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Experiments on Stratified Multiphase Plumes

Jonathan Barnard

Buoyant plumes are flows of great interest to engineers and geologists alike with
applications varying from chemical engineering processes to explosive volcanic eruption
columns. Single-phase plumes have been well studied and the flow’s behaviour is
generally well understood, however many examples in both industry and the natural
world consist of a secondary dispersed phase of either bubbles or dense particles. The
presence of multiple phases in a plume significantly complicates the flow dynamics,
especially when rising through density stratified environments such as the ocean or
the atmosphere. In this thesis, four experimental studies are presented investigating
the dynamic behaviour of both particle-laden plumes and bubble plumes in stratified
ambients. Experiments on stratified particle-laden plumes have enabled five steady-state
flow regimes to be identified and subsequently characterised using a criterion for the
onset of ambient convection and the ratio of particle to fluid buoyancy flux at the source.
Measurements of plume height are compared to theoretical models within the literature
and are shown to be successful for pure plumes rising through quiescent environments,
however not for those rising through particle-induced convection. Through discrete
measurements taken within the convection column surrounding the plume, predictions
for the local values of density and particle concentration are produced allowing the
plume heights to be predicted through only a minor adjustment to simple plume theory.
Other models to predict the radial extent of ambient convection, secondary intrusion
height and various particle concentrations are also presented. Weak bubble plumes were
experimentally studied to understand both the dynamics of the spreading intrusions
and the mass transfer of dissolved species to the environment. Bubble plumes with large
non-dimensional slip velocities create multiple spreading events and upon comparison
with well known scaling, were determined to spread three times slower than an isolated
intrusion at large radial distances when viscosity is important. Measurements along
the spreading intrusions showed the presence of a mixing region where concentration of
dissolved species decays and a non-mixing region where concentration remains constant.
A diffusion model is developed and successfully compared to both local measurements
and experimental images.
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Chapter 1

Introduction

Fluid flows driven by density differences, or buoyancy, appear everywhere in our daily
lives. One example which we can all relate to is making your morning cup of coffee
or tea. For many throughout the world, the first thing that they will do after getting
out of bed in the morning is turn on their kettle. As the element heats the water,
the local density of the liquid drops, inducing an upflow of warm water through a
cooler, denser ambient. This process continues until the water boils, thus creating
a vapour plume which rises from the kettle’s spout. After pouring your drink, if so
inclined, you add milk and create a convective instability due to adding a dense fluid
atop a light one. You finally sit down and look out the window, and depending on the
season, will likely either be greeted with wispy smoke plumes rising from chimneys or
a convection-induced heat haze rising above warm sun-drenched roads.

When a continuous source of buoyancy exists at a point source, the turbulent flow
created above it is called a plume. Named for the flow’s similarity in appearance
to that of a feather (of which early comparisons can be found in Tillard, 1832; and
Caldcleugh, 1837), plumes are widely present across both industry and nature over an
array of magnitudes ranging from millimetres in your coffee mug to kilometres in the
world’s ocean and atmosphere.

Plumes belong to a family of cone-shaped flows whose members also include jets,
which develop above continuous point sources of momentum; forced plumes or buoyant
jets, intermediate flows with both buoyancy and momentum at the source; and nega-
tively buoyant jets known as fountains. The earliest mathematical attention specifically
regarding the dynamics of buoyant plumes was by Yakov B. Zeldovich prior to the
second world war (see Zeldovich, 1937), however qualitative descriptions of plumes
date back to Ancient Roman times and the eruption of Mt. Vesuvius in 79 AD. In
a letter to the historian Tacitus, who was interested in the circumstances leading to
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(a) (b)

Fig. 1.1 (a) A smoke plume, taken from Hunt and Van den Bremer (2011). (b) A water
jet, taken from Van Dyke (1982).

the death of author and philosopher Pliny the Elder, his nephew, Pliny the Younger
described the events of the eruption which resulted not only in his uncle’s death, but
infamously destroyed the cities of Pompeii and Herculaneum. The translation of Pliny
the Younger’s description of the volcanic plume reads:

“On the 24th of August, about one in the afternoon, my mother desired him (Pliny the
Elder) to observe a cloud which appeared of a very unusual size and shape. He had
just taken a turn in the sun and, after bathing himself in cold water and making a light
luncheon, gone back to his books. He immediately arose and went out upon a rising
ground from whence he might get a better sight of this very uncommon appearance. A
cloud, from which mountain was uncertain, at this distance (but it was found afterwards
to come from Mount Vesuvius), was ascending, the appearance of which I cannot give
you a more exact description of than by likening it to that of a pine tree, for it shot up
to a great height in the form of a very tall trunk, which spread itself out at the top into
a sort of branches; occasioned, I imagine, either by a sudden gust of air that impelled
it, the force of which decreased as it advanced upwards, or the cloud itself being pressed
back again by its own weight, expanded in the manner I have mentioned. It appeared
sometimes bright and sometimes dark and spotted, according as it was either more or
less impregnated with earth and cinders."
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This description of the volcanic plume rising from Mt. Vesuvius is not only among
the first known descriptions of plumes, but also perhaps the first description of a
multiphase plume, given that the flow was laden with both ’earth and cinders’. The
behaviour of single-phase plumes has been investigated by many authors for nearly 85
years and is generally quite well understood. The addition of a second phase makes
the plume dynamics significantly more complex and understanding the influence of the
dispersed phase is vital to effectively model the many examples of multiphase plumes
present in various industrial and natural processes.

For plumes laden with dense particles, including those associated with wastewater
outfalls (Tate et al., 2019), industrial chimney stacks (Feng et al., 2020), hydrothermal
vents on the seafloor (Fitzsimmons et al., 2017) and obviously explosive volcanic
eruptions, interest lies with how particles are transported throughout the environment.
To date, most attention has been given to the latter application due to the potential
impact on human life, infrastructure, climate and the aviation industry (Budd et al.,
2011; Durant et al., 2010).

In liquid environments, continuous localised releases of gas create multiphase plumes
of bubbles and liquid, the behaviour of which is sometimes also of global interest. For
example, in 2010, the blowout on BP’s Deepwater Horizon rig in the Gulf of Mexico,
and the subsequent oil plume driven by methane gas bubbles, drew worldwide attention
due to its impact on the environment, local wildlife and public health (Beyer et al.,
2016). Also within the last 15 years, large natural plumes of methane have been
discovered rising from continental shelves around the world with some suggesting their
development is associated with the melting of gas hydrate deposits due to anthropogenic
climate change (Westbrook et al., 2009). Authors studying these plumes firsthand on
the Eastern Siberian Artic Shelf have also postulated a 50 Gt release to the atmosphere
over the next 50 years (Shakhova et al., 2010b), an event which would be catastrophic
with the potential to lead to runaway climate change and an estimated $60 trillion
worth of damage (Whiteman et al., 2013).

In this thesis, two key questions on multiphase plumes are addressed. Firstly, how
do particle-laden plumes behave in a stratified environment; and secondly, how do
bubble plumes, with multiple spreading events, transport dissolved species through the
environment. To answer these questions, four experimental studies were conducted,
with two focused on each question. Specifically, this thesis is structured as a series
of four standalone papers, supported by a review of current literature, a summary
of issues for further research and three appendices (see Appendix A, B and C) to
provide more insight into experimental methods and analysis. A detailed review of the
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(a)

(b)

Fig. 1.2 (a) 2015 eruption of Calbuco, southern Chile (image from Marcelo Utreras)
(b) Methane plumes rising from the seabed off West Spitsbergen (image from Natural
Environment Research Council).
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literature is provided in Chapter 2, introducing both single-phase plumes and simple
plume theory. This is then followed by a review of previous research concerning the
dynamics of multiphase plumes and submerged axisymmetric gravity currents. Chapter
3 is a paper published in the Journal of Fluid Mechanics detailing the steady-state
behaviour of stratified particle-laden plumes. Five flow regimes, characterised by a
criterion for the onset of ambient convection, are identified and physical parameters,
including the plume rise heights, are reported. The work presented in Chapter 4
builds upon the previous chapter by focusing specifically on stratified particle-laden
plumes rising through an ambient undergoing convection. Models to predict the radial
extent of convection in the environment, the plume rise heights and other parameters
of interest are developed and compared to experimental measurements. Chapter 5
presents a paper on the radial spread of submerged intrusions produced by bubble
plumes written by myself, Ms. Arna Sigurðardóttir, Prof. Silvana Cardoso and other
members of the Fluids and Environment group. This chapter is published in the Stokes
200 special edition of Philosophical Transactions of the Royal Society A. Also submitted
to the Journal of Fluid Mechanics, Chapter 6 provides further insight into the radial
mass transfer from bubble plumes to the environment and a simple diffusion model
is presented. Finally, in Chapter 7, concluding remarks are presented, along with a
discussion on issues for future work.





Chapter 2

Literature Review and Background

2.1 Buoyancy

A plume, by definition, is a turbulent convective flow driven by a localised source of
buoyancy. Throughout the natural world, buoyancy is the driver of many flows and
has continued to be a phenomenon of interest to many since, according to Vitruvius,
Archimedes stepped into his bath over two millennia ago and watched the water rise
(Morgan et al., 1914). Archimedes’ principle is expressed explicitly as any body, totally
or partially immersed in a fluid, is buoyed up by a force equal to the weight of the
fluid displaced by the object. Mathematically, this upwards force exerted on the body
by the fluid can be written as

Fb = ρgV, (2.1)

where Fb is the buoyancy force, ρ and V are the density and volume of the displaced
fluid, and g is acceleration due to gravity.

Delving further into the idea of buoyancy force, consider a fluid parcel of density
ρ within a quiescent ambient of some different density ρe. The difference in density
between the fluid parcel and the environment will induce a resultant buoyancy force
per parcel volume of

Fb

V
= g(ρe −ρ), (2.2)

which, if large enough to overcome the forces associated with the viscosity of the
ambient, will cause the fluid parcel to accelerate vertically from rest, either rising or
sinking depending on the relative magnitudes of ρe and ρ. The origin of this motion is
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the direct result of an imbalance in pressure gradients, namely the hydrostatic pressure
gradient in the environment dpe/dz = −gρe and the local pressure gradient associated
with the fluid parcel dp/dz = −gρ. In work concerning flows arising due to natural
convection, the convention is to present a scaled version of the buoyancy force in terms
of some reference density, ρ0. By doing so, the ambient may effectively be treated
as weightless and the buoyancy-driven flow may be characterised as if it were being
acted on by a reduced gravitational acceleration (Turner, 1979). This reduced gravity
is defined as

g′ = g
ρe −ρ

ρ0
. (2.3)

Here, it is important to note that, in the case of the work presented in this thesis,
the reference density is taken as equivalent to the ambient density at the height of the
plume source.

2.2 Boussinesq approximation

In many flows driven by natural convection, or simply the difference in density between
the flow and the environment, density differences are generally small when compared to
some reference density of interest. If one were to conduct an analysis on the conservation
equations, taking into account these differences in density, the mathematics becomes
very complicated such that some form of approximation becomes necessary to model
the flow’s behaviour (Tritton, 1977). As changes in density are small, an approximation
that becomes worthwhile is to ignore any changes in fluid properties, other than changes
in density giving rise to buoyancy forces.

This modification to the conservation equations, now well known as the Boussi-
nesq approximation (Boussinesq, 1903), can be introduced simply by assessing the
incompressible Euler equations of motion, written below using the pressure and density
deviations from hydrostatic equilibrium (Turner, 1979),

ρ
Du
dt

= −∇p′ +∆ρg, (2.4)

with D/dt denoting differentiation following the flow’s motion and u = (u,0,ω) as the
velocity field comprised of vertical and radial components, ω and u. The terms on
the right-hand side of (2.4), p′ = p0 − p and ∆ρ = ρ0 − ρ, represent the deviations of
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pressure and density from the state where ∇p0 = ρ0g. Using these definitions and then
subsequently dividing by the reference density ρ0, equation (2.4) may be rewritten as

(
1+ ∆ρ

ρ0

)
Du
dt

= − 1
ρ0

∇p′ + ∆ρ

ρ0
g. (2.5)

Here, it can be seen that ∆ρ/ρ0 appears on both the left and right-hand sides of
the equation. However, in the case that ∆ρ ≪ ρ0, the density ratio associated with
the inertial term may be neglected and density differences are then only important in
the buoyancy term, presented in equation (2.5) as the reduced gravity, g′ = g (∆ρ/ρ0).
Recent experiments have shown that the Boussinesq approximation remains reasonably
accurate for scaled density differences of up to 15% (Ai et al., 2006; Mehaddi et al.,
2015) and importantly, the plumes studied within this thesis fall well within this
threshold. Note that near the source, density differences in bubble plumes exceed this
threshold, however, due to entrainment of ambient fluid, the void fraction of weak
bubble plumes soon becomes very low such that the Boussinesq approximation becomes
applicable (Fabregat Tomàs et al., 2016; Socolofsky, 2001).

Although not strictly relevant to the work presented in the subsequent chapters,
research has been conducted on non-Boussinesq plumes with notable contributions
including that of Ricou and Spalding (1961) and Rooney and Linden (1996).

2.3 Turbulent entrainment

A defining characteristic of free turbulent flows is the mixing of external fluid into the
flow through a process known as entrainment (Turner, 1979). Upon being released into
an environment of greater density, the plume will begin to rise as an initially laminar
flow however small perturbations quickly grow at the edge of the plume, causing it to
become unstable and turbulent a short distance above the source. This transition is
related to the plume’s Reynolds number, defined as

Re = ωL

ν
, (2.6)

where ω and L represent a characteristic velocity and length, with ν as the kinematic
viscosity of the surrounding fluid. Once Re exceeds a few thousand, the plume develops
large eddies at its margins, creating a sharp boundary between the plume and the
ambient, sometimes named the turbulent/non-turbulent interface (see Burridge et al.,
2017). Across this interface, mixing occurs through multiple processes including the
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ω

Induced flow

Engulfment Nibbling

Fig. 2.1 Schematic of plume entrainment processes.

engulfment of ambient fluid into the plume by large eddies, induced inflow across the
central core and smaller-scale processes, commonly referred to as ’nibbling’ (Philip and
Marusic, 2012; Turner, 1986).

The modelling of plume entrainment has historically taken one of two approaches,
microscopic or macroscopic (Hunt and Van den Bremer, 2011). In the microscopic case,
numerical modelling of plumes has been of interest in an attempt to further understand
turbulence and turbulent entrainment (van Reeuwijk et al., 2016), along with gaining
better insight into the relative contributions of the various entrainment processes
(see Da Silva et al., 2014 and references therein). On the other hand, macroscopic
modelling assumes that the timescale of the bulk flow is large compared to the eddy
turnover time (Scase et al., 2006; Woods, 2010), such that the plume’s dynamics may be
represented using a simplistic integral approach, meanwhile also sufficiently capturing
the complexities associated with turbulent entrainment.

Due to an interest in bulk flow behaviour rather than flow properties on a molecular
level, the modelling presented from this point forwards takes the latter macroscopic
approach towards understanding plume dynamics and the influence of turbulent en-
trainment.
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2.4 Conservation equations

For a steady asymmetric flow of inviscid incompressible fluid, with a velocity field
u = (u,0,ω), operating under the Boussinesq approximation and the assumption that
mass diffusion is negligible, the equations of motion written in cylindrical co-ordinates
(r,θ,z) are

1
r

d

dr
(ru)+ dω

dz
= 0, (2.7a)

u
dω

dr
+ω

dω

dz
= − 1

ρ0

dp

dz
−g

ρ

ρ0
, (2.7b)

u
du

dr
+ω

du

dz
= − 1

ρ0

dp

dr
. (2.7c)

When considering a plume or jet-like flow, the motion is confined to a defined radius b

such that as r → b, the vertical velocity ω → 0.
The dynamics of a turbulent plume depends on the magnitude and evolution of

the fluxes of mass, momentum and buoyancy force, each of which can be presented in
integral form as,

Q = 2π
∫ ∞

0
ωrdr, (2.8a)

M = 2π
∫ ∞

0
ω2rdr, (2.8b)

B = 2π
∫ ∞

0
ωg′rdr. (2.8c)

Due to the Boussinesq nature of these flows, changes in density are only important in
regard to buoyancy and, as such, conservation of mass may be presented as conservation
of volume.

These fluxes, along with the equations of motion presented above, may be utilised
to determine the plume conservation equations with respect to height. Integrating
(2.7a) between the radial limits of 0 and ∞ gives

d

dz

∫ ∞

0
ωrdr = −(ru)|∞0 , (2.9)
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which, when considering the definition of volume flux and the fact that radial inflow
from infinity is driven by turbulent entrainment into the plume, can also be written as

1
2π

dQ

dz
= −bue, (2.10)

where ue is the entrainment velocity at the edge of the plume.
Now consider the flow’s conservation of momentum, described in (2.7b) with

respect to the z-direction. In the environment outside of the plume, the vertical
velocity component ω = 0 and ρ = ρe(z). This gives the hydrostatic relation,

dp

dz
= −gρe. (2.11)

(2.11) can then be substituted into (2.7b) such that change in momentum within the
plume is written as

u
dω

dr
+ω

dω

dz
= g′. (2.12)

Here, it can be seen that all changes in momentum are directly associated with the
magnitude of the flow’s reduced gravity.

The rate of change of momentum with respect to height in integral form is written
as

1
2π

dM

dz
=
∫ ∞

0

d

dz
ω2rdr = 2

∫ ∞

0
ω

dω

dz
rdr. (2.13)

Using the continuity equation (2.7a), the momentum equation (2.12) and the mathe-
matical identity,

d

dr
(ruω) = ru

dω

dr
+ω

d

dr
(ru), (2.14)

(2.13) can be rewritten as

1
2π

dM

dz
=
∫ ∞

0
g′rdr − (ruω)|∞0 . (2.15)

As ω|∞ = 0 and (ru)|0 = 0, the final form of the rate of change of momentum with
height can be presented as

1
2π

dM

dz
=
∫ ∞

0
g′rdr = 1

2b2g′. (2.16)
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Finally, the rate of change in buoyancy with height is written as

1
2π

dB

dz
=
∫ ∞

0

d

dz
(ωg′)rdr. (2.17)

Using continuity (2.7a) and the definition of g′ (2.3),

1
2π

dB

dz
=
∫ ∞

0
ω

g

ρ0

dρe

dz
rdr −

∫ ∞

0
ω

g

ρ0

dρ

dz
rdr −

∫ ∞

0
g′ d

dr
(ru)dr. (2.18)

Also following continuity, conservation of mass in the system can be presented as

u
dρ

dr
+ω

dρ

dz
= 0, (2.19)

and utilised in (2.18) to give,

1
2π

dB

dz
=
∫ ∞

0
ω

g

ρ0

dρe

dz
rdr +

∫ ∞

0
u

g

ρ0

dρ

dr
rdr −

∫ ∞

0
g′ d

dr
(ru)dr. (2.20)

Here, it is important to note that

g

ρ0

dρ

dr
= dg′

dr
, (2.21)

and upon substitution, (2.20) may be presented as

1
2π

dB

dz
= g

ρ0

dρe

dz

∫ ∞

0
ωrdr − (rug′)|∞0 . (2.22)

The second term on the right-hand side of (2.22) is equivalent to zero as g′|∞ = 0,
along with (ru)|0 = 0, producing the conservation equation for buoyancy flux in its
final form,

1
2π

dB

dz
= g

ρ0

dρe

dz

∫ ∞

0
ωrdr. (2.23)

Together, equations (2.10), (2.16) and (2.23) describe the vertical motion of a
buoyant plume. In this form however, the equations cannot be solved due to the
uncertainty surrounding the turbulent entrainment occurring at the edge of the plume,
specifically the magnitude of ue and its dependence on z. The following section will
provide insight into how this problem was addressed by the authors originally confronted
with this issue.
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2.5 Plume theory

The term ‘Plume theory’ is generally associated with the work of Morton, Taylor and
Turner (1956), who are widely credited for their research concerning the dynamics of
free turbulent flows rising from point sources of buoyancy. In the following sections, the
assumptions of Morton et al. (1956) and other authors prior (all of which are inherently
built into the conservation equations derived previously) are discussed and the early
solutions explaining the motion of plumes, including the approach for turbulence
closure, are presented for flows rising through both uniform and stratified ambients.

2.5.1 Self-similarity and the entrainment assumption

Plumes are conical in shape and, in general, considered to be self-similar (Turner,
1979). Even in the earliest work of Zeldovich (1937) and Schmidt (1941), both authors
assumed that the flow above a point source of heat would be geometrically similar at
all heights. By making such an assumption, simple scaling may be utilised to determine
bulk properties of the flow, namely the vertical velocity ω and the reduced gravity
g′. In the case of turbulent plumes where molecular diffusion, heat conduction and
viscosity are all negligible, these solutions may be presented as functions of only the
source buoyancy flux B0, the plume radius r and plume height z. Following Batchelor
(1954), dimensional analysis suggests the scaling,

ω(z,r) ∼ B
1/3
0 z−1/3 exp

(
−r2

b2
G

)
, (2.24)

g′(z,r) ∼ B
2/3
0 z−5/3 exp

(
−r2

b2
G

)
, (2.25)

bG ∼ z, (2.26)

where the subscript G represents the values associated with Gaussian plume profiles, a
topic which will be further touched on in the upcoming section 2.5.2. By extension,
when considering (2.24) and (2.26), the scaling for the self-similar values of the plume
volume and momentum fluxes may be written as,

Q ∼ B
1/3
0 z5/3, (2.27)

M ∼ B
2/3
0 z4/3. (2.28)
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As specifically detailed by Batchelor (1954), upon the comparison of (2.27) with
(2.10), the volume conservation equation specifying the rate of entrainment at the edge
of the plume, it becomes clear that

ue ∼ z−1/3, (2.29)

which when considering the scaling proposed in equation (2.24) suggests

ue = αω, (2.30)

where α is the entrainment coefficient. The use of this coefficient provides closure to the
turbulence problem presented in section 2.4, and was first suggested by Sir Geoffrey I.
Taylor in his work in 1945 concerning the dynamics of the hot gases produced following
a large explosion (Taylor, 1945), before being heavily popularised later by Morton et al.
(1956).

In the years that have followed, the use of the entrainment assumption has proven
to be incredibly accurate at predicting plume properties, including the terminal height
of plumes rising through stratified environments (see section 2.5.3) over a wide range of
scales (Kaye, 2008; Turner, 1986). This suggests that the assumption of self-similarity
is a reasonable one, at least for plumes rising large distances from the source (Carazzo
et al., 2006), however some uncertainty remains surrounding the appropriate values
for α. Experiments have shown values of entrainment coefficient varying between
0.065 < αj < 0.080 for momentum-driven flows and 0.10 < αp < 0.16 for flows driven
by buoyancy (Carazzo et al., 2006; Fischer et al., 1979; Linden, 2000). Although
measurement uncertainty may play some part in this variance, it has been proposed
that the observed differences may be the result of the flow’s initial conditions, with both
buoyancy (Kaminski et al., 2005) and kinetic energy (van Reeuwijk and Craske, 2015)
influencing the rate of entrainment, the latter being a key characteristic of the plume
model developed by Priestley and Ball (1955). George (1989) has also argued that the
differences in α are the result of the assumed self-similarity and in fact, a multiplicity
of self-preserving states exist, each of which is a unique function of the flow’s initial
conditions. Irrespective of the origin of these differences, there is a consensus that the
entrainment coefficient in momentum-driven jets is less than the value associated with
plumes.
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2.5.2 Gaussian and top-hat profiles

As shown in equations (2.24) and (2.25), a plume’s velocity and buoyancy are both
functions of height and radius. If one were to take a time-average across a plume,
the radial profiles of these properties may both be represented using Gaussian curves
(Turner, 1979). This radial profile was first proposed as a numerical solution by Schmidt
(1941) and then later proven experimentally by Rouse et al. (1952).

Since this early work, the relative widths of the Gaussian profiles associated with
the vertical velocity and buoyancy have been of interest. Taken as the radial distance
where the property amplitude has decreased to 1/e of the value at the central axis,
Papanicolaou and List (1988) determined that the width of the buoyancy profile
exceeded that of the velocity profile, yet a few years later Shabbir and George (1994)
found the opposite. This ratio of profile widths has previously appeared within the
Gaussian forms of the conservation equations, however, as this value is very close to
unity, it is generally ignored for simplicity.

To further simplify the approach, many other authors including Morton et al.
(1956) have assumed that the plume properties have a ’top-hat’ profile, where a single,
radially-averaged value exists inside the plume and another value, usually equivalent to
zero, exists outside it. The differences between the two approaches are shown visually
in Figure 2.2 and presented mathematically as

Gaussian: ω = ωG exp
(

−r2

b2
G

)
, 0 < r < ∞ (2.31)

Top-hat:


ω̄ = ω̄, r < b

ω̄ = 0, r > b

(2.32)

where ωG represents the Gaussian centre line velocity. Note here that both the visual
and mathematical representations of the differences are consistent for the reduced
gravity.

As one might expect, differences also exist in the definition of the plume fluxes when
utilising Gaussian profiles. Through substituting (2.31), and the equivalent reduced
gravity definition, for their top-hat representations in equations (2.8a–c), the Gaussian
centre line flux terms may be written as
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bGb

ω

ωG

ω

r

Fig. 2.2 Schematic of radial velocity profiles in a plume when considering both Gaussian
( ) and ’top-hat’ ( ) assumptions.

Q = 2π
∫ ∞

0
ωG exp

(
−r2

b2
G

)
rdr = πb2

GωG, (2.33a)

M = 2π
∫ ∞

0
ω2

G exp
(

−2r2

b2
G

)
rdr = 1

2πb2
Gω2

G, (2.33b)

B = 2π
∫ ∞

0
ωGg′

G exp
(

−2r2

b2
G

)
rdr. = 1

2πb2
GωGg′

G. (2.33c)

Evaluating the top-hat fluxes between r = 0 and r = b gives

Q = πb2ω̄, M = πb2ω̄2, B = πb2ω̄ḡ′, (2.34a-c)

which then, upon equating (2.34a-c) with equations (2.33a–c), allows the relationship
between Gaussian and top-hat properties to be realised as

ω̄ = 1
2ωG, ḡ′ = 1

2g′
G, b =

√
2bG. (2.35a-c)
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The entrainment coefficient also varies depending upon the shape of the plume
profiles selected and from conservation of volume, the relationship is determined as

α =
√

2αG. (2.36)

From this point forward, unless directly specified, all plume properties and equations
assume top-hat profiles.

