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REVIEW

Florigen and its homologs of FT/CETS/PEBP/
RKIP/YbhB family may be the enzymes of small 
molecule metabolism: review of the evidence
Olga Tsoy1,2 and Arcady Mushegian3,4*   

Abstract 

Background:  Flowering signals are sensed in plant leaves and transmitted to the shoot apical meristems, where 
the formation of flowers is initiated. Searches for a diffusible hormone-like signaling entity (“florigen”) went on for 
many decades, until a product of plant gene FT was identified as the key component of florigen in the 1990s, based 
on the analysis of mutants, genetic complementation evidence, and protein and RNA localization studies. Sequence 
homologs of FT protein are found throughout prokaryotes and eukaryotes; some eukaryotic family members appear 
to bind phospholipids or interact with the components of the signal transduction cascades. Most FT homologs are 
known to share a constellation of five charged residues, three of which, i.e., two histidines and an aspartic acid, are 
located at the rim of a well-defined cavity on the protein surface.

Results:  We studied molecular features of the FT homologs in prokaryotes and analyzed their genome context, 
to find tentative evidence connecting the bacterial FT homologs with small molecule metabolism, often involving 
substrates that contain sugar or ribonucleoside moieties. We argue that the unifying feature of this protein family, i.e., 
a set of charged residues conserved at the sequence and structural levels, is more likely to be an enzymatic active 
center than a catalytically inert ligand-binding site.

Conclusions:  We propose that most of FT-related proteins are enzymes operating on small diffusible molecules. 
Those metabolites may constitute an overlooked essential ingredient of the florigen signal.

Keywords:  Florigen, Flowering, Phosphatidylethanolamine-binding protein, Raf-kinase interacting protein, YbhB, 
Tautomycin
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Background
Flower production in plants occurs in response to the 
environmental cues – most importantly, changes in the 
day length. The role of photoperiodicity in all living forms 
from bacteria to higher eukaryotes is well established, 
and numerous studies have shown that the perception 
of the photoperiodic signal in plants occurs primarily in 
the leaves. Flowers, however, are formed mostly by shoot 

apical meristems (SAM) that are typically shielded from 
direct light, and the mechanisms conveying the flowering 
signal from leaves to SAMs have been a matter of specu-
lation and investigation for most of the twentieth century.

Plant physiologists have established, by the 1930s, 
that angiosperms generally fall in three categories, i.e., 
long-day plants, in which blooming is turned on by day 
lengthening - night shortening; short-day plants, which 
initiate blooming upon day shortening - night lengthen-
ing; and day-neutral plants, which bloom in response to 
the cues other than day length [32, 58]. Experiments on 
floral induction in partially shaded plants and in grafts 
between light-induced and uninduced plants suggested 
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the existence of a diffusible substance promoting flo-
ral transition; the idea may have been first proposed by 
Julius Sachs [95], but was consolidated in the modern 
form by M. Chailakhyan (1902–1991), who proposed 
the term “florigen” as the name for the flower-inducing 
chemical entity [21]. The review of early research on the 
photoperiodic signal sensing in leaves can be found in 
Zeevaart [123] and Kobayashi and Weigel [60], and an 
account of Chailakhyan’s remarkable life and scientific 
work has been given in Romanov [93].

The transfer of a flowering signal from leaves to the 
shoot apex has been studied over the years in many spe-
cies of flowering plants, and general similarity of its prop-
erties to those of small molecules was noted; for example, 
the florigen fraction appeared to move in phloem at the 
rate comparable to that of other plant assimilates [54]. 
It has been established also that grafts and extracts of 
induced plants could transfer flowering ability not only to 
the uninduced vegetatively developing plants of the same 
species, but sometimes also to other species or genera, 
suggesting the evolutionary conservation of the signaling 
pathways [122].

Despite general acceptance of the idea of florigen as a 
conserved hormone-like substance, the attempts at the 
isolation and chemical characterization of the responsi-
ble entity yielded no results for several decades. A review 
of state of the affairs in 1976 listed the factors that have 
been tested unsuccessfully for the ability to induce floral 
transition; among the failed candidates there were sug-
ars, amino acids, sterols, gibberellins, salicylic acid, eth-
ylene, cytokinins, the photosynthetic capacity, initiation 
of protein synthesis, and others [122]. Several hypotheses 
were put forward to explain the difficulties of identifying 
florigen: perhaps it was not one molecule but several dis-
tinct hormones or metabolites, acting jointly in a specific 
succession, or as a mix with specific ratio of components; 
or, possibly, the identity of florigen was masked by simul-
taneous presence of flowering inhibitors in the same 
samples [63]; or, maybe, flowering was caused by propa-
gating a signal that spread from leaves to meristems not 
in chemical, but in electric form, such as plasma mem-
brane potential [84].

Despite all the work to test these and other hypotheses, 
there was little progress in biochemical characterization 
of florigen until early 1990s, when the search for a flower-
inducing activity started employing the tools of molecu-
lar biology. For example, in what may have been the last 
published study by Chailakhyan, a radiolabeled protein 
band of ~ 27 kDa was observed in the induced, but not in 
naïve, leaves of Rudbeckia, followed by accumulation of 
a similar-sized band in the shoot apex tissues ([76]; the 
work is largely unavailable to the Western reader because 
of the temporary interruption of translation and indexing 

of Russian-language journals upon the collapse of the 
Soviet Union). Around the same time, it has been shown 
[107] that aqueous extracts of Lemna, Pharbitis and Bras-
sica contained a flower-inducing fraction dominated by 
a 20–30 kDa protein band; the authors noted, however, 
that the florigen activity was unaffected by proteinase K 
digestion that removed the protein, perhaps suggesting a 
role for an associated small molecule.

Nearly simultaneously, the results of genetic screens for 
Arabidopsis thaliana mutants with late flowering pheno-
types were published [61]. This was a watershed moment 
in the studies of the molecular determinants of flowering 
initiation, and important discoveries ensued in the fol-
lowing three decades have been. The state of the knowl-
edge may be outlined as follows (summarized from the 
following reviews – [6, 47, 49, 56, 69], which can be con-
sulted for additional details and for the timeline).

