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STUDYING MYELOID CELL HETEROGENEITY AFTER SPINAL CORD INJURY 

VIA TIME-RESOLVED SINGLE-CELL RNA SEQUENCING 

 

ABSTRACT 

Spinal cord injury (SCI) is a devastating pathology that affects thousands of individuals 
annually, resulting in the requirement for long-term physical and medical care and thus 
significant personal, societal, and economic burdens. The SCI pathology is characterised by an 
initial mechanical insult, followed by a spatiotemporally dynamic secondary injury. Decades 
of research have worked to assemble a general picture of this secondary pathology. We now 
understand that compared to the normal wound healing observed in the periphery, tissue 
recovery after SCI is dysregulated and results in a chronic wound state characterized by 
persistent inflammation and functional deficits. The primary drivers of this inflammation are 
central nervous system (CNS) resident microglia and infiltrating myeloid cells. However, the 
precise role of these myeloid cell subsets remains unclear as upon crossing the blood-spinal 
cord barrier (BSCB), infiltrating monocyte-derived macrophages may take on the morphology 
of microglia, and upregulate canonical microglia markers, making the two populations 
difficult to distinguish.  
 
In this PhD project, I employed single-cell RNA sequencing (scRNAseq) to deconvolute the 
complex heterogeneity of infiltrating and resident myeloid cells in mouse models of thoracic 
contusion SCI at an unprecedented resolution. To fully appreciate the temporal dynamics of 
the pathology, I collected samples across the acute, subacute, and early chronic phases of SCI, 
plus a sham-injured control. Recent experiments have demonstrated that CNS infiltrating 
macrophages also take on the transcriptional profiles of microglia, which led me to question 
whether I had accurately annotated infiltrating macrophages in the dataset. To address this, 
I repeated the experiment with a transgenic fate-mapping mouse line then integrated these 
two datasets to generate a time-resolved SCI myeloid cell atlas with definitive ontogeny 
labelling. With this dataset I generated a putative time resolved map of myeloid cell dynamics 
across the SCI pathology. Through collaboration, I was also able to verify the expression of 
select genes via single-molecule fluorescent in situ hybridization (smFISH) and 
immunofluorescence (IF). A key observation was the persistence of a pro-inflammatory foam 
cell-like state in both microglia and macrophages, which may contribute to the non-resolving 
chronic injury. Future studies might investigate the functional relevance of this population, 
and its suitability as a therapeutic target to reduce the long-term disabilities of SCI patients. 
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 INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

"This job is a great scientific adventure. But it's also a great human adventure. Mankind has 

made giant steps forward. However, what we know is really very, very little compared to what 

we still have to know."  

— Fabiola Gianotti 
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1.1 SPINAL CORD INJURY 

 EPIDEMIOLOGY 

Spinal cord injury (SCI) is a highly debilitating pathology affecting thousands of individuals 

with regional annual incidences ranging from 11-16 per 100,000 (James et al., 2019; Singh et 

al., 2014). Traumatic SCI, most frequently caused by motor vehicle accidents and falls, is the 

most common form of SCI, and is typically more prevalent in men than women, with a 

minimum ratio of 2:1. However, this pathology can also be inflicted by infarction, genetic 

defects, or cancer (DeVivo, 2012). SCI primarily occurs in adults over 70 or in young adults 

(15-30 years) with no previous health conditions. Of those afflicted, up to 80% will survive to 

the chronic stage of the pathology, with younger patients having substantially better 

outcomes (Alizadeh et al., 2019). Irrespective of age, patients typically experience a significant 

reduction in both their quality of life and life expectancy (Ahuja et al., 2017; Singh et al., 2014).  

 

The symptoms of SCI are dependent upon the anatomical location and severity of the lesion. 

The most common location of SCI is cervical, with nearly 50% of cases occurring at this level 

(Alizadeh et al., 2019). Thoracic and lumbar injuries are not uncommon, at 35% and 11% of 

cases, respectively. General symptoms include the reduction or complete deficit of sensory 

and motor functions below the level of injury (Alizadeh et al., 2019; Hou & Rabchevsky, 2014). 

Autonomic functions, such as respiration, urination, gastrointestinal motility, and 

thermoregulation, can also be affected. Thus, the severe and enduring disabilities caused by 

SCI, and the requirement for long-term health care, are not only detrimental to the patient’s 

standard of living, but also come with significant personal, societal, and economic burdens. 

 

Despite the evident impact, few therapeutic options are available for the treatment of central 

nervous system (CNS) pathologies, including SCI. Regenerative therapies, such as stem cell 

transplantation, represent promising avenues for future CNS therapeutics (Smith et al., 2020). 

However, we are currently limited by our poor understanding of the injury microenvironment. 

Non-neuronal cells are major players in this, and optimal strategies to address SCI will likely 

involve the therapeutic modulation of the injury environment at a cellular and molecular 

level. A time-resolved understanding of these heterogenous cell types and states contributing 

to the SCI pathology is essential. 
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 AN OVERVIEW OF THE HUMAN PRIMARY AND SECONDARY INJURIES 

Most of our understanding of human SCI arises from mechanistic studies in animal models of 

SCI. Links between these experiments and the human condition are then inferred based on 

histopathology from post-mortem tissue, or minimally invasive techniques, such as cerebral 

spinal fluid sampling or MRI. 

 

The SCI pathology can be described in two dynamic stages: primary and secondary. The 

primary injury is the initial mechanical insult that compromises the structural integrity of the 

vertebrae, blood-spinal cord barrier (BSCB), and spinal cord. This event typically damages the 

spinal cord parenchyma, but only very rarely does it completely sever the tissue (Alizadeh et 

al., 2019). There are four main types of SCI, listed in order of decreasing frequency: contusion 

with compression, contusion and transient compression, distraction, and laceration or 

transection (Alizadeh et al., 2019). Each of these injuries result in the immediate disruption 

of the microvasculature, vasospasm, systemic hypotension, necrosis, axonal damage, ionic 

imbalance, and the extracellular accumulation of neurotransmitters leading to excitotoxity 

(Alizadeh et al., 2019; Rowland et al., 2008; Silva et al., 2014). 

 

The primary injury sparks the secondary injury, a cascade of biological events that spread the 

injury into the adjacent tissue. The secondary injury is proportional to the severity of the 

primary injury and can be divided into three stages: acute, subacute, and chronic (Figure 1.1). 

In humans, these stages are ≤ 48 hours, ≤ 2 weeks, and > 2 weeks, respectively (Tyler et al., 

2013; Witiw & Fehlings, 2015) (Figure 1.2). The acute phase comprises the continuation of 

the immediate-onset processes of the primary injury plus: ischaemia; calcium influx leading 

to calpain-mediated protein degradation, mitochondrial failure-induced oxidative damage, 

and apoptosis; free radical formation causing membrane lipid peroxidation and a chain 

reaction that oxidises all the unsaturated lipids in the area, ultimately leading to respiratory 

and metabolic failure-induced cell death; myelin damage; oedema; and neuroinflammation 

(Alizadeh et al., 2019; Kopper & Gensel, 2018). Neuroinflammation begins with the release of 

damage-associated molecular patterns (DAMPs), namely alarmins, from dead and dying cells 

(Gadani et al., 2015). Alarmins signal to the undamaged cells in the perilesional area, 

consequently spreading the inflammatory response. Microglia and reactive astrocytes, 
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activated and attracted by the alarmins, trigger the innate immune response through cytokine 

production, resulting in the attraction of blood-borne neutrophils and monocytes, which 

enter the spinal cord through the disrupted BSCB and migrate to the lesion as early as 1 day 

post-injury (dpi) (Alizadeh et al., 2019; Milich et al., 2019). By 3 dpi, the inflammatory 

response also includes the recruitment and activation of T- and B-lymphocytes, a response 

which peaks around a month post-SCI. Thus, while the CNS cell population is drastically 

reduced through acute and subacute necrosis, Fas-mediated apoptosis, and lysosomal 

damage-induced necroptosis, the pro-inflammatory response works to recover cell numbers 

as early as 3 dpi by recruiting substantial volumes of peripheral*  cells and inducing the 

proliferation, spatial reorganisation, and hypertrophy of glial cells, a process known as gliosis 

(Burda & Sofroniew, 2014). 

 

 
Figure 1.1 The secondary response to SCI. A) The subacute phase is complex and dynamic. B) The chronic phase is characterised by the 
maturation of the glial scar, limited regeneration, and the presence of pro-inflammatory foamy macrophages. Figure adapted from (Ahuja 
et al., 2017) 

 

In the early subacute phase, blood-borne monocytes differentiate into dendritic cells and 

macrophages in the spinal cord parenchyma (Kigerl et al., 2009; Milich et al., 2019). 

Macrophages phagocytose debris and activate perivascular pericytes and fibroblasts, 

beginning the process of fibrosis (Zhu et al., 2015). These cells migrate to the lesion epicentre 

and form a fibrotic core, characterised by an extracellular matrix high in fibronectin, collagen, 

and laminin as well as anti-regenerative molecules such as semaphorins (Alizadeh et al., 

2019). By 7 dpi, this fibrotic core begins to be surrounded by glial cells (Alizadeh et al., 2019; 

Sofroniew, 2015). This corralling, or the compacting of the lesion area and the formation of 

 
* For the purposes of this dissertation, periphery refers to non-CNS 

A B 
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this protective barrier around the lesion, has been shown to limit the further spread of tissue 

damage in animal models (Bradbury & Burnside, 2019; Okada et al., 2018; Zhou et al., 2020). 

The glial-barrier, which ultimately becomes the glial scar, is a thick, dense, fibrillary structure 

comprising scar-forming astrocytes and microglia, NG2-expressing oligodendrocyte precursor 

cells, fibroblasts, ependymal cells, and pericytes (Bellver-Landete et al., 2019; Fleming et al., 

2006; Liddelow & Barres, 2017). The ablation of the glial scar in the chronic phase of SCI in 

mouse models results in enlarged lesions and further tissue degeneration, suggesting that the 

cells within the fibrotic core remain active into the chronic phase (Anderson et al., 2016). 

Whether this also applies to the human condition has yet to be investigated. Like other 

aspects of SCI, most of our understanding of the glial scar and fibrotic core stems from animal 

models, namely rodents. The presence of both elements have been confirmed in humans, 

however there is substantial evidence that Schwann cells contribute to the human scar and 

fibrotic core in a way that is not observed in rodents (Orr & Gensel, 2018). 

 

While important for limiting the spread of the SCI pathology, the glial scar also plays a 

negative role in regeneration. The scar itself can act as a physical barrier to axon growth, and 

its cellular components secrete inhibitory molecules, such as chondroitin sulphate 

proteoglycans (CSPGs), which limit axon regeneration, sprouting, and remyelination (Alizadeh 

et al., 2019; Tyler et al., 2013). Additionally, the glial scar does not resolve, persisting 

chronically in the spinal cord parenchyma (Cregg et al., 2014).  

 

Beyond glial scarring, the subacute phase is also characterised by continued BSCB 

permeability, cell death, axonal retraction from the injury site, but also hypoxia-induced 

angiogenesis and revascularisation (Bradbury & Burnside, 2019; Whetstone et al., 2003). 

Subacute phase demyelination and Wallerian degeneration lead to an increased deposition 

of myelin debris and the generation of a lipid-dense microenvironment (X. Wang et al., 2015). 

This myelin debris is gradually cleared through phagocytosis, but this process takes years in 

the human SCI pathology and the debris has been associated with perpetuating autoimmunity 

and preventing oligodendrocyte differentiation, remyelination, and axonal regeneration 

(Kopper & Gensel, 2018). In peripheral nerve injury, myelin debris is resolved within weeks, 

suggesting this contributes to the dysregulation of the wound healing process observed in SCI 

(Gensel & Zhang, 2015). 
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The chronic phase of SCI is significantly less dynamic than the acute and subacute phases. The 

main event of this phase syringomyelia, or the formation of fluid-filled cystic cavities, at the 

lesion epicentre, void of glia and neurons and surrounded by white matter. These cavities 

expand over time, negatively impacts the SCI progression by preventing axonal regeneration 

and compressing intact axons (Biyani & Masry, 1994; Zhang et al., 2015). Beyond this, the 

chronic phase is characterised by the STAT3-mediated maturation of the glial scar (Escartin et 

al., 2019; Yang et al., 2020), myeloid and lymphoid-mediated inflammation (Beck et al., 2010), 

demyelination that extends to even a decade after the injury (Guest et al., 2005) but also 

spontaneous remyelination, and the continued secretion of CSPGs and subsequently minimal 

axonal sprouting (Buss et al., 2009). SCI is a non-resolving pathology; thus, these chronic 

features are endured indefinitely. 

 

 
Figure 1.2 A summary of the temporally specific events that characterise the secondary injury. Figure adapted from (Rust & Kaiser, 2017). 

 

 A CLOSER LOOK AT THE IMMUNE RESPONSE TO SCI 

The immune response to SCI is complex and dynamic with both beneficial and detrimental 

effects on tissue repair (Gaudet & Fonken, 2018). The response is mediated by the 

heterogenous activities of several cell types including astrocytes and Cx3cr1+ leukocytes, 

namely lymphocytes, and myeloid cells (Hausmann, 2003). 
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ASTROCYTES 

Under homeostatic conditions, astrocytes are the most abundant glial cell in the CNS and 

perform many diverse roles to maintain homeostasis (Bowes & Yip, 2014). Although 

astrocytes are not considered immune cells, they are immune-competent and in their 

activated state, upregulate major histocompatibility complex class II (MHCII), and thus are 

known modulators of both the innate and adaptive immune response (Bowes & Yip, 2014; 

Cekanaviciute & Buckwalter, 2016; Colombo & Farina, 2016; Farina et al., 2007; Okada et al., 

2018). The exact immunomodulatory role of astrocytes after SCI is an area of active research, 

with animal models and in vitro studies outlining several signalling pathways that elicit either 

beneficial or detrimental responses (Colombo & Farina, 2016).  

 

It is well-established that in the acute phase, astrocytes respond to environmental danger 

signals, such as alarmins, by migrating to the lesion epicentre and upregulating chemokine 

and cytokine production (Alizadeh et al., 2019). The astrocyte-modulated BSCB permeability 

and astrocyte-derived chemokines, MCP, CXCL1, CXCL2, and CCL2, are key drivers of the 

peripheral inflammatory myeloid cell infiltration (Cekanaviciute & Buckwalter, 2016). 

Astrocytes also influence the inflammatory responses of microglia and macrophages in the 

acute and subacute phases, through the secretion of both pro- and anti-inflammatory 

cytokines, subsequently inducing pro- and anti-inflammatory responses in these myeloid cells 

(Alizadeh et al., 2019; Yoshizaki et al., 2021). Furthermore, as previously discussed, astrocytes 

play a key role in limiting the spread of the inflammation by compacting the lesion and 

working with microglia to corral infiltrating inflammatory cells (Bellver-Landete et al., 2019; 

Zhou et al., 2020). The interruption of this process has been shown to limit functional recovery 

in rat models of contusion SCI (Okada et al., 2006). Finally, in the acute phase, reactive 

astrocytes also play a role in attracting lymphocytes to the lesion through the production of 

T- and B-lymphocyte chemokines, and the secretion of extravasation and homing molecules, 

such as VCAM (Alizadeh et al., 2019). However, further effects of astrocytes on the adaptive 

immune response are not yet fully understood in the context of human SCI (Cekanaviciute & 

Buckwalter, 2016). 
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LYMPHOCYTES 

Lymphocytes, namely T- and B-cells, represent the adaptive immune response to SCI. The 

temporal dynamics of lymphocyte extravasation varies drastically between species. In 

humans, CD8+ cytotoxic T-cells infiltrate the spinal cord as early as the acute phase, but 

drastically increase in quantity during the chronic phase (Fleming et al., 2006). CD4+ helper T-

cells follow the same dynamics, but in lower volumes. The presence of CD20+ B-cells has not 

been observed in the injured human spinal cord. The temporal dynamics of lymphocytes in 

animal models of SCI will be discussed in 1.2 Animal Models. The SCI pathology has been 

shown to provoke a chronic CNS autoimmune response, mediated by T- and B-cell responses 

to CNS antigens, especially from myelin-associated proteins (Alizadeh et al., 2019; Donnelly 

& Popovich, 2008). This autoimmune response further damages the spinal cord parenchyma 

through demyelination and the T-cell production of pro-inflammatory cytokines and 

chemokines that subsequently elicit pro-inflammatory responses in myeloid cells and 

facilitate the Fas-mediated apoptosis of neurons and oligodendrocytes (Alizadeh et al., 2019; 

Bowes & Yip, 2014). Impeding the T-cell response in animal models reduces tissue damage 

and improves functional outcomes (Alizadeh et al., 2019). As observed in a typical T-cell 

reaction, in the periphery, plasma cells differentiated from B-cells are also activated and 

secrete CNS autoantibodies, further exacerbating autoimmunity (Bowes & Yip, 2014; 

Donnelly & Popovich, 2008). The autoimmune response elicits further systemic effects in the 

periphery, but these will not be discussed here (Jones, 2014). 

 

Unlike helper and cytotoxic T-cells, which are predominantly found in the chronic phase of 

SCI, recently, evidence of gamma delta T-cells in the cerebral spinal fluid of acute phase SCI 

patients has been reported alongside in vivo evidence of parenchymal infiltration in mouse 

models of SCI (Sun et al., 2018). These gamma delta T-cells are recruited by astrocyte- and 

microglia-secreted CCL2 and CCR2. These T-cells in turn secrete IFN-γ, a cytokine with both 

pro- and anti-inflammatory effects in the acute phase of SCI (Sun et al., 2018; Xu et al., 2021). 

However, in mouse models of SCI, gamma delta T-cells promote pro-inflammatory responses 

in macrophages, and the depletion of these lymphocytes improves functional recovery (Sun 

et al., 2018). 
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MYELOID CELLS 

Myeloid cells, alongside natural killer cells and the complement system, are key mediators of 

the innate immune response to SCI (Alizadeh et al., 2019; Spiering, 2015). Understanding this 

response requires a knowledge of myeloid ontogeny. Myeloid is an umbrella term for a 

diverse set of immune cells that respond to tissue damage and pathogens (Figure 1.3) 

(Ransohoff & Cardona, 2010). Notably, not all myeloid cells share the same origins. During 

development, microglia arise from extra-embryonic yolk-sac blood islands and colonise the 

neuroepithelium where they maintain their population throughout adulthood via low-rate 

proliferation and apoptosis in the CNS parenchyma (Ginhoux et al., 2010; Masuda et al., 

2020). These cells are generally long-lived, with a lifespan of several years in humans (Reu et 

al., 2017) and over a year in mice (Tay et al., 2017). Similarly, CNS-associated macrophages 

(CAMs), except for choroid plexus CAMs, have embryonic yolk-sac origins and long lifespans 

(Goldmann et al., 2016). Conversely, infiltrating neutrophils and monocyte-derived myeloid 

cells, such as macrophages and dendritic cells, arise from haematopoietic stem cells (HSC) in 

the bone marrow and spleen (Milich et al., 2019) and, under healthy conditions, are very short 

lived (1-3 days) (Kezic & McMenamin, 2008). 

 

 
Figure 1.3 Myeloid cell ontogeny. Microglia and certain CAMs have a distinct ontogeny from the peripheral myeloid cells that infiltrate 
the CNS upon SCI. Figure adapted from (Ransohoff & Cardona, 2010).  
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NEUTROPHILS 

Neutrophils are terminally differentiated, short-lived, blood-borne myeloid cells that are 

highly sensitive to chemokines, making them the typical first responders at the onset of a 

pathology (Zivkovic et al., 2021). Upon SCI, pattern recognition receptors (PRRs) on 

neutrophils rapidly detect and respond to DAMPs, resulting in their extravasation as early as 

3 hours post-injury (Fleming et al., 2006; Zivkovic et al., 2021). By 1 dpi, neutrophils have fully 

infiltrated the spinal cord parenchyma and can be found throughout the white and grey 

matter. Thus, these cells represent the first infiltrating immune cells to arrive at the injury site 

(Zivkovic et al., 2021). By 5-10 dpi, neutrophils undergo apoptosis and are rarely observed in 

the tissue beyond the early subacute phase (Alizadeh et al., 2019; Fleming et al., 2006).  

 

During this acute phase response, neutrophils are thought to perform three main functions, 

phagocytosis, degranulation, and the formation of extracellular traps, the details of which are 

not completely understood (Zivkovic et al., 2021). For example, it is well established that 

neutrophils actively phagocytose debris after SCI, but whether they aid in the clearance of 

regeneration-inhibiting myelin debris is unclear. Degranulation of neutrophils is a process 

through which neutrophils release their pathogen-eradicating contents, namely pro-

inflammatory cytokines, serine proteases and free radicals, into the extracellular space 

(Alizadeh et al., 2019). It is unclear whether neutrophil degranulation results in further tissue 

damage, such as demyelination and further permeability of the BSCB (Zivkovic et al., 2021). 

Additionally, degranulation is assumed to occur after SCI based on evidence from other 

pathologies but has yet to be demonstrated. It has been shown that neutrophils do not 

contribute to post-SCI ROS production, which is evidence against degranulation (Bowes & Yip, 

2014). Similarly, the formation of extracellular traps, networks of extracellular fibres mainly 

comprising DNA, designed to entrap pathogens, is assumed to occur but has yet to be 

described in SCI (Neirinckx et al., 2014; Zivkovic et al., 2021). Notably, despite the seemingly 

detrimental effects of neutrophils post-SCI, their ablation worsens functional outcomes in 

mouse models of SCI (Stirling et al., 2009), suggesting they play an important role setting the 

stage for the limited repair that does occur later in the pathology (Alizadeh et al., 2019). 
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MONOCYTE-DERIVED CELLS 

Monocytes are CD45+/CD11b+/CCR2+ blood-borne myeloid cells with the ability to 

differentiate into tissue macrophages and dendritic cells. As such, they are members of the 

innate immune system but also mediate adaptive immunity (Guilliams et al., 2014). In the 

acute phase of SCI, monocytes infiltrate the spinal cord parenchyma through the 

permeabilised BSCB (Zhou et al., 2014). CD8+ monocytes have been reported to extravasate 

and migrate to the SCI site from 1-3 dpi (Fleming et al., 2006). By 3 dpi, monocytes begin to 

differentiate into dendritic cells and macrophages. Like neutrophils, little is known about the 

role of monocyte-derived dendritic cells in the SCI pathology. Dendritic cells are phagocytes 

and professional antigen-presenting cells via MHCII molecules and are thus known to play 

important roles in linking the innate and adaptive immune responses (Trivedi et al., 2006; 

Vaughn et al., 2013). They promote CD4+ T-cell proliferation and trigger an autoimmune 

response, but they also secrete neurotropic factors that improve neurogenesis (Bowes & Yip, 

2014). In rodent and non-human primate models of SCI, enriching the lesion site with 

transplanted dendritic cells reduced demyelination and neuronal death, increased axonal 

sprouting, and improved functional outcomes (Yaguchi et al., 2009). However, the exact 

functions of endogenous dendritic cells after SCI, particularly in the human pathology, is not 

well understood.  

 

Monocyte-derived macrophages populate the injured spinal cord, beginning at 3 dpi, as 

described, and peaking by 7 dpi (Milich et al., 2019). Macrophages remain present in the 

spinal cord well into the chronic phase, albeit at lower levels (Alizadeh et al., 2019; Fleming 

et al., 2006). It has been suggested that these acute phase macrophages arise from monocyte 

reservoirs in the spleen, while the chronic phase macrophages represent a second wave of 

bone marrow monocyte-derived macrophage infiltration beginning at 14 dpi and peaking 

around 60 dpi (Milich et al., 2019). However, this has yet to be investigated in the human 

condition. Furthermore, there is increasing evidence to support the self-renewal of 

macrophages after SCI, and it remains unclear how these two elements contribute to 

macrophage numbers after SCI (Greenhalgh & David, 2014; Milich et al., 2019).  

 

Regardless of the precise details of their origin, monocyte-derived macrophages in the spinal 

cord parenchyma migrate to the lesion epicentre where they play important roles in 
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phagocytosing dying cells and myelin debris (Alizadeh et al., 2019; Bellver-Landete et al., 

2019; Kong & Gao, 2017; X. Wang et al., 2015). Based on functional studies from animal 

models of SCI, macrophages that scavenge myelin debris are more likely to undergo apoptotic 

and necrotic cell death, compared to their microglia counterparts (Kong & Gao, 2017). In 

further support of ineffective myelin debris breakdown in macrophages upon SCI is the 

presence of foam cells, lipid-laden macrophages originally identified in atherosclerosis and 

described as pro-inflammatory and cytotoxic with reduced phagocytic capabilities. These cells 

have been observed in the grey matter of human SCI from 5 dpi to at least 1 year post-injury, 

suggesting they work to perpetuate the inflammatory response (Bradbury & Burnside, 2019; 

Fleming et al., 2006; X. Wang et al., 2015; Zhu et al., 2017). Notably, no distinction between 

activated microglia and macrophages was made in this histopathological analysis (Fleming et 

al., 2006). This inadequate breakdown of myelin debris likely contributes to the chronic 

adaptive immune response (Bradbury & Burnside, 2019; Kopper & Gensel, 2018). 

 

Classically, the in vitro-derived M1/M2 nomenclature has been used to describe macrophage 

phenotypes upon SCI (Nahrendorf & Swirski, 2016). Briefly, acute phase macrophages have 

been described as adopting the M1, pro-inflammatory, cytotoxic, phenotype, while the 

subacute and chronic phase macrophages adopt M2, anti-inflammatory, regeneration-

promoting states (Kong & Gao, 2017; Milich et al., 2019). Albeit the opposite trend has also 

been argued (X. Wang et al., 2015). Whether these simplified labels reflect the true states of 

macrophages upon SCI, in both animal models and humans, has yet to be elucidated. 

However, a recent single-cell RNA sequencing (scRNAseq) study of CNS cells upon SCI was 

unable to find evidence for this classification (Milich et al., 2021), in line with studies from 

other CNS pathologies (Kim et al., 2016; Ransohoff, 2016). The historic challenge of 

differentiating activated macrophages and microglia adds to the uncertainty of whether the 

M1/M2 classification remains relevant (Alizadeh et al., 2019).  

 

Polarisation aside, several macrophage functions after SCI are well established. They have 

been demonstrated to further activate astrocytes and microglia and contribute to the 

inflammation by secreting cytokines and complement components that maintain the 

permeabilization of the BSCB (Alizadeh et al., 2019; Kong & Gao, 2017). Based on findings in 

other disease models and in vitro studies, this pro-inflammatory state is likely fuelled by a 
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metabolic shift from oxidative phosphorylation (OXPHOS), seen in homeostatic and anti-

inflammatory macrophages, to aerobic glycolysis. This shift is known in cancer biology as the 

Warburg effect (Bernier et al., 2020; Devanney et al., 2020; Peruzzotti-Jametti et al., 2021; 

Warburg, 1956). Macrophages also represent a source of trophic and anti-inflammatory 

molecules that promote regeneration (Brennan & Popovich, 2018; Popovich & Jones, 2003). 

Macrophages have been shown to injure oligodendrocytes in the lesion epicentre through 

phagocytosis and cytotoxic cytokine production leading to their apoptosis, and modulate the 

adaptive immune response, thereby facilitating the immunological demyelination by myelin-

derived antigen presentation through MHCII (Alizadeh et al., 2019; David & Kroner, 2011; 

Kong & Gao, 2017). Thus, macrophages represent dynamic players in the SCI pathology, but 

we currently lack a broader understanding of how each of these functions are related to each 

other in time and space across the SCI pathology.  

CNS-ASSOCIATED MACROPHAGES 

The recently characterised CAMs, also known as border-associated macrophages, are long-

lived non-parenchymal CNS resident macrophages, most of which share the ontogeny of 

microglia (Goldmann et al., 2016; Jordão et al., 2019; Ransohoff & Cardona, 2010; Van Hove 

et al., 2019). Very recently, these cells were observed to infiltrate the CNS parenchyma in a 

bone marrow chimera fate-mapping model of SCI (Bellver-Landete et al., 2019). The authors 

found that CAMs infiltrated the injured spinal cord and contributed minimally to the microglia 

scar at 14 dpi. Whether chimeras were suitable for this type of study is unclear, as irradiation 

compromises blood-brain barrier (BBB) and BSCB integrity and alters the function of resident 

myeloid cells (Bruttger et al., 2015; Mildner et al., 2011; Mildner et al., 2007). A recent 

scRNAseq study of all CNS infiltrating and resident cells after SCI identified small quantities of 

CAMs at 1, 3, and 7 dpi (Milich et al., 2021). However, all spatial context is lost through single 

cell isolation and this study isolated the spinal cord through dissection, vs hydraulic extrusion, 

making it unclear whether the observed CAM population had infiltrated the parenchyma. 

CAMs have been demonstrated to play vital roles in other CNS pathologies, thus it’s likely that 

these cells do play an active role in the SCI pathology that has yet to be elucidated (Kierdorf 

et al., 2019). 
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MICROGLIA 

Microglia are the resident immune cells of the CNS and share many phenotypes and functions 

with macrophages† throughout the SCI pathology (Alizadeh et al., 2019; Li & Barres, 2018) 

and as with macrophages, the relevance of the M1/M2 nomenclature to describe microglia 

activation is a matter of debate, with many articles trending away from the use of this over-

simplification (Ransohoff, 2016). Like macrophages, microglia have been described as both 

pro- and anti-inflammatory after SCI. Studies in other disease contexts have demonstrated 

that human pro-inflammatory microglia become glycolytic, as seen in cancer cells, and more 

recently, pro-inflammatory macrophages (Hasselmann et al., 2019; Peruzzotti-Jametti et al., 

2021; Warburg, 1956). While microglia metabolism after SCI is not well understood, the 

evidence for this metabolic switch suggests an interesting role for microglia metabolism in 

modulating the immune response and represents an under investigated therapeutic avenue. 

 

In contrast to macrophages, microglia respond earlier to the pathology, given their proximity 

to the lesion site (Alizadeh et al., 2019; Bowes & Yip, 2014). Microglia, but not macrophages, 

have also been described to migrate to the borders of the lesion and proliferate extensively 

during the first week post-injury in mouse models of SCI (Bellver-Landete et al., 2019; 

Greenhalgh & David, 2014; Milich et al., 2021; Noristani et al., 2017). Here, they also form a 

dense cellular border, known as the microglia scar, between infiltrating cells and scar-forming 

astrocytes, which works to compact the lesion epicentre (Bellver-Landete et al., 2019; Zhou 

et al., 2020). The PLX5622-induced depletion of microglia and CAMs during the first week 

post-SCI disrupted glial scar formation and worsened functional outcomes (Bellver-Landete 

et al., 2019). Whether this corralling function occurs in the human condition has yet to be 

investigated.  

 

Like macrophages, microglia play a role in phagocytosing cellular debris, including myelin 

debris (Brennan & Popovich, 2018). However, the degree to which microglia vs macrophages 

scavenge myelin debris is under debate. Microglia have been reported to phagocytose myelin 

debris through a TREM2-mediated pathway (Kopper & Gensel, 2018) and have been proposed 

 
†  While microglia are a type of macrophage, this dissertation will reserve the term ‘macrophage’ for 
haematopoietic CNS infiltrating macrophages 
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as the primary scavengers of myelin debris in the acute phase of SCI (Greenhalgh & David, 

2014). This role is thought to be taken over by infiltrating macrophages from 3 dpi. 

Furthermore, there are reports that macrophages perform better at scavenging myelin 

debris, compared to microglia, hypothesised to be due their expression of lipid-sensing 

receptors, MAC2 (Lgals3), ABCA1, and MSR1 in macrophages (Kopper & Gensel, 2018; X. 

Wang et al., 2015). Yet, activated microglia have also been demonstrated to express these 

genes in mouse models of SCI (Milich et al., 2021). Unlike macrophages, there are no reports 

of microglia adopting foam-cell phenotypes and persisting to the chronic phase of SCI. 

Whether this reflects the biology, or a historic lack of appropriate tools to differentiate 

macrophages from microglia, has yet to be determined. 

 

In summary, the immune response to SCI is highly dynamic, involving many heterogenous 

CNS resident and infiltrating cell types with temporally specific roles that are highly 

dependent on environmental cues. The immune response comprises many beneficial 

functions, with just as many detrimental ones, thus unsurprisingly, therapies that aim to 

impede inflammation have been largely unsuccessful (Schwab et al., 2014). A better 

understanding of the cell-specific functions, with temporal and spatial acuity, is needed to 

consolidate our fragmented understanding of the SCI pathology. 

1.2 ANIMAL MODELS 

Given the complex pathophysiological response to SCI, it is not currently possible to 

accurately model the pathology in its full complexity in vitro or in silico. Studying SCI in human 

tissue is constrained by the scarcity of samples, the inability to perform controlled, 

hypothesis-driven experiments, and the commonly used formalin-fixed paraffin-embedded 

(FFPE) preservation method, which, at least historically, has presented challenges for 

molecular-level research. As such, researchers have turned to animal models of SCI to better 

understand the pathology, with the ultimate goal of identifying putative therapeutic 

approaches for this debilitating condition.  

 

 INJURIES 

After decades of research, there are now many well-established, reproducible animal models 

of SCI. The most common models include contusion, compression, transection, distraction, 
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and dislocation. Each of these models work to either recapitulate the human condition or to 

isolate a specific element of the pathology for further investigation (Cheriyan et al., 2014; N. 

Zhang et al., 2014). 

CONTUSION 

Contusion SCI is caused by blunt force impact to the spinal cord, typically after laminectomy 

but without the penetration of the meninges (Marinelli et al., 2019; Tyler et al., 2013). The 

severity of the lesion (mild, moderate, severe) can be easily and reproducibly controlled 

based on the applied force. This injury directly affects the grey matter and recapitulates the 

biomechanics and many of the secondary injury dynamics that occur in the most prevalent 

form of the human pathology (Sharif-Alhoseini et al., 2017). Thus, for studies looking to 

investigate the disease pathology in its entirety, the contusion model currently represents the 

most appropriate option. To ensure reproducibility, contusion injuries are generated using 

clamps to secure the spinal column and computerised impactors that record various 

parameters depending on the device (Cheriyan et al., 2014).  

 

Very recently, a novel contusion model was proposed in which a laminectomy is not 

performed, and a PinPoint precision impactor device (Stoelting) exerts pressure directly on 

the bone (Marinelli et al., 2019). This approach claims to model the human contusion SCI 

condition more accurately, and notably addresses two major caveats of the former approach: 

the formation of cystic cavities and the complete and persistent absence of motor recovery 

until at least 30 dpi in mouse models. This model is promising but requires further 

investigation and independent replication before replacing the classic contusion model. 

 

Most contusion models induce thoracic-level injuries, to minimise animal suffering, however, 

cervical-level injuries are more clinically relevant, as cervical injuries in humans represent 

almost 50% of cases (Alizadeh et al., 2019; Cheriyan et al., 2014; Sharif-Alhoseini et al., 2017). 

The different injury levels result in distinct functional deficits and subtly different pathological 

responses based on the varying degree of white vs grey matter damage (Dunham et al., 2010). 

