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Reviewer Reports on the Initial Version: 

Referee #1 (Remarks to the Author): 

 

The authors present a very well-done paper on an important topic. The analyses across hundreds 

of disease phenotypes and the very large datasets are a real asset. The results will be a valuable 

resource to the community. I found no technical issues with the way the analysis was done or the 

way the results were presented. I only have minor comments about this paper: 

 

I see Figure 1c compares the ORs to the MAFs for the novel hits. In general, it would be nice to 

see a quick summary in the text describing what proportion of the hits were low frequency variants 

with big ORs, the kind of results that would be helpful to return to an individual, and what 

proportion were higher frequency variants with very low ORs that were only able to be identified 

b/c of the very large sample size. 

 

The paper states "We found a statistical enrichment for significant genes in our study to also be 

approved drug targets (26/482; compared with a background of 569 approved targets/19,955 

genes, OR=1.9, p=0.0024), which is in line with previous estimates of a higher success rate for 

drug targets supported by genetics" ... "supporting previous observations that the stronger the 

genetic association, the higher the likelihood of therapeutic success". This seems circular to me. 

Doesn't this finding just reflect that previously discovered associations are more likely to have 

already been tested out in drug trials? If this analysis were done with only the new associations 

then it might be more interesting. 

 

"As reflected in a recent schizophrenia study50, GWAS tend to identify association signals primarily 

for variants with MAF>2%, while most variants identified through exome sequencing are ultra-rare 

(MAF<0.01%). Of the 975 associations identified in our study, 145 are driven by unique variants in 

the yet little interrogated rare and low allelic frequency spectrum that is hypothesized to contribute 

substantially to the “missing heritability” of many human diseases51." It's not clear to me why the 

schizophrenia study in particular is cited here, as it's simply a fact that GWAS don't really look at 

variants with a frequency below 1-2%, and the more rare a variant is, the less power you have to 

make a discovery with it (given a constant OR). It's also not clear what is meant by "most variants 

identified through exome sequencing are ultra-rare", as this would entirely depend on the type of 

analysis performed (common coding variants of course are picked up just fine by exome 

sequencing, but collapsing analyses of rare variants are usually performed as well). If the goal of 

this section is to show that variants in the 0.1-2% are overlooked by existing studies, then 

probably the right way to say that is that GWAS simply don't do MAFs that low, and exome 

sequencing datasets have so far been more limited in size and lacked power for discovery in this 

frequency range. 

 

Overall, great paper, look forward to using the results as a resource. 

 

 

Referee #2 (Remarks to the Author): 

 

This paper describes the results from studying low and rare frequency variants across 744 disease 

endpoints using exome/imputed genotypes from UK Biobank and the FinnGen study. The focus is 

on protein coding variation in this really large dataset to determine new associations, report 

relationships with diseases including mapping of rare variants to GWAS loci to highlight potential 



 

 

 

candidate genes, discovery of rare variants causing monogenic disease and their population 

relevance and relevance as drug targets. 

 

 

I enjoyed reading this paper and you have done a lot of work with some really nice results 

covering many disease end points. I thought the study was well designed and have a few 

comments. 

 

 

1. For reporting of results it was good to see all the QC checks you did and especially for variants 

with MAF <1% and as expected there would be more differences between FG and UKB in this 

allelic range. A review of your results with MAF <1% in ST3 provides a few variants which are 

quite discrepant In MAF, row 103 for example, CFHR5 the fs variant has a frequency of 0.31% in 

UKB and 4% in FG – using only a p value of 0.05 and less for support is liberal. Can you comment 

on your criteria for selecting P<0.05? I also wondered in your general reporting how many 

associations you found are rare – or low frequency variants your headline reporting does not 

report results in this way which will be interesting (and a goal of your study?) – how many of 

these have allelic frequencies that differ significantly across populations. You do describe these 

results in some detail on page 7 but some further reporting will be interesting. 

2. For FG you have used imputed data – and you have been stringent on which variants you 

included in your analysis. I wondered for many of the positive associations you are reporting 

(focus here on the rare variants) did you have access to any direct genotypes for some of the 

variants you report and did you look at the genotype clusters as an extra QC measure? Just as an 

extra QC measure 

3. On page 8 – can you add the MAF of the ODF3 variant? 

4. Your manuscript focuses on leveraging coding variant associations for generating new biological 

insights and you selected AF as one example. In ST3 you report coding variants you have found, 

and in the check if novel or not only one gene is indicated – ZNF131. Thus, the variants and genes 

have already been described. I am assuming here a 1 in columns AG and AH refer to a yes novel 

(there is no legend). The analysis you performed for METTL11B is really interesting and a nice 

story, at the end of this paragraph you indicate this is the causal gene at this locus – a locus which 

has many other well established genes with functional data supporting their role in AF (SCN5A). It 

would be really helpful if you can describe the GWAS locus in more detail – is there only one AF 

signal at this locus or are there other variants also associated with AF – the GWAS variant maybe 

tagging variants in other genes at the locus and your work indicates another association and 

candidate gene? 

5. You focused on results from rare variant analyses at the SCN5A and SCN10A locus. This is a 

well- studied locus with over 30 variants reported with AF/ECG traits and both SCN5A and SCN10A 

are well established candidate genes. I think the text on this locus could be reduced. 

6. HCN4 again another well studied gene and recognised as the candidate at the locus – this text 

and SCN5A - SCN10A could be a single discussion point? 

7. PITX2 – again a well- established candidate gene for AF. It was nice to see the functional work 

you have done onn your new variant, but I thought your results could be placed in better context. 

The selection of genes you have mostly highlighted for discussion of AF are candidate genes that 

are recognised and the mechanisms. With your rich dataset of results, were there other loci which 

you could have highlighted and importantly any new results also from other traits? 

8. Over the past week I note there is a new paper on MedRxiv which reports single variant results 

from UK across 3700 phenotypes (there are some shared co-authors). What are the overlap in 

findings, can this paper be referred to in some way as there are more exomes and may support 

some of the results in your paper? 

9. Supplementary tables – I do not see any legends for any tables, can these be provided? 

10. ST1 – add in the total N. There is no legend, can R5 and R6 be indicated? 

11. ST2 – there are some spelling mistakes, for example: Cardiac arrhytmias, please review. 

12. ST3 – typos again 

13. ST7 – can you also add the RsID to this table and also indicate in column G the source? 



 

 

 

14. ST10 – again typographical errors, can you review? 

15. Can you provide further details on data sharing – the site and what results? 

 

 

Referee #3/#4 (Remarks to the Author): 

 

This is the largest association study of protein coding variants identifying known and novel rare 

and low-frequency protein-coding variants associated with disease. The analysis combines exome 

sequence data in UK Biobank with imputed genotype data from FinnGen, and may provide a cost-

effective approach to increasing power for the detection of rare, disease-associated variants by 

leveraging MAF enrichment in different populations. 

 

1. The authors state that by combining data from two different populations, whereby rare alleles in 

one population are enriched in the second population, the authors were able to identify lower 

frequency variants in regions that have not previously been reported at genome-wide significance. 

However, there is also gain of power simply due to increased sample size. In Suppl Table 3, only 

82 variants had MAF<1% in UKB. Most of these variants had larger effect sizes (median odds ratio 

of 2). If an analysis was done combining the UKB data with another 260,405 European ancestry 

genotyped individuals imputed to a fully sequenced reference (instead of Finnish samples), would 

most of the these variants still be GWAS significant? In other words, is this just a matter of 

sufficient power due to increased sample size, or are these variants only identified at GWAS 

significance because of the higher MAF in the Finnish individuals? 

 

2. For the FinnGen data, how confident are the authors in the accuracy of the imputation for rare 

variants? The methods do not state if there was any INFO score cut-off applied for filtering of low-

quality imputed variants? Could the authors also provide the distribution of INFO scores for 

MAF<1% in FinnGen? 

 

3. The authors derive and validate a theoretical prediction of the improvement in meta-analysis Z-

score statistics as a function of sample size, MAF and effect size differences. However, the 

importance of effect sizes difference is not well reflected in their derivation. In fact, Equation (14) 

seems to suggest that uplift parameter “alpha” no longer depends on effect sizes, while this is only 

masked by the parametrisation. We suggest 1) expressing alpha as a function of the odds ratio 

(OR) in each study and 2) then simplify the expression under the assumption that the OR is 

constant across studies. This way, the reader will not be confused by statements like “for fixed 𝜅 

(kappa) IVW uplift 𝛼 increases with increasing MAF-enrichment”, which are incorrect given that 

kappa is itself a function of MAF-enrichment. We believe that our suggestion should clarify the 

logic of the argument made there. 

