
J
H
E
P
1
1
(
2
0
2
1
)
1
2
6

Published for SISSA by Springer

Received: October 13, 2021
Accepted: November 1, 2021

Published: November 17, 2021

Asymptotic Weyl double copy

Hadi Godazgar,a Mahdi Godazgar,b Ricardo Monteiro,c David Peinador Veigac
and C.N. Poped,e
aMax-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),
Mühlenberg 1, D-14476 Potsdam, Germany

bSchool of Mathematical Sciences, Queen Mary University of London,
Mile End Road, E1 4NS, U.K.

cCentre for Theoretical Physics, Department of Physics and Astronomy,
Queen Mary University of London, Mile End Road, E1 4NS, U.K.

dGeorge P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,
Texas A&M University, College Station, TX 77843, U.S.A.

eDAMTP, Centre for Mathematical Sciences,
Cambridge University, Wilberforce Road, Cambridge CB3 OWA, U.K.
E-mail: hadi.godazgar@aei.mpg.de, m.godazgar@qmul.ac.uk,
ricardo.monteiro@qmul.ac.uk, d.peinadorveiga@qmul.ac.uk,
pope@physics.tamu.edu

Abstract: A characteristic value formulation of the Weyl double copy leads to an asymp-
totic formulation. We find that the Weyl double copy holds asymptotically in cases where
the full solution is algebraically general, using rotating STU supergravity black holes as
an example. The asymptotic formulation provides clues regarding the relation between
asymptotic symmetries that follows from the double copy. Using the C-metric as an ex-
ample, we show that a previous interpretation of this gravity solution as a superrotation
has a single copy analogue relating the appropriate Liénard-Wiechert potential to a large
gauge transformation.

Keywords: Space-Time Symmetries, Black Holes, Gauge Symmetry, Scattering Amplitudes

ArXiv ePrint: 2109.07866

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2021)126

mailto:hadi.godazgar@aei.mpg.de
mailto:m.godazgar@qmul.ac.uk
mailto:ricardo.monteiro@qmul.ac.uk
mailto:d.peinadorveiga@qmul.ac.uk
mailto:pope@physics.tamu.edu
https://arxiv.org/abs/2109.07866
https://doi.org/10.1007/JHEP11(2021)126


J
H
E
P
1
1
(
2
0
2
1
)
1
2
6

Contents

1 Introduction 1

2 The Weyl double copy in the characteristic value formulation 3
2.1 C-metric and the Liénard-Wiechert solution 9

3 Asymptotic Weyl double copy 12
3.1 Rotating STU supergravity black holes 13

3.1.1 Asymptotic Weyl double copy relation 15
3.2 Axisymmetric Weyl double copy 16

4 Asymptotic symmetries and the Weyl double copy 17
4.1 The C-metric as a superrotation 18
4.2 The Liénard-Wiechert potential as a large gauge transformation 20

5 Discussion 21

A Four-dimensional spinor formalism 21

B C-metric in Bondi coordinates 23
B.1 Small mass expansion 26

C Taub-NUT solution and the dyon solution 27

D Rotating STU supergravity black holes 29
D.1 Petrov type of solution 29
D.2 Bondi coordinates 30

E Not quite Weyl double copy for Kerr-Newman 31

1 Introduction

The formulation of gravity as a ‘double copy’ of gauge theory has been remarkably fruitful
over the past decade or so; see [1] for a review. It originated in the realisation of gravity
and gauge theory as low-energy limits of closed and open strings, due to the double copy
relation between the respective scattering amplitudes [2]. Particularly after the framework
of [3, 4], this general idea has been exploited to great effect to study a range of perturbative
problems, from the ultraviolet divergences of supergravity theories to the classical dynamics
of black hole binaries.

In this paper, we will focus on one strand of this progress, which is concerned with the
double copy interpretation of classical gravity solutions. Since the double copy had been
understood as a property of perturbative gravity, it came as a surprise that exact black
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hole spacetimes — e.g. the Kerr solution — could admit a straightforward interpretation
as a double copy of a gauge theory solution [5, 6]. Ultimately, this is possible because
the solutions in question are algebraically special, which guides us through the seemingly
intractable problem of relating coordinates in a curved spacetime to coordinates in the
flat spacetime where the gauge theory solution lives. In particular, the Kerr solution has
algebraic type D in the Petrov classification, and moreover it is of Kerr-Schild type, which
determines a privileged class of coordinates that can also be thought of as those of a
flat spacetime; see [7] for other exact vacuum type D solutions and [8] for vacuum type
N solutions. The need to worry about gauge choices is absent when dealing only with
scattering amplitudes, which are gauge invariant, but an exact relation between explicit
classical solutions requires thinking about coordinates. Notice that in order to relate a
double copy of classical solutions to the original double copy of scattering amplitudes, one
needs to think about the classical solutions perturbatively. This undoes the algebraic magic
involved in the exact solutions, but is important in order to show that we are dealing with
the same notion of double copy. The equivalence of the notions of double copy has now
been established in various ways [9–18], with [17] providing a particularly transparent proof
directly from scattering amplitudes, using the KMOC formalism [19].

The formulation of the double copy between exact classical solutions to be explored in
this paper is the Weyl double copy [7]. It interprets the Weyl curvature of a gravity solution
as a double copy of a gauge theory field strength; a scalar field also plays an important
role: it is the bi-adjoint scalar field of the scattering amplitudes story. At linearised level, a
twistorial interpretation of the Weyl double copy has been proposed [20, 21]. A potentially
puzzling feature of the double copy of exact solutions is that it deals with Abelian solutions
on the gauge theory side; for instance, the single copy of the Schwarzschild solution is the
Coulomb solution. This shows that the non-linearity of the gravity solutions in question has
the special feature that it can be “swept under the carpet” by a coordinate transformation,
due to their multi-Kerr-Schild property. That this property (particularly double-Kerr-Schild)
applies to any type D vacuum solution was shown long ago [22]. In its various guises, Weyl
or otherwise, the classical double copy has been a very active research topic; see e.g. [23–71].

Another line of work that motivates our paper focuses on the asymptotic symmetries
of gravity and gauge theory solutions, and has seen a surge in interest in recent years,
particularly since the developments reviewed in [72]. Supertranslations have been related
via the double copy to electric-magnetic duality [13, 73–75]. Large diffeomorphisms in
self-dual gravity and large gauge transformations in self-dual gauge theory have also been
related [76], based on the fact that the self-dual theories provide a simple setting for the
double copy [77]. The notions of celestial operators and amplitudes that arose recently are
also revealing their own versions of the double copy [78–80]. Closer to the approach to be
taken here, the double copy has been seen to arise in the characteristic value formulation
of general relativity, particularly in the example of the Taub-NUT spacetime [73]. In [73],
it was shown that the Dirac monopole solution can be viewed as a seed solution for the
Taub-NUT spacetime in a characteristic value formulation and, moreover, that the proper
and large gauge transformations of the monopole solution map onto proper and asymptotic
diffeomorphisms of the Taub-NUT solution.
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In this paper, we will explore aspects of the classical double copy as seen asymptotically,
near null infinity, with a view to gaining new insights into the connections between these
various subjects. Bondi coordinates are then a natural choice, as we will explain. We will
see how the Weyl double copy relates in a simple manner various quantities that are familiar
from the literature of asymptotic symmetries and of the characteristic value formulation.
While the Weyl double copy has only been successfully applied to certain algebraically
special spacetimes, the fact that a much wider class of spacetimes is asymptotically special
allows us to extend its application, albeit in a restricted asymptotic framework, which we
hope will be a stepping stone for a fuller understanding.

We will consider two examples of spacetimes in detail. One is that of rotating STU
supergravity black holes [81], which are algebraically general but asymptotically of type D;
the Kerr-Newman solution with equal dyonic charges is a particular case. While a double
copy interpretation of STU supergravity is not known, the asymptotic properties of these
solutions are sufficient for our purpose.

The other example that we will consider in detail is the C-metric. This was discussed
already as an example of the type D Weyl double copy [7]: the uniformly accelerated
black holes are associated via the double copy to the Liénard-Wiechert field for uniformly
accelerated point charges. The Kerr-Schild double copy is insufficient to deal on its own with
this example (even in the multi-Kerr-Schild framework) because of the time dependence, but
the Weyl double copy provides a complete prescription. Here, we will revisit the C-metric
example of the double copy as seen asymptotically, based on Bondi coordinates, whose
construction for the C-metric is not straightforward. A major motivation is the proposed
interpretation of the C-metric as a non-linear solution associated to a superrotation [82]. This
suggests that its single copy can be interpreted analogously as a large gauge transformation,
and we will find that this is the case.

This paper is organised as follows. In section 2, we present the ‘asymptotic’ or
characteristic value formulation of the Weyl double copy. In section 3, we apply this to
the example of STU black holes, which are only algebraically special asymptotically, and
discuss also the simplifications arising for axisymmetric solutions. Section 4 shows that the
superrotation interpretation of the C-metric has a natural single copy analogue, in terms of
a large gauge transformation. We conclude with some final comments. There are several
appendices containing technical details.

Note added. While we were finalising the paper, we became aware of parallel work [83],
whose goals overlap with ours.

2 The Weyl double copy in the characteristic value formulation

As described in appendix A, the homomorphism between the Lorentz group and SL(2,C)
can be used to write spacetime tensors as spinors [84]. The Weyl tensor may equivalently
be written as a totally symmetric 2-component spinor object ΨABCD. Similarly, a Maxwell
2-form Fµν may be written as a totally symmetric 2-spinor ΦAB. The Weyl double copy
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is the observation that for type D and N vacuum solutions [7, 8],1 the Weyl spinor takes
the form

ΨABCD = 3c
S

Φ(AB ΦCD), (2.1)

where in the type D case
S

3 = (−2ΦABΦAB)1/4 , (2.2)

with c a constant designed to absorb parameters. For type N spacetimes, S solves the wave
equation on the curved background, and also the wave equation on a Minkowski background
in the case of non-twisting solutions [8]. For type D solutions, in general S only satisfies
the wave equation in a flat spacetime, rather than the curved background. Indeed, in the
type D case, the two equations above imply that

�S = −2(Ψ2)4/3, (2.3)

where Ψ2 is a component of the Weyl spinor to be defined momentarily. Therefore, in order
to satisfy the wave equation we need to turn off the parameters of the background type D
solution, such as the mass, that are associated with the curvature, so that Ψ2 then becomes
zero, implying a (at least locally) Minkowski background.

Translating back to tensor language, the 2-component spinor relation (2.1) between the
Weyl curvature and the Maxwell field strength translates into the tensor relation

Cµνρσ + i ∗Cµνρσ = c

S

{
FµρFνσ −Fµσ Fνρ + 2Fµν Fρσ + 1

2(gµρ gνσ − gµσ gνρ)F2

− 3
2 [(F2)µρ gνσ − (F2)µσ gνρ − (F2)νρ gµσ + (F2)νσ gµρ]

}
(2.4)

+ ic

S

{
3
8(Fµν ∗Fρσ + ∗Fµν Fρσ)− 1

16(gµρ gνσ − gµσ gνρ) ∗Fαβ Fαβ − 1
16εµνρσ F

2
}
,

where
∗Cµνρσ = 1

2εµναβ C
αβ

ρσ (2.5)

and
(F2)µν = FµρFνρ, F2 = Fµν Fµν , ∗Fαβ = 1

2ε
αβρσ Fρσ. (2.6)

Note that, in general, c/S is complex. However, if it is real, then by taking the real part
of (2.4) one has

Cµνρσ = c

S

{
FµρFνσ −Fµσ Fνρ + 2Fµν Fρσ + 1

2(gµρ gνσ − gµσ gνρ)F2

− 3
2 [(F2)µρ gνσ − (F2)µσ gνρ − (F2)νρ gµσ + (F2)νσ gµρ]

}
. (2.7)

We may introduce a Newman-Penrose null frame [85] (`, n,m, m̄), where ` and n are
null vectors such that ` · n = −1 and m is a complex null vector, orthogonal to ` and n,
that parametrises the remaining two spacelike directions, so that m · m̄ = 1. Therefore,2

gµν = −2`(µnν) + 2m(µm̄ν), (2.8)
1Some type III examples, in the linearised approximation, were discussed in [20, 21].
2We define v(µwν) = 1

2 (vµwν + wµvν) and v[µwν] = 1
2 (vµwν − wµvν).
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or in more familiar language

gµν = EaµE
b
ν ηab, ηab =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 (2.9)

with
E0 = −n[, E1 = −`[, Em = m̄[, Em̄ = m[. (2.10)

Equivalently,
E0 = `, E1 = n, Em = m, Em̄ = m̄ , (2.11)

where Ea = Eaµ dx
µ and n[ = nµ dx

µ, etc., and Ea = Eµa ∂µ and n = nµ ∂µ, etc. For
convenience, we can use the above notation to project any tensor into this null frame. For
example, for any 1-form X,

X0 ≡ `µXµ = −X1, X1 ≡ nµXµ = −X0, Xm ≡ mµXµ = Xm̄, Xm̄ ≡ m̄µXµ = Xm.

(2.12)
A corresponding spinor basis (o, ι) may be constructed, satisfying

εAB o
AιB = 1, (2.13)

where εAB is a volume form in spinor space, so that

` ∼ oAōȦ, n ∼ ιAῑȦ, m ∼ oAῑȦ. (2.14)

(More precisely, we have `µ = Eµa σ
a
AȦ o

AōȦ, etc., where σaAȦ is defined in eq. (A.1).)
In such a null frame, Maxwell and Weyl scalars may be defined by projecting the

Maxwell field strength and the Weyl tensor into the null frame. In particular, we define the
Maxwell scalars as

Φ0 = F0m = ΦAB o
A oB , Φ1 = 1

2(F01 −Fmm̄) = ΦAB o
A ιB ,

Φ2 = Fm̄1 = ΦAB ι
A ιB (2.15)

and the Weyl scalars as

Ψ0 = C0m0m = ΨABCD o
A oB oC oD , Ψ1 = C010m = ΨABCD o

A oB oC ιD ,

Ψ2 = C0mm̄1 = ΨABCD o
A oB ιC ιD , Ψ3 = C101m̄ = ΨABCD o

A ιB ιC ιD , (2.16)

Ψ4 = C1m̄1m̄ = ΨABCD ι
A ιB ιC ιD .