2.5.3 Plume equations

Widely credited for being the pioneer of simple plume theory, Morton et al. (1956)
utilised three core assumptions in their work, the ideas of which have been introduced
in the previous subsections. Firstly, the rate of entrainment at the edge of the plume
is proportional to some characteristic velocity at that height i.e. α = ūe/ω̄. Secondly,
the top-hat profiles of velocity and buoyancy are self-similar at all heights above the
source and finally, the flow is Boussinesq with the largest local variations in density
being small compared to some reference density. Utilising these three assumptions,
the conservation equations could be closed for turbulence, giving a result which today
is generally known as the plume equations, written below in terms of the volume,
momentum and buoyancy flux,

dQ

dz
= 2α(πM)1/2, (2.37a)

dM

dz
= BQ

M
, (2.37b)

dB

dz
= −N2Q. (2.37c)

Along with the plume fluxes, an additional term known as the Brunt-Väisälä
frequency or ambient buoyancy frequency appears in the equations. This frequency,
defined as

N =
√

− g

ρ0

dρe

dz
, (2.38)
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dictates the rate at which a fluid parcel, displaced vertically from its height of neutral
buoyancy, oscillates within a density stratified ambient.

In an unstratified environment, N = 0 and the plume buoyancy flux remains constant
at all heights above the source. In this case, (2.37a) and (2.37b) may be combined to
determine the constants associated with the similarity solutions specified in section
2.5.1 as,

ω̄ = 5
6α

( 9α

10π

)1/3
B

1/3
0 z−1/3, (2.39)

ḡ′ = 5
6πα

( 9α

10π

)−1/3
B

2/3
0 z−5/3, (2.40)

b = 6α

5 z. (2.41)

Although such a result is possible for plumes rising through uniform fluid, the
same cannot be said for plumes in environments where N > 0. The key difference
between stratified and unstratified plumes is the decay of buoyancy with height, a fact
which is clearly identifiable from the buoyancy equation (2.37c). In a stably stratified
environment, where density decreases with height, the plume will eventually become
neutrally buoyant with its surroundings due to the entrainment of ambient fluid. As the
density difference drives the change in vertical momentum, the momentum of the flow
will also then decay to zero before the flow then falls back against itself and spreads
radially at a height of neutral buoyancy. This behaviour is significantly more complex
than its unstratified counterpart and obviously the same assumptions of self-similarity
do not hold, especially above the height where buoyancy reduces to zero. Morton et al.
(1956) identified this, but suggested that as entrainment is a function of the plume’s
vertical velocity, the level of entrainment at this height would be reasonably small and
would only result in a small error in their model’s ability to predict plume rise height.
Through numerically integrating dimensionless forms of their equations with the initial
conditions Q0 = M0 = 0 and B0 > 0 at z = 0 (see Figure 2.3), they determined the
following solutions for height and volume flux,

z = 2−5/8π−1/4α−1/2B
1/4
0 N−3/4ẑ, (2.42)

Q = 25/8π1/4α1/2B
3/4
0 N−5/4Q̂, (2.43)

where ẑ and Q̂ are numerical constants.
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Fig. 2.3 The solution of the plume equations (2.37a–c) with respect to height as pre-
sented in Morton et al. (1956). The values of R, U and 1

2∆ correspond to dimensionless
values of plume radius, velocity and buoyancy.

With a value of ẑm = 2.8 for the height where velocity disappears, good agreement
was found with laboratory experiments when using α = 0.118. Equation (2.42) was later
found to be suitable at also predicting the heights of large scale plumes including those
associated with oil fires (Briggs, 1969) and explosive volcanic eruptions (Sparks, 1986).
Since this initial approach, more complex models including large eddy simulations
(LES) have been conducted and have found the value of ẑm to vary between 2.72-
2.82 using similar values of entrainment coefficient (Rooney and Devenish, 2014a).
This alignment with the early solution of Morton et al. (1956) is quite extraordinary,
especially considering (2.42) ignores a significant amount of the physics influencing the
flow behaviour (Turner, 1986).

However, the same cannot be said for the spreading height and the final volume flux
solutions as both are significantly influenced by any entrainment of lighter fluid into
the plume between the neutral buoyancy height and the maximum plume height. In
addition to this, there is potential for further entrainment into the descending fountain
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at the top of the plume; a phenomenon which has been the focus of a number of studies
including Cardoso and Woods (1993) and Debugne and Hunt (2016). The numerical
constant for the neutral buoyancy height was determined to be ˆzB=0 = 2.125, with
Morton et al. (1956) suggesting the spreading height would occur at some point between
the neutral buoyancy and maximum heights. Theoretical work since has suggested a
range of 2.22 < ẑs < 2.39 for the spreading height (Briggs, 1982; Devenish et al., 2010)
and this is supported by recent experimental measurements (Richards et al., 2014),
once the appropriate virtual source corrections are applied (see section 2.5.4).

Finally, in the case of the volume flux, constant values in (2.43) range between
1.64 < Q̂s < 1.95 (Rooney and Devenish, 2014a) which clearly is a much wider range
than the constant associated with the maximum plume height. Previous authors have
correlated the final volume flux to the terminal height of plumes in nature (see Bursik
et al., 1992), however such a method may not be appropriate due to the range of Q̂s.
In addition, (2.43) does not account for plume top entrainment, nor other complexities
such as the influence of multiple phases or real, non-idealised sources (Woods, 1988).

2.5.4 Forced plumes

The dynamics of plumes described to this point have all been what one in the field
would call pure, which simply refers to a plume rising from a virtual point source
of buoyancy with zero volume or momentum flux. Such conditions allow the flow
behaviour to be characterised only by the source buoyancy, however in both nature
(see Woods, 1988) and the laboratory (Fan, 1967; Fox, 1970), plumes tend to rise from
area sources where Q0 and M0 are non-zero (Hunt and Van den Bremer, 2011).

When considering a real plume source, the balance of natural and forced convection
can be presented as the source Richardson number,

Ri0 = b0ḡ′
0

ω̄02 , (2.44)

which from inspection shows Ri0 → ∞ for a pure plume and Ri0 → 0 for a pure
momentum-driven jet. Irrespective of the source conditions, plumes are expected to
forget their initial conditions, tending towards self-similar behaviour after rising a
certain distance from the source (Turner, 1986). This characteristic is revealed upon
assessing the same balance of natural and forced convection at any height above the
source of a pure plume. This local Richardson number is defined as
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Ri(z) = b(z)ḡ′(z)
ω̄(z)2 , (2.45)

and importantly, has been found to be constant at all heights in a pure plume rising
from a virtual source with various studies arriving at a generally accepted far-field
value of Rip ≈ 0.56 (Fischer et al., 1979).

Taking advantage of this observation, the dynamics of plumes rising from non-
idealised sources have been assessed by many authors in terms of a scaled Richardson
number (Ezzamel et al., 2015; Hunt and Kaye, 2001; van Reeuwijk et al., 2016),

Γ0 = Ri0
Rip

= 5
8απ1/2

Q0
2B0

M0
5/2 , (2.46)

where the real source fluxes are defined as Q0 = πb2
0ω0, M0 = Q0ω0 and B0 = Q0g′.

This parameter was first utilised by Morton (1959), and later by Morton and Middleton
(1973), extending his work on simple plume theory such that it could also be applied
to real plume sources. Arguably, one of the most important takeaways from these two
early works is the ability to classify the plume as pure (Γ0 = 1), lazy (Γ0 > 1) or forced
(Γ0 < 1); a result which subsequently enables the location of a real plume’s virtual
source to be predicted. Most recently worked on by Ciriello and Hunt (2020), the
solution of Morton (1959), shown graphically in Morton and Middleton (1973) and
provided explicitly by Hunt and Kaye (2001), is written as

− zv + zavs

Lm
=
(

100
16α2

pπ

)1/4 ∫ 1

γ
v3(v5 −γ5)−1/2 dv +

(
0.078
α2

pπ

)1/4
γ3/2, (2.47)

where zv and zavs correspond to the exact and asymptotic corrections, the latter only
being appropriate at large distances from the source; and γ = (1 − Γ0)5. Lm is the
momentum jet length scale and is defined as

Lm = M
3/4
0

B
1/2
0

. (2.48)

When considering plumes rising through stratified environments, an additional
length scale associated with B0 and N is present (Kaye, 2008), the scaling of which is
given in (2.42). When combined with (2.48), the dimensionless parameter
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σ =
(

M0N

B0

)2
, (2.49)

may be written, detailing the relative magnitudes of jet length and plume rise height
or alternatively, the timescale for the flow rise to z = Lm with respect to the ambient
stratification strength (Richards et al., 2014). Again introduced by Morton (1959)
and utilised by others since (Bloomfield and Kerr, 2000; List, 1982), the buoyancy
frequency parameter allows forced stratified plumes to be compared to those with
zero momentum at the source. Specifically, when σ is small, buoyancy forces drive
the flow’s motion once the influence of stratification becomes important. Conversely,
momentum forces dominate when σ is large, note however that the definition of large
varies between σ > 1 (List, 1982) and σ > 49 (Richards et al., 2014). Irrespective of
the transitional value, the rise height of the flow can be characterised as a function of
σ with z/Lm ∼ σ−3/8 for σ ≪ 1 and z/Lm ∼ σ−1/4 for σ ≫ 1 (Fischer et al., 1979).

Together, Γ0 and σ are important in understanding the behaviour of forced plumes
with both values being used recently to model the rise height of forced plumes (Mehaddi
et al., 2013), in addition to determining the appropriate transitional values of the
entrainment coefficient (Papanicolaou et al., 2008; van Reeuwijk and Craske, 2015).

2.6 Multiphase plumes

The introduction of a secondary phase to the flow, whether that be particles or bubbles,
has a significant influence on the plume’s dynamics. The following sections provide
an insight into the behaviour associated with both particle-laden plumes and bubble
plumes.

2.6.1 Particle-laden plumes

A particle-laden plume is a flow which prominently consists of buoyant gas or liquid
with a dispersed phase of dense, negatively buoyant particles. Due to their interest in
understanding the dynamics of volcanic eruption columns, Carey, Sigurðsson and Sparks
(1988) conducted the first experiments on particle-laden plumes and characterised the
flow’s buoyancy flux as a combination of the buoyancy contributed by the two phases,

B0 = B0,f +B0,p, (2.50)
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where the individual fluid and particle buoyancy fluxes are defined as

B0,f = Q0g
(1−ϕ0)(ρ0 −ρf )

ρ0
, (2.51)

B0,p = Q0g
ϕ0(ρ0 −ρp)

ρ0
, (2.52)

with ϕ0 representing the source particle volume fraction and ρp as the particle density.
Unlike particle or sediment plumes where dense particles are fed from a point

source at a free surface to create a sinking plume (see Reingold, 1994), particle-laden
plumes are produced within the ambient fluid and distinctly differ due to the physical
interactions which occur between the plume and the particles. In a sinking sediment
plume, once the plume reaches the floor or the height of neutral buoyancy, the particles
do not interact with the plume flow. In the case of a particle-laden plume however,
after spreading either at the free surface of a uniform environment or at the height of
neutral buoyancy in a stratified ambient, the particles decouple from the radial flow
and settle into the environment below effectively changing the bulk density of the fluid
which the plume is rising through. From their experimental observations in a uniform
environment, Carey et al. (1988) specifically described how the particles settling from
the intrusion were pulled towards the plume, creating a veil of sedimenting particles
around the convective flow. They also noted that the portion of particles settling close
to the plume were re-entrained, whereas particles decoupling at greater radial distances
simply settled onto the floor.

The authors believed the process of re-entrainment strongly impacted the plume
dynamics and shortly after this initial work, released a subsequent paper modelling
particle sedimentation from the lateral intrusion (Sparks et al., 1991). This work
included two important derivations which have since shaped the approach to modelling
particle-laden plumes. Firstly, the critical intrusion radius for particle re-entrainment,

r2
c = 6

5ust

(
9α4

10π

)1/3
B

1/3
0 z5/3

s , (2.53)

where ust is the particle settling velocity; and secondly, the expected particle concen-
tration profile along a well-mixed intrusion,

ϕ(r) = ϕs exp
[
−πust

Qs
(r2 − b2

s)
]

, (2.54)
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Fig. 2.4 Schematic of a particle-laden plume in a uniform environment, as shown by
Zarrebini and Cardoso (2000)

where the subscript s denotes the value of these parameters at the plume spreading
level.

The work of Carey et al. (1988) and Sparks et al. (1991) has led to a number of
studies concerning sedimentation patterns of particle-laden plumes including work
interested in mono (Zarrebini and Cardoso, 2000) and polydispersed (Cardoso and
Zarrebini, 2001b) particles, particle fall-out from the plume margins (Ernst et al.,
1996) and the non-intrusive measurement of sediment depth in a stratified ambient
(Sutherland and Hong, 2016). Although useful, potentially of even more interest is the
actual influence of particle re-entrainment on plume dynamics. Using similar forms of
(2.53) and (2.54), combined with the assumption that the plume velocity significantly
exceeds the particle settling velocity, the particle volume fraction at the spreading
height may be written as

ϕs = Q0ϕ0e1

Qs
. (2.55)

This result, given by Veitch and Woods (2000), Zarrebini and Cardoso (2000) and
Apsley and Lane-Serff (2019), shows that re-entrainment increases the spreading height
concentration by a factor of e1 compared to the case where no particles are re-entrained.
Importantly, when the source concentration of a particle-laden plume is small, this e1
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factor has little influence on plume behaviour, however once some threshold source
concentration is exceeded, the plume dynamics appear to change significantly. For
plumes with a source concentration of less than 10 gL−1, Carey et al. (1988) described
the plumes as dilute with similar dynamics to a single-phase plume. However, in their
experiments with larger source concentrations, they observed the development of gravity
flows at the edge of the plume and in some cases complete collapse of the umbrella
region. Other experimental works investigated ambient convection in particle-laden
plumes with Cardoso and Zarrebini (2001a) developing a criterion for the onset of
convection at the edge of the plume after Veitch and Woods (2000) characterised the
plume dynamics using the ratio of particle to fluid buoyancy flux at the source,

P = −B0,p

B0,f
≈ ϕ0(ρp −ρ0)

(ρ0 −ρf ) . (2.56)

Using this ratio, Veitch and Woods (2000) found that convective downflows developed
around the plume for P > 0.2 and once above P ≈ 0.6, the plume tended to collapse
and oscillate about the source.

Since the turn of the century, experiments have been conducted to better understand
how plumes transport particles through a ventilated space (Mingotti and Woods, 2015),
as well as their behaviour in stratified ambients. The first experimental work on
particle-laden plumes in stratification was conducted by Guillaume Carazzo and Mark
Jellinek, who published two studies investigating the dynamics and stability of intrusions
produced by negatively buoyant particle-laden jets in a two-layer stratification (Carazzo
and Jellinek, 2012, 2013). Although more representative of plumes in nature than
experiments in a uniform environment, the absence of a linear density gradient inhibits
dynamic behaviour which is likely to occur in particle-laden plumes rising through
stratified environments, such as the ocean or the atmosphere. Examples of this
behaviour includes the depression of the plume rise height and the development of
secondary intrusions. As a particle-laden plume initially rises, the plume entrains
particle-free ambient fluid, however, over time the particles settle from the intrusion
and the environment at the edge of the plume also becomes laden with particles. This
effective change in stratification strength (dN/dt ̸= 0) causes the evolution of plume
buoyancy with height to change, resulting in new lower maximum and neutral buoyancy
heights being achieved.

In two of the first experimental works in linear stratification, Mirajkar et al. (2015)
and Sutherland and Hong (2016) both observed this decrease in plume height and both
proposed empirical equations to fit their results. Although the plume spreading heights
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were presented, Mirajkar et al. (2015) only attempted to develop a prediction for the
maximum steady-state height and using dimensional analysis, the authors proposed

zm =
[
4.4−450

(
ϕ0ust

(B0,f N)1/4

)]
B

1/4
0,f N−3/4, (2.57)

with the value 4.4 determined from (2.42) using ẑ = 2.8 and α = 0.096, and the value 450
to achieve an appropriate fit to their results. Notably, this equation ignores the negative
buoyancy flux at the source by only utilising B0,f and also assumes some dependence
on the particle settling velocity, yet ust remained constant in their experiments.

Conversely, Sutherland and Hong (2016) only reported on the plume spreading
height and due to their plumes having a large momentum flux at the source, presented
their results as

zs

Lm
= 2.3(±0.4)σ−0.45(±0.07), (2.58)

for σ < 30. The multiplier of 2.3 here is less than that associated with single-phase
plumes (Richards et al., 2014) and the power of −0.45 is similar to the theory detailed
in section 2.5.4, however, it is important to note that their experiments were only
conducted over a period of 90 seconds and were potentially too short to achieve a
steady state.

Since these initial works, Apsley and Lane-Serff (2019) developed a model detailing
the decrease in height and potential collapse of a pure particle-laden plume. Using the
theoretical particle trajectory between the intrusion and the edge of the plume, the
steady-state height of the plume may be written as a function of the source buoyancy
flux ratio,

z∞
z0

=
(

|j|
1+ |j|

)1/4
, (2.59)

where j = (1 − Pc/P )/(1 − Pc) with the critical ratio for pure plumes notably equiv-
alent to the inverse of the re-entrainment coefficient presented in (2.55), Pc = e−1.
The parameters z∞ and z0 are the steady-state and initial plume heights, the latter
determined using (2.42) with any given value of ẑ. This work has yet to be compared
to any experiments and it is expected that its success will rely on the assumption of
a quiescent environment. Importantly, in the event of any convective motion around
the plume (as observed in the experiments of Carey et al., 1988; Veitch and Woods,
2000; and Cardoso and Zarrebini, 2001a), the particle trajectory will no longer follow
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a defined path and thus, (2.59) would no longer be suitable to predict the plume
steady-state height.

A second point of interest is the development of secondary intrusions, a phenomenon
which has previously been observed in explosive volcanic eruptions (Sparks et al., 1986;
Woods and Kienle, 1994). The first experimental interest in such behaviour was by
Holasek et al. (1996), who conducted experiments simulating the separation of ash and
gas in volcanic umbrella plumes. Their experiments involved the injection of particle-
laden fluid into a stratified environment at the height of neutral buoyancy and over
time, this current separated to form a ’particle-poor’ intrusion above a ’particle-rich’
intrusion. The authors stated that similar intrusions could be formed by particles
settling from the umbrella cloud of a continuous particle-laden plume supplied from
below. However, they also stated that the entrainment of ambient fluid back into the
plume would significantly weaken the visual effect of multiple intrusions. Apsley and
Lane-Serff (2019) also commented on the potential for the intrusion of a particle-laden
plume to rise following the sedimentation of particles, however stated specifically that
they did not expect such a rise to occur.

Contrary to the hypothesis proposed by Holasek et al. (1996), and later reiterated
by Apsley and Lane-Serff (2019), the recent experimental work of Mingotti and Woods
(2020) showed the development of multiple umbrella structures produced by a bottom
supplied particle-laden plume rising through a stratified environment (see Figure
2.5a). These authors quantified the change in height between the particle-poor and
particle-rich intrusions as

−∆zs = 0.83
(

B0,p

B0

)
B

1/4
0 N−3/4, (2.60)

by simply comparing the magnitude of particle and total buoyancy fluxes at the source.
When compared to their experimental results, (2.60) generally underpredicted their
observations, yet this was expected due to discounting particle re-entrainment effects.

As well as observing interesting behaviour above the primary intrusion, equally
interesting dynamics unique to stratified particle-laden plumes are observed between
the intrusion and the plume source. Beneath the primary intrusion, Mirajkar et al.
(2015) described the presence of a parabolic cloud of dyed fluid and particles before, in
a second paper, proposing a criterion for its collapse to the source as a function of the
Richardson number (Balasubramanian et al., 2018). Arguably more noteworthy in both
works was the development of a secondary intrusion between the primary intrusion and
the source. Although a significant feature of their plumes (Figure 2.5b/c), in neither
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Fig. 2.5 (a) Series of photographs of an experiment B0 = 290 cm4s−3, N = 0.73 s−1, σ = 26.3, ϕ0 = 0.42% performed by
Mingotti and Woods (2020) (b) Series of photographs of an experiment B0 = 187 cm4s−3, N = 0.67 s−1, σ = 9.41, ϕ0 = 0.70%
performed by Balasubramanian et al. (2018) (c) A photograph of an experiment B0 = 333 cm4s−3, N = 0.67 s−1, σ = 2.99,
ϕ0 = 0.70% performed by Mirajkar et al. (2015)
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case did the authors attempt to characterise the plume conditions required to develop
such structures.

To conclude this section, it is important to mention that in all of the studies
discussed above, with the exception of Ernst et al. (1996), the characteristic velocity
of the plume, written as (B2

0/M0)1/4 in a uniform environment and (B0N)1/4 in a
stratified environment, is much greater than the settling velocity of the dispersed
particles. In the event that the plume velocity is less than the particle settling velocity,
particles will likely fall out from the plume margins and there may even be the potential
for a complete flow regime change as observed by Mingotti and Woods (2016) for
particle-laden fountains. In the case of the particle-laden plume experiments presented
in this thesis, all particles are expected to be transported to the plume maximum as
(B0N)1/4 ≫ ust.

2.6.2 Bubble plumes

Multiphase bubble plumes develop above point source releases of gas in liquid environ-
ments and are characterised by a buoyancy flux,

B0 = Qbg
(ρ0 −ρb)

ρ0
, (2.61)

where Qb and ρb represent the bubble flowrate (or volume flux) and bubble density.
Notably, as ρ0 ≫ ρb, the scaled density deficient tends towards a value of one and
therefore,

B0 ≈ Qbg. (2.62)

Like other plumes, at a short distance above the source the rising bubbles create
turbulent eddies which result in the entrainment of ambient liquid into the bubble core.
In the early work of Sjöberg (1967) and Kobus (1969), both were specifically interested
in experimentally measuring the rate of entrainment with respect to gas flowrate. These
measurements were shortly followed by the derivation of the first bubble plume integral
model by Cederwall and Ditmars (1970), who utilised the entrainment assumption to
describe the flow behaviour. In this work, as well as in the two prior models, both a
mean plume velocity and a bubble slip velocity entered the equations. Also despite
the large density difference at the source, the flow was modelled under the Boussinesq
approximation due to the significant dilution quickly achieved by liquid entrainment.
A more comprehensive integral model was later presented by Milgram (1983) who,
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through analysing an array of experimental data, determined that bubble plumes
are not strictly self-similar and that both the plume entrainment coefficient and the
momentum amplification factor (described as the ratio of the total momentum flux to
the momentum flux carried by the mean flow) are functions of local plume properties.

Before Milgram (1983), the influence of ambient stratification on bubble plumes
was explored both experimentally and theoretically by McDougall (1978). In his work,
McDougall (1978) found that bubble plumes differ from single-phase plumes as the
bubbles can rise faster than the liquid phase; and in a stratified environment, the gas
continues to rise beyond the height at which simple plume theory predicts the plume
will lose it’s momentum. The same however is not the case for the liquid in the plume
which peels away from the bubble core and spreads as a radial intrusion. To explain
this complex behaviour, a double plume model was proposed with a central rising
plume comprised of both liquid and bubbles and an outer descending plume which
contributes only towards intrusion formation (Figure 2.6).

This model formulation was extend by Asaeda and Imberger (1993) to compare
the intrusion heights in their experiments to the theory. Notably both McDougall
(1978) and Asaeda and Imberger (1993) used similar non-dimensionalisation variables
in their modelling approaches. Two of these key parameters, written following the
nomenclature of Asaeda and Imberger (1993), are

PN = N3H4

B0
, (2.63)

MH = B0
4πα2u3

bH
, (2.64)

where ub is the bubble slip velocity and H corresponds to the depth of the liquid
reservoir. As well as being utilised in their modelling process, Asaeda and Imberger
(1993) used (2.63) and (2.64) to characterise three bubble plume flow regimes (see
Figure 2.7). First described by themselves a few years earlier (Asaeda and Imberger,
1989), they found that in the case of high gas flowrate and weak stratification (type 1),
the flow created is reminiscent of a single-phase plume in a uniform environment where
the liquid is carried by the bubbles up to the top of the reservoir, creating a liquid
surface current. In type 2 plumes, those with moderate flowrates and stratification
strengths, the plume creates a number of defined intrusions between the source and
the surface; and for low flowrates and strong stratification (type 3), the plume emits
multiple unsteady subsurface intrusions.
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Fig. 2.6 Schematic of the double-plume structure proposed by McDougall (1978). The
three horizontal lines correspond to points of interest in his model. Specifically, the
vertical liquid velocity almost vanishes at level A; the upwards and downwards volume
fluxes are equivalent at level B; and the double-plume model restarts at level C.

Although the transition between regimes could be determined using PN and MH ,
the transition was not well defined until the work of Scott Socolofsky in the early 2000s.
First presented in his thesis (Socolofsky, 2001) and later in a set of papers co-authored
with his thesis supervisor (Socolofsky and Adams, 2002, 2003, 2005), he showed that
all bubble plume types could be well defined using the term UN , which he coined the
non-dimensional slip velocity. Using a combination of the previous parameters, UN is
defined as

UN =
(

4πα2MHP
1/4
N

)−1/3
= ub

(B0N)1/4 , (2.65)

where the denominator is simply the plume velocity scale. From his experiments and
the data provided by Asaeda and Imberger (1993), type 1 plumes occur for UN < 1.5;
type 2 for 1.5 < UN < 2.4; and type 3 for UN > 2.4 (Socolofsky and Adams, 2003).

Due to the large vertical extent of his experimental tank, Socolofsky (2001) also
defined a fourth plume regime as type 1*, which simply refers to a type 1 plume
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Fig. 2.7 Schematic of bubble plume regimes from Socolofsky (2001). Note that the
trap height, hT in his nomenclature, is equivalent to the spreading height zs.

where the height of neutral buoyancy is less than the liquid height. The height of
neutral buoyancy was initially likened to the height of the intrusion spreading from
the plume and Socolofsky (2001) proposed the following empirical equation to predict
this so called trap height (or spreading height) as a function of the non-dimensional
slip velocity,

zs

(B0/N3)1/4 = 2.8−0.27UN , (2.66)

with 2.8 being the equivalent neutral buoyancy height for a single-phase plume (UN = 0).
Along with heights of interest, Socolofsky (2001), and later in Socolofsky and Adams
(2005), presented similar empirical predictions for the liquid volume fluxes associated
with a bubble plume. Using these predictions, they also quantified the efficiency
at which liquid peeled from the bubble core and found a decreasing efficiency with
increasing slip velocity, aligning with their qualitative regime observations.