 

4. Pg 7 Line 164 – the authors state that the majority of regions were associated with a single 

disease cluster. They refer to Ext Data Figure 6. Panel b of this figure shows that most variants are 

associated with 1-2 biomarker groups. Looking at the biomarker groups, all blood biochemistry 

measures are classed as one group, despite these biomarkers having very different functions e.g. 

Vitamin D vs lipids vs inflammatory biomarkers which would be relevant for different disease 

groups. Lipids would also be more related to anthropometric measures and impedance measures, 

inflammatory biomarkers related to blood cell counts, urate and creatinine would be more related 

to blood pressure. Therefore, the number of true pleiotropic associations may be under-estimated. 

Re-grouping the blood biochemistry biomarkers according to function would make much more 

sense, rather than a single Blood Biochemistry group. For example see categories listed by UKB 

https://www.ukbiobank.ac.uk/media/oiudpjqa/bcm023_ukb_biomarker_panel_website_v1-0-aug-

2015-edit-2018.pdf. 

 

5. Similarly, Page 11 Line 242, 47 regions were associated with 5 or more biomarker categories 

including loci such as APOE. But the anthropometry measures, impedance measures and lipids 

could be considered functionally as one groups, given the causal association between lipids and 



 

 

 

anthropometric measures instead of 3 separate groups (vertical pleiotropy as opposed to 

horizontal pleiotropy). ABCG5 is also listed as a locus associated with 5 or more biomarker 

categories, but it is only associated with blood biochemistry traits. 

 

6. Supplementary table 10 - rs121913502 (15:90088702:C:T) has a huge effect size (beta=22 in 

FG) with myeloid leukemia. A lookup of this variant in ClinVar shows it is annotated as 

pathogenic/likely pathogenic (31 May 2016) for acute myeloid leukemia. But in Suppl Table 3, it 

shows as NA under ClinVar pathogenicity and 1 as Novel ClinVar variant. 

https://www.ncbi.nlm.nih.gov/clinvar?term=((29755[AlleleID])OR(362867[AlleleID])) 

Please re-check ClinVar annotations for all variants to ensure none have been missed and are not 

labelled as novel when previous evidence is available. 

 

7. There have been some large multi-ancestry exome-sequence studies for specific disease 

published e.g. T2D (https://www.nature.com/articles/s41586-019-1231-2), serum urate 

(https://pubmed.ncbi.nlm.nih.gov/30315176/ ) and Alzheimer’s disease 

(https://www.nature.com/articles/s41380-018-0112-7). Does this analysis replicate these 

findings, and would these variants have been replicated by UKB alone or only when FinnGen and 

UKB are combined? Also are variants identified here identified in these studies? 

 

 

8. Page 8 Line 178 - “152 had previously been linked…” could you add the % in brackets i.e. 

28.5%. “For 45 of these, the associated…” could you add % i.e. 29.6% 

 

9. For the variants that were associated with a disease cluster that was different than the 

phenotype reported in ClinVar, could you provide some examples of how different were the ClinVar 

phenotypes from the disease cluster? Is there any evidence from mouse studies or drugs side-

effects for pleiotropic effects of the genes? 

 

10. In Figure 1C it would be useful to distinguish which of the blue dots were significant in UKB 

only and those that were significant in FG only. 

 

11. Pg 5 Line 107 - the description of how a distinct region is defined is a little confusing. Could 

this be written more clearly. 

 

12. Winner’s curse can lead to inflated effect sizes that the large effects reported for some of these 

variants could potentially mislead replication studies, which will be looking for larger effect sizes. 

 

13. Is it possible to compare the proportion of variance explained for a few traits by coding SNPs 

vs non-coding SNPs since genome-wide data is available for both samples? 

 

14. Page 7 Line 152 – The authors state that 35% of region-disease cluster associations have not 

been previously reported at p<5e-8. Previous GWAS sample sizes may have been smaller and 

therefore less powered to detect at genome-wide significance. Is there a way to see if these 

variants have suggestive association in previous studies (p<1e-5)? 

 

15. It would be useful to know how many distinct genes were associated with disease (outside the 

HLA region) and how does this compare to the number of distinct regions i.e. how often were 

coding variants in 2 adjacent genes merged outside the HLA region? Also, of the associated genes, 

how many had more than one independently associated coding variant? 
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Author Rebuttal to Initial Comments: 
 
Editor comments 
 
We did not specifically enlist a referee to comment on the wet lab assays and have looked over them in-
house. For the revision, please make sure to include the following control experiments: 
 
- a Western blot showing PITX2 expression during the luciferase assay 
We now provide a Western blot obtained on the day of the luciferase assay, which shows equal 
expression of PITX2c/WT and PITX2c/Pro41Ser in Supplementary Figure Pro41Ser 2 (page 26). Extended 
view of the full membranes and films are also shown. We thank you for this suggestion and the clarity 
this brings to the manuscript. 
 
- quantification of the qPCR levels of the SLC13A3-reporter mRNA 
Thank you for allowing us to clarify this point. For Figure 4b, we conducted a reporter gene assay where 
the reporter construct contains a promotor fraction of the SLC13A3 gene containing a presumed PITX2c 
binding element, but it does not encode for SLC13A3 mRNA. The mRNA produced from this construct 
encodes solely for luciferase, levels of which are quantified in the assay (relative to beta-galactosidase). 
To avoid confusion, we are now omitting to refer to SLC13A3 in our main manuscript (Main text 
updated in lines 446-449). We also provide more details on the constructs used to monitor luciferase 
expression in the section Transactivation assays within Supplementary Methods: Functional 
characterization of PITX2c Pro41Ser (lines 499-509, page 21-22). We apologize for any inconveniences 
caused in your review of this part of the manuscript and hope that this clarification is satisfactory. 
 
Reviewer comments 
 
Referee #1 (Remarks to the Author): 
The authors present a very well-done paper on an important topic. The analyses across hundreds of 
disease phenotypes and the very large datasets are a real asset. The results will be a valuable resource 
to the community. I found no technical issues with the way the analysis was done or the way the results 
were presented. I only have minor comments about this paper: 
 
1. I see Figure 1c compares the ORs to the MAFs for the novel hits. In general, it would be nice to see a 
quick summary in the text describing what proportion of the hits were low frequency variants with big 
ORs, the kind of results that would be helpful to return to an individual, and what proportion were 
higher frequency variants with very low ORs that were only able to be identified b/c of the very large 
sample size. 
 
We thank the reviewer for this suggestion and have added a few sentences to page 6 (Main text, lines 
127-133) that feature coding variants with big ORs (log[OR]>2) which reside in established disease genes 
and where return to participants might help improve clinical care. We have modified the main text as 
follows: 
 

“We found 13 associations (across 11 genes) with log odds ratios >2 (Figure 1c). Of 
these, 12 associated variants had MAF<1%, and only the haemochromatosis variant 
rs1800562 showed frequency ranges traditionally interrogated in GWAS (MAF=7.9% 
[UKB], 3.7% [FG]). Several variants with large effect sizes reside in well studied 
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disease genes such as BRCA1 (breast cancer), IDH2 (myeloid leukaemia), VWF (von 
Willebrand disease), or HFE (disorders or iron metabolism), proposing that carriers 
could benefit from clinical monitoring for associated conditions.” (Main text, lines 
127-133) 

 
We have further updated Figure 1c and now highlight genes with coding associations of large OR 
(log[OR]>2) and very low frequencies (MAF<0.1%).  
 
In order to further leverage our findings towards “the kind of results that would be helpful to return to 
an individual” we conducted an additional analysis assessing disease-associations for coding variants 
within ACMG3.0 genes. The American College of Medical Genetics recommends that variants identified 
within this set of 73 genes in sequencing studies should be considered for being returned to participants 
since they are medically actionable (Miller et al., 2021; see References). We have summarized this 
analysis in the Main text, lines 208-218 as such:   
 

“We also assessed the medical actionability of associated genes as defined in the 
latest American College of Medical Genetics and Genomics (ACMG) guidelines and 
found 15 coding variants with significant associations in 11 ACMG genes 
(Supplementary Table 7). 13 of these associations (1 pathogenic [BRCA1], 4 
conflicting evidence of pathogenicity, 8 benign/likely benign) had prior ClinVar 
reports to a matching or putatively related condition, and for several our results 
proposed extended phenotypes. For example, we found that carriers of the rare 
missense variant rs370890951 (Ile1131Thr; MAF=0.097% [UKB], 0.29% [FG]) in 
MYBPC3, in which mutations cause hypertrophic cardiomyopathy, showed an 
approximately three-fold increased risk (p=9.8x10-13) for coagulation defects 
(Supplementary Table 3, Supplementary Table 7). Together, these findings highlight 
that population-scale analyses like ours can help refine pathogenicity assignments 
through contributing quantitative, rather than qualitative information on relative 
disease risks for variant carriers, or establish an “allelic series” for medically 
actionable genes.” (Main text, lines 206-218) 
 

Since the definition of a “higher frequency variant with very low OR” can be arbitrary and is confounded 
by variant enrichment and phenotype ascertainment we have decided to keep the narrative on rare, 
high-impact variants and hope this is satisfactory for the reviewer. 
 