Therefore, translating the Weyl double copy equation (2.1) into the null frame constructed
above gives

Ψ0 = 3c (Φ0)2

S
, Ψ1 = 3c Φ0 Φ1

S
, Ψ2 = c

Φ0 Φ2 + 2(Φ1)2

S
,

Ψ3 = 3c Φ1 Φ2
S

, Ψ4 = 3c (Φ2)2

S
. (2.17)
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Having re-expressed the Weyl double copy equation in a null frame, we choose coordi-
nates that will provide a direct relation to a characteristic value formulation of the Einstein
equation. We begin by assuming that the spacetime is locally asymptotically flat.3 Locally
asymptotically flat spacetimes provide a mathematical model of an isolated gravitational
system that may be emitting radiation that is measured by an observer at infinity. We
choose Bondi coordinates (u, r, xI = {θ, φ}), where u is a timelike coordinate, r is a radial
null coordinate and xI correspond to angular coordinates. In such a coordinate system, the
metric takes the Bondi form4

ds2 = −Fe2βdu2 − 2e2βdudr + r2hIJ(dxI − CIdu)(dxJ − CJdu), (2.18)

where we assume the following large-r fall-off conditions for the metric components:

F (u, r, xI) = 1 +
∞∑
i=0

Fi(u, xI)
ri+1 , β(u, r, xI) =

∞∑
i=0

βi(u, xI)
ri+2 , (2.19)

CI(u, r, xI) =
∞∑
i=0

CIi (u, xI)
ri+2 , hIJ(u, r, xI) = ωIJ + CIJ

r
+ C2 ωIJ

4 r2 +
∞∑
i=1

D
(i)
IJ (u, xI)
ri+2

with ωIJ the metric on the round 2-sphere. Note that C2 = CIJC
IJ , where we always

lower/raise indices on tensors defined on the 2-sphere using ωIJ and its inverse. Further-
more, we fix a residual coordinate freedom in the definition of the radial coordinate r by
requiring that

det(hIJ) = det(ωIJ) = sin2 θ. (2.20)

Following ref. [86], we may choose a parametrisation of hIJ that is adapted to this
gauge choice:

2hIJdxIdxJ = (e2f + e2g)dθ2 + 4 sin θ sinh(f − g)dθdφ+ sin2 θ(e−2f + e−2g)dφ2, (2.21)

where

f(u, r, xI) = f0(u, xI)
r

+
∞∑
i=2

fi(u, xI)
ri+1 , g(u, r, xI) = g0(u, xI)

r
+
∞∑
i=2

gi(u, xI)
ri+1 . (2.22)

The tensor CIJ is parametrised by f0 and g0, while the higher fi, gi (with i ≥ 2) parametrise
the D(i−2)

IJ (u, xI) tensors.
Assuming appropriate fall-off conditions for the energy-momentum tensor, there are

equations relating the various metric tensor components; see ref. [88]. However, here we
3By locally asymptotically flat we mean spacetimes that can be put into a Bondi form as described

below, but with metric components that are not necessarily regular on the 2-sphere. Examples where the
components are regular on the sphere include the Kerr metric and the charged STU supergravity metrics
that we discuss in this paper. Examples where there are singularities on the sphere include the Taub-NUT
solution and the C-metric.

4In fact, this form of the metric is due to Sachs [86]. The form of the metric that appears in [87] is
restricted to axisymmetric solutions. Moreover, the choice of coordinates that was made in [87] is not
well-adapted to solution with angular momentum. Therefore, except in section 3.2, we shall use the Sachs
form even when dealing with axisymmetric solutions.
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will keep the discussion general by not assuming any fall-off conditions on the energy-
momentum tensor.

Above, we have assumed an analytic expansion in the metric components. This
is a consistent assumption from an initial value problem perspective, in the sense that
assuming an analytic fall-off for initial data will guarantee that the evolved solution will
remain analytic [86]. However, it does preclude some physically interesting cases [89, 90].
Another more general class of consistent fall-offs that one may consider are polyhomogenous
spacetimes [91–94]. Nevertheless, the analytic expansion we assume here will be sufficient
for our purposes.

We choose the following null frame associated with the metric (2.18): [88]

` = ∂

∂r
, n = e−2β

[
∂

∂u
− 1

2F
∂

∂r
+ CI

∂

∂xI

]
, m = m̂I

r

∂

∂xI
, (2.23)

where

2 m̂(I ¯̂mJ) = hIJ (2.24)

with hIJ the matrix inverse of hIJ . In particular, here, we choose

m̂ = (e−f + i e−g)
2 ∂θ −

i(ef + i eg)
2 sin θ ∂φ. (2.25)

In this formulation, the Einstein equation divides into three sets of equations (see, for
example, ref. [73]): hypersurface equations, which hold in each u = constant hypersurface,
evolution equations, which are first order equations in time derivatives, and finally conser-
vation equations that are satisfied on r = constant hypersurfaces. One major advantage
of the characteristic formulation of the Einstein equation is that there are no constraint
equations, unlike the situation in the initial value formulation. CIJ(u, xI) constitutes free
data, while F0(u0, X

I), CI1 (u0, x
I) and D

(i)
IJ (u0, x

I) are unconstrained initial data with
associated evolution equations. All other metric functions can then be solved from these
functions and their form at time step u0 + ∆u, derived via their evolution equations; see,
for example, ref. [88].

In such a frame, the Weyl scalars can be written in a 1/r expansion, where they take
the form

Ψi = O
( 1
r5−i

)
. (2.26)

More precisely, given our assumptions of analyticity, one has the expansions

Ψi =
∑
j≥0

ψji
1

r5+j−i . (2.27)

This notable behaviour of the Weyl scalars is known as the peeling property [85, 95]. The
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Ψi have the form

Ψ0 =
[
−3 (1 + i) (f2 + ig2)− 3

2σ
0
[(
σ0
)2

+ |σ0|2 −
(
σ̄0
)2
]

+ 1
2
(
σ̄0
)3
] 1
r5

− [6 (1 + i) (f3 + ig3)] 1
r6 +O

( 1
r7

)
Ψ1 =

[3 (1 + i)
4

(
Cθ1 − i sin θCφ1

)
+ 3

4ð|σ
0|2 + 3σ0ðσ̄0

] 1
r4 +O

( 1
r5

)
,

Ψ2 =1
2
[
F0 − 2σ0∂uσ̄

0 + ð̄2σ0 − ð2σ̄2
] 1
r3 +

[
F1 + (1 + i)

2 ð̄
(
Cθ1 − i sin θ Cφ1

)
− (1− i)

4 ð
(
Cθ1 + i sin θ Cφ1

)
− 3

4ð
(
σ̄0ð̄σ0

)
+ 9

4σ
0ð̄ðσ̄0 + 1

4 ð̄σ̄
0ðσ0

] 1
r4 +O

( 1
r5

)
,

Ψ3 =ð∂uσ̄0 1
r2 +O

( 1
r3

)
,

Ψ4 =− ∂2
uσ̄

0 1
r

+ ð̄ð∂uσ̄0 1
r2 +O

( 1
r3

)
, (2.28)

where
σ0 = (1 + i)

2 (f0 + ig0) . (2.29)

Acting on a scalar of spin n, we have

ðη = −(1 + i)
2 sinn θ

(
∂

∂θ
− i

sin θ
∂

∂φ

)(
η

sinn θ

)
. (2.30)

In a similar fashion, we may consider a 1/r expansion of the Maxwell potential compo-
nents, which for physically reasonable matter take the form

Au(u, r, xI) =
∞∑
i=0

A(i)
u (u, xI)
ri+1 , Ar(u, r, xI) =

∞∑
i=0

A(i)
r (u, xI)
ri+2 ,

AI(u, r, xI) =
∞∑
i=0

A(i)
I (u, xI)
ri

, (2.31)

where, again, we assume an analytic form for the dependence of the gauge fields on 1/r.
The analogue of the Bondi gauge in this case is to use gauge freedom to set Ar to zero:

A → A− dΛ, Λ =
∫ ∞
r
Ar(u, r′, xI)dr′ + λ(xI). (2.32)

In this gauge, we have

Au(u, r, xI) =
∞∑
i=0

A(i)
u (u, xI)
ri+1 , Ar(u, r, xI) = 0, AI(u, r, xI) =

∞∑
i=0

A(i)
I (u, xI)
ri

, (2.33)

with a residual gauge freedom parametrised by λ(xI), which corresponds to a so-called large
gauge transformation. This large gauge transformation is the single copy analogue of the
gravitational BMS generator; a statement that we shall make more precise in section 4.
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The corresponding Maxwell field strengths are of the form

Fur = −∂rAu = A
(0)
u

r2 +O(1/r3), FuI = ∂uAI − ∂IAu = ∂uA(0)
I +O(1/r),

FrI = ∂rAI = −A
(1)
I

r2 +O(1/r3), FIJ = 2∂[IAJ ] = 2∂[IA
(0)
J ] +O(1/r). (2.34)

The Bianchi identity dF = 0 is trivially satisfied, while the Maxwell equation

d ? F = 0 (2.35)

is equivalent to
∂µ(
√
−g gµρgνσFρσ) = 0. (2.36)

In Bondi coordinates √
−g = r2e2β√ω, (2.37)

while the inverse metric takes the form

gµν =

 0 −e−2β 0
−e−2β e−2βF −e−2βCJ

0 −e−2βCI r−2hIJ

 . (2.38)

In fact, for type D and for non-twisting type N solutions, the Maxwell field appearing in
the Weyl double copy satisfies the Maxwell equation also on Minkowski spacetime [7, 8].

Using equations (2.15), (2.23), (2.25) and (2.34), we can derive the appropriate Maxwell
scalars Φ0,Φ1 and Φ2 in a 1/r expansion. For type D solutions, the scalar S is then given by

S

3 =
√

2
(
Φ2

1 − Φ0Φ2
)1/4

= O(1/r). (2.39)

Comparing the 1/r expansions of the Weyl scalars (2.28) with the Maxwell scalars
and the scalar given by (2.39) via the double copy relations (2.17) gives an asymptotic
formulation of the Weyl double copy.

It is important to stress that in formulating the Weyl double copy in the characteristic
value formulation, the single copy must be expressed in Bondi coordinates on a flat Minkowski
background. However, the Maxwell scalars must be defined with respect to the curved
null frame.

2.1 C-metric and the Liénard-Wiechert solution

In this section, we demonstrate the conclusions of the previous section using the C-metric as
an example. The single copy of the C-metric is the analogous Liénard-Wiechert solution [7].
Following the prescription given above in section 2, we need to transform the coordinates
for the C-metric to Bondi coordinates and also transform the coordinates for the Liénard-
Wiechert solution to those corresponding to Minkowski in accelerated coordinates (i.e. the
C-metric with the mass parameter m set to zero). In appendix B, we derive the Bondi
form of the C-metric. In the original C-metric coordinates in which the metric takes the
form (B.1), the Liénard-Wiechert gauge potential reads

A = Qy dt, (2.40)
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which can easily be seen to give a solution of the Maxwell equations. In particular, this is
true if we turn off the mass parameter, so that the metric just describes Minkowski spacetime
in accelerating coordinates. Thus A has the interpretation of being the Liénard-Wiechert
potential for an accelerating charge. After rewriting it in terms of our new Bondi coordinates
(see appendix B), we will simply have that A is given by

A = Q

( 1
ΩA − x− T

)(
dw − dy

F (y)

)
, (2.41)

where we then implement the various substitutions and expansions detailed in appendix B.
After doing this we find that

Au = −Qx cos θ
r sin2 θ

+O
( 1
r2

)
, Ar = QxGj (x) cos θ

A r2 sin θ +O
( 1
r3

)
,

Aθ = −Qx csc θ +O
(1
r

)
, Aφ = 0 . (2.42)

After a compensating gauge transformation to restore the Ar = 0 gauge choice, we have

Au = Q cos θ
r sin2 θ

(
1− x+G3/2Gj

)
+O

( 1
r2

)
, Ar = 0 ,

Aθ = −Qx csc θ +O
(1
r

)
, Aφ = 0 . (2.43)

These expressions are valid in the general C-metric, but we actually want them just in
the flat spacetime limit, which can be obtained by setting m to zero in the expressions in
appendix B.1. Thus x and Gj(x) are then just given by the expansions in (B.19) and (B.20)
with m set to 0, and so we have

Au = Q cos θ
r sin2 θ

(
1− u3A3(

u2A2 + sin2 θ
)3/2

)
+O

( 1
r2

)
, Ar = 0 ,

Aθ = − QuA√
u2A2 + sin2 θ sin θ

+O
(1
r

)
, Aφ = 0 . (2.44)

Defining the null tetrad (`, n,m) and the scalar components of the Weyl tensor as
in section 2, we find that for the C-metric written in Bondi coordinates as described in
appendix B, we have

Ψ0 =
i
(
1− cos2 θ GGj2

)2 √
GG′′′

16A3 sin3 θ r5 +O
(
r−6

)
,

Ψ1 = (1 + i) cos θ (1− cos2 θ GGj2)G3/2Gj G′′′

16A2 sin3 θ r4 +O(r−5) ,

Ψ2 = −(1− 3 cos2 θ GGj2)G3/2G′′′

24A sin3 θ r3 +O(r−4) ,

Ψ3 = −(1− i) cos θ G5/2Gj G′′′

8 sin3 θ r2 +O(r−3) ,

Ψ4 = − iAG
5/2G′′′

4 sin3 θ r
+O(r−2) . (2.45)
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We now make the small-m expansion described in appendix B.1 to give the leading-order
terms in the expansions of the Weyl tensor in (2.45):

ψ0
0 = −3im sin2 θ (u2A2 + 1)2

4A2 (u2A2 + sin2 θ)5/2 +O(m2) ,

ψ0
1 = −3(1 + i)mu sin θ cos θ (u2A2 + 1)

4(u2A2 + sin2 θ)5/2 +O(m2) ,

ψ0
2 = m [(3u2A2 + 1) sin2 θ − 2u2A2]

2(u2A2 + sin2 θ)5/2 +O(m2) ,

ψ0
3 = 3(1− i)muA2 sin θ cos θ

2(u2A2 + sin2 θ)5/2 +O(m2) ,

ψ0
4 = 3imA2 sin2 θ

(u2A2 + sin2 θ)5/2 +O(m2) . (2.46)

(See eq. (2.27) for the definition of the ψji .)
Now we calculate also the field strength for the Liénard-Wiechert potential, and thence

the Newman-Penrose scalars

Φ0 = Fµν `µmν , Φ1 = 1
2Fµν (`µ nν + m̄µmν) , Φ2 = Fµν m̄µ nν . (2.47)

We find that at leading order in the 1/r expansion, these are given by

Φ0 = −(1 + i)Q (1− cos2 θ GGj2)
√
G

4A sin2 θ r3 +O(r−4) ,

Φ1 = −Q cos θ G3/2Gj

2 sin2 θ r2 +O(r−3) , Φ2 = (1− i) AQG3/2

2 sin2 θ r
+O(r−2) . (2.48)

As with the Weyl scalars, the expressions can be made more explicit in a small-m expansion
in which

G(x) = 1− x2 +O(m), Gj(x) = x (1− x2)−1/2 +O(m),

x = uA (u2A2 + sin2 θ)−1/2 +O(m). (2.49)

Thus we have

Φ0 = −(1 + i)Q sin θ (u2A2 + 1)
4Ar3 (u2A2 + sin2 θ)3/2 +O(r−4) , (2.50)

Φ1 = − AQu cos θ
2r2 (u2A2 + sin2 θ)3/2 +O(r−3) , Φ2 = (1− i)AQ sin θ

2r (u2A2 + sin2 θ)3/2 +O(r−2) .