For the investigation of the endogenous pathology dynamics after SCI, the trade-off between 

animal welfare and clinical relevance is perhaps on the side of the thoracic injury. However, 
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for pre-clinical investigations of novel therapeutics, cervical contusion injuries would better 

reflect the clinical relevance of the study outcomes (Cheriyan et al., 2014). 

COMPRESSION 

Compression SCI models are generated by applying persistent pressure to the spinal cord. 

This can be achieved through several different mechanisms, the most clinically relevant of 

which are modified aneurysm clips because they also comprise an element of contusion 

(Cheriyan et al., 2014). Other approaches include calibrated compression forceps, balloon 

compression, or more recently, spinal cord strapping (Cheriyan et al., 2014). Each of these 

approaches bid for reproducibility by applying the compression at a measurable value (e.g., 

force or displacement), for a set period of time and are relatively accessible and easy to 

generate as they do not require a computerised device like many contusion methods. Like 

contusion, compression injuries aim to recapitulate the entire pathology. The clinical 

relevance of this model stems from its parallels with traumatic injuries, namely fracture 

dislocations and burst fractures (Cheriyan et al., 2014; Sharif-Alhoseini et al., 2017). 

TRANSECTION 

After a laminectomy, the transection model is generated by making a surgical incision to sever 

the spinal cord either bilaterally (full transection) or unilaterally (partial transection) (N. Zhang 

et al., 2014). This model has minimal clinical relevance as transections and lacerations of the 

spinal cord of humans are rare. However, it is a valuable model for studying axonal 

regeneration, functional outcomes, and tissue engineering approaches. These models are 

also easy to generate, and in the partial transection model, the same animal can act as its 

own control. Furthermore, this model results in better animal welfare and a reduced need for 

post-operative care compared to the contusion and compression models (Cheriyan et al., 

2014). Unfortunately, given that the model is manually generated, it can have mixed 

reproducibility, especially in the partial transection model. 

DISTRACTION 

The goal of distraction injury models is to simulate the biomechanics of the tension force 

inflicted upon the cord in distraction traumatic SCI but also inadvertent injuries that occur 

during spinal surgeries (Seifert et al., 2011). To generate this model, a computerised device is 

used to apply opposing traction forces, stretching the spinal cord (Sharif-Alhoseini et al., 
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2017). The severity of the injury is a function of the distraction length. This model is not as 

well characterised as the former three models, but prospectively represents a promising tool 

(Cheriyan et al., 2014). 

DISLOCATION 

Investigations into the pathological response to dislocation injuries, which are not entirely 

uncommon forms of traumatic SCI, are vastly understudied. Equally, the dislocation model is 

underdeveloped in comparison to the other models (Cheriyan et al., 2014). Biomechanically, 

the model aims to laterally displace select vertebra, inflicting injury primarily in the white 

matter (Choo et al., 2009; Sharif-Alhoseini et al., 2017). However, this model requires further 

characterisation as well as the establishment of standards for reproducibility. 

 

 SPECIES 

The SCI anatomy and pathology is largely, but not perfectly, conserved across mammals 

(Courtine et al., 2007; N. Zhang et al., 2014). Understanding the species-specific or even 

strain-specific differences is key to selecting an appropriate model for the scientific aim or 

question (Fouad et al., 2013) (Figure 1.4). Rodents represent the most commonly used species 

(90% of studies) followed by cats (2.3%), dogs (2.2%), non-human primates (1.5%) and pigs 

(1.5%), and finally non-mammalian vertebrates (1%) (Sharif-Alhoseini et al., 2017). 

MICE 

Mice models of SCI account for approximately 16% of animal SCI models (Sharif-Alhoseini et 

al., 2017). These models are easy and affordable to handle and house, and their high 

reproductive rates leave them in no short supply and make them good candidates for 

transgenic studies (Figure 1.4). Mice have similar genomes to humans and have been well-

characterised both on a genetic and anatomical level (Courtine et al., 2007). For this reason, 

as well as the aforementioned advantages, mice are becoming increasingly popular for 

cellular and molecular-level studies (Sharif-Alhoseini et al., 2017). However, in the context of 

SCI, mice, and rodents in general, differ from humans in several ways.  

 

First, mice and humans differ in their spinal anatomy. The most obvious difference is the 

corticospinal tract (CST). The tract itself remains dorsal in rodents, whereas in primates it has 

migrated ventrally (Courtine et al., 2007). The projections of the rodent CST are much less 
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complex than primates, with projections limited to the dorsal horn and premotor spinal 

circuits (Courtine et al., 2007). This anatomical difference is reflected in the decreased level 

of dexterity observed in rodents. Also, in rodents, damage to the CST alone does not disrupt 

locomotion, unlike in primates. Similarly, the anatomy of autonomic innervation in rodents is 

slightly different than primates with bladder control and sexual functions being the main 

discrepancies. Another important difference is the diameter and length of the spinal cord. 

Evidently, the mouse cord is much shorter and narrower than the primate cord, which has 

important implications for the regeneration and successful reinnervation of axons (Akhtar et 

al., 2008; Courtine et al., 2007). Ultimately, these anatomical differences are particularly 

pertinent for pre-clinical studies assessing regeneration and functional outcomes. 

 

Second, despite being the primary model for immunological studies in general, the leukocyte 

populations, and subsequently the innate and adaptive immune responses, are not identical 

between mice and humans (Mestas & Hughes, 2004). For example, mice have a greater 

proportion of lymphocytes and lower proportion of neutrophils in their blood. Mice 

macrophage gene products have several differences that likely impact the innate immune 

response, such as Toll-like receptor and FcR identities and increased nitric oxide production 

in response to inflammatory stimuli (Mestas & Hughes, 2004). Mice and humans express 

different immunoglobulin isotopes and cytokines conserved between the two species can 

induce different immunoglobulin class switches. This is by no means an exhaustive list of 

differences. However, these exemplify the inter-species discrepancies, the full effects of 

which are unknown in SCI, and may help to justify the temporal differences in peripheral 

immune cell infiltration observed between mice and humans (Bowes & Yip, 2014). Most 

strikingly, mouse lymphocytes, including B-Cells, infiltrate the spinal cord in a biphasic 

manner, the first wave beginning around 7 dpi and peaking around 14 dpi and the second 

wave peaking around 6 weeks post-SCI (Bowes & Yip, 2014; Donnelly & Popovich, 2008). In 

humans, T-cells cells begin around 2-3 dpi and peak around a month post-SCI, with no biphasic 

trend observed. Additionally, based on immunohistochemistry (IHC) staining of B-Cell marker 

CD20, B-Cells have not been observed in the human injured spinal cord parenchyma (Bowes 

& Yip, 2014; Donnelly & Popovich, 2008; Fleming et al., 2006). Conversely, myeloid cell 

temporal dynamics appear to be well-aligned across rodents and humans (Fleming et al., 

2006; Sroga et al., 2003). 
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To account for the inter-species leukocyte discrepancies, recent studies have turned to 

humanised mouse models to investigate the immune response to SCI (Carpenter et al., 2019; 

Carpenter et al., 2015). In these experiments, immunocompromised mice are reconstituted 

with human immune cells before inflicting SCI. The pathological and functional outcomes of 

these humanised mice are worse than their non-engrafted counterparts (Carpenter et al., 

2019). However, the reproducibility of this model and whether the observed differences are 

clinically relevant remains to be seen. 

 

A final notable difference between the human and mouse SCI pathology is formation of the 

cystic cavity, which typically does not occur in the mouse model. The lack of the cyst is 

hypothesised to be due to an enhanced T-cell response and the increased fibrosis in the 

mouse lesion (Fleming et al., 2006). There are several exceptions, including the CD1 mouse 

strain (Inman et al., 2002) or the novel bone-impacting contusion model (Marinelli et al., 

2019), demonstrating the modest variability of the pathology between strains and injuries. 

Ultimately, mouse models of SCI remain a useful tool, but fail to fully recapitulate the human 

condition and are thus best suited for basic and early pre-clinical studies. 

RATS  

Rats are the most common animal model of SCI, representing 72% of all studies (Sharif-

Alhoseini et al., 2017). Like mice, they are cost-effective and easy to use and house (Figure 

1.4). They are well-characterised on an anatomical level, years of SCI research has resulted in 

well-established injury protocols, and numerous functional recovery paradigms have been 

described to evaluate rat models of SCI (Courtine et al., 2007; J. J. Li et al., 2020; Sharif-

Alhoseini et al., 2017). Unlike mice, they are not as readily available for transgenic studies 

(Ellenbroek & Youn, 2016). Similar to mice, the CST and general size of the rat spinal cord 

differs from humans. The infiltration of lymphocytes in rat SCI differs from both the human 

and mouse pathology, with rat lymphocytes infiltrating around 3-7 dpi alongside monocytes 

(Donnelly & Popovich, 2008). Furthermore, unlike mice, rats develop the cystic cavities 

observed in the human condition (Li et al., 2020). Ultimately, rats are appropriate models for 

preliminary studies of the SCI neuropathology, but their caveats (namely barriers to 

transgenics and their anatomical and pathophysiological deviations from human SCI) should 



 - 21 - 

be taken into consideration and, if feasible, complimented with non-invasive human studies 

to ultimately improve the translability of these findings into the clinic. 

NON-HUMAN PRIMATES 

The use of non-human primates for SCI research accounts for only 1.5% of studies (Sharif-

Alhoseini et al., 2017). This is largely due to the high costs and immense ethical concerns that 

surround these animal models (J. J. Li et al., 2020) (Figure 1.4). However, even the small new 

world primates like squirrel monkeys and marmosets more accurately model the human 

condition compared to rodents (Cheriyan et al., 2014). This can be attributed to a greater 

similarity to the human genome, anatomy, and spinal cord circuitry (J. J. Li et al., 2020). Larger, 

old world non-human primates also recapitulate the autonomic aspects of the pathology, 

including bladder and sexual functions, as well as the regulation of blood pressure (Courtine 

et al., 2007). These larger models are also important for the final pre-clinical testing of tissue 

engineering and surgical approaches before their use in clinical trials (J. J. Li et al., 2020). Thus, 

while non-human primate models of SCI are valuable, they come at a great cost to animal 

welfare and should be strictly reserved for late pre-clinical studies that cannot be 

accomplished in lower species. 
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Figure 1.4 The pros (blue) and cons (red) of the most common animal models of SCI. No animal model is perfect and thus careful 
consideration must be made to select the optimal model for the scientific goal or question. Figure from (J. J. Li et al., 2020) 

NON-MAMMALIAN VERTEBRATES 

Non-mammalian vertebrates, such as fish and amphibians, account for about 1% of all SCI 

studies (Sharif-Alhoseini et al., 2017). While these models do very little to simulate the human 

condition, they are useful for understanding regeneration on a very basic level as they are 

able to fully recover from SCI (Lee-Liu et al., 2013). Critically, these regenerative model 

organisms have provided better insight into the regenerative nonpermissive 

microenvironment of the mammalian system, with features such as glial, inflammatory, and 

immune responses highlighted as key gatekeepers of regeneration (Lee-Liu et al., 2013). 

 

1.3 SINGLE-CELL TRANSCRIPTOMICS 

Transcriptomics can be defined as the investigation of the RNA transcripts produced by the 

cell from a genomic DNA template via high-throughput methods. This approach is typically 

employed as a substitution for studying the proteome, high-throughput full-scale methods 

for which are on the horizon (e.g. via mass spectrometry), but are not yet readily available 

(Haque et al., 2017). The advent of transcriptomics, including microarrays and bulk RNAseq, 

revolutionized our understanding of gene expression and led to unprecedented 

breakthroughs in biology and medicine (Picelli, 2017). However, such approaches fail to 

characterize the transcriptional heterogeneity of individual cells, a major caveat given that 

cells of the same cell type‡ can occupy different cell states, measured as biologically relevant 

differences in both transcript identity and quantity (Papalexi & Satija, 2018). Single-cell 

transcriptomics, achieved through scRNAseq, can elucidate cellular heterogeneity at an 

unprecedented resolution, even in seemingly homogenous populations (Figure 1.5).  

 

 

‡ The task of defining cell type vs cell state, particularly in the single cell era, is not an easy one (Morris, 2019; 
Trapnell, 2015). However, for the purposes of this dissertation, I have reserved the term cell type for canonical 
categories, such as microglia or neutrophils. Meanwhile, I have defined cell states as the condition of a cell 
compared to others within its cell type, for example homeostatic vs pro-inflammatory microglia. The arbitrary 
nature of these definitions is acknowledged. 
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Figure 1.5 A diagram demonstrating the power of scRNAseq to elucidate heterogeneity in biological samples. Compared to bulk RNAseq, 
scRNAseq unveils cellular level heterogeneity. Figure From: (Sheila-10X, 2017) 

 

 GENERATING HIGH-THROUGHPUT SINGLE-CELL TRANSCRIPTOMICS DATA 

To generate high-throughput single-cell transcriptomics data, a single-cell suspension of 

viable, high-quality cells must be prepared. For liquid tissues, such as blood, relatively rapid 

and straightforward techniques like the generation of a density gradient can be applied 

(Reichard & Asosingh, 2019). Conversely, for in vitro samples and even more so, ex vivo solid 

tissue samples, cells must be dissociated. This can be achieved through mechanical or 

enzymatic methods. The most appropriate approach depends on the sensitivity and fragility 

of the cell type, the composition of the extracellular matrix, and other experimental design 

considerations, such as the integrity of cell surface-markers (Reichard & Asosingh, 2019). 

After dissociation, the suspension is filtered to remove poorly dissociated tissue or cell 

aggregates and, in the case of CNS tissue, myelin debris must also be removed. Finally, cell 

viability must be assessed and dead or dying cells must be removed. Typical approaches 

include commercially available “clean-up” kits or the addition of a live/dead cell dye before 

fluorescent activated cell sorting (FACS). 

 

There are two main approaches to isolate individual cells from a single-cell suspension, 

droplet-based and plate-based (Figure 1.6). Both of these methods capture and barcode poly-

adenylated RNA (namely mRNA) for downstream identification via next generation 

sequencing (NGS). Droplet-based approaches, such as inDrop (Klein et al., 2015) or 10X 

Chromium (Zheng et al., 2017), rely on microfluidics to entrap individual cells from the single-

cell suspension into nanolitre size droplets that contain the reagents for the generation of cell 
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libraries through reverse transcription and transcript barcoding (Griffiths, Scialdone, et al., 

2018; Haque et al., 2017; Ziegenhain et al., 2017). Many droplet-based approaches, such as 

10X Chromium, barcode transcripts with short (~16 base pair [bp]) cell barcodes, the 

sequence of which is unique to each droplet, and shorter (~10bp), randomly generated 

nucleotide sequences, called unique molecular identifiers (UMIs). The latter allows amplified 

transcripts to be deduplicated, i.e., traced back to their original mRNA, enabling the user to 

discriminate between transcripts that were highly expressed in vivo vs those that were highly 

amplified ex vivo. In this way, UMIs also allow mRNA transcripts to be directly quantified. 

After each transcript is barcoded, the cell libraries are then pooled and prepared for NGS in 

the fashion of bulk RNAseq.  

 

The droplet-based methods are relatively low cost and incredibly high-throughput (1x103 – 

1x106 cells) making them ideal for sampling diverse cell populations (Griffiths, Scialdone, et 

al., 2018; Ziegenhain et al., 2017). The trade-off is smaller cell libraries; this approach is only 

able to determine the relative volume of moderately/highly expressed genes, which might be 

a concern if certain weakly expressed genes are of key interest to the researcher (Haque et 

al., 2017). Notably, this sensitivity is increasing as these protocols are refined (Yamawaki et 

al., 2021). Most of these approaches also use a 3’ or 5’-end counting protocol, which does not 

provide full-length transcript data, making certain inquiries like splice-variant analysis, 

infeasible (Haque et al., 2017), however solutions to this challenge are approaching 

(Mamanova et al., 2021). Finally, droplet-based methods are more likely to generate 

multiplets (i.e., two or more cells captured and barcoded within a single droplet). However, 

many computational approaches have been developed to mitigate this during the analysis 

(Amezquita et al., 2020). Samples can also be labelled with oligonucleotide-barcoded lipids 

(McGinnis et al., 2019) or antibodies (Stoeckius et al., 2018) allowing them to be multiplexed 

during the droplet-based isolation step. This technique reduces batch effects between 

samples, allows for multiplet identification, and enables users to load and therefore capture 

more cells per run (Stoeckius et al., 2018). Ultimately, despite its caveats, droplet-based 

protocols are extremely popular and effective for evaluating heterogeneity in complex 

systems. 
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Plate-based methods, such as MARS-seq (Jaitin et al., 2014) or Smart-seq3 (Hagemann-Jensen 

et al., 2020), require cells to be sorted into microwell plates, often via fluorescent activated 

cell sorting (FACS), where they are then lysed, barcoded, and amplified in the well before NGS 

(Griffiths, Scialdone, et al., 2018; Haque et al., 2017). Notably, some plate-based methods 

(e.g., MARS-seq, CEL-seq2) allow for the cost-effective pooled PCR amplification and library 

preparation utilised in droplet-based methods (Papalexi & Satija, 2018). Plate-based methods 

are modestly high-throughput (1x102 – 1x103) and, in labs where robotic automation is 

unavailable, tend to be lengthy and manually intensive (Papalexi & Satija, 2018). However, 

these approaches do typically result in extremely high sensitivity, allowing for the detection 

of lowly-expressed genes (Haque et al., 2017). Thus, they are typically employed to profile 

limited samples, like rare cell types during development (Mamanova et al., 2021).  

 

 

 
Figure 1.6 The two main approaches to single-cell isolation for generating single-cell transcriptomics data. Droplet-based approaches are 
generally higher throughput at the cost of library size. Note that the schematic does not include each step in the protocol, but rather 
highlights those that differ between the two methods. Figure adapted from (Griffiths, Scialdone, et al., 2018). 

 

 A BRIEF INTRODUCTION TO THE HANDLING OF SCRNASEQ DATA  

scRNAseq generates immense quantities of data that present unique computational 

challenges. The methods and considerations required for handling scRNAseq data will be 

discussed in great depth throughout this dissertation. However, to get started I will briefly 

outline the key steps. 

inDrop 

CEL-Seq2 
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NGS typically produces a data file in the binary base call format, which records the identity, 

location, and confidence level for each detected fluorophore on the flow-cell during NGS. This 

file must be converted to a demultiplexed FASTQ format and aligned to the genome of the 

applicable species. Then low-level analysis can be performed. This typically includes cell-

calling (i.e., distinguishing cell-containing vs empty droplets), quality control (QC) including 

multiplet removal, normalisation, highly variable gene (HVG) selection, dataset integration 

and batch correction if required. The result is a cleaned feature-barcode matrix that is ready 

for higher-level analysis and interpretation. 

 

Approaches to facilitate biological interpretation and discovery through scRNAseq are flexible 

and numerous. However, a fundamental approach is dimensionality reduction. In the context 

of scRNAseq data, dimensionality reduction is the process of representing the expression of 

thousands of genes in just a few dimensions (Amezquita et al., 2020). A typical approach for 

dimensionality reduction is principal component analysis (PCA). PCA is a deterministic 

technique that considers the high-dimensional space and determines the linear projection, or 

principal component (PC), that captures the greatest amount of variance (Amezquita et al., 

2020; Rudi et al., 2007). The subsequent PC must be orthogonal to the previous and describe 

the greatest variance out of that which remains unaccounted for. The resultant PCs are 

ordered by decreasing proportions of the variance explained and typically the top 10-50 PCs 

are selected for downstream analysis (Amezquita et al., 2020). Retaining only the top PCs 

allows for more efficient downstream processing and helps to reduce technical noise, as the 

biological heterogeneity is expected to drive most of the variance in the dataset. 

 

The high-dimensional gene expression of each cell can be further condensed into 2-3 

dimensions for visualisation purposes. Plotting the top two PCs would accomplish the task. 

However, as mentioned, PCA calculates linear distances, making it poorly suited for visualising 

complex populations (Figure 1.7A, B). Alternative approaches, such as diffusion maps, t-

stochastic neighbour embedding (t-SNE), and uniform manifold approximation and projection 

(UMAP) are not constrained by linear relationships. The diffusion map method has been 

adapted for scRNAseq data (Haghverdi et al., 2015) and can be interpreted as representing 

the data based on predicted transitions between cells (Figure 1.7C). Thus, it is well suited for 
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visualising differentiating cells, such as those observed during development. UMAP and t-SNE 

are two fundamentally different algorithms that share several features, including their 

stochastic and non-linear nature and their goal of conserving the relationships between cells 

that are similar in the high-dimensional gene expression space (Amezquita et al., 2020). 

Unlike PCA and diffusion maps, UMAP and t-SNE do not preserve the relationships beyond 

the nearest neighbours in high dimensional space. This means we can only draw conclusions 

about the local, but not global structure of the map (Figure 1.7D) (Amezquita et al., 2020; van 

der Maaten, 2008).  

 

 

 
Figure 1.7 A) The relationships between cells as generated by PCA (dotted line) vs non-linear dimensionality reduction approaches (solid 
line). Image from (van der Maaten, 2013), discussing PCA vs t-SNE. B) A subset of this myeloid cell atlas visualised using PCA. Each cell is 
coloured by its annotated cell type. C) The same data as a diffusion map. C) The same as a UMAP. Local vs global structure is 
demonstrated. 

A B 

C D 

local 

global 
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 HIGH-THROUGHPUT TRANSCRIPTOMICS IN SCI 

High-throughput transcriptomic analyses of the SCI pathology have undoubtably broadened 

our understanding of the pathology in animal models and have generated many new 

hypotheses, inspiring or complimenting mechanistic studies. Many of these studies have been 

generated through bulk RNAseq, with a few scRNAseq approaches published within the last 

decade. Notably, no spatial transcriptomics studies have been performed to date, despite the 

spatial nature of the SCI pathology. In this section, I will briefly discuss some of the high-

throughput transcriptomics SCI studies, highlighting their contributions and their caveats, and 

linking their findings to complimentary, non-transcriptomics studies. 

BULK RNASEQ STUDIES 

Several studies have employed bulk RNAseq to investigate transcriptional changes of neural 

tissue upon SCI. Here I will discuss a few key publications that have deepened our 

understanding of the SCI pathology, or have taught us valuable lessons about the optimal 

design of transcriptomics studies in SCI. 

 

A study by Chen et al., 2013 used thoracic contusion mouse models of SCI to sequence the 

lesion epicentre (0.5 mm of tissue) in sham injured controls and at 2 and 7 dpi. They calculated 

differentially expressed genes (DEGs) between conditions and then performed gene set 

enrichment analysis. The top enriched pathways included the expected inflammatory 

response, cell death, CNS development, but also atherosclerosis signalling, supporting a role 

for foamy macrophages after SCI (Fleming et al., 2006; X. Wang et al., 2015; Zhu et al., 2017). 

By sequencing RNA from all cell types they were able to investigate global pathways but their 

technique did not provide an understanding of individual cell types, whether a pathway is 

driven by a single cell type, the nature of the cellular interactions driving the observed 

pathway, or the spatial context of these proposed functions (Chen et al., 2013). This study 

was repeated in rats (Shi et al., 2017) and marmosets (Nishimura et al., 2014), providing global 

gene expression resources, but faced the same pitfalls as Chen et al., 2013. 

 

In another study, GFAP-RiboTag mice (Sanz et al., 2009) were used to isolate and sequence 

the astrocyte translatome at 14 dpi in mouse thoracic compression models of SCI (Anderson 



 - 29 - 

et al., 2016). Unlike the aforementioned global sequencing studies, this project allowed for 

an in-depth investigation into a specific cell type and was paired with a functional study, 

providing both a descriptive and mechanistic understanding of astrocytes and the astrocyte 

scar after SCI. Specifically, they found that interrupting astrocyte scar formation failed to 

promote regeneration, in line with previous findings in rat models of contusion SCI (Okada et 

al., 2006). The RiboTag results demonstrated that this could be due to the fact that astrocytes 

within the lesion epicentre secreted axon-growth supporting molecules (Anderson et al., 

2016). RiboTag was a particularly appropriate approach to study the gene expression of 

astrocytes after SCI as these cells are extremely fragile and are not easily dissociated from 

homeostatic tissue, let alone thick, fibrous scar tissue. However, the authors could not draw 

conclusions on the heterogeneity of astrocytes after SCI (Anderson et al., 2016).  

 

Similarly, LysM(Lyz2)-RiboTag was used to isolate Lyz2+ cells, namely macrophages and a 

subset of microglia, at 3 and 7 dpi in mouse models of thoracic contusion SCI (Zhu et al., 2017). 

They performed Gene Ontogeny (GO) enrichment analysis and KEGG pathway analysis and 

found that acute phase Lyz2+ cells are characterised by migration and cytokine production, 

while by 7 dpi the primary role of these cells is to catabolize lipids, again supporting a role for 

foamy macrophages after SCI (Fleming et al., 2006; X. Wang et al., 2015; Zhu et al., 2017). The 

RiboTag approach also meant that this phenotype was not driven by RNA in phagocytic cargo 

or isolation-induced transcription (Haimon et al., 2018). The authors performed a 

complementary experiment in which they used IHC to investigate post-SCI macrophages in a 

CD36 global knock out (KO) mouse (Zhu et al., 2017). They found that by 7 dpi, macrophages 

in the wild-type (WT) mice were lipid-laden, while in the KO this was substantially decreased. 

Furthermore, they observed smaller lesion sizes and modestly improved functional outcomes 

in the KO mice compared to WT mice. Cumulatively this study replicated the finding of foamy 

macrophages after SCI, but the bulk sequencing and global KO meant the authors were unable 

characterize the heterogeneity of these cells and determine whether all or merely a subset of 

Lyz2+ cells adopted this foam cell-like phenotype. Furthermore, it’s unclear if Lyz2- cells also 

take on this state. 

 

Cx3cr1+ microglia were recently sequenced from 10 mm of tissue in mice models of thoracic 

transection models of SCI at 3, 7, and 14 dpi and uninjured controls (Noristani et al., 2017). 
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Cells were isolated via enzymatic dissociation followed by FACS and it appears that most of 

the protocol was performed at room temperature or 37°C. The authors used a panel of non-

microglia myeloid cells markers to attempt to enrich the Cx3cr1+ population for microglia. 

However, most of these markers have since been demonstrated to become upregulated in 

activated microglia (Amici et al., 2017). This suggests that this study enriched their samples 

for homeostatic-like microglia, which would be present away from the site of transection, but 

well within the large tissue section they collected, emphasising the importance of spatial 

context in SCI. Unsurprisingly, the authors found that only the 3 dpi sample differed drastically 

from the control. They also argued that microglia upregulate the astrocyte marker, Vim. The 

expression of Vim has been reported in activated microglia (Jiang et al., 2012), but in the 

Noristani et al., 2017 dataset it was likely ambient mRNA. Finally, Noristani et al., 2017 

claimed that microglia upregulated Brca1 after SCI, signifying DNA damage. However, this 

finding was not confirmed via tissue pathology in mice and has not been replicated; it likely 

represents a technical artefact induced by their isolation protocol. This study highlights the 

importance of careful experimental design and validation of key findings through 

complementary methods, such as tissue pathology.  

 

A very recent study sequenced myeloid samples from laminectomy-only controls and 3, 7, 

and 14 dpi. To isolate these cells for bulk RNAseq, they used isolation of nuclei tagged in 

specific cell types (INTACT) mice crossed with Cx3cr1CreER mice to isolate myeloid lineage 

nuclei from 10 mm of tissue in mouse models of thoracic transection SCI (Zhou et al., 2020). 

The INTACT method helped to minimise isolation-induced transcription and likely reduced the 

sampling bias in singe-cell isolation that normally favours the sequestration of high-quality 

cells from less damaged, less fibrotic regions of the lesion (Denisenko et al., 2020; Haimon et 

al., 2018). Based on GO enrichment analysis, Zhou et al., 2020 found that the averaged 

myeloid cell expression pointed towards acute proliferation, in line with previous findings for 

microglia but not macrophages (Bellver-Landete et al., 2019; Greenhalgh & David, 2014; 

Milich et al., 2021; Noristani et al., 2017), and migration. At 7 dpi they observed migration 

and axon guidance, but not lipid-processing, indicating that not all myeloid cells perform this 

function at 7 dpi. By 14 dpi they observed that the averaged myeloid expression was enriched 

for GO terms regarding cell adhesion and extracellular matrix organisation (Zhou et al., 2020). 

The authors used this sequencing experiment to generate a hypothesis about the role of 
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microglial Plexin-B2 in axon guidance and regeneration post-SCI, which they then tested using 

several in vitro and in vivo contusion SCI model approaches. Ultimately, they demonstrated a 

role for myeloid Plexin-B2 in corralling infiltrating cells and the formation of the microglia scar 

(Zhou et al., 2020). Despite these exciting findings, this study was not without its caveats. 

Tamoxifen, which was administered just days before SCI supresses the T-cell immune 

response while in circulation, which would alter the course of the SCI pathology (Behjati & 

Frank, 2009). Additionally, there are concerns over the ability of nuclei-sequencing to 

accurately reflect the microglia transcriptome (Thrupp et al., 2020). Specifically, a comparison 

between 10x Genomics single nuclear RNAseq (snRNAseq) and scRNAseq of human microglia 

found that while snRNAseq was sufficient to identify the major neural cell types, it could not 

reproduce the activated microglial subpopulations observed in scRNAseq (Thrupp et al., 

2020). Driving this discrepancy, the authors identified a depletion of about 1% of genes in 

snRNAseq data vs the scRNAseq data, and notably. These genes included several well-

established players in microglial activation (APOE, SPP1,CD74, CST3). Despite these caveats, 

this bulk RNAseq INTACT study by Zhou et al., 2020 demonstrated that even in the single-cell 

era, carefully planned bulk RNAseq experiments are an inexpensive and effective tool for 

addressing novel biological questions.  

SCRNASEQ STUDIES 

An underlying theme within the bulk RNAseq literature is that the characterization of the SCI 

pathology with single-cell acuity will greatly contribute to our understanding of the complex 

pathology. As scRNAseq studies within the context of SCI exist have only emerged within the 

past 1.5 years, this aspires to be an exhaustive overview of the current peer-reviewed 

literature. 

 

Two recent studies have employed scRNAseq using the 10X Chromium platform to better 

understand regenerative model organisms in the context of SCI. One study investigated the 

role of neural progenitor cells (NPCs) in regeneration after Xenopus tadpoles tail amputation 

(Kakebeen et al., 2020). These organisms undergo scar-free healing and complete spinal cord 

regeneration after these injuries and might identify targetable pathways to promote 

regeneration in the mammalian system. This study combined scRNAseq and Assay for 

Transposase-Accessible Chromatin (ATAC)-seq to find that NPCs in this regenerative system 
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undergo early neuronal differentiation followed by late phase proliferation. They also 

identified several transcription factors that they then demonstrated to be drivers of these 

functions, with notable parallels to neural crest development in mice (Kakebeen et al., 2020). 

Whether this study will lead to putative therapeutic options will, of course, require substantial 

further investigation in mammalian systems. 

 

To investigate regeneration in a mouse model of SCI, Li et al., 2020 utilised neonatal mice 

after thoracic compression injuries; like Xenopus tadpoles, these animals undergo scar-free 

healing. The authors used enzymatic dissociation followed by FACS to isolate CD45lowCD11b+ 

cells for scRNAseq (Y. Li et al., 2020). Their FACS protocol isolated not only the desired 

microglia but also other myeloid cells, lymphocytes, astrocytes, and oligodendrocytes. Thanks 

to the single-cell resolution of their technique, they were able to investigate the pure 

microglia populations. Interestingly, they found that neonatal microglia contribute to 

regeneration by secreting fibronectin and peptidase inhibitors and other anti-inflammatory 

molecules (Y. Li et al., 2020). They verified these findings through several in vivo and ex vivo 

experiments, including the transplantation of neonatal microglia into adult mouse models of 

thoracic compression injuries, which improved axonal regeneration, but no functional 

outcomes were reported. Nonetheless, this study used scRNAseq and complementary 

experiments to identify exciting mechanisms that can be further investigated to improve 

regeneration after SCI. 

 

To investigate the spatial and transcriptional heterogeneity of mature oligodendrocytes after 

SCI, an extensive transcriptomics study was performed comprising 10X Chromium scRNAseq, 

single molecule fluorescence in situ hybridization (smFISH), and in situ sequencing (ISS), a 

technique capable of sequencing as many as 39 targets in situ (Floriddia et al., 2020). This 

project utilised a thoracic dorsal funiculi transection mouse model of SCI to create white 

matter damage with minimal animal suffering. This study was mainly descriptive but found 

that transcriptionally and spatially distinct mature oligodendrocyte populations had 

comparable transcriptional responses to SCI in the acute phase but developed distinct 

expression patterns in the chronic phase. Notably, the authors defined acute as 14 dpi and 

chronic as 3 and 5 months post-injury (Floriddia et al., 2020). This study represents a useful 
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resource that will undoubtedly serve as a foundation for future mechanistic studies into 

mature oligodendrocyte function and remyelination after SCI. 

 

The INTACT bulk RNAseq study described in the previous section (Zhou et al., 2020), combined 

this 3, 7, and 14 dpi transection data with a 10X Chromium scRNAseq data from the whole 

CNS (Wahane et al., 2021). The CNS cells were dissociated enzymatically from 10 mm of tissue 

of uninjured controls and after mild (45 kilodyne) thoracic contusion SCI at 5 dpi. In this study, 

the authors used the averaged myeloid cell expression data from the INTACT RNAseq to 

define an injury-activated microglia/macrophage (IAM) profile which they noted, 

unsurprisingly, shared some commonalities but was largely different than the recently 

described “disease-associated microglia (DAM) profile” (Keren-Shaul et al., 2017). They found 

that at 5 dpi, microglia and oligodendrocyte precursor cells were proliferating, in line with 

previous findings (Bellver-Landete et al., 2019; Greenhalgh & David, 2014; Milich et al., 2021; 

Noristani et al., 2017; Wahane et al., 2021). They also observed activated microglia 

populations in the healthy control samples, suggesting their enzymatic dissociation protocol 

induced a technical bias in their data (Hammond et al., 2019; Li et al., 2019; Milich et al., 2021; 

Tay et al., 2017). Additionally, they repeated the scRNAseq after inhibiting histone 

deacetylase 3 (HDAC3), a gene product of interest from their bulk analysis and identified a 

long list of HDAC3-dependent SCI response genes, which were related to synaptogenesis or 

neuroinflammation in microglia and macrophages, respectively (Wahane et al., 2021). This 

report demonstrates the value of perturbation or treatment studies in scRNAseq, including in 

the context of SCI and the importance of designing protocols that minimise isolation-induced 

transcription in microglia. 

