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Encoding and recall of memory for reward
location in the mouse hippocampus

Przemysław Jarzębowski

Summary

The memory of where to find food can be crucial for an animal’s survival. Encod-

ing and recall of these spatial memories involves the hippocampus, but whether and

how hippocampal activity integrates memories of spatial relationships and locations

is poorly understood. This thesis investigates how hippocampal activity facilitates

the encoding of reward memories and how this encoding shapes hippocampal activity

during memory recall in mice learning reward locations.

Encoding of memory happens in stages that depend on the hippocampal state.

The thesis interrogated how two different hippocampal states, one during movement

and the other during reward consumption, are affected by acetylcholine – a neuromodu-

lator released predominantly during movement and exploration. The findings highlight

how acetylcholine modulates hippocampal state and how, when experimentally altered,

it can impede memory encoding.

Hippocampal activity facilitates navigation towards the learned reward loca-

tions. Individual neurons fire at specific locations of the environment, and, collectively,

they cover the environment forming its cognitive map. To answer how the hippocam-

pal activity could encode a memory of reward location, the thesis investigated how

these spatial representations and the population activity change after learning. I found

that the reward memory shapes the activity in the dorsal CA1 of the hippocampus by

modulating its overall population activity and in the intermediate CA1 by modulating

the activity of a reward-specific cell population.

Together, these results suggest how hippocampal activity could facilitate en-

coding and recall of memory for reward locations.
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Chapter 1

Introduction

A single, brief experience can leave a long-lasting memory. The experience leaves a

mark in the physical substrate of the brain, creating the initial memory encoding.

Later, the encoding is updated and maintained by a process of consolidation. The

memory persists in a latent state until the time of memory recall when the encoded

neural pattern of activity resurfaces. All three stages of memory formation: initial

encoding, consolidation and recall can depend on the hippocampus. Spatial memory

is one of the memory types, for which the neural activity in the hippocampus is crit-

ical. This thesis asks how the hippocampus encodes memories of reward locations

and what neural activity leads to their recall. I approach these questions by studying

hippocampal activity in mice learning and navigating towards reward locations.

The process of memory encoding is thought to happen in the hippocampus

in stages that depend on the region-wide state of the neural activity. Hippocampal

neurons temporally coordinate their activity, leading to regular oscillations in the local

field potential (LFP). These oscillations delineate the hippocampal states correspond-

ing to different behaviours. In Chapter 3, I interrogate how the hippocampal states and

the learning are affected by experimentally stimulating release of acetylcholine (ACh)

– a neuromodulator released predominantly during movement and exploration.

After the memory for reward locations is encoded, hippocampus is thought

to facilitate navigation towards the learned locations. During the animal’s navigation,

hippocampal neurons called place cells restrict their firing to spatially defined parts of

the environment. To study how the hippocampal activity encodes memory of reward

12



1.1. Hippocampal neuroanatomy 13

location, in Chapter 4, I interrogate how the hippocampal cells and population activity

change after learning as mice approach the reward. In particular, I investigate how cells

are recruited to the encoding of reward memory: if the same cells encode experience

of different reward locations or different, stochastically selected cells are recruited each

time.

The introduction that follows reviews the role of the hippocampus in memory,

the neural processes that could support it, and characterises hippocampal activity

during spatial navigation. Results reported in Chapter 3 of this thesis were published

in Jarzebowski et al. (2021b) and results reported in Chapter 4 were published in

Jarzebowski et al. (2021a).

1.1 Hippocampal neuroanatomy

Hippocampus has a unique neuroanatomy, which may be critical in facilitating mem-

ory and, which has motivated numerous studies on the general principles of neuronal

function. The hippocampal formation is composed of four anatomical regions: hip-

pocampus proper, dentate gyrus (DG), subicular complex and entorhinal cortex (EC)

(as defined by Amaral and Witter, 1989). Hippocampus proper is further divided into

cornu ammonis (CA) fields 1 to 4 (Lorente de Nó, 1934), where CA4 is not present in

rodents (Amaral and Witter, 1989).

1.1.1 Hippocampal circuit

The first unique feature of hippocampal anatomy is its internal circuitry that largely

consists of unidirectional excitatory connections (Figure 1.1; Andersen et al., 1966;

Amaral and Witter, 1989; Witter and Amaral, 2004). They constitute only a part of

all of the hippocampal connections but this part forms the backbone of a trisynaptic

circuit, first described by Ramón Y Cajal (1911). The circuit’s first synapse from EC

to the DG provides much of the cortical input to the hippocampus proper via perforant

path. From there, the second synapse connects DG granule cells via mossy fibres axons

to CA3 pyramidal cells. These, in turn, synapse onto CA1 pyramidal cells via Schaffer
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Figure 1.1: Hippocampal anatomy. (A) Location of the hippocampus proper
in the mouse brain. The horizontal plane shows a transverse section through the
hippocampus. (B) Illustration of the transverse section of the hippocampus showing
its main subdivisions and its mainly unidirectional circuit. EC, entorhinal cortex; DG,
dentate gyrus; Sub, subiculum; s or, stratum oriens ; s pyr, pyramidal cell layer; s rad,
stratum radiatum.

collateral axons (Amaral and Witter, 1989; Swanson et al., 1978). Last, CA1 connects

back to EC either directly or through subiculum, completing the mainly unidirectional

circuit (Amaral and Witter, 1989).

The second unique feature of hippocampal anatomy relates to a layered or-

ganisation of cell types and their axonal projections (reviewed by Witter and Amaral,

2004). The most striking is the pyramidal cell layer which aggregates cell bodies of

pyramidal cells and several interneuron classes. In CA1 and CA3, the pyramidal cell

layer is placed between relatively cell-free stratum oriens (deep of the pyramidal cell

layer), and stratum radiatum (superficial of the pyramidal cell layer). Stratum radia-

tum contains cell bodies of interneurons and afferents from CA3. In CA3, the afferents

arriving in stratum radiatum include recurrent local connections, while in CA1 these

are the CA3 inputs arriving via Schaffer collateral fibres. The most superficial layer

is loconosum moleculare where EC inputs to CA1 pyramidal cells arrive via perforant

path, and where inhibitory cell bodies are located.

The third feature of hippocampal anatomy relates to diverging, fan-out con-

nections from EC to DG and the recurrent connections in CA3 (Witter and Amaral,

2004). This feature is thought to facilitate pattern separation and completion. In this

model for the flow of information through the hippocampus initially proposed by Marr

and Brindley (1971), the incoming signals are first separated so that similar inputs

from EC activate different sets of DG cells. Next, the pattern-separated signal arrives

in CA3 where the previously learned patterns are recalled. The recurrent activity in
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CA3 helps to recover a stored pattern from its fragment, providing pattern completion

of the input. Experimental evidence supports the presence of pattern separation and

completion in the hippocampus (reviewed by Knierim and Neunuebel, 2016) and these

two transformations could be fundamental computations performed during memory

recall.

1.1.2 Dorso-ventral axis

While the features described above are preserved, other genetic and anatomical features

differ between the posterior and anterior hippocampus and their homologues, the dorsal

and ventral hippocampus, in rodents (Fanselow and Dong, 2010; Dong et al., 2009;

Thompson et al., 2008). The further description of the anatomy focuses on rodents,

however, similar anatomy is found in primates (Fanselow and Dong, 2010).

Based on differing genetic expression in CA1, Dong et al. (2009) proposed

its division into three domains: dorsal, intermediate and ventral. The domains differ

in gene markers (Dong et al., 2009), morphological and electrophysiologial properies

(Malik et al., 2016), and in connectivity patterns (Amaral and Witter, 1989). Despite

clear differences, there are no clear boundaries between the domains, and others em-

phasised the presence of gradient-like transitions (Strange et al., 2014; Malik et al.,

2016; Cembrowski et al., 2016). Historically, some studies referred to intermediate-to-

ventral hippocampus as ventral. Throughout this thesis, I make a distinction between

these two domains when citing these studies.

The gradual changes in gene expression from dorsal to ventral CA1 overlap

with the gradual changes in the connectivity. The trisynaptic circuit is preserved across

the dorso-ventral axis, but both the inputs and outputs differ (Swanson et al., 1978;

Cenquizca and Swanson, 2007). For example, the intermediate-to-ventral CA1 but

not the dorsal CA1 (dCA1) projects to amygdala (Pitkänen et al., 2006) and medial

prefrontal cortex (Hoover and Vertes, 2007). These input-output differences correlate

with functional differences (Moser and Moser, 1998; Fanselow and Dong, 2010), which

are further described in the later sections.
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1.2 Hippocampal role in memory

1.2.1 Early evidence from human studies

The most striking evidence for a role of the hippocampal formation in memory comes

from human patients with hippocampal damage, among whom patient H.M. is the

most famous (Scoville and Milner, 1957). His memory impairment was prominent:

H.M. could recall few episodes after a surgery removing his hippocampal formation

(anterograde amnesia) without losing his ability to learn new motor skills. Patient

H.M. could remember episodes for a short time, but if distracted, he immediately

forgot (Scoville and Milner, 1957). His memory for events before the surgery was also

affected, but the impairment was most severe for events soon before the surgery (graded

retrograde amnesia) and was mostly restricted to personal events. H.M.’s memory

impairment is mostly attributed to the near-complete removal of the hippocampal

formation; however, some adjacent brain tissue was also removed (Annese et al., 2014).

The distinction between the memories affected by hippocampal and other

brain lesions gave anatomical evidence for the taxonomy of memory systems proposed

by Tulving (1972). The taxonomy distinguishes between the system for declarative

memory, which is the memory for facts (semantic) or events (episodic), and non-

declarative memory, a collection of memory faculties that includes procedural and per-

ceptual learning. Only declarative memory is affected by hippocampal lesions (Squire,

2004). Tulving (1972) defined declarative memory as a model of the external world that

allows comparison of relationships between objects, facts and events. The memory’s

episodic and semantic components are hard to experimentally test in animals. There-

fore, it is unanswered how this taxonomy of memory systems translates to non-human

animals. Nevertheless, the evidence presented in the sections below suggests that spe-

cialized memory systems that differently depend on the hippocampus are present across

species.
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1.2.2 Spatial memory

Studies in rodents revealed that hippocampus is critical for spatial memory – the ability

to recall locations and their relative positions in space in order to navigate between

them. Rats after removal of the hippocampus can learn simple rules to turn left or

right but perform badly when navigating on multiple-choice mazes (Kaada et al., 1961;

Kveim et al., 1964).

Later studies improved the hippocampal lesions to ablate hippocampal cells

without causing damage to the passing neural fibres and refined spatial memory tests.

Rats after the lesion perform worse in learning the location of an escape platform

hidden below water surface (water maze task, Morris et al., 1982, 1990). The distance

and time it takes them to find the platform after multiple learning trials is longer than

in control rats. The rats after the lesion are not impaired when the platform is visible

above the water surface, showing that the longer time and distance are not caused by

some motor, motivational or reinforcing changes (Morris et al., 1982). Consistent with

spatial memory impairment in rodents, human patients with hippocampal lesions are

impaired in creating object-location associations (Smith, 1988) and in tests referring

to acquired topographical knowledge of novel environments (Maguire et al., 1996).

Partial lesions of the hippocampus highlight the different involvement of the

dorsal, intermediate and ventral hippocampus in spatial memory. Lesions of the dor-

sal hippocampus cause spatial memory impairment in rats learning the location of

the escape platform in the water maze task for several trials, while lesions of the

intermediate-to-ventral hippocampus do not cause the impairment (Moser et al., 1993,

1995; Bannerman et al., 1999). However, later experimental evidence suggests that in-

termediate and ventral hippocampus are required for spatial memory during the early

phases of spatial learning. Intermediate hippocampus is required for learning when a

rat is given only one trial to learn the location of the escape platform (Bast et al.,

2009), and the ventral hippocampus supports navigation during the early phase of spa-

tial learning (Ruediger et al., 2012). Similarily, navigation in complex mazes requires

both the dorsal and ventral hippocampus. Lesions of either impair spatial navigation

when the rat needs to navigate around obstacles to a learned reward location (Contr-
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eras et al., 2018). It is important to note that the impairment in spatial memory caused

by lesions could be due to the lesioned part mediating some aspects of behavioural per-

formance that is necessary for spatial navigation but is independent of spatial memory

(Bast et al., 2009) – two aspects that are difficult to disentangle by behavioural studies.

Connectivity differences also suggest that the hippocampal domains are dif-

ferently involved in spatial memory. The cortical inputs to the dorsal and ventral hip-

pocampus come from non-overlapping parts of EC (Witter and Amaral, 2004), whose

intrinsic connections are segregated (Dolorfo and Amaral, 1998b,a). As a result, the

EC signal is processed by largely parallel hippocampal pathways (Moser and Moser,

1998). Dorsal hippocampus projects to several areas involved in spatial navigation,

while such projections from the ventral hippocampus are fewer. dCA1 and subiculum

target retrosplenial cortex (Cenquizca and Swanson, 2007) which is required for spatial

navigation (Vann et al., 2009). Additionally, the dorsal subiculum sends projections to

the medial and lateral mammillary nuclei and the anterior thalamic complex (Swanson

and Cowan, 1975) – two structures whose neuronal subpopulations tune activity to

particular head directions (Taube, 2007).

1.2.3 Affective behaviours and memory

Apart from spatial memory, the hippocampus is implicated in other aspects of be-

haviour. For instance, lesion studies show its involvement in locomotion (Kimble and

Pribram, 1963; Nadel, 1968), feeding (reviewed in Kanoski and Grill, 2017), stress

response (Jacobson and Sapolsky, 1991) and fear expression (Kjelstrup et al., 2002;

Fanselow and Dong, 2010). The affected behavioural aspects change along the dorso-

ventral axis (Fanselow and Dong, 2010; Strange et al., 2014; Bannerman et al., 2004).

The affective functions are attributed to the ventral hippocampus (Fanselow and Dong,

2010; Bannerman et al., 2004; Moser and Moser, 1998). Many of these functions cor-

relate with particular efferent connections from CA1 and subiculum, which are more

ample and diverse in intermediate and ventral than in dorsal hippocampus (Witter

and Amaral, 2004). Studies of these connections revealed that particular neuronal

populations have unique roles in controlling specific behaviours and in specific memory

types.
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Connections to the amygdala have received a particular interest because of

the amygdala’s role in unconditioned and learned fear (LeDoux, 2000). Projections to

the amygdala are much stronger from the intermediate and ventral CA1 and subiculum

than from their dorsal counterparts (Pitkänen et al., 2006). Accordingly, the dorsal and

ventral hippocampus are differently involved in fear memory (Hunsaker and Kesner,

2008). The difference was revealed by a paradigm testing contextual fear memory

(Hunsaker and Kesner, 2008). During contextual fear learning, the animal associates

an electric shock with the preceding tone cue and the chamber where the shock was

delivered. Afterwards, upon hearing the tone cue in the same chamber the animal

freezes, which is interpreted as a fear response. When the animal hears the tone in a

sufficiently different chamber, it does not express the fear response. The performance

of this task depends on the intact amygdala (Phillips and LeDoux, 1992) and the

hippocampus (Kim and Fanselow, 1992). Lesions of the dorsal hippocampus impair

learning and retrieval of contextual fear memories (Kim and Fanselow, 1992; Hunsaker

and Kesner, 2008), while lesions of the ventral hippocampus only impair the memory

retrieval (Hunsaker and Kesner, 2008), which depends on specific projections from the

ventral CA1 (vCA1) and subiculum to the amygdala (Xu et al., 2016; Jimenez et al.,

2018).

Intermediate and ventral hippocampus modulate two contrasting behaviours:

avoidance and approach. In rodents, avoidance is exemplified by the animals avoid-

ing open, exposed spaces. This behaviour decreases as result of ventral hippocampus

lesions (Kjelstrup et al., 2002). Avoidance is modulated by vCA1 projections to the me-

dial prefrontal cortex, which promote the avoidance (Padilla-Coreano et al., 2019), and

by projections to the lateral hypothalamus, which signal anxiolytic stimuli (Jimenez

et al., 2018).

Approach is regulated by both the intermediate and ventral hippocampus.

Activation of either inhibits approach to a conditioned stimulus (Ito et al., 2008; Britt

et al., 2012; LeGates et al., 2018; Zhou et al., 2019; Davis et al., 2020; Shpokayte et al.,

2020), while an increased approach correlates with strengthened excitatory synapses

from the intermediate CA1 (iCA1) (LeGates et al., 2018) and vCA1 (Zhou et al.,

2019) onto the nucleus accumbens shell. The nucleus accumbens shell was proposed
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to coordinate selection of reward-directed behaviours (Nic, 2007; Floresco, 2015), and

therefore could provide a pathway for iCA1 and vCA1 to invoke approach to learned

reward locations. The projections to the nucleus accumbens shell are not the only ones

involved in conditioned approach. Activity of the neurons projecting from the vCA1

to the lateral septum also controls approach to learned reward locations (Davis et al.,

2020; Kosugi et al., 2021). A synchronous activity of the lateral septum neurons that

project to the lateral hypothalamus promotes food intake (Car, 2017). As a result,

interactions between these two areas and the intermediate and ventral hippocampus

can lead to the appetitive behaviour in the presence of food-associated cues (Car, 2017).

The fact that both the approach and avoidance depend on the ventral hip-

pocampus indicates that the ventral hippocampus could balance these two behaviours.

Evidence in favour of this interpretation comes from experiments where the animal was

first conditioned to approach one and avoid another cue in a particular context. Later,

when tested on a combination of the two cues, the inactivation of the ventral hip-

pocampus skewed the animal’s choices towards the conflicting cue (Schumacher et al.,

2016; Riaz et al., 2017).

The description so far gives a view of the hippocampus as functionally segre-

gated along the dorso-ventral axis, in a way that follows changes in the hippocampal

input and output connectivity. While the evidence suggests a level of functional spe-

cialisation by the hippocampal domains, some authors emphasise the integral view of

the hippocampal function as the general memory network (Rolls, 1996; Eichenbaum

and Cohen, 2014). The conserved trisynaptic circuit throughout the hippocampus

gives a computational framework for learning spatial and non-spatial relationships and

associations (Rolls, 1996; Marr and Brindley, 1971; Whittington et al., 2020).
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1.3 Memory encoding

1.3.1 Neural mechanisms for memory

Co-active neuronal assemblies

In a proposal that dominates the current understanding of the cellular mechanisms for

memory, Hebb (1949) suggested that synaptic connections between cells strengthen to

bind them into co-active assemblies encoding information. A synapse would strengthen

if the two neurons it connects are active at the same time (Hebbian learning). The

resulting synaptic changes would have implications for the assembly reactivation, as

the activity in a fraction of the assembly cells could recall the encoded memory by

reactivating the entire assembly.

Synaptic plasticity

Experimental evidence confirms Hebb’s proposal that synapses are plastic. They can

strengthen or weaken the efficacy with which they excite or inhibit the postsynaptic

neuron. Synaptic transmission recorded in a neuron is strengthened by a brief, high-

frequency stimulation of the neuron’s excitatory inputs (Bliss and Lømo, 1973). The

increased synaptic transmission persists over several hours in vitro or over days when

induced in freely moving animals and is termed long-term potentiation (LTP) (Bliss

and Collingridge, 1993). The synapses that undergo potentiation are those which were

active at the time when the dendritic region where they terminate was depolarised

(Andersen et al., 1977). The lasting effects and specificity of LTP make it a suitable

substrate for memory encoding.

The induction of LTP relies on the detection of coincidental activity in the

pre- and postsynaptic neurons (Bliss and Collingridge, 1993). Such role was ascribed

to the N-methyl-D-aspartate (NMDA) receptor (Bliss and Collingridge, 1993). For its

channel to open, glutamate has to bind to its receptors at the same time as the channel’s

membrane potential is sufficiently depolarised. The NMDA channel is permeable to

Ca2+, which on entry initiates a molecular cascade that modifies the synaptic strength
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(Bliss and Collingridge, 1993; Yan-You Huang et al., 1996). The molecular changes

could take place in the pre- and postsynaptic neurons, and provide a physical substrate

that underpins encoding of neuronal assemblies envisioned by Hebb (1949).

The direction of the synaptic plasticity is affected by the timing of the neu-

ronal firing. A synapse whose pre- and postsynaptic neuron spiked in that order un-

dergoes LTP, while a synapse whose neurons spiked in reverse undergoes long-term

depression (LTD) (Markram et al., 1997; Bi and Poo, 1998). These two rules for

changes in synapses are known as spike-timing-dependent plasticity (STDP). STDP

can be induced by repeated pairings of precisely-timed single action potentials in the

pre- and postsynaptic neurons (Bi and Poo, 1998). Such neuronal activation is con-

sidered more biologically plausible than high-frequency stimulation because it could

conceivably occur during an animal’s behaviour.

Dependence of the synaptic plasticity on the directional activation of neurons

allows the creation of long, sequential neuronal patterns, which extend in duration

the assemblies consisting only of co-activated neurons proposed by Hebb (Paulsen and

Sejnowski, 2000). Additionally, the sequential firing patterns created by potentiation

could be stabilised by balanced LTD through recurrent connections (Paulsen and Se-

jnowski, 2000). This way, the spike-timing-dependent plasticity of synapses allows

storing complex temporal patterns of neuronal activity.

Memory engram

Experimental evidence indicates that cells active during an experience are later reac-

tivated during its recall (Reijmers et al., 2007; Liu et al., 2012; Ramirez et al., 2013).

The reactivated cell assembly was proposed to form a memory trace or engram, which

means their synapses underwent synaptic plasticity and their reactivation reinstates

the memory (Tonegawa et al., 2015; Josselyn and Tonegawa, 2020). Contextual fear

learning experiments localised sets of neurons whose experimental reactivation controls

the expression of conditioned fear. Activation of fear-memory engram cells formed in

DG leads to increased freezing, suggesting that the activation of these cells is suffi-

cient to recall memory (Liu et al., 2012; Ramirez et al., 2013); while inhibition of the

DG, CA1 or CA3 engram cells blocks the expression of freezing in the learned context,
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suggesting impaired memory recall (Tanaka et al., 2014; Denny et al., 2014). The suf-

ficiency and necessity of these cells for memory recall gives strong evidence for their

role in selective gating of the memory expression. Compared with the non-reactivated

cells, the DG memory engram cells have increased dendritic spine density (Ryan et al.,

2015). They also have increased synaptic transmission upon stimulation of the per-

forant path (Ryan et al., 2015), in-line with the hypothesis that these cells underwent

a form of LTP.

1.3.2 Systems consolidation

The initial encoding of memories is not permanent and their representations reorganise

across the brain in a process of memory consolidation. The consolidation continuously

modifies the memory encoding rendering it less liable to being forgotten (Dudai, 2012).

The idea for memory consolidation originates from the observations that the

medial temporal lobe (MTL), which encompasses the hippocampal formation, is in-

volved in declarative memories, but its necessity appears only temporary (Alvarez and

Squire, 1994; Squire, 2004). Human patients with MTL damage remember events tens

of years prior to the damage better than events one year prior (temporally graded

retrograde amnesia, Scoville and Milner, 1957). This finding is mirrored in primates

(Zola-Morgan and Squire, 1990), and rodents (Kim and Fanselow, 1992).

Presumably, memories that persisted the hippocampal damage formed in the

damage-spared regions, while the forgotten events relied on the hippocampal repre-

sentation. Alvarez and Squire (1994) proposed that memories are distributed across

the cortex, and MTL links those geographically separated representations. The dis-

tributed cortical network stores each memory fragment in a cortical region specialised

for particular information, while MTL maintains their coherence. Its damage results

in a failed recall of memories it binds. According to the proposal, the cortical repre-

sentations are gradually being bound together during the consolidation process when

MTL co-activates these representations and their synapses change through Hebbian

learning. Once the connections are strong enough, the memory becomes independent

of MTL.



24 Chapter 1. Introduction

Memories decay over time. The lack of hippocampal dependence for remote

memories, alternatively, could be due to hippocampus-specific forgetting. The hip-

pocampus is modelled as fast learning but as having a limited capacity that causes for-

getting (Marr and Brindley, 1971). Initially, the memory expression could be stronger

due to additive effects of hippocampal and cortical traces. However, McClelland et al.

(1995) argue against this interpretation. Memory performance was higher in animals

lesioned several days after learning than in subjects lesioned the day after (Kim and

Fanselow, 1992; Winocur, 1990). This difference can be explained by memory trans-

fer from the hippocampus during the pre-lesion period, but can not be explained by

additive cortical and hippocampal contributions.

Nadel and Moscovitch (1997) propose a model of the systems consolidation,

in which the hippocampal involvement in memory does not change without a change

in the remembered content. The model addresses the fact that the proposed consolida-

tion processes take tens of years to transfer memory from the hippocampus as observed

in patients with retrograde amnesia (Alvarez and Squire, 1994). Biological processes

taking that long duration appear unlikely. Nadel and Moscovitch (1997) suggest that

a new memory trace forms at the time of recall, resulting in multiple representations

of memory, that each time was re-encoded with the context of memory recall. Remote

memories have been reactivated more times than recent memories, and therefore left a

higher number of memory traces, which explains why fewer were lost due to retrograde

amnesia. When reactivated, memories are re-encoded along with the context of the

memory recall in the information-specific structures. As a consequence, the observed

retrograde amnesia is absolute for tasks that critically depend on the hippocampus,

such as spatial memory. In this theory, consolidation reorganises memory representa-

tions but does not entail memory transfer from the hippocampus. Instead, memory

consolidation means the neural representations are integrated into abstractions and

schemas of related events (Sekeres et al., 2018).