We can see from the results for the Weyl scalars in (2.46) and the Maxwell scalars
in (2.50) that a relation of the form seen in (2.17) holds. If we define

R0 = Φ2
0

Ψ0
, R1 = Φ0 Φ1

Ψ1
, R2 = Φ0 Φ2 + 2Φ2

1
3Ψ2

, R3 = Φ1 Φ2
Ψ3

, R4 = Φ2
2

Ψ4
, (2.51)

then to leading order in 1/r these are all the same:

Ra = S

3c = − Q2

6mr(u2A2 + sin2 θ)1/2 +O(r−2) , for all a . (2.52)
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From the Weyl double copy, we know that the scalar potential is [7]

S = Q̃ (x̂+ y) (2.53)

for some constant Q̃. In Bondi coordinates this has the large-r expansion

S = Q̃
√
G

A sin θ r −
Q̃ (2
√
GGj + cos2 θ GG′Gj2)

4A2 sin2 θ r2 +O(r−3) (2.54)

and in the Minkowski background it reduces to

S = Q̃

Ar (u2A2 + sin2 θ)1/2 +O(r−2) . (2.55)

Comparing this expression with (2.52), we find that the two expressions agree once we
choose

c = −2mQ̃
AQ2 . (2.56)

Let us make a clarifying remark. We used the asymptotic Weyl scalars with coefficients
given in (2.46), which correspond to the linearised order in m. On the other hand, the Weyl
double copy interpretation of the C-metric is exact [7]. The linearisation in m is actually
equivalent to an alternative, but exact, procedure. In [7], double-Kerr-Schild coordinates
were used for the exact double copy, and in these coordinates the Weyl spinor is proportional
to m. The advantage of multi-Kerr-Schild coordinates for the double copy is that they allow
us to map the gravitational curved spacetime to a flat spacetime where the gauge field and
the scalar live. Asymptotically, however, we are interested in using the Bondi coordinates.
So the alternative procedure would be to start with double-Kerr-Schild coordinates for
gravity, and then transform these into ‘flat spacetime Bondi coordinates’, which we are
using for the gauge field and the scalar. In this way, the Weyl coefficients will indeed be
linear in m. We chose to proceed as in (2.46) for brevity.

3 Asymptotic Weyl double copy

In this section, we consider whether the Weyl double copy holds asymptotically for alge-
braically general spacetimes. In the previous section, we formulated the type D and type N
Weyl double copy for locally asymptotically flat spacetimes. In this formulation, the Weyl
double copy relation transforms into a tower of relations in a 1/r-expansion. The fact that
locally asymptotically flat spacetimes become simpler for large r, means that it may be
possible to satisfy the Weyl double copy relations for leading order(s) in a 1/r expansion,
even when the background is not type D or N and so a full Weyl double copy relation is not
known. This could be a stepping stone for a more generic understanding of the classical
double copy.

One good reason to expect that it might be possible is the peeling property of the Weyl
tensor. As is evident from the general expressions in (2.28), the Weyl scalars of a locally
asymptotically flat spacetime satisfy the fall-offs

Ψi = O(ri−5). (3.1)
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This means that for large r, a generic solution becomes asymptotically type N. This
will mean that the Weyl double copy for type N spacetimes [8] will apply asymptotically.
Perhaps more interestingly, for a non-radiative spacetime one would expect the radiative
parts of the Weyl tensor, parametrised by Ψ3 and Ψ4 in a Bondi null frame, to fall off at a
rate much faster than that suggested by the peeling theorem. As is clear from (2.28), the
leading order terms in Ψ3 and Ψ4 are given by the Bondi news ∂uσ0, which parameterises
the flux at null infinity. Therefore, in the absence of flux at null infinity, Ψ3 and Ψ4 fall off at
least at the same rate as Ψ2. If they were to fall off yet faster, it would then mean that the
leading Weyl scalar at large r would be Ψ2 and the spacetime would be asymptotically type
D. In this case, the Weyl double copy for type D solutions [7] applies asymptotically. Here
we shall consider a simple such example of algebraically general black hole solutions that
become asymptotically type D and therefore obey an asymptotic Weyl double copy relation.

3.1 Rotating STU supergravity black holes

It is instructive to examine the Weyl double copy equations that applied in the case of
asymptotically-flat type D metrics, but now in the case of asymptotically-flat metrics
that are algebraically general. Specifically, we consider the rotating STU black holes
with pairwise-equal charges. As can be seen from the discussion of their Petrov type in
appendix D.1, these black holes approach type D metrics at large distance. Thus, we can
expect that the type D Weyl double copy relations will hold asymptotically in this more
general setting.

The rotating STU supergravity black holes are solutions of N = 2 supergravity coupled
to three vector multiplets, and the bosonic sector comprises the metric, four U(1) gauge
fields and six scalar fields (three dilatonic and three axionic). The most general black hole
solutions carry eight independent charges (four electric and four magnetic), but for our
purposes it suffices to consider the case of the black hole solutions with two electric and
two magnetic charges, and where furthermore these pairs of charges are set equal leaving
one electric and one magnetic charge. The resulting black holes can be viewed as solutions
of a consistent truncation of the full STU supergravity, to a theory whose bosonic sector
comprises the metric, 2 gauge fields and two scalars (one dilaton and one axion); the bosonic
Lagrangian can be written as5

L4 = R ∗1l− 1
2∗dϕ ∧ dϕ−

1
2e

2ϕ ∗dχ ∧ dχ− 1
2e
−ϕ (∗F1 ∧ F1 + ∗F2 ∧ F2)

− 1
2χ (F1 ∧ F1 + F2 ∧ F2) , (3.2)

where F1 = dA1 and F2 = dA2.

5There are various ways one can write the bosonic Lagrangian for STU supergravity, and the truncation
we are considering here, depending upon whether one or more of the gauge fields is dualised. The Lagrangian
we are considering here in eq. (3.2) is written in a duality frame in which the rotating black hole metrics in
eqs. (3.5) are supported by one field strength carrying a magnetic charge and the other carrying an electric
charge. If F1 is dualised, the metrics are then supported by electric charges for both field strengths. Details
of the relations between various duality formulations of STU supergravity can be found in [96].
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The rotating black hole solution takes the form [81]6

ds2 = −∆
W

(dt̄− a sin2 θ̄ dφ̄)2 +W

(
dr̄2

∆ + dθ̄2
)

+ sin2 θ̄

W
[a dt̄− (r1r2 + a2)dφ̄]2 , (3.3)

eϕ = 1 + r1 (r1 − r2)
W

= r2
1 + a2 cos2 θ̄

r1 r2 + a2 cos2 θ̄
, χ = a (r2 − r1) cos θ̄

r2
1 + a2 cos2 θ̄

, (3.4)

A1 = 2
√

2M s1 c1 [a dt̄− (r1r2 + a2)dφ̄] cos θ̄
W

,

A2 = 2
√

2M s2 c2 r1 (dt̄− a sin2 θ̄ dφ̄)
W

, (3.5)

where

∆ = r̄2 + a2 − 2Mr̄ , W = r1 r2 + a2 cos2 θ̄ ,

ri = r̄ + 2Ms2
i , si = sinh δi , ci = cosh δi . (3.6)

Here M is a parameter characterising the mass of the black hole, a is the rotation
parameter, and δ1 and δ2 are parameters characterising the magnetic and electric charges,
respectively. If δ1 = δ2 the solution reduces to the dyonic Kerr-Newman black hole, which
is Petrov type D, with electric and magnetic charges equal to one another. In fact, the
Kerr-Newman metric in Boyer-Lindquist coordinates is derived from these coordinates by
the following transformation

r̄ → r̄ − 2Ms2, M → M

1 + 2s2 , Q = P =
√

2Msc

1 + 2s2 , (3.7)

where s = s1 = s2 and c = c1 = c2.
As we show in appendix D.1, if the charge parameters δ1 and δ2 are unequal, the black

hole spacetime is algebraically general (Petrov type I).
Before proceeding, an important clarification is in order. We do not know whether

the Kerr-Newman black hole admits a standard double copy interpretation, and the same
applies to generic rotating STU black holes. The reason is that while the Kerr-Newman
black hole is a solution of Einstein-Maxwell theory, it is not a solution of its “stringy”
analogue Einstein-dilaton-axion-Maxwell theory (“4D heterotic gravity”). The latter theory
is well known to arise from a double copy, both in scattering amplitudes [97] and in a
Kerr-Schild-type classical double copy [98]. The solution space of Einstein-Maxwell theory
is not embedded into the 4D heterotic gravity, because the dilaton and the axion are
generically sourced by the Maxwell field — unless the latter is null, meaning that both
invariants built from the field strength and its dual vanish. So, apart from a restricted set
of solutions that are also solutions to 4D heterotic gravity, we do not know whether generic
solutions to Einstein-Maxwell theory should allow for a standard double copy interpretation
— a conclusion which extends to STU gravity. In appendix E, we discuss what goes wrong
for the Kerr-Newman metric if we naively apply the Weyl double copy. In any case, the
example of STU black holes will be sufficient for our purposes of illustrating the asymptotic
Weyl double copy, since the solution is asymptotically of a double copy form.

6Note that we have placed bars on all the coordinates here since these are the original coordinates of the
black hole solutions. We reserve unbarred coordinates for Bondi coordinates (u, r, θ, φ).
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3.1.1 Asymptotic Weyl double copy relation

In order to investigate whether an asymptotic Weyl double copy relation (2.17) exists for
the general rotating STU black holes, we first need to construct Bondi coordinates for these
solutions. This is done in appendix D.2. Next we need to find a candidate single copy. The
gauge fields of the solution are natural candidates.7 Thus from equation (3.5) we shall have
a single copy potential of the form

A = k1 r̄(dt̄− a sin2 θ̄ dφ̄)
r̄2 + a2 cos2 θ̄

+ k2 (a dt̄− (r2 + a2)dφ̄) cos θ̄
r̄2 + a2 cos2 θ̄

, (3.8)

where k1 and k2 are two arbitrary charge parameters.
Next, we may take the Weyl double copy relations given in (2.17), and use them to

provide five expressions for the scalar S. Thus we may define

S0
c

= 3Φ2
0

Ψ0
,

S1
c

= 3Φ0 Φ1
Ψ1

,
S2
c

= Φ0 Φ2 + 2Φ2
1

Ψ2
,

S3
c

= 3Φ1 Φ2
Ψ3

,
S4
c

= 3Φ2
2

Ψ4
. (3.9)

Following the Weyl double copy prescription, the Maxwell field from which the Newman-
Penrose scalars Φ0, Φ1 and Φ2 are calculated is taken to be that of an electromagnetic
field in the flat-space limit of the black hole metrics, corresponding to setting the mass and
charges to zero. This is achieved by taking the quantity M = 0 in the parameterisation we
are using.

After implementing the transformation to the Bondi coordinates, and introducing the
associated Bondi null tetrad frame in the standard way, we can calculate the Weyl scalars
(Ψ0,Ψ1,Ψ2,Ψ3,Ψ4) and the Maxwell scalars (Φ0,Φ1,Φ2) and substitute into equations (3.9)
in order to find expressions for S0, S1, S2, S3, S4. The expressions required need to be
calculated to a very high order in the Bondi coordinate expansions, which we performed in
Mathematica and which will not be presented in full detail here.

First, we record that the calculation of the invariant quantity I3 − 27J2, where I and
J are defined in eq. (D.5), leads to the result that

I3 − 27J2 = 9a4M10 (s2
1 − s2

2)8 (1 + s2
1 + s2

2)2 sin4 θ

4r26 +O(r−27) . (3.10)

This fall-off is consistent with the results of appendix D.1; in particular eqs. (D.8) and (D.6).
Then, we find that at leading order, all five of the scalars S0, . . . , S4 defined in eqs. (3.9)
take the form

Si = −3
√
k1 + ik2
r

+O(r−2) , (3.11)

where we have chosen
c = − 6MB

(k1 + ik2)3/2 (3.12)

with
MB = M (1 + s2

1 + s2
2), (3.13)

7In fact, the gauge fields solve a modified Maxwell equation due to scalar couplings: ∇µ(e−ϕFµν) = 0.
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the Bondi mass of the black hole. Thus, to leading order, the scalars all agree, and define
the “zeroth copy” that satisfies the massless Klein-Gordon equation in the flat-space limit.
Moreover, at leading order, the expression in (3.11) is equal to the expression derived from
equation (2.39).

At higher order the various expressions differ; we find

S1 − S0 = MB

√
k1 + ik2 (s2

1 − s2
2)2

(1 + s2
1 + s2

2)2 r2 + ν1 (s2
1 − s2

2)2

r3 +O(r−4) ,

S2 − S0 = 2MB

√
k1 + ik2 (s2

1 − s2
2)2

(1 + s2
1 + s2

2)2 r2 + ν2 (s2
1 − s2

2)2

r3 +O(r−4) ,

S3 − S0 = MB

√
k1 + ik2 (s2

1 − s2
2)2

(1 + s2
1 + s2

2)2 r2 + ν3 (s2
1 − s2

2)2 + ν4 k1
r3 +O(r−4) ,

S4 − S0 = 0
r2 + ν5 (s2

1 − s2
2)2 + ν6 k1
r3 +O(r−4) . (3.14)

Here, the quantities ν1, . . . , ν6 are expressions whose precise form is unimportant in the
present discussion. We can see that whereas in the general case where the two charges are
unequal (s1 6= s2) the scalars Si agree only at the leading 1/r order, the agreement extends
to the first sub-leading order (i.e. order 1/r2) in the case s1 = s2 (the Kerr-Newman black
hole) where the metric is of Petrov type D.

If we set M = 0, the Si become equal, to the orders calculated, to the expression
derived from (2.2) on the Minkowski background, and they satisfy the wave equation on
the Minkowski background.

3.2 Axisymmetric Weyl double copy

We have discussed above how to express the Weyl double copy (2.17) asymptotically starting
from the Bondi form of the metric (2.18). The relation becomes lengthy if one attempts to
write it down in terms of the 1/r expansions for the metric and the gauge field described
in that section. For illustrative purposes, particularly regarding the discussion of the next
section, we will now consider the restriction to the axisymmetric case, which simplifies the
map considerably. The original axisymmetric Bondi metric reads [87]

ds2 = −
(
V

r
e2β − U2r2e2γ

)
du2 − 2e2βdudr

−2Ur2e2γdudθ + r2(e2γdθ2 + e−2γ sin2 θ dϕ2) ,
(3.15)

with fall-off conditions

γ(u, r, xI) = c(u, xI)
r

+O(r−3) , (3.16)

β(u, r, xI) = −c(u, x
I)2

4 r2 +O(r−3) , (3.17)

U(u, r, xI) = −(c,θ + 2c cot θ) 1
r2 + (2N(u, xI) + 3c c,θ + 4c2 cot θ) 1

r3 +O(r−4) , (3.18)

V (u, r, xI) = r − 2MB(u, xI) +O(r−1) . (3.19)
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This Bondi form is a subclass of the more general form (2.18), to which it is related by

F = V

r
⇒ F0 = −2MB , (3.20)

CI = (U, 0) , (3.21)

hIJ =
(
e2γ 0
0 e−2γ sin2 θ

)
⇒ Cθθ = 2 c . (3.22)

For the gauge field, the axial symmetry allows us to set Aφ = 0 in (2.33). Finally, we
introduce an additional simplification, by taking the scalar S to be real in (2.4), which leads
to (2.7); this applies for instance to the C-metric.8 We can plug these expressions directly
into (2.7) and compare the components to obtain the neat relations

(A(0)
θ,u)2

2S = −c,uu , (3.23a)

A(0)
θ,uA

(1)
u

2S = −∂θ(sin
2 θ c,u)

sin2 θ
, (3.23b)

(A(1)
u )2 +A(1)

θ A
(0)
θ,u

6S = −M − c c,u , (3.23c)

A(1)
u A

(1)
θ

6S = N . (3.23d)

In principle, these expressions could be used to obtain (up to constants of integration)
a metric tensor from any axisymmetric gauge potential in Bondi gauge. However, the
system (3.23) is over-complete, which gives rise to the integrability condition

∂u

A(1)
u A(0)

θ,u

S

 = 1
sin2 θ

∂θ

sin2 θ
(A(0)

θ,u)2

S

 . (3.24)

Alternatively, this equation can be obtained by imposing the vacuum Bianchi identities,
∇µCµνρσ = 0, on (2.7), assuming that the gauge field satisfies the Maxwell equations.