 

A final study performed 10X Chromium scRNAseq on CNS resident and infiltrating cells from 

8 mm of SCI tissue at 1, 3, and 7 dpi (Milich et al., 2021). They utilised a moderate thoracic 

contusion model of SCI and enzymatic dissociation. They also observed activated microglia in 

controls (Hammond et al., 2019; Li et al., 2019; Milich et al., 2021; Tay et al., 2017). Further 

discussion of the myeloid-specific findings of this study will be presented in great detail in 

Chapter 5. However, in this descriptive article, the authors characterised many other cell 

types after SCI, with a particular focus on their interactions. Milich et al., 2021 used 

CellPhoneDB (Vento-Tormo et al., 2018) to predict interactions between two cell types based 
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on the expression of ligand-receptor pairs. This analysis generated new hypotheses pertaining 

to the involvement of inter-cellular signalling in key processes such as gliogenesis, gliosis, and 

fibrosis. For example, at 1 dpi, they found that an increased expression of Tie2 receptor and 

Angpt2 ligand in endothelial cells and Tip cells, respectively. Angpt2 has been shown to lead 

to the disruption of blood endothelium. Within the first week post-SCI, Angpt2 expression in 

Tip cells was replaced by the blood endothelium-stabilising ligand, Angpt1, which was 

upregulated in astrocytes. Together this time-resolved data suggests a role for astrocytes in 

promoting blood vessel stabilisation after SCI. However, further experiments are required to 

validate these observations. Ultimately, this study highlighted the value in sampling all the 

cells within a system and once again outlined the importance of careful microglial isolation.  

 

Notably lacking from the current SCI transcriptomics literature is spatial and human data. 

Understandably, both have been difficult to acquire. However, the rapid advancement of 

spatial high-throughput transcriptomics technologies will hopefully be reflected in the SCI 

literature soon. Some of these approaches, such as GeoMX Whole Transcriptome Atlas (WTA) 

(Roberts et al., 2021), can effectively sequence the entire transcriptome in situ and, excitingly, 

can be performed in FFPE tissue. Thus, we might soon see a spatially resolved, perhaps even 

time-resolved, human SCI cell atlas, which would undoubtably consolidate decades of human 

and animal research and generate novel, clinically relevant biological questions. 

 

 HIGH-THROUGHPUT SINGLE-CELL TRANSCRIPTOMICS IN CNS MYELOID CELLS 

There exist many bulk studies of CNS myeloid cells, both resident and infiltrating, but the 

advent of single-cell technologies has demonstrated that myeloid cells previously combined 

in bulk studies, namely microglia, CAMs, and macrophages, represent transcriptionally 

distinct populations in development § , homeostasis, and disease. Furthermore, in 

development and pathology these cells adapt drastically different states, even compared to 

cells of the same type (Masuda et al., 2020). Thus, here I will focus on highlighting the key 

findings from the past 5 years of high-throughput single-cell transcriptomics applied to CNS 

myeloid cells.  

 

§ scRNAseq has been monumental in deepening our understanding of the heterogenous states and roles of 
microglia during development. However, the details of these findings are beyond the scope of this dissertation 
and thus, will not be discussed further. 
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Homeostatic microglia have been extensively studied using scRNAseq. These studies, largely 

performed in mice, have generally supported the findings of decades of research by observing 

adult homeostatic gene signatures related to surveillance, phagocytosis, and synapse pruning 

(Matcovitch-Natan et al., 2016). They have also led to the generation of distinct homeostatic 

microglia profiles that separate them from CAMs and other CNS cell types, highlighting the 

caveats of many older studies that averaged the transcriptome or functional implications of 

these two populations, inspiring new tools for in vivo studies, and aiding the annotation of 

subsequent transcriptomics datasets (Masuda et al., 2020; Prinz et al., 2017). Additionally, 

despite the stark heterogeneity of microglia profiles in development and in response to 

pathology, scRNAseq studies in mice have concluded that adult homeostatic microglia are 

largely homogenous, irrespective of their location within the CNS (Masuda et al., 2020). 

Notably, scRNAseq and cytometry by time of flight (CyTOF) studies of human brain tissue have 

observed heterogeneity under homeostatic conditions, suggesting greater heterogeneity in 

human microglia (Masuda et al., 2020). Furthermore, a comparative study investigated the 

expression of the human vs mouse microglial sensome, genes involved in surveying the 

environment, and found that only about half of these genes are conserved across species 

(Abels et al., 2021), highlighting the need for human tissue validation of mouse transcriptome 

observations. Studies of CNS myeloid expression profiles in human vs mouse pathology have 

reached similar conclusions (Friedman et al., 2018). Most of these homeostatic CNS myeloid 

studies were performed as comparisons or controls for developmental or disease studies, but 

nonetheless, scRNAseq has deepened our understanding of homeostatic microglia. 

 

Our understanding of myeloid ontogeny largely precedes the single-cell era but 

understanding this ontogeny has greatly influenced the experimental design and 

interpretation of scRNAseq studies. The prenatal ontogeny of microglia was first confirmed 

through fate-mapping techniques (Ginhoux et al., 2010) and was quickly replicated (Schulz et 

al., 2012). Shortly after, the transcription factors Irf8 and Pu.1 were shown to be required for 

the differentiation of microglia from erythromyeloid precursors (Kierdorf et al., 2013). Thus, 

before scRNAseq, it was clear that microglia and haematopoietic macrophages represent 

ontogenically distinct myeloid cell types (Kierdorf & Prinz, 2017; Prinz et al., 2017). However, 

an extensive project comprising scRNAseq, transgenic fate-mapping mouse lines, parabiosis-
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generated blood chimera mice, and in vivo imaging was required to demonstrate that CAMs 

are long-lived and share the microglial prenatal origin, in contrast to monocyte-derived 

myeloid cells, such as macrophages (Goldmann et al., 2016). The scRNAseq data also 

demonstrated that the transcriptional profiles of homeostatic CAMs are similar but distinct 

from microglia.  

 

Now that myeloid cell ontogeny has become less ambiguous, scRNAseq studies have used this 

knowledge to investigate the effect of myeloid ontogeny on their roles during homeostasis 

and CNS pathology. For example, Jordão et al., 2019 used an automated and miniaturised 

version of the CEL-Seq2 (Hashimshony et al., 2016) scRNAseq platform to investigate CAMs 

vs microglia (Jordão et al., 2019). Under homeostatic conditions, CAMs vs microglia were 

identified based on anatomical region, with different regions being processed for scRNAseq 

separately. During experimental autoimmune encephalomyelitis (EAE), they used a fate-

mapping mouse line to separate resident CAMs and microglia from infiltrating myeloid cells 

(Jordão et al., 2019). Together with in vivo imaging and clonal analysis, the authors 

demonstrated stark heterogeneity within myeloid cell populations, particularly during 

disease. They also showed that even during disease CAMs, except for choroid plexus 

macrophages, maintain their populations through local proliferation, and that despite their 

expression of MHCII, these cells are not required for antigen presentation and EAE disease 

progression (Jordão et al., 2019). Ultimately, this project uncovered novel functions and 

dynamics of myeloid cells during disease, generated new biological questions surrounding 

EAE progression, and importantly, also serves as a useful resource for annotating future 

scRNAseq myeloid cell datasets.  

 

scRNAseq has been used to address a longstanding body of conflicting evidence surrounding 

sexual dimorphism in microglia, particularly during development and disease (Masuda et al., 

2020). Early scRNAseq studies observed very little difference, if any, between sexes 

(Hammond et al., 2019; Tay et al., 2018). However, several later studies have suggested there 

are indeed sex-specific roles in the microglia response to disease pathology (Han et al., 2021; 

Ochocka et al., 2021; Rahimian et al., 2019). This discrepancy might be attributed to the 

increased sensitivity of the scRNAseq methods over time. 
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High-throughput single-cell transcriptomics have undoubtably revolutionised our 

understanding of myeloid cell heterogeneity during disease. A substantial advancement was 

the elucidation of the molecular mechanisms driving the switch from homeostatic to 

activated microglia (Keren-Shaul et al., 2017). Specifically, the authors combined MARS-seq, 

animal models of neurodegeneration, tissue pathology including smFISH, epigenetic assays, 

and Trem2 KO mice to describe a DAM profile that arises during AD, amyotrophic lateral 

sclerosis (ALS), and ageing. They described the DAM phenotype as progressing through two 

sequential phases, hereon referred to as DAM1 and DAM2. DAM1 was characterised by the 

upregulated expression of the TREM2 adaptors, Apoe and Tyrobp, and the downregulation of 

homeostatic microglia markers (Figure 1.8A) (Keren-Shaul et al., 2017). DAM2 phase was 

described as Trem2-dependent and was characterised by the upregulation of lysosomal, 

phagocytosis, and lipid metabolism genes. It has been described as a neuroprotective, 

phagocytic, phenotype in mouse models of AD, ALS, ageing, and later multiple sclerosis (MS) 

(Deczkowska et al., 2018; Keren-Shaul et al., 2017; Krasemann et al., 2017), and had 

interesting transcriptional parallels with early post-natal microglia (Hammond et al., 2019). 

Notably, they found that the DAM phenotype was conserved between mice and humans 

(Keren-Shaul et al., 2017), and was later suggested to be a disease-independent microglia 

response (Deczkowska et al., 2018).  

 

Very shortly after the description of the DAM phenotype, another study using bulk RNAseq, 

several animal models of neurodegeneration, tissue pathology, and Apoe KO mice identified 

two major microglial states, a TGFb-dependent, homeostatic, neuroprotective state (M0) and 

a disease-associated state (MGnD) (Krasemann et al., 2017). The authors provided gene 

signatures for these two states (Figure 1.8B), which intersected with the DAM phenotype but 

were not identical, and they proposed a molecular mechanism behind the microglia activation 

pattern (Krasemann et al., 2017). Building on the knowledge that TREM2 is a sensor of 

neurodegeneration-associated molecular patterns, including myelin debris and apoptotic 

neural cell bodies (Y. Wang et al., 2015), Krasemann et al., 2017 demonstrated that apoptotic 

neurons activated the TREM2-APOE pathway. They showed that this resulted in the 

suppression of the M0 state, as observed in the DAM1 response. Notably, unlike Keren-Shaul 

et al., 2017, Krasemann et al., 2017 hypothesised that MGnD can have negative effects on 
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chronic CNS disease pathology as these microglia lose the ability to suppress T-cell 

proliferation and are no longer able to protect neurons from cell death.  

 

 
Figure 1.8 A) schematic of the transcriptional profile of homeostatic microglia, and the transcriptional changes associated with the 
transition to DAM1 and subsequently DAM2. The profiles were characterised in mouse models of ALS, ageing, and amyotrophic lateral 
sclerosis but have been hypothesised to be applicable to neurodegeneration in general. Figure adapted from (Keren-Shaul et al., 2017). 
B) A schematic of M0 vs MGnD microglia phenotypes, which have a common gene signature with the DAM phenotype but are not 
identical. Figure from (Krasemann et al., 2017) 

 

Another study performed scRNAseq in mouse models of Alzheimer’s disease (AD) using CEL-

Seq2 but, despite using the same mouse model, the observed DAM profiles were not identical 

(Kubick et al., 2020; Tay et al., 2018). This highlights a few caveats of scRNAseq, which will be 

further discussed throughout this dissertation. To name a few: microglia are very sensitive to 

perturbations and so the isolation protocol can greatly impact the results; the sensitivity of 

the cell isolation platform and the design of the analysis workflow can also lead to slightly 

different conclusions.  

 

As technology progresses, future in situ high-throughput transcriptomics experiments, 

particularly those with single cell resolution such as the much anticipated addition of single 

cell resolution to the 10x Genomics Visium platform, will likely challenge some of the 

scRNAseq observations, which may be affected by isolation-induced or sampling bias 

artefacts. Nonetheless, scRNAseq paired with complimentary approaches such as tissue 

pathology, fate-mapping, and functional studies, has greatly advanced our understanding of 

CNS myeloid cell biology in development, homeostasis, and disease. It has also highlighted an 

A B 
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interesting involvement of lipid metabolism in CNS pathology that is likely to be the target of 

many upcoming therapeutic approaches (Loving & Bruce, 2020). 

1.4 DISSERTATION OUTLINE 

This dissertation is a summary of my PhD work in which I endeavoured to characterise the 

time-resolved transcriptional heterogeneity of CNS resident and infiltrating myeloid cells in 

response to SCI. To this end, I employed two transgenic mouse lines to collect myeloid cells 

from mouse models of SCI. I then integrated these datasets to create a time-resolved SCI 

myeloid cell atlas, which I analysed to generate a prospective map of myeloid cell dynamics 

across the SCI pathology. Ultimately, this project aimed to provide a better understanding of 

the role of myeloid cells during the secondary injury, with the hope that this fundamental 

knowledge might eventually lead to effective therapies to decrease the long-term disabilities 

of SCI patients. 

 

Chapter 2 describes the methods I used to generate and maintain the thoracic contusion SCI 

mouse model and the sham-injured controls. In subsequent chapters, I utilise this model to 

generate the scRNAseq data and the tissue for the in situ validation of select findings. 

 

Chapter 3 summarises the collection and pre-processing of the scRNAseq data from the first 

transgenic mouse line. This line labelled Cx3cr1+ myeloid cells with a YFP reporter, enabling 

the efficient isolation of these cells via FACS. The isolation protocols and analysis workflow 

established in this chapter was largely conserved for the collection and analysis of the data 

from the second transgenic mouse line in Chapter 4. 

 

Chapter 4 outlines the collection and pre-processing of scRNAseq data from the second 

transgenic mouse line and its integration with the previous dataset. This transgenic line aimed 

to differentially label infiltrating vs resident myeloid cells, allowing them to be isolated via 

FACS and thus unambiguously distinguished within the scRNAseq data. In this chapter I also 

describe how I have made this atlas publicly available and easily accessible for other 

researchers. 
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Chapter 5 describes the characterisation of the time-resolved SCI myeloid cell atlas, 

comparing it with previous findings and interpreting the dataset in its own right. Here I finish 

by summarising the myeloid cell atlas with a map of proposed phenotypes adopted across 

the SCI pathology. 

 

Chapter 6 discusses the key caveats of the main technique utilised in this project, scRNAseq, 

considers the future directions of transcriptomics in SCI research, and provides a final 

overview of this dissertation. 
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 GENERATING THE MOUSE MODEL OF SPINAL CORD INJURY 

 

 

 

 

 

 

 

 

 

 

“The more clearly we can focus our attention on the wonders and realities of the universe 

about us, the less taste we shall have for destruction.”  

—Rachel Carson 
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expressing subpopulation of inflammatory myeloid cells in chronic spinal cord injury. bioRxiv, 
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this pre-print in its entirety. Luca Peruzzotti-Jametti, Stefano Pluchino, and John Marioni 
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2.1 INTRODUCTION 

SCI is a highly debilitating pathology afflicting thousands of individuals annually with no fully 

restorative treatment, resulting in substantial personal, societal and financial cost (Marinelli 

et al., 2019). To improve clinical outcomes, a better understanding of the SCI pathology is 

required. Unfortunately, studying the pathology in human tissue is limited by the scarcity of 

tissue samples, the inability to perform controlled, hypothesis-driven studies, such as loss of 

function experiments, and the commonly used FFPE preservation method, which presents 

challenges for molecular-level research. As such, researchers have turned to alternative 

means of investigating the SCI pathology.  

 

Given the highly dynamic cellular and systemic responses involved in the SCI pathology, it is 

not currently possible to accurately model its full complexity in vitro or in silico. Thus, 

laboratory animals are still required for pre-clinical SCI research (Alizadeh et al., 2019; Sharif-

Alhoseini et al., 2017). Mice are common models of SCI because their genetic, 

pathophysiological, and behavioural traits closely, albeit not perfectly (1.2.2 Species), 

recapitulate the human condition, providing opportunity to study these clinically relevant 

characteristics in a controlled setting. Furthermore, the commercial availability of transgenic 

mice allows for a vast number of gene-level applications, including observing and altering the 

expression of genes of interest, ultimately allowing the investigation of genetic programs 

contributing to the SCI pathology. In summary, to fully understand the dynamics of myeloid 

cells involved in secondary damages after SCI, animal models of SCI are currently 

indispensable. 

 

The mouse model of contusion SCI aims to recapitulate the most common form of human SCI 

(Sharif-Alhoseini et al., 2017), and while cervical injuries are more common in humans, 

thoracic injuries are the most commonly studied (1.2.1 Injuries). Rodents, compared to the 

other species, allow the generation of relatively cost-effective, highly reproducible injuries 

and, like other small animal models, require rudimentary housing and husbandry, which is 

accessible at most research institutions (Lilley et al., 2020). Furthermore, methods to evaluate 

and compare behavioural and pathophysiological outcomes across studies and conditions 

have become well established for mouse models of SCI. However, while mouse models of 
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contusion SCI develop a secondary injury that resembles human contusion in many ways, 

fundamental differences exist in the size, anatomy, and pathophysiological response to the 

SCI, which can act as a barrier to translatability. Thus, researchers have also employed larger 

mammals, such as pigs and non-human primates, as models of SCI, but these are significantly 

constrained by both ethical and financial barriers (Alizadeh et al., 2019; Sharif-Alhoseini et al., 

2017).  

 

In this chapter, I describe the methods I used to generate and refine a mouse model of 

contusion, thoracic SCI. Then, I employ a well-established behavioural assessment to evaluate 

these models, ensuring their reproducibility, before ultimately employing these models to 

generate and begin to validate a time-resolved myeloid cell atlas after SCI. 

2.2 METHODS 

I performed all experimental animal procedures in accordance with the Animals (Scientific 

Procedures) Act 1986 Amendment Regulations 2012 following ethical review by the 

University of Cambridge Animal Welfare and Ethical Review Body (AWERB). The animal work 

was covered by the PPL 7008840 (to Stefano Pluchino).  

 MICE 

Male and female mice aged 8 to 10 weeks and weighing 18-25g were bred and housed in a 

pathogen-free, temperature-controlled animal facility with 12hr/12hr light/dark cycles and 

ad libitum access to chow and water. I used the following strains for this project: Cx3Cr1CreERT2 

strain name: B6.129P2(Cg)-Cx3cr1tm2.1(cre/ERT2)Litt/WganJ) to isolate Cx3cr1-YFP+ myeloid-lineage 

cells; TdTomatoflox, strain name: B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J) crossed with 

Cx3cr1CreERT2 (Cremato) to distinguish between YFP+ infiltrating myeloid cells and double-

positive RFP/YFP CNS resident microglia (MG), as recently described (Jordão et al., 2019). Both 

strains were purchased in 2018 from Jax. I also used C57BL/6 (WT) mice for tissue pathology 

and FACS, which were purchased from Charles River as needed. 

 

 PRE-OPERATIVE PROCEDURES 

With the assistance of qualified University Biomedical Services technicians, I deeply 

anaesthetized the animals with isoflurane (4% induction, 2% maintenance) in oxygen (1.5 

l/min), provided buprenorphine (Temgesic, RB Pharmaceuticals; pre- and post-operatively), 
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applied ocular ointment to prevent the eyes from drying, shaved the hair on the back of the 

mice, and swabbed it with a germicide.  

 

 LAMINECTOMY 

I performed the laminectomy in line with the Pluchino lab’s published protocol (Braga et al., 

2020). First, I placed the anesthetised mice in the prone position and under a surgical 

microscope, created a dorsal midline incision over the thoracic vertebrae with a sterile scalpel 

and separated the paravertebral muscles using spring scissors (Fine Science Tools). I identified 

T12 as the apex of the dorsal aspect and performed the laminectomy using Dumont #2 

laminectomy forceps (Fine Science Tools) and spring forceps (Fine Science Tools), leaving the 

dura intact. When the dura was punctured, there was an immediate reddening and swelling 

of the tissue. In this rare case, the animal was culled. To maintain vertebral column stability, 

I did not remove the lateral part of the vertebra at the site of laminectomy. The extension of 

the laminectomy was consistent between animals at approximately 3 mm in width and 5 mm 

in length, sufficient to allow room for the 1.3 mm diameter impactor tip.  

 

 INDUCTION OF CONTUSION SCI 

For the SCI cohort, I induced a bilateral contusion injury on the exposed spinal cord at T12 

using the Infinite Horizon (IH) impactor device (Precision Systems and Instrumentation, 

Lexington, KY; Figure 2.1) as previously described (Braga et al., 2020; Cusimano et al., 2012; 

Scheff & Roberts, 2009). The IH device is designed for the induction of a standard-force injury 

to the spinal cord of small rodents, and it allows the programming and monitoring of the 

desired force, the actual force, and spinal cord displacement. A limitation of this impactor is 

the IH Adson forceps, which are not fully adept at securing the spinal column and likely add a 

level of inconsistency to the parenchymal injury and functional outcomes (Cheriyan et al., 

2014). 
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Figure 2.1 A front view of the IH impactor device. After the laminectomy, the mouse is placed in the prone position and the spinal column 
is secured using the Adson forceps. The mouse tip is aligned over the exposed cord using the y- and z-axis controls. The stepping motor 
drives the impactor rack into the exposed cord. During this process, the force sensor detects the point at which the desired force has 
been applied, at which point the impactor rack is retracted. The time, actual force, and displacement are recorded. Image adapted from 
(Scheff & Roberts, 2009). 

 

To induce the injury, I aligned the mouse-impacting tip over the exposed cord and centred it 

over the central vein, avoiding any overlap with the transverse processes. Then, I induced a 

moderate contusion injury (70 kilodyne force) using the IH impactor and recorded the actual 

force and spinal cord displacement of the impact. For the SCI condition, I only included mice 

if the actual force was 70±5 kilodyne and the spinal cord displacement was 700±200 µm. For 

the sham-injured control group (Ctrl) I performed the laminectomy but omitted the induction 

of contusion SCI. After the injury, I closed the incision with 7-mm AutoClips (Fine Science 

Tool). 

 

 POST-OPERATIVE CARE 

After SCI induction or sham-injuries, mice recovered in a heated chamber. I performed post-

operative care as described in the PPL 7008840. Briefly, I administered analgesics within 7 

hours post-operation. For the first 7 dpi, a heat pad was secured to the outside bottom of the 

cage, and I checked the mice twice a day for signs of weight loss, urinary retention, pain, 
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infection, and re-opening of the incision. Additionally, I expelled the bladders of mice 

subjected to SCI by applying pressure to the bladder twice a day until urinary function was 

regained, or the endpoint was reached. After 7 dpi or post-laminectomy, I removed the 

AutoClips and continued to weigh and monitor the mice for the duration of the study plan. 

 

 REFINEMENT 

At the beginning of the study, in line with standard procedures at the University Biomedical 

Services animal facility and current refinement guidelines for mice post-SCI (Lilley et al., 

2020), after surgery, the mice recovered from anaesthetics in a heated chamber overnight. 

Unfortunately, the rate at which mice reached their humane endpoint (due to adverse effects 

such as 20% weight loss, prolapse, and self-mutilation) before D10 was 47.22% (Figure 2.2). 

Note that mice were only included in this comparison after I was proficient in the surgery 

technique (> 1 year experience). When handling these mice, I observed that those with severe 

adverse effects warranting a humane endpoint were cold to touch, despite the heat pad. 

Thus, I began to house the mice in a heated chamber until their weight stabilised (3-5 dpi). A 

one-sided Fisher’s exact test confirmed that keeping mice in a heated chamber until their 

weight stabilised decreased the number of mice that reached their humane endpoints before 

their scheduled time point (p < 0.05). Given this observation, I added this refinement to the 

lab’s new PPL application. 

 
Figure 2.2 Bar plot depicting the number of mice surviving beyond 10 dpi with or without 3-5 days in a heated chamber. Recovering mice 
in a heated chamber substantially reduced the occurrence of adverse effects leading to humane endpoints. 
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2.3 BEHAVIOURAL ASSESSMENT 

I assessed hindlimb motor performance using the open-field Basso Mouse Scale (BMS) (Basso 

et al., 2006), with scores ranging from 0 (complete hindlimb paralysis) to 9 (healthy). I scored 

the animals for 4 minutes in an open field prior to the SCI induction and 1, 3, 5, 7, 10, 14, 18, 

and 21 dpi to confirm mice displayed the level of hind-limb locomotor impairment expected 

from a moderate contusion SCI. Only animals with left and right hindlimb BMS scores within 

2 points of each other and a BMS score of 0 at 1 dpi were used. For statistical analysis of the 

BMS scores, I took the average scores of the left and right hind limbs resulting in a single BMS 

score for each animal. BMS scores changed as a function of time (Figure 2.3), as expected 

(Two-Way Mixed ANOVA; F (7, 112) = 38.64; p < 0.0001), however I did not observe 

behavioural differences between male and female mice over time (Two-Way Mixed ANOVA; 

F (7, 112) = 0.5940; p = 0.76). 

 
Figure 2.3 Basso Mouse Score (BMS) from male and female mice. Data are mean (± SEM) and have been collected from n≥4 mice per dpi. 

2.4 SUMMARY 

Mouse models of contusion SCI are useful tools for furthering our understanding of the 

dynamic SCI pathology. The model is not without caveats, but advantages such as genetic 

modifications and manageable ethical concerns help to balance these out. The induction of 

contusion SCI is a well-established procedure both in the Pluchino lab and in the field of SCI 

research. While progress has been made to refine the technique and minimise adverse 

effects, future studies could look to further improve post-op care perhaps by extending the 

housing period in a heated chamber, although this preliminary observation requires 
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replication. A major refinement to the technique was the use of computerised impactor 

devices and standardised behavioural scales like the BMS, which allows for increased 

reproducibility across studies and ultimately reduce the number of animals needed for each 

study. As this PhD project investigated myeloid cells after SCI from both male and female 

mice, it was important to investigate sex-driven behavioural differences. The lack of such 

differences supported the use of male and female mice in this study and supports the effort 

to include female animals in pre-clinical studies. 
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 GENERATING THE TIME-RESOLVED MYELOID CELL ATLAS  

 

 

 

 

 

 

 

 

 

“As always in life, people want a simple answer . . . and it’s always wrong.” 

— Susan Greenfield 
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3.1 INTRODUCTION 

The ability of single-cell transcriptomics to uncover cellular-level heterogeneity, even in 

seemingly homogenous populations, has transformed our understanding of cellular biology. 

In the context of myeloid cells after SCI, scRNAseq has allowed us to deconvolute the dynamic 

and heterogenous response that occurs during the secondary injury at an unprecedented 

resolution. This high-throughput approach generates immense quantities of data with unique 

computational challenges; thus, the analysis of scRNAseq data must be planned and executed 

just as carefully as the sample collection.  

 

Myeloid cells are of particular interest after SCI as they are major players in the inflammatory 

response in both humans and mice (Alizadeh et al., 2019; Gensel & Zhang, 2015). 

Furthermore, in contrast to peripheral lesions, SCI is characterised by persistent inflammation 

and the number of myeloid cells in the spinal cord post-SCI remain elevated well into the 

chronic phase (Donnelly & Popovich, 2008) and likely perpetuate the inflammation that 

characterises the chronic wound state. However, over the course of the SCI pathology, 

myeloid cells play complex and dynamic roles with both beneficial and detrimental effects 

(Gaudet & Fonken, 2018) (1.1.3 A Closer Look at the Immune Response to SCI). Thus, a time 

resolved analysis at single cell resolution would help to unravel the heterogenous roles of 

myeloid cells post-SCI.  

 

Here, I developed a single cell isolation protocol to extract Cx3cr1+ myeloid cells from 

transgenic mouse models of contusion SCI across the acute, subacute, and early chronic 

phases of SCI for scRNAseq. Significant effort was made to minimise extraction-induced 

transcription. Other researchers have confirmed that microglia are highly sensitive to 

perturbations and have shown that the isolation of these cells for scRNAseq can produce 

activated clusters if extra precautions are not taken (Haimon et al., 2018; Marsh et al., 2020). 

Using this Cx3cr1 dataset, I also established a pre-processing, quality control and preliminary 

analysis workflow based on published approaches, most of which have recently been 

summarised in an online book (Amezquita et al., 2020). The code I wrote for handling the data 

in this chapter is publicly available on my GitHub (https://github.com/regan-

hamel/PhD_Dissertation). 
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3.2 MYELOID CELL ISOLATION  

The most common method of isolating cells of interest for the generation of omics data is via 

FACS, which requires the cells to be fluorescently labelled. One approach to fluorescently 

labelling cells is to stain cell surface protein(s) that serve as cell markers (such as CD45/CD11b 

for myeloid cells) with fluorophore-conjugated antibodies. However, this approach has 

several caveats, especially for myeloid cells. Firstly, it requires staining and washing steps, 

which adds time to the protocol and is typically performed at room temperature (Li et al., 

2019) or on ice with longer incubation periods (Hammond et al., 2019). Secondly, given the 

vast quantity of cells in suspension and the time constraint, antibody staining is inefficient 

compared to transgenic fluorescent labelling. When attempting to isolate optimal cell 

quantities for scRNAseq (~20,000) from small quantities of tissue (5 mm of the mouse spinal 

cord) and minimizing the time ex vivo, transgenic labelling is the superior approach.  

 

In this chapter, I used a transgenic mouse strain to label and ultimately isolate myeloid-

lineage cells for scRNAseq. The mouse strain was B6.129P2(Cg)-Cx3cr1tm2.1(cre/ERT2)Litt/WganJ 

(Parkhurst et al., 2013), purchased in 2018 from Jax, hereon referred to as Cx3cr1. This strain 

has constitutive expression of the enhanced yellow fluorescent protein (YFP) transgene and 

a tamoxifen-dependent Cre recombinase under the Cx3cr1 promoter, ultimately labelling all 

Cx3cr1-expressing cells as YFP+ (see 4.2). With this mouse strain, I generate and maintained 

mouse models of contusion SCI or laminectomy-only controls as described in Chapter 2. At 1, 

2, 3, 10, or 21 dpi, I deeply anaesthetised the mice with an intraperitoneal injection of 100 µl 

of pentobarbital sodium before performing transcardial perfusion with carbogen-bubbled, 

ice-cold, artificial cerebral spinal fluid (aCSF) for 7 minutes or until the liver was clear of blood. 

I chose to use aCSF (Tasic et al., 2016; Zeisel et al., 2018) to maintain the tissue in 

physiological-like conditions for as long as possible, minimising isolation-induced 

transcription. Furthermore, from the point of perfusion, I kept all tissue or cells at 4°C or on 

ice, to slow metabolic activities and prevent molecular changes associated with the isolation 

protocol.  

 

After perfusion, I extracted the spinal columns and placed them in conical tubes of ice-cold 

aCSF. I voided the spinal column using the hydraulic extrusion method (Au - Richner et al., 
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2017) using a 5 ml syringe filled with ice-cold aCSF. I cut a 5 mm section of the spinal cord, 

centred on the lesion. Then, I mechanically homogenised the tissue sections using a 7 ml 

Dounce Tissue Grinder (DWK Life Sciences) filled with 6 ml of homogenisation buffer that I 

concocted as follows: aCSF with 10 mM HEPES (Sigma) to maintain stable pH despite CO2 

released from the cells; 1% BSA (Sigma) to reduce cell clumping; 1 mM EDTA (Thermo 

Scientific) to chelate Ca++ and Mg++, reducing cell adhesion; 10 mg/ml of DNAse (Roche) 3000U 

to degrade free-floating DNA and reduce cell clumping; and 40 units/µl of RNAse inhibitor 

(Invitrogen) to minimize the degradation of mRNA transcripts. I chose mechanical tissue 

dissociation over enzymatic dissociation because it is much faster (1 minute vs 30 minutes), 

can be performed on ice vs 37°C, and is less likely to cause conformational changes of cell 

surface receptors, which could elicit transcriptional changes. 

 

After tissue dissociation, all pipetting was performed using wide bore pipette tips (Alpha Labs) 

to reduce shear strain and ultimately increase cell viability and quality. I filtered the 

dissociated tissue suspension through a 40 µm strainer. I pre-wet the strainer with aCSF to 

prevent cells from adhering to the dry mesh and I rinsed the homogeniser with 2 ml of 

homogenisation buffer to increase cell yield from these small tissue sections. Then, I removed 

myelin and debris from the cell suspension by adding 2.7 ml of isotonic 9:1 Percoll (Sigma) to 

10X PBS. I gently mixed the samples by inverting them 10 times and then centrifuged at 800 

g for 20 minutes at 4°C. The brake speed was set to 0 to preserve the myelin debris ring, which 

visibly layered at the surface. After removing the myelin debris ring, I washed away the Percoll 

by adding ~5 ml of ice-cold buffer of 5% autoMACS Rinsing Solution (Miltenyi Biotec) in 1X 

MACS BSA solution (Miltenyi Biotec) and then centrifuging the samples at 800 g for 5 minutes 

at 4°C.  

 

I resuspended the pelleted cells in 200 µl of FACS buffer, which comprised Cell Staining Buffer 

(Biolegend) with 10 mM HEPES (Sigma), 1% BSA (Sigma), 1 mM EDTA (Thermo Scientific), 10 

mg/ml of DNAse (Roche) 3000U, 40 units/µl of RNAse inhibitor (Invitrogen), and 7-AAD 

live/dead stain (Invitrogen) at a concentration of 1:50. Finally, I worked with the technicians 

at the Cambridge Phenotyping Hub to isolate live myeloid cells (7-AAD- YFP+) using a BD FACS 

Aria III cell sorter. We set the sorter to 3-way purity and 20 psi with a 100 µm nozzle – these 

parameters allow for high accuracy sorting (minimising the isolation of non-myeloid [YFP-] cell 
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types) with less pressure and shear stress applied to the cells compared to smaller nozzles 

and higher pressure. As the panel consisted of only YFP and 7-AAD, fluorochrome 

compensation was not required. We set the gates based on an unstained WT sample and a 7-

AAD stained WT sample (Figure 3.1A). To increase cell yield but minimise the isolation of non-

myeloid cells, we set the cell and singlet gates generously, but were strict on the live and YFP+ 

gates (Figure 3.1B). 

 
Figure 3.1 A representative FACS gating strategy based on a 7-AAD stained WT sample (A) for a 21 dpi Cx3cr1 sample (B). SSC = side 
scatter; FSC = forward scatter 

 

A 
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After scRNAseq and compiling the myeloid dataset as described below, I investigated the 

expression of FACS and dissociation-associated genes (van den Brink et al., 2017) in the Ctrl 

samples of this dataset, and compared it with Ctrl microglia from other scRNAseq studies 

(Arneson et al., 2018; Hammond et al., 2019; Van Hove et al., 2019; Zeisel et al., 2018). I found 

that, after applying the same QC thresholds to each sample, Ctrl microglia from this study 

expressed at least slightly lower levels of FACS and dissociation-associated genes, even 

compared to a sample that was processed without FACS (Figure 3.2). 

 
Figure 3.2 Violin plots showing the percentage of all logcounts originating from dissociation- or FACS-associated genes, per Ctrl microglia 
cell, across several droplet- based scRNAseq studies after applying the same QC metrics. Black dots represent the median. F= FACS, E= 
enzymatic dissociation (vs. mechanical). The dotted line represents the median for this study, which was lower than the others, even 
Zeisel et al., who did not use FACS (or any alternative method) to isolate cells. 

3.3 SINGLE-CELL RNA SEQUENCING 

The staff at the CRUK Cambridge Institute Genomics Core sequenced the cells with single-cell 

acuity using the microdroplet based-platform, 10X Genomics Chromium Single Cell 3’ Solution 

followed by Illumina sequencing. 

