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,e atmospheric turbulence phase screen is generated based on the power spectrum inversion method, and the multiple
transmission processes are statistically averaged. ,e waveform distortion of the Gaussian beam in the atmospheric turbulence is
analyzed; the simulation results show that the property of Gaussian beam has been destroyed after its passing through the
atmospheric turbulence. When the beam waist radius is close to a certain radius, the degree of change becomes larger. When it
approaches the critical value, the wave surface no longer changes sharply, and as the turbulence intensity increases, the phase
fluctuation becomes more and more severe, the coherence of the beam is destroyed, and the spot may be split into several pieces.
Finally, the relationship of intensity fluctuation, amplitude fluctuation, and bit error rate with distance is analyzed.

1. Introduction

,e particularity of light propagation in turbulent media lies
in the random fluctuation of the refractive index of the
medium; the key of numerical simulation for laser atmo-
spheric propagation is to construct a phase screen that can
correctly reflect the statistical characteristics of atmospheric
turbulence [1–4]. ,e earliest phase screen simulation tur-
bulence method is proposed by Fleck, who used the
“multiphase screen method” in 1976 to simulate the influ-
ence of atmospheric turbulence in free space on the
transmitted beam. ,is method is widely used to simulate
the atmospheric turbulence effect of the beam [5]. ,e
current methods of generating phase screens are mainly to
filter Gaussian white noise by using the refractive index
power spectrum of the turbulence, by which the disturbed
wavefront phase can be obtained through Fourier transform;
this method is called “power spectrum inversion method.”
Since Mcglamery proposed the power spectrum inversion

method in 1967, this method has been widely used to
simulate turbulence [6]. In 1976, Noll proposed to use or-
thogonal and complete two-dimensional basis functions
(such as Zenike polynomials and K-L polynomials) to di-
rectly obtain the distorted wavefront of turbulence [7]. In
1983, Walner proposed a method of using the covariance of
the phase structure function to generate the Kolmogorov
turbulence phase screen [8], but this method is computa-
tionally expensive. In 1990, Bowman proposed an algorithm
for reconstructing the turbulent wavefront using wavelet
transform [9]. Among many methods, the power spectrum
inversion method is applicable to a wide range of atmo-
spheric turbulence spectrum models [10–12].

Based on the Gaussian beam horizontal propagation
theory, this paper uses MATLAB to carry out detailed
simulation on the power spectrum inversion method and
analyzes the simulation results. ,e propagation charac-
teristics of the Gaussian beam under the atmospheric tur-
bulence spectrum are discussed.
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2. Theoretical Model of Laser Transmission in
Turbulent Atmosphere

Assuming that the monochromatic electromagnetic wave is
transmitted along the Z direction, the wave field equation is

U
⇀

(x, y, z, t) � U(x, y, z)exp[−i(ωt − kz)], (1)

where ω is the frequency of monochromatic electromagnetic
waves. When it propagates in the atmosphere (nonmagnetic
medium μ� 1) without free charge (ρ0 � 0) and free current
(J0 � 0), its wave equation can be expressed as

∇2U(x, y, z, t) + k
2
n( r

→
)
2
U(x, y, z, t) � 0, (2)

where n(r
⇀

) is a function of r
⇀ which represents the local

refractive index at this point. It is very difficult to accurately
solve this basic equation of light transmission in atmosphere.