The expressions above can easily be checked to hold for the example of the C-metric.

4 Asymptotic symmetries and the Weyl double copy

The classical double copy is fundamentally about relating solutions in gravity and gauge
theory. An important aspect of both gravitational and gauge theories is their symmetry
structure. In gravity, this is given by diffeomorphisms, while in gauge theory it is gauge
transformations. Proper diffeomorphisms and gauge transformations, while not physical in
the sense that they parametrise redundancies in the description of the same physics, are
important aspects of the theories. In addition, there exist also improper transformations,

8We also assume here the reality of the couplings-absorbing constant c in (2.7). It should not be confused
with the metric function c in the present section, so here we will choose that constant to take the numerical
value 1/3.
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which generally change boundary conditions and hence are physical. Any claim towards
a new understanding of such theories ought to give some insight into how the respective
symmetry structures arise and how they relate to one another. No fully general relation
has been found yet, but much progress has been made on both global and linearised local
symmetries, e.g. [99–103], and more recently on asymptotic symmetries [13, 73–76, 80].

The difficulty arises from the nature of the double copy formulations. The Kerr-
Schild double copy [5] relies on a particular coordinate system (gauge-fixed frame) in the
gravitational theory and a gauge-fixed Yang-Mills field for the single copy, leaving no room
for symmetry transformations. In contrast, the Weyl double copy map [7] still relies on
having a map between coordinates in gravity and those in gauge theory, but the Maxwell
field strength is gauge invariant in nature. The leading-order asymptotic Weyl double copy
is completely insensitive to symmetry transformations. This can be easily checked for the
simplified case of axial symmetry and real scalar considered in (3.23).

Despite these challenges, some progress has been made on improper or asymptotic
transformations. In [73], it was shown that (proper and improper) supertranslations on the
Taub-NUT background correspond to (proper and improper/large) gauge transformations
of the Dirac monopole field. This relation, which has been explored also in [13, 74], relied
heavily on the time-independence of the background. Recently, a more general relation has
been given in the context of the self-dual sectors of the respective theories in a light-cone
formulation [76]. Within the self-dual sector, all fields within both the gravitational and
Yang-Mills theory can be described in terms of scalars, and this formulation helps in relating
the symmetries; in fact, it is known to help make the double copy fully manifest at the level
of the equations of motion or the Lagrangian [77]. It is not clear how similar ideas can be
used more generally.

In this section, we study this problem by focusing on the particular example of the
C-metric and its single copy, the associated Liénard-Wiechert solution. In [82], it was argued
that there is a superrotation embedded in the C-metric. From a double copy perspective, this
result indicates that there ought to be an analogous large gauge transformation embedded in
the Liénard-Wiechert potential. Indeed, we find that the superrotation on the gravitational
side maps to a large residual gauge transformation at leading order.

4.1 The C-metric as a superrotation

First, we review the results of [82], where it is argued that superrotations are to be viewed
as a “memory effect” related to the appearance/disappearance of cosmic strings piercing
null infinity. The C-metric, as an exact solution, provides a non-linear realisation for such a
process; see figure 1.

Consider the Bondi news of the C-metric9

Nθθ ≡ ∂uCθθ = − 1
4 sin2 θ

(
4 + 2κ2G(x)G′′(x)− κ2G′(x)2

)
, (4.1)

9In [82], the solution chosen was the charged C-metric, since it admits a thermodynamic interpretation:
a relation between A and q can be imposed such that the event and acceleration horizons have equal surface
gravities, hence equal temperatures. This is not needed for our purposes. In fact, we will set q = 0 since the
Weyl double copy is only known to apply in vacuum; see related comments just above section 3.1.1. On
the other hand, the single copy gauge field to be considered later, which lives in flat spacetime, coincides
precisely with the gauge field of the charged C-metric after taking m→ 0.
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Cosmic string

Minkowski

news related by

superrotation

C-metric

news related by

superrotation

Figure 1. A portion of the Penrose diagram for the snapping cosmic string considered in [82] is
shown on the left. The green area represents the infinite cosmic string metric, which is glued to
a Minkowski patch (in blue) along u = 0. The trajectory of the endpoints is represented by the
thick line. On the right is the corresponding picture for the (linearised) C-metric. In this case,
we have radiation approaching I +. Note that the true Penrose diagram for the C-metric is more
involved [104].

where κ parametrises the deficit angle. Note that in appendix B, we have normalised κ
to one. The expression above can be derived by making the κ dependence explicit in the
metric (B.1), i.e. multiplying the dφ2 term by κ2, and using equations (B.10) and (B.11),
as well as the expression for Cθθ in (B.18).

We are interested in the limits u→ ±∞. Recall that x is implicitly defined in (B.10) in
terms of the Bondi u and θ coordinates, and so using Hong-Teo’s parametrisation for G(x),
in equation (B.4), these limits correspond simply to x = ±1. The asymptotic structure
of (B.10) gives

x→ 1− sin2 θ

2A2κ2 (1 + 2Am)3
1
u2 +O(u−4) as u→∞ , (4.2a)

x→ −1 + sin2 θ

2A2κ2 (1− 2Am)3
1
u2 +O(u−4) as u→ −∞ . (4.2b)

Fixing κ so that the segment between the two black holes is regular gives

κ = 2
|G′(1)| = 1

1 + 2Am . (4.3)

This then implies that

lim
u→−∞

Nθθ = − 8Am
(1 + 2Am)2

1
sin2 θ

, (4.4a)

lim
u→+∞

Nθθ = 0 . (4.4b)

The u→ ±∞ limits of the Bondi news, (4.4b) and (4.4a), are related by a superrotation.
To show this, we start from a Minkowski background, for which Nθθ = 0. Superrotations are

– 19 –



J
H
E
P
1
1
(
2
0
2
1
)
1
2
6

generated by 2-dimensional vector fields Y I that are conformal Killing vectors of the celestial
sphere and independent of u and r.10 We are interested in the subgroup that preserves ∂φ
as a Killing vector of the metric. This restricts the superrotations to a three-parameter
subgroup

Y θ =
(
β + µ ln tan θ2

)
sin θ , Y φ = µφ+ ϑ . (4.5)

Setting ϑ = 0 and β = 0, the effect on the Bondi news of the flat Minkowski metric is

Nθθ → −µ
1

sin2 θ
. (4.6)

A comparison with (4.4a) reveals that the two limits of the Bondi news of the C-metric (4.4)
are related by the superrotation

Y θ = 8Am
(1 + 2Am)2 sin θ ln tan θ2 , Y φ = 8Am

(1 + 2Am)2 φ . (4.7)

4.2 The Liénard-Wiechert potential as a large gauge transformation

Having made the case for the C-metric as a superrotation, it is reasonable to expect that
its single copy, the Liénard-Wiechert potential, has a similar interpretation in terms of a
large gauge transformation.

In order to investigate this, we need to put the Liénard-Wiechert potential on a
background in which Minkowski spacetime is written in Bondi coordinates and in a gauge
in which Ar = 0. We have already done this in section 2.1, with the appropriate expression
given by (2.44). In these coordinates, a large gauge transformation corresponds to

A(0)
θ → A

(0)
θ − ∂θλ(θ) . (4.8)

These gauge transformations are the electromagnetic analogues of the BMS asymptotic
symmetries [105].

As we did in the previous section, we will compare the two limits of the gauge potential

A± := lim
u→±∞

A . (4.9)

Taking this limit in the expression for the gauge potential (2.44) gives

A+ = O(r−3) du+
(
− q

sin θ +O(r−2)
)
dθ , (4.10a)

A− = O(r−3) du+
(

q

sin θ +O(r−2)
)
dθ , (4.10b)

Taking the difference between these gauge potentials we find that

(A+ −A−)
∣∣∣
r0

= − 2q
sin θdθ = dλ(θ) , (4.11)

10In other words, they must generate transformations of the type

z → f(z) , z = eiφ cot θ2 ,

with f(z) a holomorphic function.
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where
λ(θ) = −2q ln tan θ2 . (4.12)

This is indeed a large gauge transformation; compare with (4.8). Note the similarities
between (4.7) and (4.12): it is not just that the solutions can be thought of as large
diffeormorphisms or gauge transformations, but the corresponding parameters are also
related. It would be interesting to find a fully general relation, beyond the example
studied here.

5 Discussion

We have taken steps towards providing an asymptotic understanding of the classical double
copy with the goal of studying the asymptotic symmetries and of making a connection with
recent advances in celestial (i.e. flat-space) holography.

We have shown how the Weyl double copy can be formulated asymptotically, in the
neighbourhood of null infinity, where it applies to a wider class of spacetimes, including
algebraically general ones. The next natural step would be to understand this formulation at
sub-leading orders, i.e. moving from asymptotic infinity into the bulk. This may assist us in
generalising the Weyl double copy beyond algebraically special solutions in an appropriate
expansion.

It would also be interesting to understand how our formulation fits in with the story of
conformally primary metrics on the celestial sphere and their double copy interpretation [80],
where the C-metric still provides a puzzling example.
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A Four-dimensional spinor formalism

Following the conventions of [7], define σa
AȦ

and σ̃a ȦA by

σa = 1√
2 (1l, σi) , σ̃a = 1√

2 (1l,−σi) , (A.1)

where σi are the standard Pauli matrices. (a, b, c, . . . are tangent-frame vector indices.) One
also defines

σabAB = σ
[a
AȦ

σ̃b] ȦC εCB , (A.2)
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where ε12 = +1. Indices are raised and lowered using the epsilon symbols:

ψA = εAB ψB , ψA = ψB εBA , (A.3)

and similarly for dotted indices.
A Maxwell field strength Fab is written in terms of a symmetric bi-spinor ΦAB , defined by

ΦAB = 1
2Fab σ

ab
AB . (A.4)

This has the complex conjugate

Φ̄ȦḂ = 1
2Fab σ̄

ab
ȦḂ

, (A.5)

where the components of σ̄ab
ȦḂ

are just the complex conjugates of the components of σabAB.
Inversely, one has

Fab = ΦAB σ
abAB + Φ̄ȦḂ σ̄

ab ȦḂ . (A.6)

A straightforward result that follows from the definitions is that

ΦAB ΦAB = 1
4(FabFab + i ∗FabFab) . (A.7)

In a similar fashion, one defines from the Weyl tensor Cabcd the Weyl spinor

ΨABCD = 1
4Cabcd σ

ab
AB σ

cd
CD , (A.8)

and its complex conjugate Ψ̄ȦḂĊḊ. These quadri-spinors are totally symmetric, by virtue
of the symmetries of the Weyl tensor. Conversely, one has

Cabcd = σabAB σ
cd
CD ΨABCD + σ̄ab

ȦḂ
σ̄cd
ĊḊ

Ψ̄ȦḂĊḊ . (A.9)

Noting that the symbols σabAB obey the relation

σabAB σ
cdAB = 1

8(ηac ηbd − ηad ηbc + iεabcd) , (A.10)

(and mutatis mutandis for the complex conjugates σ̄ab
ȦḂ

), it follows that

ΨABCD ΨABCD = 1
4(CabcdCabcd + i ∗CabcdCabcd) . (A.11)

Note that the Weyl tensor satisfies the property

∗Cabcd = C∗abcd (A.12)

and hence also ∗C∗abcd = −Cabcd.
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B C-metric in Bondi coordinates

In this appendix, we shall derive the Bondi form of the C-metric. There exists a variety
of papers addressing the radiative properties of the C-metric in the literature. An early
attempt to study the C-metric using the Bondi method was carried out by Bičák [106], who
gave an expression for the Bondi news (see also [107–109]). Other studies of the asymptotic
properties of the C-metric include [104, 110–113]. Here, we provide a systematic procedure
for deriving Bondi coordinates for the C-metric to any desired order in a 1/r expansion.

The most common form of the C-metric is

ds2 = 1
A2(x+ y)2

[
−F (y)dt2 + dy2

F (y) + dx2

G(x) +G(x)dφ2
]
, (B.1)

where
G(x) = 1− x2 − 2mAx3 , F (y) = −G(−y) . (B.2)

Here, 0 < 2Am < 1, y ∈ (−x,∞) and x ∈ (x2, x3), with x2 and x3 the largest two roots
of G(x).

An alternative form of the C-metric, given by Hong and Teo [114], has the same
metric (B.1) but with a different form for the functions F (y) and G(x) with a simplified
root structure:

G(x) = (1− x2)(1 + 2mAx) , F (y) = −G(−y) , (B.3)

where y ∈ (−x,∞) and x ∈ (−1, 1), G(x) > 0. This patch covers both the static and
asymptotic regions, which is given by the limit x→ −y [104].

In addition, the charged C-metric solution is given by same metric (B.1), but now with

G(x) = (1− x2)(1 + r+Ax)(1 + r−Ax) , F (y) = −G(−y) , (B.4)

where r± = m±
√
m2 − q2 and 0 < r−A < r+A < 1. The coordinate ranges are the same

as those of the uncharged Hong-Teo coordinate system.
Given the fact that the form of the metric is the same in both coordinate systems,

one can derive a Bondi form from both coordinate systems in one go; this is what we now
proceed to do. We begin by relabelling x as x̂ and defining coordinates Ω and w by

Ω = 1
A(x̂+ y) , w = t+

∫
dy/F (y) . (B.5)

The metric now takes the form

ds2 = Ω2
[
−F (y)dw2 − 2

AΩ2dwdΩ− 2dwdx̂+ dx̂2

G(x̂) +G(x̂)dφ2
]
, (B.6)

with the understanding that y is given in terms of x̂ and Ω by

y = −x̂+ 1
AΩ . (B.7)
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Now, replacing x̂ by α, with

dx̂

G(x̂) = dw − dα

sinα (B.8)

gives

ds2 = −Ω2 [F (y) +G(x̂)] dw2 − 2dw dΩ
A

+ Ω2G(x̂)
sin2 α

(dα2 + sin2 αdφ2) . (B.9)

To summarise, we have transformed the C-metric into coordinates given by (w,Ω, α, φ)
with an auxiliary coordinate x̂ given implicitly in terms of the other coordinates via
equation (B.8).