 

 10X GENOMICS CHROMIUM BARCODING & LIBRARY CONSTRUCTION 

The 10X Genomics Chromium platform exploits the polarity differences between water and 

oil to encapsulate single cells, enzymes and nucleotides for reverse transcription, and gel 

beads into water droplets, cumulatively referred to as a gel bead in emulsion (GEM) (Figure 

3.3A). For approximately 1% per 1000 cells, two cells are captured within a single GEM, which 

is known as a doublet. After GEM formation, the cells are lysed and the mRNAs are reversed 

transcribed into cDNA within the GEM, incorporating the unique barcodes into their 
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sequence. The templates for the barcodes are DNA oligonucleotide molecules of known 

sequences, which coat the gel beads (Figure 3.3B) and contain 4 segments: a read 1 primer 

that allows the barcode to be synthesized and read during sequencing; a 16bp cell barcode 

that is unique to each bead allowing us to demultiplex the samples, i.e., trace the mRNA back 

to the cell of origin after sequencing; a UMI of 10bp (version 2 chemistry) or 12bp (version 3 

chemistry) unique to each oligonucleotide, allowing amplified transcripts to be deduplicated, 

i.e. traced back to their original mRNA, enabling us to discriminate between transcripts that 

were highly expressed in vivo versus those that were highly amplified ex vivo; and a poly(dT) 

tail allowing the barcoded oligonucleotide to bind the poly(A) tail of the mRNA. To ensure 

that the poly(A) anneals to the beginning of the poly(T), the poly(dT) primer also includes a 

VN anchor (where N is any nucleotide and V is not T). 

 

Once the cDNA is barcoded by its cell and transcript of origin, the oil can be removed, and 

library preparation proceeds similar to bulk sequencing (Figure 3.3C). First, the cDNA is 

amplified, then enzymatically fragmented and size selected using SPRI beads. The fragments 

of optimal length (400-600bp) are then ligated to an 8bp sample index barcode that denotes 

the sample, a read 2 primer that allows the transcript to be synthesized and thus sequenced, 

and P5/P7 primers used for amplification on the Illumina flow cell. Finally, the full cDNA 

construct is amplified through PCR and then sequenced. 

 
Figure 3.3 10X Genomics Chromium Single Cell 3' Solution workflow: A) GEM formation, B) Oligonucleotide coated gel beads, C) the library 
preparation for Illumina sequencing (Durruthy, 2019) 

 

B 

A C 
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 ILLUMINA SEQUENCING 

The cDNA libraries generated in January and March 2019 were sequenced on 2 lanes at a 

depth of at least 36,000 reads per cell on the HiSeq4000 (Illumina). All later samples were 

sequenced on the NovaSeq 6000 at a depth of at least 50,000 reads per cell. This change was 

made at the advice of the Genomics Core staff who determined that it improved base quality 

scores by 15-20%. 

 

During sequencing, the 10X primer (read 1) directs the 26bp sequencing of the 10X barcode 

and UMI for each cDNA fragment, avoiding the unnecessary sequencing of the poly(A). The 

read 2 primer directs the sequencing of the transcript. In this project, the purpose of 

sequencing was to identify and quantify mRNAs, so it was not necessary to sequence entire 

transcripts. Thus, 98 (version 2) or 91 (version 3) cycles of sequencing were requested from 

the read 2 primer, as this was the optimal length recommended by 10X Genomics for effective 

alignment to the mouse transcriptome.  

 

The output of the sequencer was a binary base call file, which registers the identity, location, 

and confidence level for each detected fluorophore on the flow cell in real time during 

sequencing. This file was converted to a FASTQ format via bcl2fastq conversion software 

(Illumina), and a preliminary quality checks were performed using FastQC (Babraham 

Bioinformatics, CRUK Cambridge Institute), a java-based software that quickly verifies the 

sequencing quality and can identify the source of the low-quality data if applicable. 

3.4 COMPILING THE TIME-RESOLVED MYELOID CELL ATLAS 

The vast quantity of data generated through scRNAseq requires careful pre-processing before 

it can be interpreted in a biologically meaningful way. The key steps in this workflow are 

outlined in Figure 3.4, each of which will be discussed in detail below. Each sample is barcoded 

separately but multiplexed with other samples of the same or similar collection date. From 

there, each sample is pre-processed in parallel, until the normalisation step. At this point, the 

samples are integrated and are then ready for further analysis and interpretation. 
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Figure 3.4 The general workflow for the compiling the myeloid cell atlas 

 

 ALIGNING THE SEQUENCES TO THE MOUSE TRANSCRIPTOME 

After obtaining the demultiplexed FASTQ files from the Genomics Core, I aligned the reads to 

the GRCm38 (mm10) mouse genome using 10X Genomics’ Cell Ranger software (version 

3.1.0). Notably, the gene Clec7a was not present in the mm10 reference genome supplied by 

Cell Ranger, so with the help of Dr Andrian Yang, a post-doctoral researcher in the Marioni 

group, I generated an edited mm10 reference genome to include this gene. The output from 

the Cell Ranger count pipeline includes an unfiltered feature-barcode matrix, which contains 

all the cell barcodes with at least one associated read. 

 

I performed all remaining scRNAseq data analysis in R version 3.6.3, largely handling the data 

as a SingleCellExperiment object from the SingleCellExperiment package (version 1.8.0). All 

the packages I used are publicly available on the Comprehensive R Archive Network 

(https://cran.r-project.org), Bioconductor project (http://bioconductor.org), or their 

respective GitHub pages. The complete R analysis workflow used in this chapter is available 

on GitHub: https://github.com/regan-hamel/PhD_Dissertation. 

 

 CORRECTING BARCODE SWAPPING 

The two Illumina sequencers used in this study (HiSeq4000 and NovaSeq 6000) utilise 

patterned flow cells to increase cluster density compared to bridge amplification, ultimately 

reducing the cost and increasing the read quality (Sinha et al., 2017). However, this 

sequencing method has been associated with an effect called barcode swapping, in which 

multiplexed cDNA fragments are labelled with an inappropriate sample index barcode during 

the cluster-generating amplification step on the patterned flow cell. Barcode swapping might 

affect 2.5%-10% of reads (Griffiths, Richard, et al., 2018; Sinha et al., 2017) and has been 

shown to produce artefactual libraries that can be mistaken for cell libraries in droplet-based 

scRNAseq studies such as this one. To mitigate this effect, an algorithm has been developed 

to identify and remove reads from swapped sample index barcodes (Griffiths, Richard, et al., 
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2018). Briefly, this approach assumes that two barcoded cDNA molecules from different 

samples are highly unlikely to have the same combination of UMI sequence, sample index 

barcode, and gene identity. Thus, when examining multiplexed samples, the algorithm 

identifies these “unlikely” molecules and removes them, unless they originate from the 

dominant sample. 

 

Before further processing of the feature-barcode matrix, I used the aforementioned 

algorithm to remove swapped molecules by calling swappedDrops from the DropletUtils 

package (version 1.6.1) on the samples of a given sequencing batch. Three samples (D10, G11, 

G9) required a second round of sequencing to increase their depth, and in these cases, I was 

not able to correct for barcode swapping. 

 

 CELL CALLING 

To minimise the occurrence of doublets, the droplet-based single-cell isolation system 

described in Section 3.3.1 results in far more empty droplets than cell capturing-droplets. The 

identity of the latter is not known a priori, and empty droplets are not truly empty, but rather 

contain ambient transcripts released from damaged cells during the isolation process. Thus, 

there is a need for computational approaches to distinguish empty vs. cell-containing 

droplets. 

 

Cell Ranger is the default approach for cell calling in 10X Genomics scRNAseq samples. Before 

Cell Ranger version 3, the pipeline called cells by assuming that cell-containing droplets 

corresponded to increased UMI counts (Lun et al., 2019). For a heterogenous sample, such as 

myeloid cells isolated ex vivo after SCI, Cell Ranger’s original barcode filtering method was not 

the most appropriate approach. 

 

Before Cell Ranger version 3 became available, I called cells from each sample’s unfiltered 

feature-barcode matrix using the emptyDrops function from the DropletUtils package (Lun et 

al., 2019). This approach prevents cells with low-UMI counts from being discarded as empty 

droplets by profiling the background mRNA barcoded in empty droplets and then classifying 

cell-containing droplets as those that significantly differ from the background. To visually 

inspect the outputs of this approach, we can take the negative log probability of obtaining a 
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given cell barcode’s profile from the background profile and plot it against the cell library size 

(UMI count) and map the called cells vs empty droplets (Figure 3.5). The emptyDrops filtered 

feature-barcode matrix for each sample was then used for all downstream processing. 

 

 
Figure 3.5 A diagnostic plot of the EmptyDrops output for sample G11. Each circle represents a cell barcode. As expected, called cells (red) 
have a higher -log probability or a much larger UMI count than empty droplets (black). Cells with low UMI counts but a relatively larger -
log probability resulted in a FDR < 0.01 and were not discarded as empty droplets on the basis that their mRNA profiles significantly 
differed from the profiles of the null model.  

 

A similar approach to emptyDrops was adopted in Cell Ranger version 3. I chose to continue 

using emptyDrops to allow for inspection into the cell calling statistics, however using the 

filtered feature-barcode matrices from Cell Ranger version 3 would have also been sufficient. 

 

 QUALITY CONTROL 

Before the gene expression of the feature-barcode matrices can be biologically interpreted, 

low quality cells must be removed; there are several standard approaches to accomplish this, 

with fixed vs adaptive thresholds being the most common (Amezquita et al., 2020). To 

determine which approach was the most appropriate for this dataset, I first used the 

perCellQCMetrics function from the scater package (version 1.14.6) (McCarthy et al., 2017) to 

investigate the cell-based QC metrics for each sample.  
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Within each sample, the distribution of library sizes**  was similar to that of the complexity 

and in many cases, cells with lower complexity and smaller library sizes had higher 

proportions of mitochondrial transcripts (Figure 3.6). Based on these three metrics, most cell 

libraries in sample H9 were low quality, an observation supported by the fact that sample also 

had a low fraction of reads in cells (only 45.1%). Thus, sample H9 was excluded from further 

analysis. 

 

Samples from the 10-Jan-19 collection date (F3, E3, D3), processed with version 2 chemistry, 

had smaller library sizes and fewer detected genes compared to the version 3 samples. Yet, 

they did not have the high proportion of mitochondrial transcripts observed in cells from 

version 3 samples with similar library sizes, suggesting that it was a difference in chemistry 

and not necessarily cell quality that led to reduced library size. 

 
Figure 3.6 Violin plots depicting the log10 number of detected genes per cell (A) or UMI counts per cell (B) for each sample. Each cell is 
coloured by its proportion of mitochondrial transcripts. Cells with fewer detected genes and fewer UMI counts often expressed higher 
proportions of mitochondrial transcripts, suggesting these cells are of low quality. 

 

Given that the Cx3cr1 dataset comprised five different collection dates, I wondered whether 

the observed variation in QC metrics across the samples might correspond to the batch in 

 

** Library size refers to the number of UMI counts per cell. Complexity refers to the number of detected genes. 

A 
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which the samples were isolated and barcoded. This was generally true for samples of the 

same dpi collected on the same date (Figure 3.7).  

 

 
Figure 3.7 Violin plots depicting the log10 UMI counts per cell for each sample. Each cell is coloured by the collection date (A) or the dpi 
(B). Samples from the same condition that were collected on the same day appear to have similar distributions of cell library sizes. 

 

After investigating the QC metrics, I utilized them to filter out low-quality cells. Unfortunately, 

since I isolated cells from the damaged epicentre of the spinal cord and many samples showed 

the hallmark signs of poor quality (small library, low complexity, and high proportions of 

mitochondrial transcripts; Figure 3.6), I could not assume that all samples showed typical 

features of high quality libraries and thus could not identify low quality cells with adaptive QC 

thresholds. Instead, I removed low-quality cells using fixed thresholds. For the proportion of 

mitochondrial transcripts, I chose to use a fixed threshold of 5% (Figure 3.8), in line with a 

recent study of mouse mitochondrial transcript proportions in high vs low quality cells in 

scRNAseq datasets (Osorio & Cai, 2021). I considered that this approach might remove 

metabolically active cells, however if such cells were present in the dataset, I would expect 

them to have larger library sizes, i.e., populate the upper right quadrant of the plot in Figure 

3.8, which was not the case. 

A 

B 
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Figure 3.8 A plot of the log 10 library size vs the proportion of mitochondrial transcripts for all the Cx3cr1 samples except H9 (removed 
for QC). Each cell is coloured by its proportion of mitochondrial transcripts. Cells with more than 5% mitochondrial counts were removed 
as low-quality.  

 

To further filter the Cx3cr1 dataset, I set thresholds for the minimum number of UMIs and 

genes, which differed between version 3 and version 2 samples (Figure 3.9). These values 

were determined empirically but were similar to reported values for other myeloid cell 

scRNAseq datasets (Hammond et al., 2019; Zeisel et al., 2018). After applying these 

thresholds, sample F3 contained fewer than 100 cells and was removed as a failed sample. In 

total, 12,235 cell libraries passed the QC filtering. 

 

A 
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Figure 3.9 A violin plot of the Cx3cr1 dataset after cells have been filtered by mitochondrial transcript proportions. Each cell is coloured 
by chemistry version. A) the log10 UMI counts per sample. The black line depicts the version 3 threshold of 1000 UMIs per cell; the blue 
line is the version 2 threshold of 450 UMIs per cell. B) The log10 detected genes per sample. The black line depicts the version 3 threshold 
of 600 genes per cell; the blue line is the version 2 threshold of 450 genes per cell. 

 

Given the expected heterogeneity within the Cx3cr1 dataset, I questioned whether my QC 

thresholds had erroneously removed certain myeloid cell types. To address this, I calculated 

the average counts per gene for the kept vs discarded libraries, then used these to calculate 

the average log2 fold change (log2FC) of each gene, as previously described (Amezquita et al., 

2020). I visualised these results by plotting the average UMI count of a given gene vs its log2FC 

and observed an increase in certain genes in the discarded libraries. I investigated the genes 

with a log2FC greater than 0.25, and as expected, many were mitochondrial genes. However, 

based on PanglaoDB (Franzén et al., 2019), many of these genes were expressed in non-

myeloid CNS or endothelial cells (Figure 3.10A). Conversely, the genes with the highest 

increase in the retained libraries were myeloid cell genes (Figure 3.10B), suggesting that the 

QC thresholds removed the appropriate cell barcodes. 

 

B 

A B 
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Figure 3.10 The average UMI count per gene vs the log fold change between the cell libraries removed or kept based on QC thresholds. 
Each point is a gene. Genes are coloured by the cell type in which they are highly expressed. The expression of genes from non-myeloid 
CNS cells is higher in the discarded cell libraries (A) while myeloid cell genes are highly expressed in the cell that remain after QC (B) 
 

 DOUBLET DETECTION 

The 10X Genomics single cell 3’ solution has a doublet rate of approximately 1% per 1000 

cells. A dataset of this size likely contains a substantial volume of doublets or multiplets, which 

must be removed before further downstream processing to avoid confounding results. I 

identified doublets using the cxds_bcds_hybrid() function from the scds package (version 

1.2.0) with the parameter estNdbl = TRUE (Bais & Kostka, 2020). Briefly, this approach predicts 

doublets by combining the outputs of two scoring methods: cxds, which evaluates the co-

expression of genes across cells, looking for instances of unlikely combinations; and bcds, 

which generates artificial doubles based on the dataset, then looks for cell libraries that are 

similar to the artificial doublets. In total, 2,681 doublets were identified and removed from 

the dataset leaving 13,659 cells for downstream processing (Table 3.1). Given the number of 

samples (13 successful and 2 failed), this dataset is quite small. The reasons for this are 

discussed in 4.8. 

 

dpi 
Sample 

ID 
Sex 

# of 
mice 

Collected Flow Cell 
Cell 

Count 
Median 

Genes/Cell 
Mean 

Reads/Cell 
Chemistry 

version 
Ctrl F3 M 1 Jan-19 SLX-17383 removed  249 7.09x104 2 
Ctrl H9 M 1 Mar-19 SLX-17931 removed  293 4.28x104 3 

Ctrl G11.D2 F  July-19 
SLX-17850 
SLX-20169 

283* 1,228 6.36x104 3 

Ctrl D10 M 2 May-19 
SLX-17998 
SLX-20169 

1,208* 1,747 5.40x104 3 

1 F9 M 2 Mar-19 SLX-17931 907 1,309 5.11x104 3 
1 G9.D1 M 1 Mar-19 SLX-17931 597 1,400 6.78x104 3 
1 H11 M 1 Apr-19 SLX-17931 969 1,092 5.90x104 3 
2 E11 M 3 July-19 SLX-17998 660 2,972.5 3.58x104 3 
2 F11 F 2 July-19 SLX-17998 525 1,282 3.16x104 3 
3 E3 M 1 Jan-19 SLX-17383 432 663 1.29x105 2 
3 D3 M 1 Jan-19 SLX-17383 380 644 1.75x105 2 

3 G9.D3 M 2 July-19 
SLX-17998 
SLX-20042 

3,277 1,980 5.21x104 3 

10 E10 M 2 May-19 SLX-17850 957 1,008 1.14x105 3 
10 F10 M 1 May-19 SLX-17850 818 1,151.5 8.44x104 3 
21 G11.D21 F 1 April-19 SLX-17931 841 1099 7.95x104 3 

Table 3.1 The Cx3cr1 scRNAseq samples. M=male, F=Female. # of mice indicates the number of sex, age, and condition-matched mice 
pooled in the scRNAseq sample. The Cell Count, and Median Genes per cell all refer to the post-QC values except for samples F3 and H9 
where the Cell Ranger value is reported. For the samples sequenced twice to increase sequencing depth, both flow cells are reported, 
and the cell count, median genes/cell, and mean reads/cell are the results of the two combined sequencing runs.*after removing 
proliferating cells (see Normalisation). 
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 NORMALISATION 

Systemic variation in sequencing coverage between cell libraries can lead to confounded 

interpretations of scRNAseq data. To mitigate this, I normalised the dataset using a scaling 

normalisation, in which each cell’s UMI counts are divided by a cell specific size factor. Since 

the Cx3cr1 dataset comprised multiple sequencing runs, I used the multiBatchNorm() function 

from the batchelor package (version 1.2.4) with batches defined as the flow cell sequencing 

batch. I considered the samples that were sequenced twice (see Table 3.1) as their own 

batches for the purpose of normalisation and HVG selection. This function scales size factors 

relative to the average library size of each batch then uses these size factors to normalise the 

data, ultimately downscaling the counts in batches with higher sequencing depth to match 

the lowest batch. This normalisation approach eliminates an element of technical variation 

between the batches, making it easier to correct for batch effects downstream. The output is 

the log-transformed normalised UMI counts, hereon referred to as logcounts. 

 

At this stage, I was able to investigate the normalised expression of genes of interest within 

the samples allowing me to perform a quick ‘sanity check’ to ensure that the samples 

exhibited expected cell markers and basic phenotypes. A more thorough investigation of the 

Cx3cr1 dataset was performed after batch correction (see 3.5) but in this ‘sanity check’ I 

noticed that a subset of the Ctrl sample, G11.D2, was proliferating (Hammond et al., 2019; Li 

et al., 2019; Milich et al., 2021; Tay et al., 2017). Upon closer inspection, it appeared that a 

few sample D10 cells were also proliferating. First, I assumed they were proliferating due to 

inadvertent injury during the laminectomy. However, when compared to 1 dpi and 2 dpi 

samples, the Ctrl samples did not show the activated microglia profile and retained the 

expression of homeostatic microglia genes (Figure 3.11). I also ruled out the possibility that 

this sample was enriched for CAMs, which are present around the Ctrl spinal cord at low levels 

(Goldmann et al., 2016; Jordão et al., 2019; Milich et al., 2021). It’s likely that these cells were 

activated during the isolation process, as previously reported (Haimon et al., 2018; Hammond 

et al., 2019; Milich et al., 2021). 
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Figure 3.11 Heatmap of the Ctrl, 1 and 2 dpi samples from the Cx3cr1 dataset. Each row is a gene, and each column is a cell. Genes are 
organised by the cell state they represent. hMG = homeostatic MG; aMG = activated microglia; CAMs = CNS associated macrophages. 
Sample G11.D2 upregulates proliferation markers, but, compared to 1 and 2 dpi samples, retains the homeostatic microglia profile, 
suggesting these cells are cycling but not activated. 

 

I anticipated that this proliferating subset of sample G11.D2 would have implications for the 

interpretation of clustering and DEG analysis. Thus, I opted to remove these cycling cells for 

the downstream analyses. To this end, I clustered the cells as described in Section 3.5.1, then 

annotated and subset out the proliferating clusters leaving 11,852 cells in the dataset. 

 

 HIGHLY VARIABLE GENE SELECTION 

When performing downstream analyses such as batch correction, dimensionality reduction, 

and clustering, considering only genes with biological, as opposed to technical, variability 

across cells facilitates the interpretation of the results by retaining the biological 

heterogeneity and, ideally, minimising the uninteresting technical noise (Amezquita et al., 

2020; Lun, 2016). I identified HVGs using the scran package (version 1.14.6). First, I modelled 

the technical noise in the dataset by calling the function, modelGeneVar, on each batch. 

Batches were defined as the sequencing batch and provided through the parameter, block. 

modelGeneVar assumes that the variance of the majority of genes stems from the random 

technical noise, thus the resulting trend approximates the technical noise as a function of the 

genes’ expression level (Figure 3.12). This trend can then be used to predict the technical and 

biological components of each gene’s variance, where the technical component is the fitted 
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value and the biological component is the difference between the fitted value and the total 

variance (Amezquita et al., 2020). After estimating each gene’s biological variance, I selected 

the 20% with the highest biological components as the HVGs. A total of 1,310 HVGs were 

selected for the downstream analyses. 

 
Figure 3.12 The mean log-expression vs variance for the 9-Apr-19 batch. Each point is a gene. The blue line is the fitted trend, which 
represents technical noise in the dataset. The red line with arrowheads depicts the biological variance for the gene Spp1. 

 

 BATCH CORRECTION 

The Cx3cr1 dataset consisted of five collection dates, as outlined in Table 3.2. Collecting 

samples in batches, while necessary for large datasets, produces technical shifts in the data 

that can make interpretation difficult. These shifts can be caused by a wide range of factors, 

such as circumstantial protocol adjustments, altered reagent quality, or different users at the 

Genomics Core or FACS facilities. To minimise the impact of batch effects on downstream 

processes, such as dimensionality reduction and clustering, we can identify and correct for 

these shifts. Note that for normalisation and HVG selection, I defined batches as samples that 

were multiplexed for sequencing as shown in Table 3.1 and Table 4.1. However, for batch 

correction, I observed clear shifts in the UMAPs of sex- and dpi-matched samples collected 

on different dates but sequenced on the same flow cell (Figure 3.13A). To further validate this 

observation, I investigated three 1dpi samples, two of which (F9 and G9.D1) were collected 

on the same day, while the other (H11) was collected on different day but multiplexed with 

the other two. With these three samples, I performed a PCA using scater, then quicky 

clustered the cells by building a shared nearest neighbour (SNN) graph with scran and 

identified communities using the walktrap algorithm from the igraph package (version 1.2.6). 

Biological variance 

Spp1 
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Then, I investigated the distribution of the three samples across the clusters and found that 

H11 typically clustered alone, while F9 and G9.D1 clustered together (Figure 3.13B,C). Thus, 

for the purposes of batch correction, I defined batch as the date of collection. 

 
Figure 3.13 A) UMAP of three sex-matched 1 dpi samples sequenced on the same flow cell. Each cell is coloured by its sample and shaped 
by its collection date. We can see that sample H11 is shifted from the 1 dpi sample collected on a separate day. B) The same UMAP 
coloured by its cluster and shaped by its sample. C) A quantification of the cluster membership shown in (B). We can see that the two 
samples (G9.D1 and F9) collected on the same day also cluster together. 

 

Since I could not assume that the composition of cell profiles was consistent across batches, 

the linear regression approach to batch correction was not suitable. As such, I opted for the 

mutual nearest neighbours (MNN) approach (Haghverdi et al., 2018) by calling fastMNN() 

from the batchelor package with following parameters: batch = the date collected, subset.row 

= HVGs, merge.order as shown in Table 3.2. A major assumption of the MNN approach is that 

there is at least partial overlap of cell populations between the two batches. Thus, an optimal 

experimental design would ensure that batches were arranged such that at least one 

condition was common between batches. It is clear from Table 3.2 that I did not have this in 

mind when collecting the early samples, an error I tried to mitigate with the later samples, 

with only partial success due to animal logistics.  

 

Merge Order Date Collected dpi 

1 23-May-19 
Ctrl 
10 
10 

2 20-Jul-19 

Ctrl 
2 
2 
3 

3 10-Jan-19 3 
3 

C A B 
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4 28-Mar-19 1 
1 

5 9-Apr-19 1 
21 

Table 3.2 The batches comprising the Cx3cr1 dataset, the conditions collected in each batch, and the order they were merged. 

 

With the merge order shown in Table 3.2Table 3.2, I was able to first merge the two batches 

with Ctrl samples (23-May-19 and 20-Jul-19), setting a space that described the Ctrl, 2, 3 and 

10 dpi populations. From here, I was forced to merge the 28-Mar-19 1 dpi samples without a 

guaranteed match. I reasoned that, given the experimental design, this was the best option 

since I expected 1 and 2 dpi to be somewhat similar and at least when merging the 9-Apr-19 

1 dpi and 21 dpi samples the 1 dpi would overlap, minimising any false-correction of the sole 

21 dpi sample. Satisfied with the results the fastMNN approach, I did not explore other batch-

correction methods. However, a recent benchmarking report suggested that while fastMNN 

performed well, Harmony ranked the highest of the 14 methods under investigation (Tran et 

al., 2020). Harmony is a computationally inexpensive, unsupervised joint embedding method 

that exploits the PCA space to soft cluster analagous cells across batches whilst maximizing 

the variability within each cluster (Korsunsky et al., 2019). The centroid of each cluster is then 

used to compute a linear correction factor specific to each cluster. Each cells’ factors are then 

averaged and applied for the correction. This process, from clustering to correction, is 

reiterated until Harmony converges to a stable set of clusters. Given that Harmony does not 

require overlapping cell populations between batches (albeit this increases the error rates) 

(Korsunsky et al., 2019), it may have performed even better than fastMNN. 

 

After batch correction, I visualised the same 1 dpi samples on a UMAP built off the batch-

corrected coordinates. I found that the three samples were now well mixed, with the 

exception of the infiltrating cells from sample H11, which grouped with other infiltrating cells 

(Figure 3.14) suggesting that the batch correction was effective. In further support of this, I 

investigated the variance lost within each batch during correction and found that it was ≤ 

9.6%, with a mean value of 1.6%.  
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Figure 3.14 A) UMAPs of the Cx3cr1 dataset after batch correction with the three 1 dpi samples highlighted to emphasise the correction 
of batch effects between collection dates compared to Figure 3.13. B) A closer look at the three 1 dpi samples from A). Each dot represents 
a cell Note the differences in the composition of cell types between the two batches. Sample G9.D1 contains more infiltrating myeloid 
cells (see Annotating Cell Types). Despite this, microglia from sample H11 were still corrected to the other microglia populations, while 
the infiltrating cells were not. 

 

3.5 INITIAL TIME-RESOLVED CHARACTERISATION OF MYELOID CELLS POST-SCI 

With the Cx3cr1 samples pre-processed and integrated, the next step was to begin to 

interpret the dataset in a biologically meaningful way. I accomplished this by clustering the 

cells, assigning a specific myeloid cell type to each cell, and browsing through the DEGs 

between clusters, SCI stages, and cell types. Note that this section represents only a 

preliminary analysis as the Cx3cr1 dataset was further integrated into a larger myeloid cell 

dataset for proper analysis. 

 

 CLUSTERING  

When handling data from thousands of cells, it is not feasible to investigate each cell 

individually. By grouping the cells together based on transcriptional similarities we can assign 

biological meaning to each group, making the biological interpretation of the data much more 

feasible. These groupings are achieved through an unsupervised learning technique called 

clustering. I chose to use a graph-based clustering approach, which is commonly applied to 

scRNAseq datasets. First, using the scran package, I called the buildSNNGraph function with 

the parameters k = 20 nearest neighbours considered, use.dimred = the batch corrected 

A B 
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dimensions, and type = Jaccard index. Briefly, this function builds a SNN graph where each 

node is a cell and the connections between nodes represent each cell’s neighbour in high 

dimensional space. Then, using the Jaccard index, the weight of the connection between each 

cell is calculated, with increasingly similar cells having higher weights. After building the 

graph, I applied the Louvain community detection algorithm by calling the cluster_louvain 

function from the igraph package. This step uses modularity optimisation to identify cells that 

are more connected, and in theory, more similar to each other, ultimately breaking the graph 

into clusters (Figure 3.15A). We can evaluate the modularity between clusters as a metric of 

their “separateness” (Figure 3.15B), which can be useful for evaluating the biological 

relevance of cluster separation. Additionally, I expected some degree of modularity between 

cells from different dpi and especially between laminectomy-only Ctrl vs SCI cells. Hence, I 

investigated the correlation between dpi and cluster membership, and found statistically 

significant correlations (Figure 3.15C), suggesting a level of biological relvance for the 

clustering results. 

 

 

 

 

A B C 

Figure 3.15 A) UMAP of the Cx3cr1 dataset. Each dot represents a cell and is coloured by cluster membership. As we will see in the next 
section, these clusters can be interpreted in biologically relevant ways. For e.g., cluster 9 represents Ctrl cells and cluster 7 comprises 
infiltrating, but not resident myeloid cells from D3. B) A heatmap depicting the pairwise modularity score between clusters. Each 
row/column is a cluster. The scale bar represents the degree of modularity between clusters, compared to a null model of random 
connections. We can see that clusters are quite separated in general, and this separateness can have biological interpretation, such as 
Cluster 7/11 comprising different cell types (see Annotating Cell Types). Closely related clusters do exist, such as Clusters 10/11 or 7/8, 
and this too can be biologically interpreted as a similarity between cell states. C) A correlation plot of the Pearson’s chi-squared residuals 
between cluster membership (rows) and collection stage (columns). Blue signifies a positive standardised residual, while red signifies the 
opposite. White represents a non-significant contribution. Certain clusters, such as cluster 9, are highly correlated with a single stage, 
while others, like cluster 1, are split across more than one stage. Pearson’s Chi-squared test; X-squared = 61353, df = 85, p-value < 2.2e-
16 
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 ANNOTATING CELL TYPES 

The myeloid lineage marker, Cx3cr1, is expressed on several distinct cell types, which I 

expected to find represented in the dataset. One option for annotating cell types is to simply 

assign a cell type label to each cluster. However, a new method, CellAssign (Zhang et al., 

2019), provides automated cell type annotation based on cell-type marker genes without 

assuming that cluster membership is biologically relevant. This approach takes in a post-QC 

counts matrix (pre-normalisation) and a set of marker genes for the cell types of interest. It 

then uses a hierarchical statistical model to calculate the probability of a cell belonging to a 

given cell type or if the probability is below a tuneable threshold, the cell remains unassigned 

to minimise improper labelling. 

 

I called the function, cellassign, from the cellassign package (version 0.99.21) using the default 

parameters and a custom marker gene list described in Table 3.3. The output contained 

maximum likelihood estimates of the cell type, which can be visualised in (Figure 3.16A). With 

an 80% probability threshold, 1,503 cells were still unassigned. However, these cells clearly 

clustered with a given cell type, justifying the use of cluster membership to manually annotate 

the unassigned cells (Figure 3.16B). 

 

 Marker genes 

Microglia Sparc, C1qa, Plxdc2, Serpine2, P2ry12, Tmem119, Siglech, Ctss, Cst3, Slc2a5, Sall1 

Macrophages Ms4a7, Ecm1, Arg1, Ccl7, Mgst1 

Monocytes Chil3, Plac8, Ccr2, Rgs1, Fn1 

Dendritic Cells Cd74, H2-Eb1, H2-Aa, H2-Ab1, Plac8, H2-DMb1, H2-DMa, Klrd1, Flt3, Zbtb46 

Neutrophils S100a8, S100a9, Lcn2, Dedd2, Retnlg, Wfdc21, Mmp9 

CAMs Ms4a7, Cd74, Cd163, Cbr2, Lyve1, Mrc1 

T Cells Cd2, Cd3d, Cd3e, Cd3g, Ptprc 

Table 3.3 The manually curated marker genes used for CellAssign. The markers draw heavily from previous scRNAseq myeloid cell studies 
(Jordão et al., 2019; Milich et al., 2021; Zeisel et al., 2018) and PanglaoDB. 
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At this stage, I noted that several myeloid cell types were present in the dataset, and as 

expected, this changed over time (Figure 3.17A). The trends for infiltrating macrophages and 

neutrophils are in line with previous studies (Donnelly & Popovich, 2008; Stirling & Yong, 

2008). Dendritic cells were previously reported to infiltrate the spinal cord only at 56 dpi 

(Sroga et al., 2003) but more recently have been identified in the acute phase of T8 contusion 

SCI in WT mice (Milich et al., 2021), in line with my observations. Of note, in several cases, the 

distinction between resident microglia and infiltrating myeloid cells was difficult to discern 

based on transcriptional profiles alone, resulting in both cell types being present in the same 

cluster (Figure 3.17B, C), assuming the cell type annotation was correct.  

Figure 3.16 UMAPs of the Cx3cr1 dataset coloured by CellAssign estimated cell type (A). In B) the “other” and “unassigned” cells have 
been manually annotated based on the majority CellAssign cell type of their cluster. We can see that specific cell types tend to group 
together on the UMAP. However, there is some overlap between microglia and macrophages warranting further inspection. 

A B 
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3.6 DISCUSSION 

In this chapter I have described the methodology used to isolate and sequence Cx3cr1+ 

myeloid cells, the workflow I built to compile this myeloid cell atlas, drawing heavily on the 

literature for the design and justification of each step, and finally, I have performed a 

preliminary analysis of the myeloid cell atlas. 

 

The use of the Cx3cr1 mouse allowed for the efficient isolation of myeloid cells from the spinal 

cord. This targeted approach ultimately allowed us to investigate myeloid cell states with high 

resolution, revealing heterogeneity that might otherwise have been overshadowed by other 

CNS cell types. However, by enriching for certain cell populations before scRNAseq, we lose 

the ability to investigate these cells in the context of the system through, for example, the 

inference of intercellular networks via ligand-receptor analysis (Efremova et al., 2020). An 

optimal approach, in the absence of financial constraints, would be to divide the sample, 

enrich half for the population of interest and sequence the other half in its entirety. 

 

After applying the QC thresholds, I examined the average counts per genes for the kept vs 

discarded cells (Figure 3.10) and found that the discarded cells upregulated genes of non-

myeloid CNS cells. Since we isolated Cx3cr1+ cells using FACS, it is unlikely that large quantities 

B A 

Figure 3.17 A) Area composition plot of the fraction of cells captured at each stage of SCI. The dynamics are in line with previous 
reports. B) Bar chart depicting the number of cells per cluster, coloured by their annotated cell type as in (A). In some cases, clusters 
are cell type specific, but not always. However, this observation relies on accurate cell type annotation.  
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of Cx3cr1- cells were present in the sample. Rather, given that the samples were extracted 

from tissue via mechanical homogenisation, it is plausible that myeloid cells remained largely 

intact, while more fragile CNS cells such as neurons and astrocytes were damaged and 

released their mRNA into the cell suspension. These large quantities of ambient mRNA would 

have then been barcoded in empty droplets, ultimately generating what appeared to be small 

cell libraries with low complexity but likely artefacts. Supporting this theory, and the efficacy 

of the QC thresholds, the genes upregulated in the retained cell libraries were myeloid cell 

genes.  

