IL1R2
IRF1	CTSA
CD40	CTSB
IDO1	CTSC
KYNU	TGFB1
	CLEC7A

Supplementary Table 1. M1 and M2 gene list.

Supplementary Table 2. Sequencing analysis summary of 13 samples from 11 patients subject to WES.

Patient	Sample	Properly Mapped	Number of reads	Mean_	Tumor
ID		and Paired Reads	(millions)	Depth	purity
		(%)			
MF4	Tumor	99.36%	87.45	101.44	0.64
	Blood	99.25%	78.88	99.09	
MF6	Tumor	99.08%	92.51	110.73	0.32
	Blood	99.19%	85.5	100.63	
MF14	Tumor	98.83%	141.64	201.61	0.73
	Blood	98.66%	78.56	108.46	
MF15	Tumor	98.91%	133.82	186.45	0.59
	Blood	98.63%	65.17	89.88	
MF17	Tumor	99.27%	143.08	204.59	0.46
	Blood	99.19%	94.92	132.21	
MF21-1	Tumor	99.04%	131.64	180.5	0.36
	Blood	99.21%	81.41	111.17	
MF21-2	Tumor	99.19%	170.36	249.51	0.31
	Blood	99.21%	81.41	111.17	
MF22	Tumor	98.71%	155.06	211.17	0.44
	Blood	98.51%	77.17	102.99	
MF26	Tumor	98.96%	139.24	184.53	0.49
	Blood	99.09%	76.68	108.09	
MF28-1	Tumor	99.18%	152.46	229.51	0.41
	Blood	98.97%	76.52	112.34	
MF30-1	Tumor	98.80%	132.45	181.23	0.54
	Blood	98.63%	73.14	103.37	
MF30-2	Tumor	98.81%	133.05	172.6	0.41
	Blood	98.63%	73.14	103.37	
P2	Tumor	98.75%	194.42	256.37	0.21
	Blood	98.33%	68.58	96.78	