We can now proceed perturbatively, order by order in an inverse distance expansion, to
put the metric into the Bondi form with coordinates (u, r, θ, φ). However, before we do this,
it will prove useful to define a new auxiliary coordinate x implicitly in terms of the new
coordinates u and θ by

u = Gj[x] sin θ
A

, (B.10)

where
Gj(x) ≡

∫ x dx′

G(x′)3/2 . (B.11)

The coordinate transformation will define the old coordinates in terms of the new coordinates,
i.e. we have

w = w(u, r, θ), Ω = Ω(u, r, θ), α = α(u, r, θ) (B.12)

as well as a relation between the old auxiliary coordinate x̂ and the new coordinates

x̂ = x+ T (r, x, θ) . (B.13)

Writing these relations in terms of 1/r expansions

Ω = ḡ1(x, θ) r + g0(x, θ) + g1(x, θ)
r

+ g2(x, θ)
r2 + · · · ,

α = θ + h̄1(x, θ)
r

+ h0(x, θ)
r2 + h1(x, θ)

r3 + · · ·

w = f̄1(x, θ) + f0(x, θ)
r

+ f1(x, θ)
r2 + f2(x, θ)

r3 + · · ·

T = k0(x, θ)
r

+ k2(x, θ)
r2 + k3(x, θ)

r3 + · · · , (B.14)

we proceed in a systematic manner, requiring that the metric expressed in terms of the new
coordinates (u, r, θ, φ) have the Bondi form (2.18) and satisfying the fall-offs (2.19) as well
as the gauge condition (2.20). Note that in addition, we have the constraint that the old
auxiliary coordinate x̂ must satisfy equation (B.8).

We have chosen to define x so that it is equal to x̂ up to a perturbative correction
T = O(1/r), as can be seen from eqs. (B.13) and (B.14). This means that G(x̂) and G(y)
can simply be written in terms of x using a Taylor expansion. In particular,

G(x̂) = G(x) + TG′(x) + 1
2T

2G′′(x) + 1
6T

3G(3)(x) + 1
24T

4G(4)(x), (B.15)
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where primes denote derivatives with respect to x, and we have used the fact that G is a
quartic polynomial in its argument.

We now proceed order by order in inverse powers of r, by plugging the expansions (B.14)
into the metric (B.9) and the constraint (B.8). First, we solve equation (B.8) at order r0,
obtaining first-order differential equations for f̄1(x, θ) whose solution is

f̄1(x, θ) = Gi(x) + log tan 1
2θ , Gi(x) ≡

∫ x dx′

G(x′) . (B.16)

From this point on, all the expansion coefficients can be solved purely algebraically, according
to the following scheme:

(a) Solve equation (2.20) at order r0 for ḡ1(x, θ).

(b) Solve grθ = 0 at order r0 for h̄1(x, θ).

(c) Solve grr = 0 at order r−2 for f0(x, θ).

(d) Solve the dr component of equation (B.8) at order r−2 for k0(x, θ). (Note that
the differential equations for k0(x, θ) that arise in the dx and dθ components of
equation (B.8) at the preceding order r−1 are now automatically satisfied.)

One then proceeds by iterating steps (a)–(d) at the next order, solving algebraically for
g0(x, θ), h0(x, θ), f1(x, θ), and k1(x, θ), and so on ad infinitum. The results for the first few
expansion coefficients are:

f̄1 = Gi+ log tan 1
2θ , ḡ1 = sin θ√

G
, h̄1 =

√
GGj cos θ − 1

A
√
G

,

f0 = − [
√
GGj cos θ − 1]2

2A
√
G sin θ

, k0 =
√
G [1−GGj2 cos2 θ]

2A sin θ ,

g0 = [2 +
√
GG′Gj cos2 θ]Gj
4A
√
G(x)

,

h0 = [1−
√
GGj cos θ][2 cos θ +

√
GG′Gj cos θ + 2

√
GGj sin2 θ]

4A2G sin θ ,

f1 = [1−
√
GGj cos θ]2 [4

√
GGj −G′ + 2

√
GG′Gj cos θ +GG′Gj2 cos2 θ]

16A2G sin2 θ
,

k1 = [GGj2 cos2 θ − 1][4
√
GGj −G′ + 3GG′Gj2 cos2 θ]

16A2 sin2 θ
,

g1 = [2
√
GGj +G′]2 − 2[GGj2 cos2 θ − 1]2GG′′

32A2G3/2 sin θ
, (B.17)

where the arguments of G, G′, G′′, Gj and Gi are all x, defined implicitly in terms of u and θ
by equation (B.10). We have obtained explicit results also for (h1, f2, k2, g2, h2, f3, k3, g3, h3).
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The first few terms in the expansions (2.19) are given by

Cθ0 = [2G′+
√
GG′2Gj−2G3/2G′′Gj] cosθ

8A
√
G sin2 θ

, Cφ0 = 0 ,

Cθ1 = G′2 cosθ
16A2G sin3 θ

+Gj [9G′2−6G′ (2+3GG′′)+8G2G′′′] cosθ
96A2

√
G sin3 θ

+Gj2 (3G′2−6GG′′−8) cosθ
16A2 sin3 θ

+Gj3G5/2G′′′ cos3 θ

12A2 sin3 θ
.

Cφ1 = 0 ,

Cθθ =−2
√
GGj+G′

2A
√
G sinθ

, Cθφ = 0 , Cφφ = 2
√
GGj+G′

2A
√
G

sinθ , (B.18)

D
(1)
θθ =−Gj

4G5/2G′′′ cos4 θ

48A3 sin3 θ
− Gj3

8A3 sin3 θ
+Gj2 (2G2G′′′ cos2 θ−9G′)

48A3
√
G sin3 θ

− 3GjG′2

32A3G sin3 θ
− 3G′3 +4G2G′′′

192A3G3/2 sin3 θ
,

D
(1)
φφ =−D(1)

θθ sin2 θ , D
(1)
θφ = 0 ,

F0 = 12G3G′′′Gj2 cos2 θ+6
√
G [4−G′2 +2GG′′]Gj+6G′ (2+GG′′)−3G′3−4G2G′′′

48A
√
G sin3 θ

.

B.1 Small mass expansion

It is hard to gain much insight from these expressions as they stand, since x is defined
implicitly in terms of u and θ by equation (B.10). One thing we can do is to consider an
expansion in powers of the mass parameter m (or, to be precise, in powers of the small
dimensionless quantity mA). Expanding the integrand G−3/2 in equation (B.11) in powers
of m and then integrating term by term, we then have

Gj(x) = x√
1− x2

+ mA (3x2 − 2)
(1− x2)3/2 +O(m2) . (B.19)

Conversely, we can then express x perturbatively in m, in terms of u and θ, finding

x = uA√
u2A2 + sin2 θ

+ mA(u2A2 − 2 sin2 θ)
u2A2 + sin2 θ

+O(m2) . (B.20)

It is now straightforward to expand the expressions in (B.18) for CI0 , CIJ and F0 in powers
of m. In particular, we find

Cθ0 = − m sin θ cos θ
(u2A2 + sin2 θ)3/2 +O(m2) . (B.21)

The expansion coefficient F0, which is related to the Bondi mass aspect, is given by

F0 = m [(3u2A2 + 1) sin2 θ − 2u2A2]
(u2A2 + sin2 θ)5/2 +O(m2) . (B.22)

We also have

Cθθ = 2m(2u2A2 + sin2 θ)√
u2A2 + sin2 θ sin2 θ

+O(m2) , Cφφ = −Cθθ sin2 θ . (B.23)
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C Taub-NUT solution and the dyon solution

The Taub-NUT metric was written as an expansion in Bondi coordinates in [115]. Intro-
ducing a complex null tetrad (`, n,m, m̄) for the Bondi metric (2.18) in the form given
in (2.23), and calculating the Weyl scalars in this frame at the leading couple of orders in
the 1/r expansion we find

Ψ0 = −
12`2 (`− im) tan2 θ

2
r5 +

60i `3 (`− im) tan2 θ
2

r6 + · · ·

Ψ1 =
3(1 + i)` (`− im) tan θ

2
r4 +

12(1− i)`2 (`− im) tan θ
2

r5 + · · ·

Ψ2 = − i (`− im)
r3 − 3` (`− im)

r4 + · · · Ψ3 = −
3(1− i) ` (`− im) tan θ

2
2r4 + · · ·

Ψ4 = −
3`2 (`− im) tan2 θ

2
r5 + · · · . (C.1)

In the original Taub-NUT metric

ds2 = −h(r̄) (dt̄− 4` sin2 θ̄
2 dφ̄)2 + h(r̄)−1 dr̄2 + (r̄2 + `2) (dθ̄2 + sin2 θ̄ dφ̄2) (C.2)

with11

h(r̄) = r2 − 2mr − `2

r̄2 + `2
, (C.3)

the single copy field strength F = dA with

A = −P (2`)−1 (r̄2 − `2) +Qr̄

r̄2 + `2
(dt̄− 4` sin2 θ̄

2 dφ̄) (C.4)

satisfies the Maxwell equations ∇µFµν = 0 and describes a configuration with electric
charge Q and magnetic charge P .12 Re-expressing the potential in the Bondi coordinate
system by employing the expansions given in [115],

t̄ = u+ r + 2m log r +
`2 (4 + 3 cos θ) sec4 θ

2 − 8m2 − 11`2

2r + · · · ,

φ̄ = φ+
` sec2 θ

2
r

+ · · · ,

r̄ = r +
`2 (3 cos θ + 5) sin2 θ

2 sec4 θ
2

4r + · · · ,

θ̄ = θ −
`2 sin θ

2 sec3 θ
2

r2 + · · · , (C.5)

we find, after making a gauge transformation that sets the r-component of Aµ to zero,13

A = A(0) + A(1)

r
+ A(2)

r2 + · · · , (C.6)

11The tetrad vectors ` and m should not be confused with the NUT parameter ` and the mass m. It
should be clear from context which is intended.

12In fact if the metric function h(r̄) in (C.2) is modified to h = (r̄2 − 2mr̄− `2 + P 2 +Q2)(r̄2 + `2)−1, the
metric and electromagnetic field also satisfy the coupled Einstein-Maxwell equations.

13We have calculated the components of the gauge field to higher order than the terms presented here.
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with

A(0) = 2P sin2 θ
2 dφ ,

A(1) = −Qdu+ 4`Q sin2 θ
2 dφ− 2` P tan θ

2 dθ ,

A(2) = ` P du− 2`2 P (2 + cos θ) tan2 θ
2 dφ− `

2Q (1 + 2 cos θ) sec2 θ
2 tan θ

2 dθ . (C.7)

The Maxwell scalars turn out to be given by

Φ0 =
(1 + i)`(P + iQ) tan θ

2
r3 +

3(1− i)`2 (P + iQ) tan θ
2

r4 +O(r−5) ,

Φ1 = − i (P + iQ)
2r2 − ` (P + iQ)

r3 +O(r−4)

Φ2 = −
(1− i) ` (P + iQ) tan θ

2
2r3 +O(r−4) . (C.8)

We can see from the results for the Weyl scalars in (C.1) and the Maxwell scalars
in (C.8) that a relation of the form seen in (2.17) holds here also. If we define

R0 = Φ2
0

Ψ0
, R1 = Φ0 Φ1

Ψ1
, R2 = Φ0 Φ2 + 2Φ2

1
3Ψ2

, R3 = Φ1 Φ2
Ψ3

, R4 = Φ2
2

Ψ4
, (C.9)

then to leading order in 1/r these are all the same:

Ra = S

3c = (P + iQ)2

6(m+ i`)r +O(r−2) , for all a . (C.10)

From

ΦAB ΦAB = 1
4(F ab Fab + i ∗F ab Fab) = (P + iQ)2

2r4 − 2i ` (P + iQ)2

r5 + · · · , (C.11)

the Weyl double copy gives the scalar

S = (P + iQ)2

2 ψ , ψ = 1
r
− i `

r2 + · · · , (C.12)

which obeys �ψ = 0 in the flat background. Comparing this expression with (C.10), we
find agreement with

c = m+ i`. (C.13)

It is interesting to note that in the expressions for Ψ0, Ψ1, Ψ2, Φ0 and Φ1, the first
subleading order terms, along with the leading order terms, can be nicely combined by
writing r = r̃ − i ` and then expanding in inverse powers of r̃. For example, the expansion
for Ψ0 in (C.1) becomes

Ψ0 = −
12`2 (`− im) tan2 θ

2
r̃5 +O(r̃−7) , (C.14)

with analogous results in the other cases.
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D Rotating STU supergravity black holes

In this appendix, we derive the Petrov type of the rotating STU black holes considered in
section 3.1, as well as constructing the Bondi coordinates for the general solution.

D.1 Petrov type of solution

The Kerr-Newman black hole is type D, which means that when s1 = s2 (corresponding to
Kerr-Newman) the solution becomes Petrov type D. However, in general the rotating STU
black holes are algebraically general (Petrov type I) as we show in this section.

We use a null tetrad (`, n,m, m̄) given by the vectors14

` = r1r2 + a2

∆ ∂t + ∂r + a

∆ ∂φ , n = ∆
2W

[(
r1r2 + a2)

∆ ∂t − ∂r + a

∆ ∂φ

]
,

m = i√
2W

[
a sin θ ∂t − i∂θ + 1

sin θ ∂φ
]
, (D.1)

with m̄ being the complex conjugate of m. The Weyl scalars then turn out to be given by

Ψ0 = 0 , Ψ4 = 0 ,

Ψ1 = iaM2 (s2
1 − s2

2
)2 sin θ

√
2W

5
2

, Ψ3 = − iaM
2 (s2

1 − s2
2)2 ∆ sin θ

2
√

2W
7
2

, (D.2)

and

Ψ2 = −
M [r + iau+ (s2

1 + s2
2) (r + iau−M)]

(
[r + iau+M(s2

1 + s2
2)]2 −M2(s2

1 − s2
2)2
)

W 3

+
2M2(s2

1 − s2
2)2
(
2∆− 3ia(M − r)u− a2(1 + 2u2)

)
3W 3 , (D.3)

where u = cos θ.
As is clear from the expressions above, when s1 = s2 all Weyl scalars vanish except for

Ψ2, which means that the Petrov type is D. However, in the general case s1 6= s2, the Weyl
scalars Ψ1 and Ψ3 do not vanish and so the solution is then not of type D. However this, of
itself, does not necessarily mean that the solution is algebraically general when s1 6= s2,
since we have not yet ruled out the existence of another principal null direction (PND) that
is repeated, which would mean that the solution would be algebraically special (type II).

In order to show that the solution is actually algebraically general, we can look at the
null frame invariant

I3 − 27J2 , (D.4)

where the quadratic invariant I and cubic invariant J are given in general by

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2 , J =

∣∣∣∣∣∣∣
Ψ4 Ψ3 Ψ2
Ψ3 Ψ2 Ψ1
Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣∣ . (D.5)

14Note that here we are using a null tetrad adapted to the principal null directions of the metric, in which
in particular Ψ0 = Ψ4 = 0. This is not the same as the null tetrad in the Bondi frame that we are using in
the bulk of the paper.
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Given an arbitrary null frame, there are then the possibilities [116]

I3 − 27J2

= 0 =⇒ algebraically special
6= 0 =⇒ algebraically general

.

In our case, where Ψ0 = Ψ4 = 0, we have

I3 − 27J2 = 4Ψ2
1 Ψ2

3 (9Ψ2
2 − 16Ψ1 Ψ3) . (D.6)

Substituting the expressions in (D.2) and (D.3) gives

I3 − 27J2 = a4M10 (s2
1 − s2

2)8X , (D.7)

where X is a rather complicated expression whose precise form is unimportant to the
discussion, and which can be easily obtained from (D.2) and (D.3). Thus, the solutions are
algebraically general when s1 6= s2. In the Kerr-Newman case s1 = s2, the invariant does
vanish, as expected.