The bulk properties of bubble plumes, namely height and liquid volume fluxes, have
continued to be of interest with several authors presenting different approaches to the
problem since. Crounse et al. (2007) and Socolofsky et al. (2008) both adopted the
double-plume integral approach initially proposed by McDougall (1978). However, in
both cases, they focused their efforts on capturing the appropriate levels of entrainment
occurring between the ambient and the inner and outer plumes such that the trap
height and liquid volume fluxes could be predicted and compared to earlier experiments.
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A new integral approach was taken by Chu and Prosperetti (2017), who formulated
a single-plume integral model utilising a scaled Richardson number and buoyancy
frequency parameter, similar to those discussed in section 2.5.4. Unlike previous
studies, they recognised the distinct difference between the neutral buoyancy height in
the plume and subsequent spreading height of the intrusion. Due to the advancement
in computing, large eddy simulations (LES) of bubble plumes have been conducted
and the impact of modelling the additional turbulent processes on predicting bulk
quantities has been discussed (Yang et al., 2016; Zhou, 2020).

Although intrusion heights and liquid volume fluxes associated with bubble plumes
have been of interest for over twenty years, another bulk quantity, the concentration of
dissolved species, has been less studied despite the obvious mass transfer applications.
Work has been conducted in regard to the effect of bubble dissolution on plume
dynamics (Chu and Prosperetti, 2019; Domingos and Cardoso, 2013; Socolofsky and
Bhaumik, 2008), however there has been little to no interest on how dissolved species
is transported both vertically and radially throughout the water column.

In addition to the work conducted on bulk bubble plume properties in quiescent
stratified environments, bubble plume research has spanned quite broadly with wide
interest into areas including mixing processes (Baines and Leitch, 1989; Chen and
Cardoso, 2000; Neto et al., 2016); plumes in cross-flow (Socolofsky, 2001) or rotating
environments (Fabregat Tomàs et al., 2017); and detailed observations of velocity
profiles (Seol et al., 2007) and turbulence (Lai and Socolofsky, 2019). For further
details, see the recent bubble plume review of Boufadel et al. (2020).

2.7 Submerged axisymmetric intrusions

A common thread between all stratified plumes, irrespective of phase, is the develop-
ment of lateral axisymmetric intrusions near the plume’s height of neutral buoyancy.
Assuming no additional entrainment of ambient fluid, the plume intrusion spreads with
a flowrate,

Qs = 2πRiLiui, (2.67)

where Ri, Li and ui denote the radius, thickness and velocity of the intrusion. Many
previous authors have investigated the spreading behaviour of submerged gravity
currents in stratified fluid. Whether generated by turbulent plumes (Kotsovinos, 2000;
Lemckert and Imberger, 1993a; Richards et al., 2014) or simple box withdrawal (Chen,
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1980; Ivey and Blake, 1985; Zatsepin and Shapiro, 1982), such intrusions follow two key
flow regimes. At small times (and small radial distances), inertial forces are important
and the flow spreads according to a balance of the buoyancy and inertia forces. At large
times, radial spread of the current is dictated by a balance of buoyancy and viscous
forces. According to Ungarish (2009), the forces acting on a submerged intrusion are
written as

FB = ρiN
2L3

i Ri, (2.68)

FI = ρiLiRiu
2
i , (2.69)

FV = ρivR2
i ui

Li
, (2.70)

where FB, FI and FV are the buoyancy, inertial and viscous forces acting on the
current; and ρi is the intrusion density.

A comparison of FB and FI shows that the intrusion velocity in the inertia-buoyancy
regime is dictated by a Froude number, Fr = ui/NLi, which when substituted into
(2.67) gives

ui = dRi

dt
=
(

FrQiN

2πRi

)1/2
. (2.71)

Through integration, it is found that the intrusion radius in this regime may be written
as a function of time t as

Ri =
(9Fr

8π

)1/3
(QiN)1/3 t2/3. (2.72)

Note here that the theoretical Froude number of an intrusion spreading in a stratified
ambient is Fr = 0.25 (Bolster et al., 2008), resulting in a constant of proportionality of
0.45. This value is similar to experimental findings (Lemckert and Imberger, 1993a),
yet significantly differs from the constant of 0.802 determined asymptotically by Chen
(1980).

A few other authors, including those investigating intrusions emanating from
particle-laden plumes, extended this analysis for constant intrusion buoyancy Bi using
the relation Bi ∼ QsN

2Li (Kotsovinos, 2000; Mirajkar et al., 2015; Richards et al.,
2014). This approach gives a different scaling of t3/4 yet, as described by Rooney
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and Devenish (2014a) and Johnson et al. (2015), requires assumptions to be made
which do not hold in a stratified environment. Firstly, it assumes buoyancy flux is
conserved across the intrusion, however, this is not true due to the flux of buoyancy
between the upper and lower halves of the current to keep it well mixed. Taking a
constant intrusion buoyancy flux also inherently utilises the assumption of Didden and
Maxworthy (1982). They stated that stratification is unimportant in regard to the
spread of a gravity current when the density difference between the current and the
environment is large compared to the change in ambient density across the current
depth. For an intrusion spreading at the height of neutral buoyancy in a stratified
environment, this is simply not the case.

At greater times and radial distances, once viscous forces become important, the
intrusion velocity reduces to

dRi

dt
= ui = N2L4

i

vRi
=
(

Q4
sN2

(2π)4vR5
i

)1/5
. (2.73)

The solution to (2.73) then gives the intrusion radius in the viscous-buoyancy regime
as

Ri =
( 2

π

)4/10(Q4
i N2

v

)1/10
t1/2. (2.74)

There is general agreement across the literature that Ri ∼ t1/2 in this regime,
however the constant of proportionality, along with the other scaling terms, appear to
differ. As in the inertia-buoyancy regime, Kotsovinos (2000) took a constant buoyancy
approach, however most other works suggest the scaling written in (2.74). The constant
of proportionality simply determined through integration is 0.83, yet this is greater
than that determined by Ungarish (2009) and much greater than those determined
experimentally. Zatsepin and Shapiro (1982) and Ivey and Blake (1985) gave values of
0.53 and 0.45 respectively, and unlike in the inertia-buoyancy case, Chen (1980) gave a
much more similar asymptotic value of 0.45.

It is worth noting that all of the studies discussed here were specifically interested
in the spreading rate of a single intrusion in stratified fluid. As detailed in section 2.6.2,
there is potential for multiple subsurface intrusions to be produced by bubble plumes
and despite the fact that bubble plume intrusions have been studied (Lemckert and
Imberger, 1993a), the influence of multiple spreading events is yet to be investigated.



Chapter 3

Steady-state dynamics of stratified
particle-laden plumes

This chapter has been published as Barnard, J.M. (2021). On the dynamics of stratified
particle-laden plumes. Journal of Fluid Mechanics, 925, A33.

3.1 Summary

An experimental study on stratified particle-laden plumes is presented and five steady-
state flow regimes have been identified. The steady-state behaviour of the plume is
directly related to the magnitude of the convective velocity associated with particle-
induced instabilities, Uc, in relation to the terminal settling velocity of each individual
particle, ust. When ust > Uc, the ratio of particle to fluid buoyancy flux at the source,
P , becomes important. For P < 0.2, the plume dynamics appear very similar to
a single-phase plume as particle recycling has minimal impact on the steady-state
plume height. When P > 0.2, the plume height decreases significantly, creating an
anvil-shaped intrusion similar to those associated with explosive volcanic eruptions.
Importantly, the measured steady-state heights of plumes within this settling regime
validate the collapse model of Apsley and Lane-Serff (2019). When ust ≤ Uc, particle re-
entrainment behaviour changes significantly and plume dynamics become independent
of P . When ust ≈ Uc, a trough of fluid becomes present in the sedimenting veil due to
a significant flux of descending particles at the edge of the plume. Once ust < Uc, the
particles spreading in the intrusion become confined to a defined radius around the
plume due to the significant ambient convection occurring beneath the current. For
ust ≪ Uc, or in the case of these experiments, when Uc ≥ 1 cms−1, ambient convection
becomes so strong that intrusion fluid is pulled down to the plume source, creating a
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flow reminiscent of a stratified fountain with secondary intrusions developing between
the original current and the tank floor. Through an extension of the work of Cardoso
and Zarrebini (2001a), an analytical expression is developed to determine the onset of
convection in the environment beyond the edge of the plume, which for a known particle
settling velocity, can be used to characterise a plume’s expected settling regime. In all
plume regimes, the intrusion fluid is observed to rise in the environment following the
sedimentation of particles and a simple model for the change in intrusion fluid height
has been developed using the steady-state particle concentration at the spreading level.

3.2 Introduction

A particle-laden plume is a multiphase convective flow comprised of fluid and particles
originating from a localised source of buoyancy. Such flows are ubiquitous in both
industry and the environment. Industrial examples include smoke plumes generated
by combustion processes and the release of wastewater effluent into marine outfalls.
In nature, explosive volcanic eruptions propel dense particles and fine ash tens of
kilometres into the atmosphere and in the deep ocean, black smokers and gas hydrate
plumes disperse metallic and carbon-rich particles in the water column.

Attention was first given to the physical behaviour and properties of particle-laden
plumes by Carey et al. (1988). In their unstratified plume experiments, they found that
low concentration or ‘dilute’ particle-laden plumes behaved similarly to a single-phase
plume with a reduced buoyancy flux. In the case of a single-phase plume, the buoyancy
flux of the plume fluid, B0,f , is produced due to the presence of a density deficit
between the fluid in the environment and the fluid in the plume. This quantity drives
the upwards motion of the flow and is defined as

B0,f = Q0g
(1−ϕ0)(ρ0 −ρf )

ρ0
, (3.1)

where Q0 is the volume flux at the source; g is acceleration due to gravity; ϕ0 is the
source particle volume fraction (which is equal to zero in a single-phase plume); and
ρf and ρ0 are the density of the plume fluid and a reference density, generally taken
as the density of the environment at the plume source. As observed by Carey et al.
(1988), when dense particles are introduced into the flow at the source, an additional
negative buoyancy flux is present and is defined as

B0,p = Q0g
ϕ0(ρ0 −ρp)

ρ0
, (3.2)
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where ρp is the particle density. In their unstratified experiments, Carey et al. (1988)
found that when the plume particle volume fraction was small (i.e. B0,f ≫ −B0,p), the
fine, dense particles were transported upwards with the plume before then subsequently
spreading with the surface gravity current. The particles were observed to decouple
from the radial flow and sediment into the ambient fluid below, creating a veil of
particles around the plume. A portion of these particles in the sedimenting veil were
re-entrained back into the main body of the plume; a process which the authors believed
strongly impacted the plume dynamics.

Following this pioneering work, other experimental studies were conducted to gain
a better understanding of the plume sedimentation behaviour (Cardoso and Zarrebini,
2001b; Ernst et al., 1996; Sparks et al., 1991; Zarrebini and Cardoso, 2000) and the
influence of particle re-entrainment on plume dynamics (Cardoso and Zarrebini, 2001a;
Veitch and Woods, 2000). Of the studies detailed above, all are associated with a
plume rising in a uniform ambient with a gravity current spreading at the surface of an
environment of finite vertical extent. Although a surface current can be compared to
an intrusion of a stratified plume which spreads close to the height of neutral buoyancy,
the absence of a linear density gradient inhibits dynamic behaviour which is likely to
occur in particle-laden plumes rising through stratified environments.

The first linearly stratified particle-laden plume experiments were conducted by
Mirajkar et al. (2015), who concentrated mostly on the maximum and spreading
heights of the plume, as well as the spreading dynamics of the submerged plume
intrusion. These authors shortly published a subsequent article, focusing their efforts
on the parabolic cloud of fluid and particles which forms beneath the intrusion near
the edge of the plume (Balasubramanian et al., 2018). Sutherland and Hong (2016)
conducted stratified particle-laden plume experiments in an attempt to non-intrusively
predict the particle sedimentation patterns using light attenuation techniques. Most
recently, Mingotti and Woods (2020) completed a series of experiments with a primary
focus of understanding the increase in intrusion interstitial fluid height following the
sedimentation of particles from the plume’s radially spreading gravity current.

Of the few authors to experimentally study stratified particle-laden plumes, all
have noted that the maximum plume height was less than that of a single-phase plume
due to particle re-entrainment. The maximum height of a single-phase plume was
originally determined by Morton et al. (1956) as

zm = 1.37α−1/2B0
1/4N−3/4, (3.3)
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where B0 is the plume buoyancy flux at the source and α is the top hat entrainment
coefficient. N is the ambient buoyancy frequency and is defined as

N =
√

− g

ρ0

dρe

dz
, (3.4)

where dρe/dz is the ambient density gradient.
Mirajkar et al. (2015) utilised an empirical method to alter (3.3) through the use of

additional constants to fit their experimental data. However, their B0 terms excluded
the negative buoyancy contributed by the particles in the plume at the source and they
also considered the influence of particle settling velocity even though this remained
constant throughout their experiments. Sutherland and Hong (2016) similarly fitted
their results for intrusion height, zs, empirically, however, due to having a relatively
large momentum flux at the source, M0, they classified their flows as forced plumes
and presented their results as

zs

Lm
= f(σ), (3.5)

where σ = (M0N/B0)2, a dimensionless parameter representing the balance between
plume rise height (zm ∼ (B0/N3)1/4) and momentum jet-length, Lm = (M3

0 /B2
0)1/4

(Kaye, 2008). Initially introduced by Morton (1959) and subsequently utilised by a
number of authors including Fischer et al. (1979) and Bloomfield and Kerr (1998),
σ allows forced flows to be compared to those with zero momentum at the source.
Specifically, when σ is small, buoyancy forces drive the flow’s motion once the influence
of stratification becomes important. Conversely, momentum forces dominate when σ is
large, note however that the definition of large varies between σ > 1 (Fischer et al.,
1979) and σ > 49 (Richards et al., 2014).

A second important parameter to compare forced and pure plumes is the scaled
source Richardson number,

Γ0 = 5
8απ1/2

Q0
2B0

M0
5/2 . (3.6)

Having been utilised in various experimental and theoretical works concerning both
single-phase and particle-laden plumes (Balasubramanian et al., 2018; Hunt and Kaye,
2001; Mehaddi et al., 2013), Γ0 allows the plume to be classified as pure (Γ0 = 1), lazy
(Γ > 1) or forced (Γ0 < 1), irrespective of the presence of an ambient density gradient.
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In a recent theoretical study by Apsley and Lane-Serff (2019), a method of predicting
the steady-state rise height of a pure particle-laden plume (σ = 0,Γ = 1) was proposed,
along with an associated collapse criterion based upon the ratio of the particle and
fluid buoyancy flux components present at the source,

P = −B0,p

B0,f
≈ ϕ0(ρp −ρ0)

(ρ0 −ρf ) . (3.7)

This theory was developed assuming that the plume maintains a defined veil of particles
and each individual particle follows a trajectory associated only with the particle settling
velocity and the inward radial velocity produced by plume entrainment. Although a
suitable assumption for dilute plumes, particle trajectory is expected to be influenced
by convective instabilities in plumes with significant particle loading at the source.

Authors of a number of experimental studies considering the behaviour of unstrati-
fied particle-laden plumes (Cardoso and Zarrebini, 2001a; Carey et al., 1988; Veitch and
Woods, 2000) found that flows with high particle concentrations at the source tended
to be unstable, and in some cases produced downward currents in the environment.
Specifically, Veitch and Woods (2000), the authors who introduced equation (3.7)
into the literature, described the narrowing of the particle veil due to the presence
of a counter-flowing collar of dense fluid around the plume for source buoyancy flux
ratios greater than P = 0.19. This value is significantly less than the critical ratio of
Pc = e−1(≈ 0.368) which Apsley and Lane-Serff (2019) proposed for the collapse (i.e.
zm ≈ 0) of a pure particle-laden plume. Additionally, direct sampling of the particle
concentration in the environment below a surface intrusion of a highly concentrated
particle-laden plume showed that ambient convection was sufficient such that the
environment became fully mixed with a particle concentration independent of height
(Cardoso and Zarrebini, 2001a).

Similar observations have been made in stratified plumes. In both Mirajkar et al.
(2015) and Balasubramanian et al. (2018), although not specifically stated by the
authors, convection appears to be present in the environment surrounding the plume
resulting in the production of a trough of plume fluid and particles below the intrusion,
which under some conditions fully collapses to the base of the tank (see Figure
8, Mirajkar et al. (2015); and Figure 4, Balasubramanian et al. (2018)). Another
interesting observation in both pieces of work is the development of a secondary
intrusion between the original current and the source, yet in neither of their papers
do the authors describe the physics leading to its development. In the concluding
remarks of Mingotti and Woods (2020), the authors specifically state that further work
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is required to understand the influence of convective sedimentation on the dynamics of
a stratified particle-laden plume.

In this paper, an attempt to further this understanding has been made by deter-
mining the transition point of a stratified particle-laden plume from undergoing dilute
behaviour to one influenced by the presence of ambient convection. A criterion for the
onset of convection at the edge of the plume has been developed, which when combined
with the source buoyancy flux ratio and the individual particle settling velocity, can be
used to characterise a total of five steady-state flow regimes. The dynamics of each
regime are qualitatively described and the respective plume heights are compared to
models currently published within the literature.

3.3 Experimental methods

Particle-laden plume experiments were conducted in the laboratory through injecting
a mixture of fresh water and particles into an acrylic tank with dimensions 69 cm x
69 cm x 50 cm. The tank was filled with aqueous saline solution to a height of 40 cm
and a linear stratification was produced using the double-bucket method (Oster and
Yamamoto, 1963). The strength of the density gradient created in each experiment is
characterised using the ambient buoyancy frequency N .

The plume fluid was supplied to an upwards directed nozzle with an internal
diameter of dn = 6 mm. This nozzle was connected to a stirred vessel, placed at a
height approximately 1 m above the nozzle, and was used to suspend the particles
in fresh water. Acid Red 1 (Azophloxine) dye was added to the plume fluid to assist
with plume visualisation, and an LED light sheet was placed outside the tank, directly
behind the plume to provide an even distribution of light when viewing experiments.

Experimental conditions are provided in Table 3.1 and were designed so that plume
dynamics could be observed for a range of source buoyancy flux ratios (P ), whilst also
varying source forcing and ambient stratification strength to give plume parameters
between the values of 10−3 < Γ0 < 10−1 and 0 < σ < 10. Such parameter selection
resulted in jet-length to plume rise height ratios between approximately 2 < zm/Lm < 8.

Particle-laden plumes, in theory, can be produced with P up to a value of 1
before becoming neutrally buoyant, however, in the case of these experiments, a
range of 0 < P < 0.8 was achieved. This experimental limitation was a result of
attempting to limit σ < 10 with a source buoyancy flux which diminishes with increases
in P , whilst also attempting to achieve an appropriate spreading height within the
tank. In addition to this, the plume feed nozzle began to block for source particle
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volume fractions exceeding 1.2%. Note that many of the experiments presented here
have source conditions exceeding the critical buoyancy flux ratio for plume collapse
Pc = e−1, however this theoretical value refers to plumes rising from virtual point
sources of buoyancy whereas the flows studied here are forced with non-zero volume
and momentum fluxes.

A source flowrate between Q0 ≈ 3 − 7 cm3s−1 was supplied to the nozzle using a
peristaltic pump. The change in height of the stirred feed vessel over a known time
was used to determine the exact flowrate and momentum flux (M0 = 4Q2

0/πd2
n) for

each individual experiment. The flow was observed to be turbulent no more than
2 cm above the plume nozzle with source Reynolds numbers between 700 and 1700.
These values are of similar magnitude to previous turbulent plume studies (Carazzo
et al., 2006). The source buoyancy flux, B0 = B0,f +B0,p, was calculated using source
values of volume flux (Q0), particle volume fraction (ϕ0) and a reference density, ρ0,
equivalent to the ambient density at the plume source. In all experiments, the positive
buoyancy created by the density deficit between the fluid in the plume and the ambient
fluid at the source (B0,f ) exceeded the negative buoyancy associated with the dense
particles dispersed in the flow (B0,p). Here, it is worth noting that the effective density
of the particle-laden plumes in this study, defined as ρplume = ϕ0ρp +(1−ϕ0)ρf , were
of a similar order of magnitude to the density of the environment, with the ratio of
ρplume/ρ0 exceeding 97.5% in all cases. As such, the resultant flow is Boussinesq with
density effects being negligible except in the case of forces arising due to buoyancy.

Particle settling was assumed to follow Stokes law with the terminal particle velocity,
ust, defined as

ust =
g(ρp −ρ0)d2

p

18µ
, (3.8)

where dp is the particle diameter and µ = 8.9×10−3 gcm−1s−1 is the dynamic viscosity
of the ambient fluid. Three different types of monodisperse particles were used to
achieve the range of settling speeds detailed in Table 3.1. The upper and lower
velocities of 0.92 cms−1 and 0.45 cms−1 are associated with two sets of glass ballotini
(ρp = 2.5 gcm−3), each with average particle diameters of 100 µm and 70 µm. The
third particle set, 70 µm silicon carbide particles (ρp = 3.2 gcm−3), was used to achieve
the intermediate velocity of ust ≈ 0.64 cms−1. In all cases, the source buoyancy flux
was sufficiently large such that the characteristic plume velocity, (B0N)1/4, exceeded
the particle settling velocity. This ensured all particles dispersed in the plume reached
the maximum height, before spreading radially with the intrusion (Ernst et al., 1996).
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Exp ust Q0 M0 ϕ0 B0 P Γ0 N σ
(cms−1) (cm3s−1) (cm4s−2) (%) (cm4s−3) (−) (−×10−2) (s−1) (−)

1 0.92 6.05 130 0.02 20.7 0.08 0.76 0.30 3.48
2 0.92 6.05 129 0.09 17.2 0.31 0.64 0.33 6.10
6 0.92 5.78 118 0.11 37.2 0.20 1.57 0.39 1.53
7 0.92 5.56 109 0.09 44.7 0.14 2.12 0.38 0.88
9 0.92 5.82 120 0.19 41.6 0.28 1.73 0.32 0.85
10 0.92 6.29 140 0.34 30.6 0.50 1.00 0.39 3.14
11 0.92 5.31 99.6 0.41 48.3 0.39 2.64 0.65 1.82
12 0.92 6.14 133 0.50 82.1 0.35 2.89 0.44 0.52
14 0.92 5.96 125 0.51 83.0 0.34 3.20 0.77 1.37
15 0.92 6.06 130 0.93 57.3 0.58 2.10 0.82 3.45
17 0.92 6.46 148 0.91 72.9 0.53 2.21 0.49 0.97
18 0.92 2.97 31.2 0.67 45.1 0.38 14.0 0.80 0.31
20 0.92 5.87 122 1.06 40.3 0.69 1.63 0.61 3.45
21 0.92 6.17 135 1.11 58.7 0.62 2.04 0.46 1.13
22 0.92 2.97 31.2 1.08 30.4 0.60 9.44 0.50 0.26
24 0.92 2.96 31.1 0.70 9.61 0.76 3.01 0.21 0.45
26 0.92 3.07 33.3 1.20 18.2 0.74 5.15 0.60 1.20
27 0.92 5.98 127 1.00 74.2 0.53 2.82 0.41 0.49
28 0.92 5.92 124 0.50 135 0.24 5.32 0.61 0.31
29 0.92 6.91 169 0.91 130 0.40 3.21 0.61 0.62
34 0.64 5.98 126 0.02 15.4 0.15 0.59 0.30 6.15
35 0.64 6.16 134 0.10 41.3 0.25 1.44 0.48 2.42
36 0.64 5.98 126 0.05 63.6 0.09 2.43 0.59 1.40
37 0.64 5.95 125 0.43 32.0 0.63 1.24 0.60 5.57
38 0.64 5.87 122 0.33 49.2 0.45 1.98 0.64 2.50
39 0.64 5.72 116 0.24 82.6 0.26 3.59 0.52 0.53
40 0.64 5.93 124 0.48 45.4 0.57 1.77 0.44 1.48
41 0.64 3.06 33.2 0.19 50.7 0.19 14.4 0.66 0.19
42 0.64 3.07 33.4 0.55 31.7 0.53 8.90 0.54 0.32
43 0.64 3.04 32.6 0.35 38.0 0.37 11.1 0.48 0.17
44 0.64 5.97 126 0.41 99.3 0.34 3.80 0.72 0.84
45 0.64 3.06 33.0 1.16 37.7 0.66 10.8 0.75 0.43
46 0.64 3.03 32.4 0.71 14.1 0.76 4.15 0.64 2.19
47 0.64 3.03 32.4 0.85 31.2 0.63 9.17 0.37 0.15
48 0.64 6.03 129 0.92 125 0.47 4.64 0.83 0.74
49 0.45 6.03 129 0.13 13.7 0.46 0.51 0.27 6.25
51 0.45 6.00 128 0.12 25.9 0.28 0.97 0.39 3.77
52 0.45 6.06 130 0.06 28.1 0.15 1.03 0.32 2.21
53 0.45 6.09 131 0.33 106 0.21 3.83 0.79 0.96
54 0.45 6.00 128 0.04 62.5 0.05 2.35 0.39 0.64
55 0.45 6.05 130 0.47 60.9 0.40 2.24 0.48 1.05
56 0.45 5.95 125 0.72 56.9 0.52 2.20 0.62 1.87
57 0.45 3.01 32.1 0.67 34.5 0.45 10.3 0.70 0.42
58 0.45 5.94 125 1.00 56.9 0.60 2.21 0.36 0.63
59 0.45 5.98 127 1.10 31.3 0.75 1.19 0.60 5.89
60 0.45 5.93 125 1.14 43.2 0.69 1.69 0.48 1.90
61 0.45 3.18 35.7 0.50 58.9 0.28 15.0 0.70 0.18
62 0.45 2.98 31.4 1.00 37.1 0.53 11.4 0.50 0.18
64 0.45 3.02 32.3 0.85 16.0 0.70 4.72 0.26 0.28
65 0.45 6.06 130 0.26 149 0.13 5.44 0.67 0.34

Table 3.1 List of experimental parameters
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Experiments were captured using a Nikon D300s camera, fitted with an AF-S Micro
NIKKOR 60 mm f/2.8G ED lens. For each experiment, the camera was placed on a
1.2 m high tripod approximately 2.5 m from the experimental tank. During the first 10
minutes of plume injection (the maximum time to achieve steady state), videos with
a frame rate of 24 Hz were taken for post-experimental analysis. Such analysis was
completed using MATLAB R2020B and included the determination of the maximum
and spreading heights of each plume, as well as the plume volume flux at the spreading
level, Qs, by measuring the evolution of intrusion volume over time (Sigurðardóttir
et al., 2020). After the 10-minute filming period, samples of plume fluid were taken
near the top of the plume. The particles in these samples were washed and then dried
to estimate the particle concentration at the plume spreading height. This method
was determined to be accurate within ±10% by sampling a well-mixed tank with a
known particle concentration.