By removing the vector operator, the equation can be
turned into a scalar equation:

2ik
zU(x, y, z)

zz
+ ∇2U(x, y, z) + 2k

2
n1(r)U(x, y, z) � 0,

(3)

where U(x, y, z) is a slowly varying function of z; it can only
change at the distance of random medium scale l, so as long
as l>> λ; then, |z2U/zz2|≪ 2κ|zU/zz|, and 2n1(r

⇀
)

approximately replaces 2n1(r
⇀

) + n2
1(r
⇀

) (n1(r
⇀

) represents
the fluctuation of atmospheric refractive index at position
r
⇀). By simplifying formula (3), the following formula can be
obtained:

2ik
zU(x, y, z)

zz
+ ∇2⊥U(x, y, z) + 2k

2
n1(r)U(x, y, z) � 0. (4)

Equation (4) is called the parabolic equation or quasi-
optical approximation relationship, which is suitable for the
propagation of narrow-angle expanded beams. k is equal to
2π/λ which represents wave number in free space, and
∇2⊥ � (z2/zx2) + (z2/zy2). ,e infinitely extending random
medium can be divided into many sections with thickness of
Δz; the influence of turbulence in each Δz section on the
phase of light waves can be concentrated on a thicknessless
phase screen, but this phase screen has no effect on the
amplitude of the light wave. ,e change of light wave
amplitude is the cumulative result of free-space diffraction at
the Δz distance between many two-phase screens.

In order to specify each random phase screen, the
correlation function and power spectrum of the phase
fluctuation on each phase screen can be calculated. As-
suming that there is no diffraction on each phase screen,
from the perspective of geometric optics, the correlation
function of the phase fluctuation can be written:

Γθ ρ⇀1, ρ
⇀
2􏼐 􏼑 � k

2
􏽚
Δz

0
􏽚
Δz

0
〈nr z1, ρ

⇀
1􏼐 􏼑n1 z2, ρ

⇀
2􏼐 􏼑〉dz1dz2 � k

2ΔzΓn ρ⇀1 − ρ⇀2􏼐 􏼑, (5)

where ρ→ is the vector in the coordinate plane perpendicular
to the z direction (the xy plane), Γθ(ρ

⇀
) is the correlation

function of the phase fluctuation, and Γn(ρ⇀) is the corre-
lation function of refractive index fluctuation. Assuming
Az> ρ0 (ρ0 is the coherence length of the turbulence),
formula (5) can be simplified:

Γn(ρ⇀) � 2π 􏽚
∞

−∞
􏽚
∞

−∞
ϕn k
⇀
⊥, kz � 0􏼒 􏼓exp ik

⇀
⊥ · ρ⇀􏼒 􏼓dk

⇀
⊥. (6)

So, the relationship between the power spectrum
function and the power spectrum of the turbulent refractive
index of each phase screen can be obtained:

ϕθ k
⇀
⊥􏼒 􏼓 � 2πk

2Δzϕn k
⇀
⊥, kz � 0􏼒 􏼓. (7)

Because the transmission of the light wave field between
two adjacent phase screens can be approximated as the
transmission in free space, which represents the fluctuation
of the refractive index n1(r) � 0, it can be obtained from
equation (4):

zU(x, y, z)

zz
�

i

2k
∇2⊥U(x, y, z). (8)

It can be obtained by Fourier transform of two di-
mensional on both sides at the same time:

z 􏽥U k
⇀
⊥, z􏼒 􏼓

zz
� −

ik
⇀
⊥

2k
U k
⇀
⊥, z􏼒 􏼓,

(9)

where k
→
⊥ is the wave vector perpendicular to the trans-

mission direction; by integral in the Z direction on both sides
of equation (9), solution can be obtained:

z 􏽥U k
⇀
⊥, z + δz􏼒 􏼓 � 􏽥U k

⇀
⊥, z􏼒 􏼓exp −i

k
2
⊥Δz
2k

􏼢 􏼣. (10)

Equation (10) shows the free-space diffraction between
the two-phase screens.

As shown in Figure 1, after replacing the infinitely
extending turbulent medium with a large number of phase
screens, the transmission of light waves through the tur-
bulent atmosphere is equivalent to the transmission of light
waves between phase screens after passing through the phase
screens.