It can be seen from (D.2) and (D.3) that at leading order in 1/r at large distances,

Ψ1 ∼
1
r5 , Ψ2 ∼

1
r3 , Ψ3 ∼

1
r5 . (D.8)

In a generic smooth asymptotically-flat metric the Weyl scalar Ψs would fall off according
to the peeling theorem as Ψs ∼ rs−5. Thus in the rotating STU black holes Ψ1 falls of
faster than the leading-order peeling by one inverse power of r, and Ψ3 falls off faster than
peeling by three inverse powers of r. Ψ2, on the other hand, falls off at precisely the r−3

rate of leading-order peeling. It follows, therefore, that the metrics are approaching Petrov
type D asymptotically at large r.

D.2 Bondi coordinates

Here, we cast the metric (3.3) into the Bondi form defined by the metric (2.18) with
fall-offs (2.19) and determinant condition (2.20). We follow the procedure employed in [115]
for the Kerr black hole, where the metric is first expressed in terms of an asymptotically
spherical coordinate system (rather than the usual asymptotically spheroidal system of
Boyer-Lindquist coordinates) by means of the coordinate transformation

r̃2 sin2 θ̃ = (r̄2 + a2) sin2 θ̄ , r̃2 cos2 θ̃ = r̄2 cos2 θ̄ , (D.9)

and then further transformations are made, order by order in an expansion in inverse powers
of r, to put the resulting metric into the form of eq. (2.18). To the first few orders, we find
that the required coordinate transformations are given by

t̄ = u+ r + 2MB log r − M2 [8 + 12(s2
1 + s2

2) + 3(s4
1 + s4

2) + 18s2
1 s

2
2]

2r + · · ·

φ̄ = φ− aMB

r2 + 2aM2 [2 + 3(s2
1 + s2

2) + s4
1 + s4

2 + 4s2
1 s

2
2]

3r3 + · · ·

r̃ = r −M(s2
1 + s2

2) + M2 (s2
1 − s2

2)2

2r − Ma2 sin2 θ

2r2 + · · · ,

θ̃ = θ + Ma2 (s2
1 + s2

2) sin 2θ
2r3 + a2M2 (7s2

1 + 7s2
2 + 22s2

1 s
2
2) sin 2θ

12r4 + · · · , (D.10)
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where we have defined the Bondi mass

MB = M (1 + s2
1 + s2

2) (D.11)

of the black hole. We refer the reader to [115] for more details of the nature of the required
expansions, which were obtained there in the case of the Kerr black hole.

The components gµν of the resulting Bondi metric for the rotating black holes at the
first few orders turn out to be

guu = −1 + 2MB

r
− 2M2 (s2

1 c
2
1 + s2

2 c
2
2)

r2 + MB [2M2 (s2
1 − s2

2)2 − a2 − 3a2 cos 2θ]
2r3 + · · · ,

gur = −1 + M2 (s2
1 − s2

2)2

2r2 + · · ·

guθ = 3a2MB sin 2θ
2r2 + a2M2 [18(s2

1 + s2
2) + 23(s4

1 + s4
2)− 10s2

1 s
2
2] sin 2θ

12r3 + · · · ,

guφ = −2aMB sin2 θ

r
+ 2aM2 (s2

1 c
2
1 + s2

2 c
2
2) sin2 θ

r2 + · · · ,

gθθ = r2 − a2MB sin2 θ

r
+ a2M2 [6(s2

1 + s2
2) + 5(s4

1 + s4
2) + 2s2

1 s
2
2] sin2 θ

6r2 + · · · ,

gθφ = −5a3MB cos θ sin3 θ

2r2 + 12a3M2 (s2
1 c

2
1 + s2

2 c
2
2) cos θ sin3 θ

5r3 + · · · ,

gφφ = r2 sin2 θ + a2MB sin4 θ

r
+ a2M2 [6(s2

1 + s2
2) + 5(s4

1 + s4
2) + 2s2

1 s
2
2]

6r2 + · · · , (D.12)

along with grr, grθ and grφ vanishing. (We are only presenting a few leading order terms
here; we have actually calculated the metric components to order 1/r10.)

We find that the first few coefficients in the expansions (2.19) are given by

F0 = −2MB , F1 = 1
2M

2(4s2
1 + 4s2

2 + 5s4
1 + 5s4

2 − 2s2
1s

2
2) ,

β0 = −1
4M

2(s2
1 − s2

2)2 , β1 = 0 ,

Cθ0 = 0 , Cφ0 = 0 , Cθ1 = 0 , Cφ1 = 2aMB ,

Cθ2 = −3a2MB sin θ cos θ , Cφ2 = −2aM2 (s2
1 c

2
1 + s2

2 c
2
2) ,

CIJ = 0 , D
(1)
θθ = −a2MB sin2 θ , D

(1)
φφ = −D(1)

θθ sin2 θ , D
(1)
θφ = 0 ,

D
(2)
θθ = 1

6a
2M2 [5s2

1 c
2
1 + 5s2

2 c
2
2 + (s2

1 + s2
2)2] sin2 θ , D

(2)
φφ = −D(2)

θθ sin2 θ ,

D
(2)
θφ = −5

2a
3MB sin2 θ . (D.13)

E Not quite Weyl double copy for Kerr-Newman

The Weyl double copy [7] has been formulated for vacuum spacetimes only, but analogous
relations — which do not necessarily have a double copy interpretation — for non-vacuum
solutions have been considered, including for the Reissner-Nordström solution of the Einstein-
Maxwell equations [117]. Given that the rotating STU supergravity black holes we are
considering here are non-vacuum, and that for certain choices of parameters they simplify
to (same-charge) dyonic Kerr-Newman black holes, we consider, in this appendix, what
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happens if we try to apply the Weyl double copy for the Kerr-Newman solution to the
Einstein-Maxwell theory.

The Kerr-Newman solution is given by the metric

ds2 = −∆
Σ (dt− a sin2 θ dφ)2 + Σ

(
dr2

∆ + dθ2
)

+ sin2 θ

Σ [a dt− (r2 + a2)dφ]2 , (E.1)

(E.2)

with
∆ = r2 − 2Mr + a2 +M2(q2 + p2), Σ = r2 + a2 cos2 θ. (E.3)

Note that we have rescaled the electric and magnetic charges with a factor of the mass

Q = Mq, P = Mp, (E.4)

so that setting M = 0 corresponds to Minkowski spacetime (in a spheroidal coordinate
system). The corresponding gauge potential is

A = −qMr(dt− a sin2 θ dφ) + pM [a dt− (r2 + a2)dφ] cos θ
Σ . (E.5)

The single copy is of the same form as the gauge potential of the solution:

A = −Q̃r(dt− a sin2 θ dφ) + P̃ [a dt− (r2 + a2)dφ] cos θ
Σ , (E.6)

and it solves the Maxwell equation on both the Kerr-Newman and the Minkowski back-
grounds, because it does not depend on M .

In a null frame adapted to the principal null directions, given by

` =
(
r2 + a2

∆

)
∂

∂t
+ ∂

∂r
+ a

∆
∂

∂φ
, n = 1

2Σ

(
(r2 + a2) ∂

∂t
−∆ ∂

∂r
+ a

∂

∂φ

)
m = i√

2(r + ia cos θ)

(
a sin θ ∂

∂t
− i ∂

∂θ
+ 1

sin θ
∂

∂φ

)
, (E.7)

the only non-zero Maxwell scalar is

Φ1 = Q̃− iP̃
2(r − ia cos θ)2 , (E.8)

while the only non-zero Weyl scalar is

Ψ2 = −M
[
r + ia cos θ −M

(
q2 + p2)]

(r − ia cos θ)3(r + ia cos θ) . (E.9)

Hence, as is well-known, this solution is of type D. Choosing

c = −6Mi (Q̃− iP̃ )−3/2 , (E.10)
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the equation (2.17) yields

S =
3i
√
Q̃− iP̃ (r + ia cos θ)

[r + ia cos θ −M (q2 + p2)] (r − ia cos θ) . (E.11)

Naively, there appears to be no obstacle to thinking of this as a double copy interpre-
tation of the Kerr-Newman solution — or, at least, of the metric part, since the gauge
field (E.5) would need to be similarly interpreted. However, we need to also consider
whether the single copy S satisfies the wave equation on Minkowski spacetime. It is here
that the subtlety appears. Recall equation (2.3), which follows from the vacuum type D
Weyl double copy: S does not depend on the curvature-generating parameters but the box
operator does, which gives rise to the non-trivial right-hand side. When considering the flat
spacetime box operator, �→ �0, then S satisfies the flat spacetime wave equation, as the
zeroth copy should. In the Kerr-Newman example (E.11), however, the M dependence of
S means that �0S 6= 0, so we would need to consider also S → S0, which does not follow
the expectation of a double copy, since the zeroth copy (like the single copy) should live
in flat spacetime. This breakdown is unsurprising. On the one hand, the Weyl double
copy has so far only been presented for vacuum solutions. On the other hand, it is not
known whether ‘pure’ Einstein-Maxwell theory (as opposed to the theory with also a dilaton
and an axion/B-field) admits a double copy construction. Asymptotically, however, the
dependence of the Kerr-Newman metric on the electric and magnetic charges is sub-leading,
so we still expect a leading-order asymptotic double copy to exist. The difficulty arises in
sub-leading orders in the expansion away from null infinity. This example shows also that
being algebraically special is not enough for a full double copy interpretation.

Notice that the Kerr-Newman black hole has a perturbative interpretation in terms
of scattering amplitudes in Einstein-Maxwell theory [118, 119]. Whether or not the black
hole can be understood as a double copy follows directly from whether or not the relevant
Einstein-Maxwell scattering amplitudes can be understood as a double copy, which is an
open question.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between
Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].

[2] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and
Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

[3] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,
Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[4] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy
of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

– 33 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1909.01358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.01358
https://doi.org/10.1016/0550-3213(86)90362-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB269%2C1%22
https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.3993
https://doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.0476


J
H
E
P
1
1
(
2
0
2
1
)
1
2
6

[5] R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12
(2014) 056 [arXiv:1410.0239] [INSPIRE].

[6] A. Luna, R. Monteiro, D. O’Connell and C.D. White, The classical double copy for
Taub-NUT spacetime, Phys. Lett. B 750 (2015) 272 [arXiv:1507.01869] [INSPIRE].

[7] A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D Spacetimes and the Weyl
Double Copy, Class. Quant. Grav. 36 (2019) 065003 [arXiv:1810.08183] [INSPIRE].

[8] H. Godazgar, M. Godazgar, R. Monteiro, D. Peinador Veiga and C.N. Pope, Weyl Double
Copy for Gravitational Waves, Phys. Rev. Lett. 126 (2021) 101103 [arXiv:2010.02925]
[INSPIRE].

[9] A. Luna, R. Monteiro, I. Nicholson, D. O’Connell and C.D. White, The double copy:
Bremsstrahlung and accelerating black holes, JHEP 06 (2016) 023 [arXiv:1603.05737]
[INSPIRE].

[10] W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color
charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].

[11] A. Luna et al., Perturbative spacetimes from Yang-Mills theory, JHEP 04 (2017) 069
[arXiv:1611.07508] [INSPIRE].

[12] N. Arkani-Hamed, Y.-t. Huang and D. O’Connell, Kerr black holes as elementary particles,
JHEP 01 (2020) 046 [arXiv:1906.10100] [INSPIRE].

[13] Y.-T. Huang, U. Kol and D. O’Connell, Double copy of electric-magnetic duality, Phys. Rev.
D 102 (2020) 046005 [arXiv:1911.06318] [INSPIRE].

[14] K. Kim, K. Lee, R. Monteiro, I. Nicholson and D. Peinador Veiga, The Classical Double Copy
of a Point Charge, JHEP 02 (2020) 046 [arXiv:1912.02177] [INSPIRE].

[15] A. Luna, S. Nagy and C. White, The convolutional double copy: a case study with a point,
JHEP 09 (2020) 062 [arXiv:2004.11254] [INSPIRE].

[16] A. Cristofoli, Gravitational shock waves and scattering amplitudes, JHEP 11 (2020) 160
[arXiv:2006.08283] [INSPIRE].

[17] R. Monteiro, D. O’Connell, D. Peinador Veiga and M. Sergola, Classical solutions and their
double copy in split signature, JHEP 05 (2021) 268 [arXiv:2012.11190] [INSPIRE].

[18] A. Guevara, B. Maybee, A. Ochirov, D. O’connell and J. Vines, A worldsheet for Kerr, JHEP
03 (2021) 201 [arXiv:2012.11570] [INSPIRE].

[19] D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables, and Classical
Scattering, JHEP 02 (2019) 137 [arXiv:1811.10950] [INSPIRE].

[20] C.D. White, Twistorial Foundation for the Classical Double Copy, Phys. Rev. Lett. 126
(2021) 061602 [arXiv:2012.02479] [INSPIRE].

[21] E. Chacón, S. Nagy and C.D. White, The Weyl double copy from twistor space, JHEP 05
(2021) 2239 [arXiv:2103.16441] [INSPIRE].

[22] J.F. Plebanski and M. Demianski, Rotating, charged, and uniformly accelerating mass in
general relativity, Annals Phys. 98 (1976) 98 [INSPIRE].

[23] A.K. Ridgway and M.B. Wise, Static Spherically Symmetric Kerr-Schild Metrics and
Implications for the Classical Double Copy, Phys. Rev. D 94 (2016) 044023
[arXiv:1512.02243] [INSPIRE].

– 34 –

https://doi.org/10.1007/JHEP12(2014)056
https://doi.org/10.1007/JHEP12(2014)056
https://arxiv.org/abs/1410.0239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.0239
https://doi.org/10.1016/j.physletb.2015.09.021
https://arxiv.org/abs/1507.01869
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.01869
https://doi.org/10.1088/1361-6382/ab03e6
https://arxiv.org/abs/1810.08183
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.08183
https://doi.org/10.1103/PhysRevLett.126.101103
https://arxiv.org/abs/2010.02925
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.02925
https://doi.org/10.1007/JHEP06(2016)023
https://arxiv.org/abs/1603.05737
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.05737
https://doi.org/10.1103/PhysRevD.95.125010
https://arxiv.org/abs/1611.03493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.03493
https://doi.org/10.1007/JHEP04(2017)069
https://arxiv.org/abs/1611.07508
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.07508
https://doi.org/10.1007/JHEP01(2020)046
https://arxiv.org/abs/1906.10100
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.10100
https://doi.org/10.1103/PhysRevD.102.046005
https://doi.org/10.1103/PhysRevD.102.046005
https://arxiv.org/abs/1911.06318
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.06318
https://doi.org/10.1007/JHEP02(2020)046
https://arxiv.org/abs/1912.02177
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02177
https://doi.org/10.1007/JHEP09(2020)062
https://arxiv.org/abs/2004.11254
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.11254
https://doi.org/10.1007/JHEP11(2020)160
https://arxiv.org/abs/2006.08283
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.08283
https://doi.org/10.1007/JHEP05(2021)268
https://arxiv.org/abs/2012.11190
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.11190
https://doi.org/10.1007/JHEP03(2021)201
https://doi.org/10.1007/JHEP03(2021)201
https://arxiv.org/abs/2012.11570
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.11570
https://doi.org/10.1007/JHEP02(2019)137
https://arxiv.org/abs/1811.10950
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10950
https://doi.org/10.1103/PhysRevLett.126.061602
https://doi.org/10.1103/PhysRevLett.126.061602
https://arxiv.org/abs/2012.02479
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.02479
https://doi.org/10.1007/JHEP05(2021)239
https://doi.org/10.1007/JHEP05(2021)239
https://arxiv.org/abs/2103.16441
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.16441
https://doi.org/10.1016/0003-4916(76)90240-2
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C98%2C98%22
https://doi.org/10.1103/PhysRevD.94.044023
https://arxiv.org/abs/1512.02243
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.02243


J
H
E
P
1
1
(
2
0
2
1
)
1
2
6

[24] C.D. White, Exact solutions for the biadjoint scalar field, Phys. Lett. B 763 (2016) 365
[arXiv:1606.04724] [INSPIRE].