All experimental measurements and other useful variables determined from image
analysis are provided in the supplementary material (found at https://doi.org/10.
17863/CAM.64736).

3.4 Qualitative experimental observations

In all experiments, the early behaviour of each plume was very similar. Upon initial
release into the tank, each plume rose vertically from the nozzle and was observed to be
turbulent and conical in shape. Within seconds, the plume reaches a maximum height
before collapsing upon itself and spreading radially as a gravity current at the height
of neutral buoyancy. The particles present within the plume initially spread with the
current before decoupling from the radial flow and settling into the environment. After
this initial stage of plume injection, the flow dynamics evolve due to the re-entrainment
of particles. In some cases when viewing the plume, the dynamics remained very
similar throughout the experiment with all the particles following a clear trajectory
from the base of the intrusion to the edge of the plume. In other experiments, the
environment around the plume appeared to be undergoing convection with particles
moving erratically within a column of convecting fluid.

As shown visually in Figure 3.1, the steady-state behaviour of a particle-laden plume
is observed to be very dependent upon whether the particles settle in the environment
individually at their Stokes velocity ust, or whether particle trajectory is dictated by
an ambient convective velocity associated with particle-induced instabilities. In an
unstratified environment, Cardoso and Zarrebini (2001a) determined a criterion for the

https://doi.org/10.17863/CAM.64736
https://doi.org/10.17863/CAM.64736
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Fig. 3.1 False colour experimental images produced using MATLAB R2020B to aid in
the identification of plume regimes. Images were time-averaged over 120 seconds once
steady state was achieved. Navy and maroon represent maximum and minimum values
of light intensity. (a) Experiment 11, quiescent at steady state. Weak sedimenting
veil and plume maximum visible. (b) Experiment 55, undergoing convection at steady
state. Both the convection column and the plume trough are clearly visible.

onset of convection based upon the ambient convective velocity, Uc. They determined
this velocity to be a function of the particle concentration gradient present beneath
the plume’s surface current, represented by dϕ/dz, and proposed the scaling,

Uc ∼
(

ρp
dϕ

dz

)1/4
. (3.9)

In an attempt to characterise these qualitative observations into defined flow
regimes, it is assumed that when the environment around the plume is still and the
particles are settling at a terminal velocity, ust > Uc. Conversely, when the environment
is undergoing convection and the particle trajectory is controlled by fluid motion,
ust < Uc. Using this a priori assumption, along with the buoyancy flux ratio P (for
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consistency with previous work qualitatively evaluating the dynamics of particle-laden
plumes, specifically Veitch and Woods, 2000), five flow regimes are characterised.
These regimes include Type 1 and 1* plumes, where individual particles settle in the
environment at a terminal sedimentation velocity (Uc/ust < 1); transitional Type 2
plumes, where both individual particle settling and ambient convection appear to be
present (Uc/ust ≈ 1); and Type 3 plumes, where particle settling is driven by ambient
convection (Uc/ust > 1), which in some cases, leads to the development of secondary
intrusions (Type 3*, Uc/ust ≫ 1). Descriptions of the specific dynamics unique to each
regime, along with illustrations and photographs of each plume type, are presented in
the subsequent paragraphs.

3.4.1 Type 1 plumes: Uc/ust < 1 and P > 0.2
In a Type 1 plume, the terminal settling velocity of the particles exceeds the ambient
convective velocity associated with particle-induced instabilities. As predicted by
Apsley and Lane-Serff (2019), the buoyancy flux ratio has a significant impact upon the
steady-state height of plumes where ust > Uc. When particle buoyancy at the source
is very small compared to the buoyancy of the fluid, the plume silhouette at steady
state is representative of a stratified single-phase plume. A defined plume maximum
remains present above the spreading intrusion and the particles flow radially in the
gravity current before settling into the ambient fluid below.

At steady state, the flux of particles in the intrusion beyond the critical re-
entrainment radius (Sparks et al., 1991) is equivalent to the particle flux at the
source. Any particles settling from the intrusion within this critical radius are re-
entrained into the plume, and from both experimental measurements (see Figure 3.3)
and previous theoretical predictions (Veitch and Woods, 2000; Zarrebini and Cardoso,
2000), this results in a particle concentration at the spreading level e1 times greater
than if there was no re-entrainment. Even with this multiplier, the concentration of
particles in plumes within this regime is so small that re-entrainment has very little
influence on the steady-state plume maximum.

3.4.2 Type 1* plumes: Uc/ust < 1 and P > 0.2 when σ ≪ 1
Type 1* is very similar to its predecessor, however, particle recycling results in a
significant decrease in maximum height until a steady state is achieved either within
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Fig. 3.2 Illustrations and photographs (taken at ≈ 300 s) of Type 1/1* plumes. Pho-
tographs shown are experiment 54 (Type 1); and experiment 12 (Type 1*).

or below the original intrusion. The ‘single-phase’ silhouette described for Type
1 begins to disappear for source buoyancy flux ratios of P > 0.2 for plumes with
negligible momentum at the source (i.e. σ ≪ 1). Although suitable for pure plumes, the
transitional value of P > 0.2 is very dependent upon the level of forcing at the source
as non-zero volume and momentum fluxes will increase this value due to the additional
entrainment of ambient fluid both at the plume margins and in the descending fountain
at the plume maximum (see Figure 10 in Apsley and Lane-Serff, 2019). To fully
characterise this regime for plumes rising from non-idealised sources, a forced plume
equivalent of the model derived by Apsley and Lane-Serff (2019) would need to be
developed and this is outside of the scope of this current study.

Although the plume height decreases, the general behaviour of the plume remains
consistent. The intrusion spreads below the plume maximum and a sedimenting veil
can be observed around the plume. Notably, the measurements presented in Figure
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Fig. 3.3 The ratio of the particle flux at the spreading level to the plume source against
the buoyancy flux ratio, P . The y axis presents the coefficient associated with the
re-entrainment of particles into the plume at steady state which, when no ambient
convection is present, is expected to be equivalent to e1 (presented as the dotted line).
The particle concentration at the spreading height of Type 1/1* ( ) plumes aligns with
the predicted value, however all plumes (Type 2 , Type 3 , and Type 3* ) where
convection is present appear to re-entrain less particles.

3.3 for both regimes with plumes rising through quiescent environments (Type 1/1*)
suggest that the intrusions are well mixed with a particle concentration which decays
exponentially with radius (Sparks et al., 1991).

Over time, the trajectory of the particles in the environment remains relatively
unchanged, however the position of fluid in the intrusion does not. Due to the changing
plume height, a defined intrusion, like one would observe in a single-phase plume,
is not present as the spreading height decreases until reaching a new steady state.
Also, in some instances after the particles have settled into the environment below,
the fluid in the intrusion rises to a new height of neutral buoyancy, as observed by
Mingotti and Woods (2020). This phenomenon was particularly evident in weakly strat-
ified experiments with a large flux of particles at the source i.e. large Q0ϕ0 and small N .

3.4.3 Type 2 plumes: Uc/ust ≈ 1, independent of P

Within this regime, the convective velocity in the environment below the plume intrusion
is assumed to be approximately equivalent to the settling velocity of each individual
particle. The particles remain dispersed in the plume intrusion before settling into the
environment below. A sedimenting veil is present and the majority of the particles
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Fig. 3.4 Illustrations and photographs (taken at ≈ 300 s) of a Type 2 plume. Photograph
shown is experiment 10.

appear to settle according to their terminal velocity. However, in some portions of the
veil, minor convection can be seen as well as the presence of a small parabolic cloud of
dyed fluid directly below the intrusion. Previous authors referred to this phenomenon
as the plume trough (Balasubramanian et al., 2018; Mirajkar et al., 2015). The plume
trough appears close to the plume edge and is created by the large, localised flux of
sedimenting particles dragging the lighter interstitial plume fluid from the intrusion
into the ambient fluid below.

An assessment of Figure 3.3 shows a reduction in particle re-entrainment compared
to Type 1/1* plumes for not only Type 2 flows, but all those rising in the presence of
ambient convection. This suggests either a change in the intrusion’s distribution of
particles or more likely, a change in the particle trajectory from the intrusion to the
plume margin. Unlike in particle-laden plumes rising through unstratified environments
(see Veitch and Woods, 2000), the lack of trend in Figure 3.3 shows that the buoyancy
flux ratio at the source has little to no influence on the development of the plume
trough or any other convective instabilities occurring within the sedimenting veil.

3.4.4 Type 3 plumes: Uc/ust > 1, independent of P

Once ambient convection overcomes the settling of individual particles, an obvious
transition in dynamics occurs. After a period of re-entrainment similar to the previous
regimes, the particle concentration at the top of the plume reaches some threshold
which subsequently causes the particles dispersed in the gravity current to decouple
from the intrusion fluid close to the edge of the plume. This decoupling is followed by
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packets of highly concentrated particle-laden ambient fluid settling towards the base of
the tank at speeds significantly greater than the individual particle’s Stokes velocity.

This localised settling creates a column of convecting ambient fluid around the
plume between the intrusion and the tank floor, similar to the annulus of fluid and
particles observed for plumes with source loading exceeding P ≈ 0.20 in a uniform
environment (Veitch and Woods, 2000). Although a specific value for transition was
noted in the unstratified case, as previously noted for Type 2 plumes, no specific
threshold of buoyancy flux ratio was observed to achieve ust < Uc across the three
different settling speeds presented in this study. Upon reaching the tank base, the
particles in the convection column deposit onto the floor and the once particle-laden
fluid slightly rises back up in the stratified environment. In the convection zone, the
plume trough remains present below the intrusion and very small portions of dyed fluid
are dragged down into the convection column.

The steady-state plume heights are less than what would be observed in a single-
phase plume, yet due to the change in particle trajectory associated with the transition
from sedimenting veil to convection column, the model assumptions of Apsley and
Lane-Serff (2019) no longer hold. The decoupling of the solid and fluid phases also
more obviously shows the light interstitial fluid in the intrusion rising and spreading at
a new neutral buoyancy height above the original current.

3.4.5 Type 3* plumes: Uc/ust ≫ 1, independent of P

When the particle concentration at the spreading level is very large, convection at the
edge of the plume becomes so great that dyed plume fluid is dragged down from the
maximum plume height to the base of the tank, mixing with the ambient fluid below
to create a flow reminiscent of a stratified single-phase fountain (Bloomfield and Kerr,
1998). Although no association to a fountain was made, Balasubramanian et al. (2018)
also observed that particles in the intrusion of plumes with high source concentrations
drag down plume fluid from the intrusion to the plume source. These authors compare
the radius of the trough to an altered version of the critical re-entrainment radius;
however such a comparison is not suitable as the particle trajectory is governed by the
fluid motion instead of the individual particle settling speed.

As the downflow reaches the base of the tank, a particle-laden gravity current
can be seen spreading radially away from the nozzle. As in previous particle-laden
current experiments (Woods and Bursik, 1994), the gravity current becomes buoyant
following the deposition of the particles onto the tank floor and can then be seen
to rise into the stratified environment. This dyed fluid reaches a neutrally buoyant
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Fig. 3.5 Illustrations and photographs (taken at ≈ 300 s) of Type 3/3* plumes. Pho-
tographs shown are experiment 29 (Type 3); and experiment 21 (Type 3*).

height and then spreads between the main current and the base of the tank as a
secondary intrusion, as observed previously in other stratified particle-laden plume
experiments (Balasubramanian et al., 2018; Mirajkar et al., 2015). In addition to
observing fountain-like flow behaviour, buoyant fluid can be seen to rise from the main
intrusion to spread as a new intrusion above the original current (as has been observed
in other regimes).

At this qualitative stage of the study, the transition from Type 3 to 3* behaviour is
somewhat ambiguous other than expecting larger convective velocities to be present in
the environment around Type 3* plumes. In an attempt to address this, quantitative
detail on this flow transition is presented and discussed in section 3.5.1.
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3.5 Criterion for the onset of ambient convection

Experimental observations show that within the environment near the edge of a Type
3 (and 3*) plume, parcels of particle-laden fluid can be seen settling around the plume
at speeds much greater than the settling velocity of each individual particle. This
convection is confined to a defined radius around the plume, suggesting that the
unstable stratification produced by the presence of particles in the environment below
the gravity current is directly associated with the intrusion particle concentration; a
concentration which decays exponentially away from the edge of the plume (Sparks
et al., 1991).

Given that the convection observed is a result of a Rayleigh-Taylor instability,
created by a denser fluid-particle suspension lying above lighter particle-free fluid, it is
likely that the velocity of the convective front will change in time, firstly accelerating
downwards before decelerating due to the ambient stratification (Lawrie and Dalziel,
2011). Rather than capturing these time and position dependent complexities, it is
of more interest to simply determine the plume conditions required for the onset of
ambient convection such that the steady-state flow regime may be predicted.

In their study on particle-laden plumes in a uniform environment, Cardoso and
Zarrebini (2001a) utilised a scaling approach to estimate the magnitude of the ambient
convective velocity, the scaling of which is presented in (3.9). The full equation they
derived is written as

Uc ≈
(

Grcgν2

ρ0

)1/4(
ρp

dϕ

dz

)1/4
, (3.10)

where ν is the kinematic viscosity of the fluid-particle suspension; and Grc is the
critical Grashof number, a dimensionless parameter analogous to the Reynolds number
for natural convection; defined as

Grc = g′
sL

3
c

ν2 = gρpL4
c

ρ0ν2
dϕ

dz
, (3.11)

where g′
s = g∆ρs/ρ0 is the reduced gravity of the fluid-particle suspension with ∆ρs

representing the density difference between the suspension and the ambient; and Lc as
the convection length scale.

Cardoso and Zarrebini (2001a) determined dϕ/dz numerically through solving a
set of differential equations, however, a simple extension to their analysis allows the
gradient to be determined analytically. Here, it is proposed that the density gradient
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resulting in ambient convection is solely due to the presence of particles in the gravity
current, and that the gradient can be determined through the combination of the
radial change of intrusion particle concentration, dϕ/dr, and the expected trajectory
of particles in the environment prior to the onset of convection, dr/dz, both of which
are well defined within the literature. Sparks et al. (1991) determined the change in
gravity current particle concentration with radial position as

dϕ

dr
=
(

2ϕsπustr

Qs

)
exp

[
−πust(r2 − bs

2)
Qs

]
, (3.12)

where r is the radial position along the intrusion and ϕs, bs and Qs are the particle
volume fraction, plume radius and volume flux at the spreading height. Equation (3.12)
assumes that the intrusion is well mixed and based upon experimental measurements
of particle re-entrainment in quiescent plumes (see Figure 3.3) and also the successful
comparison of these experiments to the theory of Apsley and Lane-Serff (2019) (see
Figure 3.9), the utilisation of this model here is reasonable.

Particle trajectory in the environment around the plume can be written as (Apsley
and Lane-Serff, 2019; Zarrebini and Cardoso, 2000)

dr

dz
= −ue

ust
= bαω

ustr
, (3.13)

where ue is the entrainment velocity and ω is the plume velocity. Using (3.12), (3.13)
and the fact that Qs = πbs

2ω, the analytical expression for the particle concentration
gradient present below the plume intrusion may be written as

dϕ

dz
= dϕ

dr

dr

dz
=
(

2αϕs

bs

)
exp

[
−πust(r2 − bs

2)
Qs

]
. (3.14)

As interest lies in determining the transition of plume regime between individual
particle settling (ust > Uc) and convective settling (ust < Uc) in the environment at the
edge of the plume, the intrusion radius is set as r = bs before substituting (3.14) into
(3.10) to give

Uc ≈
(

Grcgν2

ρ0

)1/4(2αρpϕs

bs

)1/4
. (3.15)

In this form, equation (3.15) is suitable to determine the convective velocity in
the environment at the edge of the plume and, for a known particle settling velocity,



3.5 Criterion for the onset of ambient convection 55

can be used as the criterion for determining the transition of settling behaviour in
particle-laden plumes. Although a distant similarity can been seen between (3.15) and
(3.10), it is worthwhile utilising the definition of Grc to recast equation (3.15) such
that any inferred dependence on ν may be eliminated. Upon substituting (3.11) into
(3.15), after some rearrangement, a dimensionless form of Uc may be presented as

UcgL4
cN2

s

bs

1/4 ≈
(

2αρpϕs

ρ0

)1/4
, (3.16)

where Ns = (gρpdϕ/ρ0dz)1/2 is the buoyancy frequency associated with the particle
concentration gradient below the intrusion.

3.5.1 Regime diagram

Experimental measurements of α (determined using the bulk parameter method; see
section 3.6 and Appendix C.1) and bs were input into equation (3.15), the criterion for
the onset of convection at the edge of the plume (see Table 3.2 for associated values). It
is important to note that the values of bs presented were estimated from image analysis
in the early stages of plume injection, at the height associated with the steady-state
plume intrusion (see Appendix B). The reasoning for this is because the development
of the sedimenting veil and plume trough tended to obscure the view of the plume
at this height, making exact measurements of this radius at steady state particularly
difficult. Due to the approach taken, the plume radius presented is likely not the exact
radius of the plume at this steady-state height as there will likely be some evolution
between these initial stages and the final steady-state value. Importantly though, the
ambient convective velocity and plume radius scales as Uc ∼ b

−1/4
s , thus even a 25%

difference between the radius estimates and actual radius will only result in a 6%
difference between the predicted values of Uc. In regard to the particle concentration at
the spreading level, for consistency across all experiments, a Type 1/1* spreading level
particle concentration of ϕs = Q0ϕ0e1/Qs was assumed and used in (3.15). In Figure
3.6, ust is plotted against Uc and shows that the regimes can be suitably separated
when using a critical Grashof number of Grc = 2.2 × 104 ± 1 × 104, for ρ0 = 1 gcm−3

and ν = 8.9×10−3 cm2s−1. For the experiments plotted, this empirically determined
value of Grc results in Uc/ust < 0.90 for quiescent plumes; Uc/ust > 1.05 for plumes
undergoing ambient convection; and a range of 0.93 < Uc/ust < 1.11 for transitional
Type 2 plumes.
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Fig. 3.6 Plume regime diagram plotting the individual particle settling velocity, ust,
against the ambient convective velocity, Uc. The dashed line corresponds to a critical
Grashof number of Grc = 2.2 × 104. Type 1/1* ( ) plumes appear on the left of the
plot, Type 3 ( ) and 3* ( ) on the right and Type 2 ( ) approximately on the dashed
line.

From an assessment of (3.15), it can be seen that high dilution of the particles at
the spreading level (i.e. large Qs), along with a large plume rise height (as zs ∼ bs/α;
Morton et al., 1956), will both strongly mitigate the development of ambient convection.
Therefore, the parameters which appear to be of most importance in defining the
settling regime are the particle flux at the source; the magnitude of the flow’s driving
force (that being B0 for pure plumes or a combination of B0, Q0 and M0 for forced
plumes); and the strength of the ambient stratification N , given that both the plume
spreading height and the volume flux associated with it are functions of these source
and stratification parameters. Particle density ρp, is less significant in defining the
settling regime as any increases in convective velocity owing to increases in particle
density will be immediately mitigated by increases in individual particle settling speed.

An interesting observation is that the regimes can be determined from the particle-
induced density gradient alone, and that the fluid density gradient appears to have no
influence on the convective velocity achieved, even in cases where dρe/dz is large enough
to result in a negative (stable) density gradient when added to the value calculated
using equation (3.14). This suggests that either the local density gradient present
in the ambient fluid is not important; or due to the presence of the plume trough,
over the course of the experiment, the fluid directly below the intrusion may become
well mixed, allowing the suspension of particles to create an unstable stratification.
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Exp bs Qs α ust Uc Type
(cm) (cm3s−1) (−) (cms−1) (cms−1) (−)

1 2.2 66.9 0.080 0.92 0.34 1
2 2.3 59.1 0.064 0.92 0.51 1*
6 2.1 63.0 0.084 0.92 0.53 1
7 3.0 63.7 0.090 0.92 0.44 1
9 2.1 82.9 0.100 0.92 0.58 1
10 1.3 69.2 0.063 0.92 0.84 2
11 2.2 43.7 0.079 0.92 0.80 1*
12 3.0 100.6 0.105 0.92 0.71 1*
14 1.6 42.0 0.072 0.92 0.93 3
15 2.0 40.2 0.081 0.92 1.07 3*
17 1.7 75.9 0.093 0.92 1.00 3*
18 2.3 31.8 0.120 0.92 0.94 3
20 1.5 49.3 0.082 0.92 1.14 3*
21 1.8 74.9 0.088 0.92 1.01 3*
22 1.8 27.8 0.116 0.92 1.10 3*
24 2.0 58.4 0.118 0.92 0.87 2
26 1.3 20.4 0.070 0.92 1.23 3*
27 1.9 88.1 0.110 0.92 0.92 3
28 2.3 84.3 0.124 0.92 0.74 1*
29 1.7 78.1 0.113 0.92 0.96 3
34 2.0 60.5 0.063 0.64 0.38 1
35 1.8 57.5 0.084 0.64 0.60 2
36 1.8 54.6 0.096 0.64 0.50 1
37 1.4 42.4 0.068 0.64 0.97 3
38 2.2 44.5 0.078 0.64 0.81 3
39 1.8 71.6 0.106 0.64 0.73 3
40 2.0 56.8 0.086 0.64 0.85 3
41 2.5 41.0 0.115 0.64 0.66 2
42 1.8 34.1 0.102 0.64 0.95 3
43 2.4 42.7 0.109 0.64 0.76 3
44 1.5 50.2 0.094 0.64 0.91 3
45 1.5 24.7 0.091 0.64 1.25 3*
46 1.3 16.6 0.064 0.64 1.20 3*
47 1.5 57.2 0.125 0.64 1.00 3*
48 1.8 50.8 0.110 0.64 1.12 3*
49 3.5 65.5 0.069 0.45 0.49 2
51 1.9 53.6 0.084 0.45 0.58 3
52 2.3 69.9 0.071 0.45 0.43 2
53 2.0 48.4 0.091 0.45 0.76 3
54 3.5 88.9 0.097 0.45 0.36 1
55 1.4 66.9 0.095 0.45 0.84 3
56 1.2 47.7 0.074 0.45 1.05 3*
57 2.0 23.3 0.095 0.45 0.98 3
58 3.0 82.4 0.098 0.45 0.86 3
59 1.4 49.1 0.083 0.45 1.12 3*
60 2.0 52.0 0.063 0.45 1.02 3*
61 2.5 37.5 0.121 0.45 0.81 3
62 3.0 42.6 0.117 0.45 0.88 3
64 2.7 50.1 0.109 0.45 0.82 3
65 3.1 92.0 0.120 0.45 0.63 3

Table 3.2 List of measured and calculated parameters
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Alternatively, the localised and continuous sedimentation of particles could also impact
the fluid stratification as previously shown by Blanchette (2013). Using simulations,
they showed that a single pass of particles settling at their Stokes velocity through a
stratified environment can result in the short-term disturbance of the ambient density
gradient (with regeneration occurring over a multiple of N−1 seconds), or in some
extreme cases, can lead to the complete destruction of the fluid stratification. This
work considered only isolated settling events, whereas particle settling in this study’s
experiments occurs continuously between the intrusion and the tank floor. Therefore,
it is not unreasonable to expect that a similar disruption to the fluid density gradient
could occur in the environment immediately below the intrusion over the length scale
of interest.

In Figure 3.6, the transition from Type 3 to 3* plumes is observed to occur when
Uc ≥ 1 cms−1, irrespective of particle settling speed. This suggests that the transition
is a direct result of sufficiently strong convection pulling intrusion fluid to the plume
source and one would expect that this would occur for a consistent ambient velocity,
especially in the case of these experiments where the intrusion heights above the source
are reasonably small. However, it is not expected that this transition will necessarily
be the same in plumes with much greater intrusion heights, such as those present in
nature.

The critical Grashof number determined here is an order of magnitude larger than
previously suggested for convection in unstratified particle-laden plumes, however, it is
important to note that the value of Grc = 103 used by Cardoso and Zarrebini (2001a)
was adopted from Hoyal et al. (1999), who investigated the development of particle-rich
fingers across a density interface in a step stratified fluid. Hoyal et al. (1999) considered
the convection length scale to be equivalent to the finger thickness, yet the critical
Grashof number determined here is expected to be associated with a length scale in
the z-direction. Thus, the critical value used by both Hoyal et al. (1999) and Cardoso
and Zarrebini (2001a) is not directly comparable to the result determined here.

Carazzo and Jellinek (2012) studied negatively buoyant particle-laden jets in a two-
layer stratification which produced umbrella cloud Grashof numbers between 102 ∼ 107

using a length scale of Lc = zm −zs. A value of Grc ≈ 2.2×104, along with the particle-
induced ambient density gradients determined for each experiment, suggests convection
length scales in this study between 2 cm and 4 cm. These values are certainly of
the order of magnitude of the differences observed between the experimental plume
maximum and spreading heights.
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In their work, Carazzo and Jellinek (2012) noted that some of their experiments
developed ambient convection below the intrusion yet did not state the critical umbrella
cloud Grashof number for convection to occur. The authors instead conducted a similar
approach to Hoyal et al. (1999) using Grc = 103 and a smaller length scale associated
with the intrusion’s particle-bearing boundary layer. Rather than considering the
influence of natural convection, Carazzo and Jellinek (2012) suggested the transition
of flow regime from buoyant plume to collapsing fountain is a function of the source
Richardson number (i.e. Γ0). This approach was extended to linearly stratified plumes
by Balasubramanian et al. (2018), yet from the results in this study, neither the scaled
source Richardson number, nor σ, are capable of independently defining the regime
transition in initially buoyant, linearly stratified particle-laden plumes. The influence
of these two parameters is discussed further in the next section.