 

Aside from mitochondrial genes, some of the genes with the highest FC in the discarded 

libraries were neuronal genes. Notably, there have also been reports that the Cx3cr1 mouse 

line I employed has leakage into ~5% of neurons (Zhang et al., 2018), although it’s unclear if 

this finding was biased by the author’s choice of reporter mouse (Zhao et al., 2019). 

Additionally, there are reports of activated-neuronal Cx3cr1 expression (Dworzak et al., 2015; 

Wang et al., 2018). Consequently, if a leakage was present or Cx3cr1 was expressed in neurons 

post-SCI, YFP+ neurons could have been barcoded and sequenced. In that case, as previously 

mentioned, neurons are more fragile than myeloid cells and would very likely be damaged 

during the cell isolation protocol, and thus wouldn’t pass the QC stage. 

 

The Cx3cr1 discussions above exemplify how experimental design has critical implications for 

the in silico processing of scRNAseq data. Another instance, crucial for any experiment 

requiring multiple collection dates, is the careful planning of samples across batches. Ideally, 

biological replicates should be spread across batches to improve the accuracy of detecting 

and correcting for batch effects. As mentioned in Section 3.4.8 on Batch Correction, this was 

not taken into consideration for the first two batches in this dataset and, while every attempt 

was made to compensate for this with later batches, the MNN merging of batch 28-Mar-19 

lacked a guaranteed overlap between batches. Thus, it is possible that 1 dpi cells were 

erroneously mapped to cells from other stages. However, Figure 3.17C suggests not, as only 

cluster 10 showed significant correlation to both 1 and 2 dpi. Regardless, thoughtful 

experimental design before collecting samples for scRNAseq is essential. 
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Knowing that myeloid cells are particularly sensitive to perturbations, including during 

scRNAseq preparation (Haimon et al., 2018), I carefully designed the myeloid cell isolation 

protocol and was able to demonstrate that this protocol induced fewer dissociation- and 

FACS-associated genes than previous microglia studies. Yet, even with these efforts, there 

were still signs of isolation-induced transcription. Since completing this study, a new protocol 

has been released (Marsh et al., 2020), which employs transcription and translation inhibitors 

to prevent ex vivo-induced transcription even when enzymatic dissociation is used. 

Unfortunately, the scRNAseq data from this study has not yet been released, so I was unable 

to compare their results with my own data. However, regarding this study, employing such a 

protocol might have had benefits beyond reducing ex vivo-induced transcription. Primarily, it 

would have likely increased the quality of the isolated myeloid cells and reduced the volume 

of ambient mRNA, ultimately resulting in a cleaner, larger myeloid cell atlas.  

 

The myeloid cell atlas presented in this chapter comprised most of the expected cell types, 

with fluctuating prevalence as described by previous studies (Donnelly & Popovich, 2008). 

Notably absent from the dataset were CAMs (CellAssign annotated 4 CAMs). These cells have 

been described in the spinal cord (Bellver-Landete et al., 2019; Jordão et al., 2019; Plemel et 

al., 2020), but their absence in this dataset can likely be attributed to the use of the spinal 

cord hydraulic extrusion method, which removed the meninges. A recent scRNAseq study of 

all CNS infiltrating and resident cells post-SCI isolated the spinal cord through dissection and 

identified small quantities of CAMs in their dataset at 1, 3, and 7 dpi (Milich et al., 2021). 

However, they did not investigate potential roles for these cells in the SCI pathology. Another 

recent study using bone marrow chimeras found that CAMs infiltrated the injured spinal cord 

and contributed to the microglia scar at 14 dpi (Bellver-Landete et al., 2019). Whether 

chimeras were suitable for this type of study is unclear, since irradiation is well known to 

compromise BBB and BSCB integrity and alter the function of resident myeloid cells (Bruttger 

et al., 2015; Mildner et al., 2011). If CNS infiltrated CAMs are present in the spinal cord after 

SCI, a possible justification for their absence in this myeloid cell atlas is that given their low 

quantities, there was a low chance of capturing Cx3cr1+ CAMs compared to the dominant 

macrophage or microglia populations. Arguably, this effect was observed with the neutrophil 

population, where only 65 cells (0.5% of the dataset) were present. In the context of EAE, 

CAMs have been argued to regulate the infiltration of immune cells into the CNS (Engelhardt 
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et al., 2001; Kivisäkk et al., 2009; Reboldi et al., 2009), and although this finding was recently 

contradicted (Jordão et al., 2019), it remains possible that CAMs could contribute to the 

perpetual inflammation observed in chronic SCI. Ultimately, the role, or lack thereof, for 

CAMs after SCI has yet to be fully elucidated. 

 

Aside from CAMs, this myeloid cell atlas captured the anticipated resident and infiltrating 

myeloid cell populations. The most prevalent infiltrating myeloid cells were macrophages, 

which in some cases clustered with stark modularity (e.g., cluster 8) but also appeared to 

cluster with certain microglia populations (e.g., clusters 2/11). Recent experiments have 

demonstrated that CNS infiltrating macrophages take on the morphology and transcriptional 

profiles of microglia (Bennett et al., 2018; Greenhalgh & David, 2014), inciting the question – 

was I capable of accurately annotating infiltrating macrophages in this dataset? To fully 

address this, I had to re-evaluate my experimental design.  
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 DISENTANGLING RESIDENT VS INFILTRATING MYELOID CELLS BY 

EMPLOYING A FATE MAPPING MOUSE MODEL OF SCI 

 

 

 

 

 

 

 

 

“La vie n'est facile pour aucun de nous. Mais quoi, il faut avoir de la persévérance, et surtout 

de la confiance en soi. Il faut croire que l'on est doué pour quelque chose, et que, cette chose, 

il faut l'atteindre coûte que coûte.” 

— Marie Curie 
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4.1 INTRODUCTION 

As discussed in, 1.1.3 A Closer Look at the Immune Response to SCI, myeloid cells represent a 

diverse set of immune cells that respond to tissue damage and pathogens (Ransohoff & 

Cardona, 2010). Within the myeloid cell family there are distinct ontologies. Microglia and 

most CAMs arise from extra-embryonic yolk-sac during development and migrate to the 

neonatal brain before the formation of the BBB. They maintain their population throughout 

adulthood via local proliferation in the CNS parenchyma (Ginhoux et al., 2010; Goldmann et 

al., 2016). Microglia and CAMs are generally long-lived, with a lifespan of several years in 

humans (Reu et al., 2017) and over a year in mice (Tay et al., 2017). Conversely, infiltrating 

neutrophils and monocyte-derived myeloid cells, such as macrophages and dendritic cells, 

arise from HSC in the bone marrow and spleen (Milich et al., 2019). Under healthy conditions, 

these cells are very short lived (1-3 days) (Kezic & McMenamin, 2008). Under pathological 

conditions, such as SCI, these peripheral myeloid cells are honed to the injury site. In the case 

of monocyte-derived macrophages, after crossing the BBB or BSCB, they can take on the 

morphology of microglia, and upregulate canonical microglia markers (Bennett et al., 2018). 

Given that activated microglia downregulate their homeostatic signatures, these two cell 

populations can become practically indistinguishable (Butovsky et al., 2014; Dubbelaar et al., 

2018).  

 

In this chapter, I employ a fate mapping transgenic mouse line to unequivocally isolate 

Cx3cr1+ microglia and infiltrating myeloid cells from mouse models of contusion SCI. I 

collected samples at identical timepoints and used the same protocols and workflows that I 

established for the previous Cx3cr1 dataset (Chapter 3). This allowed me to ultimately 

integrate these datasets into a time-resolved myeloid cell atlas with less ambiguous 

annotations of cell ontogeny, which I then used for further analysis. I also generated a publicly 

available, interactive web app, where other researchers can explore and utilise this data. The 

code I wrote for handling the data in this chapter is publicly available on my GitHub 

(https://github.com/regan-hamel/PhD_Dissertation). 
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4.2 CHARACTERISING THE FATE MAPPING MOUSE MODEL 

To separate infiltrating from resident myeloid cells, I adopted a transgenic fate mapping 

mouse line dubbed CreMato. To generate this line, with the help of Luca Peruzzotti-Jametti, 

a post-doctoral researcher in the Pluchino lab, and Daniel Trajkovski, a lab technician, I 

crossed homozygous Cx3cr1 mice used in Chapter 3 with homozygous B6.Cg-

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J mice (Madisen et al., 2010) carrying a STOP cassette flanked 

by two loxP sites preventing the expression of the tdTomato transgene until tamoxifen 

administration. The latter strain is referred to hereon as tdTomato or tdTomatoflox. The 

resulting CreMato mice (Jordão et al., 2019) express YFP in all Cx3cr1+ cells and, when treated 

with 5 consecutive days of tamoxifen (intraperitoneal injections of 125 mg/kg of body weight 

dissolved in corn oil; Sigma-Aldrich T5648-5G), Cx3cr1+ cells become double positive for YFP 

and tdTomato. 

 
Figure 4.1 A schematic depicting the generation of the CreMato mouse, in which tamoxifen treatment and a 28-day washout period 
leaves resident myeloid cells double positive for YFP and tdTomato, and infiltrating myeloid cells are single positive for YFP. 
 

As previously described, resident myeloid cells are self-renewing, while peripheral myeloid 

cells are continuously generated de novo from HSC. Thus, the latter will only transiently 

express tdTomato. After a 28-day washout period, resident myeloid cells, such as microglia, 

remain double positive for tdTomato and YFP, while infiltrating myeloid cells are single 

positive for YFP, allowing these cells to be easily separated by FACS and other fluorophore-

based techniques including IF microscopy (Figure 4.1). 

 

Given that the CreMato mouse line was a pivotal tool employed in Chapters 4 and 5 to 

distinguish between infiltrating vs resident myeloid cells, with the help of several Pluchino lab 

members and collaborators, I confirmed that the fluorophore expression labelled the 

expected cell-types.  
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 TISSUE PROCESSING 

Mouse models of T12 contusion SCI were generated as described in 0. At 1, 2, 3, 10, or 21 dpi, 

I deeply anaesthetised the mouse with an intraperitoneal injection of 100 µl of pentobarbital 

sodium before performing transcardial perfusion with carbogen-bubbled ice-cold artificial 

cerebral spinal fluid (aCSF) for 7 minutes or until the liver was clear of blood. Then, I perfused 

the mice with ice-cold 4% paraformaldehyde (PFA; Sigma Aldrich 441244) in PBS with a pH 

7.4 for 7 minutes or until the tissue was very stiff. Afterwards, I dissected out the spinal 

column and post-fixed it overnight in the same PFA solution. 

 

The following steps were performed by either Veronica Testa, a visiting master’s student from 

the University of Milan Bicocca, or me, in line with the lab’s published protocols (Braga et al., 

2020). We dissected the spinal cord from the column, washed it in PBS, and then 

cryoprotected it in 30% sucrose (Fischer Scientific 10634932) until the tissue no longer floated 

in the solution (24-48hrs). Then we cut the spinal cord to a length of 15 mm centred on the 

laminectomy site and embedded it in OCT embedding compound (CellPath KMA-0100-00A). 

We snap froze the spinal cord by lowering the tissue into an OCT-filled mould (Millipore Sigma 

E6032-1CS) and then placed the mould into an isopentane bath filled with dry ice. We stored 

the OCT-tissue blocks at -80˚C until use. 

 

To section the tissue, Veronica or I used a cryostat (Leica CM1850) to cut the spinal cord into 

coronal sections of 20 µm thickness. The sections were collected onto Superfrost Plus 

(ThermoScientific 10149870) or Superfrost Plus Gold slides (ThermoScientific 

K58000AMNZ72) in a series of 20 slides. Each slide represented the entire 15 mm spinal cord 

section, with the tissue sampled every 400 µm. We stored the slides at -80˚C until use. 

 

 SINGLE-MOLECULE FLUORESCENT IN SITU HYBRIDIZATION 

Katherine Ridley, a lab technician in the Rowitch lab, Stefano Pluchino, and I collectively 

designed the smFISH experiments. Katherine performed these experiments in their entirety 

and her methodology is described in the pre-print (Hamel et al., 2020). 

 

We used smFISH to confirm that non-myeloid CNS cells did not express YFP or tdTomato. We 

investigated Ctrl, 1 dpi, and 21 dpi tissue at the lesion epicentre and above and below the 
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injury site (Figure 4.2). Katherine did not observe the expression of markers from non-myeloid 

CNS cell types, indicating that the CreMato mouse specifically labelled our target population. 

Notably, this smFISH data was not quantified. 

 
Figure 4.2 smFISH Expression of cell-type markers Pdgfra (oligodendrocyte progenitor cells), Slc1a3 (astrocytes), and Syt1 (neurons) as 
well as IF labelling YFP and tdTomato (RFP). We did not observe co-localisation between RFP and/or YFP in any of the investigated cell 
types. Nuclei are stained with DAPI. Scale bars: 60 μm. 

 

 IMMUNOFLUORESCENCE & QUANTIFICATION OF INFILTRATING VS RESIDENT MYELOID CELLS 

To confirm the myeloid-lineage specificity of the CreMato mouse line, Luca performed the IF 

staining and confocal IF microscopy for Figure 4.3, as described (Hamel et al., 2020). As 

anticipated, Ctrl samples comprised YFP+/tdTomato+ microglia only but upon SCI, CNS 

infiltrating YFP+/tdTomato- myeloid cells, namely monocytes/macrophages, neutrophils, and 

myeloid dendritic cells, increased considerably. By 21 dpi, infiltrating myeloid cells remained 

present with the exception of neutrophils, as previously described (Donnelly & Popovich, 

2008). 
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Figure 4.3 Confocal IF microscopy at the lesion epicentre demonstrating the colocalization of the microglia marker, P2ry12, with YFP and 
tdTomato, and the colocalization of infiltrating myeloid cell markers Ly6g (neutrophils), CD11c (dendritic cells) and CD11b 
(monocytes/macrophages) with YFP only. In line with the literature and scRNAseq data, we found that Ctrl tissue comprised microglia 
only. Upon SCI, CNS infiltrating myeloid cells were present at the lesion epicentre at 1 and 21 dpi, except neutrophils which were absent 
at 21 dpi. Nuclei were stained with DAPI. Scale bars: 60 μm. 

 

A major caveat of scRNAseq is the loss of spatial context. In this study, I isolated myeloid cells 

from a 5 mm section of tissue centred on the lesion. Thus, any information regarding the 

number of resident or infiltrating myeloid cells at the lesion epicentre vs the spared tissue 

above or below the lesion was lost. To recover a small proportion of that context, Veronica, 

and I, with advice from Luca and Stefano, designed an IF-based experiment to quantify the 

spatial distribution of infiltrating vs resident myeloid cells over time post-SCI. 

 

The majority of the IF staining and microscopy, and the entirety of the quantification, was 

performed by Veronica. I helped her with about a quarter of the staining and microscopy, and 

I worked closely with her to construct the automated and manual quantification pipelines. 

Luca Peruzzotti-Jametti provided input on the staining protocol. The IF, microscopy, and 

quantification protocols are described in the pre-print (Hamel et al., 2020). Briefly, after 
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staining for YFP and counter staining with DAPI, we imaged the tissue sections at 20X using 

an epifluorescence microscope (tdTomato was robust enough to be detected without 

staining). Then, Veronica identified two regions of interest per section, one on either side of 

the necrotic lesion core, or similar anatomical region for the spared tissue sections (Figure 

4.4). Finally, she used an automated pipeline to quantify DAPI+ cells in the regions of interest, 

and in the same regions she manually counted YFP+/tdTomato+ resident and YFP+/tdTomato- 

infiltrating myeloid cells.  

 
Figure 4.4 Representative images from Veronica of the IF used for the quantification of resident vs infiltrating myeloid cells. On the left, 
the coronal spinal cord section stained for YFP and DAPI (the tdTomato signal was strong enough to be visualised without staining). The 
red line outlines the necrotic lesion core, and the white boxes represent the regions of interest Veronica selected for her quantifications. 
On the right, a representative region of interest. The red and yellow arrows are infiltrating and resident myeloid cells, respectively. Scale 
bar: 100 µm 
 

Using this method, we found that resident myeloid cells increased over time and relative to 

the proximity to the lesion epicentre (Figure 4.5A), in line with previous findings (Bellver-

Landete et al., 2019). We observed a similar trend in infiltrating myeloid cells but with a stark 

increase in infiltrating myeloid cells at the lesion epicentre at 21 dpi compared to the acute 

and subacute time points (Figure 4.5B). 
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In contrast to the smFISH images, when imaging this CreMato tissue, Veronica and I observed 

many instances of YFP-/tdTomato+ cells with distinctly non-myeloid morphology (Figure 4.6A). 

This suggested that tdTomato can be expressed in a cre recombinase-independent manner, 

which was recently described (Jordão et al., 2019; Zhao et al., 2019). I also noticed that at 

later timepoints, such as 21 dpi, some resident myeloid cells, particularly at the lesion 

epicentre, highly expressed tdTomato but barely expressed YFP (Figure 4.6B). Given that 

activated microglia proliferate through clonal expansion (Tay et al., 2017) and downregulate 

Cx3cr1 (Dubbelaar et al., 2018), these YFPlo/tdTomato+ cells could represent activated 

resident myeloid cells derived from clonal expansion after SCI. 

 

A 

A B 

Figure 4.5 Quantification of A) YFP+/tdTomato+ CNS resident myeloid cells or B) YFP+/tdTomato- CNS infiltrating myeloid cells as a proportion 
of DAPI+ cells across set distances rostral (+) or caudal (-) to the lesion epicentre. Each graph is coloured by the dpi. Data are mean % (± SD) and 
n = 3 per dpi. 
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Figure 4.6 A) Ctrl CreMato spinal cord section (left) with a magnification (right) depicting a YFP+/tdTomato+ ramified microglia and a much 
larger YFP-/tdTomato+ (presumably neuronal) cell, confirming that the tdTomato bleeds through to other cells without an active cre-
recombinase. B) 21 dpi CreMato spinal cord section (left) with magnification of tdTomato and YFP channels, respectively (right). Arrows 
indicate double positive resident myeloid cells of interest. White arrows depict a cell with high expression of both YFP and tdTomato. 
Yellow arrows depict a cell with high tdTomato and low YFP expression. Blue arrows depict a cell with high tdTomato and nearly 
indistinguishable YFP expression. 

4.3 INFILTRATING VS RESIDENT MYELOID CELL ISOLATION 

In this chapter, I prepared the tissue samples for scRNAseq using an identical protocol to 3.2 

Myeloid Cell Isolation, except for the FACS. For this step, I once again worked with the 

technicians at the Cambridge Phenotyping Hub to isolate live myeloid cells (DAPI- YFP+) using 

a BD FACS Aria III or Influx cell sorter. As before, we set the sorter to 3-way purity and 20 psi 

with a 100 µm nozzle. For the CreMato samples, the panel consisted of only YFP, tdTomato, 

and DAPI, so fluorochrome compensation was not required. We set the gates based on an 

unstained WT sample and a CreMato sample without tamoxifen treatment to evaluate the 

level of cre recombinase-independent tdTomato leakage (Figure 4.7A). In line with previous 

reports, we observed leakage of tdTomato into YFP+ and YFP- cells, in the absence of 

tamoxifen treatment (Jordão et al., 2019; Zhao et al., 2019). As in our IF experiments, we 

observed YFP-/tdTomato+ cells. As with the Cx3cr1 samples, to increase cell yield but minimise 

the isolation of non-myeloid cells or the mis-categorisation of infiltrating vs resident myeloid 

cells, we set the cell and singlet gates generously, but were strict on the live, YFP+/tdTomato+ 

and YFP+/tdTomato- gates (Figure 4.7B). 

B 
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Figure 4.7 A) representative FACS gating strategy based on an unstained CreMato sample with no tamoxifen treatment. Note that even 
without tamoxifen treatment, some cells are double positive or YFP-/tdTomato+. B) I applied the gates from (A) to a 21 dpi CreMato 
sample stained for DAPI. SSC = side scatter; FSC = forward scatter.  

4.4 SINGLE-CELL RNA SEQUENCING 

The staff at the CRUK Cambridge Institute Genomics Core sequenced the cells with single-cell 

acuity using a microdroplet based-platform, 10X Genomics Chromium Single Cell 3’ Solution 

followed by Illumina sequencing. All protocols were performed as described in 3.3 Single-Cell 

RNA Sequencing and all samples were processed with version 3 chemistry. 

4.5 COMPILING THE TIME-RESOLVED INFILTRATING VS RESIDENT MYELOID CELL ATLAS 

 PRE-PROCESSING 

For the CreMato dataset, I performed each of the pre-processing steps as described in 3.4 

Compiling the Time-Resolved Myeloid Cell Atlas. Briefly, I used CellRanger to align the reads 

to the edited mm10 mouse genome and then performed all remaining scRNAseq data analysis 

in R version 3.6.3. All the packages I used are publicly available and my complete R analysis 

workflow for this chapter is available on GitHub: https://github.com/regan-

hamel/PhD_Dissertation. From the CellRanger unfiltered feature-barcode matrix, I corrected 

for barcode swapping, performed cell calling, and then used this filtered feature-barcode 

matrix for low-level analysis and further downstream processing. 

 

A 

B 
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 QUALITY CONTROL 

As discussed in Chapter 3, low quality cells must be removed from the dataset before further 

analysis and biological interpretation. To this end, I called the perCellQCMetrics function from 

the scater package to calculate the QC metrics for each cell. Like the Cx3cr1 dataset, in the 

CreMato dataset, the distributions of library sizes within each sample were similar to the 

complexity, and in many cases cells with smaller library sizes and lower complexity had higher 

proportions of mitochondrial genes (Figure 4.8).  

 

 
Figure 4.8 Violin plots depicting the log10 number of detected genes per cell (A) or UMI counts per cell (B) for each CreMato sample. Each 
cell is coloured by its proportion of mitochondrial transcripts. As in the Cx3cr1 dataset, cells with fewer detected genes and fewer UMI 
counts often expressed higher proportions of mitochondrial transcripts, suggesting these cells are of low quality. 

 

As with the Cx3cr1 dataset, I checked whether the variation of the QC metrics observed across 

the samples might correspond to the batch (Figure 4.9A). For the CreMato dataset, this was 

generally true for samples with the same fate mapping label (Figure 4.9B). On average, 

infiltrating cell libraries had higher UMI counts (3,359.0 vs 2,235.0) and more complexity 

(938.4 vs 778.5) than resident cells. 

A Mito_percent 

B 
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Figure 4.9 Violin plots depicting the log10 UMI counts per cell for each CreMato sample. Each cell is coloured by the batch (A) or the fate 
mapping label (B). Samples from the same condition that were collected on the same day appear to have similar distributions of cell 
library sizes. Dotted lines separate the samples by dpi in the following order: Ctrl, 1, 2, 3, 10, 21 dpi 

 

Next, I applied the same QC thresholds to the CreMato dataset as in 3.4.4 Quality Control. 

Briefly, I used fixed thresholds of 5% mitochondrial transcripts (Figure 4.10), 1,000 UMIs and 

600 genes per cell. After applying these thresholds, samples C10 and H5 contained fewer than 

100 cells. C10 comprised tissue from only a single mouse, which could explain the low cell 

capture. Additionally, discarded cells in sample C10 highly upregulated myelin basic protein 

(Mbp), suggesting that myelin removal was not sufficient (Müller et al., 2013), possibly 

effecting the capture efficiency of the sample. Supporting this was the fact that sample C10’s 

infiltrating counterpart, B10, also had a very low yield (Error! Reference source not found.). T

he other two 21 dpi infiltrating samples (G4 and F5.D21) had very low yields while their 

resident counterparts (F4 and E5.D21) were successful samples. At first, I assumed that there 

were fewer infiltrating cells at this time point, however, the IF-based quantification does not 

support this theory (Figure 4.5B), so it remains unclear why these samples were of low-

quality. Ultimately, both C10 and H5 were removed as failed samples. In total, 23,174 cell 

libraries passed the QC filtering.  

A 

B 
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Figure 4.10 A plot of the log10 library size vs the proportion of mitochondrial transcripts for all the CreMato samples. Each cell is 
coloured by its proportion of mitochondrial transcripts. Cells with more than 5% mitochondrial counts were removed as low-quality. 

 

As for the Cx3cr1 dataset, I calculated the average log2FC of each gene between the kept vs 

discarded cells and visualised these results by plotting the average UMI count of a given gene 

vs its log2FC. Again, many of the increased genes in the discarded libraries were mitochondrial 

genes or non-myeloid CNS cells (Figure 4.11A). However, two notable differences were the 

strong presence of neutrophil genes in the retained libraries, and the increase of dendritic 

cell genes in the discarded libraries (Figure 4.11B). The neutrophil expression was driven by 

the 1 and 2 dpi infiltrating samples, in line with the reported temporal dynamics of neutrophil 

infiltration post-SCI (Donnelly & Popovich, 2008). Conversely, the increase in dendritic cell 

genes was driven only by sample B7 (Figure 4.11C, D). Given that sample B7 was dominated 

by cells with small libraries and low complexity, I chose not to alter the QC thresholds. 
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 DOUBLET DETECTION  

To identify and remove doublets from the CreMato dataset, I called cxds_bcds_hybrid() 

function from the scds package, as in 3.4.5 Doublet Detection. The hybrid output score 

predicted 2,464 doublets, which I removed from the dataset, leaving 20,710 cells for 

downstream processing (Table 4.1). 

 

dpi 
Sample 

ID 
Fate map Sex 

# of 
mice 

Collected Flow Cell 
Cell 

Count 
Median 

Genes/Cell 
Mean 

Reads/Cell 
Ctrl A10 resident M 1 23-May-19 SLX-17850 176 738.5 6.07x104 

A B 

C D 

Figure 4.11 The average UMI count per gene vs the log2 fold change between the cell libraries removed or kept based on QC thresholds. 
Each point is a gene. Genes are coloured by the cell type in which they are highly expressed. In general, expression of genes from non-
myeloid CNS cells is higher in the discarded cell libraries (A) while myeloid cell genes are highly expressed in the cell that remain after 
QC, with the exception of dendritic cells which appeared to be prominent in the discarded libraries (B). However, it is clear that this 
effect was driven by sample B7 (C). If we re-examine the CreMato dataset without B7, dendritic cell genes, like other myeloid cell genes, 
are upregulated in the retained libraries. 
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SLX-20619 

Ctrl H2 resident M 2 6-Mar-20 
SLX-19290 
SLX-20619 

1,158 1,625.5 5.97x104 

1 B11 infiltrating M 3 31-Oct-19 SLX-18703 2,495 2,299.0 3.47x104 
1 E5 resident F 3 31-Oct-19 SLX-18703 1,580 2,774.5 4.41x104 
2 F5 infiltrating F 3 31-Oct-19 SLX-18703 1,627 1,580.0 4.55x104 
2 A1 resident M 3 6-Mar-20 SLX-19290 760 2,774.5 5.98x104 
3 B7 infiltrating M 2 26-Sept-19 SLX-18641 2,915 3,659.0 9.67x104 
3 A7 resident M 2 26-Sept-19 SLX-18641 777 918.0 5.64x104 
3 D11 infiltrating F 2 31-Oct-19 SLX-18703 3,579 2,831.0 5.37x104 
3 C11 resident F 2 31-Oct-19 SLX-18703 183 1,207.0 1.33x105 

10 B10 infiltrating M 1 23-May-19 SLX-17850 166 1,130.0 1.27x105 
10 C10 resident M 1 23-May-19 SLX-17850 removed  787.0 5.14x104 
10 F3.D10 infiltrating F 2 6-Mar-20 SLX-19290 521 2,025.0 9.89x104 
10 E3.D10 resident F 2 6-Mar-20 SLX-19290 2,731 1,212.0 9.42x104 
21 G4 infiltrating M 2 5-June-19 SLX-17998 158 1,143.5 3.88x105 
21 F4 resident M 2 5-June-19 SLX-17998 166 755.0 4.00x104 
21 H5 infiltrating M 1 1-May-21 SLX-20619 removed  755.0 5.31x104 
21 G5 resident M 1. 1-May-21 SLX-20619 616 1,588.5 6.69x104 
21 F5.D21 infiltrating F 2 1-May-21 SLX-20619 304 2,887.0 1.87x105 
21 E5.D21 resident F 2 1-May-21 SLX-20619 2,731 2,175.0 6.58x104 
Table 4.1 The CreMato scRNAseq samples. M=male, F=Female. # of mice indicates the number of sex, age, and condition-matched mice 
pooled in the scRNAseq sample. The Cell Count, and Median Genes per cell all refer to the post-QC values. For the samples sequenced 
twice to increase sequencing depth, both flow cells are reported and the cell count, median genes/cell, and mean reads/cell are the 
results of the two combined sequencing runs. 

 

 CELL TYPE ANNOTATION 

Given the CellAssign method of annotating cell types requires raw UMI counts, rather than 

log-normalised counts, I decided to annotate the cell types in the CreMato dataset before 

integrating it with the Cx3cr1 atlas. This approach served as a ‘sanity check’, ensuring that the 

appropriate cell types were present and being corrected together across mouse strains.  

 

With an 80% probability threshold, 1,929 cells were still unassigned and, in some cases, 

contradicted the fate mapping label. First, I manually annotated CAMs, defining them as any 

resident cell with ≥ 1 UMI count from Cd74, Ms4a7, and Mrc1, respectively. This definition 

corrected 22 dendritic cell labels and 25 microglia labels. Since both CellAssign and my manual 

annotations resulted in very few CAMs (0.3% of cells), I assumed that any unassigned resident 

cells were activated microglia, and manually annotated them as such. Siglech has been 

described as able to differentiate microglia from CAMs (Konishi et al., 2017), so I defined any 

resident cell with ≥ 1 Siglech count as microglia. For the unassigned infiltrating cells, I 

performed clustering as described in 3.5.1 Clustering then assigned cell type based on the 

majority cell type of that cluster. Given that infiltrating macrophages and activated microglia 

can be particularly difficult to discern based on transcriptional profiles, I also used the fate 
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mapping labels to correct these two annotations, i.e., “infiltrating” microglia were re-

annotated as macrophages, and vice versa. 

4.6 INTEGRATING AND COMPARING THE ATLASES  

One of the main goals of this project is to compile and analyse a time-resolved myeloid cell 

atlas after SCI. Such analysis requires the integration of the Cx3cr1 and Cremato datasets and 

the removal of technical heterogeneity, or batch effects. The first step in this process is multi-

batch normalisation followed by HVG selection, and finally, batch correction. To begin this 

process, I harmonised the row and column data of the two pre-normalisation 

SingleCellExperiment objects and then concatenated them. The combined atlas contained 

32,482 cells. 

 

 NORMALISATION  

I normalised the combined dataset as described in 3.4.6 Normalisation. As before, I defined 

batches as the flow cell lane except for samples sequenced twice. For those samples, I defined 

batches as samples sequenced in the same combination of flow cells (e.g., samples A10, C10, 

and D10). 

 

With the resultant logcounts, I investigated whether the CreMato Ctrl samples might express 

the same cell cycling observed in the Cx3r1 sample, G11.D2, but did not observe a similar 

population in the CreMato dataset (Figure 4.12A). To be sure that the removed cells from 

G11.D2 were truly outliers, I performed the normalisation and batch correction steps with 

the Cx3cr1 data that contained the cycling G11.D2 cells and found that the removed 

SIGAG11.D21 cells did not share substantial overlap with other Ctrl cells (Figure 4.12B). Thus, 

these cells were not included in the downstream processing. 
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Figure 4.12 A) Heatmap of the Ctrl samples from the Cx3cr1 and Cremato datasets. Each row is a gene, and each column is a cell. Genes 
are organised by the cell state they represent. hMG = homeostatic MG; Prolif. = proliferating MG; aMG = activated microglia; CAMs = CNS 
associated macrophages. Dotted lines highlight the cells from sample G11.D2 that upregulated proliferation markers and were removed 
from the Cx3cr1 dataset. I did not observe a similarly dominant population in the CreMato dataset. B) A post-batch correction UMAP of 
the same control samples with sample G11.D2 in colour and other Ctrl cells in grey. G11.D2 cells that were removed do not generally 
overlap with other Ctrl samples.  

 

As a quick ‘sanity check’ and final evidence that both the Cx3cr1 and CreMato mouse lines 

were effective tools for isolating myeloid cells for scRNAseq, I also investigated the presence 

of non-myeloid cell markers in the data and did not observe any signs of non-myeloid cells 

(Figure 4.13) after QC. 

 
Figure 4.13 Heatmap of the scaled logcounts of canonical marker genes for CNS-associated cell types. I did not see any evidence of non-
myeloid cell contamination in the integrated dataset. 

 

Removed 
Kept  

A B 
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 HIGHLY VARIABLE GENE SELECTION 

I selected HVGs as described in 3.4.6 Normalisation, using a definition of batch that was 

consistent with the normalisation parameter. Unlike in the Cx3cr1 dataset, the CreMato 

dataset contained low levels of T-cells and CAMs, ultimately increasing the biological 

heterogeneity of the dataset. So, I chose to increase the proportion of genes selected from 

those with biological variance from 20% to 40%. At 20% only 1 CAMs gene and 4 T-cell genes 

from Error! Reference source not found. were included in the HVG list, while at 40%, they w

ere all included. Ultimately, a total of 3,131 HVGs were selected for the downstream analyses 

 

 BATCH CORRECTION 

Finally, I corrected for batch effects. Given the large number of collection dates (11) with far 

from perfect dpi distribution, I was reluctant to simply merge each collection date, in fear of 

inadvertently merging cells from subtly different stages in the SCI pathology. However, I had 

little information a priori as to which SCI stages would be identical, if any. So, I first visualised 

the pre-batch correction dataset by building a UMAP from the normalised logcounts and 

HVGs. I found that, without batch correction, separation was driven by the dpi, with relatively 

little separation between cell types collected at the same dpi, regardless of collection date 

(Figure 4.14A). In some cases, mouse strain also appeared to drive separation on the UMAP 

(Figure 4.14B). Additionally, as observed in the Cx3cr1 dataset, the chemistry version 

produced a strong batch effect. Ultimately, I chose to batch correct based on strain and 

chemistry version, merging first the version 3 Cx3cr1 and Cremato datasets, and then 

integrating the version 2 Cx3cr1 batch. I performed this correction as described in 3.4.8 Batch 

Correction. 
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Figure 4.14 UMAPs of the combined dataset, before batch correction. A) Cells are coloured by the dpi. Dotted lines denote the majority 
cell type. Note that dpi and cell type are major drivers of separation in the UMAP, almost certainly demonstrating biological 
heterogeneity. MG = microglia, MC = monocytes & macrophages, DC = dendritic cells, NP = neutrophils. B) Cells are coloured by the strain 
of the mouse. Cre = CreMato, Cx3 = Cx3cr1. Arrows highlight discernible shifts between the strains. We can see that strain drives some 
heterogeneity, which, for the purposes of this study are uninteresting. 