Flowering in Arabidopsis is long day-dependent, and 
is enabled through the circadian clock-controlled tran-
scriptional co-regulator CONSTANS (CO) and its target 
FLOWERING LOCUS T (FT). The protein product of the 
latter gene has emerged as the integrator of the environ-
mental inputs, relaying these signals into the gene regu-
latory networks that control flowering. The FT protein 
of 19.8 kDa (176 amino acids) is produced in the phloem 
companion cells of the leaves, enters phloem sieve ele-
ments and is transported from leaves to the base of shoot 
apical meristem, where it has been detected experimen-
tally. Considerable evidence exists that the FT gene is 
expressed in SAM mostly or only in its basal portion, and 
that the FT protein may move from cell to cell in plants. 
This is a key set of properties expected of florigen. A 
strong genetic and transgenic evidence suggests that FT is 
required for activating the expression of floral meristem 
identity and flowering time genes, such as MADS-box 
transcription factors SUPPRESSOR OF OVEREXPRES-
SION OF CONSTANS 1 (SOC1), FRUITFULL (FUL/
AGL8) and AGL24, and ultimately the master regula-
tor of flower development LEAFY (LFY). Orthologs of 
FT, such as SINGLE FLOWER TRUSS (SFT) in tomato, 
HEADING DATE 3a (HD3a) in rice, and their counter-
parts in other plant species (sometimes called CETS 
proteins in the plant context, after the names of several 
better-studied representatives from Antirrhinum, Arabi-
dopsis and Lycopersicon) share many of these properties 
with FT, with some variation in the precise wiring of the 
transcriptional networks.

The homologs of FT, found in varying numbers in all 
examined angiosperm species, also tend to be involved 
in flowering control, many of them acting synergistically, 
redundantly or antagonistically with FT; perhaps the 
best-studied antagonistic pair is Arabidopsis gene FT and 
its paralogous gene TFL1 and the counterparts of those 
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two genes in other flowering plants similarly have oppos-
ing effects on plant development [4, 59, 62, 68, 73, 89, 
112, 119]. FT and its homologs have been also implicated 
in other aspects of plant organogenesis, such as seed ger-
mination in bamboo and tuber formation in potato, as 
well as in a growing variety of physiological processes, 
such as vacuolar sorting, stomata opening, and sink-
source regulation [3, 24, 26, 49, 52, 55, 87, 103].

Despite all the effort to pinpoint its precise location, FT 
protein has not been unambiguously detected in phloem-
free tips of SAM in any plant, only in the basal portions 
of the meristem zones. Protein localization studies at a 
single-cell resolution in vivo remain challenging, and it is 
not clear whether FT actually reaches the cells where the 
meristem identity genes are expressed. The argument that 
FT does just that – as opposed, for example, to activat-
ing an additional low molecular weight messenger – has 
been made in the literature, but the evidence is indirect, 
showing for example that some engineered fusions of FT 
to green fluorescent protein-based reporters are retained 
in the bottom half of the SAM zone, and in those cases 
they do not complement the ft recessive mutants [25]. 
A study in rice [108] has made a more direct claim, i.e., 
that Hd3a, the rice protein orthologous to FT, does reach 
the tip of the SAM to induce flowering. However, their 
Fig. 3E, F, M, and N, cited as the key supporting evidence, 
does not seem to show the protein reporter activity at 
the tip, where it is supposed to be – only in the bottom 
halves of the SAM zone, just like in the case of Fig. 2G in 
Corbesier et al. [25]. More recent analysis used a sensitive 
fluorescent assay to report that FT is found in the basal 
as well as the apical part of SAM [2], though their Fig. 2 
again shows a fluorescence-negative zone at the extreme 
apex. In fact, it has been hypothesized that, contrary to a 
naïve expectation, the restriction of FT to the basal por-
tions of SAMs may be a tightly regulated, TFL1-mediated 
event, actually beneficial for maintaining the supply of 
undifferentiated stem cells in the more apical parts [13, 
120]. Be it as it may, it remains possible that FT is but 
one component of the flower induction signal, and that a 
small molecule, possibly activated by or acting synergisti-
cally with FT, is also involved [6, 68].

Another gene of Arabidopsis known to be involved 
in flowering control, FD, has been identified in a robust 
genetic screen as a recessive suppressor of FT; the abil-
ity of overexpressed FT to induce precocious flowering 
is impaired in plants with the lowered production of FD 
[1]. The FD gene encodes a protein from the bZIP-type 
transcription factor family, which physically interacts 
with the FT protein in yeast two-hybrid system, in the bi-
molecular fluorescence complementation assays in  vivo, 
and apparently in the affinity-purified protein complexes 
[1, 118]. In rice, the FT ortholog HD3a does not interact 

with the bZIP factors directly, but co-precipitates with 
the FD ortholog OsFD1 in a tripartite complex that also 
includes a scaffolding 14–3-3 protein [109]. Largely 
on the basis of this evidence, FT has been assigned the 
molecular function of a transcriptional co-activator, 
proposed to form a putative multisubunit complex that 
binds to the regulatory regions and controls the expres-
sion of the flowering identity genes. A corroboration of 
these protein interaction experiments is provided by the 
analysis of gene expression and ChIP-Seq data, which 
reveal that tagged FT binds, apparently mostly in the 
FD-dependent manner, to the DNA regions located near 
many of the genes involved in flowering control [124].

The emerging picture of the FT role in transcriptional 
control of gene expression is complicated by the sub-
cellular localization studies of FT and its homologs. 
FT appears to be transported into the nucleus in a FD-
dependent manner, but remains largely cytoplasmic in 
fd plants [2]. On the other hand, its best-studied par-
alog TFL1 in Arabidopsis has been localized to plasma 
membrane, tonoplast, and dense vesicles in  situ, and to 
the membranes of fractionated protoplasts, with direct 
implications in protein trafficking to the storage vacuoles 
[103], whereas the ortholog of TF in potato, StSP6A, has 
also been seen in association with membranes [3].