(a) ,e contribution of the phase screen to the phase of
the light wave field is as follows:

U ρ→, z
+
i( 􏼁 � U ρ⇀, z

−
i􏼐 􏼑exp[iθ(ρ⇀)], (11)

where z+
i represents the right side of the ith phase

screen and z−
i represents the left side of the ith

phase screen.
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(b) Perform Fourier transform on U(ρ⇀, z+
i ) to get

􏽥U(k
⇀
⊥, z+

i ).
(c) ,rough the free-space transmission with a distance

of Δz,

􏽥U k
⇀
⊥, z

−
i+1􏼒 􏼓 � 􏽥U k

⇀
⊥, z

+
i􏼒 􏼓exp −i

k
2
⊥Δz
2k

􏼢 􏼣. (12)

(d) By performing Fourier transform on 􏽥U(k
⇀
⊥, z+

i+1),
U(ρ⇀, z−

i+1) can be obtained:

U ρ⇀, (n + 1)Δz−
􏽨 􏽩 � F

−1
t Ft U ρ⇀, nΔz−

􏼐 􏼑 × exp iθn(ρ⇀)􏽨 􏽩􏽨 􏽩exp −
ik

2
⊥

2k
Δz􏼠 􏼡􏼨 􏼩. (13)

,en, the transmission of light waves in the entire in-
finitely extending turbulent medium can be realized by
repeatedly using equation (13) until the transmission of the
last phase screen is completed.

3. Numerical Simulation Method

,e parabolic equation is used to express the light field when
the beam propagates in the turbulent atmosphere. ,e
propagation path of the beam can be divided into two parts,

the free space and the thin phase screen dispersed in it.
When the light beam is transmitted to the phase screen, the
wave front of the light is added with the corresponding
disturbance part, and it passes through a section of free space
to reach the next phase screen. When the beam reaches the
receiving end, the entire simulation process ends. From
equation (13), the light field at any adjacent phase screen can
be expressed by the following formula [13, 14]:

U ρ→, zj+1􏼐 􏼑 � F
−1
t Ft U ρ→, zj􏼐 􏼑exp iθn( ρ→)􏽨 􏽩􏽮 􏽯exp −i

k
2
x

2k
+

k
2
y

2k
⎛⎝ ⎞⎠Δzj+1

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎨

⎩

⎫⎬

⎭. (14)

Equation (14) represents the turbulent phase screen, and
kx and ky represent the wave number. ,e light wave
transmission distance is divided intoNZ sections, and the jth
phase screen is in zj, Δzj is the phase screen spacing, and
each phase screen is divided into N×N square grids whose
grid spacing is Δx.

Power spectrum of the atmospheric turbulence is used to
filter the complex Gauss random number matrix; by inverse

Fourier transform, the atmospheric disturbance phase will
be obtained, which is the core of the power spectrum in-
version method.

MATLAB is used to generate a complex Gaussian
random number matrix which has a mean value of 0 and a
variance of 1, and then, the atmospheric refractive index
power spectrum is introduced; the modified Von Karman
spectrum is as follows:

phase screen∆Z

U (ρ, zi
–) U (ρ, z–

i+1)

Zi+1Zi

Z

Figure 1: Schematic diagram of simulating the propagation of light waves in turbulent atmosphere with the phase screen approximation
method.
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Φn(k) � 0.033C
2
n exp −

k
2

k
2
m

􏼠 􏼡 k
2

+ k
2
0􏼐 􏼑

− 11/6
, 0< k<∞.

(15)

,e Kolmogorov spectrum is as follows:

Φn(κ, z) � 0.033C
2
n(z)κ− 11/3

, (16)

which is used to produce a continuous phase screen by
filtering matrix a with the atmospheric refraction power
spectrum [14]:

ϕ(x, y) � C 􏽘
kx

􏽘
ky

R κx, κy􏼐 􏼑

���������

Fϕ κx, κy􏼐 􏼑

􏽱

e
j κxx+κyy( 􏼁

, (17)

where R represents the spatial spectrum of random function
with normal distribution with mean value of 0 and variance
of 1 and F represents atmospheric turbulence power spec-
trum. Δκx and Δκy are the sampling interval, and the
constant C comes from the scale factor, which is used to
adjust the phase screen variance. Fresnel diffraction is
adopted in the vacuum transmission part, and the light field
after the beam transmission distance z can be expressed as
[15]