What connects the two different models of memory consolidation is that they

both postulate that the initial hippocampal representations of the memories transform

in a process that involves the hippocampus. Therefore, it is of interest to investigate
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the neural processes that could support that transformation and to track the memory

representations over time.

1.4 Hippocampal states for memory encoding

Coordinated activity of neurons gives rise to oscillatory patterns in electric fields

recorded in the hippocampus. The electrodes placed extracellularly record the LFP,

which is the summation of synaptic activity, neuronal spiking as well as non-spike-

related membrane voltage fluctuations (Buzsáki et al., 2012). The LFP of the hip-

pocampus switches between different oscillatory patterns marking distinct states that

associate with different animal behaviours (Vanderwolf, 1969). The two most promi-

nent states are theta-gamma oscillations (theta state; Figure 1.2A) and epochs with

irregular sharp-waves (sharp-wave state; Figure 1.2B). These states are interleaved with

the third state of mostly irregular LFP, which dominates during immobility (Kay and

Frank, 2019). Buzsáki (1989) proposed that the theta and sharp-wave states consti-

tute two stages necessary for memory encoding: first, a labile memory trace is encoded

during the theta phase; next, the synapses of that same memory trace are strength-

ened during sharp-waves. The sections below introduce these states and describe their

significance for memory.

50 ms

pyramidal cell layer

stratum radiatum

0.1 mV0.2 mV

100 ms

A B

Figure 1.2: Hippocampal LFP states. (A) Theta with nested gamma oscillations
recorded in the CA1. (B) Sharp-wave in stratum radiatum and the associated ripple
in pyramidal cell layer.
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1.4.1 Theta-gamma oscillations

Theta

Slow oscillatory activity dominates LFP of the rodent hippocampus during locomotion,

exploratory behaviours such as sniffing and rearing, and during rapid-eye movement

(REM) sleep (Vanderwolf, 1969; Kramis et al., 1975). Depending on the behavioural

state, the exact frequency of these slow oscillations called theta varies between 4 and

12 Hz in rodents (Vanderwolf, 1969; Kramis et al., 1975).

Extracellular theta rhythm is present across the entire dorso-ventral axis but

its phase is offset between regions, and the rhythm resembles a wave travelling from

the septal to the temporal pole of the hippocampus (Lubenov and Siapas, 2009). The

timing of cell firing is strongly modulated by the phase of theta oscillations. CA1 pyra-

midal neurons fire action potentials around the theta trough, when their inhibitory

input is lower (Mizuseki et al., 2009). They fire sporadically, issuing spikes that re-

peat across several adjoining theta cycles. Few pyramidal neurons are active at the

same time in this state, and different cells fire sequentially (Pastalkova et al., 2008).

This sequential activation persists even when animals run in-place on a wheel in the

absence of changing environmental cues, suggesting they can be internally generated

(Pastalkova et al., 2008).

Because theta state dominates in the hippocampus during exploration,

Buzsáki (1989) proposed that the spiking activity during theta state primes the

hippocampal network to lay a new memory of the experience. The role of theta activ-

ity might extend to computational mechanisms for information processing. Each theta

cycle chunks the sensory input and was proposed as a processing unit in the hippocam-

pus (Jezek et al., 2011; Gupta et al., 2012). Multiple sensory systems converge onto

the hippocampus, therefore, theta rhythm could also serve to limit the time window

when external inputs affect hippocampal spiking, which could support multi-sensory

integration (Mizuseki et al., 2009; Colgin, 2013).

Theta rhythm could coordinate the hippocampal activity with other brain

regions by aligning their spike timing and oscillations. In the ventral striatum, neurons

lock their spike timing to the CA1 theta phase during spatial memory tasks (van der
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Figure 1.3: Sources of hippocampal theta oscillations. Cholinergic sources
include medial septum (MS) and vertical limb of diagonal band of Broca (Kramis
et al., 1975); non-cholinergic sources include EC (Kramis et al., 1975), GABAergic
input to CA3 (Joshi et al., 2017) and resonant properties of CA3 recurrent circuit
(Buzsáki, 2002).

Meer and Redish, 2011). In the medial prefrontal cortex, spike timing and theta lock

their phase with the CA1 theta at decision points during spatial working memory tasks

(Jones and Wilson, 2005; Benchenane et al., 2010). Such coordination of rhythms may

be a mechanism to synchronise the activity between regions at the times when they

interact while allowing them separate processing at other times (Jones and Wilson,

2005; Fries, 2015).

Theta generation

Theta oscillations are present across several brain structures. Multitude of sources

has been implicated in theta generation (Figure 1.3) The MS diagonal band of Broca

has been initially identified as a potential source by lesion or inactivation studies that

abolished theta oscillations in the hippocampus (Green and Arduini, 1954; Petsche

et al., 1962). Moreover, an early study on the rabbit demonstrated that MS neurons

fire in bursts of theta frequency which could provide the theta-generating activity

(Gogolák et al., 1968).

Subsequent studies made a distinction that highlighted the presence of multi-

ple sources for the the hippocampal theta: sources that can be abolished by atropine, an

antagonist of acetylcholine receptors, and other sources that were resistant to atropine

(Kramis et al., 1975). Acetylcholine is a neuromodulator released in the hippocampus

from the cholinergic neurons in the MS. These compose 5–10% of the MS neurons.

Thus, it was proposed that the atropine-sensitive theta oscillations could be associ-

ated with MS activity while the atropine-resistant theta oscillations with EC activity

(Kramis et al., 1975). The atropine-resistant origin could be maintained by the me-
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dial EC GABAergic neurons that target local hippocampal interneurons and can drive

theta-modulated activity (Melzer et al., 2012).

Cholinergic projections from the MS to the hippocampus can not directly be

responsible for the theta currents (Buzsáki, 2002). Cholinergic activation of muscarinic

receptors on the hippocampal pyramidal cells is much too slow for the generation of

theta rhythm (Hasselmo and Fehlau, 2001). Instead, it might affect theta rhythm by

depolarising pyramidal cells and interneurons (Madison et al., 1987), and by modu-

lating the synaptic inhibition and conductance (Hasselmo, 2006). In addition to the

cholinergic projections, MS sends GABAergic projections to the hippocampus. Inac-

tivation of both neuronal types in the MS is needed to abolish hippocampal theta

oscillations during locomotion (Yoder and Pang, 2005). MS inhibitory neurons are

believed to be the main theta source as some of them fire rhythmically with theta fre-

quency (Tóth et al., 1997; Yoder and Pang, 2005). Their subclass specifically targets

the CA3 interneurons (Joshi et al., 2017), and their activity leads to a synchronous

disinhibition of the CA3 pyramidal neurons, thus coordinating the CA3 excitability

(Joshi et al., 2017).

Likely, there are also other factors that contribute to the hippocampal theta

rhythm. These include resonant properties of neurons and of the recurrent CA3 circuit

(Buzsáki, 2002). The multitude of sources makes it a robust, high-amplitude rhythm.

Gamma

Hippocampal theta oscillations co-occur with higher frequency, gamma oscillations (30–

100 Hz), which were originally termed hippocampal fast activity (Buzsáki et al., 1983;

Bragin et al., 1995; Csicsvari et al., 2003). A single theta cycle nests multiple cycles

of gamma oscillations, and its phase modulates the gamma amplitude (Bragin et al.,

1995). Gamma oscillations also appear independently of theta oscillations (Buzsáki

et al., 1983) but their power is the highest during theta state (Csicsvari et al., 2003). In

CA1, different rhythms within the gamma band are driven by several inputs that arrive

at different times during the theta cycle (Schomburg et al., 2014). CA3 input drives the

power of slow gamma, entorhinal input drives medium gamma and local CA1 network

drives fast gamma oscillations (Schomburg et al., 2014). Experiments suggest a link
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between memory and gamma oscillations: slow and fast gamma oscillations increase

their amplitude during memory recall in spatial memory task (Schomburg et al., 2014;

Fernández-Ruiz et al., 2017); and medial prefrontal cortex neurons synchronize their

firing with gamma oscillations during the memory encoding stage of a spatial working

memory task (Spellman et al., 2015).

1.4.2 Sleep

Consolidation of the memory is supported by sleep (Dudai, 2012). Sleep can be divided

into two alternating phases: REM and non-rapid-eye movement (NREM). REM is

characterized by dominating theta oscillations in the cortical and hippocampal activity,

atonia of postural muscles and bursts of rapid eye movements. NREM is characterized

by dominating slow, high voltage cortical oscillations. This phase is also called slow-

wave sleep.

Both REM and NREM might contribute to memory consolidation. Selective

deprivation of REM sleep post learning leads to impaired spatial memory in rodents

(reviewed in Graves et al., 2001) and to impaired learning of perceptual tasks in humans

(Avi et al., 1994). The deprivation selectively impairs new learning without affecting

performance in previously learned tasks (Avi et al., 1994). Because of experimental

limitations, evidence after selective deprivation of NREM sleep is lacking (Graves et al.,

2001). However, this phase of sleep also might have a role. Next, I describe evidence

for the role of hippocampal sharp wave ripples (SWRs) occurring during NREM sleep.

1.4.3 Sharp-wave ripples and replay

Hippocampal SWRs are the largest scale events of synchronous excitation that can

be identified in the mammalian brain. They occur most frequently during slow-wave

sleep, and at an intermediate rate during awake immobility (Buzsáki, 2015). They are

defined by two co-occurring events in the LFP: a sharp-wave in stratum radiatum, and

ripples which are high-frequency (100–250 Hz) oscillations in the CA1 pyramidal cell

layer.
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The sharp-wave is a brief, usually shorter than 120 ms, large deflection in

the LFP. It is caused by a synchronous depolarisation of a large fraction of CA1

neurons by a strong bursting input from CA3 arriving via Schaffer collaterals (Buzsáki

et al., 1983; Buzsáki, 1986). The depolarisation of the CA3 pyramidal cells is preceded

by ramping up CA2 pyramidal neuron activity, which is thought to initiate SWRs,

especially in awake animals (Oliva et al., 2016). CA2 depolarises CA1 directly and

indirectly through CA3 (Oliva et al., 2016). The resulting firing of CA3 neurons drives

concurrent excitatory and inhibitory currents in CA1, leading to the firing of a sparse

CA1 pyramidal cell population (English et al., 2014). The interneurons and pyramidal

cells fire at different phases of the ripple, suggesting the inhibitory signal modulates

the time window for pyramidal cell spiking (Csicsvari et al., 1999; English et al., 2014).

Arguably, SWRs could support all three stages of hippocampal memory en-

coding: its initial formation, later consolidation, and recall. First, the awake SWRs

could support learning through reinforcement and reevaluation processes just after the

behavioural episodes (Foster and Wilson, 2006). Later, SWRs during sleep and during

awake immobility could promote consolidation by reinforcing the neuronal activation

representing the experienced perceptions and responses (Buzsáki, 2015). Finally, SWRs

occurring during behavioural tasks could support the recall of memory (Joo and Frank,

2018).

Both LTP and LTD could take place as the result of SWRs during memory

encoding and its later consolidation. The magnitude of the excitation during SWRs

satisfies requirements for induction of LTP such as high-frequency stimulation (Bliss

and Collingridge, 1993; King et al., 1999). The fast timescale and synchronous ac-

tivity could further support spike-timing-dependent plasticity in CA1 cells (Markram

et al., 1997; Buzsáki, 2015). Synapses whose postsynaptic neurons fired later than

their presynaptic neurons would undergo LTP according to the STDP rules (Buzsáki,

2015). Additionally, SWRs could be a homeostatic mechanism of memory consolida-

tion, during which all but the recently potentiated synapses undergo LTD (Norimoto

et al., 2018).

During SWRs, CA1 pyramidal cells activate in sequence. The sequence re-

peats the order of the cell firing from a previous behavioural episode in theta state
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(replay, Lee and Wilson, 2002; Foster and Wilson, 2006; Csicsvari et al., 2007; Diba

and Buzsáki, 2007). The replay sequence progresses faster than the sequential firing

during the initial experience. During sleep, the sequences are usually reactivated in the

same order (forward replay, Lee and Wilson, 2002; Diba and Buzsáki, 2007). During

immobility periods, sequences are reactivated both in forward and reverse order (re-

verse replay, Foster and Wilson, 2006; Diba and Buzsáki, 2007; Csicsvari et al., 2007).

Most of the replay events co-occur with SWRs and can extend their duration to co-

occur with several SWRs events (Davidson et al., 2009). The connections between

subsequently reactivated cells could be potentiated during the SWRs (Buzsáki, 2015).

SWRs and replay occurring after experience could be mechanisms of system

consolidation. They could reinforce memory traces that involve or are bound by the

hippocampus (Alvarez and Squire, 1994; Nadel and Moscovitch, 1997). In turn, the

SWRs and replay occurring during experience could be mechanisms of memory recall.

Memory recall is thought to reactivate the neural activity that occurred during the

recalled experience (Tonegawa et al., 2015; Josselyn and Tonegawa, 2020). The experi-

ence’s past neuronal representations could be reinstated by the hippocampal replay. In

support of this proposed function of replay, the hippocampus was observed to replay

activation of cells from the previous reward-directed runs before a rat starts running

(Pfeiffer and Foster, 2013), and to replay the previous activity patterns before a human

subject recalls an image (Norman et al., 2019).

Learning enhances the incidence of SWRs, promoting memory encoding and

consolidation. Experiments that disrupt or prolong SWRs demonstrate their causal

role in both stages. Disruption of SWRs during spatial learning (Jadhav et al., 2012)

and during post-learning sleep (Girardeau et al., 2009; Ego-Stengel and Wilson, 2010)

impairs the learning progress, which, in contrast, improves if the SWRs are artificially

prolonged (Fernández-Ruiz et al., 2019). The naturally occurring SWRs correlate with

learning. The incidence of SWRs increases during a novel experience (Cheng and Frank,

2008) and during post-learning sleep (Eschenko et al., 2008). Lastly, the incidence

of long-duration SWRs during a spatial memory task correlates with improved recall

(Fernández-Ruiz et al., 2019). Spatial memory tasks usually involve animals navigating

towards the reward. The reward promotes the incidence of SWRs, which frequently
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occur during immobility after reward consumption (Csicsvari et al., 2007; Foster and

Wilson, 2006; O’Neill et al., 2006). Unexpected reward (Singer and Frank, 2009) or

an increase of the reward size increases SWRs incidence (Ambrose et al., 2016), while

omission or a decreases of the reward size decrease SWRs incidence (Ambrose et al.,

2016). The enhanced SWRs and replay in response to reward could be a mechanism

binding the rewarding outcome to the experience that preceded it (Foster and Wilson,

2006).

SWRs coordinate activity outside of the hippocampus. This might be critical

for system consolidation, which needs to temporally coordinate the activity in the

distributed memory network (Alvarez and Squire, 1994). During sleep, SWRs co-occur

with spindle events. These are large amplitude cortical oscillations in a 10–16 Hz

frequency band, which can be up to 3 s-long (Siapas and Wilson, 1998; Sirota et al.,

2003; Staresina et al., 2015; Latchoumane et al., 2017). Spindles are also implicated in

memory consolidation (Staresina et al., 2015; Latchoumane et al., 2017). Additionally,

the SWRs modulate spike-timing outside of the hippocampus. They modulate the

spiking activity of the EC in sleeping and awake animals (Chrobak and Buzsáki, 1996;

Ólafsdóttir et al., 2016). Similarly, SWRs strongly modulate the firing in the medial

prefrontal cortex of awake animals (Jadhav et al., 2016).

1.4.4 Role of neuromodulation by acetylcholine in controlling

the hippocampal states

The MS is one of several brain regions where cholinergic neurons are located. The

majority of the cholinergic input to the hippocampus arrives in stratum oriens from

two adjacent areas: the MS and the nucleus of the vertical limb of the diagonal band

(Mesulam et al., 1983). In the hippocampus, the released ACh activates nicotinic

and muscarinic receptors (Thiele, 2013). The muscarinic receptors are a class of slow-

activating G-coupled receptors (Thiele, 2013). Based on their subunit composition,

they can be classified into M1–5 subtypes (Thiele, 2013). Among them, M1 is most

prevalent in CA1, while M2 in the other CA subfields (Levey et al., 1991).
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ACh levels vary between sleep and wake as demonstrated by microdialysis

measurements (Marrosu et al., 1995; Fadda et al., 2000; Giovannini et al., 2001; Fadel,

2011). In the hippocampus, ACh levels are high during exploration, low during slow-

wave sleep and intermediate during REM sleep. Different hippocampal ACh levels map

onto different hippocampal states: high levels during exploration and REM sleep over-

lap with theta state, and lower levels during immobility and slow-wave sleep overlap

with the hippocampal sharp-wave state. These different levels of cholinergic neuro-

modulation correspond to different stages in memory encoding.

Online memory encoding

Studies that manipulated the cholinergic transmission during experience demonstrate

that a high ACh level might be necessary at that stage. Blocking cholinergic receptors

with scopolamine, a muscarinic receptor antagonist, affects learning but not memory

retrieval in human subjects learning word pairs (Atri et al., 2004) and in primates dur-

ing visual recognition tasks (Aigner et al., 1991). Local infusions of scopolamine in the

perirhinal and entorhinal cortices of primates further identify that the effects of cholin-

ergic modulation on learning can be localised in areas that include the hippocampal

formation (Tang et al., 1997).

Several mechanisms could contribute to the cholinergic effects on learning.

First, ACh regulates synaptic plasticity. Depending on the concentration levels in

hippocampal slices, ACh induces LTP or LTD (Auerbach and Segal, 1994, 1996). It

can also modify the direction of synaptic time-dependent plasticity (Brzosko et al.,

2017). Second, ACh modulates neuronal transmission from the hippocampus. During

theta state, the high ACh level suppresses feedback from the hippocampus to layers 5/6

of the EC (Chrobak and Buzsaki, 1994). As a result, layer 5/6 neurons of the EC have

a low firing rate in this state (Chrobak and Buzsaki, 1994). Hippocampal projections

to other cortical areas could also be inhibited by the cholinergic release (Hasselmo,

1999). During SWRs, the activity of layer 5/6 EC neurons is higher than during theta

rhythm (Chrobak and Buzsaki, 1994). In this state, the synaptic transmission from

the hippocampus is improved (Hasselmo, 1999). Therefore, the cholinergic levels can

bidirectionally regulate information flow from the hippocampus.
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Offline memory encoding

Memory encoding following the experience might require low-to-medium ACh levels

that contrast with high ACh levels during online memory encoding. Cholinergic tone

and MS cholinergic neuron discharge are at their lowest during slow-wave sleep and

awake immobility. These states are associated with the highest SWRs incidence (Fadda

et al., 2000; Zhou et al., 2019; Ma et al., 2020).

SWRs are a mechanism proposed to support the offline formation (Buzsáki,

1989) and later consolidation of the memory (Joo and Frank, 2018). SWRs incidence

decreases when the ACh level is optogenetically elevated in urethane anaesthetised

and sleeping mice (Vandecasteele et al., 2014; Zhou et al., 2019; Ma et al., 2020). In

addition, theta-gamma oscillations increase upon cholinergic activation during sleep

(Vandecasteele et al., 2014). The increase in theta-gamma oscillations is consistent

with in vitro results in hippocampal slices that cholinergic release can induce and

maintain theta and slow gamma oscillations in CA1 and CA3 (Fisahn et al., 1998;

Fellous and Sejnowski, 2000; Dine et al., 2016).

Any changes in hippocampal theta oscillations due to ACh release might be

accompanied by changes to the sleep architecture. In human subjects, drug-increased

ACh level results in a relatively prolonged REM sleep (Schredl et al., 2001). The

prolonged REM sleep improved memory consolidation in elderly patients whose ACh

level is low (Schredl et al., 2001).

The different levels of ACh during NREM sleep and awake immobility could

explain a change in the direction of cell reactivation during SWRs (Atherton et al.,

2015), which also could be relevant for memory consolidation. The reverse replay

during immobility after an animal has explored the environment can be triggered by

the lingering excitability of cells (Atherton et al., 2015). In this case, the replay often

starts with the most recently excited neurons and travels through the hippocampal

circuit loop reactivating the previous neurons in the sequence from the reactivated

experience (Csicsvari et al., 2007; Davidson et al., 2009). Medium level ACh during

the awake SWRs would facilitate the otherwise spike-subthreshold synaptic drive and

LTP (Hasselmo, 1999). During sleep, when ACh is low, forward replay would follow
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the direction of synaptic changes, which replicate activation order from the experience

(Atherton et al., 2015).

To summarize, ACh levels modulate the hippocampal state and both the high

ACh levels during the experience and low-to-medium ACh during immediately after

the experience might be necessary for memory encoding.

1.5 Hippocampal cognitive map for remembered lo-

cations

1.5.1 Place cells and other spatially modulated cells

An animal’s ability to navigate its environment is thought to rely on the spatially

modulated activity in hippocampal neurons (O’Keefe and Nadel, 1978). O’Keefe and

Dostrovsky (1971) discovered hippocampal cells which preferentially fire at specific

locations in the environment. These cells are known as place cells and the locations

of their activity as place fields. The activity of place cells is modulated by the animal

orientation in the environment (O’Keefe and Dostrovsky, 1971; Muller and Kubie,

1987). Nevertheless, their activity provides an allocentric, map-like marker of the

position in space (O’Keefe and Nadel, 1978). They emerge immediately with no prior

experience of the environment (Hill, 1978). However, their activity is specific to each

environment (O’Keefe and Conway, 1978). Place cells are distributed in a random-like

pattern across the entire space (Rich et al., 2014), so the potential reader of the activity

in a population of place cells can decode the animal’s location at any time during the

animal’s navigation (Wilson and McNaughton, 1993).

Hippocampal states dictate the timing of the place cell activity and their

relation to the animal’s spatial location. During theta state, which dominates during

running and exploratory behaviour, place cells fire at their specific locations in bursts

timed preferentially around theta trough (O’Keefe and Recce, 1993). Within a single

theta cycle, sequences of place cells fire in an order. As an animal moves through the

place field of a cell, the cell fires in a progressively earlier phase of the theta cycle (theta
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precession, O’Keefe and Recce, 1993). During awake SWRs, sequences of the activated

place cells are longer (Davidson et al., 2009). The sequences usually start or end with

place cells with their field at the animal’s current location and progress in the same or

reversed order as during behaviour but on a faster timescale (Foster and Wilson, 2006;

Diba and Buzsáki, 2007; Csicsvari et al., 2007).

Diversity of place cells across the hippocampal formation

Place cells were initially discovered in CA1 (O’Keefe and Dostrovsky, 1971) and were

since found in other areas of the hippocampal formation: CA3 (McNaughton et al.,

1983), DG (Jung and McNaughton, 1993), subiculum (Sharp and Green, 1994) and

EC (Quirk et al., 1992). The place cells in these regions differ in their spatial tuning

and stability of their spatial coding. CA1 and CA3 place cells have the most spatially

tuned activity but they change the location of the place field (remap) over time more

than the DG cells which remain stable (Hainmueller and Bartos, 2018).

The place cells also differ along the dorso-ventral axis. Consistent with the

differential effects of dorsal and ventral hippocampus lesions (Moser et al., 1993, 1995;

Bannerman et al., 1999; Ruediger et al., 2012; Bast et al., 2009), place field sizes

increase from the dorsal to the ventral pole of CA3 (Kjelstrup et al., 2008; Royer et al.,

2010) and CA1 (Jung et al., 1994; Maurer et al., 2005; Keinath et al., 2014). However,

decoding of the spatial position of the animal from the population of ventral and dorsal

CA1 place cells gives non-different precision (Keinath et al., 2014). Therefore, while

its representation changes, spatial location encoding is present across the entire dorso-

ventral axis.

Origin of place cell activity

The localised firing of place cells most likely integrates the sensory perception and

self-motion signals (McNaughton et al., 2006). The visual perception can not solely

lead to place cell activity. This is because place cells persist and can form in darkness

(Quirk et al., 1990). Additionally, the visual cues differ with the animal’s orientations,

and the orientation was observed to modulate place cell activity only in some studies

(Muller and Kubie, 1987).
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Self-motion signals could update the internal representation of the current

position in a process of path-integration (McNaughton et al., 1996). The position

updating could be based on two parameters of movement: the direction of travel and

the distance travelled. The first could be assisted by cells tuned to a particular head

direction, which were discovered in the subicular complex (Taube et al., 1990) and later

found in other brain areas (Taube, 2007). The head-direction tuning could emerge from

tracking the head’s self-motion and its angular velocity (McNaughton et al., 1991). The

travelled distance could be measured using velocity signals or grid cells in the medial

EC. Grid cells have firing fields that are equally spaced across the environment in a

hexagonal arrangement (Hafting et al., 2005). Their firing is localised regardless of

changes in locomotion direction and velocity (Hafting et al., 2005). Their periodic

pattern could allow them to encode a metric of distance. Grid cells are organised into

modules, each module sharing the same scale, which defines the distance between the

cell’s fields. Within a module, cells differ in the angular orientation of their fields. This

arrangement allows the grid code to encode a high precision spatial location, even in

large environments (Fiete et al., 2008). Additionally, their activity relayed through

the direct projections to the hippocampus could drive the emergence of place cells

(McNaughton et al., 2006). The firing of grid cells is not always stable in space. This

instability introduces a difficulty for the utility as the metric of distance. After the

physical space was stretched, the pattern of grid cells changed (Barry et al., 2007).