Analysis of the amino acid sequence has shown that 
FT protein belongs to a widely conserved sequence fam-
ily, members of which are encoded by genomes of many 
bacteria, archaea and nearly all eukaryotes. The found-
ing member of the family, isolated from bovine brain, is a 
hydrophilic, cytoplasmic protein that can bind in vitro to 
many low molecular weight compounds of different chemi-
cal structure, including certain phospholipids [15]. The 
name phosphatidylethanolamine-binding protein (PEBP) 
became attached to the family, though functional relevance 
of phosphatidylethanolamine binding has not been demon-
strated for any homolog of this protein in any species. The 
genes or protein products of FT/PEBP family turn up in 
a surprisingly large variety of genetic screens and binding 
assays. This has resulted in a long list of putative properties 
assigned to these proteins, including, in addition to in vitro 
phospholipid binding in plant and animal homologs, 
also inhibition of carboxypeptidase Y in vitro and regula-
tion of Ras GTPase in vivo by the yeast homolog Tfs1 [16, 
36]; inhibition of Raf-1 kinase in mammals – hence an 
alternative name of the protein family, Raf-Kinase Inhibi-
tor Protein, or RKIP [121]; suppression of trans-epithelial 
migration of the mammalian host neutrophiles by YbcL, 
a PEBP homolog from uropathogenic E.coli [64]; and an 
uncharacterized role in the modification of polyketide 
chains in Streptomyces [66, 67]. In a continuation of the 
theme of diverse cellular locations in the family members, 
one of the FT co-orthologs in mammalian cells, PEBP1, 
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directly interacts with some isoforms of membrane-local-
ized 15-lipoxygenase and controls their function [115], 
whereas at least three animal and one bacterial homolog, 
i.e., mammalian PEBP4, a predicted odorant-binding pro-
tein in fruit fly, a putative venom gland constituent in gall 
wasp, and aforementioned YbcL, are either known or pre-
dicted to be secreted extracellularly [19, 40, 64, 86].

Structural studies of FT/PEBP-like proteins from 
diverse species of bacteria and eukaryotes, conducted by 
X-ray crystallography and nuclear magnetic resonance 
approaches [8, 11, 12, 29, 37, 77, 90, 99, 100, 110] have 
revealed a distinct spatial fold, with a structural core domi-
nated by two beta-sheets. Structurally, the fold superficially 
resembles an immunoglobulin-like arrangement but is not 
specifically related to any other fold (entry 11.1.7 in the 
ECOD database; Cheng et al., [23]). A prominent structural 
feature of this family is an evolutionary conserved depres-
sion on the surface of the molecule; the rim of the cavity is 
lined by three of the residues conserved in the entire fam-
ily, i.e., an aspartic acid located at the C-terminus of strand 
3 (in the FT protein of Arabidopsis, it is denoted D71 [42]) 
and two histidines found at the N-termini of strands 4 and 
6, denoted H87 and H118. The quintet of the most con-
served residues is completed by another aspartic acid close 
to the first one (D73), and an arginine that adjoins the sec-
ond conserved histidine (R119) and bonds via a salt bridge 
with D73, forming a “shoulder” next to the cavity [99]. The 
spatial configuration of these residues and select other con-
served features in Arobidopsis FT protein are rendered in 
Fig. 1.

In the known crystal structures, the cavity sometimes 
accommodates anions included in the media, but it is nei-
ther hydrophobic nor large enough to bind lipids. On the 
other hand, several sites suitable for binding hydropho-
bic ligands have been inferred on the molecule by in sil-
ico studies, but those sites tend to be located in the least 
conserved regions of the molecule [4, 39, 83, 92, 94, 101]. 
Curiously, the site of interaction between FT and FD in 
A.thaliana has not been structurally characterized.

In this work, we highlight the patterns of sequence and 
structure conservation in the family and present the results 
of the analysis of genomic context of the FT/PEBP pro-
teins in prokaryotes. We argue that the total evidence is 
best compatible with the idea that these proteins are not 
only (or even perhaps not at all) transcriptional co-activa-
tors, but enzymes involved in production, conjugation, or 
removal of low molecular weight ligands.

Fig. 1  Spatial organization of the conserved residues forming 
putative catalytic center in FT protein from Arabidopsis thaliana 
(PDB ID 1wkp). The three-dimensional structures of proteins were 
visualized, and their approximate charge-smoothed electrostatic 
surface representations were generated using the open-source 
PyMOL environment (Schrödinger LLC; SciCrunch RRID SCR_000305), 
installed from source using homebrew on the MacOS High Sierra 
10.13.6. Top panel: strands are rendered in yellow, helices in light blue, 
and conserved residues involved in forming the putative enzyme 
active center are labeled and colored as follows: blue, two conserved 
aspartates; cyan, two conserved histidines; dark blue, conserved 
arginine; red, frequently conserved prolines. The loop between 
strands 3 and 4 is reduced to a short broken wire to improve the 
visibility of the active center, and the loop that is a major determinant 
of the differential activity of FT and its paralog TFL1 [4] is rendered as 
sticks. Bottom panel: The putative enzyme active center rendered as 
a surface. A rough calculation of the surface electrostatic properties 
in the vacuum was performed using PyMOL function generate 
→ vacuum electrostatics. The shades of red and blue indicate, 
respectively, negative and positive charges. The conserved residues 
involved in forming the putative enzyme active center are labeled, 
and their colors are the same as in the top panel
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Survey and summary of the computational evidence
Sequence conservation in the FT homologs 
throughout the Tree of Life suggests shared ancestry 
and common molecular function
We have collected the homologs of plant FT proteins by 
searching the NCBI NR protein database, or databases 
restricted by taxon (e.g., viruses), focusing on completely 
sequenced genomes. The database searches were done 
using PSI-BLAST program with standard settings [5], 
mostly in June 2021. We also consulted the NCBI COG 
resource that annotates conserved orthologous genes in 
bacteria and archaea [31]. In the following, unless speci-
fied otherwise, we refer to the prokaryotic FT homologs 
as YbhB proteins, after the chromosomal locus in E.coli 
that has orthologs in many other bacteria, and use some 
of the FT/CETS/PEBP/RKIP name aliases for eukaryotic 
homologs.