 

After batch correction, I evaluated the correction by visualising the dataset on a UMAP built 

from the batch-corrected coordinates. First, I noticed that cell types remained well-separated 

(Figure 4.15A), while overall, the strains were well-mixed (Figure 4.15B). I noticed that, as 

expected, dpi samples that overlapped before correction remained as such (e.g., 10 and 20 

dpi microglia). Also, while the UMAP separation between cell types of the same dpi was 

reduced, it was not removed (e.g., 2 dpi vs 21 dpi microglia). Conversely, when I trialled batch 

correcting by collection date, there was substantial overlap between microglia, regardless of 

the dpi (Figure 4.15C). Finally, I investigated the variance lost within each batch during 

correction and found that while merging by collection date resulted in ≤ 16% of variance being 

lost, merging by strain and version removed only ≤ 2% of variance. 

A B 
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Figure 4.15 UMAPs of the combined dataset, after batch correction. A) Cells are coloured by the dpi. Dotted lines denote the majority 
cell type. Note that dpi and cell type still distinct in the UMAP, almost certainly demonstrating biological heterogeneity. MG = microglia, 
MC = monocytes & macrophages, DC = dendritic cells, NP = neutrophils. B) Cells are coloured by the strain of the mouse. Cre = CreMato, 
Cx3 = Cx3cr1. Arrows highlight discernible shifts between the strains. We can see that strain drives less heterogeneity after batch 
correction. C) UMAP of the dataset when batch correction was performed by collection date. Note that different SCI stages are merged 
too. 

4.7 DATA SHARING 

Living in an era of big data, it is no longer feasible to explore and validate every aspect of a 

large dataset, such as this myeloid cell atlas. Rather than hiding the data away, with nothing 

but one’s own biological question(s) addressed, there are plenty of avenues to making the 

data publicly available so that ultimately, the scientific community can get the most of out of 

datasets like this one. 

 

For this dataset, I chose to make the data available through two common methods. First, I 

submitted the FASTQ files as well as the raw and pre-processed feature-barcode matrices to 

the publicly accessible Gene Expression Omnibus (GEO; GSE159638). Second, I built a Shiny-

based interactive web app (https://marionilab.cruk.cam.ac.uk/SCI_Myeloid_Cell_Atlas/), 

allowing those without computational expertise to investigate gene expression patterns 

across different metrics, such as myeloid cell types and stages in the SCI pathology, through 

UMAPs and boxplots, or by downloading the pre-processed feature-barcode matrices (Figure 

4.16). The code I used to build the app can be found here: https://github.com/regan-

hamel/SCI_2020.  

A B C 
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Figure 4.16 A quick look at the Shiny-based web app where researchers can easily explore the SCI myeloid cell atlas. The web app has 
three main pages denoted by the tabs in the top right corner. About is the landing page with a basic description of the project and 
experimental design, as well as useful links to websites including the relevant GitHub repositories. Gene Expression is the page depicted 
in the figure, where researchers can explore a gene of interest through UMAPs and boxplots. Data Download, as the name suggests, 
allows researchers to download the feature-barcode matrices for the entire dataset, or by cell type. 

4.8 DISCUSSION 

In this chapter, I introduced a fate mapping CreMato mouse model and described the 

methodology I used to isolated infiltrating vs resident myeloid cells for scRNAseq. Many of 

the protocols and workflows were consistent with Chapter 3, with a few notable differences 

to accommodate for the new mouse strain. I also explained the methods I used to integrate 

the CreMato and Cx3cr1 datasets in preparation for sharing these datasets with the wider 

research community and for my own analysis and interpretation in Chapter 5. 

 

The CreMato mouse model offers several advantages over its Cx3cr1 counterpart. Pertinently, 

it allows for the identification and separation of infiltrating vs resident myeloid cells through 

the expression of differentially expressed fluorescent reporter genes. This is an invaluable 

tool for discerning between the otherwise ambiguous activated microglia and infiltrating 

macrophages after SCI. Additionally, by enriching for these two populations separately, I was 

able to collect and ultimately characterise larger quantities of less well-represented 

populations such as dendritic cells, and even detect small quantities of rare populations like 

infiltrated CAMs.  

 

Of course, the CreMato model is not without its caveats. As considered in 3.6 Discussion, 

enriching for cell populations of interest before scRNAseq can limit the types of analyses that 

can be performed on the resulting dataset. Additionally, fluorescent reporter mice, while 

intended to have very specific expression patterns, often suffer from “leakiness,” or 
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unintended expression patterns. In the case of the CreMato mouse, we had to account for 

the “leakiness” of two fluorescent lines.  

 

Firstly, as mentioned in 3.6 Discussion, the Cx3cr1 mouse line (Parkhurst et al., 2013) has been 

reported to leak into neurons (Zhang et al., 2018; Zhao et al., 2019), possibly due to their 

transient expression of Cx3cr1 (Dworzak et al., 2015; Wang et al., 2018). Furthermore, the 

Cx3cr1 mouse line was generated via BAC transgenics, which retains the function of the gene 

of interest, but can actually lead to duplication of said gene (Zhao et al., 2019). It is 

recommended to maintain such transgenic lines as heterozygotes, however, in the case of 

the CreMato mouse, this is not practical as it would result in three quarters of offspring being 

unusable. Thus, we risked unexpected effects from Cx3cr1 over-expression. To account for 

this, we can compare our findings with studies that employed other mouse strains, although 

this approach only works for unoriginal results.  

 

Secondly, we have the tdTomatoflox line, which has been reported to, through an unknown 

mechanism, have variable leakage into neurons, Iba1+ cells, and astrocytes (Zhao et al., 2019). 

In the case of the non-tamoxifen treated CreMato mouse, this leakage was observed in CAMs 

and microglia, but not monocytes, suggesting that the line remains a valid tool for 

distinguishing between infiltrating and resident myeloid cells (Jordão et al., 2019).  

 

At later stages in the SCI pathology, I noticed that the intensity of YFP in resident myeloid cells 

varied. A possible explanation for this could stem from the dynamics of the fluorescent 

proteins. The CreMato mouse expresses YFP in Cx3cr1+ cells, which, under homeostatic 

conditions, means all myeloid cells produce a YFP transcript each time Cx3cr1 is transcribed. 

When microglia become activated, they downregulate homeostatic marker genes, such as 

Cx3cr1 (Dubbelaar et al., 2018). Given the long half-life of YFP (> 24hrs (Hentschel et al., 2013)) 

and the presumably low-level of continued Cx3cr1 expression, YFP continues to be expressed 

in activated microglia. However, activated and proliferating microglia would dilute their 

cytosolic YFP and continue to express Cx3cr1 at low levels, meaning less YFP would be present 

in those cells. The same would be true for tdTomato, which is also under the Cx3cr1 promoter. 

However, tdTomato is 6x brighter than YFP and doesn’t need to be enhanced before 

microscopy, which could explain why there was no obvious decrease in its intensity a 21 dpi 
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(Figure 4.6B). This range of YFP and tdTomato fluorescence has implications for the FACS 

isolation method used to prepare the scRNAseq samples. In an effort to isolate pure 

infiltrating vs resident myeloid cell populations, we were very strict with our gating strategy. 

However, we may have inadvertently enriched for highly YFP+ and highly tdTomato+ myeloid 

cells. 

 

To address this question, and others that will be discussed in 5.6 Discussion, I designed a 

proliferation-tracking BrdU experiment to label acutely proliferating cells in CreMato tissue, 

which could then be stained for BrdU, YFP, tdTomato, and several mRNAs of interest using 

smFISH. Under this framework, I would be able to check whether YFPlo microglia at 21 dpi 

were BrdU+ and thus acutely proliferating. Unfortunately, at the time of submission I had 

performed the in vivo experiment and prepared the tissue but had not yet received the final 

data from Katherine. 

 

To be able to ultimately integrate the CreMato atlas with the Cx3cr1 data, I maintained the 

same protocols and computational workflows for the preparation of both datasets whenever 

feasible. During the QC phase, I noticed two major differences in the genes present in retained 

vs discarded libraries. First, I found that dendritic cell transcripts were increased in the 

discarded libraries and that this effect was driven by a single sample, B7. From the violin plots 

of library size and complexity distributions (Figure 4.8), it is clear that B7 contains a very large 

population of very small cell libraries with little complexity. This aberrant population was 

removed by the QC thresholds and, given that it was not present in other 3 dpi infiltrating or 

Cx3cr1 samples, likely represented a technical artefact. The second notable difference was in 

neutrophil genes, which were increased in the retained libraries. Compared to the Cx3cr1 

dataset, the CreMato dataset isolated more neutrophils, as expected, and perhaps more 

neutrophils passed the QC thresholds compared to other myeloid cell types as their smaller 

size might make them less prone to damage during mechanical homogenisation. 

 

Despite my best efforts (see 3.2 Myeloid Cell Isolation), a major challenge in this study was 

collecting high quality samples with high cell counts, stemming from several constraints and 

mistakes. Given that we were interested in the dynamics of myeloid cells at the lesion 

epicentre, and all spatial context is lost during scRNAseq, we chose to dissect very small tissue 
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sections (5 mm) for sequencing. This meant that cell yields were typically very low (< 1000), 

unless several mice were pooled together. Unfortunately, pooling several sex and dpi 

matched littermates was not always feasible due to animal logistics, including project licence 

restrictions on the number of mice that can receive SCI, and the rate at which mice would 

reach their humane endpoint before their collection date. However, data from a recent 

scRNAseq of all CNS cells after SCI, which pooled 8 mm of tissue from 5 mice, only collected 

2-3 times more cells per sample (Milich et al., 2021). Thus, the best way to overcome this 

would be to use a technology that retains spatial context, such as GeoMX WTA (Roberts et 

al., 2021). Another constraint was the use of mechanical homogenisation. This approach was 

necessary to minimise ex vivo activation, but also generated substantial ambient mRNA, and 

likely damaged many myeloid cells. Future studies requiring the ex vivo isolation of microglia 

should certainly employ the new transcription/translation-inhibited enzymatic dissociation 

protocol (Marsh et al., 2020). Finally, an error in the isolation protocol was the FACS-gating 

strategy that we adopted, which was likely too strict and excluded a proportion of myeloid 

cells. Given that myeloid and non-myeloid cells are easily discernible in silico, this should have 

been given less of priority over cell yield. 

 

Despite these challenges, I was able to generate a time-resolved myeloid cell atlas of 32,482 

high quality cells with several thousand cells per condition. This atlas presents an exciting 

opportunity to investigate the dynamics of myeloid cells after SCI, and will hopefully help 

future researchers to identify novel therapeutic approaches to combat the disability inflicted 

by SCI. 
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 CHARACTERISING THE TIME-RESOLVED MYELOID CELL ATLAS  

 

 

 

 

 

 

 

 

“For a research worker the unforgotten moments of life are those rare ones which come after 

years of plodding work, when the veil over natures secret seems suddenly to lift & when what 

was dark & chaotic appears in a clear & beautiful light & pattern.” 

— Gerty Cori 
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5.1 INTRODUCTION 

scRNAseq data requires substantial low-level analysis as described in Chapters 3 & 4. 

However, the ultimate purpose of generating this type of data is to make new biological 

discoveries at single cell resolution. Approaches to facilitate biological interpretation and 

discovery through scRNAseq are flexible and numerous. In this chapter, I first verify that the 

novel dataset contains the expected cell types and states, the markers of which have become 

increasingly available in the literature over the course of this PhD. After establishing this, I 

take the typical first step in exploratory analysis: grouping transcriptionally similar cells 

through unsupervised clustering. Then, I investigate the cluster dynamics after SCI through 

trajectory analysis. From there, I characterise the clusters of interest, drawing heavily from 

previous findings and resources such as gene ontology (GO) and PanglaoDB, and finally 

present a summary of proposed myeloid cell dynamics after SCI. The code I wrote to handling 

the data and generate the figures for this chapter, including the smFISH analysis I performed, 

are publicly available on my GitHub (https://github.com/regan-hamel/PhD_Dissertation). 

 

5.2 EXAMINING THE MYELOID CELL ATLAS FOR KNOWN PHENOTYPES 

 THE DYNAMICS OF MARKER GENE EXPRESSION UPON ACTIVATION 

Since beginning this PhD project, many studies have described myeloid cell heterogeneity at 

single cell resolution across development, homeostasis, and a wide range of pathologies. A 

common observation across several CNS pathologies, including also very recently SCI, is the 

downregulation of canonical microglia markers (Bennett et al., 2018; Butovsky et al., 2014; 

Dubbelaar et al., 2018; Hammond et al., 2019; Jordão et al., 2019; Milich et al., 2021). Given 

this, I investigated the expression of these genes in microglia over time and did indeed 

observe a downregulation in Serpine2, Tmem119, P2ry12, Cx3cr1, Siglech, Plxdc2, P2ry12, and 

Gpr34 (Figure 5.1A). These genes appeared to be exclusively expressed in microglia in the 

acute phase, but by the subacute (10 dpi) and early chronic (21 dpi) phases, macrophages 

upregulated these genes, with the exception of Siglech (Figure 5.1B) (Konishi et al., 2017). 

Serpine2 (glia-derived nexin) also appeared to be exclusive to microglia at later time points 

and, unlike Siglech, based on the scRNAseq data it appeared to be downregulated only at 1 

dpi. Other microglia genes, including Hexb, Csf1r, Ctss, C1q, Trem2, Sparc, Olfml3, and Fcrls, 
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remained highly expressed in microglia after SCI but were upregulated in acute infiltrating 

myeloid cells (Figure 5.1B). 

 

 
Figure 5.1 A) Dot plot showing canonical microglia marker expression across the dpi time points. B) A heatmap of the expression of 
myeloid cell markers across cell types and different SCI conditions. Each row is a gene, and each column is a cell. Dotted lines highlight 
breaks between cell types. 

 

I investigated typical markers of infiltrating myeloid cells and found that Chil3 (Ym1) was 

expressed by monocytes, macrophages, and neutrophils (Gensel & Zhang, 2015), and Ms4a7 

(Bennett et al., 2018), Ccl7 (Zhu et al., 2017), Arg1 (Jordão et al., 2019), and, to a lesser extent 

Mgst1 (Haage et al., 2019), were restricted specifically to monocytes and macrophages 

(Figure 5.1B). Notably, at 10 and 21 dpi, only Ms4a7 remained highly expressed in 

macrophages and CAMs (Figure 5.2A). Also of note was the expression pattern of S100a11, 

which appeared to be restricted to infiltrating cells across all post-SCI time points (Figure 

5.2B).  
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Figure 5.2 Boxplots by cell type and time point demonstrating A) the expression of Ms4a7 in macrophages and CAMs, persisting into the 
chronic phase and B) the restricted expression of S100a11 to infiltrating myeloid cells. Bins in each boxplot are ordered from left to right: 
microglia, macrophages, monocytes, dendritic cells, neutrophils, CAMs, and T-Cells. 

 

To confirm the dynamic expression of Serpine2 and Ms4a7, we probed their expression in 

CreMato tissue via smFISH. For the smFISH quantification, cells with a spot count > 5 were 

considered positive for that gene. Tmem119, Apoe, and S100a11 were also probed, but not 

quantified. As described in 4.2.2, Veronica and I prepared the CreMato tissue for smFISH, 

which was planned by Stefano, Katherine, and I. Katherine performed the staining, imaging, 

and analysis. The expression of Serpine2 was not exclusive to myeloid cells, in line with 

previous reports of its expression in astrocytes (Y. Yang et al., 2018) (Figure 5.3A). We found 

that Ctrl microglia expressed Tmem119 and Serpine2, but not Apoe as expected, although 

Apoe was present in the Ctrl tissue (Figure 5.3A), in line with reports of Apoe expression in 

homeostatic astrocytes (Gee & Keller, 2005). The proportion of Serpine2+ resident myeloid 

cells decreased by 1 dpi, however, at 21 dpi, they remained low according to the smFISH data, 

while the scRNAseq data suggested a return to homeostatic proportions. This could be due 

to the different anatomical regions observed – the scRNAseq data was generated from 5 mm 

of tissue including normal appearing spinal cord (NASC), while the smFISH data is restricted 

to the lesion epicentre. Other potentially confounding factors will be further addressed in the 

Discussion. 

 

The proportion of Ms4a7+ infiltrating cells was fairly consistent between the scRNAseq and 

smFISH data in the Ctrl and acute stages of the pathology – low in the Ctrl and increasing to 3 
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dpi, albeit with more Ms4a7+ cells detected at 1 dpi in the scRNAseq data (Figure 5.3B). 

However, by 21 dpi, the proportion of Ms4a7+ infiltrating cells was much higher in the 

scRNAseq data than the smFISH. This may again reflect lesion-specific phenotypes.  

 

S100a11 did not appear to be expressed in resident myeloid cells, but was not restricted to 

infiltrating myeloid cells, in line with reports of its expression in endothelial cells (Franzén et 

al., 2019). Thus, we confirmed the presence of several genes of interest in the tissue but were 

unable to perfectly recapitulate the expression patterns observed in the scRNAseq data. 

Given the difference in anatomical regions, this does not necessarily negate the accuracy of 

the scRNAseq data, but neither does it fully validate it. 

 

 

A 
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Figure 5.3 A) smFISH depicting the expression of Tmem119, Serpine2 and Apoe from Ctrl, 1, and 21 dpi. The bar graph shows the 
quantification of Serpine2+ cells out of all RFP+/YFP+ resident myeloid cells from scRNAseq (top) and smFISH (bottom). B) Expression of 
Ms4a7 and S100a11 from Ctrl, 1, 3 and 21 dpi. The bar graphs show the quantification of Ms4a7+ cells over or all RFP-/YFP+ infiltrating 
myeloid cells from scRNAseq (top) and smFISH (bottom). Arrowheads indicate Ms4a7+/RFP-/YFP+ cells. smFISH data are mean % (± SD) 
from n= 2 mice per time point. Nuclei were stained with DAPI. Scale bars: 20 μm. 

 

 THE TREM2-APOE PATHWAY 

Several studies of myeloid cells under neuropathological conditions have observed the stark 

upregulation of Apoe upon myeloid cell activation (Iwata et al., 2005; Kim et al., 2015; Shin et 

al., 2014), including after SCI (Seitz et al., 2003; X. Yang et al., 2018). To confirm this pattern 

in this myeloid cell atlas, I calculated the average expression of each gene in the Ctrl and after 

SCI and plotted the top 15 most highly expressed genes for each condition (Figure 5.4). While 

the Ctrl was dominated by homeostatic microglia markers as expected, Apoe was the most 

highly expressed gene in the SCI samples, with a strong upregulation in microglia and 

macrophages from 3 dpi. 

 
Figure 5.4 A heatmap of the expression of the 15 most highly expressed genes in Ctrl and SCI myeloid cells across cell types and different 
SCI conditions. Lists are separated by solid black line, * indicates duplicates between the two lists. Each row is a gene, and each column 
is a cell. Dotted lines highlight breaks between cell types. 
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As described in 1.3.4, recently, the expression of Apoe and the activation of the TREM2-APOE 

pathway has been shown to mediate the switch from homeostatic to activated microglia by 

sensing neurodegeneration-associated molecular patterns, including myelin debris and 

apoptotic neural cell bodies (Deczkowska et al., 2018; Keren-Shaul et al., 2017; Krasemann et 

al., 2017). The upregulation of the TREM2 adaptors, Apoe and Tyrobp, and the 

downregulation of homeostatic microglia markers, are described as the first of two DAM 

phases (Friedman et al., 2018; Keren-Shaul et al., 2017). The DAM2 phase is characterised by 

the upregulation of phagocytosis, lysosomal, and lipid metabolism genes and has been 

described as a neuroprotective, phagocytic, phenotype in mouse models of AD, ALS, MS and 

ageing (Deczkowska et al., 2018; Keren-Shaul et al., 2017; Krasemann et al., 2017). Notably, 

the DAM phenotype appears to be conserved between mice and humans (Keren-Shaul et al., 

2017), and has been suggested to be a disease-independent microglia response (Deczkowska 

et al., 2018). So, although the DAM transcriptional profile has yet to be described in SCI, I 

expected to find these phenotypes in the myeloid cell atlas. 

 

I investigated the expression of the homeostatic, DAM1, and DAM2 transcriptional profiles in 

microglia from the myeloid cell atlas (Figure 5.5). Microglia downregulated the expected 

homeostatic markers and by 2 dpi began to adopt DAM1-like phenotypes. DAM2-like 

phenotypes were present by 10 dpi, although Axl, Csf1, and Itgax were only slightly 

upregulated and Lilrb4a was not in the HVGs, suggesting a degree of disease specificity in the 

DAM2 phenotype. By 21 dpi, despite the strong upregulation of DAM1 and DAM2-associated 

genes, many, but not all, microglia began to recover the expression of homoeostatic genes, 

including Cx3cr1. 
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Figure 5.5 A heatmap of homeostatic and DAM-associated genes in microglia across the different SCI conditions. Profiles are separated 
by solid black line, hMG = homeostatic microglia, hMG¯ = homeostatic microglia that are downregulated in the DAM1 signature. Each row 
is a gene, and each column is a cell. Dotted white boxes highlight microglia that fit the designated profile. 

 

 MICROGLIAL PROLIFERATION POST-SCI 

Based on previous reports, I expected a proportion of the myeloid cell atlas to be proliferating 

in response to the SCI (Bellver-Landete et al., 2019; Greenhalgh & David, 2014; Milich et al., 

2021; Noristani et al., 2017; Wahane et al., 2021). To identify and annotate these cells, I called 

the cyclone function from the scran package on a SingleCellExperiment object with the full list 

of genes (vs just HVGs) and used the package’s pre-trained mouse marker gene pairs 

(Scialdone et al., 2015). Briefly, this method classifies cells of unknown cell cycle phase by 

investigating the expression of pre-identified pairs of genes that change their relative 

expression in a predictable direction according to the cell cycle phase. This approach was able 

to annotate cells as G1, S, or G2M, but over half the cells remained unassigned. Based on a 

published scRNAseq microglia cell cycle analysis, I manually annotated the unassigned cells 

as G0 (Li et al., 2019).  

 

To corroborate the cycling annotations, I investigated the expression of microglia 

proliferation profiles (Hammond et al., 2019; Milich et al., 2021) across the cycling phase 

annotations (Figure 5.6). While many clearly cycling cells were annotated as such, especially 

in the G2M phase, there was evidence of a population of cycling microglia, predominantly 

from Ctrl samples, that were unassigned and consequently annotated as G0. As I had no way 
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of determining whether these G0 cells were truly cycling, I decided not to re-annotate them, 

and instead used the G0 phase annotations with caution when inferring biological relevance.  

 
Figure 5.6 Heatmap of microglia from the myeloid cell atlas and their expression of proliferating microglia-associated genes. Each row is 
a gene, and each column is a cell. Genes are organised by the annotated cell cycling phase. G1 phase cells slightly upregulate proliferating 
genes, while G2M phase genes closely match the proliferation profiles. Some G0 cells upregulate these markers and may have been 
mislabelled. 

 

Knowing that microglia undergo rapid proliferation in the acute phase of SCI (Bellver-Landete 

et al., 2019), I used an area plot to visualise the cell cycling phase over time post-SCI (Figure 

5.7A) and saw that, as expected, G1 cells peaked at 1-2 dpi, and S/G2M peaked around 2-3 

dpi, with cycling cells decreasing over time, in line with the findings of recent scRNAseq 

studies of microglia after SCI (Milich et al., 2021; Wahane et al., 2021). I further visualised 

these annotations by projecting them onto a UMAP of the myeloid cell atlas SCI (Figure 5.7B) 

and observed that cycling microglia from 1-2 dpi formed a large visual cluster on the UMAP, 

supporting the notion that the cyclone annotations were biologically relevant. 

 
Figure 5.7 A) Area composition plot of the cell cycle of microglia captured at each stage of SCI. The dynamics are in line with previous 
reports. B) UMAP of the myeloid cell atlas coloured by cell cycle phase. Microglia from 1-2 dpi are overwhelmingly cycling. A population 
of macrophages from 10 and 21 dpi also appear to be cycling.  
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A recent study that isolated microglia nuclei using the INTACT method observed robust 

upregulated of Hdac3 in microglia in mouse models of thoracic transection SCI (Wahane et 

al., 2021). This gene was hypothesised to control the proliferative state of microglia after SCI. 

In this myeloid cell atlas, Hdac3 expression was minimal and was not included within the 

HVGs. 

 

 M1/M2 POLARISATION 

Over the past few years, the relevance of the M1/M2 polarisation in/ex vivo has faded, 

partially driven by the fact that many scRNAseq studies have not found evidence to support 

the M1/M2 phenotypes in activated myeloid cells (Kim et al., 2016; Milich et al., 2021; 

Ransohoff, 2016). Despite this, for completeness, I investigated these genes upon SCI and did 

not observe a clear separation (Figure 5.8). In fact, M1 and M2 genes were generally very 

lowly expressed, or even absent from the HVGs (e.g., Il6, Il12a, Pparg), and many activated 

myeloid cells expressed both M1 and M2 genes. 

 
Figure 5.8 A heatmap of M1 and M2 markers in myeloid cells across cell types and different SCI conditions. Each row is a gene, and each 
column is a cell. Dotted lines highlight breaks between cell types. There was no clear match for M1 or M2 profiles to the myeloid cell 
atlas. 

 

 SEXUAL DIMORPHISM IN MICROGLIA 

Previous studies have reported conflicting evidence for sexual dimorphism in microglia, 

especially during development and disease (Masuda et al., 2020). Early scRNAseq studies 

have observed minimal, if any, differences between sexes (Hammond et al., 2019; Tay et al., 

2018). Several more recent studies have suggested there are indeed sex-specific roles in the 

microglia response to disease pathology (Han et al., 2021; Ochocka et al., 2021; Rahimian et 
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al., 2019). Unfortunately, the time points across male and female samples were not perfectly 

matched (e.g., there is no 1 dpi Cremato resident female sample). Thus, it appeared that there 

were shifts between sexes (e.g., 1 & 3 dpi infiltrating cells), but I could not confidently draw 

any sexual dimorphism-related conclusion conclusions from this dataset (Figure 5.9).  

 
Figure 5.9 UMAPs of male (left) and female (right) myeloid cells. Each cell is coloured by its dpi. Male and female samples were not 
perfectly replicated across the dataset, so it’s difficult to draw conclusions. However, there may be slight differences between the sexes. 

5.3 UNSUPERVISED CLUSTERING 

After establishing that the myeloid cell atlas exhibited the expected cell types and states 

based on previous findings, I sought to identify new transcriptional patterns involved in the 

SCI immune response by employing unsupervised analytical approaches. To this end, I 

performed unsupervised clustering on the myeloid cell atlas via Leiden community detection 

(Traag et al., 2019) by converting the SingleCellExperiment object to a Monocle3 cell_data_set 

and calling the cluster_cells function from the Monocle3 (version 0.2.1) with the parameters 

reduction_method = UMAP and k = 14. Briefly, this approach first builds a k nearest neighbour 

graph with the number of nearest neighbours defined by the parameter k (Amezquita et al., 

2020). Notably, the value of k regulates clustering resolution, with greater values resulting in 

more connectivity and ultimately broader clusters, while lower values have the opposite 

effect. Here, the value of k was empirically selected. After building the graph, cluster_cells 

calculates the weight of the connection between each cell using the Jaccard index, and then 

identifies highly connected cells via Leiden community detection. In this chapter, I chose to 

use the Leiden over the Louvain method applied in Chapters 3 and 4 because it is faster, more 
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effective at generating well-connected communities, and is the recommended approach 

when performing Monocle3 trajectory analysis (Nayak & Hasija, 2021; Traag et al., 2019).  

 

I visualised the clusters on a UMAP (Figure 5.10A) and investigated the correlation between 

dpi and cluster membership. I found highly statistically significant correlations for clusters 1-

15 (Figure 5.10B) suggesting a level of biological relevance for these clustering results. 

Conversely, clusters 17-22 were only weakly correlated with dpi and were also the smallest 

clusters (< 165 cells). Cluster 22 (< 20 cells), was likely a technical artifact as it originated from 

a single sequencing flow cell. Cluster 15, while well correlated with the Ctrl, comprised cells 

from predominantly one collection date (6-Mar-20), had the lowest logcounts and highest 

mitochondrial gene percentage, and was marked by DEGs that were not typical of microglia 

(Cacna1d, Mlxipl) (Franzén et al., 2019). This cluster likely represented low quality cell 

libraries and was not considered for further analysis. 

 

 
Figure 5.10 UMAP of the myeloid cell atlas. Each dot represents a cell and is coloured by cluster membership, as determined by Leiden 
community detection using Monocle 3. B) A correlation plot of the Pearson’s chi-squared residuals between cluster membership (rows) 
and dpi (columns). Pearson’s Chi-squared test; X-squared = 60992, df = 105, p-value < 2.2e-16. Blue signifies a positive standardised 
residual, while red signifies the opposite. White represents a non-significant contribution. Note that the cluster 11 – Ctrl standardised 
residual was limited to maintain contrast, its true value was 142. Certain clusters, such as cluster 11, are highly correlated with a single 
stage, while others, like cluster 4, are split across more than one stage. Clusters 17-22 are only weakly correlated with dpi.  

 

Next, I looked at the relationship between cell cycling and cluster membership, expecting cells 

of similar cell types and cycling stages to cluster together. In fact, for many clusters (e.g., 1, 2, 
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6, 8, 11) there were strong correlations (Figure 5.11). Clusters 17-22 were again only weakly 

correlated, stemming from their small size, ultimately making them less reliably interpreted. 

The three smallest clusters, 20, 21 and 22 (< 55 cells), were not considered in the downstream 

analysis. 

 

 
Figure 5.11 A correlation plot of the Pearson’s chi-squared residuals between cell cycle (rows) and cluster membership (columns). 
Pearson’s Chi-squared test; X-squared = 13837, df = 63, p-value < 2.2e-16. Blue signifies a positive standardised residual, while red signifies 
the opposite. White represents a non-significant contribution. Note that the cluster 1 – G0 and 1 – G1 standardised residual was limited 
to maintain contrast. True value were -74 and 57, respectively. In many cases, cell cycle and cluster membership are correlated. 

5.4 TRAJECTORY ANALYSIS 

After noting the correlations between cluster membership and dpi or cell cycle phase, I 

decided to perform unsupervised trajectory analysis to further investigate the transition 

between cell states within the myeloid cell atlas. To this end, I employed the Monocle3 

function learn_graph on the cell_data_set object with the parameter close_loop = false (Cao 

et al., 2019; Qiu et al., 2017; Trapnell et al., 2014). Briefly, this function uses reversed graph 

embedding to learn the changes in gene expression that could signify a transition between 

cell states (Cao et al., 2019; Qi et al., 2017). The resultant trajectory can be observed in Figure 

5.12A. Given that I collected time-resolved samples, I was able to use this information to 

provide directionality to the trajectory. To visualise this, I called the Monocle 3 order_cells 

function, which aligns each cell along the learned trajectory, assigning the cell a value in 

pseudotime. The pseudotime can then be given directionality by manually selecting trajectory 

roots corresponding to cells from 1 dpi (Figure 5.12B). Despite only providing the algorithm 

with information about 1 dpi, the pseudotime and dpi were well aligned, creating a trajectory 

for the myeloid cell transcriptional profiles across the acute, subacute, and early chronic 

phases of SCI. 
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Figure 5.12 UMAP of the myeloid cell atlas coloured by dpi A) or Monocle 3 inferred pseudotime B). The UMAPs are superimposed with 
the unsupervised reversed graph embedding-derived trajectory inferred via Monocle 3. Pseudotime and dpi are closely aligned. 

5.5 CHARACTERISING MYELOID CELL ATLAS CLUSTERS 

To ultimately infer the biological meaning of clusters in a scRNAseq dataset, one can calculate 

the DEGs that characterise each cluster and extrapolate possible functions using GO analysis 

and published mechanistic studies. This can then be harmonised with other atlas-derived 

data, such as the cell cycling annotations and trajectory analysis, to infer a map of myeloid 

cell transcriptional profiles across the SCI pathology. To begin, I provided the clusters with 

more intuitive names based on their majority cell-type and their position in the trajectory 

(Figure 5.13).  
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Figure 5.13 UMAP of the myeloid cell atlas coloured by the updated cluster names. The UMAP is superimposed with the unsupervised 
reversed graph embedding-derived trajectory inferred via Monocle 3. MG = microglia, MC = monocyte/macrophage, DC = dendritic cells, 
NP = neutrophils. 

 

 CALCULATING DEGS AND PERFORMING GO ANALYSIS 

I generated DEGs for each cluster by calling the scran function, findMarkers, with the 

parameters group = cluster membership, direction = upregulated, pval.type = some. The 

findMarkers function identifies DEGs by pairwise Welch t-Tests comparisons corrected for 

multiple testing via the Benjamini-Hochberg method and combines the comparisons into a 

ranked list of markers for each cluster (Figure 5.14). I then used these DEGs for GO enrichment 

analysis. To this end, I selected the top DEGs for each cluster, defined as FDR < 0.0001, FC > 

1.5, ranging from 77-185 genes). Then, I submitted them to the PANTHER Classification 

System overrepresentation test (Mi et al., 2013) (release 2021-07-02) following the 

instructions on the Gene Enrichment analysis page (http://geneontology.org/docs/go-

enrichment-analysis/), including the optional use of a custom reference list, which was the 

detected genes from the custom mm10 reference list. P-values were computed using the 

default setting of Fisher’s Exact Test and were corrected for multiple testing using the 
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Benjamini-Hochberg method. I examined only biological processes that were over-

represented.  

 
Figure 5.14 Heatmap of average expression of the top 3 DEGs per cluster. Note that some top DEGs overlapped, and the 6 cells coloured 
bright yellow (max) were scaled down to maintain contrast; their true values ranged from 9-13 logcounts. 

 

 CHARACTERISING MICROGLIA CLUSTERS 

At 1 dpi, the majority of microglia were in a highly activated MG(1) state (Figure 5.16A) 

characterized by GO terms for proliferation, as expected from the cell cycle analysis (Figure 

5.16B) and recent reports (Bellver-Landete et al., 2019) (Figure 5.16C). As previously 

demonstrated, these cells downregulated homeostatic microglia markers (Figure 5.15A) and 

began to adopt DAM1-like phenotypes (Figure 5.5; Figure 5.15B) 

Ave Expression 
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Figure 5.15 A) Dot plot showing canonical microglia marker expression across the microglia clusters. Homeostatic genes are 
downregulated as early as cluster MG(1). However, by MG(3A), many homeostatic microglia gene levels closely resembles the Ctrl. B) A 
heatmap of homeostatic and DAM-associated genes in microglia across the different clusters. Profiles are separated by solid black line, 
hMG = homeostatic microglia, hMG¯ = homeostatic microglia that are downregulated in the DAM1 signature. Each row is a gene, and each 
column is a cell. Dotted white boxes highlight microglia that fit the designated profile. 