Additionally, the grid shape of their fields can be distorted by changing the shape of

the environment (Krupic et al., 2018). These two observations suggest that the grid

cells are anchored to visual cues.

Over time, path-integration errors accumulate. The accumulating errors could

account for the less location-specific activity of place cells when animals navigate in

darkness (Quirk et al., 1990). To improve the precision of the estimated location,

the environmental cues need to be integrated into the estimate (McNaughton et al.,

1996). For the place cells to signal allocentric location, perception of visual cues in a

self-centred, egocentric frame needs to be transformed to an orientation-independent,

allocentric frame. Several classes of cells that have spatial receptive fields in an ego-

centric frame were found in the brain (reviewed by Bicanski and Burgess, 2020). The
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responses of these cells to stimuli in an egocentric frame could be combined with the

head-direction signal to arrive at allocentric representations that could generate place

cell activity (Bicanski and Burgess, 2020). To increase their spatial tuning, place cells

could combine the signals originating from the visual and olfactory system with self-

motion signals.

1.5.2 Changes in spatial cell activity after learning

CA1 place cells appear early during exposure in a novel environment (Hill, 1978).

McNaughton et al. (2006) proposed that path-integration signals are responsible for

this early place cell activity, while the learning of visual landmarks leads to correction

of the tracking by the self-motion. The latter develops over time and improves the

precision of the place cells: with extended exposure to the environment, the place cells

increase their spatial specificity and fire more reliably in the same locations (Cacucci

et al., 2007; Roux et al., 2017). SWRs were proposed to stabilise the place fields

(Csicsvari et al., 2007; Dupret et al., 2010). Interrupting the naturally occurring awake

SWRs prevents this stabilisation in CA1 (Roux et al., 2017). In tasks where mice

learn a fixed reward location, the frequency of awake SWRs correlated with memory

performance (Csicsvari et al., 2007; Dupret et al., 2010). Therefore, the increased

tuning and stabilisation of place cells due to their reactivation during SWRs (Roux

et al., 2017) could support navigation to the reward.

The hippocampus was proposed to build a cognitive map to store information

about learned spatial relations between locations, including objects in the environment

(O’Keefe and Nadel, 1978). The encoding of object locations would be linked to the

spatial representations, influencing place cell responses. In line with the reasoning that

hippocampal activity encodes the learned object locations, the activity of dCA1 place

cells increases at salient locations and objects (Deshmukh and Knierim, 2013; Sato

et al., 2020), and their activity persists even when those objects are removed (Deshmukh

and Knierim, 2013). dCA1 place cells accumulate at learned reward locations (Dupret

et al., 2010; Boccara et al., 2019; Zaremba et al., 2017; Kaufman et al., 2020; Sato

et al., 2020) and their activity increases when animals approach the reward (Zaremba

et al., 2017; Kaufman et al., 2020). The place cell accumulation correlates with the
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strength of memory for the reward location and persists when the animals navigate

towards the learned location after the reward is removed from the environment. This

effect seems to be restricted to CA1, as CA3 representations do not change the same

way after learning (Dupret et al., 2010). The accumulation is due to both existing

place fields shifting towards the reward and previously non-spatially modulated cells

becoming consistently active at the reward location (Mizuta et al., 2021).

Grid cells are also modulated by the memory of reward. They increase their

activity selectively inside reward-proximal fields (Butler et al., 2019). When reward is

delivered at multiple locations, their grid pattern shifts towards the reward location

(Boccara et al., 2019). This evidence from the place and grid cells suggests that the

brain’s spatial representations form and subsequently update to incorporate memory

of reward location.

1.5.3 Models of navigation to remembered reward location

Place cells and other spatially modulated cells provide the basis for theoretical models

of how animals navigate towards a learned reward location. Two classes of solutions

were proposed: one that changes connection strengths between cells in a network that

control the animal’s locomotion and the other that explicitly encodes the goal location

so it can be compared with the current location.

Navigation based on network-weight changes

The model by Redish and Touretzky (1998) proposes that Hebbian learning leads to

changes in the hippocampal CA3/CA1 fields that produce activation of place cells in a

reward-directed sequence. In the model, repeated reactivation of the reward-directed

paths leads to co-activation of recurrently connected CA3 place cells. As a result of

Hebbian learning, their connections strengthen in an asymmetric direction, and they

fire in a sequence that leads towards the reward.

Redish and Touretzky (1998) omits how the firing of place cells leads to the

animal selecting particular actions. This is solved by a class of models learning the

best actions in a given location by reinforcing choices that previously led to reward
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(reinforcement learning). These models train a network of weights that connect loca-

tions to appropriate locomotor actions at that location, such as turning west. Training

updates their synaptic weights (Arleo and Gerstner, 2000; Foster et al., 2000). Reward

needs to affect the learning of distant actions. The solution by Foster et al. (2000) ap-

plies temporal difference (TD) learning, which associates location signalled by a place

cell with a prediction of how close the reward is. The reward prediction at a given

location is calculated as a time-discounted reward value: at the reward location, the

reward is maximal, and so is the reward prediction; with distance from the reward,

its value decays exponentially. Adjacent locations have similar reward predictions, so

moving between them causes a gradual change in reward prediction. Learning grad-

ually updates the reward prediction values based on the error between all successive

reward values experienced after visiting a particular location and the reward prediction

(reward prediction error). Such error could be relayed by the dopaminergic neurons

of the ventral tegmental area (Arleo and Gerstner, 2000) whose activity tracks the

reward prediction error (Schultz et al., 1997). The associations between the locations

and reward prediction are used to learn the best action for a location, which can be

learned simultaneously as learning reward predictions. Foster et al. (2000) propose the

synaptic changes can happen as a form of learning where synapses between place cells

and action cells that fire together strengthen if the reward prediction was too low, and

weaken if the prediction was too high.

The models described above allow fast learning of a new reward location.

However, their major drawback is that they are slower to update after the reward

location is changed. That is because the spatial relationship between locations is

encoded in the network in a way that depends on the reward location.

Another drawback of the models proposed by Arleo and Gerstner (2000);

Foster et al. (2000) is that they assume a static representation of space. However,

place cell activity changes after learning (e.g. Dupret et al., 2010). In a successor

representation framework, a form of TD learning was proposed to modify the place cell

activity (Stachenfeld et al., 2017). In the model, the place cells encode successor states

and can be combined with reward prediction values during navigation. The successive

states could link individual states represented in the wider brain network, and this
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way affect decision-making or locomotion (Sosa and Giocomo, 2021). The successor

representation model explains some experimental results such as asymmetric shapes of

place fields that follow the travelling direction (Mehta et al., 2000) and higher firing

rate at the reward, but fails to explain other results such as accumulation of place cells

at reward (Dupret et al., 2010; Zaremba et al., 2017; Kaufman et al., 2020; Sato et al.,

2020).

Navigation based on the encoding of reward location

An alternative solution for the brain is to explicitly encode reward location. The

brain could encode a snapshot of the activity of the spatial cells at the reward. This

encoding would be used during navigation to calculate displacement from the current

to the reward location (Burgess and O’Keefe, 1996; Foster et al., 2000; Bush et al.,

2015; Erdem and Hasselmo, 2012).

A dedicated set of goal cells could take a snapshot of place cell activity at

the reward (Burgess and O’Keefe, 1996). During later navigation, the goal cell activity

would be proportional to that of place cells active at the time of the snapshot, therefore

the activity of the goal cells would scale with reward proximity. The animal could

probe the activity in different directions and follow the one that increases activity in

the goal cells, or additionally decode the reward direction (Burgess and O’Keefe, 1996).

Alternatively, a mapping from place cell activity could be used to learn the coordinates

of their place fields, so that the reward location coordinates could be compared with

the coordinates of the currently active place cells (Foster et al., 2000).

An issue with the navigation based on place cells is that their activity remaps

after changes in the environment (Muller and Kubie, 1987) and over time (Ziv et al.,

2013). The snapshot of reward would need to be re-learned as the place cell represen-

tations change. This issue is addressed by models based on grid cells, which preserve

their pattern of firing across environments (Hafting et al., 2005). Grid cell signal could

be combined to form place selective activity, reminiscent of place cells, but which is

invariant over time (path integration, McNaughton et al., 2006). The snapshot of grid

cell activity at reward could be encoded in a dedicated set of goal cells. Later dur-

ing navigation, the animal could simulate movement away from the current location
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that follows different directions and choose the one that activates the goal cells (Mc-

Naughton et al., 2006). Alternatively, the animal moving towards the learned reward

location could follow a displacement vector. The vector can be calculated as a differ-

ence between the current and reward positions encoded by grid modules (Bush et al.,

2015). Such calculation is possible because decoding jointly from activity of several

grid modules encodes a set of possible positions of the animal (Fiete et al., 2008). Inter-

estingly, an artificial neural network trained through reinforcement learning to control

a computer agent navigating an environment develops grid-like responses in some of

the network units (Banino et al., 2018). The agent can navigate to a selected reward

location, taking shortcuts on the way.

The experimental results show the grid cell fields are replicated across different

environments (Hafting et al., 2005); however the fields can still be affected by reward

location learning (Boccara et al., 2019; Butler et al., 2019). Because both place cells

and grid cells change after learning of reward location, their dynamic representations

could encode reward information. Therefore, the network-level in place cells and grid

cells changes, most likely, would accompany any encoding in the dedicated goal-cell

populations.

1.6 Aims of the thesis

I aim to address the following three questions about the hippocampal encoding and

recall of reward memory:

1. Does acetylcholine differently affect learning and the hippocampal activity de-

pending on the behavioural phase of a spatial memory task?

2. Do memories for different reward locations share hippocampal representations

that persist in time?

3. Do dorsal and intermediate hippocampus differently encode learned reward loca-

tion?

Much is known about encoding spatial memory for reward location but how

the cholinergic system affects this process is unclear. Neuromodulation by ACh affects
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the hippocampal states observed in the oscillatory rhythms. These states are different

during the navigation and immobility at reward and I tested the hypothesis that they

have different roles in memory encoding. Using optogenetic stimulation of MS cholin-

ergic neurons, Chapter 3 investigates how cholinergic stimulation affects learning and

hippocampal activity during navigation and immobility at the reward.

When an animal navigates, hippocampal place cells fire in specific locations

in the environment. The neural activity when the animal passes through the same

locations changes after learning. Chapter 4 investigates how the memory of reward

location is encoded in the hippocampal activity as the mice approach the learned reward

location. Previous studies demonstrate the memory of reward modulates the activity

of dCA1 place cells. I hypothesise that the reward location is encoded differently in

the iCA1 whose anatomical connections differ. I test whether CA1 cells respond in a

way reminiscent of goal coding cells proposed by some navigational models or whether

the activity changes at the network-level support reward-directed navigation.
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Methods

2.1 Animals

All animal experiments were performed under the Animals (Scientific Procedures) Act

1986 Amendment Regulations 2012 following ethical review by the University of Cam-

bridge Animal Welfare and Ethical Review Body (AWERB) under personal license

held by the author and under project licence held by the supervisor.

A total of 16 adult male wild-type (WT, C57Bl/6), 51 ChAT-Ai32 mice, 5

ChAT-Cre mice (Jackson Labs strain #006410) and 13 Thy1-GCaMP6f mice (Jackson

Labs strain: #024276; Dana et al., 2014) were used for the experiments. ChAT-Ai32

mice were bred from ChAT-Cre mice that express Cre-recombinase under the control of

the choline acetyl-transferase promoter and mice of the Cre-reporter Ai32 line (Jackson

Labs strain #012569), which carries a Cre-dependent, enhanced YFP (eYFP)-tagged

channelrhodopsin-2 (ChR2)-containing expression cassette (Madisen et al., 2012).

Mice were housed with 2-4 cage-mates on a 12:12 h light cycle. Thy1-

GCaMP6f mice were housed in cages with running wheels, in a room with reversed

light cycle. Other mice were housed inside standard cages in a room with daylight-

aligned light cycle.

44
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2.2 Surgery

Surgeries were carried out following minimal standard for aseptic surgery. Meloxicam

(2 mg/kg intraperitoneal) was administered as analgesic 30 min prior to surgery ini-

tiation. Mice were anaesthetised with isoflurane (5% induction, 1-2% maintenance,

Abbott Ltd, Maidenhead, UK) mixed with oxygen as carrier gas (flow rate 1.0–2.0

l/min) and placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA,

USA). The skull was exposed after skin incision and Bregma and Lambda were aligned

horizontally.

2.2.1 Optogenetic implants

To modulate the cholinergic activity, an optic fibre was implanted above the MS. A

hole was drilled at coordinates 1.0 AP, 0.0 ML in mm from Bregma, and an optic fibre

(200 µm, 0.22 NA; Doric Lenses) was lowered to -3.6 DV at low speed (1 mm/min).

Once positioned just above the MS, the optic fibre was secured to the skull using

dental cement (Super-Bond C & B; Prestige Dental, Bradford, UK). Six ChAT-Cre

mice underwent viral transduction of MS cholinergic neurons upon injection of viral

particles. Two mice were injected with 0.5 µl of AAV5/9-EF1a-dio-EGFP-WPRE and

three with 0.5 µl of AAV5/9-EF1a-dio-ChR2(H134R)-EYFP-WPRE (titers ranging 1.2

to 13× 1012 vg/ml; UNC vector Core; USA), which were delivered through a metal

cannula fixed to a 5 µl Hamilton syringe.

2.2.2 Electrophysiology implants

To perform recordings in freely moving animals, 10 mice were implanted with paired

wire LFP electrodes, each consisting of two twisted 75 µm teflon-coated silver wires

(AGT0510, World Precision Instruments, Hitchin, UK). The tips were spaced 150–300

µm apart in vertical direction. Mice were implanted bilaterally in CA1 at coordinates

-1.7 AP, ±1.2 ML, 1 & 1.35 DV in mm from Bregma, DV being taken from the surface

of the brain to the lower of the electrodes. Ground and reference silver wires were

connected to a stainless microscrew implanted over the cerebellum at -5.3 AP, ±1.5 ML.
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To record the electromyogram activity, a 75 µm teflon-coated silver wire was implanted

in the neck muscle. All wires were connected to a 32 pins Omnetics connector (Genalog,

Cranbrook, UK).

The exposed brain was covered with a protective dura gel (Cambridge Neu-

roTech, UK) to prevent damage upon cementing of the electrodes. LFP electrodes were

individually glued to the skull using UV-cured dental cement (Tetric EvoFlow) and the

implant was secured to the skull using dental cement (Super-Bond C & B; Prestige

Dental, Bradford, UK).

2.2.3 Calcium imaging

For experiments using calcium imaging, mice underwent two surgeries: the first one

to implant a GRIN lens directly above the cells of interest, and the other to fix an

aluminum baseplate above the GRIN lens for later attachment of the miniature mi-

croscope. The procedures followed the protocol as described in Resendez et al. (2016).

A craniotomy was drilled above the implantation site. For the dCA1 implanted mice,

the craniotomy was 1.5–2 mm in diameter. The cortical tissue and 2 layers of corpus

callosum fibres above the hippocampal implantation site were aspirated. Saline was

applied throughout the aspiration to prevent desiccation of the tissue. A GRIN lens

(1 mm diameter, 4.3 mm length, 0.4 pitch, 0.50 numerical aperture, Grintech) was

stereotaxically lowered at coordinates -1.75 AP, 1.75 ML, 1.35–1.40 DV (in mm from

Bregma) and fixed to the skull surface with ultraviolet-light curable glue (Loctite 4305)

and further fixed with dental adhesive (Metabond, Prestige Dental) and dental acrylic

cement (Simplex Rapid, Kemdent). A metal head bar was attached to the cranium

using dental acrylic cement for head-fixing the mouse during the microscope mounting.

For the iCA1 implanted mice, a 0.9 mm diameter hole was drilled, and no tissue was

aspirated. The GRIN lens (0.6 mm diameter, 4.95 mm length, 1.0 pitch, 0.5 numer-

ical aperture, Grintech) was lowered inside a 21 gauge needle using a custom-made

stereotaxic guide that allowed precise placement of the lens. The lens was placed at

coordinates -3.16 AP, 3.6–3.8 ML, 3.40–3.70 DV and the needle guide was retracted

allowing for fixation of the lens to the skull surface.
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If the GCaMP6f expression was visible in the implanted mice, 4 weeks later

the mice were anaesthetised for the purpose of attaching a baseplate for the microscope

above the top of the GRIN lens. The baseplate was fixed into place with dental cement

(Tetric EvoFlow) and the miniscope was unlocked and detached from the baseplate.

At the end of the implantations, 0.3–0.5 ml saline was injected subcutaneously

for hydration and mice were placed in a post-surgery chamber +34.0 °C until full recov-

ery from anaesthesia. The mice were allowed to recover for 5 days before habituation

started and during these 5 days were monitored daily and given oral Meloxicam as an

analgesic.

2.3 Behavioural testing

Mice were kept on a restricted feeding schedule for the duration of behavioural testing

to maintain at least 85% of their free food body weight. The mice were habituated to

the food reward of condensed milk before the behavioural testing.

Behavioural tests were recorded with an overhead webcam video camera. The

video was recorded at 24 Hz frame rate. The mouse body location was tracked with

DeepLabCut software (Mathis et al., 2018), and custom software was written to map

the mouse coordinates to the relative location on the maze. The extracted tracks were

smoothed by applying locally weighted scatterplot smoothing (LOWESS) which used

a moving average of coordinates in 15 video frames. Periods of running were identified

when the running speed smoothed with a moving average 0.5 s window exceeded 4

cm/s.

2.3.1 Y-maze task

Effects of cholinergic modulation on long-term spatial memory were assessed using the

appetitive Y-maze task. In the task, mice have to learn to find a food reward on

a three-arm maze. Acquisition of this spatial memory depends on the hippocampus

function (Bannerman et al., 2012). We used food reward of approximately 100 µl of

condensed milk mixed 1:1 with water. The food reward remained at a fixed location
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consume reward

Mouse removed
from maze

a

Figure 2.1: Schematic of Y-maze task for spatial learning of reward location.
Mice were trained on an elevated maze to find food reward (red dot) placed at the end
of one of the three arms. If they chose the correct arm they were allowed to consume
the reward but were removed from the maze if they chose the incorrect arm. The
reward location remained fixed relative to the room’s visual cues across all learning
trials.

in relation to visual cues in the room. The three-arm maze, elevated 82 cm from the

floor, consisted of grey-painted 50×13 cm arms bordered by 1 cm high white plastic

walls, which extended from a central triangular platform. Plastic food wells (1.5 cm

high) were positioned 5 cm from the distal end of the arms.

Before the start of the learning task, mice were habituated to the maze in a

different room to where behavioural testing would occur. During testing, mice were only

allowed to make a single choice of the arm in each trial and were only allowed to consume

the reward if they chose the correct arm, otherwise, they were removed from the maze

and the trial was ended (Figure 2.1A). Target arm assignments were counterbalanced

such that at least one mouse of each experimental group was designated to each arm.

Each mouse received ten trials per day for 6–10 consecutive days, five starts from the

left of the target arm and five starts from the right in a pseudo-random order with

no more than three consecutive starts from the left or right. The interval between

the within-day trials averaged 10 minutes during which the mice were placed to a

holding cage. The maze was rotated either clockwise or anticlockwise after each trial

to discourage the use of intra-maze cues to help solve the task.
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2.3.2 Cheeseboard maze task

Changes in the CA1 activity after learning of reward locations were investigated in a

spatial navigation task on a 120 cm diameter cheeseboard maze with 177 evenly spaced

wells, similar to the one used previously by Dupret et al. (2010).

For the first three days, the mice foraged for rewards baited in randomly

selected wells. The rewarded wells were baited with approximately 100 µl of condensed

milk mixed 1:1 with water. The mice explored the cheeseboard in three or four trials

for a total of 30 minutes per day. A different, random set of wells was baited in each

trial. Next, the mice performed a spatial learning task. The mice had to learn two

locations with baited wells (Figure 2.2). The baited wells had fixed locations that

were at least 40 cm apart chosen pseudorandomly for each mouse. Mice started the

trial in one of the three locations on the maze: south, east or west. The maze was

rotated and wiped with a disinfectant (Dettol) in-between the trials to discourage the

use of intra-maze cues. Landmarks of black and white cues were installed on the walls

surrounding the maze. The trials were terminated once the mice had consumed both

rewards or after 300 s, whichever was sooner. Each learning day consisted of 8 trials

with 2 to 4-minute-long breaks between the trials.

After the first 5-day-long learning period, memory retention was tested on the

next day in a 4–5-minute-long unbaited trial. The trial was started from a previously

unused starting position (north). The performance was measured by the number of

reward zone crossings counted when the mouse crossed a circular zone within 20 cm

from either of the reward locations. The number of crossings was normalised by the

total travelled distance.

Following the learning sessions and memory retention test for the first set

of locations, one of the two reward locations was translocated. The new location was

pseudorandomly chosen to be at least 40 cm away from the current and previous reward

locations. The learning of the new sets of locations was performed over two days and

tested in an unbaited trial the following day as described above.
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Figure 2.2: Schematic of cheeseboard task for spatial learning of reward
location. Mice learned sets of two locations with baited wells (triangles) on a cheese-
board maze – a 120-cm-diameter maze with 177 evenly spaced wells (circles). The
reward location remained fixed relative to the room’s visual cues across all learning
trials. Mouse movement during a sample trial is overlaid on top of the maze.

2.4 Histological processing

Following the behavioural experiments, mice were terminally anaesthetised by intra-

peritoneal injection of pentobarbital (533 mg/kg) and then transcardially perfused

with phosphate-buffered saline (PBS) followed by 4% paraformaldehyde. Brains were

removed and post-fixed for 24–48 hours, then rinsed and subsequently cryoprotected

overnight in 30% (w/v) sucrose dissolved in phosphate-buffered saline (PBS). Coronal

sections of the hippocampus were cut using a microtome (Leica) with 80–100 µm

thickness for identification of GRIN lens location and 40–50 µm for other purposes.

After rinsing in PBS, the sections were mounted in Fluoroshield with DAPI (Sigma).

Sections were examined with a Leica Microsystems SP8 confocal microscope using the

10× and 20× magnification objectives. The placement of the electrodes was aided by

the application of Dil on electrodes prior to their insertion in the brain.

To verify the expression of ChR2 fused with the eYFP tag and visualise the lo-

cation of cholinergic neurons, sections were immunostained for eYFP and ChAT. After

rinsing in PBS, sections were incubated for one hour in a blocking solution comprising

PBS with 0.3% (weight/volume) Triton X-100 and 5% (weight/volume) donkey serum

(Abcam) containing 1% (weight/volume) bovine serum (Sigma). Sections were then

incubated for ≥15 hours at 4 ℃ with chicken anti-GFP (1:1000, Abcam AB13970) and

goat anti-ChAT (1:500, Milipore AB144) antibodies. The sections were then washed,
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followed by 2 hours of incubation in a blocking solution containing anti-chicken Alex-

afluor488 (1:400; Life Technologies A11039) and anti-goat Alexafluor594 (1:1000, Ab-

cam AB150132) at room temperature. Finally, the sections were rinsed and mounted

in Fluoroshield with DAPI (Sigma). The eYFP+ and ChAT+ cells were quantified

manually using the ImageJ software.

2.5 Optogenetic stimulation

Task-phase specific effects of optogenetic stimulation were tested on the Y-maze by four

different stimulation protocols (Figure 2.3A). The stimulation started either from the

beginning of the trial (navigation and throughout cohorts), or when the mouse reached

the goal zone (goal cohort). Light stimulation ceased when the mouse reached the goal

zone for the navigation cohort. Estimated location of the optical fibre implants in the

compared groups are shown in Figure 2.3B–D.

Optogenetic activation was achieved by light-sensitive cation channel ChR2,

which opens upon activation with blue light. The activation was performed using a

blue laser at 473 nm (Ciel, Laser Quantum, Cheshire, UK), powered at 25 ± 1 mW with

50-ms-long pulses at 10 Hz. Stimulation was controlled using custom made procedures

in Igor Pro (WaveMetrics, Oregon, USA).
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Figure 2.3: Optogenetic stimulation during Y-maze task and optical fibre
implant location. (A) Mice were pseudo-randomly split into four groups to test
four optogenetic stimulation conditions: (i) no stimulation, (ii) stimulation only until
the goal zone was reached (grey line), (iii) stimulation throughout the maze, and (iv)
stimulation only inside the goal zone. Blue indicates a stimulation area in the four
conditions. (B) Placement of the optical fibre above MS. (C) Bright-field image of
a coronal section of the brain with the dashed lines showing implantation site. Scale
bar: 1 mm. (D) Estimated locations of the implant tip. AP, Anterior-Posterior in mm
from Bregma.