2. The paper states "We found a statistical enrichment for significant genes in our study to also be 
approved drug targets (26/482; compared with a background of 569 approved targets/19,955 genes, 
OR=1.9, p=0.0024), which is in line with previous estimates of a higher success rate for drug targets 
supported by genetics" ... "supporting previous observations that the stronger the genetic association, 
the higher the likelihood of therapeutic success". This seems circular to me. Doesn't this finding just 
reflect that previously discovered associations are more likely to have already been tested out in drug 
trials? If this analysis were done with only the new associations then it might be more interesting. 
 
We thank the reviewer for this comment. Our finding that genes with coding variant associations have a 
higher likelihood to be the targets of approved drugs is based on both, known and newly identified 
association signals. Our approach closely follows that of published studies (e.g. Nelson et al 2015, King et 
al 2019; see References), with the difference that previous studies primarily considered GWAS variants, 
including those in non-coding regions, while our results are exclusively based on coding variants. While 
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largely confirmatory, our analyses nail down the observed enrichments to distinct drug target genes and 
thus add to insights from earlier studies.  
 
Notably, we limited our analyses to approved drugs to guard against the potential bias that genes with 
disease associations meanwhile are more likely to be tested in active clinical trials. Since developing a 
new drug typically takes more than 12 years to approval and insights from population genetics have 
started to impact pharma R&D only recently, we consider the risk of “reverse associations” as very 
modest. 
 
Nevertheless, according to the reviewer’s suggestion we have conducted the same analysis only with 
associations identified in our study. As expected, since the number of approved drug targets with new 
coding variant associations is still small (n=14), our analysis was underpowered to detect significant 
enrichment (enrichment odds ratio of 1.3, p=0.34). We have thus decided not to feature this result in 
the manuscript and hope this is acceptable for the reviewer. 
 
3. "As reflected in a recent schizophrenia study50, GWAS tend to identify association signals primarily 
for variants with MAF>2%, while most variants identified through exome sequencing are ultra-rare 
(MAF<0.01%). Of the 975 associations identified in our study, 145 are driven by unique variants in the 
yet little interrogated rare and low allelic frequency spectrum that is hypothesized to contribute 
substantially to the “missing heritability” of many human diseases51." It's not clear to me why the 
schizophrenia study in particular is cited here, as it's simply a fact that GWAS don't really look at variants 
with a frequency below 1-2%, and the more rare a variant is, the less power you have to make a 
discovery with it (given a constant OR). It's also not clear what is meant by "most variants identified 
through exome sequencing are ultra-rare", as this would entirely depend on the type of analysis 
performed (common coding variants of course are picked up just fine by exome 
sequencing, but collapsing analyses of rare variants are usually performed as well). If the goal of this 
section is to show that variants in the 0.1-2% are overlooked by existing studies, then probably the right 
way to say that is that GWAS simply don't do MAFs that low, and exome sequencing datasets have so far 
been more limited in size and lacked power for discovery in this frequency range. 
 
In our updated manuscript we have removed the schizophrenia example, which we agree has indeed 
been a too specific example and rephrased the text according to the reviewer’s suggestion without 
going into this level of detail. The respective paragraph in the Discussion now reads as such: 
 

“Importantly, our study identifies both, pathogenic variants residing in monogenic 
disease genes to impact the risk for related complex conditions, as well as new, likely 
causal sentinel variants within GWAS loci in genes with known and novel biological 
roles in the respective GWAS trait. With this, our study is one of the first to help 
bridge the gap between common and rare disease genetics across a broad range of 
conditions and provides support for the hypothesis that the genetic architecture of 
many diseases is continuous. Of the 975 associations identified in our study, 145 are 
driven by unique variants in the yet little interrogated rare and low allelic frequency 
spectrum between 0.1 and 2% that neither GWAS nor sequencing studies have yet 
been able to thoroughly interrogate across a range of diseases and that is 
hypothesized to contribute to the “missing heritability” of many human diseases.” 
(Main text, lines 470-479) 

 
Overall, great paper, look forward to using the results as a resource. 
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We are very happy about the reviewer’s constructive comments and enthusiasm for our study. 
 
 
Referee #2 (Remarks to the Author): 
This paper describes the results from studying low and rare frequency variants across 744 disease 
endpoints using exome/imputed genotypes from UK Biobank and the FinnGen study. The focus is on 
protein coding variation in this really large dataset to determine new associations, report relationships 
with diseases including mapping of rare variants to GWAS loci to highlight potential candidate genes, 
discovery of rare variants causing monogenic disease and their population relevance and relevance as 
drug targets.  
 
I enjoyed reading this paper and you have done a lot of work with some really nice results covering 
many disease endpoints. I thought the study was well designed and have a few comments.  
 
We thank the reviewer for appreciating our study and these positive remarks. 
 
1. For reporting of results it was good to see all the QC checks you did and especially for variants with 
MAF <1% and as expected there would be more differences between FG and UKB in this allelic range. A 
review of your results with MAF <1% in ST3 provides a few variants which are quite discrepant in MAF, 
row 103 for example, CFHR5 the fs variant has a frequency of 0.31% in UKB and 4% in FG – using only a p 
value of 0.05 and less for support is liberal. Can you comment on your criteria for selecting P<0.05? I 
also wondered in your general reporting how many associations you found are rare – or low frequency 
variants your headline reporting does not report results in this way which will be interesting (and a goal 
of your study?) – how many of these have allelic frequencies that differ significantly across populations. 
You do describe these results in some detail on page 7 but some further reporting will be interesting.  
 
We thank the reviewer for raising these important points. 
 
As we show in Supplementary Figure 1, to be included into our meta-analysis a respective variant had to 
meet a nominal association significance threshold of p<0.05 for the same trait in both UKB and FG. Our 
choice of a nominal p<0.05 as entry criterion follows the approach of many previous GWAS (see e.g. our 
earlier study by Sun et al., Nature 2018; https://www.nature.com/articles/s41586-018-0175-2#Sec8). 
Additional requirements for an association to be called significant in our study was a concordant 
directionality in both cohorts at inclusion, as well as meeting either the commonly employed GWAS 
significance threshold of p<5x10-8, or an even more stringent Bonferroni corrected threshold of p<2x10-9 
in the meta-analysis. 
 
In order to assess our choice of p<0.05 as entry criterion for our meta-analysis more empirically, we 
conducted additional computational modelling for our revised manuscript. We first estimated 
(approximately) the number of expected associations under the null of no association. To preserve the 
genetic LD and correlations between phenotypes, we permuted disease status (across all diseases 
simultaneously) between individuals in the UKB cohort. We then applied the identical association 
analysis approach as for our main analyses. Under the null permuted scenario (permuted 10 times as 
sensitivity analyses without being too computationally cumbersome), we expected to see on average 39 
associations (range: 32-47) compared to 975 associations that we actually observed, giving an 
approximate empirical false discovery rate (~39 expected false positives/all 975 positives observed) of 
~0.04 (<0.05) on average, and 0.048 (47/975) in a “worst case” scenario of 10 simulations. In conclusion, 
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our choice of a p<0.05 threshold for variant inclusion (joint with a meta-analysis cut-off of 5x10-8), is also 
supported by empirical estimates to appropriately control for false positives. This additional analysis and 
further justification of a p<0.05 is now detailed in Supplementary information on choice of significance 
threshold (Supplementary Information, lines 97-122, page 5). 
 
We feel that instead of being liberal the significance criteria in our study have actually been fairly strict. 
For instance, we used a GWAS-wide significance threshold despite testing a much smaller set of coding 
variants than typical GWAS, or for Bonferroni correction we assumed that all coding variants tested are 
independent, which is a stringent assumption ignoring LD. We also consider a concordant beta and 
p<0.05 as entrance criteria a good trade-off between a high robustness of the association results across 
both cohorts without ignoring too many true positive signals.   
 
Our choice of p<0.05 is supported by the fact that many expected and well-known associations (such as 
CTLA4 – Graves’ disease; GBA – Parkinson’s disease; CHEK2 – thyroid cancer, Insulin and diabetes) 
replicate nominally at around this significance level when conducting analyses in either UKB or FG alone. 
Such associations would have been missed if we had chosen our entry criteria for meta-analysis to be 
more stringent.  
 
Conversely, it is evident that at a p<0.05 biologically meaningful true positive signals are being missed, 
for instance, because there is a strongly significant association in one population, but the variant is 
absent or extremely rare in the respective other (such as for CFHR5 that the Reviewer points out). In 
order to allow readers to follow up on such signals, we have included Supplementary Tables 4 and 5 
which list all associations that reach p<5x10-8 in each of the two cohorts individually (318 association 
signals for UKB and 479 for FG). As we will be releasing all summary results underlying our study, the 
readers will be able to follow up and replicate our results. 
 