Complete genomes of the unicellular and multicellu-
lar eukaryotes tend to encode at least one, or commonly 
more than one, FT homolog; a rare exception are some 
parasitic eukaryotes with reduced genomes, such as 
microsporidia, which do not appear to have genes from 
this family. YbhB genes (NCBI COG1881) are found in 
almost all major lineages of bacteria and archaea. Among 
the clades of archaea, only methanogenic Euryarchaeota 
appear to lack the YbhB homologs, and among bacteria, 
only the phylae Firmicutes, Mollicutes and the order Spi-
rochaetales mostly contain species that are YbhB-free. In 
other clades of bacteria and archaea, between 30 and 80% 
of all species encode YbhB-family proteins. All told, 782 
copies of YbhB-family proteins are found in 594 bacte-
rial and archaeal genomes out of the 1309 genomes in the 
2020 release of the COG database [31]. YbhB homologs 
are also encoded by the genomes of many giant DNA 

Fig. 2  Multiple sequence alignment of select members of FT/CETS/PEBP/RKIP/YbhB family. Sequence identifiers in GenBank or PDB are shown 
before each sequence. For the arabidopsis proteins, gene product names and AGI locus codes are also shown. In the Secondary structure lines 
above the alignment, s stands for a beta-strand and h stands for an alpha-helix. Conserved hydrophobic residues (I, L, M, V, F, Y, W) are indicated by 
yellow shading, conserved small-side-chain or turn/kink-prone residues (A, G, S, P) are indicated by bold red type, and the conserved constellation 
of charged residues discussed in the text are marked as follows: gray-shaded blue type, two conserved aspartates; cyan shading, two conserved 
histidines; and black-shaded white type, conserved arginine. In the sequence XP_024370999.1, the bold underlined X marks the position of a 
low-complexity sequence insertion that most likely represents a falsely predicted exon
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viruses from the class Megaviricetes and from some 
related lineages.

We produced a multiple sequence alignment of the 
representative proteins from many of these clades and 
inferred a phylogenetic tree of these sequences. Amino 
acid sequences were aligned using the program MUS-
CLE v. 3.8.31 [27], and the phylogenetic trees were con-
structed using the PhyML maximum likelihood approach 
[38] available through the Booster server at Pasteur 
Institute (boost​er.​paste​ur.​fr) and the Galaxy FastTree 
workflow [72]. The validity of the tree partitions was 
assessed bootstrap-by-transfer approach with 200 repli-
cates, which has been reported to have higher resolution 
than the traditional bootstrap and to induce fewer falsely 

supported branches [65]. The sequence alignment is 
shown in Fig. 2, the tree is shown in Fig. 3, and the source 
phylogeny in the Newick format is available as Supple-
mental Data Set 1.

The phylogeny that we obtained is dominated by a deep 
split between prokaryotic and eukaryotic sequences; 
the long internal branch separating those two groups is 
broken only by two eukaryotic outliers, a fast-evolving 
homolog from C.elegans and a sequence from green 
alga Chlorella sorokiniana. Within eukaryotes, plant 
FT/CETS homologs segregate as one clade, and fungal/
metazoan homologs form another assembly, occasion-
ally intermingled with the representatives of unicellular 
eukaryotes. A well-defined clade of fungal and metazoan 

Fig. 3  Phylogenetic tree of the FT/CETS/PEBP/RKIP/YbhB family. Bacterial sequences and branches leading to them are shown by the tan color; 
archaeal sequences are in lilac, fungal sequences are in light blue, metazoa are in dark blue, protists are in black and plants are in green. The 
partitions with the bootstrap-by-transfer support higher than 75% are marked with the purple circles. The GenBank identifier for each sequence 
matches the corresponding sequence row in Fig. 2. Species names are abbreviated; for complete taxonomy, refer to the GenBank entries and 
discussion in the text. The scale bar for branch lengths represents one substitution per site

http://booster.pasteur.fr


Page 7 of 16Tsoy and Mushegian ﻿BMC Plant Biology           (2022) 22:56 	

proteins includes FT/PEBP homologs detected recently 
in an unexpected biological context, namely as the con-
stituents of mitochondrial ribosomal large subunit, 
where they are known as mitochondrial ribosomal pro-
teins L35/L38. These FT/PEBP/YbhB homologs have 
distinct N-terminal sequence extensions, found in one 
gene product within each completely sequenced animal, 
fungal and protist genome (many of animal and fungal 
genomes also include additional homologs that do not 
contain such an extension). This domain is not included 
in the alignment in Fig. 2; none of the plant FT homologs 
appear to contain such a region.

The six well-known paralogs in A.thaliana are FLOW-
ERING LOCUS T (FT; AT1G65480), TWIN SISTER 
OF FT (TSF AT4G20370), TERMINAL FLOWER 1 
(TFL1; AT5G03840), BROTHER OF FT AND TFL1 
(BFT; AT5G62040), MOTHER OF FT AND TFL1 (MFT; 
AT1G18100), and Arabidopsis Thaliana CENTRORA-
DIALIS (ATC; AT2G27550). These sequences, and their 
counterparts in other species, show the expected topol-
ogy, with the MFT branch splitting off the common angi-
osperm stem first, and the FT/TFL branch diversifying 
later, with additional variations within angiosperms [14, 
22, 51, 117]. The sequences from more primitive  plants 
included in the alignment, i.e., moss Physcomitrium 
patiens (former Physcomitrella, recently re-absorbed into 
a larger genus – [75]) and another representative from 
Chlorella sorokiniana, predictably form their own deep 
clades near the common root of Viridiplantae. Evolution 
and functional specialization of FT homologs in different 
lineages of Viridiplantae, including early branching ones, 
have been extensively reviewed elsewhere [41, 57, 70].

Within the prokaryotic partition of the tree, the phy-
logeny is less well-resolved; it includes many deep-
branching clades, which are often supported statistically 
but their position relative to other such clades is unclear. 
As a rule, however, these clades do not mix bacterial and 
archaeal representatives. On the other hand, on sev-
eral occasions a group of homologs from closely related 
bacterial species would include also a sequence from a 
phylogenetically distant bacterium; in just one example, 
a sequence from Gram-negative proteobacterium Heli-
cobater pylori, WP000846523.1, resides within a group 
of YbhB-like sequences from Gram-positive bacteria 
(Fig.  3). This indicates that the evolution of the YbhB 
family in bacteria must have included occasional hori-
zontal gene transfer events.

The trend discussed above, i.e., the partitioning of all 
FT/YbhB homologs into the eukaryotic and prokary-
otic tribes in the tree, is broken in the case concerning a 
neglected, uncharacterized member of the FT family in 
arabidopsis, AT5G01300. The expression of this poorly 
studied protein in plants and its apparent close similarity 

to bacterial YbhB may have been first discussed by Schi-
effer [98], and the expression of an orthologous gene in 
Brassica, as well as its large evolutionary distance from 
the other homologs, were recently noted in Sheng et al. 
[102]. In our tree, the sequence of AT5G01300, together 
with its homologs from another angiosperm and a moss, 
were clearly nested, with strong statistical support, 
within the prokaryotic portion (Fig. 3). Database searches 
and preliminary sequence analysis indicate that nearly 
all sequenced plant genomes encode such bacteria-like 
orthologs of AT5G01300 (unpublished data). We propose 
to call this 7th member of the FT family in Arabidopsis 
PYBHB (for plant YbhB homolog). A more detailed anal-
ysis of the phylogenetic origin of PYBHB would require a 
denser sampling of green plant lineages, as well as of their 
immediate algal ancestors and bacteria; such an analysis 
would be of great interest but is beyond the scope of this 
work.