2.6 Electrophysiological recordings

2.6.1 Recordings in anaesthetised mice

To test the effectiveness of the protocol for optogenetic stimulation, multi-unit activity

was recorded from the MS during the stimulation in two anaesthetised ChAT-Ai32
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male mice. The experiment was conducted by Dr Sze-Man Clara Tang, and the method

description below is adapted from her Ph.D. thesis.

Mice were anaesthetised with intraperitoneal injections of 1.2 g/kg urethane

(Sigma-Aldrich, Missouri, USA) and their head was fixed in a stereotaxic frame (Kopf

Instruments, Tujunga, USA). A heating pad was used to help maintain body tempera-

ture at 35 ± 1 ℃. The head was shaved, levelled and a craniotomy was made above the

MS. Optical activation in the MS (1.0 AP, 0.0 ML, –3.6 DV in mm from Bregma) was

performed with a stripped optical fibre (200 µm, 0.22 NA; Doric Lenses). Multi-unit

activity in the MS was recorded using an extracellular tungsten microelectrode (127

µm diameter, 1 MΩ; A-M Systems). During the experiment, the surface of the exposed

skull was covered with saline (0.9% NaCl). Surgery was terminal and at the end of the

experiment, a 3 mA current was passed through the recording electrode for 2 s, causing

a lesion at the recording site. Coronal slices of the MS using a vibratome (VT1200S,

Leica Biosystems, Milton Keynes, UK) and visualised under a bright-field microscope

to verify the recording site.

2.6.2 Recordings in freely moving mice

Electrophysiological data was acquired from five ChAT-Ai32 male mice, three ChAT-

Cre mice expressing ChR2 (both referred to as ChAT-ChR2) and two ChAT-Cre mice

expressing GFP in the MS (ChAT-GFP). The mice were implanted with LFP elec-

trodes for electrophysiological recordings in the CA1 (Figure 2.4A) and optic fibre for

optogenetic stimulation in the MS as described in the section above. The LFP was

recorded in sleeping mice and in mice performing the appetitive Y-maze task.

Staggered wire electrodes were used to record the field potentials. The elec-

trodes targeted the CA1 pyramidal cell layer. The signal recorded from one electrode

was subtracted from that in the other (Figure 2.4B). The differential signal enhances

signal differences between the hippocampal layers like the locally generated phase-

reversed signals, such as theta, gamma, and ripple events (Buzsáki et al., 1983; Buzsaki

et al., 1992). This subtraction procedure also cancels out synchronous changes on both

electrodes, like those caused by movement artefacts. In addition, EMG signal was

recorded to detect any muscle movements that could correlate with mobility of the
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Figure 2.4: Recording LFP from CA1 implanted electrodes. (A) Location of
the recording electrodes marked in red by Dil in a DAPI-stained image of CA1. (B)
LFP signal recorded during sleep. The differential between channel 1 and channel 2
signals (top two traces) was taken as the LFP signal (middle trace). The electromyo-
graphy (EMG) signal (bottom trace) was used to exclude from the SWR detection
periods with detected muscle movement.

mice. Changes in the consecutive samples of the EMG signal were detected. If the

change exceeded a threshold set to 2 standard deviations, a 500 ms-long window of the

signal centred on the noise timestamp was removed.

For recordings during sleep, after connecting the electrodes to the Whisper

recording acquisition system (Neural Circuits, LLC, VA, USA) and connecting the

optic fibre to the laser, the mouse was placed in a cage (different to their home cage),

to which the mouse was habituated over a period of two days. The floor of the cage was

covered with standard bedding. The recordings started after the mice visibly stopped

moving for an extended period of time and consisted of 30-s-long laser stimulation at

473 nm, power 25 ± 1 mW using 50-ms-long pulses at 10 Hz alternating with 60–120 s

intervals without the stimulation. An overhead webcam camera tracked the movement

and position of the mouse. The videos were manually reviewed together with the

recorded EMG signal to exclude trials that were interrupted by the mice moving.

For Y-maze task, the mice underwent the same habituation and learning

protocol as described above in the appetitive Y-maze task section. During learning,

mice were connected to the laser and to the Whisper acquisition system and placed at

the starting arm of the maze. The laser was activated in the goal zone on alternating

trials to allow within-subject comparison. Data from these five mice was not used in

the behavioural analysis as the stimulation protocol (stimulation performed in 50% of
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the trials) was different from that used in behaviour only (stimulation performed in all

trials).

All recordings were performed using the Whisper acquisition system sampling

at 25 kHz, laser stimulation was triggered using custom made procedures in Igor Pro

and synchronised with the electrophysiological and webcam recordings.

2.7 Electrophysiology data analysis

The analysis used one of the bilaterally implanted CA1 LFP electrodes that was se-

lected based on the quality of signals for both theta oscillations and ripples. For ripple

detection, the method from Vandecasteele et al. (2014) was adapted. The signal was

downsampled to 1.25 kHz and 100–250 Hz bandpass filtered with Type II Chebyshev

phase-preserving filter (filter order = 4, stopband attenuation = 20 dB). Next, the

filtered signal was squared, mean-subtracted, and smoothed by applying a moving av-

erage with 10-ms-long window. Ripples were detected when the squared signal crossed

2 standard deviations for 20–300 ms duration and its peak crossed 7 standard devi-

ations. Only ripples with spectral peak frequency ≥140 Hz were identified as SWRs

(Figure 2.5; Sullivan et al., 2011). Spectral peak frequency of a ripple was estimated as

the frequency with maximum power spectral density (PSD) estimated with multitaper

method on the signal from the ripple start to end. Ripple incidence was calculated as

the number of detected ripples divided by the recording duration.

PSD was estimated using Welch’s method (MATLAB built-in pwelch function

with 0.5 s window and 0.25 s overlap) for frequencies spanning the range from 1 to 200

Hz. To visualise instantaneous changes in PSD during Y-maze trials, spectrograms were

created with continuous wavelet transform using Morlet wavelets (MATLAB built-in

cwt function with default parameters). Theta band was defined as 5–12 Hz and slow

gamma as 25–45 Hz. The slow gamma frequency upper bound was chosen to exclude

any line noise contamination at 50 Hz. To estimate relative theta and slow gamma

power, the FOOOF tool was used (Donoghue et al., 2020). It models the estimated PSD

as the sum of an aperiodic component and Gaussian peaks in narrowband frequencies.

The aperiodic component was fitted on the PSD log-log plot with straight lines, which
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Figure 2.5: Detected SWRs. Example traces with LFP signal centred around the
time of SWR peak amplitude recorded in different mice.

corresponds to a pink noise-like (1/f) background. To minimize the model error —

the difference between the actual and the modelled PSD — the aperiodic component

was estimated in two frequency ranges separately (3–15 Hz and 15–150 Hz). Relative

theta and slow gamma peaks and their spectral peak frequencies were taken from the

Gaussian peaks fitted above the aperiodic component.

2.8 Calcium imaging

The mice used for the experiment expressed GCaMP6f (Chen et al., 2013) fluores-

cent protein under the Thy1 promoter. The use of transgenic mice ensured constant-

over-time fluorescent expression. Calcium imaging was acquired using Miniscope — a

head-mounted microscope (v3 and v4 Miniscope; Ghosh et al., 2011; Ziv et al., 2013).

Microscope emitted blue excitation light (4̃70 nm spectral peak) whose power was

adjusted to approximately match the mean brightness of the image across mice. Fluo-
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Figure 2.6: Location of the dCA1 and iCA1 implanted GRIN lenses for
calcium imaging. (A) Schematic showing configuration of the implanted GRIN lens
and the head-mounted miniscope during calcium imaging. (B) Coronal section of the
brain with the dashed lines showing implantation site of the GRIN lens implanted
above dCA1 (left) and iCA1 (right) pyramidal cells expressing GCaMP6f. (C) dCA1
pyramidal cells expressing GCaMP6f located below the edge of the implanted GRIN
lens. (D) Reconstructed location of the recorded cells under the GRIN relay lens
implanted in the iCA1 of six imaged mice. Horizontal bars mark the bottom of the
relay lens.

rescence emissions were passed through an emission filter (bandpass filter, 525/50 nm)

and collected by a CMOS imaging sensor. Before the start of the recording, the mouse

was head-fixed on a running wheel to attach the microscope and adjust its focal plane

so it matched the field of view from the previous recordings. Afterwards, the mouse

with the Miniscope attached was placed in a start box for 3–5 minutes before record-

ing sessions started. The calcium imaging was acquired at 20 Hz, and synchronously

started with webcam camera recording.

2.9 Calcium signal processing

CaImAn software was used to motion-correct any movements between the calcium

imaging frames, identify the cells and extract their fluorescence signal from the video

recordings (Giovannucci et al., 2019). The method for cell and signal detection was

based on constrained non-negative matrix factorization (Pnevmatikakis et al., 2016),

which separates sources of the fluorescence changes. Because the 3-dimensional imaged

volume is projected onto 2-dimensional image, some cells in the 2-dimensional projec-
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tion can have overlapping region of interests (ROIs). Constrained non-negative matrix

factorization isolates sources of the changes in the overlapping ROIs. The isolation

is possible because each source results in correlated fluorescence values in neighbour-

ing pixels, and different sources change fluorescence at different times. The identified

sources will include neurons and their processes, and the neuronal activity can be

attributed to specific cells.
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Figure 2.7: Calcium imaging from the hippocampus. (A) Example field of view
of the microscope cropped to the area with detected cells. The image shows a maximum
projection calculated on a 50-s-long imaging video. (B) ROIs of cells detected across
all sessions in a day from an example mouse. (C) Background-subtracted fluorescence
traces of example cells shown in (B). (D) Deconvolved fluorescence traces shown in
(C). The top panels show examples from dCA1 and the bottom panels from iCA1
recordings.

CaImAn extracted background-subtracted calcium fluorescence values and de-

convolved the signal. The deconvolved signal can be interpreted as a scaled probability

of a neuron being active. The calcium imaging videos recorded in the same-day trials

were motion-corrected to a common template frame and were concatenated. Signal

extraction and further processing were performed on the resulting long video, allowing

the detection of cells and signals present across the trials. To improve the computa-

tional performance, the videos were cropped to a rectangle containing the imaged cells

and the video width and height was downsampled by a factor of 2.

The identified putative cells were automatically filtered using CaImAn. The

results were visually inspected and the filtering parameters adjusted to exclude non-

cell like shapes and traces. The criteria used for the filtering included a threshold for

signal to noise ratio of the trace, the minimum and maximum size of the component’s
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Figure 2.8: Matching cell identities between days. (A)Matching of cell identity
(cell registration) based on the ROIs in calcium recordings from two different days. An
example with iCA1 cells found on one day is shown in green and on the other day in
red. The figure shows a fragment of magnified recording’s field of view. (B) Spatial
correlation of the matched ROIs as a function of the distance between their centroids.

ROI, the threshold for consistency of the ROI at different times of the component’s

activation, and a threshold for the component’s resemblance to a neuronal soma as

evaluated by a convolutional neural network provided with CaImAn software.

The deconvolved traces were smoothed in time with a Gaussian kernel (σ =

75 ms). To reduce the data size for the analysis, the trace was then time binned by

averaging the values in 200 ms non-overlapping bins. Using the trace smoothed in time

reduced the importance of the exact location for boundary between the time bins.

For the comparison of dCA1 and iCA1 activity, calcium event rates are re-

ported. A calcium event was detected whenever the cell’s deconvolved signal crossed

20% of its maximum value.

The identity of cells between the recordings on different days was matched

using a registration algorithm implemented in CaImAn (Giovannucci et al., 2019). The

algorithm aligned the image with ROIs of cells from all days to the image from the

reference day and matched the cells when their centres of mass were closer than 10 µm.

The matched cells had low displacement (mean distance 1.9 µm, IQR: 1.1–3.1 µm) and

highly correlated regions of interest (median 0.72, IQR: 0.66–0.77, Figure 2.8B).
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2.10 Calcium data analysis

2.10.1 Place cell detection and analysis

To assess how spatial locations modulated the cell activity, its place map was calcu-

lated. Place map shows mean neural activity per spatial bin calculated during running

periods. The total activity inside 6 x 6 cm bins was summed from the smoothed de-

convolved signal. The mean neural activity in the spatial bin was then calculated as

a ratio of the total activity to the total occupancy in the bin after both maps were

smoothed across the space using a 2D Gaussian kernel with σ = 12 cm. The place

map was filtered to include spatial bins with total occupancy that exceeded 1 s (5 time

bins, thresholded on unsmoothed total occupancy). The size of place fields scales with

the environment (Harland et al., 2021). To facilitate comparison with other studies,

the field size is reported as percentage of the maze area.

Spatial information of a cell’s activity was calculated using the place map

values. Spatial information (W. E. Skaggs, B. L. McNaughton, K. M. Gothard, 1993)

was defined as:

spatial_information =
N∑
i=1

pi
λi
λ
log2

λi
λ

(2.1)

where λ represents the mean value of the neural signal, pi represents the probability

of the occupancy of the i-th bin, and λi represents the bin’s mean neural activity.

Dividing by λ ensures the metric is independent of the cell’s average activity. The

units of spatial information calculated on calcium fluorescence can be reported as bits

per action potential (Climer and Dombeck, 2021). However, because the actual action

potentials were not measured, spatial information is reported as arbitrary units.

Spatial information was compared to the value expected by chance. The

chance level was calculated by circularly shifting the activity with regard to the actual

location. For each cell, the activity was circularly shifted within the trial by a time

offset chosen randomly (minimum offset 10 s for baited and 20 s for unbaited trials).

If the cell’s spatial information exceeded 95% values calculated on 1000 random shifts

of its activity, it was defined as a place cell.
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Figure 2.9: Computing place maps. (A) Examples of dCA1 place cells. Locations
of calcium events marked with a red dot are overlaid over mouse movement paths (top);
place maps are shown below. Grey pixels represent unsampled locations. (B) As in
(A) but for iCA1 place cells.

A limited number of neuronal responses sampled per spatial bin can lead

to an upward bias in the estimated spatial information (Treves and Panzeri, 1995).

To correct for this bias, the spatial information values are reported relative to the

spatial information expected by chance. The value expected by chance was estimated

as the mean spatial information from the time-shifting procedure used for place cell

detection. This procedure did not require binning the neuronal responses from the

calcium imaging as required by analytical estimation (Panzeri et al., 2007), and has

been used previously to estimate mutual information bias (Akrami et al., 2018).

The field size was defined as the fraction of a place map with values exceeding

half the maximum value. Centres of place fields were identified in the place map by

finding local maxima exceeding half the global maximum. The local maxima were

restricted to be at least 25 cm apart and have at least one adjacent spatial bin exceeding

half the global maximum.

2.10.2 Calculation of place fields at reward location

The centre of mass for the field was calculated and used to report the field’s distance

from the reward locations. For place cells with multiple place fields, the shortest

distance from the reward was used. Fields ≤20 cm from the reward location were

referred to as reward fields. For the count of reward locations where a place cell had a

reward field, only cells that were classified as a place cell in at least half of the test trials

were considered. The distribution of the expected counts was generated by a process

that shuffled cell identities assigned to test trial place maps. The count of reward fields
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was summed for each resulting cell. A significantly higher fraction of cells with zero or

many fields at reward location means their count exceeded that in 95% of the shuffles.

2.10.3 Bayesian decoders

Two Bayesian decoders were constructed from the neural activity: the first decoding

spatial location of the running mouse, the second decoding if the mouse was running

inside a reward zone.

The decoders used smoothed deconvolved activity after it was binarised. The

binarised trace had value 1 when the value exceeded the 90th percentile of the cell’s

values for that day (active cell); otherwise, the binarised trace had value 0 (inactive

cell).

The Bayesian decoder assumed activity of the cells was independent given

the output, and it chose the output to maximize posterior probability given the neural

data:

ŝ = argmaxsP (s)
ncells∏
i=1

P (ri|s) (2.2)

For decoding the mouse location during running, s represents the spatial bin, P(s)

represents the prior occupation probability in the spatial bin s, and P (ri|s) represents

the probability of the i-th cell being active in the spatial bin s.

For decoding whether the mouse was running in the proximity of learned

reward location, s represents whether the mouse is inside a reward zone (within 20 cm

from the reward), P(s) represents prior occupation probability inside or outside of a

reward zone, and P (ri|s) represents the probability of the i-th cell being active inside

or outside of a reward zone.

The probabilities P (ri|s) and P (s) in equation 2.2 were calculated on a train-

ing dataset and were used to decode ŝ in dataset used for evaluation.

Two decoders were trained and evaluated:

(1) The decoder for the spatial location was trained and evaluated using a cross-

validation method as follows: The day’s session was split into five equal parts. A



2.10. Calcium data analysis 63

single part was reserved for evaluation and the others for training the decoder.

The decoder was trained and evaluated, and the process was repeated five times,

each time with a different part of the data reserved for evaluation. The decoder

was compared to a baseline random decoder which predicted spatial location

based on prior occupancy probabilities. The decoder errors were reported as a

distance between the actual and the predicated spatial bin. Because fewer cells

were recorded in the iCA1 than in the dCA1, I also compared decoders trained

on equally sized populations by randomly sampling 30 cells from each recorded

session (72% of the iCA1 recordings had more than 30 cells). The spatial decoding

from equally sized neuronal populations was repeated 50 times with different cell

samples.

(2) The decoder of whether the mouse was inside a reward zone was trained on data

from two unbaited test trials, which were performed on different days and shared

a single learned reward location. The training dataset was filtered to times when

the mouse was in proximity of the learned reward location (distance ≤15 cm), or

the mouse was well away from the reward location (distance ≥40 cm). The de-

coder was evaluated on data from another unbaited test trial. In this trial, one of

the learned reward locations was different from the ones in the training dataset,

and one of the learnt reward locations was missing from the current ones. Only

data from the proximity of either of these two locations was used for evaluation

(the reward zone vs the previous reward zone). The evaluation was restricted

to trials that shared at least 10 cells with the training trials. The decoder as-

sumed equal prior P(s) of the zones. The resulting decoder’s performance was

compared with a baseline random decoder. The decoder errors were reported as

the percentage of correct predictions.

2.10.4 Downsampled data comparison

To verify that differences in maze occupancy between foraging and test trials were not

the reason for the changes in place cell properties, the data was randomly downsampled.

For each spatial bin in the two sessions, an equally sized subset of timestamps was

selected to match the lower of the two occupancies. The selected timestamps were
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used to construct place maps and to identify place cells. The random downsampling

procedure was repeated 100 times, and the statistics about the place field locations and

their distance to reward locations were aggregated from 100 downsampling repetitions.

2.10.5 Population activity on reward approach

To analyse the population activity during an approach to reward locations, periods of

running that exceeded a minimum duration of 3 s were used. In the baited trials, the

running bouts were aligned by the time of the tracked mouse body stopping within 7

cm from the reward. For the bouts stopping at non-rewarded locations, only the stops

at distance >24 cm from the reward were included. In the unbaited trials, the running

bouts were included if they crossed a location <18 cm from a learned reward location

and covered a distance >12 cm. The deconvolved z-scored activity was aligned to the

timestamp when the mouse was the closest to the learned reward location. The mean

population z-scored activity was calculated for 1 s-long bins and the activity at 4–5 s

before the bout finish was compared to the activity at 0–1 s.

2.11 Quantification and statistical analysis

Results are reported using two statistical methods. First, I estimated p-values using

null hypothesis significance testing. The p-values are low for small effects assessed on

large sample sizes; they depend on unseen data, and on the plan for how many animals

to test experimentally (Wagenmakers, 2007). Therefore, I also report Bayes Factors

(Keysers et al., 2020) — a measure of relative evidence for two competing hypotheses.

It is calculated as a ratio of posterior probabilities: the probability of the alternative

hypothesis given the observed data over the probability of the null hypothesis given the

observed data. I assumed equal prior probability of the alternative and null hypothesis.

In addition to providing further statistical support to significant p-values, Bayes Factor

analysis gives evidence for the absence of differences where the effects are non-significant

(Keysers et al., 2020).

Mixed-effects models were used for the statistical analysis to allow for unbal-

anced sampling and correlated samples. Both apply to these data, for example, due to
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correlations between the samples of cell activity recorded at the same timestamp, or

recordings from the same mouse on different trials. The effects were assessed with lin-

ear and log-linear mixed-effects models. The fixed effects were the statistically tested

effects such as implant location (dCA1 vs iCA1) or cell type (place cell vs non-place

cell); the random effects were modelled as mouse-specific and session-specific random

variables. The random effects were also included in the estimation of the linear regres-

sion model.

For the frequentist approach, the model coefficients were estimated using the

restricted maximum-likelihood method. The residual errors were checked for linear

model assumptions: zero mean, no correlation with the predicted values and ho-

moscedasticity. To satisfy these assumptions, some models used a log-linear trans-

formation of the response variable. The significant effects and their interactions were

reported and the post-hoc tests were performed on differences in least-square means of

the paired groups. The tests used Satterthwaite estimation of degrees of freedom and

adjusted p-values using Holm-Bonferroni correction.

For the Bayes factor analyses, the mixed-effects models mirrored the frequen-

tist models and had the same fixed and random effects. The priors were specified as

Cauchy distribution with
√

2/2 scale for fixed effects and 0.5 scale for random effects.

These priors follow the expectation that the differences between mice are smaller than

the effects of interest. Bayes factor for the effect of interest was calculated as the

probability of the full model over the probability of the model excluding the tested

effect and was reported as BF10. Following Jeffreys’ thresholds (Jeffreys, 1961), the

magnitude of evidence from the data was graded as

• strong evidence for difference (BF10 > 10),

• moderate evidence for difference (10 > BF10 > 3),

• inconclusive (3 > BF10 > 0.33),

• moderate evidence for no difference (0.33 > BF10 > 0.1),

• strong evidence for no difference (0.1 > BF10).
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The effect sizes were reported with 95% credibility intervals (CI; equal-tailed

interval). The interval can be interpreted as a range within which the effect falls with

95% probability given the evidence from the observed data. Credibility intervals were

estimated from the samples of the model’s posterior distribution.

Statistical analysis was performed in R version 3.6.3. The linear mixed-effects

models were built in R with package ’lme4’ and p-values for the fixed effects were

obtained using Satterthwaite estimation of degrees of freedom implemented in the

’lmerTest’ R package. Least-square means were calculated and tested with ’lsmeansLT’

function from the same package. Bayesian linear mixed-effects models were created

using ’BayesFactor’ R package and ’lmBF’ function.

Data was reported as mean ± SEM unless otherwise stated.



Chapter 3

Cholinergic control of hippocampal states for

encoding memory

3.1 Introduction

The LFP in the hippocampus switches between distinct states: theta-gamma oscilla-

tions and epochs with irregular sharp-waves (O’Keefe and Nadel, 1978; Buzsáki, 1989).

These two patterns correspond to distinct behavioural states: in sleeping animals, theta

state dominates REM sleep and sharp-waves occur during non-REM sleep; in awake

animals, theta state is pronounced during mobility while sharp-waves occur during

immobility periods (O’Keefe and Nadel, 1978; Buzsáki et al., 1983; Buzsáki, 1986).

Buzsáki (1989) proposed these two states of the hippocampal LFP constitute two

stages necessary for memory encoding: first, a labile memory trace is laid during the

theta state; next, the synapses are strengthened during sharp-waves. I asked whether

ACh facilitates differentially the two stages of memory encoding in the hippocampus.

The local release of ACh controls hippocampal network states. ACh levels

in the hippocampus are high during exploration, promoting theta activity, and lower

during subsequent rest when theta rhythm terminates and sharp-waves occur (Fadda

et al., 2000; Giovannini et al., 2001; Fadel, 2011). Optogenetic activation of cholin-

ergic neurons in sleeping animals promotes theta-gamma oscillations in CA1 of the

hippocampus and suppresses SWRs through the activation of M2/M4 muscarinic re-

ceptors (Vandecasteele et al., 2014; Zhou et al., 2019; Ma et al., 2020). This suggests

67
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that the changing cholinergic tone allows the switching between theta/gamma oscil-

lations SWRs. Disruption of cholinergic activity at different stages of learning and

memory impairs performance in memory tasks (for review, see Hasselmo and Sarter,

2011; Solari and Hangya, 2018). However, the differential effects of ACh in distinct

phases of memory encoding are not well understood.

To clarify the function of the MS cholinergic system in hippocampus-

dependent memory, I investigated the behavioural phase-specific effects of optogenetic

cholinergic stimulation in the appetitive Y-maze long-term memory task. This reward-

based spatial memory task has two distinct behavioural phases: one of navigation

toward a reward and another after arriving in the goal area (Bannerman et al., 2012).

In this Chapter, I show the effect of cholinergic stimulation on theta-gamma oscilla-

tions and SWRs during sleep when the effects of cholinergic stimulation of the LFP

were the largest. Next, I describe how the cholinergic stimulation affected the learning

of reward location depending on the task phase. The simultaneous recordings of the

LFP in the dorsal CA1 indicated that impaired memory was related to the disruption

of awake SWRs immediately following the experience.