As the reviewer correctly points out, the difference in allelic frequencies between the cohorts is a driver 
behind some of the most compelling scientific insights from our study. Supplementary Table 3 shows 
that 145 of the 975 new associations are with variants of a MAF <2% in at least one of the two cohorts, 
of which 50 fall into this frequency range in either cohort. For instance, we feature genes with sentinel 
variants enriched more than 4-fold in either UKB or FG over the respective other cohort in Table 1. For 
several of these genes our CWAS reveal an “allelic series” and extend known links with single-gene 
disorders now to complex diseases of population-level relevance.  
 
We have also. incorporated the reviewer’s suggestion “I also wondered in your general reporting how 
many associations you found are rare – or low frequency variants your headline reporting does not 
report results in this way which will be interesting (and a goal of your study?) – how many of these have 
allelic frequencies that differ significantly across populations. You do describe these results in some 
detail on page 7 but some further reporting will be interesting.”. We have added this additional 
reporting in the main text on page 7. The respective paragraph now reads: 
 

“In comparison, 52 of the in total 534 (9.7%) of the sentinel variants had MAF<1% in 
either UKB or FG, of which 15 and 23 were enriched by >2-fold in UKB and FG 
respectively (Supplementary Table 6).” (Main text, lines 157-160)” 

 
2. For FG you have used imputed data – and you have been stringent on which variants you included in 
your analysis. I wondered for many of the positive associations you are reporting (focus here on the rare 
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variants) did you have access to any direct genotypes for some of the variants you report and did you 
look at the genotype clusters as an extra QC measure? Just as an extra QC measure 
 
We thank the reviewer for their interest in our detailed variant QC process. As proposed, we have now 
added a new Supplementary file (ST3_clusterplots_submission2_ForReviewers.pdf) in which we show 
cluster plots for 190 exemplary variants from ST3. We prepared graphs for variants genotyped in >46 of 
51 of batches of the FinnGen genotyping array, with colours representing successfully genotyped alleles 
and crosses instances where the respective variant call was missing. None of these cluster plots show 
quality issues that would be particularly concerning. 
 
We have also added the distribution of the INFO scores for all FG data, the significantly associated 
sentinel variants, as well as for variants with MAF<1% as a multi-panel figure into the Supplementary 
Information (Supplementary Figure Imputation info score distribution of FinnGen data, page 4). The 
INFO scores of the sentinel associated imputed variants were all >0.85. We are thus confident about the 
imputation quality and QC measures underlying our results (see also our response to Reviewer 3, 
Comment 2). 
 
Note that for both, genotyping and imputation we performed further QC steps at the batch level as 
detailed in Supplementary Methods: FinnGen genetic QC details, pages 2-3).  
 
3. On page 8 – can you add the MAF of the ODF3 variant? 
 
As proposed, we have now added this information to the main text as such: 
 

“we found an ODF3 missense variant (rs72878024, MAF=7.5% [UKB], 7.7% [FG]) to be 
associated with risk of …” (Main text, line 186) 

 
4. Your manuscript focuses on leveraging coding variant associations for generating new biological 
insights and you selected AF as one example. In ST3 you report coding variants you have found, and in 
the check if novel or not only one gene is indicated – ZNF131. Thus, the variants and genes have already 
been described. I am assuming here a 1 in columns AG and AH refer to a yes novel (there is no legend). 
The analysis you performed for METTL11B is really interesting and a nice story, at the end of this 
paragraph you indicate this is the causal gene at this locus – a locus which has many other well 
established genes with functional data supporting their role in AF (SCN5A). It would be really helpful if 
you can describe the GWAS locus in more detail – is there only one AF signal at this locus or are there 
other variants also associated with AF – the GWAS variant maybe tagging variants in other genes at the 
locus and your work indicates another association and candidate gene?  
 
We apologize for any confusion regarding our AF vignettes and the Supplementary Table. We have now 
added legends to all Supplementary Tables in the Supplementary Information section (Supplementary 
Table Legends, pages 32-33; please see also our response to this Reviewer’s question 9).  
 
Our manual curation was performed only for those variants that were denoted in ST3 as completely 
novel associations, i.e., they showed a Novel variant-trait association both, in GWAS Catalog (GC) and 
PhenoScanner (PS) = 1 AND Novel gene-trait implication both GC and PS = 1 AND Novel ClinVar = 1 
(meaning variants that showed “1” in all columns AA-AE in ST3), to avoid over-reporting our novel 
findings and stay conservative, without being too cumbersome manually. Thus novel associations at the 
variant (and its LD proxies) level in a known gene locus would not be reflected in AG and AH columns, 
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but would be indicated as “1”s under Novel variant-trait association (columns AA and AB). We have 
clarified this in the newly added Supplementary Table legends and in the Methods (Main text, lines 656-
657). Indeed, all but one AF gene locus had already been reported previously at either variant level OR 
gene level. For AF specifically, we have now performed additional manual curation for novel variant 
associations (Novel variant-trait association (both columns AA & AB in ST3 = 1) and can confirm these 
associations and vignettes we feature were not previously reported at the variant level or otherwise 
explained mechanistically. 
 
In our manuscript we feature four novel rare/low frequency coding associations for AF in METTL11B, 
SCN5A, HCN4, and SCN10A (all MAF<5%). To the best of our knowledge, for none of the featured 
variants or their LD proxies (r2>0.2) associations with AF had been described previously, although all 
reside within known AF GWAS loci. The wealth of prior GWAS data was one reason why we selected AF 
to feature what additional insights beyond GWAS our CWAS results would add. 
 
Regarding METTL11B, we are unaware of other AF genes in the proximity of this locus. Notably, 
METTL11B is located on chromosome 1, with the lead variant being 1:170166552:A:G (rs41272485), a 
different locus than SCN5A, which resides on chromosome 3. To avoid any confusion, we have carefully 
reworded the main text to better reflect that some established AF genes (including SCN5A) contain 
[Ala/Pro/Ser]-Pro-Lys motifs, and are thus potential targets of the METTL11B methylase. The respective 
sentence now reads as follows: 
 

“The group of proteins containing [Ala/Pro/Ser]-Pro-Lys motifs includes several well-
established AF genes40 such as potassium channels (KCNA5, KCNE4, KCNN3), sodium 
channels (SCN5A, SCN10A), NPPA, and TTN. Our data support METTL11B as the 
causal gene in this GWAS locus and a relevance for N-terminal [Ala/Pro/Ser]-Pro-Lys 
methylation in cardiomyocytes for AF.” (Main text, lines 381-385) 

 
The previous GWAS association at the METTL11B locus was with a non-coding intergenic variant near 
METTL11B and LINC01142 that, unlike our study, did not resolve this locus to the likely causal gene. We 
now better highlight this when introducing the METTL11B paragraph as such: 
 

“The AF GWAS sentinel variant rs72700114 is an intergenic variant located between 
METTL11B and LINC01142 with no obvious candidate gene.” (Main text, lines 367-
368) 

 
5. You focused on results from rare variant analyses at the SCN5A and SCN10A locus. This is a well- 
studied locus with over 30 variants reported with AF/ECG traits and both SCN5A and SCN10A are well 
established candidate genes. I think the text on this locus could be reduced. 
6. HCN4 again another well studied gene and recognised as the candidate at the locus – this text and 
SCN5A - SCN10A could be a single discussion point? 
 
There is a connection between the reviewer’s questions 5 & 6 and hence we respond to these together. 
We agree with the reviewer in that these loci have been well-characterized before and as suggested we 
have therefore shortened discussion of our findings on these genes in the main text (Main text, lines 
387-414). 
 
Nevertheless, and as discussed in our response to this Reviewer’s Comment #4, we believe our coding 
variant associations add additional evidence and insights to these loci. For example, in the recent large-
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scale AF GWAS by Nielsen et al, https://www.nature.com/articles/s41588-018-0171-3, the authors 
linked protein altering variants (ST8 in their paper) to the AF loci. This identified the SCN10A missense 
variant rs6795970, which we replicate. In our paper, however, we identified on top of this additional 
rare coding variants in SCN5A at the SCN5A-SCN10A GWAS locus (and also in HCN4 at the HCN4-REC114 
locus) which we on top of AF we link to concordant changes in pulse rate. To improve readability as 
recommended, we have shortened the main text on this vignette, but we retain a summary of our 
findings in the Supplementary Information (Supplementary Discussion on coding associations in 
SCN5A-SCN10A and HCN4-REC114 AF loci, pages 19-20) 
 
We now further provide in the Supplement an update on recent findings showing that SCN10A plays a 
key role in the neural modulation of atrial activity and thereby AF inducibility (Supplementary 
Discussion on coding associations in SCN5A-SCN10A and HCN4-REC114 AF loci). On the other hand, the 
SCN5A site identified in our study is associated with cardiac rhythmic disorders appearing with dilated 
cardiomyopathy. As our PheWAS indicate, this finding could be particularly interesting since the 
association is with protection from AF, which will need to be elucidated further in future functional 
studies.  
 