3.5.2 Influence of a real plume source

For a plume where Q0 and M0 are sufficiently small, the flow can be considered to be
driven only by buoyancy and will act as a pure plume. In this instance, the onset of
convection can be predicted using the solution of Morton et al. (1956) for the maximum
flowrate in a plume, Qs ≈ 3.5α1/2B

3/4
0 N−5/4, and the radius at the spreading level can

be estimated using the equivalent radius of a plume rising in a uniform environment,
bs = 6αzB=0/5, where zB=0 corresponds to the stratified plume’s height of neutral
buoyancy. Such an approximation is reasonable considering that the differences in
plume radius between an unstratified and stratified plume up to the height of neutral
buoyancy are small and, as stated above, the differences present are almost eliminated
due to the fact that Uc ∼ b

−1/4
s .

In the case of forced plumes, such as those in this study, the approach described
above cannot be taken as both volume flux and radius are dependent upon Γ0 and σ.
Mehaddi et al. (2013), who theoretically studied the evolution of stratified single-phase
plumes with respect to these parameters, determined that

Qs

Q0
= (σ +1)3/8

Γ1/2
0 σ5/8

[
5
2β
[1
2 ,

5
4

]
− I(σ)+ Γ0σ5/4

(σ +1)3/4

]1/2

, (3.17)

and

bs

b0
= (σ +1)1/8

Γ1/2
0 σ3/8

[
5
4β
[1
2 ,

5
4

]
− I(σ)+ Γ0σ5/4

(σ +1)3/4

]1/2

, (3.18)
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where I(σ) = (5/4)
∫ σ
0 [t1/4/(t + 1)7/4]dt is an incomplete beta function and the beta

function β[1/2,5/4] = 1.748.
An analysis of (3.17) and (3.18) using the source conditions of this study’s experi-

ments suggests that Qsbs/Q0b0 ≈ 2.5(1+σ)1/2/σΓ0. By substituting this expression
into (3.16), along with the definitions of Γ0, σ and b0 = Q0/(πM0)1/2, the theoretical
convective velocity may be written as

Uc

(g′
sL

3
cN2)1/4 ≈

(
e1

2

)1/4 [
ρpϕ0

(ρ0 −ρplume)(σ +1)1/2

]1/4
, (3.19)

where g′
sL

3N2 is a velocity scale, which despite appearing to contain unknown values,
is simply a rewritten form of the critical Grashof number and is equivalent to Grcν

2N2.

Out of interest, (3.19) may also be written in terms of P as

Uc

(g′
sL

3N2)1/4 ≈
(

e1

2

)1/4 [
P

1−P

1+ρ0/(ρp −ρ0)
(σ +1)1/2

]1/4
. (3.20)

Here, it is clear that P , an alternative definition of particle loading at the source, does
have some influence over the magnitude of Uc. However, as per equation (3.15), source
parameters and ambient stratification strength are also important and therefore, unlike
unstratified particle-laden plumes (see Veitch and Woods, 2000) and as observed in
section 3.4, the value of P alone cannot dictate the steady-state plume dynamics.

Now, having derived equation (3.19), the convective velocity in the environment at
the edge of the plume can now be estimated using a number of source parameters and
the strength of the ambient density gradient. To determine this method’s suitability,
it must be compared to the approach using experimental measurements taken at the
plume spreading height. By equating (3.19) with (3.16), and accounting for that
fact that the two velocity scales in each equation are simply rearrangements of Grc,
dimensionless scaling may be presented as

(g′
sL

3N2)gL4
cN2

s

bs

 = N2bs

g
≈ 4

[
αB0(σ +1)1/2

Qsg

]
. (3.21)

A plot of (3.21) (see Figure 3.7) shows that the two prediction methods do in
fact scale together, however instead of being equivalent, the method utilising source
parameters tends to result in convective velocity predictions 5 − 10% larger than those
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Fig. 3.7 Comparison of the dimensionless velocity predictions using the scaling presented
in (3.21), raised to the 1/4th power. The solid line represents a gradient of 1.50 with
the dashed lines showing a gradient range of 1.35 - 1.67.

predicted using experimental measurements. The difference observed is expected to
be due to an underprediction of both the plume volume flux and plume radius at
the spreading level. In terms of volume flux, the theoretical prediction is associated
with entrainment into the plume up to its maximum height and does not account
for any additional entrainment into the descending fountain at the top of the plume
- a phenomenon which has been observed previously in similar experimental studies
(Cardoso and Woods, 1993; Hunt and Burridge, 2015). Similarly, the value of plume
radius calculated by Mehaddi et al. (2013) is at the height of neutral buoyancy (which
moves closer to the source for increasing σ and decreasing Γ0), whereas the experimental
measurements are of the plume radius at the spreading level, which occurs at some
height between zB=0 and zm. Even with these limitations, Figure 3.7 shows that an
additional coefficient of 41/4/1.5 ≈ 0.95 on the right-hand side of equation (3.19) can
predict the convective velocity below the gravity current, and hence the expected
settling regime for a given particle settling velocity, within approximately 10% of that
determined from experimental measurements.

To further confirm this approach, comparisons can also be made to other studies
where convective behaviour has been observed in particle-laden plumes. Due to
only changing the source particle concentration, the experiments of Mirajkar et al.
(2015) allow for the most straight-forward application of equation (3.19). Their source
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conditions were Q0 ≈ 33 cm3s−1, M0 ≈ 860 cm4s−2 and B0 ≈ 333 − 661 cm4s−3 for
source particle concentrations of ϕ0 = 0.7% and ϕ0 = 0% respectively. The stratification
strength of N = 0.67 s−1 remained constant across all their experiments and resulted
in forced plumes with σ ≈ 0.76 − 2.99. The ballotini (ρp ≈ 2.5 gcm−3) used in all
their plumes had a settling velocity of ust ≈ 0.8 cms−1 and from equation (3.19), the
settling regime change is expected to occur for ϕ0 ≈ 0.35%. This value aligns with
their observations as upon assessment of their figures (see their Figure 8), clear Type 2
behaviour can be seen in their 0.35% experiment, followed by Type 3/3* behaviour
when ϕ0 > 0.35%. It is also worth noting that their Type 3* plume has a predicted
convective velocity of Uc ≈ 0.96 cms−1 ± 0.1 cms−1, a value similar to this study’s
observation for Type 3* plumes developing once Uc ≥ 1 cms−1.

3.6 Steady-state plume heights

As observed by previous authors experimentally studying stratified particle-laden
plumes, a significant reduction in plume height is seen due to the re-entrainment
of particles. The theoretical model of Apsley and Lane-Serff (2019) assumes a re-
entrainment model where particle trajectory between the intrusion and the plume
margins is associated only with the particle settling velocity and the radial velocity in
the environment due to plume entrainment. With steady-state height measurements
extracted from experimental analysis (see Appendix B for methodology), an opportunity
exists to verify the model’s suitability to predict both the maximum rise and spreading
heights of Type 1/1* plumes (where ust > Uc).

The key equations of their model include the steady-state height of the plume as a
function of P ,

z∞ = z0

(
|j|

1+ |j|

)1/4
, (3.22)

where z∞ and z0 are the steady-state and initial plume heights, with j defined as

j = 1−Pc/P

1−Pc
. (3.23)

Here, Pc is the critical buoyancy ratio for plume collapse, which Apsley and Lane-Serff
(2019) determined to be equivalent to Pc = e−1 for pure plumes. Their second equation
of interest is the change in plume height with time, t, as
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z = z0 −
(
1− (1−Pc)1/4

)
ustt. (3.24)

In the case of both (3.22) and (3.24), the values of z, z∞ and z0 refer to the
spreading height of the plume, which Apsley and Lane-Serff (2019) assumed to be
the height of neutral buoyancy for plumes with no additional entrainment in the
descending fountain at the top of the plume. Under this particular condition, one
would expect that the model can be expanded simply to also predict the maximum
height of the plume by utilising the Morton et al. (1956) constant for the dimensionless
height where momentum in the plume goes to zero. Apsley and Lane-Serff (2019)
non-dimensionalised their height predictions using the scale lp = α−1/2B

1/4
0 N−3/4, such

that the steady-state heights of a plume where P = 0 (single-phase) are zs/lp = 1.04
and zm/lp = 1.37.

To allow a direct comparison of the experimental results to their theory, appropriate
values for α must be estimated. Kaye (2008) states that the two basic approaches for
determining α in stratified plumes experimentally is through either measuring the radial
growth rate of the plume near the source and using α = 5b/6z or through measuring a
bulk property such as zm and then subsequently inferring α from equation (3.3). In
this study, the latter approach has been utilised (see Appendix C.1). Obviously, due
to the presence of particles in the plume, additional complexities are present when
considering the value of zm compared to a single-phase plume as the maximum height
of a particle-laden plume decays over time due to particle re-entrainment. To avoid
this problem, α was estimated using the value of zm prior to any particle recycling,
such that the plume rise height would be equivalent to that of a single-phase plume
with the same source buoyancy flux.

Also, due to using a real source, an adjustment to account for the source momentum
and volume fluxes must be applied such that zm = zmax − zv, where zmax is the plume
height above the nozzle and zv is the virtual source. Virtual sources were estimated for
each experiment and were found to vary between -0.6 cm and -3.2 cm using the method
for forced plumes described initially by Morton (1959) and later by Hunt and Kaye
(2001) (see Appendix C.2). Using the approach described above, the experimental
plumes had top hat entrainment coefficients varying between that of a pure plume
(αp = 0.118) when σ = 0 and a pure jet (αj = 0.076) for σ ≥ 1 (Carazzo et al., 2006).
Unlike in unstratified plumes, the entrainment coefficient appeared independent of Γ0,
aligning with observations from previous experimental work on plumes in a stratified
environment (Konstantinidou and Papanicolaou, 2003).



64 Steady-state dynamics of stratified particle-laden plumes

0 0.2 0.4 0.6 0.80

0.5

1

1.5

P

z m
/l

p

0 0.2 0.4 0.6 0.80

0.5

1

1.5

P

z s
/l

p

(a) (b)

Fig. 3.8 Various plume heights as a function of P where (a) shows the dimensionless
steady-state maximum heights categorised by each plume type: 1/1* ( ), 2 ( ), 3 ( ),
and 3* ( ); and (b) the dimensionless steady-state heights of the particle-laden intrusion
( ) and the height of neutral buoyancy of the intrusion fluid following the sedimentation
of particles ( ). In both figures, the solid lines represent the Apsley and Lane-Serff
(2019) collapse model with the parameters Pc = e−1 and ϵ = 0.

Having determined appropriate values for α, the heights associated with each plume
were non-dimensionalised and are presented in Figure 3.8 against the source buoyancy
flux ratio, P . Figure 3.8b details the steady-state spreading height of the plume
intrusion, consisting of both fluid and particles, and also the final height of the buoyant
interstitial fluid which rises from the main current following the sedimentation of the
once dispersed particles into the environment below. Further discussion on the change
in intrusion fluid height is presented in section 3.6.1.

The steady-state maximum height of the plume above the virtual source, along
with the flow regime observed, is detailed in Figure 3.8a. Interestingly, all plumes
where P < 0.2 follow the Apsley and Lane-Serff (2019) prediction, irrespective of flow
regime. However, for P > 0.2, the point at which significant height decay occurs, only
a number of Type 1* measurements continue to follow the theory, with the majority of
other plumes remaining significantly above the predictions. For plumes where ust < Uc,
diversion from the theory is expected due to the significant difference in ambient
particle motion, whereas the steady-state heights achieved by plumes where ust > Uc,
it is expected that the differences observed is due to real source effects, particularly
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Fig. 3.9 (a) Comparison of the rise ( ) and spreading ( ) height of Type 1/1* plumes
with the collapse model of Apsley and Lane-Serff (2019). The plumes included have
small jet length scales ensuring zmax/Lm > 3. The average entrainment coefficient
of the plumes is α = 0.1 ± 0.01. (b) Change in plume height as a function of time.
The points plotted are from experiments 6 ( ), 12 ( ) and 54 ( ). The black line has a
gradient of 0.108, associated with a buoyancy flux ratio of Pc = e−1.

differences in entrainment behaviour both at the plume margins and in the descending
fountain at the plume maximum.

To confirm this, an additional plot of dimensionless height against P has been
produced and only Type 1/1* plumes with a jet-length, Lm, less than 30% of the steady-
state maximum have been included. From Figure 3.9a, it can be said that by excluding
plumes with large momentum fluxes at the source, the height prediction of Apsley and
Lane-Serff (2019) is within the uncertainty of the experimental measurements. This
model verification is further supported by analysing the change in plume height with
time. A number of maximum height measurements were taken at various times for
three Type 1/1* experiments with small values of Lm. In Figure 3.9b, the change in
plume height over the particle settling velocity, ∆zmax/ust, is plotted against time t

and the gradient predicted by equation (3.24), (1 − (1 − Pc)1/4) ≈ 0.108, is found to
provide reasonable height estimates prior to the experimental measurements tailing off
due to reaching a steady state.

Given the accuracy achieved by the model for plumes with small values of Lm, it
is expected that this pure plume model could also predict the expected steady-state
height of forced particle-laden plumes if appropriate alterations were made. Apsley and
Lane-Serff (2019) proposed an additional term, ϵ = Qs/Qt −1 (with Qt as the plume
volume flux at the theoretical neutral buoyancy height), to account for any additional
entrainment into the plume’s descending fountain and found that ϵ > 0 produced
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larger values of Pc and as a result, greater steady-state plume heights. Although this
term accounts for one source of the additional volume present in a forced plume, it is
expected that the addition of other parameters accounting for the volume entering at
the source and the differences in entrainment at the plume margins would need to be
utilised to accurately predict the plume height.

3.6.1 Change in intrusion height

In both this study and the work of Mingotti and Woods (2020), the interstitial
fluid in the plume intrusion appears to separate from the main current following the
sedimentation of particles. This fluid spreads at a new height of neutral buoyancy,
above the original current, and creates an anvil shaped intrusion reminiscent of particle-
laden plumes in nature (Sparks et al., 1986; Woods and Kienle, 1994). Notably in
their theoretical work, Apsley and Lane-Serff (2019) commented on the potential
for the intrusion fluid to increase in height following particle sedimentation, however
specifically stated that they did not expect such a rise to occur.

Following their experimental observations, Mingotti and Woods (2020) produced a
very simple model to estimate the change in fluid height with respect to the particle
and fluid density deficits present at the plume source. Such an approach neglects the
influence of particle re-entrainment on the particle concentration at the spreading level,
however, reasonable agreement was achieved with their measurements taken at early
stages of plume evolution. At steady state however, an approach ignoring re-entrainment
cannot be used as both measurements in this study (Figure 3.3) and previous theoretical
works (Zarrebini and Cardoso, 2000) have shown that re-entrainment significantly
increases the particle concentration at the spreading level, and thus will have a significant
impact on the magnitude of negative buoyancy present in the plume intrusion. To take
advantage of the measurements of the spreading level particle concentration collected
during each experiment, a simple theory which accounts for the re-entrainment of
particles can be developed. Using the definition of N , the density of the fluid at any
height in the environment away from the reference height (taken as the height of the
source) can be determined as

ρ = ρ0

(
1− N2z

g

)
. (3.25)

Now consider the difference between the density of the intrusion of fluid and particles
and the density of the interstitial fluid only, with corresponding steady-state heights of
zs and zf respectively, using (3.25),
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Fig. 3.10 Change in intrusion fluid height following the sedimentation of particles from
the two-phase intrusion. The solid line has a gradient of 1.

ρi −ρf = ρ0N2

g
(zf − zs). (3.26)

As the density of the intrusion is defined as ρi ≈ ρf +ϕsρp, (3.26) can be rearranged to

zf − zs ≈ ϕsg

N2

(
ρp

ρ0
−1

)
, (3.27)

given that ρf /ρ0 ≈ 1.
In Figure 3.10, the experimental results for the change in intrusion fluid height

are presented. When estimating the height difference using the leading edges of both
the multiphase intrusion below the plume maximum and the new fluid-only intrusion
present higher in the environment (heights of which are presented visually in Figure
3.8b), good agreement is found with equation (3.27). Note that some scatter does
exist and, in some cases, the uncertainties are quite large and this is expected to
be an outcome of how the respective heights of the particle-rich and particle-poor
intrusions were estimated (a detailed description of this methodology is provided in
Appendix B). Nevertheless, with this finding, the expected change in intrusion fluid
height associated with particle fallout in a Type 1/1* plume can be readily determined
using a re-entrainment coefficient of e1 as long as the particle flux at the source and
the intrusion volume flux are known. However, this is not the case for plumes rising in
the presence of ambient convection as the re-entrainment behaviour in these plumes is
not yet understood and is outside of the scope of this particular study.
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3.7 Conclusion

From this work, five different flow regimes in stratified particle-laden plumes have been
identified. Although a number of parameters are important in defining the different
plume types, what must be known in all cases is whether the particles are settling in the
environment with some terminal settling velocity or whether the particle’s downwards
motion is dictated by ambient convection.

When no convection is present, the particle motion in the environment can be
easily predicted and experiments have shown that the steady-state heights associated
with these plumes can be determined by the model of Apsley and Lane-Serff (2019).
However, when ambient convection becomes important (i.e. ust < Uc), the particle
trajectory, and therefore particle re-entrainment, can no longer be predicted using the
models currently present within the literature.

Because of this, further investigations into particle-laden plumes rising in the
presence of ambient convection must be conducted such that additional insight can be
gained into these complex flows. Examples of this include gaining a better understanding
of the radial extent of convection in the environment and whether this has any influence
on the transition between Type 3 and 3* behaviour, and also the development of
methods to predict important flow characteristics such as the maximum plume height
and the heights of the primary and secondary intrusions.



Chapter 4

Multiphase plumes rising through
particle-induced convection

4.1 Summary

Stratified multiphase plumes consisting of fluid and particles are unique flows with
dynamic behaviour of great interest. In these plumes, buoyant fluid transports dense
particles high into the environment until reaching a height of neutral buoyancy and
spreading as an intrusion. The particles dispersed in the intrusion sediment into the
quiescent environment below and some particles are re-entrained into the main plume
whilst others settle onto the floor. This re-entrainment behaviour can significantly
alter the plume dynamics and in some cases, result in the transition of particle settling
regime from simple Stokes settling to convective settling driven by particle-induced
instabilities. In this study, stratified multiphase plumes rising in the presence of
particle-induced convection are experimentally investigated. From samples taken
within the convection column surrounding the plume, it has been determined that the
ambient particle concentration, ϕe, is independent of height. Also, a change in ambient
density exists at the edge of the plume, ∆ρe, yet the fluid density gradient remains
approximately equivalent to the initial gradient present prior to plume injection. These
two key findings are utilised to determine the steady-state rise height of these plumes
through numerically integrating the plume equations of Morton et al. (1956). Methods
are presented to determine other important characteristics including the secondary
intrusion height; the radial extent of ambient convection; and the particle concentration
within the convection column and at the plume’s spreading height. Further discussion
is also provided surrounding the conditions leading to the onset of ambient convection
and potential mechanisms are considered for the observed ambient density change.
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4.2 Introduction

Particle-laden plumes are flows of great interest to engineers and geologists alike due to
their strong presence in both nature and a wide variety of industries. Various authors
have experimentally studied these complex flows in an attempt to understand their
dynamics (Balasubramanian et al., 2018; Carey et al., 1988; Ernst et al., 1996; Mingotti
and Woods, 2020; Mirajkar et al., 2015; Sparks et al., 1991; Sutherland and Hong, 2016;
Veitch and Woods, 2000; Zarrebini and Cardoso, 2000). Originating from a localised
source of buoyancy, a multiphase plume of fluid and particles propels itself upwards
in the environment, entraining ambient fluid at its margins. The driving force of the
plume, the source buoyancy flux, is defined as

B0 = Q0g

[
1−

(
(1−ϕ0)ρf +ϕ0ρp

ρ0

)]
, (4.1)

where Q0 is the volume flux at the source, g is acceleration due to gravity, ϕ0 is the
source particle volume fraction, and ρf , ρp and ρ0 are the density of the plume fluid;
the density of the particles; and some reference density, generally taken as the density
of the environment at the plume source.

In a uniform environment of finite vertical extent, the plume rises until reaching the
surface and spreads as a multiphase gravity current. In a stratified environment, such
as the ocean or the atmosphere, the plume reaches a height where its effective density
is equivalent to the environment, causing the flow to lose its upwards momentum,
leading to the development of a radial intrusion at the height of neutral buoyancy.
In either case, the particles in the current immediately begin to decouple from the
radial flow and sediment into the environment below, creating a veil of particles around
the plume. Within this veil, particles are settling individually at their Stokes velocity
and are pulled towards the plume margins as a result of entrainment. This inwards
particle trajectory causes particles settling from the current at small distances from the
plume margins to be re-entrained into the main flow whilst particles sedimenting at
greater radial distances settle directly onto the floor. The re-entrainment of particles
settling through a quiescent environment increases the plume’s volume fraction at the
spreading level by a factor of e1, significantly affecting the plume dynamics (see Apsley
and Lane-Serff, 2019).

Although the impact of this process is observed in plumes rising through uniform
environments (Carey et al., 1988; Veitch and Woods, 2000; Zarrebini and Cardoso,
2000), its effect is most evident in stratified plumes, as the maximum rise height is very
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dependent upon the effective density of the fluid entrained into the plume from the
environment. Morton et al. (1956) determined the maximum height of a single-phase
plume as

zm = 1.37α−1/2B
1/4
0 N−3/4, (4.2)

where α is the entrainment coefficient and N is the ambient buoyancy frequency.
Without making virtual source adjustments, equation (4.2) is only applicable to pure
plumes, where the source momentum flux, M0, is zero. For flows with non-zero volume
and momentum fluxes at the source (known as forced plumes or buoyant jets), the
plume height can be written as a function of the buoyancy frequency parameter,
σ = (M0N/B0)2 (Fischer et al., 1979), as

zm

Lm
= f(σ), (4.3)

where Lm = (M3
0 /B2

0)1/4 is the length scale above the source where buoyancy effects
begin to dominate the motion of the flow. Note here that when σ ≪ 1, buoyancy
forces at the source dominate and z/Lm ∼ σ−3/8, giving the same result as in (4.2).
Conversely, when σ ≫ 1, z/Lm ∼ σ−1/4.

In both cases, the strength of the ambient density gradient negates the extent of
the plume rise, and the presence of particles in the environment only magnifies this
effect. Apsley and Lane-Serff (2019) showed theoretically that the presence of particles
in the environment around a plume does not only lead to a significant depression in
the steady-state rise height, but also in some cases can lead to full plume collapse.
Considering the evolution of particle concentration within the plume after n recycling
events, Apsley and Lane-Serff (2019) determined the steady-state rise height of a
stratified particle-laden plume as

z∞
z0

=
(

|j|
1+ |j|

)1/4
, (4.4)

where z∞ and z0 are the steady-state and initial plume heights, and j is defined as

j = 1−Pc/P

1−Pc
, (4.5)

with P = ϕ0(ρp −ρ0)/(ρ0 −ρf ) and Pc = e−1 for pure plumes.
From their work, the influence of re-entrainment on particle-laden plumes rising

through still stratified environments is well understood. This is due to the fact that the
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steady-state particle concentration at the edge of the plume can be readily determined
from the expected particle trajectory between the radial current and the plume margins.
This, however, is no longer the case once convective instabilities become present within
the sedimenting veil. The earliest experiments concerning these multiphase flows
showed the potential for the presence of particle-induced convection in the environment.
For unstratified plumes with source concentrations exceeding 10 gL−1, Carey et al.
(1988) observed ambient convection ranging from dilute gravity flows at the plume
edge to total collapse of the umbrella cloud region. This variety of ambient convection,
as well as its absence, was later characterised by Veitch and Woods (2000) using P ,
the ratio of particle to fluid buoyancy at the source. The transition of a plume rising
through a quiescent environment to one undergoing convection was determined by
Cardoso and Zarrebini (2001a) through numerically solving for the particle-induced
density gradient present below the surface current, ρp(dϕ/dz). In addition to this,
the authors derived a convection criterion associated with the Grashof number, a
dimensionless parameter analogous to the Reynolds number for natural convection
which can be defined as

Gr = g∆ρsL
3
c

ρ0ν2 = gρpL4
c

ρ0ν2
dϕ

dz
, (4.6)

where ∆ρs is the density difference between the suspension at the base of the gravity
current and the ambient, Lc is the convection length scale, and ν is the kinematic
viscosity of the suspension.

In Chapter 3, this work was extended by analytically determining dϕ/dz and
subsequently applied to stratified plumes. The specific regimes unique to stratified
particle-laden plumes were also characterised by comparing the respective magnitudes
of the individual particle settling velocity, ust, to the ambient velocity associated with
particle-induced convection, Uc. When ust > Uc, plumes with Type 1/1* behaviour
rise through quiescent environments and their steady-state heights can be predicted
using equation (4.4). Transitional Type 2 behaviour is observed when ust ≈ Uc, whilst
Type 3/3* plumes become present when ust < Uc. The behaviour of Type 3/3*
plumes includes previously observed ambient convection related dynamics such as the
separation of interstitial fluid at the top of the plume (Mingotti and Woods, 2020)
and the development of secondary intrusions (Balasubramanian et al., 2018; Mirajkar
et al., 2015). A key observation from each of the studies where ambient convection
is discussed is that once convection has begun, the particles in the environment no
longer travel along a predictable path, but instead behave as passive tracers with all
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motion dictated by the background fluid flow. Such erratic particle motion in the
environment means current models for particle re-entrainment are not suitable for use
when determining flow characteristics, one example being the steady-state plume rise
height.

In this paper, an experimental study is presented focusing on gaining further
understanding of the dynamics of Type 3/3* plumes. Motivated by experimental
observations, a method is proposed to predict both the steady-state rise height and
the secondary intrusion height of these plumes. Further discussion is also provided on
the ambient convection surrounding the plume including a prediction of the convection
column radius, along with an assessment concerning the convection length scale.

4.3 Methods

4.3.1 Experimental

Particle-laden plume experiments were conducted in the laboratory through injecting
a mixture of fresh water and particles into an acrylic tank with dimensions 69 cm x
69 cm x 50 cm. The tank was filled with aqueous saline solution to a height of 40 cm
and a linear stratification was produced using the double-bucket method (Oster and
Yamamoto, 1963). The strength of the density gradient created in each experiment is
characterised using the ambient buoyancy frequency,

N =
√

− g

ρ0

dρe

dz
, (4.7)

where dρe/dz is the ambient density gradient.
The plume fluid was supplied to an upwards directed nozzle with an internal

diameter of dn = 6 mm. This nozzle was connected to a stirred vessel, placed at a
height approximately 1 m above the nozzle, and was used to suspend the particles
in fresh water. Acid Red 1 (Azophloxine) dye was added to the plume fluid to assist
with plume visualisation, and an LED light sheet was placed outside the tank, directly
behind the plume to provide an even distribution of light when viewing experiments.