The results and their discussion presented in this chapter were published

in Jarzebowski et al. (2021b). The work was completed in collaboration with Dr

Sze-Man Clara Tang and Dr Audrey Hay, who both helped design the study. Dr

Sze-Man Clara Tang conducted behavioural experiments and tested the optogenetic

stimulation efficacy, which she also presented in her Ph.D. thesis; Dr Audrey Hay

surgically implanted recording implants for electrophysiology.

3.2 Effects of cholinergic stimulation on hippocampal

state during sleep

3.2.1 Functional expression of ChR2 in cholinergic neurons

I investigated the effects of cholinergic modulation on hippocampal state and mem-

ory in a spatial navigation task. To this end, I optogenetically controlled the activ-

ity of cholinergic neurons using ChAT-Ai32 crossbred mice that expressed enhanced
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Figure 3.1: Medial septum neurons increase activity upon optogenetic stim-
ulation of ChR2 tagged neurons. (Ai)Overlay of DAPI, ChAT, and eYFP-positive
immunostaining in a coronal section of the MS in a ChAT-Ai32 mouse. Scale bar 500
µm. VDB, ventral diagonal band. (Aii-v) Higher magnification of the MS (rectangle
in Ai), triple immunostaining of DAPI (blue, ii), ChAT (red, iii), and eYFP (green,
iv), showing their colocalisation (overlay, v). Scale bar 50 µm. (B) Sample trace
of multi-unit recording from the MS in a ChAT-Ai32 mouse. Top: the stimulation
protocol (blue) beginning at 15 s. Inset shows a section of the 50-ms-long square stim-
ulation pulses at 10 Hz. Middle: an example recording trace; inset shows an example
unit recorded. Bottom: mean spike frequency (n = 6). *p = 0.03, two-tailed paired
Wilcoxon signed-rank test. Grey lines represent mean ± SEM. Data collected by Dr
Sze-Man Clara Tang.

YFP-tagged channelrhodopsin-2 (ChR2-eYFP) under the control of the choline-acetyl

transferase (ChAT) promoter. Double immunostaining for ChAT and YFP confirmed

the MS cholinergic neurons expressed ChR2 (Figure 3.1A). In sections sampled from

two mice, 98 out of 150 ChAT+ cells counted were YFP+ (YFP+/ChAT+ = 65%).

In independently sampled sections, 111 out of 111 YFP+ cells counted were ChAT+

(ChAT+/YFP+ = 100%).

The optogenetic stimulation of the ChR2 expressing neurons increased multi-

unit activity in the MS of urethane-anaesthetised mice, confirming the effectiveness

of the optogenetic protocol. Light delivery (473 nm light, 50 ms pulses at 10 Hz)

through an optic fibre increased multi-unit activity recorded 200 µm ventrally from

the optic fibre tip (baseline spike frequency: 7.9 ± 2.8 Hz vs. spike frequency during

light delivery: 22.7 ± 7.3 Hz, two-tailed Wilcoxon matched pair signed-rank test: p =

0.03; n = 6 recordings from two mice; Figure 3.1B).
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Figure 3.2: Cholinergic stimulation during sleep reduced aperiodic and in-
creased relative theta-gamma activity in CA1. (A) LFP signal recorded from
CA1 during sleep before (left) and during (right) optogenetic stimulation of the MS.
(B) Mean PSD of the LFP signal from a single mouse during the subsequent epochs
with the stimulation off and on. Ribbons extend ±1 SEM. Grey background marks
the frequency range of theta and slow gamma bands. The dashed lines show the fitted
aperiodic component. (C) PSD parameters assessed for the stimulation effect: the
aperiodic component (D), relative theta power (E), spectral peak frequency in the
theta band (F), and slow gamma power (G). The aperiodic component was fitted for
two frequency ranges, 3–15 and 15–150 Hz, and compared using the total area under
the curve (AUC). Values are plotted for individual trials. Lines connect means for in-
dividual animals. p-values were calculated with linear mixed-effects models for mouse
group–laser interaction.

3.2.2 Increased theta-gamma power

First, I investigated how the hippocampal state changes as the result of optogenetic

stimulation of the MS cholinergic neurons. Previous studies reported that choliner-

gic stimulation increases theta-gamma oscillations in sleeping animals (Vandecasteele

et al., 2014), while other studies reported such effect was not found in sleeping or

immobile awake animals (Zhou et al., 2019; Ma et al., 2020).
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Figure 3.3: Cholinergic stimulation during sleep reduced absolute theta and
gamma power less than it reduced their neighbouring frequency bands. (A)
Left: PSD ± 1 SEM during sleep epochs with the stimulation on and off. Right:
difference between log power calculated on subsequent epochs with stimulation off
and on as a function of frequency. PSD and its difference are shown for one ChAT-
ChR2 and one ChAT-GFP mouse. Grey background marks the frequency range of
theta and slow gamma bands. (B) Change in theta power as the result of optogenetic
stimulation compared to change in surrounding frequency bands. (C) As in (B) but for
slow gamma power. Values are shown for log power differences in subsequent epochs
with stimulation off and on. p-values were calculated with linear mixed-effects models
for the mouse group effect (ChAT-ChR2 vs. ChAT-GFP).

I recorded LFP signal while the mice slept in a cage, to which they had been

familiarised over the two previous days and I alternated periods without optogenetic

stimulation (60–120 s) and periods with optogenetic stimulation (30 s). I compared

the signal in the 30-s-long epochs preceding the stimulation with the 30-s-long epochs

during the stimulation without a distinction between SWS and REM sleep. Only

epochs during which the mouse was asleep for their full duration were used for the

analysis (n = 369 epochs from 10 animals, IQR of 5–16 epochs in succession without

interrupted sleep).

Upon the stimulation, I observed a reduction of the PSD across the full 1–200

Hz frequency range (Figure 3.2B,D), as reported previously in freely behaving mice

(Vandecasteele et al., 2014).
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PSD from electrophysiological recordings measures the summation of periodic

activity and aperiodic activity. The intensity of the aperiodic component of the PSD

has a pink noise distribution (1/f) (Donoghue et al., 2020). Broadband power of the

aperiodic component decreased with light stimulation in the ChAT-ChR2 but not in the

ChAT-GFP mice (linear mixed-effects model on area under curve [AUC] of estimated

aperiodic component on PSD log-log plot, significant mouse group × laser interaction:

F(1,4.6) = 22, p = 0.006, BF10 = 1014, n = 369 epochs from 10 mice; post-hoc test for

laser effect in ChAT-ChR2: t(7.1) = 10.1, p = 10−4, BF10 = 55, CI = [−0.08,−0.27];

Figure 3.2D).

To quantify the power of theta and gamma oscillations, I measured relative

peaks above the estimated aperiodic component (Figure 3.2B–C; Donoghue et al.,

2020). Even though theta power was low during sleep outside of REM sleep, 99 ±

0.1% of the control and 100 ± 0% of the stimulated epochs had a relative theta peak.

Optogenetic stimulation had a significantly different effect in the ChAT-GFP and the

ChAT-ChR2 animals on the relative theta power (log-linear mixed-effects model, mouse

group × laser interaction: F(1,4.8) = 7.3, p = 0.04, BF10 = 14, n = 368 epochs with

theta peak from 10 animals; Figure 3.2E). In the ChAT-ChR2 mice, the power increased

by 51 ± 9% (post-hoc test: t(9) = 4.8, p = 0.01, BF10 = 35, CI = [24%, 112%]) and

the spectral peak frequency in the theta band decreased from 7.7 ± 0.2 to 7.2 ± 0.1

Hz (log-linear mixed-effects model, mouse group × laser interaction: F(1,4.8) = 7.3,

p = 0.04, BF10 = 1.6; Figure 3.2F, post-hoc test: t(30) = 4.5, p = 0.001, BF10 = 6.0,

CI = [−0.2,−1.0] Hz).

To independently confirm that the stimulation increased relative theta power,

I looked at the difference in the PSD between subsequent epochs with the stimulation

off and on (Figure 3.3A). Differences for a given frequency can be caused by a change

in oscillatory power, change in the aperiodic component, or by a shift of the spectral

peak frequency or change of the peak’s width (bandwidth). To minimise the impact

of the peak frequency shift and change in bandwidth, I compared maximum changes

within frequency bands that were wider than the bandwidth of the theta peak and

shift in theta peak frequency. In the ChAT-ChR2 mice, the negative change in the

theta band was significantly smaller than in the 12–15 Hz band (linear mixed-effects
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model: F(1,10) = 21, p = 0.001, BF10 = 5355; Figure 3.3B). I concluded that the

stimulation reduced the power in the theta frequency band significantly less than in

higher frequency bands.

The stimulation also increased by 30 ± 4% the slow gamma oscillations (25—

45 Hz, log-linear mixed-effects model: mouse group × laser interaction: F(1,232) = 26,

p = 10−6, BF10 = 671, n = 338 epochs with slow gamma peak from 10 animals,

post-hoc test for laser effect in ChAT-ChR2: t(295) = −8.2, p = 10−14, BF10 = 772,

CI = [18%, 89%]; Figure 3.2G). The spectral peak frequency in the slow gamma of

38 ± 1 Hz did not significantly change (linear mixed-effects model, mouse group ×

laser interaction: F(1,10) = 0.4, p = 0.57, BF10 = 0.17). I independently confirmed

the increase in relative slow gamma power by looking at the PSD change between

subsequent epochs with the stimulation off and on. In the ChAT-ChR2 mice, the

negative change of power in the slow gamma band was significantly smaller than in the

12–15 Hz band (mouse group effect in the linear mixed-effects model: compared to the

12–15 Hz band: F(1,8) = 35, p = 10−4, BF10 = 7300; compared to the 90–110 Hz band:

F(1,10) = 3.7, p = 0.08, BF10 = 10; Figure 3.3C).

3.2.3 Reduced SWRs

Optogenetic stimulation reduced the SWR incidence throughout the stimulation in

ChAT-ChR2 mice but not in ChAT-GFP mice (Figure 3.4A–C). SWR incidence in

ChAT-ChR2 mice was reduced from 0.21 ± 0.01 to 0.03 ± 0.01 Hz (85 ± 3% reduction,

linear mixed-effects model, mouse group × laser interaction: F(1,22) = 47, p = 10−6,

BF10 = 105, n = 369 epochs from 10 animals; post-hoc test for laser effect in ChAT-

ChR2: t(86) = 9.7, p = 10−14, BF10 = 27, CI = [−0.05,−0.18] Hz; Figure 3.4C). The

stimulation did not change the spectral peak frequency of the remaining SWRs of 168 ±

1 Hz (mouse group × laser interaction: F(1,262) = 0.51, p = 0.48, BF10 = 0.11, n = 2554

ripples; Figure 3.4D), nor ripple duration of 38 ± 0.3 ms (log-linear mixed-effects model,

mouse group × laser interaction: F(1,28) = 0.9, p = 0.35, BF10 = 0.12; Figure 3.4E).

Hence, the results above confirm that optogenetic activation of MS cholinergic neurons

during sleep almost completely suppresses SWRs in CA1 (Zhou et al., 2019; Ma et al.,

2020).
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Figure 3.4: Cholinergic stimulation reduced SWRs incidence during sleep.
(A) LFP from CA1 of a sleeping mouse recorded before, during, and after optogenetic
stimulation (top trace). For ripple detection, the signal was 100–250 Hz bandpass fil-
tered (second trace). The detected SWRs are marked with arrows. The insets (lower
left) show the signal for two example SWRs at greater time resolution than above. (B)
Histogram of SWR incidence before, during, and after 30 s of stimulation with 50-ms-
long pulses at 10 Hz (n = 103 epochs from eight ChAT-ChR2 mice). (C) Comparison
of SWR incidence during the stimulated and non-stimulated epochs for ChAT-GFP
and ChAT-ChR2 mice. Lines connect mean incidence in individual mice. p-values
were calculated with linear mixed-effects model for the mouse group × laser interac-
tion; groups were compared with post-hoc test on least-square means. (D) Histogram
showing spectral peak frequency for sleep ripples during 30-s-long epochs with the
stimulation on and off. (E) Histogram showing duration of SWRs (detected ripples
with spectral peak frequency ≥140 Hz) during 30-s-long epochs with the stimulation
on and off.

3.3 Task-phase specific effects of cholinergic stimula-

tion on learning

Having shown that cholinergic stimulation affects the hippocampal oscillatory state

and SWRs during sleep, I investigated the effect of cholinergic stimulation during

different phases of the appetitively motivated Y-maze task, a hippocampus-dependent
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task commonly used to study long-term spatial memory (Bannerman et al., 2012;

Shipton et al., 2014). Following the two stage model for memory encoding (Buzsáki,

1989), the cholinergic-modulation during the hippocampal theta state could affect the

early memory encoding, while the changes to the SWRs could affect the long-term

potentiation of the encoding.

In the spatial memory task, mice had to learn to find a food reward on an

elevated three-arm maze that remained at a fixed location in relation to visual cues

in the room, while the mice pseudo-randomly started from one of the other two arms.

Because short-term memory errors caused by re-entry during a single trial have pre-

viously been shown to interfere with the acquisition of this spatial long-term memory

task (Schmitt et al., 2003), mice were only allowed to make a single choice of the arm in

each trial. The trials were divided into two phases: navigation and reward consumption

where SWRs generally occur in navigation tasks (Csicsvari et al., 2007; Dupret et al.,

2010). The navigation phase encompassed the maze arms except for the distal ends

(20 cm from the edge), which were considered goal zones. Cholinergic activation was

achieved by light stimulation delivered via an optic fibre as before. ChAT-Ai32 mice

were split into four groups to test four experimental conditions: (i) no stimulation (n

= 13), (ii) optogenetic stimulation during navigation – from the start of the trial until

they reached the goal zone (n = 9), (iii) optogenetic stimulation throughout the maze

(n = 9), and (iv) optogenetic stimulation in the goal zone only – from the entry of the

goal zone until the mice were removed from the maze either after they had eaten the

food or they had reached the empty food well (n = 15).

Each mouse received 10 trials per day for 6–10 consecutive days, and I set

a learning criterion of ≥80% rewarded trials in a day. Mice from all four groups

of ChAT-Ai32 mice learned the task (Figure 3.5A left) but comparison between the

groups revealed differences in the number of days taken to reach this criterion (one-

way ANOVA on ranks χ2
(3) = 14, p = 0.003, BF10 = 20; Figure 3.5B left). Post-

hoc tests indicated that the ChAT-Ai32 ’goal’ group was delayed at learning the task

compared to the ChAT-Ai32 ’no stimulation’ group (4.5 ± 0.3 vs. 2.9 ± 0.3 days, Dunn

test with Holm-Bonferroni correction for multiple comparisons: p = 0.002; BF10 =

45). Similarly, the ChAT-Ai32 ’goal’ group was delayed compared to the ChAT-Ai32
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Figure 3.5: Cholinergic stimulation impaired learning of reward location.
(A) Daily performance in the Y-maze task was measured by the percent of the trials
when a mouse chose the rewarded arm. The mouse performance improved over time at
rates that differed between the groups of ChAT-Ai32 mice (left) but not between the
groups of WT mice (right). Ribbons extend ± 1 SEM. Horizontal dashed line marks
the learning criterion of 80% correct choices. (B) The number of days required for each
group of the ChAT-Ai32 mice to reach the learning criterion of ≥80%. Horizontal bars
indicate the median within each group of the ChAT-Ai32 mice (left) and WT mice
(right). The p-values for differences between groups were calculated using post-hoc
Dunn tests. Data collected by Dr Sze-Man Clara Tang.

’navigation’ group (4.5 ± 0.3 vs. 3.1 ± 0.4 days, p = 0.05, BF10 = 4.4). Whilst the

stimulation for the ’goal’ group lasted longer (34 ± 1 vs. 8 ± 1 s), the duration alone

cannot explain the different effects of the optogenetic stimulation. The ’throughout’

group received the longest stimulation (42 ± 1 s) but presented an intermediate learning

curve. I found inconclusive evidence for the ’throughout’ group to learn more slowly

than the ’no stimulation’ group (post-hoc test for difference in means: p = 0.28, test for

higher mean days-to-criterion in the ’throughout’ group: BF10 = 1.6) and learn faster

than the ’goal’ group (post-hoc test for difference in means: p = 0.54, test for lower

mean days-to-criterion in the ’throughout’ group: BF10 = 2.0). Therefore, the spatial

location in the maze where the optogenetic stimulation took place was most likely the

factor that decided the behavioural outcome. The MS neurons sustained an increased
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level of firing after the optogenetic stimulation ceased (Figure 3.1B). Therefore, I cannot

exclude the possibility that this sustained activity contributes to the learning deficit in

the ’goal’ group.

To control for possible aversive or other non-specific effects of the illumina-

tion, in an additional experiment with MS-implanted wild-type (WT) mice were split

into two groups: no stimulation (n = 7) and light delivery in the goal zone (n = 9;

Figure 3.5A right). I did not observe any learning difference between the ’goal’ and

’no stimulation’ groups of this control WT mice cohort (goal: 3.0 ± 0.37 days; no

stimulation: 3.4 ± 0.37 days; one-way ANOVA: F(1,14) = 0.34, p = 0.57, BF10 = 0.48;

Figure 3.5B right).

The memory of the rewarded arm was retained when the mice were retested

on the Y-maze task one week after the end of the acquisition period for each group of

the ChAT-Ai32 mice (no stimulation: 100 ± 0%; navigation: 99 ± 1%; throughout:

100 ± 0%; goal: 94 ± 3%). After behavioural testing, implant placement and the level

of eYFP expression were verified by immunohistochemistry, confirming that there were

no significant differences in implant placement between the behavioural groups (Figure

2.3).

The results above show that cholinergic activation in the goal zone for as

short as 50 s (95% percentile of stimulation duration) slows learning of the appetitive

Y-maze task. In contrast, optogenetic stimulation during navigation or throughout the

maze had no significant effect on task acquisition.

3.4 Effects of cholinergic stimulation on hippocampal

state during learning

3.4.1 No detectable change in theta-gamma oscillations

Stimulating MS cholinergic neurons in the goal zone could impair task acquisition by

disrupting memory encoding. To find neural mechanisms that support this hypothesis,

I performed hippocampal LFP recordings during the Y-maze task. I recorded from
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CA1 of five ChAT-ChR2 and two control ChAT-GFP mice implanted with recording

electrodes and an optic fibre. Optogenetic stimulation was applied on alternating

trials when the mouse reached the goal zone, comparing the CA1 activity between the

stimulated and non-stimulated trials (111 non-stimulated and 109 stimulated at the

goal rewarded trials and 56 non-stimulated and 36 stimulated at the goal unrewarded

trials). To evaluate the effects of laser (on vs. off), mouse group (ChAT-ChR2 vs.

ChAT-GFP), and their interaction, while accounting for correlations between the trials

for the same mouse, I used a linear mixed-effects model. The cholinergic activation

did not overtly affect the behaviour once the mice were at the goal location: I did

not detect any effect of the laser on the time the mice spent at the goal location

(linear mixed-effects model, moderate evidence for no effect of mouse group × laser

interaction: F(1,78) = 0.01, p = 0.94, BF10 = 0.20; moderate evidence for no effect of

laser: F(1,78) = 0.1, p = 0.73, BF10 = 0.15).

The theta power (5–12 Hz) peaked in the central section of the maze, where

the mice typically ran the fastest (Figure 3.6A) and was reduced at the goal location

in rewarded trials (Figure 3.6B, right panel).

To achieve a reliable estimate of PSD at the goal location, I analysed trials in

which the LFP recording was EMG-movement free at the goal location for at least 10

seconds (201 out of 229 trials). Both theta and slow gamma (25–80 Hz) oscillations were

present at the goal location in the rewarded non-stimulated trials (theta peak present in

98 ± 2% of trials; slow gamma peak present in 86 ± 7% trials; Figure 3.6C). Light did

not affect the relative theta power differently in the ChAT-GFP and ChAT-ChR2 mice

(linear mixed-effects model, mouse group × laser interaction: F(1,5) = 0.01, p = 0.94,

moderate evidence for no difference BF10 = 0.19, n = 199 trials with a theta peak;

Figure 3.6D). However, theta power increased in both mouse groups indiscriminately

(strong effect of laser: F(1,5) = 6.9, p = 0.05, BF10 = 105, CI = [7%, 18%]), suggesting

another, non-specific effect of the laser on theta power. I found inconclusive evidence

for a change in spectral peak frequency in the theta band (linear mixed-effects model,

mouse group × laser interaction: F(1,5) = 1.3, p = 0.31, BF10 = 2.1; effect of laser

F(1,5) = 3.5, p = 0.12, BF10 = 0.87; Figure 3.6E).
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Figure 3.6: Cholinergic stimulation did not affect relative theta-gamma
at reward location. (A) Schematic showing the maze zones. (B) Spectrogram
of the LFP recorded in a single non-stimulated trial. The values for each frequency
were z-scored to show its relative changes over time. Note transient increases in high-
frequency power throughout the recording and high theta power at Centre. Right:
mean z-score value at Centre and Goal as a function of frequency. (C) PSD of the LFP
recorded from two representative ChAT-Ai32 (left) and one ChAT-GFP (right) animals
on non-stimulated and stimulated-at-Goal rewarded trials. The dashed lines show the
fitted aperiodic component. Ribbons extend ±1 SEM of log power. Grey background
marks the frequency range of theta and slow gamma bands. PSD parameters that
were assessed for the stimulation effect: (D) relative theta power, (E) spectral peak
frequency in the theta band, (F) slow gamma power, and (G) the aperiodic component
fitted for two frequency ranges, 3–15 and 15–150 Hz, and compared using the area under
the curve (AUC). (D–G) Values are plotted for individual trials. Lines connect means
for individual animals. p-values were calculated with linear mixed-effects models for
the mouse group × laser interaction.
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Figure 3.7: Cholinergic stimulation did not affect theta-gamma power at
reward location differently than it affected the power of their neighbouring
frequency bands. (A) Left: PSD ± 1 SEM during rewarded trials with the stimu-
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for slow gamma power. Values are shown for day-averaged log power differences in tri-
als with the stimulation on and off. p-values were calculated with linear mixed-effects
models for the effect of mouse group (ChAT-ChR2 vs. ChAT-GFP).

To independently confirm that the stimulation did not differentially affect

relative theta power in ChAT-GFP and ChAT-ChR2 mice, I looked at the difference in

the PSD between day-averaged trials with the stimulation on and off (Figure 3.7A). In

the ChAT-ChR2 mice, the difference between the negative power change in the theta

band and in the surrounding bands was not significantly different than in the ChAT-

GFP mice (Figure 3.7B). Hence, the results indicate that the stimulation did not affect

the theta power significantly differently between the mouse groups.

Quantification of the relative slow gamma power indicated inconclusive ev-

idence for the effect of the stimulation (linear mixed-effects model, mouse group ×

laser interaction: F(1,6) = 1.7, p = 0.24, BF10 = 0.82, n = 175 trials with a relative

slow gamma peak; Figure 3.6F). This result was independently confirmed by looking
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at the difference in the PSD between day-averaged trials with the stimulation on and

off (Figure 3.7C).

The only effect of the laser that affected PSD of the ChAT-GFP and ChAT-

ChR2 mice differently was a reduced aperiodic component of the PSD in the 3–15

Hz range (linear mixed-effects model, mouse group × laser interaction: F(1,135) = 29,

p = 10−7, BF10 = 105, n = 201 trials; Figure 3.6G).

3.4.2 Reduced SWRs

Previous studies (Vandecasteele et al., 2014; Zhou et al., 2019; Ma et al., 2020) and the

results in sleeping mice (Figure 3.4) show that activation of MS cholinergic neurons

suppresses CA1 SWRs. Therefore, I investigated whether impaired place learning was

associated with changes in SWRs.

The SWRs occurred at the start and the goal location (Figure 3.8A–B). Mice

learned over 6 days and on day 5 reached 80 ± 10% rewarded trials. I detected sig-

nificantly more SWRs in rewarded than in unrewarded trials (82 ± 7% of rewarded

non-stimulated trials vs. 32 ± 13% of unrewarded non-stimulated trials, paired t-test

on percentages per animal: p = 0.02, BF10 = 3.7, n = 7 animals; Figure 3.8C). The

difference could be explained by shorter-duration immobility when the mice visited

the non-rewarded arms: on unrewarded trials, mice spent 6.5 ± 0.5 s in the goal zone

before leaving compared to 34.0 ± 1.0 s on rewarded trials. Because I detected few

SWRs in the unrewarded trials, I restricted the further analysis to the rewarded trials.