7. PITX2 – again a well-established candidate gene for AF. It was nice to see the functional work you 
have done on your new variant, but I thought your results could be placed in better context. The 
selection of genes you have mostly highlighted for discussion of AF are candidate genes that are 
recognised and the mechanisms. With your rich dataset of results, were there other loci which you could 
have highlighted and importantly any new results also from other traits? 
 
We thank the reviewer for these comments. There are indeed numerous other examples that we could 
have highlighted, yet given the vast span of our findings, we had to make trade-offs in terms reporting 
broadly versus conducting deeper dives. The AF use case highlights at the case of several vignettes how 
our data can be utilized in a range of different ways to more deeply interrogate individual association 
signals and inform on the genetics of a distinct complex disease. Among others, we provide for this use 
case (1) bioinformatic follow-up with orthogonal databases (METTL11B); (2) evidence of multiple 
mechanisms of cardiac related channels in one locus (rare variant associations in both SCN5A and 
SCN10A which reside in the same GWAS locus); (3) hints at potential mechanisms at the rare coding-
variant level with large effects in SCN5A and HCN4 (discussed also in Supplementary Discussion, pages 
19-20); (4) multiple paths to AF risk mechanisms via increased and decreased pulse (through biomarker 
association scans and clustered MR); and (5) functional follow-up on an AF-associated PITX2 coding 
variant. Whilst we acknowledge some of the genes discussed are well established candidate genes, in all 
cases, our findings yield significant insights at the coding variant level beyond the published literature. 
 
We also provide numerous examples beyond AF on how our data can be used. For instance, we (1) 
uncover new rare variants in coagulation cascade proteins that provide evidence for different causal 
mechanisms underlying pulmonary embolism; (2) describe novel coding variants in SLC34A1 that 
increase the risk for kidney stones and related biomarkers in a substantial fraction of the European 
population; or (3) reveal a risk for malignancies not previously associated at the population level with 
variation in CHEK2. Rather than conducting deep-dives for each of our novel findings individually, which 
would clearly be beyond the scope of a single manuscript, we will be releasing the summary data so that 
the scientific community can make use of our results in either in similar ways as we have highlighted 
with the selected vignettes or through alternative approaches. 
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8. Over the past week I note there is a new paper on MedRxiv which reports single variant results from 
UK across 3700 phenotypes (there are some shared co-authors). What are the overlap in findings, can 
this paper be referred to in some way as there are more exomes and may support some of the results in 
your paper? 
 
The reviewer refers to our recent manuscript entitled “Systematic single-variant and gene-based 
association testing of 3,700 phenotypes in 281,850 UK Biobank exomes” by Karczewski et al. 
(https://www.medrxiv.org/content/10.1101/2021.06.19.21259117v1). Both, that other study and our 
current manuscript here draw from prioritized access to UKB exomes which we have generated as part 
of the UKB exome sequencing consortium under UKB application number 26041. Notably, in Karczewksi 
et al. we worked from a substantially smaller UKB exome release (282,000 individuals) than we have 
utilized in our present study, which comprises coding variants extracted from the exomes of ~392,000 
UKB participants and through meta-analysis with FG association results from ~653,000 individuals in 
total. Consequently, our current study is by far better powered to detect associations, especially in the 
rare and low-frequency spectrum. We show this by also featuring results analyses obtained from the 
(expanded) 392k UKB exome dataset alone (without FG) for the diseases studied in our manuscript in 
Supplementary Table 4. Specifically, association testing within UKB individually yielded 318 associations 
at p<5x10-8, as opposed to 479 associations in FG individually, and 975 associations in the meta-analysis. 
 
Our current study further differentiates from Karczewksi et al. in that beyond simply larger sample sizes 
we benefit from additional power gains through population specific allelic enrichment. IN our revised 
manuscript we are now demonstrating this through extensive theoretical and empirical simulations as 
well as consistency with observed data (please see also our response to Reviewer 3, Comment #1). 
Additionally, through FG as an independent cohort our study provides replication of results and guards 
against cohort specific associations. A further difference is that our study showcases numerous 
vignettes, including deep-dives and an example of functional follow-up with novel discoveries and 
educates readers how such data can be utilized. 

We would like to point out that during the revision process of our manuscript another study on the 300k 
UKB exome dataset has been published which we have updated the Reference for in Introduction (Main 
text, line 63) (Wang et al., 2021 Rare variant contribution to human disease in 281,104 UK Biobank 
exomes	Nature https:// doi.org/10.1038/s41586-021-03855-y). This study differs from our manuscript 
in similar ways as the Karczewski et al. study. 

We have added the Karczewski et al. MedRxiv paper and also updated the references to other discussed 
UKB studies in our Introduction (Main text, line 63). 
 
9. Supplementary tables – I do not see any legends for any tables, can these be provided? 
10. ST1 – add in the total N. There is no legend, can R5 and R6 be indicated? 
11. ST2 – there are some spelling mistakes, for example: Cardiac arrhytmias, please review.  
12. ST3 – typos again 
13. ST7 – can you also add the RsID to this table and also indicate in column G the source? 
14. ST10 – again typographical errors, can you review? 

We thank the reviewer for thoroughly reviewing Supplementary Tables and flagging. We have now 
carefully revised the STs and attempted to remedy all typos and abbreviations. We have made the 
additions the reviewer requested for ST1 and also for ST7 where we added links to the respective 
ClinVar entries under “Additional ClinVar Info (Source link)” to provide a full reference for the readers. 
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We have added ST legends, along with explanation of abbreviations used in the STs in Supplementary 
Information (Supplementary Table Legends, pages 32-33) 
 
15. Can you provide further details on data sharing – the site and what results? 
 
Exome source data utilized in this study have been or will be made publicly available via UK Biobank to 
qualifying researchers, with release of the data tranche on 456,000 individuals underlying our study 
anticipated for fall 2021 (for updates, see here: https://www.ukbiobank.ac.uk/enable-your-
research/about-our-data/genetic-data). FG summary level data is released publicly on a bi-annual basis, 
with FG release #6 that underlies our study also becoming available in fall 2021. All summary association 
data underlying our results will be made publicly available for use and download on acceptance of 
publication. The link will be provided in the published manuscript under “Data availability”. 
 
 
Referee #3/#4 (Remarks to the Author): 
This is the largest association study of protein coding variants identifying known and novel rare and low-
frequency protein-coding variants associated with disease. The analysis combines exome sequence data 
in UK Biobank with imputed genotype data from FinnGen, and may provide a cost-effective approach to 
increasing power for the detection of rare, disease-associated variants by leveraging MAF enrichment in 
different populations.  
 
We would like to thank the reviewers for their insightful comments and suggestions which have 
positively impacted the manuscript. 
 
1. The authors state that by combining data from two different populations, whereby rare alleles in one 
population are enriched in the second population, the authors were able to identify lower frequency 
variants in regions that have not previously been reported at genome-wide significance. However, there 
is also gain of power simply due to increased sample size. In Suppl Table 3, only 82 variants had MAF<1% 
in UKB. Most of these variants had larger effect sizes (median odds ratio of 2). If an analysis was done 
combining the UKB data with another 260,405 European ancestry genotyped individuals imputed to a 
fully sequenced reference (instead of Finnish samples), would most of these variants still be GWAS 
significant? In other words, is this just a matter of sufficient power due to increased sample size, or are 
these variants only identified at GWAS significance because of the higher MAF in the Finnish 
individuals?  
 
The reviewers’ make an excellent point. We have addressed their question via two additional sets of 
analyses: (1) using real UKB and FG data; and (2) via a realistic simulation study. In doing so: 
 

“we demonstrate both theoretically and in practice that gains in power due to allele 
enrichment remain even after adjusting for power gains due to increased sample size 
(Supplementary Figure MAF enrichment on Z-scores, Extended Data Figure 5d).”  
(Main text, lines 150-152) 

 
Our additional analysis (1) was inspired by the reviewers’ suggestion of “combining the UKB data with 
another 260,405 European ancestry genotyped individuals imputed to a fully sequenced reference 
(instead of Finnish samples)”. To do this – within the limitations of the available data – we partitioned 
the N=392,814 UKB samples into two cohorts: (i) a “base” cohort consisting of 𝑁!= 132,409 individuals; 
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and (ii) an “additional” cohort consisting of the remaining 𝑁"= 260,405 individuals (As suggested, the 
number of additional samples match the 𝑁 =260,405 FG individuals in our meta-analysis. We thus refer 
to this cohort as the FG “sample size matched” cohort).  
 