U(x, y) � −
i

λz
exp(ikz)exp ik

x
2

+ y
2

2z􏼠 􏼡BU0 x0 + y0( 􏼁 × exp ik
x
2

+ y
2

2z􏼠 􏼡 × exp −i2π fx0
+ fy0

􏼐 􏼑􏽨 􏽩dx0dy0, (18)

where f is the spatial frequency; by Fourier transform of
U0(x0 + y0)exp(ik((x2

0 + y2
0)/2)), the transmission in the

vacuum part can be realized.

4. Numerical Simulation Results

,e simulation parameters are set as follows: wavelength is
1.55 μm, number of sampling points is 256× 256, phase
screen width is 0.5m, phase screen spacing is 300m, and
1000 phase screens are constructed.

For the modified Von Karman spectrum, atmospheric
turbulence phase screen for the different atmospheric re-
fractive index structure constant and distortion of Gaussian
beam after passing through the phase screen are simulated,
and the results are as follows.

Figure 2 is the atmospheric turbulence phase screen
generated by the power spectrum inversion method.
Figures 2(a) to 2(f ) are the atmospheric turbulence phase
screens when the atmospheric refractive index structure
constant C2

n takes different values. From figures, it is can be
seen that the turbulence intensity increases gradually with
the increase of atmospheric refractive index structure
constant C2

n.
Figure 3 shows the light intensity distribution diagram of

the initial beam with the beam waist radius w0 � 4 cm.
Figure 3 shows Gaussian beam after passing through tur-
bulence simulated by the phase screen theory, where Figures
4(a)–4(f) represent the phase fluctuation and light intensity
distribution of the distorted Gaussian beam after passing
through phase screens of different intensities.

Comparing Figures 4(a), 4(c), and 4(e) with Figure 3(a),
after the Gaussian beam passes through atmospheric tur-
bulence, the Gaussian property of the beam is destroyed.
Compared with the initial Gaussian beam, the wave surface
becomes rugged, the faster the change within the beam waist

radius, but when approaching a certain distance from the
center, the wave surface no longer changes sharply but up
and down changes. As the atmospheric refractive index
structure constant increases, that is, the turbulence intensity
increases, in fact, the three images correspond to weak
turbulence, medium turbulence, and strong turbulence.
When the beam waist radius is close to a certain radius, its
degree of change keeps getting bigger. When it approaches
the critical value, the wave surface no longer changes
sharply, but as the distance is close to the center point, the
greater the turbulence intensity, the greater the ups and
downs of the wave surface. By comparing Figures 4(b), 4(d),
and 4(f ) with Figure 3(b), it can be obtained after the
Gaussian beam passing through the atmospheric turbulence
phase screen which is generated by the spectrum inversion
method; the spot becomes blurred and scattered, and the
focusing ability becomes worse, which indicates the phase of
the Gaussian beam fluctuates. With the increase of C2

n, the
intensity of atmospheric turbulence continues to increase,
the phase fluctuation becomes more and more severe, the
coherence of the beam is destroyed, and the light spot may
be split into several pieces. Compared with the initial
Gaussian beam, the intensity of the beam attenuates sig-
nificantly, and the larger the C2

n, the greater the attenuation
of the light intensity.