I first assessed whether the incidence of SWRs changed during learning by

quantifying them in the non-stimulated rewarded trials during early and late learning

(Figure 3.8D). I did not observe any significant difference between early (before day

5) and late learning (day 5 or later, linear mixed-effects model, effect of early vs. late

learning: F(1,110) = 0.3, p = 0.58, moderate evidence for no difference BF10 = 0.22,

n = 124 trials). However, optogenetic stimulation had a significantly different effect

in the ChAT-GFP and the ChAT-ChR2 mice (log-linear mixed-effects model, mouse

group × laser interaction: F(1,42) = 4.5, p = 0.04, moderate evidence for difference:

BF10 = 3.8, n = 229 trials; Figure 3.8E), whose SWR incidence at the goal location
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was reduced by 52 ± 7% from 0.06 ± 0.01 to 0.03 ± 0.01 Hz (strong evidence for

change in ChAT-ChR2 mice: t(44) = 4.2, p = 0.001; BF10 = 484, CI = [−0.04,−0.01]

Hz, n = 163 trials; moderate evidence for no change in ChAT-GFP mice: BF10 = 0.19,

CI = [−0.02, 0.02] Hz, n = 66 trials). Spectral peak frequency of SWRs in the ChAT-

ChR2 mice was not affected by the stimulation (frequency: 168 ± 2 Hz; linear mixed-

effects model for effect of laser: F(1,2.5) = 0.09, p = 0.80; BF10 = 0.13, CI = [−7, 5] Hz,

n = 199 SWRs; Figure 3.8F), nor was the SWR duration (duration: 37 ± 1 ms; log-

linear mixed-effects model for effect of laser: F(1,9.6) = 0.003, p = 0.96, BF10 = 0.14,

CI = [−3, 4] ms, n = 199 SWRs; Figure 3.8G).

Overall, these results show that optogenetic stimulation of MS cholinergic

neurons reduced ripple incidence in CA1 in rewarded trials but did not cause a de-

tectable change in theta-gamma power. Hence, this result suggests that the reduced

SWR incidence at reward location is a mechanism relevant for the memory impairment.

3.5 Discussion

Using optogenetics, I investigated the effects of stimulating MS cholinergic neurons

on learning and hippocampal LFPs when delivered at different phases of an appeti-

tively motivated spatial memory task. I found that: (1) MS cholinergic stimulation

reduces SWR incidence and promotes theta-gamma rhythm in the sleeping mice; (2)

MS cholinergic stimulation at the reward location reduces SWR incidence; and (3) MS

cholinergic activation at the goal location, but not during navigation, impairs spatial

memory encoding. These results show that timely control of cholinergic modulation is

important for spatial learning on a time scale of seconds.

The results indicate that cholinergic stimulation almost completely suppresses

SWRs in sleeping animals and suppresses SWRs by about one half in awake, behav-

ing animals. SWRs at the rewarded locations are thought to be crucial for learning

(Dupret et al., 2010). Their suppression at the goal location in the experiments with

the same stimulation protocol as that used in mice during learning suggests a possible

explanation for the learning deficit induced by inappropriately timed cholinergic activ-

ity. Moreover, the effect of cholinergic stimulation on theta-gamma oscillations, which
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was prominent during sleep, was not observed when the same stimulation was applied

at the goal location during learning, suggesting that learning was impaired through a

mechanism independent of theta-gamma oscillations.

The results can be interpreted as supporting the account for the two stage

memory encoding in which SWRs following an experience promote encoding of its

memory (Buzsáki, 1989).

3.5.1 Importance of timely regulation of cholinergic tone for

memory encoding

I found that temporally controlled optogenetic stimulation of MS cholinergic neurons

could affect learning of the appetitive Y-maze task. Stimulation of cholinergic neu-

rons during navigation did not affect the performance, while, strikingly, cholinergic

stimulation in the goal zone significantly impaired task acquisition (Figure 3.5). The

stimulation duration differed between the groups: it was longest in the ’throughout’

group, followed by ’goal’ and by ’navigation’ group. The only significant impairment

of task acquisition was seen in the ’goal’ group, indicating that it was cholinergic acti-

vation at the goal location that interfered with memory (Figure 3.5C,E). The lack of

significant impairment with cholinergic stimulation throughout the task may appear

surprising. However, the task performance in the ’throughout’ group was not signifi-

cantly different from the ’goal’ group. I cannot exclude the possibility that prolonged

optogenetic stimulation becomes less effective over time, either because the MS neu-

rons become less activated or because vesicular ACh might be depleted with prolonged

stimulation.

The lack of behavioural effect of the stimulation during the navigation phase,

when the cholinergic tone is naturally high (Fadda et al., 2000; Giovannini et al.,

2001; Fadel, 2011) may suggest that the release of ACh in the hippocampus is already

optimal or maximal, or that ACh receptors are saturated. MS cholinergic neurons are

slow spiking neurons with a maximal rate of 10 Hz during active exploration (Ma et al.,

2020), the stimulation frequency used here. Thus, it is plausible that ACh receptor

activation in the hippocampus had already reached a plateau, which was not increased
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further by the stimulation. The lack of behavioural effect of the stimulation during

the navigation phase suggests that the effect of optogenetic stimulation was short-

lived and restricted to the stimulation period, albeit with a short period of sustained

activity following the stimulation (Figure 3.1B). This observation supports the idea

that cholinergic modulation is timely controlled, but further experiments, for instance

using ACh sensors in the hippocampus (Jing et al., 2020), will be necessary to confirm

this hypothesis.

An interesting complementary experiment would be to silence cholinergic in-

puts during navigation or at the goal location to further explore the role of cholinergic

tone during memory encoding. There is evidence to suggest that CA1 SWRs, which

occur during low cholinergic activity, play a crucial role in memory encoding: dis-

ruption of SWRs in the first 15–60 min following training impairs learning of spatial

navigation tasks (Girardeau et al., 2009; Ego-Stengel and Wilson, 2010), while their

disruption or prolongation during the continuous alternation task impairs or improves

learning, respectively (Jadhav et al., 2012; Fernández-Ruiz et al., 2019). In exploring

animals, SWRs occur during transient immobility periods, including periods at goal

locations (Csicsvari et al., 2007; Dupret et al., 2010; Roux et al., 2017). These SWRs

stabilise spatial representations of the CA1 place cells supporting navigation toward

the newly learned goals (Roux et al., 2017) and are predictive of performance in a

spatial memory task (Csicsvari et al., 2007; Dupret et al., 2010). During these SWRs,

sequences of neuronal activation are replayed in both forward and reverse order (Foster

and Wilson, 2006; Csicsvari et al., 2007; Diba and Buzsáki, 2007; Karlsson and Frank,

2009; Ambrose et al., 2016). I found that MS cholinergic activation for the brief time

the mice spent in the reward zone, shorter than 50 s (95% percentile of stimulation

duration), is sufficient to significantly impair memory encoding in the Y-maze task

(Figure 3.5). Therefore, I speculate that disruption of the normally occurring replay

events in the reward zone is sufficient to impair long-term memory encoding (Figure

3.8). However, selective disruption of SWRs at the reward zone did not affect rats’

performance in the inbound phase of the W-maze task (Jadhav et al., 2012), which is

comparable to the Y-maze task. In both of these tasks, animals could use either an al-

locentric place strategy or an egocentric rule-based strategy, or a combination thereof,
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and the relative importance of each could lead to differences in their reliance on SWRs.

Alternatively, additional effects of MS cholinergic activation on intracellular signalling

cascades and synaptic plasticity (Brzosko et al., 2019), synaptic inhibition (Hasselmo,

2006; Haam and Yakel, 2017), or interference with extra-hippocampal reward-related

signalling cannot be ruled out.

Because learning can be affected by the interruption of SWRs during post-

learning sleep (Girardeau et al., 2009), and because the same cholinergic activation

during sleep achieves a similar effect on the SWRs (Figure 3.4; Ma et al., 2020), it would

be of interest to see if the cholinergic activation during post-learning sleep would also

impair spatial learning. This would show whether low cholinergic states are important

also for memory consolidation during sleep and provide further evidence for the role of

SWRs in memory.

3.5.2 Cholinergic influence on hippocampal network activity

Hippocampal network activity varies with cholinergic tone and MS cholinergic neuron

activity. MS cholinergic neurons discharge at a maximal rate when the animal is run-

ning (Ma et al., 2020), which corresponds to the highest theta power intensity in CA1

and highest cholinergic tone measured in the pyramidal cell layer of CA1 (Fadda et al.,

2000; Fadel, 2011). Conversely, cholinergic tone and MS cholinergic neuron discharge

are at their lowest during slow-wave sleep and awake immobility, which are associated

with the highest ripple incidence (Fadda et al., 2000; Zhou et al., 2019; Ma et al., 2020).

In accordance with these observations, I found that stimulation of MS cholinergic neu-

rons reduces SWR incidence in both awake behaving animals and naturally sleeping

animals, consistent with previous reports (Figure 3.4, 3.8; Vandecasteele et al., 2014;

Zhou et al., 2019; Ma et al., 2020). The reduction of SWR incidence of 52 ± 7% at

the goal location was smaller than the 92% median suppression reported during free

behaviour (Vandecasteele et al., 2014), which could be due to a smaller effect of ACh at

the reward location or an already high ACh level occluding the effect of the optogenetic

stimulation.

I observed that stimulation of MS cholinergic neurons of sleeping mice causes

an apparent decrease of the PSD across the entire frequency spectrum (Figure 3.2).
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A similar effect was reported previously for anaesthetised and freely behaving animals

(Vandecasteele et al., 2014). Signal decomposition into aperiodic and periodic compo-

nents (Donoghue et al., 2020) showed that the optogenetic stimulation enhanced the

periodic components with peaks in the theta and slow gamma bands and decreased

the aperiodic component of the signal (1/f background). The enhanced theta-gamma

activity might appear at odds with previous reports that such manipulation does not

change theta-gamma power during sleep (Ma et al., 2020) and quiet wakefulness (Zhou

et al., 2019). The combined effect of the cholinergic stimulation on the periodic and

aperiodic signal sums to near-zero values, which could explain the different conclusions,

showing the advantage of PSD decomposition (Donoghue et al., 2020) when assessing

the power of periodic signals.

Because cholinergic input has been implicated in theta activity in the hip-

pocampus (Buzsáki, 2002), I was surprised that no effect on theta-gamma oscillations

by cholinergic stimulation was detected at the goal location. However, there are at

least two distinct forms of theta oscillations in the hippocampus, only one of which is

dependent on cholinergic receptors (Kramis et al., 1975). Pharmacological evidence in

vivo indicates that there are two distinct mechanisms of theta oscillations in the hip-

pocampus, an atropine-sensitive and an atropine-resistant component (Kramis et al.,

1975; Buzsáki, 2002; Colgin, 2013). The atropine-sensitive component is mediated by

the combination of cholinergic and GABAergic neurons in the MS (Buzsáki, 2002;

Manseau et al., 2008) and is slower than the atropine-resistant theta, which is gener-

ated primarily by the EC (Buzsáki, 2002; Colgin, 2013). Moreover, atropine-sensitive

theta was best detected in the anaesthetised animal, while atropine-insensitive theta

was shown to predominate in the running animal (Kramis et al., 1975; Newman et al.,

2013). Consistent with this division, MS cholinergic stimulation in sleeping mice, in

addition to increasing theta power, shifted the spectral peak in the theta band to a

lower frequency (Figure 3.2F). Both effects were limited to the ChAT-ChR2 animals.

The stimulation frequency of 10 Hz provided faster activation than the ki-

netics of metabotropic muscarinic receptors. Therefore, I did not expect to observe

indirect effects on the network activity mirroring the stimulation frequency. Indeed,

the spectral peak frequency in the theta band was lower than the stimulation fre-
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quency, and PSD did not show a spectral peak at 10 Hz (Figure 3.2F). In behaving

mice, the MS cholinergic stimulation at the goal location did not have a significantly

different effect on theta power and spectral peak in ChAT-GFP and ChAT-ChR2 mice

(Figure 3.6D–E) and theta power increased in both groups of animals. The lack of

effect on theta-gamma rhythm during the memory task could be explained by the

prominence of an atropine-resistant entorhinal-driven theta that would override any

atropine-sensitive theta. It is also possible that the small sample of control animals (n

= 2) whose theta power also increased with the laser stimulation prevented the detec-

tion of the differences between the animal groups. Alternatively, a diminishing efficacy

with the prolonged optogenetic stimulation could have prevented the detection of a

change in the theta-gamma oscillations. However, SWR incidence was reduced at the

goal location for the entire duration of the stimulation, suggesting that any decrease

in the stimulation efficacy would be biologically minor.



Chapter 4

Encoding of learned reward location in the

dorsal and intermediate CA1

4.1 Introduction

Navigation towards the location of learned rewards is thought to be supported by

place cells (O’Keefe and Nadel, 1978). The place cells fire in specific locations when

an animal navigates through the environment (O’Keefe and Dostrovsky, 1971). Their

activity encodes information about the animal’s current and upcoming locations (Frank

et al., 2000; Wood et al., 2000). However, it is unclear whether and how the place cell

activity supports navigation towards the reward or recall of its location.

After animals learn the reward location, dCA1 place cells shift their place

fields and accumulate at the rewards (Dupret et al., 2010; Zaremba et al., 2017; Boccara

et al., 2019; Kaufman et al., 2020; Sato et al., 2020). The encoding of learned reward

location could vary between the dorsal and the intermediate hippocampus, which differ

in gene expression and cortical and subcortical connectivity (Fanselow and Dong, 2010).

In the iCA1, neurons fire across larger place fields than in dCA1. (Maurer et al., 2005;

Jung et al., 1994; Keinath et al., 2014) In addition to encoding spatial location, they

regulate reward-seeking (Britt et al., 2012; Ito et al., 2008; Kosugi et al., 2021; LeGates

et al., 2018; Riaz et al., 2017), but little is known about their activity during reward-

directed navigation.

89
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What follows are the results comparing how the dCA1 and the iCA1 activity

changed after mice learned reward locations. The changed activity could represent the

recalled memory of reward location, and I refer to these neural patterns of activity as the

encoding of reward location. To delineate changes due to learning of reward locations,

the experiment was split into two stages: first mice foraged for food rewards placed at

random locations on a maze, later the mice learned fixed locations of the rewards on

the same maze. I used calcium imaging with a head-mounted microscope (Ghosh et al.,

2011) to track the activity of the same CA1 cells throughout the experiment. First, I

describe changes in the dCA1 and iCA1 spatial representations. Next, I investigate how

the place cells changed their place fields depending on the reward locations and how

the population activity is modulated during the reward approach. I evaluate whether

the same place cells remapped their place fields to follow the reward locations. Lastly,

I report how the dCA1 and iCA1 population could encode the learned reward location.

The majority of the chapter results was published in Jarzebowski et al.

(2021a). The work was completed in collaboration with Dr Audrey Hay and Dr

Benjamin Grewe who both helped design the study.

4.2 Learning of reward locations on cheeseboard

To characterise the CA1 activity changes due to reward location learning, I recorded

calcium imaging fluorescence during foraging on the same maze as that subsequently

used for reward location learning. This section describes the behaviour and learning

performance of mice during these two experiments. The data in this and the following

sections comes from seven dCA1 and six iCA1 implanted mice.

First, the mice foraged for liquid rewards baited in randomly selected wells

of the 120-cm-diameter maze. These sessions served to familiarise the mice with the

apparatus and as a baseline for comparison with the hippocampal activity recorded

after the mice learned reward locations. After foraging in daily sessions for three days,

mice learned sets of two fixed reward locations in daily sessions of 8 trials. The learning

period spanned five days for the first set of locations and two days each for subsequent

sets, each with one reward translocated to a pseudo-random location, for a total of three
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Figure 4.1: Mice learned reward locations on cheeseboard. (A) Timeline for
the learning and test sessions shows when and how the reward locations (triangles)
changed. The reward was not baited during test trials. (B) Progress in learning
measured by distance run per trial. Vertical bars mark the mean distance ± SEM.
Vertical dashed lines mark the time of reward translocations. (C) Example running
path of a mouse during an unbaited test trial. Grey discs show the extent of the
reward zone used for the analysis. (D) Number of reward zone crossings during the
first 120 s of the test trials compared to the crossings of the zones centred on the same
locations during foraging. (E) Percentage of foraging trials that the dCA1 and iCA1
implanted mice spent running. (F) Running speed of the dCA1 and iCA1 implanted
mice. Data for seven dCA1 and six iCA1 implanted mice compared with post-hoc tests
on least-square means of linear mixed-effects model in (D) and (E), and of log-linear
mixed-effects model in (F). ***p < 0.001.

or four sets (Figure 2.2A). Mice took progressively shorter paths to find the rewards

(Figure 4.1B). Their memory was tested in unbaited test trials on the day after learning

each set (Figure 4.1C). Mice crossed the reward zones (20-cm-radius disks centred on

the learned reward locations) 64 ± 7% more times in the first 120 s of the unbaited

test trials compared to the same zones during foraging (linear mixed-effects model,

effect of learning: F(1,61) = 105, p = 10−14; BF10 = 1011, CI = [45%, 85%], n = 44

trials; Figure 4.1D). Performance of the dCA1 and iCA1 implanted mice did not differ

(linear mixed-effects model: F(1,16) = 0.03, p = 0.87; moderate evidence for the lack of

difference: BF10 = 0.18, CI = [−13%, 11%], n = 44 trials; Figure 4.1D).

Because ventral hippocampal lesions can increase the mobility of mice (Ban-

nerman et al., 1999), I confirmed that the surgical procedures did not lead to differences

in mobility between the dCA1 and iCA1 implanted mice. The two groups were running
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in a similar fraction of the foraging trials (linear mixed-effects model: F(1,11) = 10−4,

p = 0.99; BF10 = 0.22, n = 39 trials; Figure 4.1E). The running speed in the test tri-

als increased from foraging (log-linear mixed-effects model: F(1,159) = 112, p < 10−15;

BF10 = 1017; CI = [36%, 58%]) but the increase was not different between the dCA1

and iCA1 implanted mice (log-linear mixed-effects model: F(1,11) = 1.0, p = 0.35;

moderate evidence for the lack of difference BF10 = 0.31, n = 83 trials; Figure 4.1F).

4.3 Neurons active during foraging and learning

I imaged daily 170 ± 19 dCA1 cells from seven animals and 70 ± 11 iCA1 cells from

six animals and matched the identity of active cells between days. First, I investigated

how the overall number of active neurons (calcium event rate ≥ 0.005 Hz) changed over

time. The highest number of cells were active during early foraging trials when the

maze was novel and decreased gradually over the three days of foraging (Figure 4.2A).

The number of active neurons levelled off during learning. The change is consistent with

previous reports that familiarisation decreases the firing rates (Nitz and McNaughton,

2004; Karlsson and Frank, 2008) and the number of active dCA1 cells (Karlsson and

Frank, 2008).

Over the 14–16 days, I recorded a total of 2,965 unique dCA1 cells from

seven mice and 1,125 unique iCA1 cells from six mice (Figure 4.2B). Nearly half of

the cells were not matched again after being detected once. It is likely that some of

these cells reappeared on multiple days but the cell registration algorithm failed to

match them. While the number of active cells dropped over the experiment duration,

a subpopulation of dCA1 and iCA1 cells was active and matched on 10 or more days.

To assess how the movement of a mouse affects the calcium event rates in

dCA1 and iCA1, I tested for the effects of recording site (dCA1 vs iCA1), movement

(running vs immobile) and their interaction using a log-linear mixed-effects model. In

immobile mice, the calcium event rates in iCA1 were 88 ± 16% higher compared to

dCA1 (t(11.6) = 3.6, p = 0.01, CI = [14%; 196%]). Running increased the calcium

event rates in both dCA1 and iCA1 but the increase was larger in dCA1 (movement

× recording site interaction: F(1,2293) = 3.1, p = 0.002, BF10 = 7.0 n = 1282 cells
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from 13 mice recorded on the last-day foraging; Figure 4.2C). The dCA1 calcium event

rates increased by 47 ± 5% (t(2293) = 13.3, p < 10−15, CI = [42%, 51%], n = 960

cells), whereas the iCA1 event rates increased by 29 ± 11% (t(2293) = 4.5, p = 10−5,

CI = [16%, 40%], n = 322 cells).

The following sections of this chapter investigated hippocampal activity in

running mice. This was to exclude SWR-associated activity during immobility such as

that during replay when the hippocampus reactivates sequences of place cells outside

of their place fields (Foster and Wilson, 2006; Csicsvari et al., 2007; Diba and Buzsáki,

2007; Karlsson and Frank, 2009).
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4.4 Change in spatial coding after learning

Spatial representations in dCA1 and iCA1 differ (Maurer et al., 2005; Jung et al., 1994;

Keinath et al., 2014; Jin and Lee, 2021). To assess how they changed as mice learned

reward locations, in this section, I compared the spatial representations during foraging

trials with the spatial representations during test trials after learning.

4.4.1 Place fields, their size, and encoded spatial information

Both dCA1 and iCA1 had spatially modulated cells. Example comparison between

spatial activity of the same cells from before and after learning is shown in Figure 4.3A–

B. I hypothesised that familiarity with the environment may affect the number of place

cells as well as the number of active cells. Therefore, I compared the absolute size of

the dCA1 and iCA1 place cell populations. To make the comparison possible between

animals whose number of active cells changed over time, I found the maximal number

of cells active per animal. During foraging and test sessions, a similar population size

of dCA1 and iCA1 cells were classified as place cells (linear mixed-effects model on the
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population size relative to the animal’s maximum active cells: F(1,11) = 0.34, p = 0.57;

inconclusive evidence for difference: BF10 = 0.4, CI = [−11, 6] percentage points (pp),

n = 78 trials; Figure 4.3C). The absolute number of place cells was lower in the test

trials than in the foraging trials by 16 ± 2 pp (linear mixed-effects model: F(1,64) = 49,

p = 10−9; strong evidence for difference: BF10 = 5× 106, CI = [−20,−10] pp, n = 78

days), mirroring the decrease in the total number of active cells (Figure 4.2A).

To assess the effects of learning on place cells, the analysis used a data down-

sampling procedure to compensate for the effects that the increased sampling of the

reward locations could have on the place cell properties. The procedure randomly se-

lected a matching count of samples per spatial bin from the foraging and test sessions.

Place maps were generated for each random selection of data samples and the place cell

statistics were calculated as a mean value from 100 random samples. To characterise

changes in spatial coding by cells, the comparison below only includes cells that were

classified as place cells in more than half of the random samples.

In agreement with reports using tetrode recordings (Maurer et al., 2005; Jung

et al., 1994; Keinath et al., 2014), the iCA1 place fields during foraging were 111 ± 7%

larger than dCA1 place fields (strong evidence: BF10 = 12, CI = [24%, 204%], n = 720

cells; Figure 4.4A left). After learning, the place cells became more spatially tuned. The

mean place field size of the dCA1 and the iCA1 place cells decreased similarly, by 21 ±

5% in dCA1 and 29 ± 8% in iCA1 (log-linear mixed-effects model, moderate evidence

for the lack of learning × recording location interaction: F(1,1034) = 1.4, p = 0.23;

BF10 = 0.16, strong evidence for decrease: F(1,1034) = 33.4, p = 10−8; BF10 = 104 ,

CI = [−31%,−17%], n = 1043 cells; Figure 4.4A right).

Nearly half of the place cells were active in more than a single location, result-

ing in multiple place fields. During foraging, the mean count of place fields per place

cell was similar in dCA1 and iCA1 (linear mixed-effects model: F(1,11) = 1.9, p = 0.19;

inconclusive evidence for difference: BF10 = 0.80, CI = [−16%, 4%], n = 39 sessions;

4.4B left). After learning, the mean number of place fields decreased in dCA1 from 1.7

± 0.1 to 1.5 ± 0.1 but did not significantly change in iCA1 from 1.7 ± 0.1 (linear mixed-

effects model, experiment × recording location interaction: F(1,73) = 7.4, p = 0.008,

BF10 = 6.0; strong evidence for decrease in dCA1: BF10 = 2330; CI = [−0.28,−0.11],
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Figure 4.4: Sparser but more spatially tuned place cells after learning. (A)
Distribution of field sizes of the dCA1 and the iCA1 place cells calculated on actual
(left) and downsampled data (right). (B) Histogram of field counts per place cell
calculated on actual (left) and downsampled data (right). Error bars mark mean ±
SEM. (C) Normalised spatial information calculated on actual (left) and downsampled
data (right). (D) Normalised spatial information change in place cells from last-day
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bars mark median. (E) Stability of place cells measured as the correlation between
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same-day early and late foraging trials (within-day foraging comparison); (2) foraging
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set of reward locations. Dashed lines and triangles mark the means. The effect of
the recording location was tested with linear mixed-effects models in (B), and with
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t(23.5) = −3.4, p = 0.03, moderate evidence for the lack of change in iCA1: BF10 = 0.32,

CI = [−0.13, 0.30], t(72.7) = −1.2, p = 0.59; , n = 78 sessions; Figure 4.4B right). The

change in dCA1 was due to an increase in the fraction of single-field peaks from 47 ±

4% to 64 ± 3%.
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Studies using tetrode recordings reported that the CA1 place cells decrease

spatial information along the dorso-ventral axis (Jung et al., 1994; Keinath et al., 2014;

Jin and Lee, 2021). Here, to further limit the bias that uneven sampling of the maze

introduced in the measured spatial information, I report the spatial information relative

to the cell’s spatial information expected by chance. During foraging, the spatial

information of the iCA1 place cells did not differ from that of the dCA1 place cells (log-

linear mixed-effects model: moderate evidence for the lack of difference: BF10 = 0.25,

CI = [−31%, 65%]; F(1,10) = 0.15, p = 0.71, n = 720 cells; Figure 4.4C left). After

learning, the mean spatial information increased in the dCA1 place cells by 96 ±

5% and in iCA1 place cells by 76 ± 10% (inconclusive evidence for different increase

in dCA1 and iCA1, log-linear mixed-effects model, experiment × recording location

interaction: F(1,1037) = 3.0, p = 0.084; BF10 = 0.39; spatial information increase:

F(1,1037) = 135, p < 10−15, BF10 = 1026, CI = [65%, 102%]; n = 1043 cells; Figure

4.4C right). Data downsampling resulted in lower spatial information compared to the

original data (Figure 4.4C). This is because the fewer samples led to a higher estimation

of the spatial information bias that was subtracted from the spatial information values.