Photographs of typical experiments and experimental conditions are presented in
Figure 4.1 and Table 4.1 respectively. Each experiment was designed such that ambient
convection would be present within the environment around the plume. In addition
to this condition, the different fluxes at the source, along with the strength of the
ambient density gradient, were carefully selected to ensure that each plume achieved
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an appropriate initial spreading height within the tank. Source volume fluxes between
Q0 ≈ 3−7cms−1 were supplied to the nozzle using a peristaltic pump. The change in
height of the stirred feed vessel over a known time was used to determine the exact
flow rate and momentum flux (M0 = 4Q2

0/πd2
n) for each individual experiment. The

degree of forcing at the source was varied such that 0 < σ < 10 and 10−3 < Γ0 < 10−1,
where Γ0 = 5Q2

0B0/8απ1/2M
5/2
0 is the scaled source Richardson number with values of

Γ0 = 0 and Γ0 = 1 corresponding to pure jet flow and pure plume flow, respectively.
The plume was observed to be turbulent no more than 2 cm above the nozzle with

source Reynolds numbers between 700 and 1700. These values are of similar magnitude
to previous turbulent plume studies (Carazzo et al., 2006). In all experiments, the
positive buoyancy created by the density deficit between the fluid in the plume and
the ambient fluid at the source exceeded the negative buoyancy associated with the
dense particles dispersed in the flow. It is also worth noting that the effective density
of the particle-laden plumes in this study, defined as ρplume = ϕ0ρp +(1−ϕ0)ρf , were
of a similar order of magnitude to the density of the environment, with the ratio of
ρplume/ρ0 exceeding 97.5% in all cases. As such, the resultant flow is Boussinesq with
density effects being negligible except in the case of forces arising due to buoyancy.

In order for convection to be present in the environment around the plume at steady
state, the magnitude of the ambient convective velocity below the intrusion, Uc, must
exceed the terminal settling velocity of each individual particle, ust. A method to
estimate Uc below the intrusions of particle-laden plumes rising through stratified salt
water was presented in Chapter 3 and may be written in terms of the source buoyancy
and volume flux as

Uc ≈ 6.6
(

ρpϕ0
(1+σ)1/2

Q0N2

B0

)1/4
. (4.8)

This prediction method was found to be accurate within 10% of the speeds calculated
from experimental measurements and whilst some of the experiments in Table 4.1 do
fall within the lower margin of error of (4.8) (suggesting that ust > Uc), all experiments
presented show signs of ambient convection at steady state.

Particle settling prior to the onset of convection was assumed to follow Stokes law
with a terminal particle velocity of

ust =
g(ρp −ρ0)d2

p

18µ
, (4.9)

where dp is the particle diameter and µ = 8.9×10−3 gcm−1s−1 is the dynamic viscosity
of the ambient fluid. Three different types of monodisperse particles were used
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Exp ust Q0 M0 ϕ0 B0 Γ0 N σ Type
(cms−1) (cm3s−1) (cm4s−2) (%) (cm4s−3) (−×10−2) (s−1) (-) (-)

13 0.92 5.80 119 0.70 69.4 2.86 0.70 1.44 3
14 0.92 5.96 125 0.51 83.0 3.17 0.77 1.37 3
15 0.92 6.06 130 0.93 57.3 2.08 0.82 3.45 3*
17 0.92 6.46 148 0.91 72.9 2.18 0.49 0.97 3*
18 0.92 2.97 31.2 0.67 45.1 13.9 0.80 0.31 3
20 0.92 5.87 122 1.06 40.3 1.61 0.61 3.45 3*
21 0.92 6.17 135 1.11 58.7 2.01 0.46 1.13 3*
22 0.92 2.97 31.2 1.08 30.4 9.34 0.50 0.26 3*
25 0.92 6.22 137 1.08 60.6 2.03 0.63 2.02 3*
26 0.92 3.07 33.3 1.20 18.2 5.09 0.60 1.20 3*
27 0.92 5.98 127 1.00 74.2 2.79 0.41 0.49 3
29 0.92 6.91 169 0.91 130 3.18 0.61 0.62 3
30 0.92 5.82 120 0.70 127 5.20 0.60 0.32 3
31 0.92 5.75 117 1.13 111 4.69 0.48 0.26 3*
37 0.64 5.95 125 0.43 32.0 1.22 0.60 5.57 3
38 0.64 5.87 122 0.33 49.2 1.96 0.64 2.50 3
39 0.64 5.72 116 0.24 82.6 3.55 0.52 0.53 3
40 0.64 5.93 124 0.48 45.4 1.75 0.44 1.48 3
42 0.64 3.07 33.4 0.55 31.7 8.80 0.54 0.32 3
43 0.64 3.04 32.6 0.35 38.0 10.9 0.48 0.17 3
44 0.64 5.97 126 0.41 99.3 3.76 0.72 0.84 3
45 0.64 3.06 33.1 1.16 37.7 10.6 0.75 0.43 3*
46 0.64 3.03 32.4 0.71 14.1 4.10 0.64 2.19 3*
47 0.64 3.03 32.4 0.85 31.2 9.07 0.37 0.15 3*
48 0.64 6.03 129 0.92 125 4.58 0.83 0.74 3*
50 0.45 5.97 126 0.24 40.1 1.52 0.52 2.65 3
51 0.45 6.00 128 0.12 25.9 0.96 0.39 3.77 3
53 0.45 6.09 131 0.33 106 3.79 0.79 0.96 3
55 0.45 6.05 130 0.47 60.9 2.21 0.48 1.05 3
56 0.45 5.95 125 0.72 56.9 2.18 0.62 1.87 3*
57 0.45 3.01 32.1 0.67 34.5 10.2 0.70 0.42 3
58 0.45 5.94 125 1.00 56.9 2.19 0.36 0.63 3
59 0.45 5.98 127 1.10 31.3 1.18 0.60 5.89 3*
60 0.45 5.93 125 1.14 43.2 1.67 0.48 1.90 3*
61 0.45 3.18 35.7 0.50 58.9 14.8 0.70 0.18 3
62 0.45 2.98 31.4 1.00 37.1 11.3 0.50 0.18 3
63 0.45 3.01 32.1 0.60 11.7 3.43 0.31 0.71 3
64 0.45 3.02 32.3 0.85 16.0 4.67 0.26 0.28 3
65 0.45 6.06 130 0.26 149 5.38 0.67 0.34 3

Table 4.1 List of experimental parameters
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(a) (b)

Fig. 4.1 Photographs of typical experiments after 300 seconds. (a) Experiment 55,
Type 3; (b) Experiment 21, Type 3*.

to achieve the range of settling speeds detailed in Table 1. The upper and lower
velocities of 0.92 cms−1 and 0.45 cms−1 are associated with two sets of glass ballotini
(ρp = 2.5 gcm−3), each with average particle diameters of 100 µm and 70 µm. The
third particle set, 70 µm silicon carbide particles (ρp = 3.2 gcm−3), was used to achieve
the intermediate velocity of ust ≈ 0.64 cms−1. In all cases, the source buoyancy flux
was sufficiently large such that the characteristic plume velocity, (B0N)1/4, exceeded
the particle settling velocity. This ensured all particles dispersed in the plume reached
the maximum height, before spreading radially with the intrusion (Ernst et al., 1996).

Experiments were captured using a Nikon D300s camera, fitted with an AF-S Micro
NIKKOR 60 mm f/2.8G ED lens. For each experiment, the camera was placed on a
1.2 m high tripod approximately 2.5 m from the experimental tank. During the first
10 minutes of plume injection (the maximum time to achieve steady state), videos
with a frame rate of 24 Hz were taken for post-experimental analysis. After the end
of the filming period, samples were taken within the plume at the spreading level
and at 2 cm increments within the convection column between the intrusion and the
source. The fluid density of the samples was recorded using an Anton Paar DMA35n
density meter. The particles in the samples were washed and then dried to estimate
the particle volume fraction. This method was determined to be accurate within ±10%
by sampling a well-mixed tank with a known particle concentration.

Note that in all experiments, the timescale to achieve a filling box like flow (Cardoso
and Woods, 1993) was large compared to the length of the experiment and any major
changes to the ambient stratification were the result of particle-induced convection
rather than filling box effects.
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4.3.2 Image Analysis

Image analysis was completed by assessing the level of light intensity captured by the
camera using MATLAB R2020B. Individual images were extracted from the video
footage at a rate of one image per second. Prior to further analysis, a base image,
taken before plume injection, was subtracted from each experimental image to remove
any inconsistencies in light intensity associated with the light sheet. Due to the opaque
nature of the particles dispersed in the plume, less light is captured by the camera in
areas of the tank where particles are present. Due to this, the particles, in a sense,
could be tracked to determine a number of important flow characteristics.

As the particles dispersed in the plume are expected to be carried upwards in the
environment until momentum is no longer present, the evolution of the maximum
plume height over time could be determined. Similarly, following the transition from
Stokes settling to convective settling, all the particles spreading from the plume become
confined to a defined radius associated with the convection column. As this column
is rich with particles, the intensity of light captured in this area is low allowing the
radius of convection to be estimated. Figure 4.2 shows examples of the image analysis
conducted to determine the maximum plume height and the convection column radius.

Image analysis was also used to determine the volume flux of the plume at the
spreading level, Qs, by measuring the evolution of intrusion volume over time as
described by Sigurðardóttir et al. (2020).

4.4 Results

In all experiments, plume behaviour was consistent with previous experimental studies.
Upon initial injection of the fluid and particles, the plume rose upwards and was
observed to be turbulent and conical in shape. Due to the entrainment of dense,
stratified fluid, the plume quickly became neutrally buoyant after an initial period of
acceleration. Each plume continued to rise until upwards inertia had decayed to zero at
a height of zm ≈ 1.37α−1/2B

1/4
0 N−3/4 above the virtual source (Morton et al., 1956).

The fluid and particles descended from this maximum height, creating a fountain at
the top of the plume before spreading as an intrusion between the plume’s height of
neutral buoyancy and maximum height. The particles initially spread with the current,
however, eventually sedimented from the base of the intrusion at their Stokes velocity
into the environment below. Any particles settling into the environment close to the
plume margins were re-entrained into the upwards flow, whereas particles settling from
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Fig. 4.2 False colour images produced using MATLAB R2020B where navy and maroon
represent maximum and minimum values of light intensity. (a) Experiment 55, time-
averaged over 120 seconds once steady state was achieved. Both the convection column
and the plume trough are clearly visible. (b) A 300 second time series of experiment
21. The red/yellow colour shows the evolution of the terminal rise height as the solid
particles dispersed in the flow reduces the intensity of light captured by the camera.
The light blue/green near the top right of the figure shows the spreading height of the
buoyant fluid which rises from the current following the sedimentation of particles.

the intrusion at greater radial distances were not re-entrained and sedimented onto the
tank floor.

As described in Chapter 3, after a series of particle recycling events, the concentra-
tion of particles at the plume’s spreading level reaches a threshold where the ambient
convective velocity associated with particle-induced instabilities exceeded the terminal
settling velocity of each individual particle. This transition in settling regime caused
a significant change in flow dynamics where the veil of sedimenting particles around
the plume evolved into a column of convecting ambient fluid. Within the convection
column, a trough of dyed intrusion fluid was present and under some circumstances,
the convection in the environment became so great that dyed fluid in the trough was
actually dragged to the base of the tank, before rising again as a secondary intrusion
between the original current and the tank floor.

In-situ fluid measurements at various heights in the convection column have provided
previously unknown details regarding the ambient conditions at the edge of a Type
3/3* plume. Significantly, these measurements provide crucial information to further
understand the re-entrainment of particles into the plume which subsequently can
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be used to predict flow dynamics such as the terminal rise height. The key findings
are a) the particle concentration within the convection column, ϕe, is independent of
height; and b) the ambient density in the convection column remains stratified with
approximately the same density gradient prior to plume injection (dN/dt ≈ 0), however,
a constant change in fluid density, ∆ρe, is observed between the plume spreading height
and the base of the tank. A constant ambient particle concentration has been previously
observed in unstratified particle-laden plumes undergoing ambient convection, however,
Cardoso and Zarrebini (2001a) found this concentration was consistent across the entire
width of the tank, whereas observations in this work are confined within much smaller
radii. The latter observation regarding the change in ambient density is unique to this
study as it appears that no prior experimental measurements have been taken within
the environment of a stratified particle-laden plume.

Figure 4.3 details an example of these measurements taken within a plume’s
convection column and Table 4.2 provides the specific values of ϕe and ∆ρe for each
experiment. Other tabulated parameters include the steady-state plume height above
the nozzle, zmax; the secondary intrusion height above the tank floor, zsi; the particle
concentration ϕs, and plume radius bs, at the spreading height; the convection column
radius, Rc; and depth of the plume trough, Lt. Further discussion on each of these
parameters is provided in the following subsections.

4.4.1 Plume heights

Maximum height

The evolution of volume, momentum and buoyancy flux of a single-phase plume with
height can be determined from the following conservation equations,

dQ

dz
= 2α(πM)1/2, (4.10a)

dM

dz
= BQ

M
, (4.10b)

dB

dz
= −N2Q. (4.10c)

Morton et al. (1956) famously derived these equations and numerically determined
the neutral buoyancy and maximum heights of a plume rising through a stratified
environment. Veitch and Woods (2000) and Apsley and Lane-Serff (2019) both built
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Exp zmax Rc bs Qs ϕs ϕe ∆ρe Lt zsi

(cm) (cm) (cm) (cm3s−1) (%) (%) (gcm−3 ×10−3) (cm) (cm)
13 13.5 3.5 2.5 48.5 0.19 0.11 -3.3 5.2 -
14 13.0 3.3 1.6 43.0 0.17 0.10 -7.3 4.4 -
15 9.8 4.4 2.0 38.4 0.38 0.10 -5.8 - 6.8
17 13.1 4.6 1.7 67.5 0.19 0.08 -3.2 - 10.6
18 9.9 3.0 2.3 30.7 0.14 0.06 -2.3 3.2 -
20 12.5 3.6 1.5 46.0 0.26 0.15 -2.8 - 7.1
21 15.1 4.1 1.8 68.7 0.19 0.15 -3.3 - 12.6
22 8.6 3.2 1.8 29.2 0.18 0.09 -2.0 - 7.5
25 12.6 5.1 2.5 48.3 0.32 0.10 -4.8 - 10.3
26 8.9 3.3 1.3 20.9 0.28 0.11 -2.5 - 6.9
27 15.8 4.7 1.9 96.1 0.14 0.09 -3.2 5.1 -
29 15.0 4.9 1.7 81.6 0.15 0.08 -4.3 5.8 -
30 16.3 4.6 1.9 90.9 0.11 0.06 -2.8 4.1 -
31 17.1 5.5 1.7 104.1 0.12 0.09 -3.2 - 9.2
37 12.1 6.7 1.4 43.4 0.10 0.03 -2.5 - -
38 10.9 5.7 2.2 45.6 0.07 0.04 -2.5 - -
39 15.3 6.3 1.8 75.8 0.03 0.02 -1.3 - -
40 15.8 6.1 2.0 58.1 0.08 0.03 -2.0 - -
42 11.2 5.6 1.8 35.8 0.06 0.03 -2.6 - -
43 13.7 5.1 2.4 43.7 0.05 0.02 -1.4 - -
44 13.6 6.6 1.5 51.4 0.06 0.03 -3.9 - -
45 9.9 6.0 1.5 26.2 0.14 0.04 -3.8 - 6.3
46 12.5 4.5 1.3 17.0 0.17 0.05 -2.7 - 7.7
47 17.0 7.7 1.5 57.9 0.08 0.02 -1.2 - 12.3
48 12.4 8.1 1.8 47.4 0.19 0.04 -6.0 - 7.8
50 16.1 8.1 3.1 53.0 0.05 0.02 -1.0 4.7 -
51 18.3 5.6 1.9 54.8 0.02 0.02 -0.6 4.3 -
53 14.3 9.9 2.0 49.6 0.08 0.02 -2.0 4.8 -
55 14.7 10.8 1.4 68.4 0.05 0.01 -0.8 5.4 -
56 11.8 10.8 1.2 48.8 0.13 0.03 -2.0 - 5.3
57 10.4 7.9 2.0 24.7 0.09 0.03 -1.8 5.0 -
58 19.5 11.9 3.0 73.0 0.08 0.03 -1.4 6.5 -
59 11.9 10.2 1.4 50.2 0.19 0.05 -2.9 - 8.6
60 13.4 11.9 2.0 53.2 0.19 0.03 -2.4 - 10.9
61 11.6 9.3 2.5 38.5 0.06 0.02 -1.5 6.4 -
62 12.1 9.9 3.0 43.6 0.09 0.02 -0.9 7.2 -
63 15.8 9.5 1.2 41.4 0.07 0.01 -0.3 6.8 -
64 18.0 9.3 2.7 52.1 0.06 0.02 -0.5 6.1 -
65 16.4 10.1 3.1 88.0 0.03 0.01 -1.0 6.6 -

Table 4.2 List of experimental measurements. The values of ϕe and ∆ρe presented are
averages of the measurements taken through the convection column. Note that only
plume trough depths, Lt, for Type 3 ballotini experiments were measured as the silicon
carbide particles inhibited the trough view and the trough depth of Type 3* plumes
was equivalent to the plume spreading height as dyed fluid is dragged to the tank floor.
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Fig. 4.3 Example measurements within the convection column of experiment 21. (a)
Ambient density measurements, showing the initial ( ) and steady-state ( ) ambient
density at various heights. Note that the solid and dashed lines have the same gradient;
and (b) the particle volume fraction, where the dashed line represents the average of
the four measurements.

upon these equations for application to particle-laden plumes, through either adding
new terms or new equations, to account for the increased decay in buoyancy when
compared to a single-phase plume due to particle re-entrainment.

Although these extensions are necessary to determine the heights of Type 1/1*
plumes, where the particle concentration in the environment increases with height,
the same is not expected to be required for Type 3/3* plumes where measurements
have shown that the ambient concentration of particles is independent of height. Thus,
instead of utilising additional terms or equations, the steady-state height of a Type 3/3*
plume will likely be determined using the same set of equations. However, appropriate
alterations must be made to the definition of the initial buoyancy flux B0, and also to
the entrainment coefficient as entrainment into the plume is a function of the ratio of
momentum and buoyancy fluxes at the source (Fischer et al., 1979; Konstantinidou
and Papanicolaou, 2003).

The initial buoyancy flux of the plume at t = 0 is determined with the source
volume flux and the plume’s reduced gravity g′ = g(ρ0 −ρplume)/ρ0, a function of the
plume density and the density of the environment at the source. This ambient density,
taken here as the reference density ρ0, will remain constant whilst the environment is
quiescent, however, following the onset of ambient convection around the plume, the
density within the convection column decreases. When accounting for the presence of
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particles in the environment, the steady-state density of the environment at the source
is equivalent to

ρ0,ss = ρ0 +∆ρe +ϕeρp. (4.11)

By substituting ρ0 with ρ0,ss in the definition of buoyancy flux, the magnitude of
the initial (t = 0) and steady-state buoyancy flux and buoyancy frequency parameter
values can be directly compared as

B0,ss = B0

(
1+ ∆ρe +ϕeρp

ρ0 −ρplume

)
, (4.12)

and,

σss = σ

(
1+ ∆ρe +ϕeρp

ρ0 −ρplume

)−2
. (4.13)

Upon assessment of (4.12) and (4.13), in the absence of particles and ambient convection,
as one would expect, the initial and steady-state values become equivalent. In the
case of these experiments, −∆ρe ≫ ϕeρp, and therefore, B0,ss < B0. As zmax ∼ B

1/4
0 , a

decrease in buoyancy at the source suggests a decrease in plume height, however, this
drop in height has the potential to be mitigated as a result of decreased entrainment
(zmax ∼ α−1/2) due to the fact that α = f(σ) and σ ∼ B−2

0 .
Previous experimental work in a stratified ambient (Konstantinidou and Papanico-

laou, 2003) suggests that the entrainment coefficient, α, can be determined using the
empirical equation,

α = αp exp
[
ln
(

αj

αp

)(
σ

σc

)2]
, (4.14)

where αp and αj represent the extreme entrainment coefficients for a pure plume and a
pure jet; and σc is the critical buoyancy frequency parameter where momentum begins
to dominate the flow behaviour. Although (4.14) suggests a decrease in entrainment
coefficient is likely to be observed due to a drop in source buoyancy, this is only the
case in initially weakly forced plumes (σ ≪ σc). Previous experiments conducted within
the same experimental apparatus with similar source and ambient conditions suggest
a minimum entrainment coefficient of αj = 0.074 once jet-like behaviour is achieved
(σc ≈ 1) (see Appendix C.1). A similarly traditional value of αp = 0.118 was deemed
suitable to predict the bulk entrainment coefficient of these plumes and thus, this value
will also be used in this work.
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Now with the appropriate methods to determine the steady-state source buoyancy
flux and entrainment coefficient of each plume, equations (4.10a–c) can be solved
to determine the maximum Type 3/3* plume height, specifically by predicting the
height where vertical momentum in the plume decays to zero. As mentioned previously,
other authors studying forced plumes have shown that z/Lm = f(σ) (Fischer et al.,
1979; Richards et al., 2014). This scaling is not directly evident upon numerically
solving equations (4.10a–c) in their dimensional form, thus, to observe this scaling,
and to allow direct comparison of each experiment to the solution, the equations are
non-dimensionalised such that the maximum plume height can be presented against
σ. Using the dimensional scales of B0, M0 and N , along with the dimensionless
entrainment coefficient, α, for consistency with recent literature (Apsley and Lane-Serff,
2019), equations (4.10a–c) become

dQ̂

dẑ
= 2(πM̂)1/2, (4.15a)

dM̂

dẑ
= B̂Q̂

M̂
, (4.15b)

dB̂

dẑ
= −Q̂, (4.15c)

where

Q = σ1/2α1/2(M5
0 /B2

0)1/4Q̂, M = σM0M̂, (4.16a-d)

B = σM0NB̂, z = α−1/2(M3
0 /B2

0)1/4ẑ.

These dimensionless equations were then solved numerically for σ between 0.1
and 50, using incremental steps of 1 × 10−3. Note here that to achieve the scaling
in (4.16d), the non-dimensionalisation process did not include Q0, a value which
in the experiments presented is non-zero and not insignificant enough to have a
negligible influence on plume rise height. As a result, dimensional initial conditions
of Q0 = 3 cm3s−1 and Q0 = 6 cm3s−1 were used to create two separate curves to
reflect the spread of volume flux in the experiments. Also note that the dimensionless
value, Q̂0 = (π3d6

nN2/64Q2
0α2σ3)1/4, is dependent upon α and N . Therefore, to give

the greatest spread in predicted heights, the pure plume and pure jet entrainment
coefficients were utilised, along with the experimental range of stratification strengths,
0.2s−1 < N < 0.8s−1.
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To solve equations (4.15a–c), the dimensionless initial conditions of momentum flux
and buoyancy flux are M̂0 = σ−1 and B̂0 = σ−3/2. The two numerical solutions for
maximum plume height (taken as ẑ at M̂ = 1×10−5) are plotted in Figure 4.4, along
with the experimental measurements of the maximum plume height above the nozzle,
non-dimensionalised using the terms associated with steady-state source conditions.
The solutions presented here represent the relationship of plume height and σ for the
maximum and minimum values of Q̂0 across the experiments. Upon assessment, it
is found that greater than 85% of the measurements fall within the two predictions
when considering the experimental uncertainty, suggesting that the described method
is appropriate for determining the steady-state rise height of a Type 3/3* plume.

Although only two extreme curves have been plotted here to allow for model compari-
son across all the experiments, in practice, it is expected that a more accurate prediction
for the maximum plume height will be achieved by integrating equations (4.15a–c)
with Q̂0 determined from real experimental/field conditions, as opposed to using the
extreme values of α and N as done here.

Secondary intrusion height

Secondary intrusions are a phenomenon previously observed in a number of experimental
studies (Balasubramanian et al., 2018; Mirajkar et al., 2015) and are unique to particle-
laden plumes rising in stratified environments. The key difference between plumes
undergoing ambient convection with secondary intrusions (Type 3*) against those
plumes without multiple intrusions (Type 3) is the strength of the ambient convection
present directly beneath the intrusion.

In Chapter 3, some discussion was presented stating that in addition to the strength
of the ambient convection, the radial extent of convection may be a factor in the
development of multiple intrusions. Yet, as shown in section 4.4.2, secondary intrusion
development appears to be independent of the convection radius (see Figure 4.6). The
empirical transition to Type 3* behaviour, as observed in both these experiments and
those of Mirajkar et al. (2015), is that the convective velocity below the intrusion has
to exceed Uc > 1 cms−1. Once this velocity is exceeded, both dyed plume fluid and
ambient fluid below the intrusion is dragged down to the base of the tank. Turbulent
convection then ceases once the particles have settled onto the tank floor and the
buoyant dyed fluid rises in the environment until reaching a neutrally buoyant height.

To estimate this height, one of two approaches can be taken. Either a numerical
model, similar to that proposed by Bloomfield and Kerr (1998) for stratified fountains,
could be developed and utilised to determine the evolution of fluid density in the
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Fig. 4.4 Dimensionless maximum plume heights, ẑmax, against σss. Experimental
measurements were taken above the nozzle at steady state and were non-dimensionalised
using the steady-state values of buoyancy flux, B0,ss, and entrainment coefficient, α.
The dashed and solid lines represent the numerical solution for minimum and maximum
initial values of dimensionless volume flux, Q̂0 ≈ 0.2σ−3/4 and Q̂0 ≈ 0.8σ−3/4.

fountain-like downflow; or a much simpler approach, reminiscent of Mingotti and
Woods (2020), could be taken by utilising experimental measurements of convection
column fluid density and particle volume fraction. Taking the latter approach, the
change in height of a fluid parcel in a stratified environment ∆z, can be written as a
function of the density deficit between the fluid parcel and the environment ∆ρ, as

∆z = g

N2ρ0
∆ρ. (4.17)

Assuming no additional entrainment into the current once it has reached the base
of the tank, the total density deficit equals the sum of the change in density in the
convection column as a result of dragging light fluid to the tank base and the density
associated with the volume fraction of particles which deposit onto the tank floor,

∆ρ = −∆ρe +ϕeρp. (4.18)

By considering ∆z = zsi −zb, with zb as the height of the base of the tank, combined
with the fact that −∆ρe ≫ ϕeρp, the height of the secondary intrusion above the tank
base can be written as

zsi ≈ − g

N2ρ0
∆ρe, (4.19)
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as zb = 0.
In Figure 4.5, experimental results for the secondary intrusion height of the Type

3* plumes are presented. It is found that the experimental heights, which relate to the
leading edge of the major intrusion observed between the tank floor and the primary
intrusion, fit well against the theory. However, in all cases the secondary intrusions
tended to be relatively thick, regardless of the ambient stratification strength. This
suggests that along with the largest secondary intrusion, where the majority of dyed
fluid came to rest, other smaller spreading events occurred between the tank base and
the predicted height of neutral buoyancy. These minor events are likely associated
with smaller volumes of fluid escaping the convection column prior to reaching the
tank floor.