5. The Effect of Turbulent Atmosphere on Free-
Space Optical Communications

In Free-Space Optical Communications (FSO) [16, 17], the
laser from the transmitting end can be treated as a plane
wave after being collimated by an optical lens [18, 19]; for the
plane wave,

〈x2〉 � σ2x � 0.31C
2
nk

7/6
L
11/6

. (19)
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Figure 2: Atmospheric turbulence phase screen for the different atmospheric refractive index structure constants C2
n. (a)

C2
n � 2 × 10−17 m−2/3, (b) C2

n � 2 × 10−17 m−2/3, (c) C2
n � 2 × 10−15 m−2/3, (d) C2

n � 2 × 10−15 m−2/3, (e) C2
n � 2 × 10−13 m−2/3, and (f)

C2
n � 2 × 10−13 m−2/3.
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Figure 3: Initial Gaussian beam. (a) Spot pattern of initial Gaussian beam. (b) Stereograph of initial Gaussian beam.
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Figure 4: Continued.
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From this, the relationship between bit error rate and
light intensity fluctuation can be obtained [20, 21]:

BER �
1
2

erfc
4

�
2

√
× 1.24C

2
nk

7/6
L
11/6􏼠 􏼡⎡⎣ ⎤⎦. (20)

Under different fluctuation conditions, the variation of
logarithmic amplitude fluctuation and logarithmic intensity
fluctuation with transmission distance are shown in Fig-
ures 5 and 6, and the relationship between bit error rate and

logarithmic light intensity fluctuation variance is shown in
Figure 7. In addition, the influence of transmission distance
on bit error rate is also given, as shown in Figure Figure 8.

Figures 5 and 6 show the variation of logarithmic am-
plitude fluctuation and logarithmic intensity fluctuation
with transmission distance under different intensity tur-
bulence conditions. It can be clearly seen from the figures
that when the transmission distance is constant, the stronger
the turbulence intensity, the greater the fluctuation of log-
arithmic amplitude and logarithmic intensity.
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Figure 4: Gaussian beam after passing through the phase screen. (a) C2
n � 2 × 10−17 m−2/3, (b) C2

n � 2 × 10−17 m−2/3, (c) C2
n � 2 × 10−15 m−2/3,

(d) C2
n � 2 × 10−15 m−2/3, (e) C2

n � 2 × 10−13 m−2/3, and (f) C2
n � 2 × 10−13 m−2/3.
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In Free-Space Optical communication (FSO) system
with a rate below 2.5Gbps, the system’s bit error rate is
generally required to be below 10−9. It can be seen from
Figure 7 that, under weak fluctuation conditions, for the
atmospheric laser communication system’s bit error rate less
than the requirement, the light intensity fluctuation should

be less than 0.67. It can be seen from Figures 7 and 8 that
when the transmission distance is constant, with the increase
of turbulence intensity, the bit error rate rises quickly. For
the bit error rate 10−9, when C2

n is equal to 2 × 10−15 m−2/3,
the effective distance of communication is close to 4.6 km.
With the increase of C2

n, the effective distance of
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Figure 6: Variation of intensity fluctuation with transmission distance.
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transmission is getting smaller and smaller; when it reaches
2 × 10−13 m−2/3, the effective distance of transmission re-
duced to about 0.37 km.

6. Conclusion

By comparing the phase screens under atmospheric tur-
bulence of different intensities, it is found that atmospheric
turbulence of different intensities affects the propagation of
Gaussian beams in terms of light intensity and phase
fluctuations. ,e greater the intensity of the atmospheric
turbulence is, the greater the light intensity of the Gaussian
beam is affected, the more obvious the fluctuation of the light
intensity, and the more obvious the tendency of the light
spot to split into several pieces. In terms of phase fluctua-
tions, the greater the intensity of the turbulence, the more
intense the phase fluctuations of the Gaussian beam, the
larger the difference of the light spot in the figure, and the
more obvious the chromatic aberration, which puts forward
higher and more specific requirements in the accuracy and
reliability of laser transmission under atmospheric turbu-
lence of different intensities. With the increase of turbulence
intensity, the bit error rate rises quickly. With the increase of
Cn

2, the effective distance of transmission is getting smaller
and smaller; when it reaches 2 × 10− 13 m− 2/3, the effective
distance of transmission reduced to about 0.37 km.
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