The increase of spatial information taken together with the decrease of place field size

means that the place cells increased their spatial tuning.

The majority of the place cells from foraging that were matched during the

first test trial decreased their spatial information (spatial information calculated on

downsampled data, median change in dCA1: -0.016 bits, n = 507 cells, in iCA1: -0.24

bits, n = 232 cells; Figure 4.4D). Consequently, only 28% of the dCA1 and 32% of

the iCA1 place cells from foraging were classified as a place cell during the test trial.

Because fewer cells were classified as place cells in test than in foraging but the ones

that were increased their spatial tuning, the changes can be interpreted as sparsification

of the spatial code.

To assess the stability of place cells between sessions and across days, I in-

vestigated correlations of their place maps. The place field correlations were different

between the compared sessions (linear mixed-effects model, F(1,2054) = 63, p < 10−15,

BF10 = 1023, n = 2065 place map correlations; Figure 4.4E) but there was no effect of

the recording location (F(1,10) = 0.02, p = 0.88; strong evidence: BF10 = 0.17). Corre-
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lations between the last foraging day and the first test session were lower than between

the last two foraging days by 0.12 ± 0.02% (t(2052) = 9.0, p < 10−15; BF10 = 1023, n =

795 place map correlations); however, they were still significantly positive (t(16) = 3.2,

p = 0.005, n = 371 place map correlations). The decrease in the place field correlations

could be due to learning or a learning-independent factor, as place cells remap over

time (Ziv et al., 2013). Nevertheless, 16% of dCA1 and 12% dCA1 place cells from

foraging that were matched during the test had stable place fields between the two

sessions and their place map correlation exceeded 0.5.

To assess the precision of the spatial coding, I compared performance of de-

coding spatial location from the dCA1 or the iCA1 population activity. When decoding

from the entire cell population, decoding from dCA1 had a median error of 24 ± 3 cm.

This was significantly lower than decoding from the iCA1, which had a median error

of 39 ± 3 cm (linear mixed-effects model, recording location × decoder size interac-

tion: F(1,63) = 4.1, p = 0.05, difference in median error: t(15.5) = −2.9, p = 0.04,

BF10 = 4.6, CI = [1, 24] cm, n = 39 sessions; Figure 4.5A,B left). Fewer cells were

recorded in the iCA1 than in dCA1, which could affect the precision of the decoded

locations. Therefore, I also compared decoders trained on sized-matched populations.

I trained the decoder on 30 randomly sampled cells from each session (72% of the iCA1

recordings had more than 30 cells) and repeated the procedure 50 times using different

cell samples. Decoding from the sampled dCA1 had a median error of 38 ± 2 cm,
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which was significantly higher than the error when decoding from all cells (t(63) = 4.8,

p = 0.0001). Data showed inconclusive evidence for the median error to differ be-

tween the sampled dCA1 decoder and sampled iCA1 decoder (t(16) = −1.3, p = 0.43,

BF10 = 0.8, CI = [−3, 14] cm, n = 39 sessions; Figure 4.5A,B right). Therefore,

the data does not provide sufficient evidence to conclude whether the size-matched

dCA1 and iCA1 cell populations encoded the spatial location with different precision.

However, if the encoded precision is different, the difference is small.

4.4.2 Accumulation of place fields at learned reward locations

I next compared how the location of dCA1 and iCA1 place fields changed as a result

of learning. The dCA1 but not iCA1 place fields shifted towards the learned reward

locations and gained reward fields, defined as fields within 20 cm of one of the reward

locations (linear mixed-effects model on the proportion of cells with reward field, trial-

type × recording site interaction: F(1,13) = 16.2, p = 0.001, n = 44 trials). After

learning, the proportion of dCA1 place cells with a reward field increased by 65 ± 11%

(t(12.1) = 4.8, p = 0.002, BF10 = 42850, CI = [34%, 96%]; Figure 4.6A); whereas it did

not change significantly in the iCA1 (inconclusive evidence: t(13.2) = 1.27, p = 0.65,

BF10 = 0.37, CI = [−18%, 65%]; Figure 4.6B).

I verified that increased sampling of the reward locations did not account

for the increase in dCA1 place cell density. The downsampling procedure as above

(subsection 4.4.1) confirmed the differential effect on place fields in dCA1 and iCA1

(F(1,12) = 14, p = 0.003, n = 44 trials). The proportion of place cells with a reward

field increased in the dCA1 (t(1,11) = 4.9, p = 0.002, BF10 = 4836, CI = [24%, 71%];

Figure 4.6C), whereas no such change was seen in the iCA1 (moderate evidence for the

lack of effect: t(1,13) = 0.7, p = 1.0, BF10 = 0.26, CI = [−19%, 37%]; Figure 4.6D). It

is possible that while the centre of mass did not move, the iCA1 place fields could have

enlarged towards the rewards. This was not the case, however, as their size decreased

from foraging to test trials (Figure 4.4A).
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Figure 4.6: dCA1 but not the iCA1 place cells accumulated at learned
reward locations. (A) Learning-induced changes of distance from dCA1 place fields
to the closer of two reward locations. Left: distribution of distances shown for place
fields from foraging and place fields from unbaited test after learning. Right: proportion
of dCA1 place cells that had a place field inside a reward zone (reward field). Lines
connect values for a single set of reward locations. (B) As in (C) but for iCA1 cells.
(C) As in (A) but for place cells calculated on randomly downsampled data to match
occupancies between foraging and test trials. (D) As in (B) but for iCA1 cells.
Data compared with post-hoc test on least-square means of linear mixed-effects model
for the effects of learning, implant location and their interaction. **p < 0.01.

4.5 Change in population activity as mice approached

the reward

To gain insight into how memory of reward location affects the population activity, I

analysed the dCA1 and iCA1 activity as mice approached the reward. In late learning

trials (last day of learning a set of reward locations), the mean dCA1 activity increased

by 0.09 ± 0.01 s.d. when mice approached the reward (log-linear mixed-effects model

comparing activity at 4–5 s and 0–1 s before the reward, learning stage × reward

proximity interaction: F(2,1525) = 25, p = 10−11; late learning increase: t(1526) = 7.8,
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Figure 4.7: dCA1 population activity ramping-up as mice approach the
reward. (A) Example single-trial path of a mouse (left) together with dCA1 activity
(right). Each row of the raster shows z-scored activity of a single cell. The cells are
sorted by the time of their maximum activity. Blue-coloured gradient above the raster
indicates the colour-matched spatial location on the left; the total population activity
is shown below. (B) Population activity during individual approaches towards the
reward locations in an example mouse. Day-mean ± SEM activity and running speed
are shown below. (C) Population activity as mice approached the reward compared
between the early and late learning trials and non-reward stopping. Each ribbon shows
animal mean ± SEM. (D) Speed profile centred on the time of dCA1-implanted mouse
arriving at the reward during late learning (left) and on the time when the mouse
was the closest to reward location during test trials (right). Each ribbon shows animal
mean ± SEM. Horizontal line marks running speed threshold. (E) Percentage of active
place cells and non-place cells in dCA1 as mice approached the learned reward location
in late learning trials shown as a function of time from reward. Each ribbon shows
animal mean ± SEM. (F) As in (E) but as a function of distance from reward.
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Figure 4.7 (previous page): dCA1 population activity ramping-up as mice
approach the reward. (G) Cumulative distribution function (CDF) for the percent-
age of the reward approaches when the dCA1 cell was active 0–1 s before the mouse
arrived at a reward. The cell’s frequency was calculated separately for each reward
location during late learning. The thin lines show CDF on data pooled from the same
animal from multiple reward locations and learning days; the thick line shows the CDF
mean. (H) Change in the number of active cells from the 4–5 s before the reward
approach to 0–1 s shown as a function of day-mean learning trial performance. The
black line shows the slope of modelled regression together with its credibility interval
in grey. (I) Percentage of active place cells in unbaited test trials shown as time from
the mouse approaching the learned reward location. Ribbons show mean ± SEM per
mouse. (J) The percentage of active cells in test trials during the reward location
approach relative to the value at -5 s from the reward location. Each row shows the
animal mean as a function of time.
Population activity extracted from calcium imaging. Data compared with post-hoc
tests on linear mixed-effects models in (C), (E) and (I). Linear mixed-effects model
used to test for the effects of trial performance in (H). ***p < 0.001; **p < 0.01.

p = 10−13, BF10 = 1011, CI = [0.08, 0.13] s.d., n = 70 early, 298 late, 298 non-

reward approaches; Figure 4.7A–C). The effect was absent on the first day of learning

(early learning, t(1525) = 0.6, p = 1.0, BF10 = 0.18, CI = [−0.03, 0.05] s.d.). Also,

it was not a direct result of changes in running speed: the effect was absent when

the mice stopped at non-rewarded locations (t(1414) = 1.6, p = 1.0, BF10 = 0.16,

CI = [−0.03, 0.01] s.d.), and it preceded the drop in speed before the reward (Figure

4.7D). The fraction of active cells (cells whose activity exceeds z-score of 0.5) increased

by 33 ± 4% among place cells, and 15 ± 3% among non-place cells (linear mixed-effects

model, cell-type × reward proximity interaction: F(1,1085) = 10.5, p = 0.001; increase

in place cells: t(1086) = 8.0, p = 10−14, BF10 = 1010, CI = [21%, 46%]; increase in non-

place cells: t(1086) = 3.5, p = 0.001, BF10 = 168, CI = [6%, 22%]; n = 298 approaches;

Figure 4.7E). The cells active at a particular reward location consisted of a repeatedly

activated cell population (7 ± 1% of place cells and 4 ± 1% of non-place cells were

active in more than half of the approaches) and of a changing, broader cell population:

50 ± 2% of place cells were active at reward at least once, meaning that a large fraction

of these cells fired outside of their place field (Figure 4.7G). The increased activity of

place cells was also visible when plotted as a function of distance to the reward (Figure

4.7F), and it correlated with day-mean performance (linear mixed-effects: F(1,66) = 10,

p = 0.002, BF10 = 7.2, slope: CI = [0.8, 7.2], n = 68 days; Figure 4.7H right). In
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contrast, there was no significant correlation between the fraction of active non-place

cells and performance (inconclusive evidence: F(1,36) = 2.4, p = 0.13, BF10 = 0.63,

slope CI = [−0.8, 3.1], n = 68 days; Figure 4.7H left).

The higher number of active place cells was not only caused by reward-

associated olfactory cues, as it persisted in the unbaited test trials. When the mice

were running the closest to the learned reward location, the fraction of dCA1 active

place cells increased by 19 ± 11% while it did not change in non-place cells (linear

mixed-effects model, cell-type × reward location proximity interaction: F(1,840) = 9,

p = 0.003; increase in place cells: t(840) = 3.7, p = 0.001, BF10 = 7.4, CI = [6%, 33%];

strong evidence for the lack of change in non-place cells: t(85) = −0.23, p = 0.82,

BF10 = 0.09, CI = [−9%, 5%]; n = 230 approaches; Figure 4.7I–J). Therefore, the

ramping-up of active place cells can not be explained only by reward-associated olfac-

tory cues, which might nevertheless have contributed to the higher baseline activity

during learning.

Changes in iCA1 population activity contrasted with those in dCA1. In late

learning trials, the mean iCA1 activity decreased by 0.09 ± 0.01 s.d. when mice ap-

proached the reward (log-linear mixed-effects model, learning stage × reward proximity

interaction: F(2,1188) = 7.3, p = 10−3; late learning decrease: t(1189) = −4.2, p = 10−4,

BF10 = 39, CI = [−0.15,−0.4] s.d.; n = 60 early, 253 late, 385 non-reward approaches;

Figure 4.8A–C). This effect was absent during early learning trials (t(1183) = 0.82,

p = 1.0, BF10 = 0.21, CI = [−0.11, 0.5] s.d.) and when mice stopped at non-rewarded

locations (t(1186) = −1.0, p = 1.0, BF10 = 0.11, CI = [−0.02, 0.05] s.d.). The opposite

direction of activity change between dCA1 and iCA1 was not explained by mice ap-

proaching the reward with different speeds (Figure 4.8D). The fraction of active cells did

not change among place cells but it decreased among non-place cells by 32 ± 3% (linear

mixed-effects model cell-type × reward proximity interaction: F(1,865) = 8.8, p = 0.003;

no change in place cells: t(865) = 0.3, p = 0.98, BF10 = 0.08, CI = [−15%, 23%];

decrease in non-place cells: t(865) = 4.0, p = 10−4, BF10 = 106, CI = [−44%,−21%]; n

= 253 approaches; Figure 4.8E). Large fractions of place cells and non-place cells were

inactive 0–1 s before the reward in all approaches to a particular reward (46 ± 3% of

the place cells, 50 ± 4% of the non-place cells; Figure 4.8G). The activity decrease was



104 Chapter 4. Encoding of learned reward location in the dCA1 and iCA1

n.s.

10 cm/s

0.4 sd

-4 -2 0 2

C
el

ls
 a

ct
iv

e 
(%

)

20

15

10

5

20

15

10

test trials

20

0

-20

-2 -1 -2 -1

day 1 day 3

5
10

B

mean
trace

A

-4 -2 0 2 -4 -2 0 2

15

H I J

40 30 20 10 0

Trial performance
(-log distance run (m))

Time to reward (s)

A
pp

ro
ac

h

A
ct

iv
e 

ce
lls

ch
an

ge
 (

%
)

day 5

0.0
1.0

 Population 
z-score

non-place cells place cells

running
speed

A

B

C
el

l

5 s

20

40

60

Learning trial

Population
z-score

0.2 sd

reward

Activity z-score
min max

running
A Blocation

reward stopping -4 -2 0 2

P
op

ul
at

io
n 

z-
sc

or
e

***

-4 -2 0 2 -4 -2 0 2 -4 -2 0 2

-0.2

0.0

0.2

0.4

Time from stopping (s)

n.s.
late learningearly learning non-reward

-4 -2 0 2

S
pe

ed
(c

m
/s

)

-4 -2 0 2
Time from reward location (s)

late learning test trials

5
10
15
20

0

C D

E F G

Time from reward (s)
-4 -2 0 2 -4 -2 0 2

0

10

20

30

C
el

ls
 a

ct
iv

e 
(%

)

C
el

ls
 a

ct
iv

e 
(%

)

place cellsnon-place cells

*** n.s.

n.s.
n.s.
n.s.

place cells
non-place
cells

Distance from 
reward (cm)

0% 50% 100%
0.0

0.5

1.0

Approaches when cell active

C
el

ls
 C

D
F place cells

non-place
cells

Time from reward location (s)
-4 -2 0 2 -4 -2 0 2

1

6A
ni

m
al

 ID

non-place cells place cells

Cells active
(relative to -5 s)

200%100%

**

Figure 4.8: iCA1 population activity ramping-down as mice approach the
reward. (A) Example single-trial path of a mouse (left) together with iCA1 activity
(right). Each row of the raster shows z-scored activity of a single cell. The cells are
sorted by the time of their maximum activity. Blue-coloured gradient above the raster
indicates the colour-matched spatial location on the left; the total population activity
is shown below. (B) Population activity during individual approaches towards the
reward locations in an example mouse. Day-mean ± SEM activity and running speed
shown below. (C) Activity as mice approached the reward compared between the early
and late learning trials and non-reward stopping. Each ribbon shows animal mean ±
SEM. (D) Speed profile centred on the time of an iCA1-implanted mouse arriving at
the reward during late learning (left) and on the time when the mouse was the closest
to reward location during test trials (right). Each ribbon shows animal mean ± SEM.
Horizontal line marks running speed threshold. (E) Percentage of active place cells
and non-place cells as mice approached the learned reward location in late learning
trials shown as a function of time from reward. Ribbons show animal mean ± SEM.
(F) As in (E) but as a function of distance from reward.
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Figure 4.8 (previous page): iCA1 population activity ramping-down as mice
approach the reward. (G) CDF for the percentage of the reward approaches when
the cell was active 0–1 s before the mouse arrived at a reward. The cell’s frequency
was calculated separately for each reward location during late learning. The thin lines
show CDF on data pooled from the same animal from multiple reward locations and
learning days; the thick line shows the CDF mean. (H) Change in the number of
active cells from the 4–5 s before the reward approach to 0–1 s shown as a function
of day-mean learning trial performance. The black line shows the slope of modelled
regression together with its credibility interval in grey. (I) Percentage of active place
in unbaited test trials shown as time from the mouse approaching the learned reward
location. Ribbons show mean ± SEM per mouse. (J) The percentage of active cells
in test trials during the reward location approach relative to the value at -5 s from the
reward location. Each row shows the animal mean as a function of time.
Population activity extracted from calcium imaging. Data compared with post-hoc
tests on linear mixed-effects models in (C), (E) and (I). Linear mixed-effects model
used to test for the effects of trial performance in (H). ***p < 0.001; **p < 0.01.

also visible when plotted as a function of distance to the reward (Figure 4.8F), and

it correlated with day-mean performance (linear mixed-effects: F(1,55) = 8, p = 0.005,

BF10 = 7.0, slope CI = [−10.5,−1.2]; Figure 4.8F), whereas there was no correlation

between the fraction of active iCA1 place cells and performance (linear mixed-effects:

F(1,49) = 0.9, p = 0.77; BF10 = 0.31, slope CI = [−5.4, 6.6], n = 58 days, Figure 4.8H).

In the unbaited test trials, the fraction of active iCA1 place cells and non-

place cells did not change when mice approached the learned reward locations (linear

mixed-effects model cell-type × reward location proximity interaction: F(1,859) = 0.7,

p = 0.41, reward location effect: F(1,859) = 1.9, p = 0.16; strong evidence for the

absence of change in place cells: BF10 = 0.08, CI = [−18%, 12%]; moderate evidence

for the absence of change in non-place cells: BF10 = 0.24, CI = [−26%, 3%]; n =

246 approaches; Figure 4.8I–J). The decrease in the fraction of active non-place cells

correlated with the performance only in baited trials, suggesting it was related to the

reward-associated olfactory stimulus or different speed profile when mice approached

reward location in the learning and test trials (Figure 4.8D).
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4.6 Tracking of reward location by individual cells

A subpopulation of dCA1 place cells was reported to remap to track the reward lo-

cations (Gauthier and Tank, 2018). To investigate whether some dCA1 or iCA1 cells

signalled location-independent anticipation of reward, I compared their activity be-

tween test trials performed after the mice learned different reward locations. Of the

cells active on the first test trial, 60 ± 6% were active again on the second and 50 ± 5%

on the third test trial (Figure 4.9A). I followed the remapping of place cells present in

two subsequent test trials (Figure 4.9B top). Of the 89 dCA1 place cells with a reward

field (place field within 20 cm of reward location) at the previous reward location, 25%

retained their place field, and 31% remapped to either of the current reward locations.

However, their place fields were not closer to the current reward locations than those

of cells previously without a reward field (log-linear mixed-effects model comparing

distances to the closer reward: F(1,378) = 0.94, p = 0.33, moderate evidence for the lack

of difference: BF10 = 0.16, CI = [−6, 2] cm, n = 279 cells; Figure 4.9B–C left).

In contrast, iCA1 cells with a reward field at the previous reward location

had place fields closer to the current reward locations than the cells previously without

a reward field (log-linear mixed-effects model comparing distances from place field to

the closer of the two rewards: F(1,90) = 17, p = 0.0001; strong evidence: BF10 = 122,

CI = [6, 19] cm, n = 74 cells; Figure 4.9B–C right). The effect was not due to different

place field sizes in the two groups of the iCA1 place cells (linear mixed-effects model

for mean field size: F(1,89) = 1.2, p = 0.29; moderate evidence for the lack of difference

BF10 = 0.32, CI = [−2.5%, 1.0%], n = 74 cells; 4.9D).

The subpopulations of iCA1 place cells with zero or multiple reward fields

were larger than expected by chance – one remapped avoiding and the other remapped

tracking reward locations. To test this, I looked at cells present in at least two test

trials and classified as place cells in more than half of them. Of 106 iCA1 place cells,

47.1% had zero reward fields, and 4.7% had reward fields at more than half of reward

locations, significantly more than the respective 40.0% and 2.9% expected by chance

(Figure 4.10A–B right). The distribution of the expected counts was generated by a

process that shuffled cell identities assigned to test trial place maps. A significantly
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Figure 4.9: Subpopulation of the iCA1 but not dCA1 cells tracked the
learned reward location. (A) Percentage of cells from the first test trial active
again in the later test trials. (B) Remapping of place cells after learning a changed
reward location. iCA1 place cells with a field at the previous reward location had their
fields subsequently closer to the current reward locations than the cells previously
without a reward field. Top: Example place maps of the same cells from the previous
(Test n-1) and current test trial (Test n). Middle: place fields centres for a random
cell sample. Visualization preserves distances to the reward but the exact locations
differ. Bottom: CDF of distances from the place field centres to the closer of the
reward locations. For cells with multiple place fields, the one closest to the reward was
considered. (C) Data points show distances for cells used for the CDF in (B). Lines
connect animal averages. Only 4 out of 6 iCA1 animals had cells with a reward field
that could be matched on a subsequent trial. Statistics as in (B). (D) Place field sizes
of iCA1 place cells previously active at the moved reward location and of the place
cells previously without reward field. ***p < 0.001.

higher fraction of cells with zero or many fields at reward location means their count

exceeded that in 95% of the shuffles. In comparison, of 423 dCA1 place cells, 33.8% had

zero reward fields, and 2.1% had reward fields at more than half of reward locations –

fractions similar to the respective 34.1% and 2.5% of cells expected by chance (Figure

4.10A–B left).

To investigate whether cells with reward fields during test trials were active

in anticipation of reward, I analysed their activity as the mice approached either of

the two reward locations during the previous-day learning. dCA1 and iCA1 cells with

reward fields in test trials had higher activity than other place cells as the mice ap-

proached either of the two rewards (log-linear mixed effect models on activity -1–0 s

from the reward, dCA1: F(1,2134) = 20, p = 10−5; BF10 = 498, CI = [0.1, 0.2] s.d.;
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iCA1: F(1,591) = 19, p = 10−5; BF10 = 224, CI = [0.1, 0.4] s.d.; n = 278 learning

trials; Figure 4.11A–B). The difference between the two populations increased as mice

approached the reward in iCA1 but not in dCA1, suggesting that iCA1 cells form dis-

tinct subpopulations (log-linear mixed-effects model comparing the difference at 4–5 s

and 0–1 s before reward, recording site × reward proximity interaction: F(1,456) = 5.9,

p = 0.016; strong evidence for no change in dCA1: t(455) = −0.2, p = 0.90, BF10 = 0.10,

CI = [−0.1, 0.1] s.d.; strong evidence for change in iCA1: t(456) = −3.3, p = 0.006,

BF10 = 21.2, CI = [0.1, 0.4] s.d.; n = 278 learning trials; Figure 4.11C).
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Figure 4.11: Cells with the reward fields were active in anticipation of the
reward during learning. (A) Activity in single-day learning trials of example dCA1
cell and iCA1 cell that had a reward field in the next-day test trial. Each row shows
activity in a single trial centred on the time of the mouse arriving at reward. Grey
marks periods from before the recording start or after its finish. (B) Averaged activity
during late learning trials aligned to the time of mice arriving at the reward. Shows
activity of two cell groups: cells with reward fields in a next-day test trial and the cells
without a reward field. The trace has a width of ± SEM; grey rectangles mark 1-s-long
periods used for the statistical comparison. (C) Within-trial difference between the
two cell groups from (B). Linear mixed-effects model for the effects of reward proximity,
recording site and their interaction; effect of reward proximity in dCA1 and iCA1 tested
with least-square means. Grey rectangles mark 1-s-long periods used for the statistical
comparison. Data compared with post-hoc tests on least-square means of log-linear
mixed-effects models. ***p < 0.001, **p < 0.01, *p < 0.05.