To assess the relative improvement of meta-analysis Z-scores due to allele enrichment *and* an 
increased cohort size, against improvements owing to increased cohort size alone, we computed results 
for two meta-analyses and assessed their ratios. Specifically, we computed ZUKBxFG/ZUKBxUKB, where 
UKBxFG denotes the UKB base cohort combined with FG individuals and UKBxUKB denotes the UKB base 
cohort combined with the UKB ‘sample size matched’ cohort. The values of log!#[ZUKBxFG/ZUKBxUKB] as a 
function of allele fold enrichment were concordant with our theoretical expectations that allele 
enrichment provides additional gains in power over and above increased sample size (Extended Data 
Figure 5d). Note that in this Figure, we log transformed the ratio so >0 reflects a Z-score that is higher in 
UKBxFG than in UKBxUKB, whereas a Z-score <0 reflects the inverse. Higher fold enrichment (FE) in FG 
leads to more significant associations in UKBxFG vs UKBxUKB (higher log(Z ratio)). Our simulation results 
thus support systematic power gains due to allele enrichment rather than simply due to sample size 
(Extended Data Figure 5d). A similar trend is also seen for FE in UKB where more negative log-Z ratio is 
observed in UKBxUKB vs UKBxFG. The discussion of our approach and results have been added to 
Supplementary Information (pages 10-13, pages 16-17) and as Extended Data Figure 5d. 
 
Our additional analysis (2) modifies the simulation protocol detailed in Supplementary Information to 
match the 3-cohort design of analysis (1) above. That is:  
 

“We further investigate the relative gain in IVW Z-scores across a broader range of 
enrichment values. For this, we modified our simulation strategy detailed in section 
Simulations of MAF enrichment effect on inverse-variance weighted meta-analysis 
Z-scores to match the cohort analyses above. Specifically, we followed the identical 
simulation protocol, yet now simulated results from a UKBxFG and separately 
UKBxUKB meta-analysis, followed by computing the ratio of IVW Z-scores. Results are 
presented in Supplementary Figure MAF enrichment on Z-scores. Again, our 
theoretical predictions of the relative IVW uplift closely match the simulated results 
(Supplementary Figure MAF enrichment on Z-scores (c)). For instance, when 
considering a 5-fold MAF enrichment in the FG study, our theoretically predicted 
estimates (equation (12)) from the simulation study closely approximate the 
observed estimates (Supplementary Figure MAF enrichment on Z-scores (d) and 
Extended Data Figure 5d). Our simulations further support our findings that studies 
involving cohorts with MAF enriched designs are likely to provide (potentially 
significant) additional power gains relative to gains achieved by increasing sample 
size alone.” (Supplementary Information, lines 311-324) 

 
In conclusion, our theoretical, empirical and observed results all suggest power gains from allele 
population enrichment on top of gains from increased sample size. 
 
2. For the FinnGen data, how confident are the authors in the accuracy of the imputation for rare 
variants? The methods do not state if there was any INFO score cut-off applied for filtering of low-
quality imputed variants? Could the authors also provide the distribution of INFO scores for MAF<1% in 
FinnGen? 
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As we state in the Introduction section, “the distinct Finnish haplotype structure is characterized by 
large blocks of co-inherited DNA in linkage disequilibrium and an enrichment for alleles that are rare in 
other populations, but can still be confidently imputed from genotyping data even in the rare and ultra-
rare allele frequency spectrum” (Main text, lines 67-69). We did impose an INFO cut-off (>0.6) as we 
now clarify in Methods under “Coding variant selection” (Main text, line 585) and “Disease endpoint 
association analyses (“info”, now capitalized)” (Main text, line 623). Further imputed QC measures are 
detailed in Supplementary Information (page 3). Additionally, we have added the distribution of FG 
INFO scores for all FG data, the significantly associated sentinel variants, as well as for all associated 
variants with MAF<1% as a multi-panel figure into the Supplementary Information (page 4). The INFO 
scores of the sentinel associated imputed variants were all >0.85. Overall, we are very confident in the 
imputation quality and QC measures underlying our results (see also our response to Reviewer 2, 
Comment 2). 
 
3. The authors derive and validate a theoretical prediction of the improvement in meta-analysis Z-score 
statistics as a function of sample size, MAF and effect size differences. However, the importance of 
effect sizes difference is not well reflected in their derivation. In fact, Equation (14) seems to suggest 
that uplift parameter “alpha” no longer depends on effect sizes, while this is only masked by the 
parametrisation. We suggest 1) expressing alpha as a function of the odds ratio (OR) in each study and 
2) then simplify the expression under the assumption that the OR is constant across studies. This way, 
the reader will not be confused by statements like “for fixed 𝜅 (kappa) IVW uplift 𝛼 increases with 
increasing MAF-enrichment”, which are incorrect given that kappa is itself a function of MAF-
enrichment. We believe that our suggestion should clarify the logic of the argument made there. 
 
We thank the reviewers for their helpful suggestions and apologize for the confusion. As suggested, 1), 
we have extended the derivation of our estimator to now include (and thus highlight the importance of) 
effect sizes on the improvement of meta-analysis Z-scores (c.f., equation (17) in the Supplementary 
Information). The reviewers rightly highlight dependencies between variables in the calculation of IVW 
uplift. We have therefore removed the confusing sentence about fixing the variable 𝜅 (kappa).  
 
Further, in the new equation (16) (c.f. Supplementary Information) we show that the log odds ratio can 
be approximated as a function of disease prevalence and MAF, hence the reviewers’ suggestion 2), i.e., 
assuming that the OR is constant across studies, while helpful, unfortunately doesn’t bypass the issue 
that, even after assuming the OR is constant across studies, changes in MAF enrichment can still 
(feasibly) affect 𝜅. We have modified the text to acknowledge this and in doing so clarify our logic as 
suggested: 
 

“Equation (17) highlights the influence of disease prevalence (𝜋$), study sample size 
(𝑁$), MAF enrichment )%&'!

∗

%&'#∗
	and	%&'!

%&'#
. and the log odds-ratio (𝐿𝑂𝑅$), i.e., 

regression effect size 𝑏$, on IVW uplift 𝛼 from studies 𝑖 ∈ {1,2}. Owing to some 
dependencies between variables, e.g., equation (16) relates the log odds ratio to 
MAF and disease prevalence, it is difficult to make general statements about 
expected uplift based on increasing MAF enrichment, while attempting to fix the 
value of other variables. Broadly speaking, however, our theoretical, simulated and 
observed results indicate that IVW uplift 𝛼 increases with increasing MAF-enrichment 
(Extended Data Figure 5 (a-d), Supplementary Figure 2 and Supplementary Figure 
MAF enrichment on Z-scores).” (Supplementary Information, lines 279-287) 
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4. Pg 7 Line 164 – the authors state that the majority of regions were associated with a single disease 
cluster. They refer to Ext Data Figure 6. Panel b of this figure shows that most variants are associated 
with 1-2 biomarker groups. Looking at the biomarker groups, all blood biochemistry measures are 
classed as one group, despite these biomarkers having very different functions e.g. Vitamin D vs lipids vs 
inflammatory biomarkers which would be relevant for different disease groups. Lipids would also be 
more related to anthropometric measures and impedance measures, inflammatory biomarkers related 
to blood cell counts, urate and creatinine would be more related to blood pressure. Therefore, the 
number of true pleiotropic associations may be under-estimated. Re-grouping the blood biochemistry 
biomarkers according to function would make much more sense, rather than a single Blood 
Biochemistry group. For example see categories listed by UKB 
https://www.ukbiobank.ac.uk/media/oiudpjqa/bcm023_ukb_biomarker_panel_website_v1-0-aug-
2015-edit-2018.pdf.  
5. Similarly, Page 11 Line 242, 47 regions were associated with 5 or more biomarker categories including 
loci such as APOE. But the anthropometry measures, impedance measures and lipids could be 
considered functionally as one groups, given the causal association between lipids and anthropometric 
measures instead of 3 separate groups (vertical pleiotropy as opposed to horizontal pleiotropy). ABCG5 
is also listed as a locus associated with 5 or more biomarker categories, but it is only associated with 
blood biochemistry traits.  
 