Taken together, these data suggest, first and forеmost, 
that FT/CETS/PEBP/RKIP/YbhB-like proteins are ubiq-
uitous throughout the evolution of life, and that nearly all 
eukaryotic homologs are likely to have a single origin in 
a prokaryotic ancestor, with a possible secondary reten-
tion of a bacterial-like PYBHB clade in plants. Moreover, 
nearly-universal sequence conservation of several key 
amino acid residues and the common structural scaffold 
of the entire protein family (Figs.  1 and 2, and see the 
next section) suggest that most of those proteins share an 
ancient conserved molecular function.

Sequence‑structure analysis of PEBP/RKIP/FT/YbhB proteins 
supports the hypothesis of a universally conserved function
A common biochemical function of the entire PEBP/
YbhB protein family is further suggested by delineation 
of the conserved and variable sequence elements of the 
family (Fig. 2). As has been noticed before [11, 12, 99, 
100], there are five nearly-invariant polar amino acid 
residues in the alignment. Several additional highly 
conserved residues, in particular prolines, are found 
around these signature amino acids (Figs. 1 and 2). Evo-
lutionary substitutions in the five polar residues are 
exceedingly rare. Interestingly, multiple replacements 
in those five sites are observed in just two groups of the 
PEBP/RKIP/FT/YbhB proteins. One of such groups is 
the clade of animal and fungal mitochondrial riboso-
mal proteins L35/L38, which must have acquired a new 
molecular function during evolution. The other group 
comprises the plant PYBHB proteins mentioned above. 
It is tempting to speculate that the PYBHB functions 
are likewise derived, possibly plant-specific, and could 
be related to the organelle function; PYBHB sequences, 
however, do not bear obvious signals for sorting to 
chloroplasts or mitochondria, and do not seem to 
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cluster with the groups of bacteria that are close to the 
putative bacterial ancestors of plant organelles (unpub-
lished data).

High-resolution spatial structures of many FT/PEBP/
RKIP/FT/YbhB homologs from many diverse species 
have been obtained (see references above). Mapping the 
conserved sequence features onto these structures sug-
gests that they are clustered in space, with three of the 
five most conserved residues located around the rim 
of the main cavity on the surface of the molecule, and 
the remaining two forming a salt bridge just above this 
rim (Fig. 1). The polar hole on the surface of the PEBP/
RKIP/FT/YbhB protein molecules binds some of the 
polar ligands added to the crystallization media, such as 
cacodylate, phosphotyrosine, phosphoethanolamine, or 
(4S)-3-[(E)-1-Oxo-2-butenyl]-4-(phenylmethyl)-2-oxa-
zolidinone, a small molecule that disrupts mammalian 
RKIP interaction with protein kinase Raf. On the other 
hand, when phosphatidylethanolamine or other polar 
lipids were included in the media, they were not seen in 
the electron density. For example, a recent report that 
FT from arabidopsis may bind phosphatidylcholine (PC) 
more strongly and more specifically than other lipids [81] 
has prompted the analysis of high-resolution structures 
of FT crystallized in the presence of PC. The crystals 
were obtained in a variety of conditions, but PC mol-
ecule could not be located in any of them; computational 
docking tentatively suggested four binding sites for PC, 
all located far from the conserved polar cavity [81, 82]. It 
is also notable that the electrostatic calculations suggest 
that the overall charge of the cavity, at least in vacuum, 
is strongly negative, making it perhaps not conducive for 
direct interactions with phosphate, whereas the charge 
on the “shoulder” may be more positive (Fig. 1).

A phenotyping experiment on a panel of mutagen-
ized versions of FT [42] has revealed a differential effect 
of substitutions in the five conserved charged residues. 
Out of 14 missense mutations in these residues, six did 
not alter the early-flowering phenotype of the positive 
control – the wild-type plant in which the FT transgene 
was overexpressed – and eight caused a dominant-neg-
ative effect of flowering delay compared to the wild type 
(Supplementary Fig. 4 in [42]). Altering a charge in one 
or more of residues D71, D73, H118 and R119 appears 
to be particularly effective in switching the phenotype 
from early to late flowering. This clearly suggests that the 
charge distribution on the surface of the FT protein, at 
the cavity rim itself as well as on its adjoining shoulder, 
is important; even so, we have no mechanistic explana-
tion for the role of those most prominently conserved 
elements in carrying out the function of FT and its 
homologs, either in plants or in other species.

In this survey, we are interested whether these signa-
ture elements of sequence and structure may suggest a 
biochemical function of the FT/YbhB homologs. The 
Mechanism and Catalytic Site Atlas (M-CSA) resource 
contains annotated information about the amino acid 
determinants of catalysis in conserved enzyme fami-
lies [91]. A web interface allows users to specify a set of 
conserved residues anywhere in the molecule and search 
the database with such a signature. We queried M-CSA 
and identified 21 families of enzymes that have two His, 
two Asp and one Arg in their active centers. These fami-
lies represent all 7 of the top-level Enzyme Classification 
classes of activities, i.e., oxidoreductases, transferases, 
hydrolases, lyases, isomerases, ligases and translocases. 
If the selection criteria are relaxed to only two histidines 
and one aspartic acid surrounding the hydrophilic hole, 
the search retrieves 105 families, corresponding to almost 
11% of the 964 entries in the database (the searches can 
be reproduced at https://​www.​ebi.​ac.​uk/​thorn​ton-​srv/m-​
csa/​browse/ by selecting the set of conserved residues). 
The specific three-dimensional configuration of these 
residues in PEBP/RKIP/FT/YbhB proteins appears to be 
quite unique, however, as judged by the analysis with the 
PINTS program, which compares similar spatial arrange-
ments of key residues in non-homologous proteins [104]. 
Nonetheless, it is clear that a combination of two histi-
dines, two aspartates and an arginine has been repeatedly 
utilized in evolution to build enzymatic active centers, 
enabling many kinds of catalytic conversions.