 

MG(1) was also highly enriched for terms regarding the production of and response to 

cytokines, as well as signs of aerobic glycolysis, which has been shown to support cytokine 

production and is a hallmark of pro-inflammatory macrophages (Meiser et al., 2016). MG(1) 

was also enriched for GO terms for the recruitment of blood-borne leukocytes and migration 

as described (Milich et al., 2021), positive regulation of astrocyte activation (Donnelly & 

Popovich, 2008), and lipid storage and metabolism (Figure 5.16C). MG(1) notably lacked 

colony-stimulating factor 1 (Csf1r), a gene required for microglia proliferation and survival 

during homeostasis (Elmore et al., 2014) and differentially upregulated epidermal fatty acid-

binding protein 5 (Fabp5), a target of both the NF-κB and PPAR-γ pathways that is involved in 

lipid transport/localization (Kaczocha et al., 2014; Senga et al., 2018). The upregulation of 

Fabp5 appeared to occur at the root of the MG(1) trajectory that passed through the highly 

proliferating population (Figure 5.7B). This is in line with reports that Fabp5 is both required 

for proliferation and, under polyunsaturated fatty acid-high conditions, can bind HIF-1α to 

facilitate proliferation (Levi et al., 2013; Seo et al., 2020; Zhao et al., 2017).  
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Figure 5.16 A) Bar chart of the microglia clusters depicting the number of cells per cluster, coloured by their dpi. B) A correlation plot of 
the Pearson’s chi-squared residuals between microglia cluster membership (rows) and cycle (columns). Pearson's Chi-squared test X-
squared = 7417.2, df = 18, p-value < 2.2e-16. C) The fold enrichment and FDR of select GO terms for cluster MG(1). Pos = positive; 
Neg=negative. D) UMAP coloured by the scaled logcounts of Fabp5 and Csf1r. Note the lack of blue, demonstrating that these two genes 
are not co-expressed and MG(1) Fabp5 is expressed at only one of the MG(1) trajectory roots. The UMAP is superimposed with the 
trajectory inferred via Monocle 3. Microglia clusters are denoted by the dotted lines. 

 

By 2 dpi, about half of microglia remained in the MG(1) stage, while the others adopted a 

MG(2) phenotype (Figure 5.16A), which closely resembled the DAM1 phenotype (Figure 5.5; 

Figure 5.15B) (Keren-Shaul et al., 2017). MG(2) cells were more likely to be in G2M phase of 

proliferation (Figure 5.16B). These cells also downregulated Fabp5 and upregulated Csf1r 

(Figure 5.16D). According to GO term analysis, this population continued to produce cytokines 

and perform aerobic glycolysis (Figure 5.17A), migrate, activate astrocytes, promote 

angiogenesis, recruit blood borne leukocytes, and metabolise lipids. Unlike MG(1), MG(2) also 

A B 

lactate biosynthetic process from pyruvate
complement−mediated synapse pruning

cellular response to interleukin−7
regulation of cholesterol storage

eosinophil chemotaxis
macrophage migration

pyruvate metabolic process
cellular response to interleukin−4

response to lipoprotein particle
pos regulation of TNF production

cellular response to chemokine
pos regulation of NIK/NF−kappaB signaling

cellular iron ion homeostasis
pos regulation of lipid localization

pos regulation of leukocyte migration
pos regulation of endothelial cell migration

neg regulation of neuron apoptotic process
gliogenesis

neg regulation of neuron death
pos regulation of cell migration

pos regulation of MAPK cascade

Fold Enrichment

0 20 40 60 80

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

C D 



 - 127 - 

showed signs of phagocytosis and began to upregulate Apoe and Trem2 (Figure 5.17B,C), 

adding further evidence for phagocytic functions (Atagi et al., 2015). 

 
Figure 5.17 A) The fold enrichment and FDR of select GO terms for cluster MG(2). Pos = positive; Neg=negative. B) Boxplots of Trem2 and 
Apoe logcounts by microglia cluster. MG(2) begins to restore homeostatic Trem2 levels and upregulates Apoe, suggesting an increase in 
lipid metabolism, possibly due to phagocytosed myelin debris. C) UMAP coloured by the log10counts of Apoe. The UMAP is superimposed 
with the trajectory inferred via Monocle 3. Microglia clusters are denoted by the dotted lines. Apoe is quite differentially expressed across 
the myeloid cell atlas, with the highest microglia expression in the MG(3) clusters. 

 

To further verify that MG(1) and (2) cells were proliferating, I investigated the expression of 

P2ry12, Msr1, and Cdk1. In a recent scRNAseq study of CNS cells after SCI, P2ry12 was 

reported to be downregulated, while Msr1 and Cdk1 were upregulated in cycling microglia 

(Milich et al., 2021). I observed this pattern in MG(1) (Figure 5.18A) and, to a lesser extent, in 

MG(2) (Figure 5.18B), which began to upregulate P2ry12. Compared to other clusters, 

however, Msr1 and Cdk1 expression was increased (Figure 5.18C). I also confirmed the 

presence of previously described proliferating microglia profile and found that MG(1) and (2) 

upregulated the expected genes (Figure 5.18D) (Hammond et al., 2019; Milich et al., 2021). 
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Figure 5.18 Boxplots of Cdk1, Msr1, and P2ry12 expression in A) MG(1) or B) MG(2) across cell cycle phases or C) across all activated 
microglia clusters. Cdk1 and Msr1 expression loosely mark the two acute cycling clusters. D) Heatmap of microglia from the myeloid cell 
atlas and their expression of proliferating microglia-associated genes. Each row is a gene, and each column is a cell. Clusters MG(1) and 
(2) strongly upregulate proliferation profiles. 

 

3 dpi, microglia remained largely split between the proliferating, proinflammatory clusters, 

MG(1) and MG(2), with ~11% clustering in MG(3) (Figure 5.16A). MG(3) adopted a more 

DAM2-like phenotype (Figure 5.15B) but still showed GO terms for blood-borne leukocyte 

recruitment as well as phagocytosis and lipid processing, supported by high expression levels 

of lipid processing genes Trem2, Apoe, and Fabp5 (Figure 5.17B, Figure 5.19A,B). MG(3) 

MG(1) A 

MG(2) B 

C 
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continued to activate astrocytes and began to upregulate Igf1, which has been shown to 

promote astrogliosis and ultimately scar formation in SCI (Figure 5.19A,B) (Bellver-Landete et 

al., 2019). Unlike MG(1/2), MG(3) was no longer proliferating (Figure 5.7B; Figure 5.16B; 

Figure 5.19A), and had GO terms for cytotoxicity, ROS-producing reverse electron transport 

(Peruzzotti-Jametti et al., 2021), and the production of IL-6, a cytokine known to sustain 

chronic inflammation, possibly by shifting monocyte differentiation from a dendritic cell to 

macrophage fate (Chomarat et al., 2000; Hunter & Jones, 2015). Conversely, astrocyte-

targeted IL-6 has been shown to promote corralling of pro-inflammatory infiltrating cells, 

which together with the observed upregulation of scar-formation promoting, Igf1 (Figure 

5.19B), suggests a role for scar formation (Bellver-Landete et al., 2019; Penkowa et al., 2003). 

Notably, this cluster also presented several contradictory GO terms, such as both the positive 

and negative regulation of cytokine production (Figure 5.16D). These discrepancies might be 

explained by the heterogeneity within MG(3), depicted by the branching trajectory that 

passes through this cluster, including the differential expression of Fabp5 and Csf1r within the 

cluster (Figure 5.16A). 

 

 
Figure 5.19 A) The fold enrichment and FDR of select GO terms for cluster MG(3). Pos = positive; Neg=negative. B) Boxplots of Fabp5 and 
Igf1 logcounts by microglia cluster. MG(3) upregulates both genes, suggesting an increase in lipid metabolism and the beginning of scar 
formation. 

 

At 10 and 21 dpi, microglia were split between MG(3), MG(3A), and MG(3B) (Figure 5.16A). 

Of all the microglia clusters, MG(3A) most closely resembled the homeostatic Ctrl cluster in 

regard to its homeostatic gene expression (Figure 5.15A), cell cycling phase (Figure 5.16B), 
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trajectory and pseudotime (Figure 5.12), and GO Terms (Figure 5.20A,B). GO terms for both 

the Ctrl and MG(3A) included antigen presentation, leukocyte homeostasis, phagocytosis, 

synapse pruning, cell adhesion, and motility. A major difference between the Ctrl and MG(3A) 

clusters, was the upregulation of Apoe (Figure 5.17B,C) and other DAM1-genes such as Tyrobp 

and Lyz2 (Figure 5.15B). Compared to MG(3) and MG(3B), the DAM2-like expression pattern 

was noticeably absent in MG(3A).  

 
Figure 5.20 A) The fold enrichment and FDR of select GO terms for the Ctrl cluster. B) The fold enrichment and FDR of select GO terms for 
the MG(3A) cluster. Pos = positive; Neg=negative; Reg = regulation; Rs = receptor. The Ctrl and MG(3A) clusters share many terms. 

 

MG(3B) comprised ~8% 3 dpi cells but was predominantly populated by cells from 10 and 21 

dpi. Notably, not all of these cells were microglia. Approximately 5% were macrophages and 

could be distinguished by their fate mapping label (for the CreMato samples), their 

differential expression of microglia markers, particularly Siglech, Serpine2, and Sparc, and the 

upregulation of Ms4a7 (Figure 5.21A) in line with previous reports (Jordão et al., 2019; Konishi 

et al., 2017). Like MG(3), MG(3B) adopted a more DAM2-like phenotype (Figure 5.15B) and 

downregulated homeostatic microglia genes, even below MG(3) levels (Figure 5.15A). Unlike 

MG(3A), MG(3B) showed some signs of proliferation (Figure 5.7B; Figure 5.16B), but not as 

convincingly as the acute phase clusters (Figure 5.18D) and the MG(3B) cluster also had the 

highest expression of scar-formation promoting, Igf1 (Figure 5.19B) (Bellver-Landete et al., 

2019). In terms of GO analysis, cluster MG(3B), like MG(3) and MG(3A), showed signs of 

migration, but lacked antigen presentation, metabolism-related genes, and phagocytosis 

(Figure 5.21B). GO terms for processing phagocytic cargo, such as lysosomal acidification and 
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triglyceride metabolism, were enriched (Chandak et al., 2010; Marschallinger et al., 2020). 

Genes for lipid processing were also upregulated including Apoe (Figure 5.17B,C) and Fabp5 

(Figure 5.19B; Figure 5.16D).  

 

I wondered whether the lipid-processing GO terms reflected a foam-cell like phenotype, and 

investigated the expression of peripheral macrophage foam cell (Willemsen & de Winther, 

2020; Zhu et al., 2017) and lipid-droplet accumulating microglia (LDAM) markers 

(Marschallinger et al., 2020). Interestingly, MG(3B) upregulated many foam-cell markers but 

did not match the LDAM profile (Figure 5.21C). Macrophage Msr1 expression was recently 

demonstrated to promote foamy macrophage formation and neuronal apoptosis through 

myelin-mediated NF-κB signalling in weight-drop mouse models of T10 contusive SCI (Kong 

et al., 2020). Interestingly, Msr1 was upregulated in 1 dpi cells from MG(1) and (2), suggesting 

that the foam cell-like state of MG(3B) is initiated very early on in the microglia trajectory 

(Figure 5.21D, E). 
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Figure 5.21 A) Heatmap of cluster MG(3B) depicting the logcounts for the top 30 DEGs genes plus Siglech, Gpnmb, Ms4a7, Fabp5, and 
Lyz2. Cells (columns) are labelled by their fate mapping label. Macrophages are only subtly distinguished from the microglia. B) The fold 
enrichment and FDR of select GO terms for the MG(3B) cluster. Pos = positive; Neg=negative. Phagocytosis is absent from the list, while 
GO terms for processing phagocytic cargo are enriched. C) Heatmap of Fabp5, foam cell-associated, and LDAM gene expression in the 
microglia clusters. MG(3B) upregulates Fabp5 and foam cell-associated genes. D) UMAP coloured by the log10counts of Msr1. The UMAP 
is superimposed with the trajectory inferred via Monocle 3. E) Boxplots depicting Msr1 expression in the MG clusters across each dpi. 
Msr1 expression is highest at 1 dpi. 

 

As observed in cluster MG(1), Fabp5 and Csf1r expression in cluster MG(3B) cells was mutually 

exclusive. We investigated this expression pattern at the protein level through quadruple IF 

of FABP5 and CSF1R in 21 dpi CreMato tissue, as described (4.2.3). We found that CSF1R-

/FABP5+ microglia and macrophages, likely corresponding to MG(3B) (Figure 5.16A,D), 

dominated the lesion core, while the majority of CSF1R+ microglia, possibly MG(3A), remained 

perilesional (Figure 5.22). 
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Figure 5.22 IF of CreMato tissue at 21 dpi stained for FABP5 and CSF1R at the lesion epicentre (A) and perilesional (B). Scale bars: Top 
panel 60 μm; Bottom panel 20 μm. FABP5 and CSF1R are mutually exclusive. FABP5 expression dominates the lesion core, while CSF1R is 
more prominent in the perilesional area. Images were acquired by Luca. 
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To further investigate the spatial dynamics of the microglia clusters across the SCI pathology, 

Veronica and I prepared SCI tissue and Katherine, Stefano, and I planned an smFISH 

experiment as described (4.2.2). Katherine performed the imaging and quantified spots in 

each region of interest (ROI). I performed the analysis on this data, the code for which can be 

found here (https://github.com/regan-hamel/PhD_Dissertation). To specifically identify the 

clusters in situ, we probed three genes, Apoe, Trem2, and Fabp5, plus the tdTomato and YFP 

fate mapping labels, ultimately defining each cluster according to Figure 5.23A. The average 

number of smFISH spots detected per cluster is shown in Figure 5.23B, and in general, closely 

reflects the scRNAseq data. MG(1) and (2) were difficult to match, likely since these clusters 

were not populous at the smFISH timepoints (3, 10, and 21 dpi).  

 

Katherine segmented the tissue at the lesion epicentre into four concentric ROIs, centred on 

the lesion core, plus one ROI in the NASC (Figure 5.23C), allowing us to investigate the spatial 

dynamics of the clusters over time (Figure 5.23D). By 3 dpi, Apoe-/Fabp5-/Trem2+ cells with 

Ctrl profiles were decreased at the lesion core but by 21 dpi, began to repopulate the core in 

greater numbers than the uninjured tissue, suggesting that a subset of proliferating microglia 

return to a homeostatic-like state in the chronic phase. In the scRNAseq data, I observed a 

similar trend but in the Apoe+/Fabp5-/Trem2+ MG(3A) cluster. This discrepancy could reflect 

an isolation-induced upregulation of Apoe, as described (Milich et al., 2021). Activated 

microglia, were present across all the ROIs from 3 dpi. As previously mentioned, MG(1) and 

(2) were largely absent, especially near the lesion core. MG(3) was present at 3 and 10 dpi 

throughout the sampled tissue except at the core. MG(3B) accounted for large proportions of 

the cells across the tissue at 3 dpi, which is surprising given the relatively small proportion of 

3 dpi MG(3B) cells in the scRNAseq data. However, this could be due to an isolation bias, 

which will be touched in the Discussion and further discussed in 6.1. MG(3B) did persist to 21 

dpi in the smFISH data. MG(3A) appeared to be consistently enriched across the tissue except 

in the 2nd ROI, suggesting they might not be a structural component of the microglial scar 

(Bellver-Landete et al., 2019). 
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Figure 5.23 A) A heatmap of the scRNAseq data showing the average normalised expression of each gene of interest for each microglia 
cluster, scaled across each gene (row). B) A heatmap of the smFISH data depicting the average number of spots detected per cluster. The 
cluster definitions used for smFISH are well matched, with slight differences in cluster MG(1) and (2). These clusters were not well 
populated in the timepoints used for smFISH. C) The ROIs for the smFISH cluster quantification. This image was taken by Katherine. D) 
The smFISH-based quantification of microglia clusters by ROI at several dpi, presented as normalised residuals (condition – control/the 
number of microglia in the ROI). 

 

The smFISH data, alongside the IF, support the in silico evidence for a dynamic Fabp5 

expression across the SCI pathology, particularly in the MG(3) trajectory. I investigated the 

expression level of Fabp5 over time within the MG(3), (3A), and (3B) clusters (Figure 5.24A) 

and found that Fabp5 increased over time for MG(3) and (3B). In (3A), which adopted a 

homeostatic-like phenotype post-SCI, only the 28 cells from 3 dpi expressed Fabp5. I 

wondered whether Fabp5 expression might be negatively associated with the upregulation 

of microglial neuroprotective genes (M0), as defined by Krasemann et al., 2017. To address 

this, I first visualised the expression of neuroprotective genes across the clusters (Figure 

5.24B) and observed an inverse pattern to the previously observed DAM2 gene expression 

(Figure 5.15B); the Ctrl and cluster MG(3A) upregulated neuroprotective genes, unlike the 

DAM2-like MG(3) and (3B) clusters. I also investigated MGnD defined by (Krasemann et al., 

2017), which included Fabp5, and found that while both MG(3) and (3B) upregulated many 

C scRNAseq A smFISH B 
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DAM2 genes, the latter was a better match with MGnD, suggesting a potential 

neurodegenerative role for this cluster. Next, I binned cells by Fabp5 expression levels and 

compared the median expression of neuroprotective genes in each group. I found that 

Fabp5hi/med cells expressed lower levels of neuroprotective genes than Fabp5lo cells (Figure 

5.24C). Cumulatively, this data motivates the hypothesis that Fabp5 upregulation may 

encourage microglia to follow the MG(3B) trajectory, rather than progressing to the 

homeostatic-like, neuroprotective MG(3A) state, a question which will be further deliberated 

in the Discussion. 
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Figure 5.24 A) Boxplot of Fabp5 expression in the MG(3) clusters over time. Fabp5 expression increases over time except in cluster 
MG(3A). B) Heatmap of the microglia clusters depicting the logcounts of neuroprotective vs neurodegenerative genes. Cells (columns) 
are labelled by their cluster and cell cycle phase. MG(3A) upregulates neuroprotective genes while MG(3B) upregulates many of the 
neurodegerative genes. Gene lists are separated by the solid black line. Note that Smad3 was not in the HVGs. C) Boxplot of the median 
expression of neuroprotective genes across the microglia clusters. Cells are binned by Fabp5 expression levels. High > 15 counts; 1 < Med 
< 15; Low < 1 (note the term “none” was not used to account for sparsity). Fabp5+ cells express lower levels of neuroprotective genes. 

 

To summarise, this myeloid cell atlas suggests that acute phase microglia upregulate Msr1 

and NF-κB signalling, become pro-inflammatory, and undergo proliferation, adjacent to the 

lesion core and in the NASC (Figure 5.25). Some of these proliferating cells transition into a 

DAM1-like state of phagocytosis, but it is unclear if all the proliferating cells adopt this state. 

In the late acute and subacute phase, microglia drastically upregulate the lipid-processing 

genes Trem2 and Apoe and become cytotoxic, producing ROS and IL-6. A subset of microglia 

remain in this state indefinitely. Others transition into a neuroprotective, homeostatic-like 

state. A final subset takes on a lipid-processing, foam cell-like, scar formation-promoting 

state, that shares a transcriptional signature with the previously described MGnD and is found 

in both the NASC and lesioned areas. The lipid processing state is also adopted by a population 

of subacute and chronic monocyte-derived macrophages. Beyond the early chronic (21 dpi) 

timepoint, it is unclear whether these states persist, or if cells transition into other, 

unidentified states. 
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Figure 5.25 A summary of the microglia states present in the time-resolved myeloid cell atlas across the acute, subacute, and early chronic 
phases of SCI. 

 

 CHARACTERISING INFILTRATING MYELOID CLUSTERS 

In contrast to the microglia clusters, which were well-represented across the time-resolved 

atlas, infiltrating myeloid clusters were dominated by cells from 1-3 dpi (Figure 5.26). At 1 dpi, 

three infiltrating myeloid cell types were present: neutrophils, T-Cells, and monocyte-derived 

cells, in line with previous findings (Alizadeh et al., 2019; Donnelly & Popovich, 2008; Milich 

et al., 2021). 

 

Neutrophils were present only in the acute phase of SCI, showed little evidence of cell cycling 

(Figure 5.26B), and presented the expected GO terms of phagocytosis, neutrophil 

aggregation, and intrinsic apoptosis (Zivkovic et al., 2021). T-Cells were present across the SCI 

pathology (Figure 5.26A) as expected (Donnelly & Popovich, 2008), however given that only 

164 T-Cells were collected, I was not confident that I could draw any meaningful conclusions 

from their transcriptional profiles. 
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Figure 5.26 A) Bar chart of the infiltrating clusters depicting the number of cells per cluster, coloured by their dpi. B) A correlation plot of 
the Pearson’s chi-squared residuals between infiltrating cluster membership (rows) and cycle (columns). Pearson's Chi-squared test X-
squared = 2414, df = 33, p-value < 2.2e-16. C) The fold enrichment and FDR of select GO terms for the NP cluster. Pos = positive; 
Neg=negative, reg = regulation. The expected GO terms for neutrophils are present.  

 

Monocyte-derived cells were more plentiful and dynamic than neutrophils and T-Cells. 

Cluster MC(1) comprised infiltrating cells from mainly 1 dpi. Based on Veronica’s 

quantification (Figure 4.5) and the expression of C-C Motif Chemokine Receptor 2 (Ccr2) 

(Phillips et al., 2005), MC(1) had yet to fully infiltrate the spinal cord parenchyma and 

differentiate into macrophages or dendritic cells, as previously reported for 1 dpi (Alizadeh et 

al., 2019; Donnelly & Popovich, 2008; Milich et al., 2021) (Figure 5.27A, B). This cluster was 

characterised by GO terms for the response to low oxygen levels and angiogenesis and the 

initiation of fibrosis, both of which were previously reported to stem from macrophages after 

3 dpi (Kigerl et al., 2009; Whetstone et al., 2003). This discrepancy might be a consequence 

of transcription vs protein-level analyses. MC(1) was also enriched with GO terms for the 

production and response to cytokines and reactive oxygen species (ROS), oxidative stress-

induced neuronal death, respiratory bursts, phagocytosis, cellular detoxification, blebbing, 

and lipid processing (Figure 5.27C). Fabp5 was expressed in MC(1) cells, supporting a lipid 

processing function (Zhu et al., 2017) (Figure 5.27D). 

 

B A 

logcounts (Ccr2) 



 - 140 - 

 
Figure 5.27 A) UMAP coloured by the log10counts of Ccr2. The UMAP is superimposed with the trajectory inferred via Monocle 3. 
Infiltrating clusters are denoted by the dotted lines. Ccr2 is differentially expressed across the infiltrating myeloid cell atlas, with the 
highest expression in the acute phase monocytes and the monocyte-derived dendritic cells. B) Boxplots quantifying the Ccr2 the 
expression shown in A). Note these are the log2 normalised counts. C) The fold enrichment and FDR of select GO terms for the MC(1) 
cluster. Pos = positive; Neg=negative; reg = regulation. D) UMAP coloured by the log10counts of Fabp5. 

 

From MC(1), monocyte-derived cells projected down three main trajectories, which I 

arbitrarily labelled from A-C. Starting with the shortest trajectory, MC(2C) comprised cells 

from 1-3 dpi (Figure 5.26A), upregulated Fabp5 (Figure 5.27D), and expressed GO terms for 

IL-4 signalling, which has been shown to be neuroprotective in the context of SCI (Fenn et al., 

2014). Terms relating to phagocytosis, and blebbing were also enriched (Figure 5.28A). 

Furthermore, this cluster was uniquely defined by an increase in the expression of Lrp1 (Figure 

5.28B), an endocytic receptor involve in phagocytosis of apoptotic cells (May et al., 2002). 

Thus, MC(2C) may represent a small subset of infiltrating myeloid cells that are activated by 

IL-4 signalling and clear apoptotic cells after SCI before undergoing apoptosis themselves. 
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Figure 5.28 The fold enrichment and FDR of select GO terms for the MC(2C) cluster. Pos = positive; Neg=negative. B) Boxplots quantifying 
the expression of Lrp1, which is starkly upregulated in cluster MC(2C). 

 

MC(2B) and (3B) were Ccr2-expressing (Figure 5.27A,B), acute phase clusters with minimal 

contributions from 10 and 21 dpi (< 2.5%) (Figure 5.26A) and no strong evidence of cell cycling 

(Figure 5.26B). These cells were characterised by GO terms for blebbing and seemed to be 

fated towards cytokine production and apoptosis as described (Greenhalgh & David, 2014) 

(Figure 5.29A). However, these clusters also contained GO terms for the negative regulation 

of MyD88 signalling, a pro-inflammatory, NF-κB-activating, macrophage-recruiting signalling 

pathway that has been demonstrated to have degenerative effects in rat models of 

compression SCI (Boivin et al., 2007; Xu et al., 2018; Yao et al., 2012). MC(2B) also showed a 

positive regulation of neuroprotective IL-4 signalling. Notably, this potentially 

neuroprotective cluster of infiltrating macrophages expressed very low levels of Fabp5 

compared to other infiltrating clusters (Figure 5.29B; Figure 5.27D), supporting the hypothesis 

that Fabp5 expression may have negative effects in the SCI pathology. 

B A 
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Figure 5.29 The fold enrichment and FDR of select GO terms for the MC(2B) cluster. Pos = positive; Neg=negative. B) Boxplots quantifying 
the expression of Fabp5, which is lowly expressed in clusters MC(2B) and MC(3B) compared to other infiltrating monocyte-derived 
clusters. 

 

MC(2A) was contributed to by infiltrating cells from 1-2 dpi but dominated by 3 dpi (Figure 

5.26A). The cluster was characterised by GO terms for the negative regulation of intrinsic 

apoptosis, response to hypoxia, and NF-κB transcription factor activity (Figure 5.30A). 

Notably, NF-κB is upstream of Fabp5, which was drastically upregulated in MC(3A) (Figure 

5.29B) (Kaczocha et al., 2014), the next stage in the Monocle3 predicted trajectory (Figure 

5.27D). In fact, the fate of MC(2A) correlated with its Fabp5 expression, with Fabp5lo cells 

differentiating into pro-regenerative dendritic cells (Yaguchi et al., 2009), whereas Fabp5hi 

cells became pro-inflammatory macrophages (Figure 5.27D). By binning cells based on Cd74 

expression, which is highly upregulated in dendritic cells, or Ccr2 which is downregulated 

upon macrophage differentiation (Phillips et al., 2005), I saw that both high Cd74 and Ccr2 

expression correlated with low Fabp5 expression, even as early as MC(1) (Figure 5.30B). In 

further support of the trajectory analysis, the trajectory-predicted fate of MC(2A) into 

dendritic cells or macrophages was well supported by the GO analysis, which returned terms 

for myeloid cell differentiation and purine metabolism (Ahmed & Weidemann, 1994) (Figure 

5.30A). 
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Figure 5.30 A) The fold enrichment and FDR of select GO terms for the MC(2A) cluster. Pos = positive; Neg=negative. B) Boxplot of the 
Fabp5 expression across the MC(1), MC(A), and DC clusters. Top: Cells are binned by Cd74 expression levels. High >= 20 counts; 1 < Med 
< 20; Low =< 1. Bottom: Cells are binned by Ccr2 expression levels. High >= 10 counts; 1 < Med < 10; Low =< 1 (note the term “none” was 
not used to account for sparsity). Cd74+ cells express lower levels of Fabp5 while Ms4a7+ cells express higher levels of Fabp5. 

 

The monocyte-derived dendritic cell clusters were dominated by the acute phase, but a 

portion of cells remained present at 10 and 21 dpi (Figure 5.26A). This possibly occurred 

through local proliferation (Swirski et al., 2014) as a small portion of DC(2) and (3) cells were 

assigned to the G1 phase (Figure 5.7B) and the GO analysis returned terms for G1/S transition. 

The dendritic cell clusters were also dominated by the expression of MHC II genes and GO 

terms for antigen presentation, phagocytosis, and T-cell chemotaxis, as expected (Guilliams 

et al., 2014).  

 

The Ccr2- monocyte-derived macrophage clusters, MC(3A) and MC(4A) (Figure 5.27A,B), 

comprised 3 dpi and 10/21 dpi cells, respectively (Figure 5.26A), in line with previously 

described timelines for macrophage infiltration post-SCI (Alizadeh et al., 2019; Donnelly & 

Popovich, 2008; Greenhalgh & David, 2014; Milich et al., 2021). MC(3A) was highly correlated 

with the G0 phase (Figure 5.26B) and was characterised by a uniform upregulation of Fabp5 

(Figure 5.29B). In line with this observation, GO term analysis showed highly enriched terms 

for lipid metabolism and processing phagocytic cargo, but terms for phagocytosis were absent 

(Figure 5.31A). These features closely resembled cluster MG(3B), thus I investigated whether 

MC(3A) might also acquire a foam-cell profile and found that it did, including the upregulation 

of Msr1 in the preceding clusters (Figure 5.31B,C) (Kong et al., 2020). 
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Other enriched GO terms in MC(3A) included microglia and astrocyte activation, neurite 

growth and wound healing but also the mediation of extrinsic apoptosis, and both the positive 

and negative regulation of nitric oxide and cytokine production (Figure 5.31A). These 

opposing terms could be explained by the transition within MC(3A) from a predominantly 

lipid processing, Fabp5hi, 3 dpi state to a Trem2hi MG(4A)-like state at 10-21 dpi (Figure 5.31D). 

We verified this dynamic expression pattern via smFISH (Figure 5.31E), as described (4.2.2). 
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Figure 5.31 A) The fold enrichment and FDR of select GO terms for the MC(3A) cluster. Pos = positive; Neg=negative. B) Boxplot of Msr1 
expression in the MC clusters. Msr1 is upregulated before Fabp5 and the adoption of the foam cell like phenotypes. C) Heatmap of Fabp5 
and foam cell-associated genes in the MC clusters. MC(3A) upregulates Fabp5 and foam cell-associated genes, similar to MG(3B). D) 
UMAP of infiltrating monocyte-derived cells coloured by the scaled logcounts of Fabp5 and Trem2. Note the transition within MC(3A) 
from Fabp5hi to Trem2hi. Clusters are denoted by the dotted lines. E) smFISH depicting the expression of Fabp5, Trem2 and Apoe in the 
lesion epicentre at Ctrl, 3, 10, and 21 dpi. Nuclei in the merged panels were stained with DAPI. Arrowheads are as follows: White = 
Fabp5+/RFP+/YFP+ resident myeloid cells; Green = Fabp5+/Trem2-/RFP-/YFP+ infiltrating myeloid cells; Purple = Fabp5-/Trem2+/RFP-/YFP+ 
infiltrating myeloid cells. Scale bars: 20 μm. 

 

Unlike MC(3A), the 10-21 dpi MC(4A) was highly correlated with the G1 cell cycle phase 

(Figure 5.26A,B). This suggests these infiltrated macrophages underwent local proliferation in 

the subacute and chronic phases of SCI, which has been proposed (Greenhalgh & David, 2014; 

Swirski et al., 2014). Surprisingly, GO analysis returned many of the same terms as MG(3) 

(Figure 5.19A): glia activation, antigen presentation, cytokine production and monocyte 

chemotaxis, ROS-producing reverse electron transport (Peruzzotti-Jametti et al., 2021), cell 

killing, and inflammation-perpetuating IL-6 production (Hunter & Jones, 2015). Furthermore, 

MC(4A) comprised not only infiltrating macrophages, but also a population of CAMs, 

distinguished by a unique expression pattern and the resident myeloid cell fate mapping label 

(Figure 5.32B,C). This population was likely driving the antigen presentation GO terms. 

E 
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Figure 5.32 A) The fold enrichment and FDR of select GO terms for the MC(4A) cluster. Pos = positive; Neg=negative; reg = regulation. B) 
UMAP of infiltrating monocyte-derived cells coloured by the scaled logcounts of Mrc1 and Ms4a7. CAMs upregulate Mrc1 compared to 
other MC(4A) cells. Clusters are denoted by the dotted lines. C) A heatmap of CAM marker expression in cluster MC(4A). Cells (columns) 
are labelled by their fate mapping status (fl) and annotated cell type. The CAMs have a distinct transcriptional profile and were found 
predominantly in the RFP+/YFP+ resident samples. 

 

The smFISH experiment described in Characterising Microglia Clusters was designed 

specifically for the microglia clusters. However, the monocyte-derived A trajectory shared the 

dynamic expression patterns of Apoe, Trem2, and Fabp5. Thus, I loosely defined each cluster 

according to Figure 5.33A,B, plus the fate mapping labels. Given that the cluster definitions 

were not perfectly aligned, I used this data to draw general conclusions (Figure 5.33C). At 3 

and 10 dpi, infiltrated myeloid cells were present across the spinal cord. By 21 dpi, very few 

infiltrated cells were observed, in contrast to Veronica’s quantifications (Figure 4.6) and 

previous reports, but the detected infiltrated cells were in the lesion core as expected 

(Alizadeh et al., 2019). 
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Figure 5.33 A) A heatmap of the scRNAseq data showing the average normalised expression of each gene of interest for each infiltrating 
myeloid cell cluster, scaled across each gene (row). B) A heatmap of the smFISH data depicting the average number of spots detected per 
cluster. The cluster definitions used for smFISH are not particularly well matched as they were designed for the microglia clusters. D) The 
smFISH-based quantification of MC(A) clusters by ROI at several dpi, presented as normalised residuals (condition – control/the number 
of microglia in the ROI). 

 

Finally, I compared the monocyte-derived clusters with those from Milich et al., 2021. I found 

that the expression patterns of DC(1) closely matched their DC profiles (Figure 5.34), as did 

MC(1) and their monocytes. Their inflammatory macrophage cluster was well-aligned with 

the MG(4A) cluster, in dpi (predominantly subacute), marker gene expression (Figure 5.34) 

and GO terms for glia activation (Figure 5.19A). This suggests that MG(4A) appears as early as 

7 dpi. Their chemotaxis-inducing macrophage cluster was similar to clusters MC(1), (2A), and 

(2C), in gene expression, GO terms for chemotaxis, and dpi (predominantly acute). Notably, 

MG(3A) and (4A) were also enriched for GO terms relating to chemotaxis, despite not 

matching the proposed “chemotaxis-inducing” profile. Finally, while I observed proliferation 

in the MC(4A) cluster, it did not match their dividing myeloid cell cluster and I did not observe 

an upregulation of Cdk1 in any of the infiltrating myeloid cell clusters (see 5.6 Discussion). 

scRNAseq A smFISH B 

C



 - 148 - 

 
Figure 5.34 Dot plot of the expression of genes identified by Milich et al., 2021 as distinguishing infiltrating myeloid cell types across the 
clusters. The expression is shown for monocyte-derived clusters in this myeloid cell atlas (A) and Figure 4C from Milich et al., 2021 (B). 

 

In summary, after SCI, monocytes infiltrate the lesioned spinal cord where they upregulate 

Msr1 and adopt a phagocytic, ROS and cytokine-producing phenotype as early as 1 dpi. These 

monocytes transition into one of three states: an IL-4 signalling, apoptotic debris-clearing 

state that ends in intrinsic apoptosis; a cytokine-producing but MyD88 signal attenuating 

state that may play a neuroprotective role before apoptosis; or a state of differentiation and 

NF-κB transcription factor activity. The latter persists into the subacute and chronic phases as 

either dendritic cells or macrophages, and this bifurcation is correlated with Fabp5 and Ccr2 

expression. The macrophages adopted a lipid metabolising, glia-activating, foam cell-like 

phenotype in the acute phase, but by the subacute and chronic phases had transitioned to a 

cytotoxic, ROS and IL-6 producing state with parallels to the MG(3) cluster. Furthermore, this 

cluster included a small population of CAMs, suggesting they have a similar transcriptional 

profile and potentially a similar role at this stage in the pathology. Both dendritic cells and 

macrophages persisted to 21 dpi and, as with the microglia, their fate beyond this point is 

unclear. 
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Figure 5.35 A summary of the monocyte-derived states, and CAMs, present in the time-resolved myeloid cell atlas across the acute, 
subacute, and early chronic phases of SCI. 