[25] W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation
from the bi-adjoint scalar double copy, Phys. Rev. D 96 (2017) 065009 [arXiv:1705.09263]
[INSPIRE].

[26] T. Adamo, E. Casali, L. Mason and S. Nekovar, Scattering on plane waves and the double
copy, Class. Quant. Grav. 35 (2018) 015004 [arXiv:1706.08925] [INSPIRE].

[27] P.-J. De Smet and C.D. White, Extended solutions for the biadjoint scalar field, Phys. Lett. B
775 (2017) 163 [arXiv:1708.01103] [INSPIRE].

[28] W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev.
D 97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].

[29] M. Carrillo-González, R. Penco and M. Trodden, The classical double copy in maximally
symmetric spacetimes, JHEP 04 (2018) 028 [arXiv:1711.01296] [INSPIRE].

[30] N. Bahjat-Abbas, A. Luna and C.D. White, The Kerr-Schild double copy in curved spacetime,
JHEP 12 (2017) 004 [arXiv:1710.01953] [INSPIRE].

[31] A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic Black Hole Scattering from
Charged Scalar Amplitudes, JHEP 03 (2018) 044 [arXiv:1711.03901] [INSPIRE].

[32] C.-H. Shen, Gravitational Radiation from Color-Kinematics Duality, JHEP 11 (2018) 162
[arXiv:1806.07388] [INSPIRE].

[33] A. Ilderton, Screw-symmetric gravitational waves: a double copy of the vortex, Phys. Lett. B
782 (2018) 22 [arXiv:1804.07290] [INSPIRE].

[34] D.S. Berman, E. Chacón, A. Luna and C.D. White, The self-dual classical double copy, and
the Eguchi-Hanson instanton, JHEP 01 (2019) 107 [arXiv:1809.04063] [INSPIRE].

[35] N. Bahjat-Abbas, R. Stark-Muchão and C.D. White, Biadjoint wires, Phys. Lett. B 788
(2019) 274 [arXiv:1810.08118] [INSPIRE].

[36] J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the
classical double copy of Yang-Mills theory, Phys. Rev. D 99 (2019) 024021
[arXiv:1807.09859] [INSPIRE].

[37] M. Gurses and B. Tekin, Classical Double Copy: Kerr-Schild-Kundt metrics from Yang-Mills
Theory, Phys. Rev. D 98 (2018) 126017 [arXiv:1810.03411] [INSPIRE].

[38] G.L. Cardoso, S. Nagy and S. Nampuri, A double copy for N = 2 supergravity: a linearised
tale told on-shell, JHEP 10 (2016) 127 [arXiv:1609.05022] [INSPIRE].

[39] G. Cardoso, S. Nagy and S. Nampuri, Multi-centered N = 2 BPS black holes: a double copy
description, JHEP 04 (2017) 037 [arXiv:1611.04409] [INSPIRE].

[40] G. Lopes Cardoso, G. Inverso, S. Nagy and S. Nampuri, Comments on the double copy
construction for gravitational theories, PoS CORFU2017 (2018) 177 [arXiv:1803.07670]
[INSPIRE].

[41] K. Andrzejewski and S. Prencel, From polarized gravitational waves to analytically solvable
electromagnetic beams, Phys. Rev. D 100 (2019) 045006 [arXiv:1901.05255] [INSPIRE].

[42] J. Plefka, C. Shi, J. Steinhoff and T. Wang, Breakdown of the classical double copy for the
effective action of dilaton-gravity at NNLO, Phys. Rev. D 100 (2019) 086006
[arXiv:1906.05875] [INSPIRE].

– 35 –

https://doi.org/10.1016/j.physletb.2016.10.052
https://arxiv.org/abs/1606.04724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.04724
https://doi.org/10.1103/PhysRevD.96.065009
https://arxiv.org/abs/1705.09263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.09263
https://doi.org/10.1088/1361-6382/aa9961
https://arxiv.org/abs/1706.08925
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.08925
https://doi.org/10.1016/j.physletb.2017.11.007
https://doi.org/10.1016/j.physletb.2017.11.007
https://arxiv.org/abs/1708.01103
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.01103
https://doi.org/10.1103/PhysRevD.97.085019
https://doi.org/10.1103/PhysRevD.97.085019
https://arxiv.org/abs/1711.09493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.09493
https://doi.org/10.1007/JHEP04(2018)028
https://arxiv.org/abs/1711.01296
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.01296
https://doi.org/10.1007/JHEP12(2017)004
https://arxiv.org/abs/1710.01953
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.01953
https://doi.org/10.1007/JHEP03(2018)044
https://arxiv.org/abs/1711.03901
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.03901
https://doi.org/10.1007/JHEP11(2018)162
https://arxiv.org/abs/1806.07388
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.07388
https://doi.org/10.1016/j.physletb.2018.04.069
https://doi.org/10.1016/j.physletb.2018.04.069
https://arxiv.org/abs/1804.07290
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.07290
https://doi.org/10.1007/JHEP01(2019)107
https://arxiv.org/abs/1809.04063
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.04063
https://doi.org/10.1016/j.physletb.2018.11.026
https://doi.org/10.1016/j.physletb.2018.11.026
https://arxiv.org/abs/1810.08118
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.08118
https://doi.org/10.1103/PhysRevD.99.024021
https://arxiv.org/abs/1807.09859
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.09859
https://doi.org/10.1103/PhysRevD.98.126017
https://arxiv.org/abs/1810.03411
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.03411
https://doi.org/10.1007/JHEP10(2016)127
https://arxiv.org/abs/1609.05022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.05022
https://doi.org/10.1007/JHEP04(2017)037
https://arxiv.org/abs/1611.04409
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.04409
https://doi.org/10.22323/1.318.0177
https://arxiv.org/abs/1803.07670
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.07670
https://doi.org/10.1103/PhysRevD.100.045006
https://arxiv.org/abs/1901.05255
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.05255
https://doi.org/10.1103/PhysRevD.100.086006
https://arxiv.org/abs/1906.05875
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.05875


J
H
E
P
1
1
(
2
0
2
1
)
1
2
6

[43] M. Carrillo González, B. Melcher, K. Ratliff, S. Watson and C.D. White, The classical double
copy in three spacetime dimensions, JHEP 07 (2019) 167 [arXiv:1904.11001] [INSPIRE].

[44] S. Sabharwal and J.W. Dalhuisen, Anti-Self-Dual Spacetimes, Gravitational Instantons and
Knotted Zeros of the Weyl Tensor, JHEP 07 (2019) 004 [arXiv:1904.06030] [INSPIRE].

[45] I. Bah, R. Dempsey and P. Weck, Kerr-Schild Double Copy and Complex Worldlines, JHEP
02 (2020) 180 [arXiv:1910.04197] [INSPIRE].

[46] L. Borsten, I. Jubb, V. Makwana and S. Nagy, Gauge × gauge on spheres, JHEP 06 (2020)
096 [arXiv:1911.12324] [INSPIRE].

[47] L. Borsten, H. Kim, B. Jurčo, T. Macrelli, C. Sämann and M. Wolf, Double Copy from
Homotopy Algebras, Fortsch. Phys. 69 (2021) 2100075 [arXiv:2102.11390] [INSPIRE].

[48] L. Borsten, I. Jubb, V. Makwana and S. Nagy, Gauge × gauge = gravity on homogeneous
spaces using tensor convolutions, JHEP 06 (2021) 117 [arXiv:2104.01135] [INSPIRE].

[49] N. Bahjat-Abbas, R. Stark-Muchão and C.D. White, Monopoles, shockwaves and the classical
double copy, JHEP 04 (2020) 102 [arXiv:2001.09918] [INSPIRE].

[50] G. Elor, K. Farnsworth, M.L. Graesser and G. Herczeg, The Newman-Penrose Map and the
Classical Double Copy, JHEP 12 (2020) 121 [arXiv:2006.08630] [INSPIRE].

[51] T. Adamo and A. Ilderton, Classical and quantum double copy of back-reaction, JHEP 09
(2020) 200 [arXiv:2005.05807] [INSPIRE].

[52] L. Alfonsi, C.D. White and S. Wikeley, Topology and Wilson lines: global aspects of the
double copy, JHEP 07 (2020) 091 [arXiv:2004.07181] [INSPIRE].

[53] C. Keeler, T. Manton and N. Monga, From Navier-Stokes to Maxwell via Einstein, JHEP 08
(2020) 147 [arXiv:2005.04242] [INSPIRE].

[54] D.A. Easson, C. Keeler and T. Manton, Classical double copy of nonsingular black holes,
Phys. Rev. D 102 (2020) 086015 [arXiv:2007.16186] [INSPIRE].

[55] O. Pasarin and A.A. Tseytlin, Generalised Schwarzschild metric from double copy of
point-like charge solution in Born-Infeld theory, Phys. Lett. B 807 (2020) 135594
[arXiv:2005.12396] [INSPIRE].

[56] M.K. Gumus and G. Alkac, More on the classical double copy in three spacetime dimensions,
Phys. Rev. D 102 (2020) 024074 [arXiv:2006.00552] [INSPIRE].

[57] R. Alawadhi, D.S. Berman, C.D. White and S. Wikeley, The single copy of the gravitational
holonomy, JHEP 10 (2021) 229 [arXiv:2107.01114] [INSPIRE].

[58] K. Lee, Kerr-Schild Double Field Theory and Classical Double Copy, JHEP 10 (2018) 027
[arXiv:1807.08443] [INSPIRE].

[59] D.S. Berman, K. Kim and K. Lee, The classical double copy for M-theory from a Kerr-Schild
ansatz for exceptional field theory, JHEP 04 (2021) 071 [arXiv:2010.08255] [INSPIRE].

[60] E. Lescano and J.A. Rodríguez, Higher-derivative heterotic Double Field Theory and classical
double copy, JHEP 07 (2021) 072 [arXiv:2101.03376] [INSPIRE].

[61] S. Angus, K. Cho and K. Lee, The classical double copy for half-maximal supergravities and
T-duality, JHEP 10 (2021) 211 [arXiv:2105.12857] [INSPIRE].

[62] C. Cheung and J. Mangan, Covariant color-kinematics duality, JHEP 11 (2021) 069
[arXiv:2108.02276] [INSPIRE].

– 36 –

https://doi.org/10.1007/JHEP07(2019)167
https://arxiv.org/abs/1904.11001
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.11001
https://doi.org/10.1007/JHEP07(2019)004
https://arxiv.org/abs/1904.06030
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.06030
https://doi.org/10.1007/JHEP02(2020)180
https://doi.org/10.1007/JHEP02(2020)180
https://arxiv.org/abs/1910.04197
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.04197
https://doi.org/10.1007/JHEP06(2020)096
https://doi.org/10.1007/JHEP06(2020)096
https://arxiv.org/abs/1911.12324
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12324
https://doi.org/10.1002/prop.202100075
https://arxiv.org/abs/2102.11390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.11390
https://doi.org/10.1007/JHEP06(2021)117
https://arxiv.org/abs/2104.01135
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.01135
https://doi.org/10.1007/JHEP04(2020)102
https://arxiv.org/abs/2001.09918
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.09918
https://doi.org/10.1007/JHEP12(2020)121
https://arxiv.org/abs/2006.08630
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.08630
https://doi.org/10.1007/JHEP09(2020)200
https://doi.org/10.1007/JHEP09(2020)200
https://arxiv.org/abs/2005.05807
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.05807
https://doi.org/10.1007/JHEP07(2020)091
https://arxiv.org/abs/2004.07181
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.07181
https://doi.org/10.1007/JHEP08(2020)147
https://doi.org/10.1007/JHEP08(2020)147
https://arxiv.org/abs/2005.04242
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.04242
https://doi.org/10.1103/PhysRevD.102.086015
https://arxiv.org/abs/2007.16186
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.16186
https://doi.org/10.1016/j.physletb.2020.135594
https://arxiv.org/abs/2005.12396
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12396
https://doi.org/10.1103/PhysRevD.102.024074
https://arxiv.org/abs/2006.00552
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.00552
https://doi.org/10.1007/JHEP10(2021)229
https://arxiv.org/abs/2107.01114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.01114
https://doi.org/10.1007/JHEP10(2018)027
https://arxiv.org/abs/1807.08443
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.08443
https://doi.org/10.1007/JHEP04(2021)071
https://arxiv.org/abs/2010.08255
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.08255
https://doi.org/10.1007/JHEP07(2021)072
https://arxiv.org/abs/2101.03376
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.03376
https://doi.org/10.1007/JHEP10(2021)211
https://arxiv.org/abs/2105.12857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.12857
https://doi.org/10.1007/JHEP11(2021)069
https://arxiv.org/abs/2108.02276
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.02276


J
H
E
P
1
1
(
2
0
2
1
)
1
2
6

[63] E. Chacón, A. Luna and C.D. White, The double copy of the multipole expansion,
arXiv:2108.07702 [INSPIRE].

[64] A. Cristofoli, R. Gonzo, D.A. Kosower and D. O’Connell, Waveforms from Amplitudes,
arXiv:2107.10193 [INSPIRE].

[65] G. Alkac, M.K. Gumus and M.A. Olpak, Kerr-Schild double copy of the Coulomb solution in
three dimensions, Phys. Rev. D 104 (2021) 044034 [arXiv:2105.11550] [INSPIRE].

[66] K. Farnsworth, M.L. Graesser and G. Herczeg, Twistor Space Origins of the
Newman-Penrose Map, arXiv:2104.09525 [INSPIRE].

[67] P. Ferrero and D. Francia, On the Lagrangian formulation of the double copy to cubic order,
JHEP 02 (2021) 213 [arXiv:2012.00713] [INSPIRE].

[68] G. Alkac, M.K. Gumus and M. Tek, The Kerr-Schild Double Copy in Lifshitz Spacetime,
JHEP 05 (2021) 214 [arXiv:2103.06986] [INSPIRE].

[69] R. Gonzo and C. Shi, Geodesics From Classical Double Copy, arXiv:2109.01072 [INSPIRE].

[70] R. Saotome and R. Akhoury, Relationship Between Gravity and Gauge Scattering in the High
Energy Limit, JHEP 01 (2013) 123 [arXiv:1210.8111] [INSPIRE].

[71] D. Neill and I.Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys. B 877
(2013) 177 [arXiv:1304.7263] [INSPIRE].

[72] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory,
arXiv:1703.05448 [INSPIRE].

[73] H. Godazgar, M. Godazgar and C.N. Pope, Taub-NUT from the Dirac monopole, Phys. Lett.
B 798 (2019) 134938 [arXiv:1908.05962] [INSPIRE].