These observations are in sharp contrast to what is 
known about patterns of sequence conservation in 
non-catalytic ligand-binding protein domains. We col-
lected all domains in PFAM 33.1 [28], using keywords 
“ligand+bind” and “phosphate-binding”, resulting in 
1044 conserved domains. Removal of the clearly anno-
tated enzymatic domains that bind phosphate in their 
active centers, such as the protein kinases or ATPases, 
and selection of a non-redundant set of sequence fami-
lies produces 651 putative non-catalytic ligand-binding 
domains. For each of those domains, we downloaded the 
curated seed alignment from PFAM and used the Skylign 
server [116] to build HMM profiles and to get the infor-
mation count for the residues of interest. We recorded 
the identity of all charged residues that were character-
ized by the information content of more than 50% of the 
maximum possible value for their position, and found 
only 25 domains that had more than two conserved 
charged residues; none of those domains simultaneously 
had two conserved histidines and a conserved aspartate 
(Supplemental Data Set 2). Thus, the known conserved 
ligand-binding domains do not utilize the combination 
of two histidines and an aspartic acid residue for their 
non-catalytic interactions with small molecules. Taken 

https://www.ebi.ac.uk/thornton-srv/m-csa/browse/
https://www.ebi.ac.uk/thornton-srv/m-csa/browse/
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together, these investigations of the conserved features in 
PEBP/FT/YbhB proteins suggest that they are more likely 
to be a part of the catalytic center than to serve solely as a 
binding interface.

Genomic context of FT homologs suggests connections 
with small molecule metabolism
We took advantage of the broad taxonomic distribution 
of the YbhB homologs and tried to infer the putative 
functional linkages for these gene products on the basis 
of their genome context (Table 1). The first kind of link-
age we studied was the information on domain fusions.

It is quite common for two protein domains to exist as 
separate genes in some species, but to be fused into one 
gene encoding a multidomain protein in others. Such 
translational fusions, especially those that are evolution-
ary conserved, are strongly enriched in proteins that 
work in concert with one another [45, 105]. Analysis of 
YbhB homologs in bacteria and archaea shows that they 
are most commonly encoded as stand-alone open read-
ing frames and form domain fusions infrequently. In act-
inobacteria, however, the YbhB homologs are frequently 

found as the C-terminal portions of longer proteins, 
fused to the modules implicated in carbohydrate metabo-
lism. For example, protein WP_014179790.1 in Strepto-
myces sp. consists of the N-terminal pectate lyase-like 
carbohydrate-binding module, followed by the FN3 
repeat region, a putative glucose/sorbosone dehydro-
genase (GSDH) region with predicted beta-propeller 
structure, and finally the C-terminal YbhB homology 
domain. This theme is partially preserved, albeit with 
domain rearrangement, in some species of evolutionar-
ily distant proteobacteria, where the order of domains is 
GSDH-YbhB, or occasionally GSDH-FN3-YbhB; exam-
ples include WP_014747134.1 in an alphaproteobacte-
rium Tistrella and proteins in gammaproteobacteria, 
such as WP_096298086.1  in Luteimonas, PYD93448.1 
in Pseudomonas syringae pv. pisi, or WP_145513070.1 in 
Xantomonas perforans. GSDH enzymes utilize quinone 
cofactors to convert hexoses and their derivatives into 
a variety of products in bacteria [79], and it is conceiv-
able that the C-terminal YbhB homology domains are 
involved in the transformations of GSDH substrates or 
products (or, possibly, in the metabolism of its cofactor).

Table 1  Genome-context information suggesting functional links between YbhB homologs and various enzymes of biosynthesis and 
salvage of small molecules

See text for a more detailed characterization of each putative functional link

Type of contextual evidence Functionally linked proteins / 
domains / COGs

Taxa in which these functions are 
putatively linked

COG functional categories / Most 
relevant GO terms // Additional 
comments

Domain fusions Glucose-sorbosone dehydrogenase, 
(Pectate Lyase-like carbohydrate-
binding module, FN3-like domain) 
(COG1881, COG2133)

Actinobacteria, Gammaproteobac-
teria

Carbohydrate transport and metabo-
lism / Hydrolase activity, acting on 
glycosyl bonds

Operons Dialkylmaleic anhydride synthesis 
and conjugation module of tauto-
mycin/tautomycetin biosynthesis 
operon

Actinobacteria // Five-carbon substrate (a pentose?)

Phyletic vectors (prokaryotes) Acyl-CoA synthetase, NDP forming 
(COG1042).

220 species Energy production and conversion 
/ ATP-binding, N-acetyltransferase 
activity // Nucleoside-containg sub-
strate and product

Phyletic vectors (prokaryotes) YbaR/Trm112 activator of RNA 
and protein methyltransferases; 
COG2835

233 species Translation, ribosomal structure and 
genesis // RNA modification

Phyletic vectors (eukaryotes) NUDT3 and other NUDIX hydrolases Mammalia // Hydrolases preferring pyrophos-
phate-containing substrates (nucleo-
side phosphates or phospholipids)

Shared putative regulatory motifs RlmA 23S rRNA m(1)G745 methyl-
transferase (COG2226)

Enterobacteriaceae Coenzyme transport and metabolism 
/ rRNA base methylation

Shared putative regulatory motifs YobB putative carbon-nitrogen 
hydrolase family protein (COG0388)

Enterobacteriaceae Energy production and conversion 
/ Nitrogen compound metabolic 
process

Shared putative regulatory motifs AdrB c-di-GMP phosphodiesterase 
(COG2200)

Enterobacteriaceae Signal transduction mechanisms / 
Cellular response to DNA damage 
stimulus // Nucleoside substrate

Integrated evidence RlhA 23S rRNA 5-hydroxycytidine 
C2501 synthase (COG0826)

n/a Signal transduction mechanisms / 
rRNA processing, rRNA modification
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We then surveyed the databases of conserved genomic 
neighborhoods and scanned the literature for the evi-
dence of conservation of FT/YbhB chromosomal neigh-
bors in different genomes. As with protein fusions, the 
FT/YbhB family genes are rarely found within conserved 
positional associations, such as operons, with other 
ORFs. In two species of Streptomyces, however, YbhB 
homologs are located within large (20 genes) operons 
responsible for biosynthesis of polyketide-based small 
molecules, i.e., tautomycin in S.spiroverticillatus and 
tautomycetin in S.griseochromogenes. These polyketides 
are of pharmacological interest, because they are potent 
inhibitors of mammalian protein phosphatases. The ybhB 
family genes, called, respectively, ttnL and ttmL, together 
with the adjacent seven open reading frames, form a sub-
system that is required to manufacture a rare dialkylma-
leic anhydride moiety of tautomycin and tautomycetin 
and to conjugate it to the polyketide backbone, produced 
by the remaining genes in the same operon. Dialkylma-
leic anhydride is required for the activity of the mature 
product, and is made de novo from propionate and an 
unidentified five-carbon compound, through the succes-
sion of the steps that are incompletely understood [66, 
67]; it is plausible that the products of ttnL and ttmL play 
a role in the utilization of such a compound – perhaps a 
sugar or its derivative.