Due to the overlap in scope between questions 4 and 5, we reply to both questions simultaneously. We 
had grouped biomarkers according to the main UKB categories of measurement modality/group and 
thank the reviewers for providing the link to a more refined biochemistry category list. As per the 
reviewers’ recommendation, we have updated categorizations to now also include more granular UKB 
biochemistry subgroupings (see revised and updated Supplementary Table 8, Column E and 
Supplementary Table 9). The main text has been updated as such: 
 

“Additional biochemistry subgroupings were based on UKB biochemistry 
subcategories:  
https://www.ukbiobank.ac.uk/media/oiudpjqa/bcm023_ukb_biomarker_panel_web
site_v1-0-aug-2015-edit-2018.pdf.)”(Main text, lines 670-673) 

 
Accordingly, we have updated Extended Data Figure 6c to better reflect the distributions of associated 
biomarkers using the newly defined biochemistry subgroupings. We have, however, decided to retain 
our original less granular categorization for main Figure 3a, primarily to aid visual interpretability of our 
results. We hope this is acceptable to the reviewers. 
 
In response to comments on specific examples in question 5, we have removed ABCG5 and MC1R from 
the list of loci discussed in the Main text (c.f. line 269) and manually checked the remaining loci for 
evidence of pleiotropy across the previous and updated groupings. For APOE, despite the complexities 
of grouping biomarkers (as we explain below) and potential vertical pleiotropy around lipid and 
anthropometric categories, the locus is still associated with liver, renal, CRP, HB1Ac, cancer, bone and 
joint biochemistry biomarkers, pulse rate, spherical power (eye), and red and white cell indices.  
 
We agree with the reviewers that classifying biomarkers a priori is a complex task that is difficult to 
perform in both, a systematic automated fashion or through manual curation as there are multiple ways 
to classify. Groupings can be done by measurement modalities and techniques such as impedance vs 
physical measures vs lipid biochemistry, or by disease systems. However, there’s a large degree of 
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overlap and correlation using any type of classification as the reviewers highlight, which makes 
identifying a gold standard approach very challenging. As one example, Alkaline phosphatase (ALP) 
serves to illustrate the point. ALP is classified herein as bone (and joint) group, following the categories 
listed by UKB, but is clinically often part of a liver function test panel as ALP can be a sign of liver 
dysfunction and cholestatic diseases. Additionally, elevated ALP related to bone may also reflect primary 
and secondary cancers affecting bone, blood cells (lymphomas and leukaemias), kidneys (renal cell 
carcinoma) – hence, assigning a group for ALP is context specific, with no obvious gold standard. If we 
were to assign multiple groupings to one biomarker, we run the risk of over-inflating pleiotropic 
assessments. Consequently, a fine-scale quantification of pleiotropy is difficult and typically not 
unambiguous. Nevertheless, we are confident that our results are indeed indicative of pleiotropy for the 
respective loci. As part of our contribution, we will make available the sentinel variant biomarker results 
also of the non-significant (p<1x10-6) associations, so readers will be able to further customize our data 
towards their respective definitions and needs. 
 
6. Supplementary table 10  - rs121913502 (15:90088702:C:T) has a huge effect size (beta=22 in FG) with 
myeloid leukemia. A lookup of this variant in ClinVar shows it is annotated as pathogenic/likely 
pathogenic (31 May 2016) for acute myeloid leukemia. But in Suppl Table 3, it shows as NA under 
ClinVar pathogenicity and 1 as Novel ClinVar 
variant. https://www.ncbi.nlm.nih.gov/clinvar?term=((29755[AlleleID])OR(362867[AlleleID])) 
Please re-check ClinVar annotations for all variants to ensure none have been missed and are not 
labelled as novel when previous evidence is available. 
 
We thank the reviewers for noticing this mis-annotation. To confirm, we are assuming that the 
reviewers are referring to Supplementary tables 3 and 7 (i.e., ST3 and ST7) ClinVar annotations, rather 
than ST10.  We have corrected the oversight and can confirm that we have rechecked all other ClinVar 
phenotype trait mappings. For associations that are novel variant as well as novel gene associations 
(columns AA-AE = 1 in ST3), we performed additional manual curation to check whether they have been 
previously reported. In this case, the IDH2 association with myeloid leukaemia was picked up as being 
previously reported in our manual curation. 
 
In addition, we are now providing a new column M (“Additional ClinVar Info”) in ST7 which contains the 
link to the original ClinVar entries for full clarity and for reference. 
 
7. There have been some large multi-ancestry exome-sequence studies for specific disease published 
e.g. T2D (https://www.nature.com/articles/s41586-019-1231-2), serum urate 
(https://pubmed.ncbi.nlm.nih.gov/30315176/ ) and Alzheimer’s disease 
(https://www.nature.com/articles/s41380-018-0112-7). Does this analysis replicate these findings, and 
would these variants have been replicated by UKB alone or only when FinnGen and UKB are combined? 
Also are variants identified here identified in these studies? 
 
We have reviewed the named publications and manually assessed all associations reported as significant 
with the findings reported in our study. If a reported variant had p<0.05 with the respective trait in 
either FG or UKB, we performed specific variant association testing and meta-analysis. We summarize 
our findings in “Additional Tables 1-4”, which we provide for the reviewers and that can be summarized 
as such: 
 
T2D (Flannick et al): 
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12 protein coding variants reported in this study as associated withT2D (based on their Extended Data 
Table 1) were interrogated also in our study. Of these we replicated (at p<5x10-8) 9 associations in the 
meta-analysis, the same 9 in UKB alone, and 7 in FG alone (with the two remaining variants replicating in 
FG at p<1x10-6). The remaining three variants, of which two were in the same gene (SLC16A11), did not 
replicate at the chosen significance level. All the betas were in concordant directions between our meta-
analysis and Flannick et al. We now make these results available as Additional Table 1. 
 
Notably, we also compared the associations identified in our study against the T2D Knowledge Portal 
(https://t2d.hugeamp.org/) to which Flannick et al. contributed and that contains large collections of 
meta-analyzed multi-ancestry T2D GWAS. We found matching variants for 32 of 34 sentinel associations 
reported in our study. Of these, all replicated nominally at p<0.05, and 26 replicated at p<5x10-8 (see 
Additional Table 2). Again, the betas were concordant and highly correlated between T2D KP and our 
analysis. 
 
Alzheimer’s disease (AD) (Bis et al.): 
We assessed the multiple testing-corrected genome-wide significant associations from Bis et al (their 
Supplementary Table S3). All six reported coding-variant associations replicated in our meta-analysis at 
p<1.3x10-4 (see Additional Table 3). The APOE and APOC4 variants replicated beyond GWAS significance 
in both UKB and FG individually, as well as the meta-analysis. The TREM2 variant rs75932628 had a 
p=0.23 in FG and p=2.1x10-4 in UKB, with p=9.9x10-5 in the meta-analysis. It’s failure to replicate is likely 
due to the fact that this variant is rare and highly depleted in FG (MAF=0.035%) and still rare in UKB 
(MAF=0.32%). The remaining three variants (rs28399654, rs28399653, rs3208856) were all at least 
nominally significant in both FG and UKB, with the meta-analysis boosting the associations. Once again, 
the betas were concordant. 
 
We did not conduct coding-wide replication analyses for serum urate levels since our primary CWAS are 
focused on disease endpoints. 
 
Varying sample sizes, allelic enrichment or depletion in different ethnicities, ancestry differences and 
differences in disease ascertainment between cohorts among others may all feasibly affect replication. 
Despite this, it is reassuring to see the vast majority of our findings here are highly aligned with findings 
from large, independent multi-ancestry GWAS meta-analyses. In conclusion, based on the high 
replication rate for the two selected diseases, we are thus confident that the findings in our CWAS study 
on 744 disease endpoints are well in line with associations identified through classical single-disease 
GWAS. 
 
8. Page 8 Line 178 - “152 had previously been linked…” could you add the % in brackets i.e. 28.5%. “For 
45 of these, the associated…” could you add % i.e. 29.6% 
 
We have updated and added these suggestions. The respective sentence now reads as such: 
 

“Of the 534 distinct variants with significant disease associations in our study 
(p<5x10-8), 152 (28.5%) had previously been linked to diseases in ClinVar. For 46 
(30.3%) of these variants, the associated disease cluster matched with a previously 
reported phenotype in ClinVar.” (Main text, lines 192-195) 

 
Note: 46 instead of 45 updated due to the IDH2 association being previously associated with multiple 
myeloma in ClinVar. 
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9. For the variants that were associated with a disease cluster that was different than the phenotype 
reported in ClinVar, could you provide some examples of how different were the ClinVar phenotypes 
from the disease cluster? Is there any evidence from mouse studies or drugs side-effects for pleiotropic 
effects of the genes? 
 
We have attempted, via manual clinical expert curation, to link putative related associated diseases to 
ClinVar conditions, with a short brief description of the clinical connection. Results from phenotype 
matching are now included as an additional column K “Putative related traits for unmatched traits” in 
ST7.  
 