[74] R. Alawadhi, D.S. Berman, B. Spence and D. Peinador Veiga, S-duality and the double copy,
JHEP 03 (2020) 059 [arXiv:1911.06797] [INSPIRE].

[75] A. Banerjee, E.O. Colgáin, J.A. Rosabal and H. Yavartanoo, Ehlers as EM duality in the
double copy, Phys. Rev. D 102 (2020) 126017 [arXiv:1912.02597] [INSPIRE].

[76] M. Campiglia and S. Nagy, A double copy for asymptotic symmetries in the self-dual sector,
JHEP 03 (2021) 262 [arXiv:2102.01680] [INSPIRE].

[77] R. Monteiro and D. O’Connell, The Kinematic Algebra From the Self-Dual Sector, JHEP 07
(2011) 007 [arXiv:1105.2565] [INSPIRE].

[78] E. Casali and A. Puhm, Double Copy for Celestial Amplitudes, Phys. Rev. Lett. 126 (2021)
101602 [arXiv:2007.15027] [INSPIRE].

[79] E. Casali and A. Sharma, Celestial double copy from the worldsheet, JHEP 05 (2021) 157
[arXiv:2011.10052] [INSPIRE].

[80] S. Pasterski and A. Puhm, Shifting spin on the celestial sphere, Phys. Rev. D 104 (2021)
086020 [arXiv:2012.15694] [INSPIRE].

[81] Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in
four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246
[hep-th/0411045] [INSPIRE].

[82] A. Strominger and A. Zhiboedov, Superrotations and Black Hole Pair Creation, Class. Quant.
Grav. 34 (2017) 064002 [arXiv:1610.00639] [INSPIRE].

[83] T. Adamo and U. Kol, Classical double copy at null infinity, arXiv:2109.07832 [INSPIRE].

– 37 –

https://arxiv.org/abs/2108.07702
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.07702
https://arxiv.org/abs/2107.10193
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.10193
https://doi.org/10.1103/PhysRevD.104.044034
https://arxiv.org/abs/2105.11550
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.11550
https://arxiv.org/abs/2104.09525
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.09525
https://doi.org/10.1007/JHEP02(2021)213
https://arxiv.org/abs/2012.00713
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.00713
https://doi.org/10.1007/JHEP05(2021)214
https://arxiv.org/abs/2103.06986
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.06986
https://arxiv.org/abs/2109.01072
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.01072
https://doi.org/10.1007/JHEP01(2013)123
https://arxiv.org/abs/1210.8111
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.8111
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://arxiv.org/abs/1304.7263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.7263
https://arxiv.org/abs/1703.05448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.05448
https://doi.org/10.1016/j.physletb.2019.134938
https://doi.org/10.1016/j.physletb.2019.134938
https://arxiv.org/abs/1908.05962
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.05962
https://doi.org/10.1007/JHEP03(2020)059
https://arxiv.org/abs/1911.06797
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.06797
https://doi.org/10.1103/PhysRevD.102.126017
https://arxiv.org/abs/1912.02597
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02597
https://doi.org/10.1007/JHEP03(2021)262
https://arxiv.org/abs/2102.01680
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.01680
https://doi.org/10.1007/JHEP07(2011)007
https://doi.org/10.1007/JHEP07(2011)007
https://arxiv.org/abs/1105.2565
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.2565
https://doi.org/10.1103/PhysRevLett.126.101602
https://doi.org/10.1103/PhysRevLett.126.101602
https://arxiv.org/abs/2007.15027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.15027
https://doi.org/10.1007/JHEP05(2021)157
https://arxiv.org/abs/2011.10052
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.10052
https://doi.org/10.1103/PhysRevD.104.086020
https://doi.org/10.1103/PhysRevD.104.086020
https://arxiv.org/abs/2012.15694
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.15694
https://doi.org/10.1016/j.nuclphysb.2005.03.034
https://arxiv.org/abs/hep-th/0411045
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB717%2C246%22
https://doi.org/10.1088/1361-6382/aa5b5f
https://doi.org/10.1088/1361-6382/aa5b5f
https://arxiv.org/abs/1610.00639
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.00639
https://arxiv.org/abs/2109.07832
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.07832


J
H
E
P
1
1
(
2
0
2
1
)
1
2
6

[84] R. Penrose and W. Rindler, Spinors and space-time. Vol. 2: Spinor and twistor methods in
space-time geometry. Cambridge University Press, (1988).

[85] E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin
coefficients, J. Math. Phys. 3 (1962) 566 [INSPIRE].

[86] R.K. Sachs, Gravitational waves in general relativity: 8. Waves in asymptotically flat
space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103.

[87] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general
relativity: 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962)
21.

[88] H. Godazgar, M. Godazgar and C.N. Pope, Subleading BMS charges and fake news near null
infinity, JHEP 01 (2019) 143 [arXiv:1809.09076] [INSPIRE].

[89] T. Damour, Analytical calculations of gravitational radiation, in 4th Marcel Grossmann
Meeting on General Relativity, R. Ruffini, ed., (1986), pp. 365–392.

[90] D. Christodoulou, The global initial value problem in general relativity, in The 9th Marcel
Grossmann meeting, V.G. Gurzadyan, R.T. Jantzen and R. Ruffini, eds., (2002), pp. 44–54,
[DOI].

[91] P.T. Chrusciel, M.A.H. MacCallum and D.B. Singleton, Gravitational waves in general
relativity XIV. Bondi expansions and the ‘polyhomogeneity’ of I, Phil. Trans. Roy. Soc. A
350 (1995) 113.

[92] P.T. Chrusciel, J. Jezierski and M.A.H. MacCallum, Uniqueness of the Trautman-Bondi
mass, Phys. Rev. D 58 (1998) 084001 [gr-qc/9803010] [INSPIRE].

[93] J.A.V. Kroon, Conserved quantities for polyhomogeneous space-times, Class. Quant. Grav. 15
(1998) 2479 [gr-qc/9805094] [INSPIRE].

[94] J.A. Valiente-Kroon, Polyhomogeneity and zero rest mass fields with applications to
Newman-Penrose constants, Class. Quant. Grav. 17 (2000) 605 [gr-qc/9907097] [INSPIRE].

[95] R.M. Wald, General Relativity. UCP, (1984) [DOI].

[96] M. Cvetič, C.N. Pope and A. Saha, Conformal Symmetries for Extremal Black Holes with
General Asymptotic Scalars in STU Supergravity, JHEP 09 (2021) 188 [arXiv:2102.02826]
[INSPIRE].

[97] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in N = 2
Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081
[arXiv:1408.0764] [INSPIRE].

[98] W. Cho and K. Lee, Heterotic Kerr-Schild Double Field Theory and Classical Double Copy,
JHEP 07 (2019) 030 [arXiv:1904.11650] [INSPIRE].

[99] L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, Magic Square from Yang-Mills Squared,
Phys. Rev. Lett. 112 (2014) 131601 [arXiv:1301.4176] [INSPIRE].

[100] A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, Yang-Mills origin of
gravitational symmetries, Phys. Rev. Lett. 113 (2014) 231606 [arXiv:1408.4434] [INSPIRE].

[101] A. Anastasiou, L. Borsten, M.J. Hughes and S. Nagy, Global symmetries of Yang-Mills
squared in various dimensions, JHEP 01 (2016) 148 [arXiv:1502.05359] [INSPIRE].

[102] A. Anastasiou et al., Twin supergravities from Yang-Mills theory squared, Phys. Rev. D 96
(2017) 026013 [arXiv:1610.07192] [INSPIRE].

– 38 –

https://doi.org/10.1063/1.1724257
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C3%2C566%22
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1007/JHEP01(2019)143
https://arxiv.org/abs/1809.09076
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.09076
https://doi.org/10.1142/9789812777386_0004
https://doi.org/10.1103/PhysRevD.58.084001
https://arxiv.org/abs/gr-qc/9803010
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9803010
https://doi.org/10.1088/0264-9381/15/8/023
https://doi.org/10.1088/0264-9381/15/8/023
https://arxiv.org/abs/gr-qc/9805094
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9805094
https://doi.org/10.1088/0264-9381/17/3/304
https://arxiv.org/abs/gr-qc/9907097
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9907097
https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.1007/JHEP09(2021)188
https://arxiv.org/abs/2102.02826
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.02826
https://doi.org/10.1007/JHEP01(2015)081
https://arxiv.org/abs/1408.0764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.0764
https://doi.org/10.1007/JHEP07(2019)030
https://arxiv.org/abs/1904.11650
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.11650
https://doi.org/10.1103/PhysRevLett.112.131601
https://arxiv.org/abs/1301.4176
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.4176
https://doi.org/10.1103/PhysRevLett.113.231606
https://arxiv.org/abs/1408.4434
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.4434
https://doi.org/10.1007/JHEP01(2016)148
https://arxiv.org/abs/1502.05359
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.05359
https://doi.org/10.1103/PhysRevD.96.026013
https://doi.org/10.1103/PhysRevD.96.026013
https://arxiv.org/abs/1610.07192
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.07192


J
H
E
P
1
1
(
2
0
2
1
)
1
2
6

[103] A. Anastasiou, L. Borsten, M.J. Duff, S. Nagy and M. Zoccali, Gravity as Gauge Theory
Squared: A Ghost Story, Phys. Rev. Lett. 121 (2018) 211601 [arXiv:1807.02486] [INSPIRE].

[104] J.B. Griffiths, P. Krtouš and J. Podolský, Interpreting the C-metric, Class. Quant. Grav. 23
(2006) 6745 [gr-qc/0609056] [INSPIRE].

[105] T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED,
JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].

[106] J. Bičák, Gravitational radiation from uniformly accelerated particles in general relativity,
Proc. Roy. Soc. Lond. A 302 (1968) 201.

[107] V. Pravda and A. Pravdova, Boost-rotation symmetric spacetimes — review, Czech. J. Phys.
50 (2000) 333, [math/0003067].

[108] P. Sládek and J.D. Finley, III, Asymptotic properties of the C-Metric, Class. Quant. Grav. 27
(2010) 205020 [arXiv:1003.1471] [INSPIRE].

[109] A. Tomimatsu, Power law tail of gravitational waves from a uniformly accelerating black hole,
Phys. Rev. D 57 (1998) 2613 [INSPIRE].

[110] H. Farhoosh and R.L. Zimmerman, Killing horizons around a uniformly accelerating and
rotating particle, Phys. Rev. D 22 (1980) 797 [INSPIRE].

[111] A. Ashtekar and T. Dray, On the Existence of Solutions to Einstein’s Equation With Nonzero
Bondi News, Commun. Math. Phys. 79 (1981) 581 [INSPIRE].

[112] D. Bini, C. Cherubini and B. Mashhoon, Inertial effects of an accelerating black hole, AIP
Conf. Proc. 751 (2005) 37 [gr-qc/0410098] [INSPIRE].

[113] J.W. Maluf, V.C. de Andrade and J.R. Steiner, Gravitational radiation of accelerated sources,
Int. J. Mod. Phys. D 16 (2007) 857 [gr-qc/0610102] [INSPIRE].

[114] K. Hong and E. Teo, A new form of the C metric, Class. Quant. Grav. 20 (2003) 3269
[gr-qc/0305089] [INSPIRE].

[115] H. Godazgar, M. Godazgar and C.N. Pope, Dual gravitational charges and soft theorems,
JHEP 10 (2019) 123 [arXiv:1908.01164] [INSPIRE].

[116] H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of
Einstein’s field equations, Cambridge Monographs on Mathematical Physics, Cambridge
University Press, Cambridge, U.K. (2003), [DOI] [INSPIRE].

[117] R. Alawadhi, D.S. Berman and B. Spence, Weyl doubling, JHEP 09 (2020) 127
[arXiv:2007.03264] [INSPIRE].

[118] N. Moynihan, Kerr-Newman from Minimal Coupling, JHEP 01 (2020) 014
[arXiv:1909.05217] [INSPIRE].

[119] M.-Z. Chung, Y.-T. Huang and J.-W. Kim, Kerr-Newman stress-tensor from minimal
coupling, JHEP 12 (2020) 103 [arXiv:1911.12775] [INSPIRE].

– 39 –

https://doi.org/10.1103/PhysRevLett.121.211601
https://arxiv.org/abs/1807.02486
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.02486
https://doi.org/10.1088/0264-9381/23/23/008
https://doi.org/10.1088/0264-9381/23/23/008
https://arxiv.org/abs/gr-qc/0609056
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C23%2C6745%22
https://doi.org/10.1007/JHEP10(2014)112
https://arxiv.org/abs/1407.3789
https://inspirehep.net/search?p=find+doi%20%2210.1007%2Fjhep10%282014%29112%22
https://doi.org/10.1098/rspa.1968.0004
https://doi.org/10.1023/A:1022862309863
https://doi.org/10.1023/A:1022862309863
https://arxiv.org/abs/math/0003067
https://doi.org/10.1088/0264-9381/27/20/205020
https://doi.org/10.1088/0264-9381/27/20/205020
https://arxiv.org/abs/1003.1471
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.1471
https://doi.org/10.1103/PhysRevD.57.2613
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD57%2C2613%22
https://doi.org/10.1103/PhysRevD.22.797
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD22%2C797%22
https://doi.org/10.1007/BF01209313
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C79%2C581%22
https://doi.org/10.1063/1.1891528
https://doi.org/10.1063/1.1891528
https://arxiv.org/abs/gr-qc/0410098
https://inspirehep.net/search?p=find+J%20%22AIP%20Conf.Proc.%2C751%2C37%22
https://doi.org/10.1142/S0218271807010456
https://arxiv.org/abs/gr-qc/0610102
https://inspirehep.net/search?p=find+J%20%22Int.J.Mod.Phys.%2CD16%2C857%22
https://doi.org/10.1088/0264-9381/20/14/321
https://arxiv.org/abs/gr-qc/0305089
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C20%2C3269%22
https://doi.org/10.1007/JHEP10(2019)123
https://arxiv.org/abs/1908.01164
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01164
https://doi.org/10.1017/CBO9780511535185
https://inspirehep.net/search?p=find+doi%20%2210.1017%2FCBO9780511535185%22
https://doi.org/10.1007/JHEP09(2020)127
https://arxiv.org/abs/2007.03264
https://inspirehep.net/search?p=find+doi%20%2210.1007%2Fjhep09%282020%29127%22
https://doi.org/10.1007/JHEP01(2020)014
https://arxiv.org/abs/1909.05217
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.05217
https://doi.org/10.1007/JHEP12(2020)103
https://arxiv.org/abs/1911.12775
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12775

	Introduction
	The Weyl double copy in the characteristic value formulation
	C-metric and the Liénard-Wiechert solution

	Asymptotic Weyl double copy
	Rotating STU supergravity black holes
	Asymptotic Weyl double copy relation

	Axisymmetric Weyl double copy

	Asymptotic symmetries and the Weyl double copy
	The C-metric as a superrotation
	The Liénard-Wiechert potential as a large gauge transformation

	Discussion
	Four-dimensional spinor formalism
	C-metric in Bondi coordinates
	Small mass expansion

	Taub-NUT solution and the dyon solution
	Rotating STU supergravity black holes
	Petrov type of solution
	Bondi coordinates

	Not quite Weyl double copy for Kerr-Newman