Another approach of connecting genes into function-
ally related groups is to analyze their phyletic vectors, 
i.e., the representations of the presences and absences 
of their orthologous genes in different genomes [33, 
35]. We analyzed phyletic vectors using the psi-square 
program [34] with default settings and vector similar-
ity measured using Pearson correlation-based distance. 
The vector of YbhB (COG1881) was used as the query, 
and the NCBI COG database release of 2014 was used 
as the search space (digitized phyletic vector informa-
tion was not available for the 2021 COGs release at the 
time of writing). After retaining the matching vectors of 
comparable cardinality, i.e., the genes present in 300–400 
species, to avoid spurious matching to nearly-ubiquitous 
proteins, we found two COGs that were most often co-
inherited by the same genomes as COG1881. One of 
those, COG1042, is annotated as Acyl-CoA synthetase 
(NDP forming); it is found in 358 species, 220 of which 
encode both COG1881 and COG1042. The enzyme, 
best studied in hyperthermophilic archaea and protists, 
is involved in the substrate-level phosphorylation, by the 
equation acetyl-CoA + ADP + Pi ⇌ acetate + ATP + CoA 
[80]. The roles of the bacterial homologs of this enzyme 
is less clear, as some of them appear to be catalytically 
inactive and possibly play auxiliary roles in the acyla-
tion and deacylation of proteins [111]. The other gene 
with matching phyletic pattern, COG2835, annotated as 

“uncharacterized conserved protein YbaR, Trm112 fam-
ily”, is found in 390 genomes, 233 of which also encode 
COG1881. YbaR/Trm112 family encodes activators of 
several methyltransferases involved in modification of 
rRNA, tRNA and peptide release factors [113].

One more way to predict functional linkages between 
gene products in bacteria is to examine their putative 
regulatory regions, which tend to be located in the inter-
genic spacers, usually to the 5′ ends of the open read-
ing frames or operons they regulate. We performed an 
analysis of conserved upstream regions of ybhB genes, 
using the complete bacterial genomes extracted from 
Ensembl Bacteria database (release 47) [43]. The regula-
tory regions of homologous genes were aligned with the 
MUSCLE program, the most conservative regions were 
chosen to build a positional weight matrix by the Sig-
nalX routine of the Genome Explorer program [78], and 
the genomes were scanned by Genome Explorer with the 
threshold equal to the lowest score in the training set, 
i.e., in the ybhB homologous regions. Only some species 
in the family Enterobacteriaceae had a detectable con-
served site upstream of the ybhB open reading frame. 
Unlike most known binding sites for the specialized 
transcription factors, this site lacked palindromic struc-
ture and has a consensus sequence TAC​ACT​T. Scan-
ning 41 Enterobacteriaceae species from 14 genera with 
a probabilistic model of the site, we identified additional 
intergenic regions where the variants of these sites occur 
(Table 1, and Supplemental Data Set 3). Three genes were 
found to contain a highly similar conserved upstream 
site in 16–17 species, representing 8 genera; these were 
rlmA (23S rRNA m(1)G745 methyltransferase), yobB 
(putative carbon-nitrogen hydrolase family protein), and 
adrB (c-di-GMP phosphodiesterase). Sites matching this 
consensus in E.coli have been noticed before and hypoth-
esized to represent a modified form of the canonical -10 
element sequence TAT​AAT​T [44], though the regions 
in which we found this upstream element do not appear 
to have the recognizable -35 sequence nearby. The sig-
nificance of the shared TAC​ACT​T element thus remains 
unclear, though a common regulation mechanism for 
genes that share this site is a possibility.

We also have consulted several databases of gene 
essentiality, as well as curated databases of pre-computed 
functional linkages between genes in various model 
organisms. The bacterial fitness database [88] reports a 
moderate reduction in mobility for an E.coli mutant with 
transposon-tagged YbcL, a prophage-encoded paralog 
of YbhB, whereas the Database of Essential Genes [71] 
identifies the YbhB counterpart in H.pylori as essential; 
in neither of this cases is there any information about 
possible molecular mechanisms. The FunCoup data-
base, which uses naïve Bayesian approach to integrate 
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information on interactions and functions from 10 dif-
ferent genomic and proteomic measurement spaces [85], 
shows a small network of interacting proteins in E.coli, 
consisting of two chaperones, i.e., a heat shock 70-fam-
ily DnaK and a protease Lon, as well as YbhB and RlhA. 
Interactions with chaperones are frequently observed in 
the protein interaction data and may reflect non-specific 
cellular proteostasis needs and a broad clientele of many 
chaperone systems; the connection to the other protein 
in the group, RhlA, may be more revealing, as it appears 
to be a component of the 5-hydroxycytidine synthase 
enzymatic complex, involved in modification of 23S 
rRNA [53]. Finally, the analysis of phyletic patterns across 
many eukaryotes, collected in PhyloGene database [96] 
has revealed one highly-scoring match co-inherited with 
human PEBP1 gene, i.e., NUDT3, encoding an enzyme 
from the Nudix class. Nudix proteins are hydrolases 
noted for the affinity to the pyrophosphate moieties in 
their substrates, often lipid, nucleoside or oligonucleotide 
derivatives [74].

Conclusions

“The burden of proof should be proportional to the 
strangeness of the facts.”

George Flournoy. Translated from Des Indes à la 
Planète Mars: Étude sur un Cas de Somnambulisme 
Avec Glossolalie.