We have modified the main text to highlight this as such: 
 

“For the remaining 106 ClinVar-listed variants, 29 (27.4%) showed associations to 
conditions putatively related to those listed in ClinVar (Supplementary Table 7 and 
Methods).” (Main text, lines 198-200) 
 

Determination of related phenotypes requires a degree of clinical judgement which may vary between 
assessors, but we are confident that our phenotype curation, that has been conducted independently by 
two experienced medical professionals, should serve well as approximation. 
 
The reviewers make an interesting point about the use of mouse studies and drug side effects for 
assessing pleiotropy. However, the datasets capturing a broad set of phenotypes concomitantly to do 
such analyses systematically are currently limited, and it would be challenging to utilize results for 
generalizable statements. This is certainly an area that should be actively investigated with newer 
methods in future studies. 
 
10. In Figure 1C it would be useful to distinguish which of the blue dots were significant in UKB only and 
those that were significant in FG only. 
 
As suggested, we have updated Figure 1c to incorporate this change. 
 
11. Pg 5 Line 107 - the description of how a distinct region is defined is a little confusing. Could this be 
written more clearly. 
 
We appreciated the reviewers’ point and clarified our definition of a distinct region:  
 

“For overlapping genetic regions that are associated with multiple disease endpoints 
(pleiotropy), to be conservative in reporting the number of associations we merged 
the overlapping (independent) regions to form a single distinct region (indexed by 
the Region ID column in Supplementary Table 3).” 
(Main text, line 644-647) 

 
The definition of genetic regions/loci associated with traits become complex in the context of multiple 
outcomes, especially when some outcomes are related/correlated. Our definition keeps to the 
conservative side to avoid inflated reports of genetic regions. Specifically, we follow 
a similar approach to that employed in our previous large-scale pQTL study (Sun et al., Nature 2018; 
https://www.nature.com/articles/s41586-018-0175-2), where analogously to multiple diseases tested 
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here, there are multiple proteins, and overlapping regions associated with multiple traits in both cases 
are counted as one region rather than multiple ones. We believe our more conservative reporting, 
whilst more complex, provides added information and a more objective ‘accounting’ of our discoveries, 
avoiding inflated reporting of associations. 
 
12. Winner’s curse can lead to inflated effect sizes that the large effects reported for some of these 
variants could potentially mislead replication studies, which will be looking for larger effect sizes. 
 
We agree with a risk for winner’s curse in any genetic study. However, since the main findings we report 
are replicated in two independent cohorts where genetic data has been generated on two distinct 
platforms, and since inclusion into our meta-analysis requires at least nominal significance in each study 
individually, we feel that our study is considerably more protected from winner’s curse than most large 
single cohort GWAS. 
 
13. Is it possible to compare the proportion of variance explained for a few traits by coding SNPs vs non-
coding SNPs since genome-wide data is available for both samples? 
 
This is a really interesting point that deserves to be thoroughly investigated in follow-up studies that will 
systematically integrate the coding associations reported here together with non-coding associations 
across a range of diseases. In practice, we expect it to be challenging to unambiguously separate out 
signals that are uniquely driven by non-coding relative to coding variants owing to LD, which will likely 
need to happen on a locus-by-locus basis. Whilst interesting, we feel this is beyond the scope and focus 
of this study and warrants its own separate investigation in the future. We will be releasing our 
summary results to allow other researchers to perform additional analyses to help approximate the 
variance explained. 
 
14. Page 7 Line 152 – The authors state that 35% of region-disease cluster associations have not been 
previously reported at p<5e-8. Previous GWAS sample sizes may have been smaller and therefore less 
powered to detect at genome-wide significance. Is there a way to see if these variants have suggestive 
association in previous studies (p<1e-5)? 
 
For our reporting in our cross-reference with previously published disease GWAS, we used p<5x10-8 as 
cut-off as this is the most widely adopted GWAS significance threshold. As such, many summary 
statistics in GWAS Catalog and PhenoScanner may only contain genome-wide significant results. 
Nonetheless, we have additionally performed this analysis cross-referencing GWAS Catalog and 
PhenoScanner with reviewer suggested p<1x10-5. As expected, we observed a slight decrease, 184/620 
(30%) compared to 216/620 (35%), in distinct region-disease cluster associations (at p<5x10-8) that had 
not previously been reported. 
 
For consistency and interpretability, we keep the reporting in the main text, and we appreciate the 
reviewers’ good point of many previous studies being smaller and less-powered. 
 
15. It would be useful to know how many distinct genes were associated with disease (outside the HLA 
region) and how does this compare to the number of distinct regions i.e. how often were coding variants 
in 2 adjacent genes merged outside the HLA region? Also, of the associated genes, how many had more 
than one independently associated coding variant? 
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We thank the reviewers for this suggestion. We have added a short text describing the number of 
distinct genes associated with disease, as well as a histogram (now featured in Extended Data Figure 6a) 
on how many genes with associations are within each distinct region (per disease cluster; excluding 
MHC). The vast majority of regions have single gene associations as expected with ~8% where 2 or more 
adjacent genes were merged (outside the MHC). We have modified the manuscript as follows: 
 

“Mapping associations to genes, we found a total of 482 unique genes associated 
with the 148 disease clusters. Approximately 92% of the associated regions for each 
disease cluster (excluding the MHC) harbour a single gene with coding associations 
(Extended Data Figure 6a).” (Main text, lines 176-178) 

 
As there are multiple ways to estimate the number of independent coding associations, we did not 
perform specific conditional analysis in this study, which goes beyond the main findings and examples 
our manuscript focuses on. As the summary data will be made available, individual investigators will be 
able to perform LD-based pruning/summary conditional analysis, e.g., by using GCTA or similar methods 
on a locus by locus basis. Especially for certain loci which may be complex, individual investigators may 
wish to choose to model the dependencies between associations through various approaches, some of 
which may be biologically informed.  



 

 

 

Reviewer Reports on the First Revision: 

Referee #1 (Remarks to the Author): 

 

The authors have addressed my concerns. 

 

 

Referee #2 (Remarks to the Author): 

 

Thank you for your detailed responses to all of the points I raised, you have done a lot of 

additional work with clarifies many of the questions I raised and the other reviewers. In response 

to my first point, thank you for performing additional analysis to support your threshold of P<0.05. 

The addition of computational modelling you did and now added to the supplementary material will 

be informative for other researchers I am sure and it supports your approach. I also appreciate the 

addition of new tables and providing more information on the QC of rare variants. I had raised a 

few queries on your discussion of variants in known candidate genes for AF. The revisions you 

have made to the manuscript address my queries on this and illustrate the motivation and the 

movement of some of the results to the supplementary material balances out reporting across all 

the new variant discoveries in the paper. 

 

 

Referee #3/#4 (Remarks to the Author): 

 

Thank you to the authors for sufficiently addressing all my comments. I have no further 

comments. 

 

As with other published, large exome sequence studies, the work presented here will be a very 

useful resource for the research community, and I urge the the authors to consider enabling easy 

querying of the results e.g. a web interface such as Genebass, in order to enable the international 

research community to fully leverage this data. 

Author Rebuttals to First Revision: 

Referee #1 (Remarks to the Author): 

 

The authors have addressed my concerns. 

We are pleased that all concerns have been addressed. 

 

Referee #2 (Remarks to the Author): 

 

Thank you for your detailed responses to all of the points I raised, you have done a lot of additional 

work with clarifies many of the questions I raised and the other reviewers. In response to my first 

point, thank you for performing additional analysis to support your threshold of P<0.05. The addition 

of computational modelling you did and now added to the supplementary material will be 

informative for other researchers I am sure and it supports your approach. I also appreciate the 

addition of new tables and providing more information on the QC of rare variants. I had raised a few 

queries on your discussion of variants in known candidate genes for AF. The revisions you have made 

to the manuscript address my queries on this and illustrate the motivation and the movement of 

some of the results to the supplementary material balances out reporting across all the new variant 

discoveries in the paper. 



 

 

 

 

We thank the reviewer’s remarks. 

 

Referee #3/#4 (Remarks to the Author): 

 

Thank you to the authors for sufficiently addressing all my comments. I have no further comments. 

 

As with other published, large exome sequence studies, the work presented here will be a very 

useful resource for the research community, and I urge the the authors to consider enabling easy 

querying of the results e.g. a web interface such as Genebass, in order to enable the international 

research community to fully leverage this data. 

We thank the reviewers’ remarks. We have provided all summary association results; an additional 

file with just the nominal significant (p<0.05) associations in UKB and FG; and an accompanying 

README file. These files have been deposited at a public repository and are available for download 

at:  https://doi.org/10.5281/zenodo.5571000. This URL has been added to Data Availability section. 

We have also been in communications with GWAS Catalog and Open Targets who have both 

declared their willingness to host our data following formal publication. These portals should meet 

the recommendations from reviewers 3/4 for a web interface for easy querying of results. 

 

https://doi.org/10.5281/zenodo.5571000