4.4.2 Ambient convection

Convection column radius

Cardoso and Zarrebini (2001a) determined that the magnitude of the convective velocity
below a surface current produced by a particle-laden plume is a function of the particle-
induced density gradient present at the base of the intrusion. This ambient velocity
associated with particle-induced instabilities can be written as

Uc ≈
(

Grcν
2g

ρ0

)1/4(
ρp

dϕ

dz

)1/4
, (4.20)

where Grc is the critical Grashof number leading to the onset of ambient convection.
This work was extended in Chapter 3, allowing the particle gradient to be determined
analytically as

dϕ

dz
=
(

2αϕs

bs

)
exp

[
−πust(r2 − bs

2)
Qs

]
, (4.21)

where r represents the intrusion radius.
Equation (4.21) shows that the particle gradient at the base of the intrusion decays

exponentially with r2, suggesting that some critical intrusion radius, Rc, exists where
convection in the environment ceases due to the ambient velocity becoming equivalent
to the individual particle settling velocity (as observed in both current and previous
experiments). Upon substituting (4.21) into (4.20) and setting Uc = ust and r = Rc,
after some rearrangement,
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Fig. 4.5 Dimensionless secondary intrusion height above the tank floor against the
scaled change in density within the convection column.
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s)ust

4Qs
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(Grcν
2g)1/4

b
1/4
s ust

(
2αρpϕs

ρ0

)1/4 . (4.22)

The left and right-hand sides of (4.22) are plotted using experimental data in Figure
4.6. As expected, the plotted points show a linear relationship and pass through the
origin when utilising a critical Grashof number of Grc = 4.6 × 104 ± 1.6 × 104 with
ρ0 = 1 gcm−3 and ν = 8.9×10−3 cm2s−1. Notably, when accounting for experimental
uncertainty, an overlap is present between the range of Grc found here and the range
determined for the settling regime transition in Chapter 3. Upon inspection of Figure
4.6, it can also be noted that the range of convection column radii is similar for both
Type 3 and 3* plumes, suggesting that no radial length scale exists which leads to the
development of secondary intrusions between the primary current and the tank floor.

Another point of interest is that, as per the settling regime transition, the density
gradient used to determine the radial extent of convection does not account for the
ambient density gradient, dρe/dz. Further discussion concerning this oddity is presented
later in this section.

A note on the critical Grashof number

The critical Grashof number used to predict the radius of convection in the experiments
is very similar to the expected value for settling regime transition in stratified particle-
laden plumes, however, it significantly differs from previous work conducted in an
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Fig. 4.6 The scaled convection column radius against the dimensionless particle loading
at the plume spreading height. For the experimental data to pass through the origin
as plotted, Grc = 4.6×104. Data points are split into Type 3 ( ) and 3* ( ) plumes.

environment where no ambient density gradient was present. Authors who studied
particle-laden currents, either at the surface of an unstratified environment or at the
density interface of a two-layer stratification, have suggested a critical value of Gr = 103

for convective sedimentation (Carazzo and Jellinek, 2012; Cardoso and Zarrebini, 2001a;
Hoyal et al., 1999).

From the definition of the Grashof number, the likely driver for this significant
difference lies with the convection length scale, as Gr ∼ L4

c when calculated using the
particle-induced density gradient below the plume intrusion. If no other parameters
influence the observed differences in the critical Grashof number, this scaling suggests
that the convection length scale in the stratified case is approximately 3 times greater
than in the unstratified case. Previous suggestions in the literature regarding the
length scale associated with convective sedimentation from a particle-laden current
include the thickness of the particle-bearing layer at the base of the intrusion (Cardoso
and Zarrebini, 2001a), and for currents which have been produced by stratified particle-
laden plumes or jets, the difference in the spreading and maximum plume heights
(Carazzo and Jellinek, 2012). Due to an interest in convection below the intrusion, the
former approach is expected to be more suitable than the latter.

In a fluid of uniform density, a particle-rich interface with a thickness of less than 2
cm is sufficient to achieve turbulent ambient convection below intrusions with similar
particle concentration gradients as those in this study (Carazzo and Jellinek, 2012;
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Cardoso and Zarrebini, 2001a; Hoyal et al., 1999). This small interface is not consistent
with the experiments presented here and in fact, turbulent convection between the
intrusion and the plume source is only realised following the development of a particle-
rich trough of dyed fluid below the intrusion. The reasoning for this is likely because
the sedimentation in previous studies occurs within a fluid of uniform density where
there are no barriers to inhibit the descent of dense particle-rich fingers from the current
to the base of the tank. This however is not the case in linearly stratified experiments
where the density of the environment increases when moving from the fluid surface
towards the tank floor. This gradient creates the potential for the particle-rich fluid
associated with convective sedimentation to decelerate and become neutrally buoyant
at a height above the base of the tank. In the case of such an event, the light fluid will
rise back up in the environment, whilst the heavy particles will continue to settle, but at
a velocity independent of ambient convection. This process is observed in transitional
Type 2 plumes, where both Stokes settling and convective settling are present below
the intrusion.

Therefore, it is expected that the convection length scale in these intrusions is
associated with the depth of the plume trough, or alternatively, the depth dyed
fluid is pulled down from the intrusion into the environment. For trough depths less
than the critical length scale, the buoyancy forces driving the downwards convection
quickly decay to zero and any perturbations are sufficiently damped by viscous forces.
Conversely, beyond this critical depth, buoyancy forces in the trough are large enough
such that turbulent convection continues to the base of the tank. For those experiments
where the plume trough is clearly visible, the trough depths (both time-averaged and
spatially averaged across the width of the convection column) are plotted on Figure
4.7 against the critical convection length scale,

Lc =
ρ0Grcν

2

gρp

(
dϕ

dz

)−1

Rc

1/4

, (4.23)

where Grc = 4.6×104.
In all cases, it is found that the average trough depth across the convection column

exceeds the critical length scale leading to the onset of convection. It is important to
note that the plume trough is parabolic in shape with the greatest depth present at
the edge of the plume. This, combined with the fact that dϕ/dz decays exponentially
away from the plume edge, suggests the maximum Gr below the intrusion develops at
a radius of r = bs, before decaying to the critical value, Grc, at r = Rc. Although the



90 Multiphase plumes rising through particle-induced convection

0 2 40

4

8

Lc (cm)

L
t

(c
m

)

Fig. 4.7 Plume trough depth against the convection length scale at Rc. The solid line
details the critical length scale and the data points relate to depth of the plume trough,
averaged across space and time, for 70 µm ( ) and 100 µm ( ) ballotini experiments.

flow transition at the edge of the plume was determined in Chapter 3 using Grc, the
particle gradient below the intrusion calculated then assumed a particle re-entrainment
coefficient of Qsϕs/Q0ϕ0 = e1. Despite being necessary at that stage to understand
steady-state plume behaviour using source and ambient parameters, concentration
sampling at the top of the plume showed that this level of re-entrainment was not
achieved when convection was present in the environment (see section 4.4.3 for further
details). Therefore, in order to obtain an ambient velocity sufficient to overcome the
terminal velocity of each individual particle, the Grashof number at the edge of the
plume must be larger than Grc. Here, it is expected that this large Gr is mostly a
result of the large convection length scale present at short radial distances from the
plume. It is also expected that the ratio Gr(dϕ/dz)−1 is inversely proportional to r

due to the observed change in trough depth when moving away from the edge of the
plume.

Mechanism for the change in ambient density

In section 4.4, ∆ρe, the term associated with the measured density difference at all
heights in the convection column compared to the original stratification, was introduced.
This value is of vital importance when determining both the terminal steady-state rise
height of the plume and the height of the secondary intrusion above the tank floor. As
such, the physical origin of this term must be understood. Inspection of Tables 4.1 and
4.2 appears to show that the magnitude of the density change is proportional to the
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ambient stratification strength, suggesting that light fluid, high in the tank, is mixing
with the heavier fluid present at lower levels. The only potential mechanism which
could drive this mixing is if, whilst settling, the particles present in the environment
drag down a portion of lighter fluid from above to mix with the denser fluid below - a
phenomenon previously observed in simulations concerning particles settling through a
stratified ambient (Blanchette, 2013).

Now, consider the potential for each particle settling from the intrusion to drag
down some volume of intrusion fluid (or ambient fluid at that height), resulting in a
reduction in the density of the fluid in the convection column. The maximum required
volume of fluid per particle to achieve a certain change in ambient density can be
determined by conducting a simple mass balance for the extreme case of mixing between
fluid in the intrusion and the environmental fluid directly below. The balance is written
as

Vpρp +[Vt − (Vp +Vf )]ρoriginal +Vf ρfluid = (Vt −Vp)ρnew +Vpρp, (4.24)

where Vt is the total volume of the control volume; Vf and Vp are the respective volumes
of the newly introduced fluid and particle components; ρoriginal is the original density
of the fluid in the control volume; ρfluid is the density of the fluid introduced into the
control volume; and ρnew is the new density of the fluid in the control volume after
mixing. As Vt ≫ Vp, (4.24) can be simplified to

[Vt − (Vp +Vf )]ρoriginal +Vf ρfluid ≈ Vtρnew. (4.25)

If ρoriginal = ρ0, following some rearrangement, (4.25) may be rewritten as

− 1
ϕe

∆ρe

ρ0
≈ 1+ Vf

Vp

(
1−

ρfluid

ρ0

)
, (4.26)

where ∆ρe = ρnew −ρ0 and ϕe = Vp/Vt. For simplicity, ρfluid is assumed to be associated
with the fluid at the height of the intrusion and using the definition ρfluid = ρ0(1 −
N2zs/g), (4.26) can be simplified to

− 1
ϕe

∆ρe

ρ0
≈ 1+ Vf

Vp

(
N2zs

g

)
. (4.27)

Previous forced plume studies have suggested zs ∼ α−1/2(B0/N3)1/4 for σ < 49
(Richards et al., 2014; Sutherland and Hong, 2016). With this scaling, along with
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Vp = πd3
p/6, (4.27) may be written in terms of both source and stratification parameters

as

− 1
ϕe

∆ρe

ρ0
≈ 1+ 6Vf

πd3
p

B
1/4
0 N5/4

α1/2g

 . (4.28)

Upon plotting the left and right-hand sides of equation (4.28) on Figure 4.8, it is found
that the experimental measurements follow the appropriate scaling when Vf is constant,
irrespective of particle diameter, and equivalent to 2.25×10−4 cm3. This suggests that
each particle drags ≈ 103 times its volume of fluid down into the environment. Such a
volume does not seem unreasonable given the experimental observations concerning the
radial extent of ambient convection seen in plumes with relatively dilute currents. It is
also noteworthy that the radial extent of ambient convection, which directly relates to
the downwards movement of fluid in the environment, is dependent upon the particle
settling velocity rather than the particle diameter alone. Some scatter is observed in
Figure 4.8, however this is likely due to ignoring the presence of momentum at the
plume source (instead of differences in α), along with any small measurement errors
associated with ∆ρe and ϕe.

As the intrusion continues to spread (see Figure 4.9), it can be said that the
majority of the intrusion fluid does not mix with the ambient fluid in the convection
column below and that most of the lighter fluid originates from lower levels in the tank.
However, this does not mean that fluid from the intrusion is not initially dragged down
into the environment, as is the case with the plume trough, prior to then rising again
once the fluid has separated from the particles. Although ∆ρe is not necessarily the
result of intrusion fluid being mixed throughout the entire convection column, it is
expected that the particles settling through the column promotes the mixing of light
ambient fluid with the heavier fluid below (Blanchette, 2013). As the particle settling
in the convection column is continuous, the ambient stratification will be unable to
restore itself to its original state, resulting in a lower ambient density near the source.

This mixing would cause one to expect that the ambient stratification would be
destroyed, however, the stratified fluid external to the convection column becomes
entrained. This is due to the radial inflow of fluid into both the central plume and
the down-flowing convection column (see Figure 4.9a), where predicted velocities are
of the same order of magnitude as those in fountains with similar absolute source
values of M0 and B0 (Bloomfield and Kerr, 2000; Mingotti and Woods, 2016). It is this
entrainment behaviour which is expected to cause the ambient stratification within the
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Fig. 4.8 The change in ambient density within the convection zone against the scale
(B0N5)1/4/d3

pα1/2g. The points plotted represent results from 70µm ( ) and 100µm ( )
ballotini and 70µm silicon carbide ( ) experiments. The solid line has a coefficient of
6Vf /π = 4.3×10−4 cm3 and as per equation (4.28), an intercept of y = 1 when x = 0.

convection column to remain similar to its initial value and thus, results in a ∆ρe term
constant with height.

Note however, to achieve this change in density below the intrusion whilst also
observing little change in the ambient density gradient, the stratification in a portion
of the environment must be destroyed such that the density jump can be achieved.
Although not captured by discrete measurements, this density jump likely occurs
immediately below the intrusion and is potentially associated with the plume trough
(see Figure 4.9b). It is also expected that this density jump is likely the reason why
the fluid density gradient plays no role in determining the radial extent of ambient
convection, nor in the transition of particle settling regime.

4.4.3 Particle concentrations

The concentration of particles, both in the environment at the edge of the plume and in
the plume at the spreading level, are key parameters in determining points of interest
which have been discussed in previous sections, notably the plume rise height and the
radial extent of ambient convection. Experimental measurements have suggested that
the particle concentration within the convection column is constant and to predict
this concentration, the work of Martin and Nokes (1988) is utilised. These authors
considered crystal settling in a convecting magma chamber and stated that the velocity
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Fig. 4.9 (a) Two subsequent frames of experiment 30 taken at steady state. Blue dye
of the appropriate density was injected into the environment outside the convection
column and the images show the lateral entrainment of ambient fluid. Convective
instabilities appear to have negligible influence on the radial flow and allows the density
gradient to be maintained. Blue dye was also injected near the source to observe
spreading of the intrusion post-convection. Note the presence of a secondary intrusion
near the source which is only visible in this Type 3 plume due to the injection of
additional dye; (b) A schematic of the proposed density jump within the convection
column to achieve ∆ρe and dN/dt ≈ 0 between the source and the plume trough.

of the fluid must decrease to zero at the chamber boundaries, thus any particles in
suspension must settle onto the base with their Stokes velocity. With this in mind, a
steady-state balance may be written to give the ambient particle volume fraction as,

ϕe = Q0ϕ0
πR2

cust
. (4.29)

Here, a similarity to the work of Cardoso and Zarrebini (2001a) can be seen, note
however their ambient particle concentration prediction for an unstratified plume was
across the entire radius of the tank, whereas the prediction presented here is confined
to the convection column radius around the plume. Due to the well-mixed ambient
particle concentration, a second simple balance can be written to give the plume
spreading level particle volume fraction as,

ϕs = Q0ϕ0 +(Qs −Q0)ϕe

Qs
, (4.30)
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Fig. 4.10 Experimental measurements of (a) the convection column particle volume
fraction, and (b) the plume re-entrainment coefficient, Qsϕs/Q0ϕ0, against the well-
mixed theory. The points plotted represent results from 70 µm ( ) and 100 µm ( )
ballotini and 70 µm silicon carbide ( ) experiments.

which, once (4.29) is substituted into (4.30), becomes

ϕs = Q0ϕ0
Qs

[
1+ (Qs −Q0)

πR2
cust

]
. (4.31)

Equations (4.29) and (4.31) are compared to experimental measurements in Figure
4.10 and it is found that both suitably predict the ambient and spreading particle
volume fractions within the experimental uncertainty. Due to the success of these simple
models, it’s also worth noting that upon comparison of equation (4.31) with equation
(4.22), the re-entrainment coefficient (= Qsϕs/Q0ϕ0) can be alternatively written in
the form, 1+0.25/ ln[(Grcν

2g/bs)1/4(2αρpϕs/ρ0)1/4u−1
st ], assuming that Qs ≫ Q0 and

Rc ≫ bs.
In Figure 4.10b, it is found that this coefficient in plumes rising in the presence

of ambient convection can be as small as one, indicating that little to no particle
re-entrainment occurs. The majority of values plotted are significantly less than the re-
entrainment coefficient associated with plumes rising through quiescent environments
(= e1) and it is expected that this reduction in re-entrainment is a key factor in
mitigating plume collapse.
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4.5 Conclusion

Discrete measurements inside the convection column of stratified particle-laden plumes
have provided great insight into not only particle re-entrainment behaviour, but also
the condition of the fluid stratification surrounding the plume following the onset of
particle-induced convection.

These insights have allowed many parameters in Type 3/3* plumes to be accurately
predicted. Among those parameters is the steady-state rise height which can be
determined by utilising a simple initial condition modification when integrating the
well-known plume equations. In addition to this, it is found that the radial extent of
convection in the environment can be predicted using approximately the same Grashof
number as that to determine the particle settling regime. However, no relationship
has been determined between this radius and the development of secondary intrusions
between the primary intrusion and the tank floor.

Instead, it is expected that observing a fountain-like downflow is associated with
one of two things. Either the depth of the plume trough, which is also the length scale
associated with the onset of convection, is responsible for the transition; or alternatively,
Type 3 and 3* plumes may in fact be one and the same. This hypothesis is suggested
as actually observing the fountain between the primary intrusion and the base of the
tank is fully dependent upon a sufficient concentration of dye being present within the
dragged down fluid. This may not be the case if the source fluid becomes very dilute
through entrainment and notably, secondary intrusions do becomes visible in Type 3
plumes when dye is added to the convection column (see Figure 4.9a). This suggests
that a fountain-like downflow may be visible in these plumes given a greater source
dye concentration.

Irrespective of whether a physical difference between Type 3 and 3* plumes does
indeed exist, neither the experimental measurements in this study, nor the previous
convective velocity estimates, provide a clear picture on this regime transition. It is
therefore suggested that future authors first identify whether this observation is simply
the result of insufficient dye by conducting a number of experiments with varying dye
concentration in the source fluid. If this is determined not to be the case, it would be
best to focus their efforts specifically on gaining an array of direct velocity and density
measurements within the trough region below the plume intrusion.



Chapter 5

Radial spreading of turbulent
bubble plumes

This chapter has been published as Sigurðardóttir, A., Barnard, J.M., Bullamore, D.,
McCormick, A., Cartwright, J., and Cardoso, SSS. (2020). Radial spreading of turbulent
bubble plumes. Philosophical Transactions of the Royal Society A, 378(2179):20190513.
The manuscript was prepared by Ms. Arna Sigurðardóttir, myself and Prof. Silvana
Cardoso following the Stokes 200 conference. Most experiments and analysis presented
were conducted by Ms. Sigurðardóttir and myself. Some experiments were also
conducted by Part IIB students, Ms. Danielle Bullamore and Ms. Amy McCormick.

5.1 Summary

Weak bubble plumes carry liquid from the environment upwards and release it at
multiple intermediate levels in the form of radial intrusive currents. In this study, labo-
ratory experiments are performed to explore the spreading of turbulent axisymmetric
bubble plumes in a liquid with linear density stratification. The thickness, volumetric
flowrate, and spreading rates of multiple radial intrusions of plume fluid were measured
by tracking the movement of dye injected at the source of bubbles. The experimental
results are compared with scaling predictions. Our findings suggest that the presence
of multiple intrusions reduces their spreading rate in the viscous-buoyancy regime
compared to that of a single intrusion. This work is of relevance to the spreading of
methane plumes issuing from the seabed in the Arctic Ocean, above methane-hydrate
deposits. The slower, multiple spreading favours the presence of methane-rich seawater
close to the plume, which may reduce the dissolution of methane in the bubbles, and
thus promote the direct transport of methane to the atmosphere.
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5.2 Introduction

In 1851, Stokes derived an expression for the drag on a spherical pendulum bob moving
in a viscous fluid (Stokes, 1851). This expression, by a modification of the boundary
conditions, can describe the drag on a spherical bubble, and a further reshaping can
also approximate the drag on a non-spherical bubble. Many such bubbles together
constitute either a bubble cloud or a bubble plume. Bubble plumes are formed above
a continuous source of gas bubbles in a liquid environment. The bubbles rise owing to
buoyancy and carry ambient fluid upwards forming a plume of two phases (Asaeda
and Imberger, 1993; Milgram, 1983; Schladow, 1992; Wüest et al., 1992). The bubbles
originate either from point sources that form axisymmetric plumes, or line sources
that give rise to two-dimensional plumes. In weak bubble plumes, a double structure
develops: the bubbles are concentrated in a central region, around which liquid rises
(McDougall, 1978; Socolofsky and Adams, 2003, 2005). The outer liquid plume rises
more slowly than the inner plume and entrains ambient liquid. Liquid between the inner
and outer plumes is exchanged by turbulent eddies. In a linear density stratification,
the bubbles carry the negatively buoyant liquid upwards over only a relatively short
distance, subsequently releasing it to the environment. This liquid from the outer
plume then descends to a level of neutral buoyancy where it spreads horizontally. The
liquid peeling occurs periodically throughout the vertical extent of the plume. The
horizontal plume-liquid currents spreading in the environment are called intrusions.
Similar mechanisms of intrusion formation have been described for gravity currents
(Hogg et al., 2017) and single-phase plumes (Gladstone and Woods, 2014) in stratified
environments.

Intrusive gravity currents, formed from direct injection of fluid or by a single-phase
plume in a stratified environment, have been of interest to many researchers (Chen,
1980; Ivey and Blake, 1985; Kotsovinos, 2000; Ungarish, 2009; Zatsepin and Shapiro,
1982). Intrusion behaviour is characterised in terms of two spreading regimes when
buoyancy is driving the flow. The initial spreading is determined by a balance of
the inertial retarding force and the buoyancy force, leading to the spreading relation
(Lemckert and Imberger, 1993a),

Ri = cI(QiN)1/3t2/3, (5.1)

where Ri is the radial position of the tip of the intrusion, N is the ambient buoyancy
frequency, Qi is the intrusion volumetric flowrate, and t is time. This balance corre-
sponds to an intrusion Froude number Fr = 8πc3

I/9 (Rooney and Devenish, 2014b;
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Woods, 2010). At later times, the intrusion flow is slower, so that viscous forces become
important. Once the viscous-buoyancy regime is established, the tip of the intrusion
moves according to (Lemckert and Imberger, 1993a),

Ri = cV

(
Q4

i N2

ν

)1/10
t1/2, (5.2)

where ν is the kinematic viscosity. Lemckert and Imberger (1993a) proposed a time-
scale for the change of regime, from the time taken for the inertia-buoyancy current
thickness to collapse to the viscous-buoyancy one, as

tr ∼ GN−1 =
(

Q2
i N

ν3

)1/5
N−1. (5.3)

Previous experimental and theoretical work suggests the ranges cI = 0.40−0.80 and
cV = 0.45 − 0.52 (Chen, 1980; Ivey and Blake, 1985; Lemckert and Imberger, 1993a;
Maxworthy et al., 2002; Zatsepin and Shapiro, 1982).

The initial vertical thickness of the intrusion formed from plume spreading is
generally agreed to follow the scaling,

Li ∼ Lp = (B0/N3)1/4, (5.4)

where B0 is the buoyancy flux at the source of the plume (Asaeda and Imberger, 1993;
Chen, 2001). The exact value of the coefficient depends on the relative speeds of the
bubbles and the plume. The typical range is 0.7 < Li/Lp < 4.5, the higher values being
observed for higher plume speeds (Asaeda and Imberger, 1993; Chen, 2001).

In contrast to the above work on single intrusions, weak bubble plumes spread
forming multiple intrusions, between which ambient fluid is entrained into the plume.
This periodic spreading pattern has not been studied quantitatively before. In this work,
laboratory experiments are performed to explore the spreading of weak axisymmetric
bubble plumes in a liquid with linear density stratification. The thickness, volumetric
flowrate, and spreading rates of the multiple radial intrusions were measured by tracking
the movement of dye injected at the source of bubbles. This preliminary study helps the
understanding of the structure and spreading of methane bubble plumes in the Arctic
sea. Numerous such plumes (where B0 ≈ 103 ∼ 104 cm4s−3) transport the methane from
depth to shallower regions in the seawater, and possibly to the atmosphere (Shakhova
et al., 2019, 2010a, 2015).
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5.3 Experimental methods

Laboratory experiments were carried out using the equipment shown schematically in
Figure 5.1a. Tank T1 was made of acrylic and had inner dimensions of 69 cm x 69
cm x 50 cm. A double bucket system (B1 and B2) was used to create a linear density
profile (Oster and Yamamoto, 1963). The density profile in tank T1 was measured
using an Anton Paar DMA35n density meter. Nitrogen gas was supplied into tank T1
at a height 2.5 cm above the tank base using a stainless steel tube with a diameter
of 1 mm (with the exception of three experiments where a 0.5 mm tube was used,
marked with * in Table 5.1), forming a stream of bubbles. The flowrate of nitrogen
was measured with a rotameter and controlled with a needle valve. Pressure in the
nitrogen supply line was kept constant at 2 bara. The bubbles formed were ellipsoidal,
with diameters in the range 2-12 mm. The bubble size can be assumed constant owing
to negligible breakup, coalescence and expansion over the small height of the tank
(Clift et al., 1978). Dye was fed into the tank at the same height as the gas using a
syringe pump via a silicone tube of 1 mm diameter. The dye was a 5 gL−1 mixture of
Acid Red 1 (Azophloxine) in water and was delivered at a rate of 5 cm3min−1.

A Nikon D300s DSLR camera with an AF-S Micro NIKKOR 60 mm f/2.8G ED
lens was used to capture the experiments at 24 Hz and the images were processed
using the MATLAB R2020B image processing toolbox. To ensure consistent lighting
of the videos for image processing, an LED light sheet was placed behind the tank and
all other light was eliminated by turning off ceiling lights and using two sets of blinds
on the windows. From tracking the movement of the dye, the radius and thickness of
each intrusion, as well as the total volume within it could be determined (Figure 5.1b).
Further detail of the image processing is given in Bullamore (2019); McCormick (2019);
and Sigurðardóttir (2019).