“Circumstantial evidence is a very tricky thing,” 
answered Holmes thoughtfully. “It may seem to point 
very straight to one thing, but if you shift your own 
point of view a little, you may find it pointing in 
an equally uncompromising manner to something 
entirely different.”

Arthur Conan Doyle. The Boscombe Valley Mystery.

In this survey, we reviewed, by necessity briefly, the 
strong genetic evidence of the key role of the FT/CETS 
family in the floral induction in plants. We also argue 
that, while the evidence of genetic interactions of FT gene 
with other genes in the floral induction pathways is not in 
doubt, the molecular function of the FT proteins in flow-
ering may have been misunderstood. Indeed, the analysis 
of literature, as well as many orthogonal computational 
experiments presented here, suggest that the proteins 
from the FT/CETS/PEBP/RKIP/YbhB family, which are 
ubiquitous not only in plants, but also in animals, fungi, 
protists, prokaryotes and giant viruses, might be catalytic 
subunits of the enzymes involved in biochemical trans-
formations of small molecules, in addition to, or even 

instead of, their postulated role of being stoichiometric 
subunits within plant transcription complexes.

Much of the analysis reported here comes from the 
examination of prokaryotic genome sequences. Obvi-
ously, studies in archaea and bacteria cannot be expected 
to validate the role of FT as a transcriptional co-activator 
promoting floral induction, as prokaryotes lack most of 
the plant signal transduction systems and downstream 
effectors of flowering. Instead, we asked two different 
questions, i.e., “What can be deduced about the molecu-
lar functions of the FT orthologs in prokaryotes?” and “Is 
there any evidence that these functions may be conserved 
in eukaryotes, including plants?”

The first of these questions can be tentatively answered 
by examination of the genomic context of FT/YbhB 
homologs. Though no single gene could be repeatedly 
linked to YbhB by multiple approaches, a trend emerges 
when the genomic context data are considered jointly 
(Table  1). The evidence appears to point towards func-
tional linkages of YbhB to sugar and/or ribonucleoside 
modifications, implying that FT/YbhB may be involved 
in the metabolism of a monosaccharide such as ribose or 
another pentose, or perhaps their nucleotide-like deriva-
tive. Relatedly, FT proteins could be involved in phospho-
lipid metabolic pathways, which include lipid-nucleotide 
conjugates as key intermediates [48].

The answer to the other question posed above, i.e., 
whether the putative molecular function have been pre-
served throughout the evolution of the FT/CETS/PEBP/
RKIP/YbhB family, appears to be clearly “yes”. There is 
a striking pattern of sequence conservation and spatial 
juxtaposition of the key charged residues in the family at 
a long phylogenetic span (Figs.  1 and 2), with only two 
narrow clades experiencing major disruption in those 
positions (Figs. 2 and 3). One of those clades comprises 
proteins with a changed function (mitochondrial riboso-
mal components), and the function of the other, which 
includes a divergent FT homolog, is enigmatic.

Bioinformatic analysis suggests that the conserved sets 
of two histidines and an aspartic acid clustered in space 
are frequent in the enzymatic active centers but are not 
found in the non-catalytic ligand-binding domains. In the 
same vein, broad occurrence of a protein family in bacte-
ria, archaea, giant viruses and nearly all eukaryotes may 
not be unusual for a metabolic enzyme, but would be a 
rare occurrence for transcriptional regulators, as they are 
typically not shared between bacteria and eukaryotes [9].

Several recent observations on the role of sugar and 
lipid metabolism genes in floral induction may be rele-
vant. For example, StSP6A protein, the potato ortholog of 
FT, is co-expressed with a sugar transporter SWEET11 in 
the stolon apical and sub-apical meristems during tuber 
induction, and the products of two proteins interact 
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physically in a heterologous split-ubiquitin assay in 
yeast cells [3]. In аrabidopsis, a related sugar transporter, 
SWEET10, appears to be regulated by FT at the tran-
scriptional level, though the data on physical interactions 
in that case have not been reported [7]. Also, manipu-
lations of the biosynthetic enzymes producing treha-
lose-6-phosphate in аrabidopsis have shown that floral 
response and shoot branching require this phosphosugar, 
which apparently acts through the FT pathway [30, 114]. 
Genetic evidence has also suggested the involvement of 
phosphorylethanolamine cytidylyltransferase (PECT1 
gene product) in flowering in аrabidopsis [106].

There is an ample precedent of utilization of sugars, 
nucleotides and products of RNA breakdown for plant 
hormone biosynthesis. One class of plant hormones, 
cytokinins, are purine derivatives that can be produced 
either by isoprenylation of adenosine phosphate or by 
tRNA degradation [50], whereas another class, gibberel-
lins, are synthesized by transforming the pentose skel-
eton generated in the 1-deoxy-D-xylulose 5-phosphate 
pathway [97]. Recent studies have significantly expanded 
the repertoire of linear and cyclic oligonucleotides that 
serve as essential signaling messengers in bacteria and 
animals [17, 18], suggesting that some nucleoside deriva-
tives with regulatory properties may remain undiscov-
ered in plants.

A critic might point out that bioinformatic evidence of 
the enzymatic function of FT and their homologs pre-
sented in this manuscript is too circumstantial – some 
would say, strange and/or speculative – and that it has 
not been corroborated by direct wet-laboratory experi-
ments. However, exactly the same can be said about 
the experimental wet-lab support for the role of FT as a 
transcriptional co-activator – a hypothesis that is based 
on several lines of suggestive evidence, but is unmoored 
from the hard facts of comparative genomics. In the 
spirit of considering the entire corpus of the available 
data, and using reciprocal illumination from different 
classes of evidence to improve the precision of scientific 
hypotheses [10, 20, 46], it seems timely and urgent to test 
whether the FT homologs in various organisms may have 
an enzymatic activity.

One experimental approach would be to compare 
small-molecule metabolite profiles in the ybhB knock-
out mutants and identify compounds that are in a 
shortage or excess in the mutant compared to the wild 
type. Bacterial model systems may be perhaps most 
amenable to such an analysis, as ybhB homologs tend 
to be single-copy in bacteria and are dispensable for 
growth in laboratory culture in most tested strains. 
Metabolomics-based identification of putative products 
or substrates of YbhB homologs would be the first step 
in determining the putative enzymatic activity that we 

predict to be conserved in most members of this pro-
tein family, and may lead the way to the identification 
of the small-molecule component of the plant flowering 
hormone.
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