 

5.6 DISCUSSION 

In this chapter I have demonstrated that this time-resolved SCI myeloid cell atlas exhibits the 

expected qualities based on previous findings. I then analysed this dataset in its own right by 

first performing unsupervised clustering and trajectory analysis and then characterising each 

cluster to finally generate a time-resolved map of transcriptional profiles across the SCI 

pathology. 

 

The goal of a typical study is to uncover a new phenomenon. However, demonstrating that 

previous findings are replicable, especially through different protocols or even in new disease 

contexts, is equally critical (Nosek & Errington, 2020). Using this novel myeloid cell atlas, I 

investigated the expression of canonical microglia markers upon activation, and found that 

they were downregulated, as increasingly reported under many other pathological conditions 

including, very recently, SCI (Bennett et al., 2018; Butovsky et al., 2014; Dubbelaar et al., 2018; 

Hammond et al., 2019; Jordão et al., 2019; Milich et al., 2021). This downregulation is now 

accepted as a first step in a disease-independent microglial activation program, termed DAM1 

(Keren-Shaul et al., 2017). After SCI, I found that microglia began to adopt a DAM1-like 

phenotype in the MG(1) state as early as 1 dpi. Apoe and Lyz2, however, were only robustly 

upregulated from 2 dpi onwards (Figure 5.5). Additionally, unlike the DAM1 microglia 

described in the context of AD and ALS (Keren-Shaul et al., 2017), these DAM1-like cells were 

proliferating. Despite the proliferation, and the drastically different timescales between this 

MG(1) cluster and the DAM1 microglia associated with the progression of AD and ALS, the 

DAM1 profile was well replicated in this SCI myeloid cell atlas. Unlike the DAM1 profile, DAM2 

genes were only partially upregulated in microglia by the subacute and chronic phase of SCI, 

with Axl, Csf1, Lilrb4a, and Itgax noticeably absent (Figure 5.5). Perhaps at a more chronic 

time point the DAM2 profile would be recapitulated in SCI, or this discrepancy may represent 

a level of pathology-specificity in the DAM phenotype.  

 

DAM2 is hypothesised to be neuroprotective in the contexts of AD and ALS (Keren-Shaul et 

al., 2017), but in this myeloid cell atlas, it was inversely related to the neuroprotective M0 



 - 150 - 

profile (Figure 5.15B; Figure 5.24B) (Krasemann et al., 2017) and, in the case of cluster 

MG(3B), overlapped with the neurodegenerative MGnD profile (Krasemann et al., 2017). The 

other DAM2-like cluster, MG(3), was characterised by the upregulation of most MGnD genes, 

and neurodegenerative GO terms including ROS and IL-6 production, and cytotoxicity. Thus, 

there is little evidence that the DAM2-like profile is neuroprotective in the context of SCI. 

Notably, the MGnD phenotype, like DAM2, did not have a perfect match in the SCI atlas, with 

Itgax and Ccr2 expression lacking. The MGnD and DAM profiles were characterised via bulk 

RNAseq and MARS-seq (Jaitin et al., 2014), respectively, both of which provide greater 

sensitivity compared to the 10X Chromium platform. Thus, if these genes were lowly 

expressed in the cells, their absence in the dataset could be due to the relatively low 

sensitivity of the platform. 

 

Very recently, CNS resident and infiltrating cells from 8 mm of SCI tissue were analysed at 1, 

3, and 7 dpi in a contusion model of SCI (Milich et al., 2021). This study used female adult WT 

mice (65-kdyne impact to T8) and the 10X Chromium scRNAseq platform with version 2-3 

chemistry. Milich et al., made no reference to the DAM or MGnD phenotypes. They identified 

four microglia clusters, which they annotated based on GO term analysis: homeostatic, 

dividing, inflammatory, and migrating. The “dividing” cluster was most prominent at 1 dpi, in 

line with my findings. A portion of cycling cells were present at 7 dpi, which might be 

analogous to the 10-21 dpi MG(2) cells. Their “inflammatory microglia” cluster was defined 

as P2ry12lo/Igf1+. In this myeloid cell atlas, that would correspond to MG(3) and (3B) (Figure 

5.19B). Many of these cells were also Ms4a7+ and Siglech- and based on the fate-mapping 

results in this atlas, were likely infiltrating macrophages mis-annotated as microglia. Like 

MG(3), this “inflammatory microglia” cluster was characterised by GO terms for extrinsic 

cytotoxicity and cytokine production. However, Milich et al., observed this phenotype as early 

as 1 dpi. The time-resolved expression of Igf1 was not provided, thus it’s unclear whether the 

datasets are truly conflicting. Their “migrating” cluster was present in small proportions 

across all three dpi and were characterised by GO terms for migration and motility and as 

P2ry12lo/Igf1+/Msr1+. I observed these GO terms in each of the microglia clusters and did not 

detect the co-expression of Igf1 and Msr1 in any myeloid cells. Milich et al., processed their 

data using Seurat v3 and, their code is not available, but based on their methods section, it 

appears they used MNN to merge each sample, irrespective of dpi. Thus, it’s possible that this 



 - 151 - 

cluster is the combination of several cell states. The 10-21 dpi MG(3A) state is absent from 

their dataset, in line with their collection timepoints. 

 

Milich et al., also captured infiltrating myeloid cells in their dataset including CAMs, 

neutrophils, dendritic cells, monocytes, and macrophages. At 1 dpi, they found a population 

of Cdk1+ cycling monocyte-derived cells, which I did not observe. Notably, this cluster 

comprised cells from each dpi and the Ctrl, suggesting this was an isolation-induced artefact. 

It likely stemmed from their enzymatic dissociation approach during which the dissected 

tissue was left at 37° for 30 minutes, a procedure that has been shown to activate microglia, 

and likely affects other myeloid cells (Hammond et al., 2019). Milich et al. also observed 

neutrophils, monocytes, and a subset of macrophages that they termed, “chemotaxis-

inducing.” These monocytes and macrophages still expressed Ccr2, in line with my findings. 

This cluster was similar to MC(1), (2A), and (2C), in gene expression and GO terms for 

chemotaxis, suggesting that a level of heterogeneity was overlooked in their dataset. This 

might have been due to the suspected over-correction of their samples. 

 

By 7 dpi, Milich et al., found dendritic cells, Ms4a7+ “chemotaxis-inducing” macrophages and 

“inflammatory macrophages”, in line with this myeloid cell atlas. Their “inflammatory 

macrophage” cluster largely aligned with MC(4A), suggesting it appears as early as 7 dpi. They 

also observed Ms4a7+/Cd74+/Mrc1+ CAMs, which clustered closely to their “inflammatory 

macrophage,” just as I observed with MC(4A) in this dataset. The Milich et al., “chemotaxis-

inducing” macrophage cluster was similar to 3-21 dpi cells from MC(3A), with the exception 

of Arg1, which was not observed beyond 3 dpi. This might simply reflect the difference 

between 7 and 10 dpi, however chemotaxis-related GO terms were observed in 10 and 21 dpi 

MC(3A) and (4A) cells, indicating that their proposed “chemotaxis-inducing” signature is not 

comprehensive. 

 

In summary, the Milich et al., 2021 myeloid cell data is generally well-aligned with this myeloid 

cell atlas, particularly regarding the dynamic presence or absence of cell types across the SCI 

pathology. However, there are some noticeable differences that appear to be caused by the 

contrasting isolation protocols and the computational analyses. The latter exemplifies the 
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importance of making analysis scripts publicly available, to ensure reproducibility and allow 

for more detailed comparison across datasets. 

 

To investigate and characterise this time-resolved myeloid cell SCI atlas, beyond the 

comparison with previously described gene lists, I relied heavily on unsupervised clustering 

and trajectory analysis. Unsupervised clustering is a powerful tool that allows us to assign 

biological meaning to groups of transcriptionally-similar cells. The clustering approach used 

in this chapter, while efficient and boasted to return well-connected communities (Traag et 

al., 2019), suffers from density-bias, where more numerous populations result in more 

clusters, due to the density of the graph and not necessarily reflecting an increase in 

heterogeneity (Amezquita et al., 2020). This clustering approach also requires a user-defined 

number of nearest neighbours (k) for the k nearest neighbour graph. The value of k alters the 

resolution of the clusters, with a higher k value producing larger clusters that contain more 

substructure, and vice versa. Ultimately, this resolution flexibility has important implications 

for DEG and GO analysis. 

 

This study relied heavily on GO enrichment analysis of DEGs to infer putative functions for 

clusters of cells. GO is a community-curated resource that provides functional annotations to 

gene products, which are then grouped together based on shared biological properties 

("Gene Ontology Consortium: going forward," 2015; Young et al., 2010). This resource can 

then be used to identify GO categories that are overrepresented in a DEG list. This approach 

has several caveats. First, the result of GO analysis is constructed from the DEG list provided. 

Thus, any error or bias in DEG analysis, and consequently clustering and pre-processing, will 

be reflected in the GO analysis. Comparing the cluster-based GO terms with relevant studies, 

if available, or replicating one’s own analysis with diverse workflows can help to identify more 

robust and possibly more relevant terms. Second, a GO term can oversimplify or even 

misdirect the biological interpretation of the cluster because the effect of a gene can be cell 

type- or pathology-dependent or have multiple functions (E Hirbec et al., 2017; Reimand et 

al., 2019). This highlights the need to cross-check enriched GO terms with other cluster 

properties, for e.g., cell cycle analysis or non-GO curated gene lists, whenever feasible. Finally, 

GO analysis infers protein-level function based on mRNA transcripts, which is a general 

limitation of scRNAseq that will be discussed in 6.1. GO terms and scRNAseq analysis in 
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general can act as a powerful descriptive guide and can insinuate function on a single cell 

level, but ultimately follow-up functional studies are required to clearly demonstrate any 

causal effects. 

 

Another tool that was heavily exploited in this chapter was trajectory analysis. This is a useful 

approach for identifying transitions between cell states. Paired with the time-resolved labels 

in this dataset, trajectory analysis allowed me to interpret the transition of myeloid cell states 

across the SCI pathology, noting that it was often, but not exclusively linked with dpi. Evidence 

that the Monocle3 trajectory analysis performed well ††  in this dataset comes from the 

trajectory following the differentiation of monocytes into either dendritic cells or 

macrophages. This differentiation is well described in the literature (Chomarat et al., 2000; 

Guilliams et al., 2014; Jakubzick et al., 2017), and was clearly observable in the dataset. 

Namely, the intermediate cluster, MC(2A), was largely contributed to by 3 dpi cells, the 

beginning of the first wave of macrophage infiltration (Alizadeh et al., 2019), and expressed 

GO terms related to cell differentiation. The two adjacent clusters on the UMAP, MC(3A) and 

DC(1), also clearly expressed macrophage and dendritic cell profiles, respectively. As such, 

this differentiation acted as a substitute for the ground truth and the Monocle3 trajectory 

succeeded in predicting it. This supports the notion that the trajectory was biologically 

relevant in other partitions, such as the microglia clusters. Regardless, trajectory analysis 

remains only an estimate of the trajectory that a cell takes and should be interpreted with 

caution. Follow up experiments, such as BrdU labelling, could help validate a trajectory 

analysis. 

 

To validate the key transcriptional patterns in this dataset, and to provide an element of 

spatial context, we utilised smFISH. While the smFISH data confirmed the general expression 

trends of the scRNAseq data (e.g., the increase in Ms4a7+ infiltrating cells after SCI), the 

quantifications were not consistent. This could largely be attributed to the different 

anatomical regions sampled by the two approaches: scRNAseq collected cells from 5 mm of 

tissue, while smFISH considered only the lesion epicentre. However, given the slight 

 

†† Here “performed well” implies that the algorithm prediction biologically relevant transitions 
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discrepancies between resident myeloid cell Serpine2 expression in the Ctrl tissue, there were 

likely additional confounding factors.  

 

The scRNAseq and smFISH results may differ due to the technical biases inherent to each 

technique. For example, if a gene is expressed at levels too low to be reliably detected by the 

scRNAseq protocol, cells will be inadvertently labelled as negative for that gene (Kharchenko 

et al., 2014). smFISH has a higher sensitivity and much lower sparsity (Raj et al., 2008), which 

could explain why it found that nearly 100% of resident myeloid cells were Serpine2+ in Ctrl 

samples, whereas the scRNAseq data reported only ~78%. scRNAseq, unlike smFISH, requires 

the isolation of single cells from the tissue, creating many opportunities for isolation-induced 

transcription, including the downregulation of homeostatic markers, or a selection-bias. For 

example, by 21 dpi, the spinal cord parenchyma is densely packed with newly proliferated 

and migrated cells, contributing to a glial scar and fibrotic core (Alizadeh et al., 2019). Thus, 

compared to Ctrl or acute phase tissue, cells from the lesion epicentre may be less easily 

extracted and less likely to remain intact. This theory is also supported by the low number of 

21 dpi infiltrating myeloid cells recovered through scRNAseq, despite Veronica’s 

quantification and the clear sense from the microscopy that the number of YFP+/tdTomato- 

cells is drastically increased at this stage (Table 4.1; Figure 4.6). The isolation process can also 

induce cell activation and thus transcription, confounding the scRNAseq results as discussed 

(3.2).  

 

smFISH is not without its own caveats. The accurate partitioning of cells is an area of active 

research. In our case, Katherine was able to identify the cytoplasm of single cells using 

RFP/YFP intensity thresholding around single nuclei, however even with this fluorescent tool, 

the chronic, scarred tissue can provide segmentation challenges, especially between densely 

packed myeloid cells of the same fluorescent label. The smFISH protocol utilised in this study 

was only able to multiplex 4 mRNA probes, and, if combined with proteins, could detect just 

5 targets in total. Given the modest modularity between many of the clusters, this drastically 

limited the ability to identify and confidently verify the presence of these scRNAseq-identified 

clusters in situ. Spatial techniques with greater multiplexing capabilities do exist, for e.g. 

imaging mass cytometry, which can detect up to 32 protein targets (Giesen et al., 2014), or 

GeoMX WTA, which can effectively sequence the entire transcriptome in situ (Roberts et al., 
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2021). However, with that degree of multiplexing, such an approach would simply perform 

better than scRNAseq at characterising the heterogeneity in myeloid cells after SCI, 

particularly given the importance of spatial context in this pathology. 

 

A major focus of this chapter was the dynamic expression of Fabp5 after SCI. In both resident 

and peripheral myeloid cells, Fabp5 correlated with bifurcations in the trajectory analysis. For 

microglia, Fabp5 expression was linked to a shift in the trajectory, away from the 

neuroprotective MG(3A), and towards the cytotoxic, MGnD-like, foam cell-like MG(3B) 

phenotype. In monocyte-derived cells, Fabp5 expression marked the fate of differentiation 

into macrophages with foam cell-like profiles, as opposed to pro-regenerative dendritic cells 

(Yaguchi et al., 2009). Under both homeostatic and activated conditions, peripheral myeloid 

cells express Fabp5 (Moore et al., 2015), however microglia express Fabp5 only during 

development or upon activation (Hammond et al., 2019), suggesting a specific role for Fabp5 

in activated myeloid cells after SCI, which has yet to be discerned (Peruzzotti-Jametti et al., 

2021). 

 

FABPs are a family of cytosolic lipid chaperones that reversibly bind to hydrophobic 

molecules, such as free FAs. FABPs transport their cargo to specific nuclear compartments, 

such as the endoplasmic reticulum for lipoprotein, triglyceride, and cholesterol synthesis 

(Furuhashi & Hotamisligil, 2008; Peruzzotti-Jametti et al., 2021; Wu et al., 2010), or to nuclear 

receptors such as PPARγ (Levi et al., 2013). As such, FABP5 loss of function has been shown 

to lead to a build-up of intracellular FAs and a decrease in cholesterol (Zhang et al., 2004). In 

bone marrow-derived macrophages (BMDM) with FABP5 loss of function, inflammatory (LPS 

and IFN-γ) or anti-inflammatory (IL-4) stimulation results in significantly higher expression of 

anti-inflammatory factors (Moore et al., 2015; Y. Zhang et al., 2014). These findings 

demonstrate that loss of FABP5 promotes anti-inflammatory responses in macrophages. 

Thus, while little is known about the role of FABP5 in microglia, it represents an interesting 

target that could be manipulated to alter lipid metabolism and reduce chronic 

neuroinflammation.  

 

In regulatory T-cells in vitro, FABP5 loss of function results in decreased OXPHOS and 

increased glycolysis, altered mitochondrial morphology, and impaired lipid metabolism (Field 



 - 156 - 

et al., 2020). The same study found that a decrease in lipid availability both in vitro and in the 

tumour microenvironment resulted in an upregulation of Fabp5 in regulatory T-cells. Another 

study in carcinoma cells found that the transcription factor, NF-κB, induces Fabp5 expression 

(Kannan-Thulasiraman et al., 2010). Either mechanism may be responsible for the 

upregulation of Fabp5 observed in clusters MG(3B) and MC(3A). However, given that 

microglia and macrophages play a central role in clearing lipid-based myelin debris after SCI 

(Kopper & Gensel, 2018), and phagocytosed myelin has been demonstrated to upregulated 

Msr1 and consequently NF-κB activity in BMDM in vitro (Kong et al., 2020), the latter is the 

more likely candidate. This notion is further supported by GO terms for the positive regulation 

of NF-κB signalling in MG(1) and MC(2A), two clusters that precede the Fabp5hi clusters in the 

trajectory analysis and in dpi (Figure 5.16C; Figure 5.30A).  

 

Msr1 was recently demonstrated to promote the formation of foam cells and neuronal 

apoptosis through myelin-mediated NF-κB signalling in weight-drop mouse models of T10 

contusive SCI (Kong et al., 2020). The global KO of Msr1 improved functional outcomes. The 

authors focused their mechanistic studies on in vitro BMDM, but I observed evidence of this 

signalling pathway in both microglia and macrophages. Similar to the observations of Kong et 

al., the foam cell-like clusters in this SCI myeloid cell atlas appeared to be cytotoxic and pro-

inflammatory, and this phenotype persisted into the chronic phase at 21 dpi. To know 

whether this phenotype is naturally resolved during the course of the chronic disease would 

require longer term investigations.  

 

As discussed, the microglia foam cell-like cluster, MG(3B), also adopted the previously 

described MGnD (Krasemann et al., 2017) and to a lesser extent DAM2 (Keren-Shaul et al., 

2017) phenotypes. While at a first glance this may seem inconsistent, upon closer reflection, 

many of the marker genes are repeated across the phenotypes (Clec7a, Trem2, Spp1, Lgals3, 

Cd9, Itgax) and are involved in lipid metabolism. Interestingly, the LDAM (Marschallinger et 

al., 2020) phenotype was not observed in this dataset, suggesting that the lipid droplet 

accumulation in aged mice is different than the myelin debris-induced foam cell-like profiles 

observed in the myeloid cell atlas. In support of this, Marschallinger et al., did not observe 

substantial overlap between their LDAM signature and the MGnD and DAM phenotypes in 

their dataset either. 
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Together this data suggests that Fabp5 may serve as a marker of foam cell-like phenotypes in 

the CNS, which is a distinct phenotype from age-related LDAM but overlaps with the AD 

MGnD microglia. Future studies could investigate the mechanism behind the bifurcation in 

the MG(3) trajectory – what allows certain cells to forgo the MG(3B) foam cell-like state and 

adopt the neuroprotective MG(3A) phenotype? Given that Fabp5 upregulation precedes the 

foam cell state, myeloid cell Fabp5 loss of function could be investigated for its potential to 

prevent foam cell formation, cytotoxicity reduction, and ultimately improved functional 

outcomes. 
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 DISCUSSION 

 

 

 

 

 

 

 

 

 

 

“I didn’t want to just know names of things. I remember really wanting to know how it all 

worked.”  

— Elizabeth Blackburn 
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scRNAseq is a powerful descriptive tool that can help deepen our understanding of cellular 

level processes in health and disease. In the case of SCI and this myeloid cell atlas, scRNAseq 

has provided a new level of understanding by piecing together the findings of decades of 

research and summarising them within a single dataset. This powerful, high-throughput 

technology now routinely builds such platforms upon which we can formulate and test novel 

biological questions, ever strengthening our understanding of cellular biology. Naturally, the 

approach is not without limitations, but the rapidly evolving field of single-cell data science 

provides exciting opportunities for future omics studies in SCI. 

6.1 CAVEATS OF SCRNASEQ IN THE CONTEXT OF THE SCI MYELOID CELL ATLAS 

As a methodology, scRNAseq has many shortcomings, some of which are attributable to the 

protocol, while others are more fundamental. In addition to these broader limitations, 

scRNAseq applied to SCI has its own unique challenges, which were reflected in this time-

resolved SCI myeloid cell atlas. 

 

The single cell isolation protocol inherent to scRNAseq presents several challenges that can 

confound the downstream interpretation. As discussed throughout this thesis, extracting 

single cells from tissue inevitably damages the cells and, particularly in the case of microglia, 

activates them (Haimon et al., 2018; Hammond et al., 2019; Marsh et al., 2020; Milich et al., 

2021). Certain steps can be taken to minimise this activation, such as performing the protocol 

at 4°C, but this mitigation strategy comes with other drawbacks. For example, cold 

dissociation has been demonstrated to reduce the efficiency of extracting densely packed 

tissues, such as that observed in the subacute and chronic SCI phase (Denisenko et al., 2020). 

This can produce a sampling bias even within the same cell type where certain cell states – 

based on morphology, surrounding tissue composition, or other unknown factors – have 

different probabilities of surviving the isolation protocol and giving rise to high quality cell 

libraries (Denisenko et al., 2020; Haimon et al., 2018). In this myeloid cell atlas, this sampling 

bias might account for the diminished 21 dpi samples, or the inconsistent proportions of foam 

cell-like MG(3B) cells observed in the scRNAseq vs smFISH data. 
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The mechanical homogenisation step required for cold-dissociation shears many fragile CNS 

cells, such as neurons and astrocytes (Marsh et al., 2020), generating substantial ambient 

mRNA as observed in Chapter 3 and 4. This background undoubtably changes with the tissue 

composition, and so in SCI, dpi, which could confound DEG analysis or enhance condition-

specific shifts in the data. Algorithms, such as SoupX (Young & Behjati, 2018), have been 

designed to estimate and subtract this background. In a previous analysis workflow (Hamel 

et al., 2020), I applied this algorithm in the SCI myeloid cell atlas, but the general conclusions 

were consistent with this dissertation, suggesting they were not driven by ambient mRNA. 

 

After the completion of the sample collection phase of this study, a new protocol was 

developed to mitigate the biases arising from 4°C mechanical homogenisation. This approach 

utilises transcription and translation inhibitors to prevent ex vivo-induced gene products 

during enzymatic dissociation (Marsh et al., 2020). As previously discussed, such a protocol 

would have reduced ex vivo-induced transcription, which manifests itself in the study as the 

cycling in the Ctrl sample, G11.D2, and the increased Apoe expression compared to the 

smFISH data. However, these technical artefacts appeared to be minimal compared to other 

reports (Figure 3.2) (Milich et al., 2021). Critically, the Marsh et al., protocol would have likely 

improved the quality of the isolated myeloid cells and reduced the volume of ambient mRNA, 

ultimately resulting in a cleaner, larger myeloid cell atlas. 

 

After single cells have been isolated from the tissue, the protocols for droplet encapsulation, 

barcoding, and the sequencing itself all present opportunities for complication. Most relevant 

to this SCI myeloid cell atlas is the sparsity of scRNAseq data: technically and biologically 

driven zero counts in the gene expression data previously referred to as “dropout events” 

(Hicks et al., 2017; Lähnemann et al., 2020). The technically-driven false negatives are 

correlated with gene expression level, with lowly expressed genes resulting in greater sparsity 

(Hicks et al., 2017). In this myeloid cell atlas, I noticed the absence of several expected genes, 

such as the microglial-specific transcription factor Sall1, or the conceivable expression of 

other MGnD genes like Lilrb4a. The degree of sparsity has been shown to vary from cell to 

cell and several algorithms have been designed to exploit this to impute the missing values, 

but with the relatively high risk of generating false-positive results that lack reproducibility 

(Andrews & Hemberg, 2019). This is, however, an active area of research (Lähnemann et al., 
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2020). Sparsity can also be biologically driven through stochastic transcriptional bursting 

(Marinov et al., 2014), highlighting some broader issues surrounding transcriptional methods. 

 

scRNAseq only provides us with a snapshot of a cell’s state, with no context as to the cells’ 

previous or future states. Live, repeatable sampling is on the horizon, but has certainly not 

yet reached a 10x Chromium scRNAseq level of accessibility and robustness (Chen et al., 

2021). In the meantime, approaches such as trajectory analysis allow us to take these 

snapshots of thousands of cells, each in a slightly different state, and deduce the 

transcriptional changes that an individual cell might pass through. As discussed in Chapter 5, 

this is not without its caveats, but remains a useful tool. 

 

Typically, and certainly in the case of this myeloid cell atlas, scRNAseq characterises cells on 

an mRNA-level to elucidate protein-level functions, in lieu of equivalently high-throughput 

protein measurements. This scRNAseq approach makes several key assumptions, including 

that each detected mRNA would have elicited a functional protein. Numerous studies have 

reported that scRNAseq quantifications do not mirror protein abundance and that this 

relationship is largely context-dependent, fluctuating with the availability of resources for 

protein synthesis (Y. Liu et al., 2016; Reimegård et al., 2021). Further deepening the 

disconnect, mRNA is much less stable than protein, and its half-life varies by gene 

(Schwanhäusser et al., 2011). At least for transcription factors, protein levels more accurately 

reflect their downstream effects (Reimegård et al., 2021) and many key cellular-level 

processes, including cell cycling, apoptosis, and innate inflammatory responses are mediated 

not merely by the presence of a protein but by its post-translational modifications (Burke et 

al., 2012; J. Liu et al., 2016; Vucic et al., 2011). Thus, approaches that combine single cell 

transcriptomics with highly multiplexed protein-level analysis will likely become the standard 

in the field. Currently, a key barrier to the widespread use of this approach is the restriction 

of protein detection to either cell surface proteins, through techniques including CITE-seq 

(Stoeckius et al., 2017) and REAP-seq (Peterson et al., 2017), or intracellular proteins using 

approaches such as SPARC (Reimegård et al., 2021). Notably, in situ methods to combine 

transcriptomics with multiplexed protein-level analysis, such as DBiT-seq (Liu et al., 2020), 

also represent an area of active research. 
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Another assumption made during the analysis of scRNAseq data is that the mRNA within a 

cell reflects the cell’s own transcriptional activity. Pertinently for the characterisation of 

phagocytes, this is not necessarily true. A recent study compared the transcriptome and 

RiboTag-acquired (Sanz et al., 2009) translatome of homeostatic and LPS-treated microglia 

and found significant phagocytic cargo contamination in both conditions (Haimon et al., 

2018). Currently no strategies exist to reliably identify phagocytic cargo in scRNAseq data, one 

can merely consider this caveat during computational analysis and aim to perform mRNA and 

protein-level validation of key findings. 

 

Other limitations of scRNAseq include the descriptive nature and loss of spatial context, which 

have been extensively discussed throughout the dissertation. Understanding that gene 

products represent only one aspect of cellular biology is also critical and has called for the 

establishment of multi-omics approaches. Such techniques aim to examine the transcriptome 

alongside other big datasets, such as the epigenome or metabolome, and represent a relevant 

and exciting field within single cell biology (Luecken & Theis, 2019).  

6.2 FUTURE DIRECTIONS OF TRANSCRIPTOMICS IN SCI 

This study employed scRNAseq to investigate myeloid cells at an unprecedented resolution in 

the subacute and chronic phase of SCI. While this transcriptomics dataset represents a 

valuable resource for future investigations, advancements in the field, particularly multi-

omics and in situ technologies present an opportunity to further enhance our understanding 

of the SCI pathology. 

 

Chronic inflammation and activation are hallmarks of the SCI pathology (Alizadeh et al., 2019). 

Profiling the epigenetic changes that give rise to these chronic cell states, alongside their 

transcriptional characterisations, might enable us to target dysregulated pathways before 

they result in destructive phenotypes. For example, understanding the epigenetic changes 

that precede the trajectory-predicted split of MG(3) cells towards the neuroprotective or 

neurodegenerative foam cell-like state could allow us to manipulate the epigenome and 

enrich the spinal cord tissue for the neuroprotective cell state. However, as discussed, spatial 

context is critical to fully understanding the SCI pathology and single cell epigenomic 

technologies, such as scATAC-seq (Buenrostro et al., 2015), or the 10X Chromium Single Cell 
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Multiome ATAC + Gene Expression, would relinquish the spatial information, just as scRNAseq 

does. Furthermore, these approaches would face the same isolation challenges as this current 

study: low cell yields, sampling bias, and isolation-induced transcription. Thus, future omics 

studies of the SCI pathology should endeavour to collect in situ data.  

 

Currently in situ techniques are restricted to a single modality (except DBiT-seq), but 

nonetheless in situ methods, like CUT&RUN (Skene & Henikoff, 2017) for in situ chromatin 

mapping or GeoMX WTA (Roberts et al., 2021) for in situ transcriptomics, would add valuable 

insight to the SCI pathology. Both in situ approaches would allow for the characterisation of 

all SCI cell types, in parallel, allowing for the investigation of multiple cell types and their 

interactions. The significance of profiling all CNS cell types after SCI was demonstrated by 

Milich et al., 2021, who gained valuable insight through ligand-receptor analysis on their 

scRNAseq data. Further adding to the importance of in situ techniques, GeoMX WTA is 

capable of profiling the transcriptome in FFPE and fresh frozen tissue, which has made 

transcriptomics studies of post-mortem human tissue feasible. This is particularly important 

as, while animal models of SCI are critical for mechanistic studies that are not possible in 

humans, relying on these models for descriptive studies is suboptimal, and the translatability 

of transcriptomics studies between mice and humans is a matter of debate (Osterburg et al., 

2013; Seok et al., 2013).  

 

Omics approaches are descriptive by nature, proficient at generating hypotheses but unable 

to provide definitive causal evidence. Performing these technologies under controlled 

treatment conditions would allow for greater mechanistic discoveries. Given that studies of 

the SCI pathology are currently restricted to animal models, high-throughput perturbation 

approaches are not realistic. Thus, the treatments must be chosen with great care. The 

growing body of high-throughput data is quickly expanding and publicly available databases 

such as the GEO and the Open Data Commons for Spinal Cord Injury (https://odc-sci.org/) 

serve as valuable resources for hypothesis generation and the identification of potential 

treatment candidates. With this growing foundation of high-throughput data, researchers 

and journals should begin to consider the futility of generating omics data just for the sake of 

high impact factor publications. 
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6.3 THESIS SUMMARY 

In this thesis, I utilised a well-established mouse model of T12 contusion SCI on two different 

mouse strains to isolate and scRNAseq myeloid cells across the SCI pathology, ultimately 

generating a time-resolved SCI myeloid cell atlas. After careful pre-processing and analysis, 

this atlas replicated many previously reported myeloid cell characteristics, both in the context 

of SCI and other CNS pathologies, summarising decades of research within a single dataset. 

Furthermore, the atlas provided an unprecedented level of resolution in the subacute and 

chronic phase and suggested that the previously described macrophage foam cell state is also 

adopted by microglia. These foam cell states appear to be triggered by the phagocytosis of 

myelin debris in the acute phase, which upregulates Msr1 and subsequently induces NF-κB 

signalling. This may ultimately result in a lipid-processing foam cell-like microglia state in the 

subacute and chronic phase. These cells also appear to adopt a neurodegenerative MGnD-

like profile, suggesting a detrimental role in the SCI response. Furthermore, lipid-laden 

macrophages have been described to persist for at least one year in human SCI, implicating 

them in the chronic neuroinflammatory response (Fleming et al., 2006). In the mouse SCI 

myeloid cell atlas, these foam-like cells can be identified by their Fabp5 expression, but the 

exact role of this gene in the context of SCI requires further investigation. 

The contusion model of SCI mimics the most common form of human SCI and, thanks to the 

computerised impactor, is highly reproducible. In this dissertation I demonstrated this 

reproducibility on both a behavioural and single-cell level. Animal models of SCI are a valuable 

resource to study the SCI pathology and do not yet, unfortunately, have a suitable 

replacement. Continuous refinement of the model serves to improve its value in studying the 

pathology, while minimising animal suffering. In this study, I worked to add to that refinement 

and endeavoured to make the high-throughput data easily accessible, to reduce the need for 

future mouse models of SCI. 

I first applied this mouse model of SCI to a Cx3cr1 mouse, allowing for the efficient isolation 

and scRNAseq of Cx3cr1+ myeloid cells after SCI. I collected cells from laminectomy-only 

controls, as well as from the acute, subacute, and early chronic phases of SCI, taking 

significant care to minimise extraction-induced transcription in this notoriously responsive 

cell populations. Using this Cx3cr1 data, I established a pre-processing, QC, and preliminary 
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analysis workflows based on published methods, most of which have recently been 

summarised in an online book (Amezquita et al., 2020). Integration of the batches comprising 

this dataset proved challenging, emphasising the importance of thoughtful experimental 

design in scRNAseq studies. Despite this caveat, this dataset contained nearly 12,000 high 

quality cells and exhibited the expected cell types, including both infiltrating and resident 

myeloid cells. From this dataset alone, the macrophage vs microglia identity was, in certain 

cases, ambiguous, inciting the upgrade to a fate-mapping mouse line. 

I repeated the protocol and workflows established for the Cx3cr1 mouse on a transgenic fate 

mapping mouse line. This line differentially labelled infiltrating vs resident myeloid cells, 

which we validated via smFISH and IF, allowing for the unambiguous annotation of these cell 

types both ex vivo and in silico. The MNN integration of the Cx3cr1 and Cremato datasets was 

made easier by the fact that both datasets comprised the same SCI time points, allowing each 

dpi to be appropriately merged with its counterpart. I investigated the variance lost within 

each strain during correction and found that ≤ 2% of variance was removed, well within the 

recommended upper limit of 10% (Amezquita et al., 2020). Furthermore, the MNN correction 

correctly merged cell types and dpi across the two strains, suggesting that the variance lost 

was due to strain or batch effect. I made this SCI myeloid cell atlas publicly available on the 

GEO (GSE159638) and a Shiny-based interactive web app 

(https://marionilab.cruk.cam.ac.uk/SCI_Myeloid_Cell_Atlas/), allowing other researchers to 

benefit from this study. 

 

After compiling the SCI myeloid cell atlas, I confirmed the presence of known phenotypes, 

including the activation-induced downregulation of homeostatic microglia markers, the 

adoption of DAM-like phenotypes, the lack of canonical M1/M2 polarisation, and acute phase 

proliferation. Then I performed unsupervised clustering and trajectory analysis and 

characterised each cluster, ultimately generating a map of myeloid cell states across the SCI 

pathology. We verified several of the expression-based findings using smFISH and IF but 

ultimately further investigations in vitro and in vivo are required to validate any functional 

conclusions. 
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