4.7 Encoding of reward location by population activ-

ity

Last, I assessed the similarity of the hippocampal encoding for memory of different

reward locations. I first created a binary decoder predicting from the instantaneous

activity of the dCA1 or iCA1 cell population whether the mouse was running inside

a reward zone in a given instant of the test trial (Figure 4.12A). When tested on the

same dataset as used for training, decoding from dCA1 and iCA1 had accuracies of

respectively 31 ± 2% and 30 ± 3% above that of random predictions based on reward

zone occupancy probability (Figure 4.12B left). To show that the activity generalises

across reward locations, I evaluated the decoders at one new and one of the previous

reward locations from another test trial. Decoding from the iCA1 had an accuracy

of 10 ± 3% above that of the random predictions. This was significantly higher than

decoding from the dCA1 which had an accuracy of 11 ± 4% below that of the random

predictions (F(1,20) = 12, p = 0.002, BF10 = 7.1, CI = [3%, 33%], n = 20 trials; Figure
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Figure 4.12: Population activity encoded learned reward locations. (A)
Training and test data used for binary decoders predicting whether the mouse was
running in the learned reward location proximity. The decoders were trained on the
activity from test trials on two different days. They were tested on activity from
another day when the decoder had to flip its prediction for the two tested locations:
the previously rewarded location was unrewarded and vice versa. (B) Accuracy of
decoding from the activity of cell population is shown as the difference from random
predictions based on reward zone occupancy probability. Decoders evaluated on the
same data as used for training (left) and on the data from test trials with different
reward locations than in training (right). In the latter, the decoder had to give the
opposite answer to the training data for the same location. Accuracy below the random
level means the decoder predicted location rather than predicting reward zone. (C)
Accuracy of decoding from the population-mean activity is shown as the difference
from random prediction. Horizontal bars mark the means. **p < 0.01, *p < 0.05.

4.12B right). Decoding from the iCA1 had higher accuracy despite having to use fewer

recorded cells: 38 ± 7 iCA1 vs 61 ± 9 dCA1 cells. The dCA1 decoder predicted the

reward zone to be at the same location as in the training dataset even though it was

moved, which means it decoded the mouse location rather than reward location.

Because the number of active dCA1 cells ramped up when mice approached

the learned reward location (Figure 4.7), I tested another decoder based on the dCA1

population-mean activity. The decoder used two inputs representing the population

activity: the fraction of active place cells and the fraction of active non-place cells.

Decoding performed with an accuracy of 10 ± 4% above chance (t(13) = 2.7, p = 0.02,

BF10 = 3, CI = [1%, 16%], n = 14 dCA1 trials; Figure 4.12C). Thus, the ramping-up

activity of dCA1 place cells encoded reward location independently of their spatial

coding.
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4.8 Discussion

The main findings of this chapter are that both dCA1 and iCA1 activity predict reward

location; however, they do so using different codes. The dCA1 anticipated the reward

with increased population activity. The increase correlated with learning performance

as measured by distance the mouse run to find the rewards. The activity engaged

changing place cells, allowing independent reward and spatial coding. In iCA1 the same

cells were active in anticipation of the reward, while the overall population decreased

its activity. The iCA1 cell population provided a code for learned reward location that

persisted across reward locations and time. The sections below discuss the findings of

this chapter and put them in perspective.

4.8.1 Comparison of spatial coding in the dCA1 and iCA1

In agreement with previous reports, I found that iCA1 place cells have larger place

fields than dCA1 place cells (Figure 4.4A; Maurer et al., 2005; Jung et al., 1994;

Keinath et al., 2014). However, the dCA1 and iCA1 place cells did not differ in their

within- and between-day stability (Figure 4.4G). The fraction of the dCA1 and iCA1

place cells and their spatial information per unit of activity were not different (Figure

4.4F). Previous studies using tetrode recordings reported lower spatial information

per spike in the iCA1 (Jung et al., 1994; Keinath et al., 2014; Jin and Lee, 2021).

Calcium imaging could be less sensitive to individual spikes (Huang et al., 2021) and

underestimates spatial information and could have failed to capture the difference in

the spatial information (Climer and Dombeck, 2021). Additionally, the involvement of

the iCA1 in spatial navigation increases with task complexity (Contreras et al., 2018),

which could affect the comparison between studies. While the iCA1 place cells had

larger place fields, the dCA1 and iCA1 population activity encoded animal location

with comparable accuracy (Keinath et al., 2014).

The functional contributions of the dCA1 and iCA1 place cells might be

different during spatial learning and navigation. As reported before, they have different



112 Chapter 4. Encoding of learned reward location in the dCA1 and iCA1

effects on spatial learning depending on the stage of the learning task (Fanselow and

Dong, 2010; Bast et al., 2009; Ruediger et al., 2012).

4.8.2 Sparser but more spatially tuned place cells after learning

The changes observed in dCA1 and iCA1 populations suggest that spatial representa-

tions become sparser after learning (Karlsson and Frank, 2008). First, together with

the absolute number of active cells, the absolute number of place cells decreased af-

ter learning (Figure 4.3C). Second, the smaller population of place cells was more

spatially tuned: their place fields were smaller, and their spatial information higher

(Figure 4.4A,C). The decrease of place field sizes was associated with a higher fraction

of single-field place cells in dCA1 but there was no change in iCA1 (Figure 4.4B). The

place maps of the same cell recorded during the last-day foraging and first test had

lower correlations than place maps between different-day foraging (Figure 4.4E). The

lower place map correlations could have been caused by changes in the place maps due

to learning a set of reward locations. However, the correlated place maps from foraging

trials come from consecutive-day sessions, while the place maps from test trials come

from sessions two-to-three days apart. Therefore, the longer time could contribute to

the correlations difference.

The changes in spatial tuning are in agreement with previous reports that

place cells increase their tuning with experience in the environment (Cacucci et al.,

2007; Karlsson and Frank, 2008) and with reward location learning (Roux et al., 2017).

However, place fields change over time (Ziv et al., 2013), and it is possible that the

changes summarised above appeared independently of learning.

The behaviour of the animals differed between the foraging and test trials,

which too confounds the effect of learning on the spatial tuning of cells. The mice

ran faster in test than in foraging trials (Figure 4.1F). Running speed increases place

cell firing rates (Maurer et al., 2005). Thus, if place cells increased their firing rates

preferentially inside the place field, the place map contrast would increase, resulting in

higher spatial information which is what I observed. A supra-linearly increased contrast

of the place map due to the higher running speed could also explain smaller place field
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sizes. This is because it would lead to fewer pixels of the place map exceeding a linear

threshold used in the place field size calculation.

4.8.3 Reward anticipation coding in the dCA1

Consistent with previous reports, dCA1 place cells accumulated at the learned reward

locations (Figure 4.6; Dupret et al., 2010; Zaremba et al., 2017; Boccara et al., 2019;

Kaufman et al., 2020; Sato et al., 2020). Place field centres of mass shifted towards the

reward location, which is a change that can not be explained by the higher running

speed of mice during test trials than during foraging. The relative fraction of place cells

at the reward increased, but the absolute count of active cells was lower after learning

than during the first foraging sessions (Figure 4.2A). A previous study reported that the

dCA1 place fields become asymmetric, and the cells become active earlier during the

reward approach (Mehta et al., 2000). Such change is compatible with the accumulation

of dCA1 place cells at the reward location because the activity peak of the asymmetric

place cells could remain at the same location and because remapping and emergence

of new place cells could lead to the place cell accumulation.

As mice approached the reward, the number of active place cells ramped-up

(Figure 4.7). Ramping dCA1 activity was previously reported during reward antic-

ipation in immobile animals (Hok et al., 2007; Duvelle et al., 2019). Therefore, the

ramping signal can predict the reward location independently of the spatial represen-

tations during movement.

The ramping-up activity in anticipation of reward is also present in other

brain regions that are involved in reward processing: striatum (Hollerman et al., 1998;

Hassani et al., 2001), orbitofrontal cortex (Schoenbaum et al., 1998; Tremblay and

Schultz, 1999) and amygdala (Schoenbaum et al., 1998). Activity in some of their

neurons increases following a reward-predicting cue and the same neurons sustain their

firing until the reward is delivered. Additionally, these neurons seem to respond to

learning and reward rather than to an increased attention: the neurons in the stria-

tum increase their activation when the reward magnitude decreases (Hassani et al.,

2001). The source and function of these anticipatory signals could be related to the
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ones observed in dCA1. If that was the case, magnitude of reward would also be ex-

pected to modulate dCA1 activity during reward anticipation, which requires further

investigation.

I found evidence against the hypothesis that dCA1 cells with place fields

close to reward remapped to track the translocated reward better than other place

cells (Figure 4.9C). Thus, rather than a set of neurons specialised for encoding reward

locations, a random subset of place cells accumulating at reward locations accounted

for the total number of observed place fields at reward per dCA1 place cell (Figure

4.9D). This is at odds with the conclusion of Gauthier and Tank (2018). There are

several differences between the two studies: (1) I compared the cell activity across

multiple days and reward locations, and in the absence of reward; (2) I used a 2-

dimensional maze and the mice were freely moving; (3) the null hypothesis I tested

takes into account the accumulation of place cells at reward locations. The presented

results suggest that the dCA1 place cells that are active at reward locations are part

of a flexible spatial rather than a dedicated reward-coding population.

The results do not exclude the possibility that cells are attracted to the re-

ward stochastically, following probabilities that differ between them. Because cells in

the deep sublayer are more strongly modulated by reward (Danielson et al., 2016),

and because spatial modulation of the dCA1 cells differs along the proximo-distal axis

(Henriksen et al., 2010), responses across the dCA1 pyramidal cells may be more het-

erogeneous than I report here. Lee et al. (2020) proposed that place cells differ in the

propensity to form place fields, which is scaled by salient locations. In their model,

the expected number of reward fields per cell follows a Gamma-Poisson distribution,

which is compatible with the low number of place cells frequently located at rewards

(Figure 4.9D).

Encoding the reward-anticipatory signal with a variable ensemble of neurons

could be beneficial for learning. For example, it could allow flexible global remap-

ping of place cells between the environments (Chadwick et al., 2015), as well as allow

construction of flexible sequences for mnemonic representations (Buzsáki and Tingley,

2018), and a continuous drift of memories to integrate new experience (Mau et al.,

2020).
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What mechanism supports the reward-anticipatory increase in the dCA1 ac-

tivity? Lee et al. (2020) found that the membrane potential of some cells is depolarized

at the reward locations, suggesting a selective increase in excitability. The increased

excitability could be due to local disinhibitory activity (Turi et al., 2019), and due to

neuromodulation by noradrenaline and dopamine (Kaufman et al., 2020). The neuro-

modulation could also induce LTP (Brzosko et al., 2019), resulting in increased activity

during reward anticipation of neurons whose synapses were potentiated. Evidence for

a role of LTP comes from Dupret et al. (2010) who reported that the accumulation

of place cells at reward locations depends on NMDA receptors, which are required for

some forms of LTP (Bliss and Collingridge, 1993).

4.8.4 Reward anticipation coding in the iCA1

The density of iCA1 place fields was unaffected by the memory of reward location. In a

study where mice alternated between two marked reward locations, the iCA1 place cells

accumulated at the reward locations and were sensitive to the reward value (Jin and

Lee, 2021). Possibly, the iCA1 place cells accumulate at reward during stereotypical

running; or in some form of value association. Heterogeneity among the intermediate-

to-ventral CA1 cells (Ciocchi et al., 2015; Gergues et al., 2020) could have also con-

tributed to the difference.

The iCA1 cell responses I observed were diverse: reward anticipation increased

the activity of some and decreased the activity of other cells. A population of place

cells increased their activity and remapped to track the changing reward locations (Fig-

ure 4.9C–D), similar to the goal-encoding cells suggested to exist in dCA1 (Gauthier

and Tank, 2018). These cells were active as the mice approached the learned reward

locations during the unbaited test trials and the preceding-day learning trials (Figure

4.11), supporting the interpretation that they signalled reward anticipation.

Reward anticipation modulated another cell subpopulation by decreasing its

activity. The number of iCA1 place cells that did not have any reward fields was

larger than expected by chance (Figure 4.9D). This cell population and the reward-

tracking place cells can be related to the opposing approach and avoidance functions

that are controlled by the ventral hippocampus (Riaz et al., 2017; Schumacher et al.,
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2016). A population of iCA1 non-place coding cells decreased activity when the mouse

approached the reward in late learning trials (Figure 4.8). The suppressed iCA1 activ-

ity during reward approach resembles a similar suppression during goal-directed lever

pressing (Yoshida et al., 2019). Yoshida et al. (2019) reported that the serotonin-

mediated inhibition of the iCA1 was required for mice to sustain goal-oriented activity.

Possibly, the suppressed population activity helped to sustain the goal approach once

the reward location was learned.

4.8.5 Function of reward-predictive encoding

Both dCA1 and iCA1 activity predicted the mouse’s location relative to the learned

reward location. The same patterns of activity at the reward persisted across different

reward locations and across several days (Figure 4.12). The described dCA1 and iCA1

signal might direct the animal during navigation by increasing their activity in the

proximity of a goal (Burgess and O’Keefe, 1996), or by signaling reward expectation

(Foster et al., 2000).

The different encoding of reward-anticipation in dCA1 and iCA1 affects how

the signal can be relayed downstream. iCA1 neurons have divergent outputs (Ger-

gues et al., 2020). The reward-anticipatory subpopulation could include the nucleus

accumbens-projecting neurons controlling appetitive memory (Ito et al., 2008; Britt

et al., 2012; LeGates et al., 2018; Zhou et al., 2019; Davis et al., 2020; Shpokayte

et al., 2020), and exclude those controlling aversion or fear (Ciocchi et al., 2015; Xu

et al., 2016; Jimenez et al., 2018; Shpokayte et al., 2020). In dCA1, the ramping-up

of population activity in reward-anticipation resembles that seen in the dopaminergic

system (Schultz et al., 1997). Such signal could indiscriminately excite the down-

stream targets of the dCA1, including the nucleus accumbens-projecting neurons that

enable conditioned place preference (Trouche et al., 2019). Both the dCA1 and iCA1

reward-predictive signals could contribute to the ventral striatal ramping-up activity

during the learned reward location approach (van der Meer and Redish, 2011) and link

locations with reward prediction.
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General discussion and conclusions

This thesis studies memory for reward location during two stages: its initial encoding

and its later recall. For the stage of initial memory encoding, I focus on the supporting

hippocampal states and how they are controlled by ACh. For the stage of memory

recall, I focus on the changes in the CA1 activity which could represent the encoded

memory of the reward locations. In the following sections, I summarise the main

findings, discuss their validity and their significance.

5.1 Main findings

In Chapter 3, I aim to answer how cholinergic neurons affect the hippocampal activity

during reward location learning depending on the behavioural phase of the learning

task. The optogenetic stimulation of the cholinergic MS neurons affected spatial learn-

ing only when applied at the goal location but not when applied during navigation.

These two phases of the task correspond to different hippocampal states. At the goal

location, the CA1 activity favoured the occurrence of SWRs. Cholinergic activation

during that state suppressed their incidence. Therefore, the study gives corroborat-

ing evidence for a role of SWRs in memory encoding (Girardeau et al., 2009; Jadhav

et al., 2012; Ego-Stengel and Wilson, 2010). Optogenetic stimulation of the cholinergic

neurons during navigation did not affect the learning, possibly because the cholinergic

level was already naturally high. These results emphasise the need for precise timing

117
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of the cholinergic release, which is high during navigation but needs to be low to allow

memory encoding during SWRs.

In Chapter 4, I find that the memory of reward location is encoded both in

the activity of dCA1 and iCA1 cells. By comparing the activity at multiple reward

locations over an extended period of time, I address the question of whether the same

cells encode the memory of reward independently of its location. This form of encoding

was proposed as a general form of reward memory in the hippocampus that could be

unambiguously relayed downstream of the hippocampus (Gauthier and Tank, 2018).

I found such representations in the iCA1. Its cells target specific brain areas outside

of the hippocampus (Ciocchi et al., 2015) and therefore might be well suited to relay

the reward memory information. For example, specific intermediate and ventral CA1

projections to the nucleus accumbens and to the lateral septum were suggested to

convey reward-related signals and were found to regulate reward-seeking (Britt et al.,

2012; Ito et al., 2008; Ciocchi et al., 2015; LeGates et al., 2018; Kosugi et al., 2021).

In contrast, the dCA1 activity encoded the memory location by an increase in overall

population activity. The findings support a hypothesis that the memory network for

reward in dCA1 involves a changing subset of place cells, and the increased activity of

its entire population could serve to relay such signal.

5.2 Validity of the approach

5.2.1 A multitude of behavioural factors affecting the CA1 ac-

tivity

Chapters 3 and 4 integrate observations from animal behaviour and the co-occurring

CA1 activity. There are multiple factors in the animal’s experience that could have con-

tributed to the activity. For example, hippocampal activity is modulated by movement

speed (Buzsáki et al., 1983) and odours (Keinath et al., 2014). To minimise the impact

of factors unrelated to the animal’s location on the maze and its distance from the

reward, I averaged the activity recorded from multiple trials. Averaging ensures that
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the neural correlates include only behavioural factors that are repeated consistently at

a given location or at a defined time period during the task.

In Chapter 3, I focused on the activity during immobility at the reward when

SWRs are known to occur (Csicsvari et al., 2007; O’Neill et al., 2006). I summarised

these effects by calculating SWRs incidence and PSD of the LFP during the corre-

sponding task phase. Averaging the signal over the entire time period at the reward

diminishes the impact of brief changes due to the animal’s behaviour.

In Chapter 4, I focused on the factors that related to the animal’s mobility,

its location, and its distance from the learned reward location. Factors that could have

contributed to the activity during repeated approaches to the reward include olfactory

cues, for which I controlled in unbaited test trials. Mice decelerating before the reward

could also affect the activity; however, this factor can not explain the differential effect

on dCA1 and iCA1 activity. Finally, there might be other relevant behavioural factors

that I failed to observe. These, as discussed above, would need to consistently differ

between the mice groups to explain the differential effects. Such differential effects are

unlikely, and I reason the changes in the hippocampal activity after learning of reward

location were due to its memory.

5.2.2 Limitations of the findings

In Chapter 3, the optogenetic stimulation of the MS decreased incidence of SWRs

at the reward location. It is possible that this decrease did not directly lead to the

memory impairment. There are several non-hippocampal mechanisms that could have

contributed to the memory effects and I discuss these in the following section. Never-

theless, given that learning spatial location on the Y-maze depends on the hippocampus

and given evidence from other studies on the role of SWRs in memory formation (Gi-

rardeau et al., 2009; Fernández-Ruiz et al., 2019), the decreased SWRs incidence likely

contributed to the effects on learning the reward location.

Chapter 4 shows that both the dCA1 and iCA1 activity anticipated the re-

ward location. The activity correlated with the approach to the reward location after

learning, and could not be explained by olfactory cues of the reward. Also, the fact
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the activity changed after the animals learned the location and that the changes to

dCA1 and iCA1 activity were different suggests these changes are not directly related

to running, deceleration or other type of movement at reward. Multiple brain areas

increase their activity in anticipation of reward, including striatum (Hollerman et al.,

1998; Hassani et al., 2001), orbitofrontal cortex (Schoenbaum et al., 1998; Tremblay

and Schultz, 1999) and amygdala (Schoenbaum et al., 1998). Their activity scales with

the reward, and, similarly can not be solely explained by movement. Therefore, the

sources and function of the anticipatory signals in these brain areas could be related

to the ones observed in dCA1 and iCA1. In addition, it is not clear whether the an-

ticipatory activity in dCA1 or iCA1 is required for the expression of reward location

memory or some other aspects of reward-approach behaviour.

5.2.3 Evidence from optogenetic modulation of the medial sep-

tum

Optogenetic stimulation selectively modulates the activity of cells expressing a light-

sensitive opsin. In this work, I used optogenetic stimulation to excite cholinergic neu-

rons expressing ChR2. In the sampled cells, the ChR2 expression was limited to the

cholinergic neurons. The direct excitation by the stimulation was further restricted

to the MS by a limited spread of light from the optic fibre. The specificity of the

optogenetic method due to selective expression of the opsin much improves on that of

the experimental methods commonly used in the past such as electrical stimulation or

local lesions or ablation of cell bodies.

Optogenetic stimulation controlled the cholinergic neurons firing with high

temporal precision. However, the cholinergic release operates in slower timescales.

First, the action of muscarinic receptors is slow (Thiele, 2013). Second, it is possible

that the released ACh remained extracellularly following the termination of light stim-

ulation. Nevertheless, this limited precision allowed me to dissociate the contributions

of different phases on memory processes during learning. This is because the effects

of the optogenetic stimulation on the ACh release were time-limited as seen in the

short delay between the stimulation termination and fast return of the baseline level
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multi-unit activity in the MS of urethane anaesthetised mice and in the time-limited

effects on SWR incidence in sleeping mice.

Lastly, I can not exclude that the learning impairment was caused by an

independent of the hippocampus change. The optic fibre was placed above the MS

neurons and led to stimulation of the cholinergic neurons regardless of their axonal

projections. The stimulated neurons could affect the local MS circuits and their down-

stream targets. MS neurons project to multiple targets, including the medial EC,

prefrontal cortex and primary visual cortex (Li et al., 2018). Therefore, it is possible

these structures contributed to the behavioural effects or were primarily responsible

for the impairment. Additionally, the within-hippocampal effects of the cholinergic

activation could extend beyond SWRs, and include changes in synaptic transmission

or synaptic plasticity (Hasselmo, 2006). Either could impair the learning.

5.2.4 Evidence from one-photon calcium imaging

One-photon calcium imaging has limited sensitivity and accuracy when applied to

recording neural activity. Its limitations do not invalidate the presented findings, and

I discuss their possible impact.

Sensitivity of detecting neural activity

Neuronal spiking leads to fluorescent changes in the calcium reporter GCaMP6f (Chen

et al., 2013). The fluorescence is visible in the soma within several milliseconds after an

action potential and decays over tens of milliseconds (Chen et al., 2013). When multiple

action potentials fire, the fluorescence scales non-linearly. The exact magnitude of the

scaling can vary depending on the cell type and its state (Climer and Dombeck, 2021).

Therefore, the action potentials can not be precisely decoded from the signal (Huang

et al., 2021). Additionally, a single action potential might pass undetected (Huang

et al., 2021).

The problems with the detection of individual spikes and the non-linearity of

the signal affect the precision of the reported spatial and reward coding. For exam-

ple, the metrics calculated from the calcium fluorescence are known to underestimate
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the spatial information of place cells (Climer and Dombeck, 2021). Therefore, I draw

limited conclusions from the lack of observed differences in the coding of spatial infor-

mation by dCA1 and iCA1 place cells.

Accuracy of activity source identification

The imaged cells can have overlapping cell bodies because the 3-dimensional imaged

volume is projected onto a 2-dimensional image. Additionally, out-of-focus fluorescence

will result in blurred changes in the image. The image processing methods I used aimed

to address these two issues (Giovannucci et al., 2019). First, the use of constrained non-

negative matrix factorisation isolates sources of fluorescence that have overlapping ROIs

(Pnevmatikakis et al., 2016). As a result, the fluorescence changes can be attributed to

specific cells that can have overlapping cell bodies. Second, the background fluorescence

changes are explicitly modelled and their influence excluded from the neuronal signal

(Giovannucci et al., 2019).

The two computational methods minimise the errors related to the identifica-

tion of fluorescence sources; however, they can not eliminate them completely. There-

fore, the resulting deconvolved signal can misattribute activity between cells. Such

errors should not affect the reported conclusions as the non-biased addition of the

other-cell signal can only limit the specificity of a place cell or its reward coding. The

limited specificity did not obscure the findings about specific cells anticipating the re-

ward in the iCA1. Similarly, it should not obscure the evidence for the absence of a

sizeable population of goal-specific cells.

Precision of cell registration

I matched the identity of cells recorded on different days to analyse how they remap

after the mice learned changed reward locations. It is possible that some cells were

matched incorrectly. A consequence of such error is the randomisation of the cell’s

activity. For example, a place field assigned to a cell on one day could have been

completely different on another day. The cell registration for the dCA1 and iCA1 cells

used the same algorithm, therefore any such errors would not affect their comparison.
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Another type of error could be that the same cell was not identified as such. This error

would only limit the number of available data used to draw the conclusions, without

biasing the comparison between dCA1 and iCA1.

Brain tissue damage due to surgical procedures

To image from the CA1 pyramidal neurons, I implanted an optical lens above CA1. Im-

plantation damaged the brain tissue above that region. Previous work has found that

hippocampal activity as observed in place cell responses was not different from that

measured by less invasive electrophysiological techniques (Ziv et al., 2013). Implanta-

tion of the lens above the dCA1 and iCA1 damaged different regions. However, the

damage did not affect the learning or the locomotion between the two animal groups

differently.

5.3 Conclusions and perspective

This thesis provides further insights into the mechanisms that support memory encod-

ing and its later recall. For memory encoding, the results highlight the importance

of the timing of cholinergic activity aligned to the animal’s behavioural state. During

the memory encoding at the reward location, this requires the occurrence of SWRs.

Further research could confirm if the cholinergic stimulation could similarly impair

learning when applied during the memory consolidation stage in sleeping animals, and

whether the high cholinergic level is required during the navigational phase.

Memory of reward changes the hippocampal representations both in the dorsal

and intermediate CA1. The presented results demonstrate that the activity of both

encodes and anticipates the reward location. The identified encoding of reward memory

persisted across multiple reward locations and over an extended time. Therefore, it

could provide a time and location-invariant signal to direct the navigation. Further

studies will be required to determine whether the reward-anticipatory signals in dCA1

and iCA1 have a causal role in navigation and whether they affect activity downstream

of the hippocampus. The hippocampal reward-predictive signals could be important
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for learning and choosing appropriate actions during reward-guided navigation as they

are in reinforcement learning models (Foster et al., 2000; Sutton and Barto, 2018).
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