The experiments conducted in this project are given in Table 5.1 (complete raw
data may be found at https://doi.org/10.17863/CAM.51658). The slip velocity of the
bubbles ub is presented in non-dimensional form,

UN = ub

(B0N)1/4 . (5.5)

For most of the range of UN studied, the bubble plumes have distinct and steady
sub-surface intrusions (Asaeda and Imberger, 1993; Socolofsky and Adams, 2003).

 https://doi.org/10.17863/CAM.51658
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(a)

(b)

Fig. 5.1 (a) Schematic of the experimental setup. (b) General pattern of plume
spreading. For each intrusion, the radius Ri and thickness at the edge of the plume Li

were measured. The edge of the plume is taken to be the radius of the bubble core,
indicated by the dotted lines. Black arrows illustrate the flow of liquid. Intrusions are
numbered from the bottom as shown.
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Exp Qb B0 N Intrusions UN

(cm3s−1) (cm4s−3) (s−1) (-) (-)
1* 20 19620 1.10 2 2.00
2* 20 19620 1.45 3 1.87
3 18 17658 0.79 1 2.25
4 18 17658 1.03 2 2.10
5 18 17658 1.12 2 2.06
6 18 17658 1.25 2 2.00
7 15 14715 0.82 2 2.32
8 15 14715 0.93 2 2.25
9 15 14715 1.22 2 2.10

10* 15 14715 1.35 3 2.05
11 10 9810 0.97 3 2.46
12 10 9810 1.02 3 2.43
13 10 9810 1.11 3 2.38
14a 10 9810 1.23 4 2.31
14b 10 9810 1.23 4 2.31
15 10 9810 1.45 4 2.23
16 5 4905 1.04 3 2.88
17a 5 4905 0.92 3 2.97
17b 5 4905 0.92 3 2.97
17c 5 4905 0.92 3 2.97
17d 5 4905 0.92 3 2.97
17e 5 4905 0.92 3 2.97
17f 5 4905 0.92 3 2.97

Table 5.1 List of experimental parameters. Note here that the source buoyancy flux is
defined as B0 ≈ Qbg.

5.4 Results and Discussion

Figure 5.2 shows the typical evolution of the spreading of the bubble plumes. The
injected red dye is quickly diluted within the plume and carried upwards. At early
times, multiple intrusions develop, which gradually spread radially. The entrainment of
ambient fluid into the plume occurs in the non-dyed fluid region below and between the
intrusions. Once the intrusions reach the wall of the tank, the dyed fluid is re-entrained
into the plume and eventually fills the entire tank.

The intrusion thickness, measured at the edge of the plume, is approximately
independent of time and proportional to the Ozmidov Length, Lp (Asaeda and Imberger,
1993), as shown in Figure 5.3. The results are separated by intrusion number and can
be seen to follow the expected scaling of (5.4) with a coefficient Li/Lp = 0.83 ± 0.14.
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(a) (b)

(c) (d)

Fig. 5.2 Spreading of a bubble plume with gas flowrate 18 cm3s−1, in stratification
with N = 1.25 s−1 (experiment 6). Photographs were taken after (a) 1 s, (b) 30 s, (c)
60 s, and (d) 90 s.

The measurements presented are instantaneous ones; the typical time evolution is
shown in Figure 5.3b for intrusions 1 and 2 in experiment 17d. The scatter of the data
in the time evolution is consistent with that in the scaling. The difficulty in measuring
the intrusion thickness using image processing, owing to the local mixing produced by
the bubble core, precluded the use of a time-averaged thickness for all intrusions.

The intrusion flowrates, Qi, were determined from the slope of the straight line
fit for the intrusion volume as a function of time (Figure 5.4). The intrusion volume
was calculated by measuring the intrusion thickness as a function of radius at a given
time, from the two-dimensional image view from the front of the tank, and then
integrating assuming axisymmetry. However, discrepancies were observed to occur
between the right and left sides of each current, as seen in Figure 5.4, partly owing to
this axisymmetric assumption. The initial behaviour, while the plume is established,
was neglected in the calculation of the flowrate. The large-time behaviour, with an
apparent constant volume, is an image-processing artefact and was also neglected.
Indeed, as an intrusion approaches the tank wall, it spreads vertically; this spreading
was neglected in the calculation of the intrusion volume flux owing to the utilisation of
an image-analysis control volume of set height. The set control volume height results
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Fig. 5.3 (a) Instantaneous intrusion thickness against the Ozmidov length, where the
points correspond to intrusion numbers 1 ( ); 2 ( ); and 3 ( ) counted from below. The
scaling is constrained to intersect the origin. The error bars represent the standard
deviation of results from repeated experiments. (b) Evolution of the thickness of
intrusions 1 ( ) and 2 ( ) for experiment 17b. Dashed lines show variations
between results from the left and right-side of the plume images.

in the flattening of the volume curves, as shown in Figure 5.4, and allows the intrusion
volume flux to be determined from the curve using the largest time interval with an
approximately constant slope prior to any intrusion interaction with the wall.

Figure 5.5 shows the intrusion flowrate plotted against the scaling group, (B3
0/N5)1/4.

The flowrate is larger for the top intrusion owing to the release of the liquid carried
with the bubbles in the central part of the plume, in addition to the liquid dragged in
the outer plume. For the lower intrusions, 1 and 2, the flowrate follows the expected
scaling with a coefficient Qi/(B3

0/N5)1/4 = 0.13 ± 0.06. This flux is much lower than
that reported by Socolofsky and Adams (2003) for sediment plumes in the same range
of UN (their Figure 8), possibly owing to the much weaker plumes studied here. The
relatively large experimental error is a result of the deviation of the plume spreading
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Fig. 5.4 Intrusion volume with respect to time for Experiment 17f. Coloured lines
correspond to the volume of intrusion 1 ( ); 2 ( ); and 3 ( ). Coloured dashed
lines show variations between results from the left and right-side of the plume images.
The slope of the best line through the data is the volumetric flowrate of the intrusion,
Qi.
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Fig. 5.5 Intrusion flowrate against (B0
3/N5)1/4. Points correspond to intrusion numbers

1 ( ); 2 ( ); and 3 ( ). The scaling is constrained to intersect the origin. The error bars
represent the standard deviations of results from repeated experiments.

from the exact axisymmetric one and is consistent with the magnitude of the difference
between the left and right-hand side results presented in Figure 5.4.

Figure 5.6 presents the radial spreading of several intrusions as a function of time.
The inertia-buoyancy and viscous-buoyancy regimes were identified, from the changing
slopes, from t2/3 in the inertia-buoyancy regime to t1/2 in the viscous-buoyancy regime,
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Fig. 5.6 Intrusion radius with respect to time for experiment 17b. Solid lines correspond
to average radius for intrusion 1 ( ); 2 ( ); and 3 ( ). Coloured dashed lines
show variations between results from the left and right-side of the plume images.
Predicted inertia-buoyancy (Ri ∼ t2/3) and viscous-buoyancy (Ri ∼ t1/2) regimes are
shown by black dashed lines and black dotted lines, respectively. The vertical line
signals the time at which the surface intrusion reaches the wall of the tank.

as shown. In the experiments presented here, the transition time between the inertia-
buoyancy and viscous-buoyancy regimes, from (5.3) is expected to be about 100 s.
The results indicate on average a lower transition time of around 20 s, which may be
explained by the counterflow present in the multiple intrusions studied here. In each
experiment, the top intrusion reached the wall of the tank after approximately 100 s.

The results from all the experiments are presented in Figures 5.7 and 5.8 for the
inertia-buoyancy and viscous-buoyancy regimes, respectively. Multiple experiments
with the same flowrate were conducted, therefore these figures do present a number
of different intrusion paths associated with the same flowrate. The reference time, tr,
and reference radius, Rr, are taken to be the time and radius at which the transition
to the viscous regime occurs. In the inertia-buoyancy regime, the inner plume radius,
bi, is used as a reference. Note that this radius was estimated at early times due to
the inner plume being experimentally indistinguishable from the down-flowing outer
plume shortly after plume injection (see Appendix B for details).

The spreading relationship determined for the inertia-buoyancy regime is Ri =
0.39 (QiN)1/3t2/3, corresponding to an average Froude number of Fr = 0.17. The coeffi-
cient has a standard deviation of 0.08, corresponding to a Froude number range of 0.09 <
Fr < 0.31. For the viscous-buoyancy regime, we obtained Ri = 0.15 (Q4

i N24/ν)1/10t1/2,
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Fig. 5.7 Dimensionless intrusion radius with respect to dimensionless time in the
inertia-buoyancy regime. Points correspond to bubble flowrates of Qb = 5 cm3s−1 ( );
10 cm3s−1 ( ); 15 cm3s−1 ( ); 18 cm3s−1 ( ); and 20 cm3s−1 ( ). The black line and
dashed line represent a Froude number of 0.3 and 0.1 respectively.
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Fig. 5.8 Dimensionless intrusion radius with respect to dimensionless time in the
viscous-buoyancy regime. Points correspond to bubble flowrates of Qb = 5 cm3s−1

( ); 10 cm3s−1 ( ); 15 cm3s−1 ( ); 18 cm3s−1 ( ); and 20 cm3s−1 ( ). The black line
represents the average scaling.

where the coefficient has a standard deviation of 0.02. The presence of the tank wall
slows the spreading rate of the intrusion at large times in this regime, as noted in previ-
ous work (Ivey and Blake, 1985). The intrusion radius beyond which the presence of the
wall became important varied for each experiment. To prevent wall effects from influenc-
ing the calculation of the intrusion spreading rate, we neglected all radial measurements
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Fig. 5.9 The points correspond to intrusion numbers 1 ( ); 2 ( ); and 3 ( ) counted from
below. (a) Plume radius bi against (Qi/N)1/3. The line of best fit has a coefficient
of 0.33 ± 0.07. (b) Reference time tr against G/N as predicted by the scaling (5.3).
The line of best fit has a coefficient of 0.13 ± 0.05. (c) Reference radius Rr against
the length scale predicted by (5.3) and (5.1). The line of best fit has a coefficient of
0.09 ± 0.03.
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Study cI cV Type of flow

Chen (1980) 0.802 0.45 Asymptotic solutions
for submerged spreading.

Zatsepin & Shapiro
(1982) Not studied 0.52

Laboratory experiments:
Constant discharge at
level of neutral buoyancy.

Ivey & Blake
(1985) Not studied 0.45

Laboratory experiments:
Constant discharge at
level of neutral buoyancy.

Lemckert & Imberger
(1993a) 0.40 ± 0.13 Not studied

Field experiments:
Intrusions generated by
deep-set point-source
bubble plume systems.

Current results 0.39 ± 0.08 0.15 ± 0.02
Laboratory experiments:
Intrusions of point-source
bubble-plumes.

Table 5.2 Comparison of spreading coefficients for the inertia-buoyancy and viscous-
buoyancy regimes for radial intrusions in linear stratification.

beyond which there was an obvious gradient reduction without subsequent recovery
back to the original gradient. The offsets bi, Rr and tr used in Figures 5.7 and 5.8 are
presented in Figure 5.9 as a function of the experimental parameters. The offset of 0.20
from the origin in Figure 5.9b is associated with the plume originating from a real source.
Assuming a plume spread similar to that of a single-phase plume in an unstratified
environment, the average virtual source is 2.6 cm below the real source for an average
plume entrainment coefficient α = 0.063, aligning with previous measurements for
weak bubble plumes (Milgram, 1983). The scatter in Figure 5.9c reflects the difficulty
in setting the transition between the inertia and viscous regimes and partly explains
the spread of data in Figure 5.8.

Table 5.2 compares these results to previous work in linear density stratification,
with either direct injection of fluid into an intrusion or a plume intrusion. Although
we do not present the results of Kotsovinos (2000) for a jet intrusion, owing to the
different scaling used in that study, it is worth noting that his results (see his Figures
14 and 15) are in quantitative agreement with those of Zatsepin and Shapiro (1982)
and Lemckert and Imberger (1993a). For the inertia-buoyancy regime, our finding of
cI = 0.39 is consistent with the measurement of Lemckert and Imberger (1993a) for a
single intrusion formed from a bubble plume. The theoretical result of Chen (1980) is
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much larger at cI = 0.802. The speed of the intrusion in this regime is largely set by
the energy dissipation at its nose (Ungarish, 2009), so the consistency of the coefficients
for single and multiple spreadings suggests that the periodic counterflow of ambient
fluid in the latter does not affect the energy balance. For the viscous-buoyancy regime,
the theoretical results of Chen (1980), and the experimental results of Ivey and Blake
(1985) and Zatsepin and Shapiro (1982), for direct injection of fluid, are in the narrow
range of cV = 0.45−0.52. The coefficient found in our work for multiple bubble-plume
intrusions is significantly smaller. The slower spreading in our study may be explained
by the counter flow of the environmental fluid between the multiple intrusions as it
is entrained into the plume. Although this counter flow does not seem to affect the
dissipation of energy at the nose of the intrusion in the inertia-buoyancy regime, a
higher viscous friction is expected at lower speeds.

Our findings suggest that dissolved methane may be retained relatively close to
rising methane bubble plumes in the Arctic sea, thus reducing the dissolution of
methane and promoting the direct transport of methane to the atmosphere. However,
given the implications, especially when considering the potential application described
here, a caveat must be added to these results as the intrusions studied in this work
were confined with a maximum spreading radius of approximately 30 cm. This means
that the individual spreading regimes in a given intrusion may only cover a distance
of 15 cm or less and this made it particularly difficult to both apply power laws and
determine the point of regime transition. Also, despite our best efforts to eliminate
wall effects, confinement may continue to influence the spreading rate of the intrusions,
especially in the viscous-buoyancy regime, where the significant reduction in spreading
rate compared to typical intrusions is observed.

5.5 Conclusion

Laboratory experiments were performed to quantify the spreading of turbulent ax-
isymmetric bubble plumes in a linear density stratification. Weak bubble plumes
characterised by multiple, periodic radial intrusions were considered. It was found
that the spreading in the inertia-buoyancy regime was slower than theoretical results
for single intrusions but consistent with experimental observations of bubble plume
systems forming single intrusions. This consistency of the intrusion speed for single
and multiple spreadings suggests that the periodic counterflow of ambient fluid in the
latter does not affect the energy balance at the nose of an intrusion. Spreading in
the viscous-buoyancy regime was significantly slower than that reported from both
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theoretical and experimental results for single intrusions formed by direct injection of
fluid. This slower spreading may be explained by the higher viscous friction caused
by the counter flow of the environmental fluid between multiple intrusions, as it is
entrained into the plume. This finding is of relevance to the spreading of dissolved
methane by bubble plumes in the Arctic Sea. It would be of interest to extend this work
to either unconfined bubble plume intrusions or alternatively, to intrusions spreading
over a greater spacial range than the somewhat limited results presented here.





Chapter 6

Diffusion of dissolved species from
ellipsoidal bubble plumes

This chapter has been submitted to the Journal of Fluid Mechanics as Barnard, J.M.;
Harris, M.; Sigurðardóttir, A.; and Spry, M. (2021). Diffusion of dissolved species from
stratified ellipsoidal bubble plumes. The text and analysis was all completed myself,
expanding upon the work presented in Ms. Arna Sigurðardóttir’s MPhil thesis (see
Sigurðardóttir, 2019). Experiments were conducted by myself and Part IIB students,
Mr. Matthew Harris and Mr. Matthew Spry.

6.1 Summary

The continuous release of bubbles from a point source into a liquid environment
results in the development of a multiphase bubble plume, a flow of great interest in
both industry and nature. As the bubbles rise, liquid becomes entrained into the
bubble core and is carried to greater heights in the environment. When rising through
a stratified ambient such as the ocean, dense liquid tends to peel away from the
buoyant bubble core, creating multiple submerged intrusions capable of transporting
any dissolved species radially away from the plume at various heights throughout the
water column. In this study, plumes of ellipsoidal bubbles rising through stratified
fluid were experimentally investigated in an attempt to understand the radial mass
transfer of dissolved species from these plumes to the environment. Using dye as a
representation for dissolved species, discrete measurements were taken radially along
the plumes’ submerged intrusions to show the presence of two distinct regions. Close to
the bubble core, dye concentration decays from a maximum value at the centre of the
plume to a lesser value at some defined radius. The intrusion dye concentration then
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remains unchanged for increasing radial distances, suggesting that the plume bubble
core induces significant near-field mixing and results in the re-entrainment of dissolved
species from the environment back into the plume. Motivated by these observations,
we develop a simple diffusion model characterised by a mixing radius Rm, an effective
diffusion coefficient δ, and a constant dependent upon the plume’s non-dimensional
slip velocity, UN = ub/(B0N)1/4. The results presented provide insight into not only
how dissolved species is transported radially away from the plume, but also how mass
is carried to greater heights in the environment due to the recirculation of fluid close
to the edge of the plume.

6.2 Introduction

Bubble plumes are complex multiphase flows widely present in many industrial and
environmental processes. For many years, bubble plumes have been utilised to destratify
lakes and reservoirs (McDougall, 1978; McGinnis et al., 2004; Schladow, 1992), and
more recently, have been observed rising through the ocean’s water column due to the
release of gaseous hydrocarbons from either natural seeps (Leifer et al., 2006; Skarke
et al., 2014), or from industrial accidents such as Deepwater Horizon (Socolofsky et al.,
2011).

Upon the release of a continuous stream of bubbles into a liquid environment,
buoyancy forces drive the bubbles upwards, creating turbulence which subsequently
results in the entrainment of ambient liquid into the bubble core. The magnitude of
this driving force is characterised by a source buoyancy flux,

B0 = Qbg
ρ0 −ρb

ρ0
, (6.1)

where Qb is the bubble volume flux; g is acceleration due to gravity; and ρb and ρ0
represent the density of the gas phase, and some reference density, generally taken
as the density of the environment at the plume source. Importantly, due to gas
compressibility, Qb and ρb are both functions of height and the values utilised in (6.1)
are also associated with the depth of the plume source.

Initially detailed by McDougall (1978) in his work on bubble plumes in quiescent
linear stratification, bubble plumes differ from single-phase plumes because of two
key aspects. Firstly, there is potential for the gas and liquid phases within the plume
to have different rise velocities and secondly, in the case of a plume produced in a
stratified environment, the bubble phase will continue to rise past the terminal height
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predicted by simple plume theory (see Morton et al., 1956) and will create additional
plume structures at greater heights above the source. Each additional plume structure,
or peeling event, tends to follow a similar pattern where the bubbles force the fluid
up in the environment until reaching a height where the density deficit between the
interstitial fluid in the plume and the stratified ambient results in the detrainment,
or peeling, of liquid from the bubble core. This peeling creates a counter flowing
outer plume which traps at the height of neutral buoyancy, before spreading in the
environment as a radial intrusion. To model this complex behaviour, McDougall (1978)
proposed a plume model comprised of a rising inner plume of liquid and bubbles and a
outer plume with regions of both ascending and descending liquid.

Since, this pioneering work, many authors have studied linearly stratified bubble
plumes, both experimentally (Asaeda and Imberger, 1993; Sato and Sato, 2001; Seol
et al., 2009; Sigurðardóttir et al., 2020; Socolofsky and Adams, 2003, 2005) and
theoretically (Chu and Prosperetti, 2017; Crounse et al., 2007; Fabregat Tomàs et al.,
2016; Socolofsky et al., 2008; Yang et al., 2016; Zhou, 2020). An important finding
consistent across both experimental and theoretical works is the importance of the
relative magnitude of the bubble slip velocity, ub, to the plume velocity. Asaeda
and Imberger (1993) characterised three stratified bubble plume regimes, each with
distinctly different dynamics, as a function of two parameters associated with the plume
buoyancy flux, the bubble slip velocity and the strength of ambient density gradient.
Socolofsky (2001) expanded upon their analysis by considering an infinitely deep
reservoir and subsequently re-defined the regimes as a function of a single parameter,
the non-dimensional slip velocity,

UN = ub

(B0N)1/4 , (6.2)

where N is the ambient buoyancy frequency.
UN has since been shown to have a significant impact on the level of entrainment

into both the inner and outer plumes, subsequently influencing both the plume trap
height and the magnitude of the various liquid volume fluxes associated with each
peeling event. Socolofsky and Adams (2003) identified the liquid fluxes for the nth

peeling event of a bubble plume (see Figure 6.1) as the inner plume flowrate at the
trap height, Qn, and the peeling height, Qn+1; the entrainment volume flux into the
inner, Qr, and outer plume, Qe; the detrainment or peeling flux, Qp; and finally, the
volume flux of the intrusion spreading in the environment, Qi. Using these fluxes,
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Qn

Qn+1
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Qp

Qe

Qr

hT

hP

Fig. 6.1 A schematic of the nth peeling event above the plume source. hP and hT

denote the plume peel and trap heights.

the transfer of liquid between the inner and outer plumes can be described with the
following balances,

Qn +Qr = Qn+1 +Qp, (6.3a)
Qe +Qp = Qi +Qr, (6.3b)
Qn +Qe = Qn+1 +Qi. (6.3c)

A particular point of interest here is to extend equations (6.3a–c) to account for
a dissolved species in the plume, present due to either bubble dissolution, chemical
reaction or the entrainment of pollutants from the environment (Chu and Prosperetti,
2019; Domingos and Cardoso, 2013; Socolofsky and Bhaumik, 2008). In certain
industrial or environmental settings, estimating the mass flux of dissolved species
spreading with an intrusion is an important assessment tool in understanding the
mass transfer from the plume to the environment. One such example is the transfer
of hydrocarbons to the environment from deep ocean plumes associated with well
blowouts (Socolofsky et al., 2011).

Localised mixing associated with the recirculation of fluid into the bubble core has
the potential to reduce the concentration of dissolved species in the intrusion spreading
radially from the plume and could promote the transport of mass to greater heights in
the environment, potentially all the way to the liquid surface. The effect of localised
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mixing in the intrusion close to the bubble core can be realised by considering the
simple mass balance,

Qece +Qncn = Qici +Qn+1cn+1, (6.4)

where cn and cn+1 represent the concentration of the dissolved species in the plume
entering and leaving the nth intrusion; ci is the concentration in the intrusion; and
ce is the concentration in the environment. Now consider the mathematical identity
associated with a well-mixed peeling event where the concentration of dissolved species
in the inner and outer plume is assumed to be equivalent,

Qece +Qncn = Qicn +Qn+1cn. (6.5)

Upon subtracting equation (6.4) from (6.5), the subsequent expression presents the
difference between a discharge of dissolved species from a plume with localised mixing
in the intrusion around the bubble core against the well-mixed case,

Qi(cn − ci) = Qn(cn+1 − cn). (6.6)

Here, it can be seen that the recirculation of fluid back into the plume bubble
core results in a decreased discharge of dissolved species to the environment. Until
present, no experimental measurements have been taken along the intrusion of a bubble
plume to inform on the influence of localised mixing on dissolved species concentration,
nor on the presence of the subsequent radial concentration profile associated with it.
Socolofsky (2001) alluded to a radial concentration profile in the intrusions produced
by their plumes due to waiting at least an hour after each experiment to allow for
horizontal mixing of the dye before taking fluorescence measurements at a single radial
location in their tank. The simulations of Yang et al. (2016) and Zhou (2020) also
show an intrusion concentration profile, with dissolved species concentration decreasing
for increasing radial distances away from the bubble core.

In this study, we show through experimental measurements that the concentration
of dissolved species in a bubble plume intrusion of constant flowrate and density is, in
fact, a function of intrusion radius, with two distinct concentration regimes present in
the intrusion. Close to the edge of the plume is a mixing zone, where the concentration
of dissolved species decays from a maximum value at the centre of the plume to some
lesser concentration at a defined radius. Beyond the mixing zone, the concentration
remains constant as the intrusion continues to spread radially. Motivated by these
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experimental observations, we present a diffusion model to predict the concentration
profile in a submerged intrusion spreading from a plume of ellipsoidal bubbles capable
of comparison to both direct measurements and experimental or field images. We also
discuss the relative magnitudes of the inner and outer plume radii and comment on
the potential influence of mixing on the intrusion spreading rate.

6.3 Experimental methods

Bubble plume experiments were conducted in the laboratory through supplying nitrogen
gas at the base of an acrylic tank with dimensions 69 cm x 69 cm x 50 cm. The tank
was filled with aqueous sodium chloride solution to a height of 40 cm and a linear
stratification was produced using the double-bucket method (Oster and Yamamoto,
1963). The strength of the density gradient created in each experiment is characterised
using the ambient buoyancy frequency,

N =
√

− g

ρ0

dρe

dz
, (6.7)

where dρe/dz is the ambient density gradient. This gradient was determined by
measuring the density of the fluid in the mixed feed bucket with an Anton Paar
DMA35n density meter whilst filling the tank. Measurements were taken at every 5
cm increment between the experimental tank being empty up to the maximum water
level of 40 cm. To prevent any mixing with the less dense fluid present at higher levels
in the tank, the inflow from the double-bucket system was kept sufficiently small to
ensure laminar flow across the experimental tank base.

The gas was supplied to an upwards directed straight orifice, positioned in the
centre of the tank using stainless steel tubing. Both the orifice and tubing had an
internal diameter of dn = 1 mm. A rotameter and needle valve were used to measure
and control the nitrogen flowrate. The gas was delivered at a pressure of 2 bara, with
pressure gauges positioned either side of the rotameter to ensure negligible pressure
drop through the system. 5 gL−1 Acid Red 1 (Azophloxine) dye was fed into the tank
via 1 mm diameter silicone tubing with an outlet at the same height as the bubble
nozzle to assist with plume visualisation. The dye was delivered using a syringe pump
at a rate of 5 cm3min−1. To ensure consistent lighting, a LED light sheet was placed
outside the tank, directly behind the plume to provide an even distribution of light
when viewing experiments.
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Fig. 6.2 A photograph of experiment 17 after 140 seconds. Two submerged intrusions
(n = 2), along with the surface current, are clearly visible.

A photograph of a typical experiment and experimental conditions are presented in
Figure 6.2 and Table 6.1 respectively. Each experiment was designed such that the
bubble plumes produced would have distinct and steady sub-surface intrusions (Asaeda
and Imberger, 1993; Socolofsky and Adams, 2005). The bubbles formed were ellipsoidal,
with diameters in the range of db = 0.2−1.2 cm and an approximately constant rise
velocity of ub ≈ 24 cms−1 (Clift et al., 1978). Due to negligible breakup, coalescence
and expansion over the small height of the tank, the bubble size was assumed to be
constant, resulting in Weber and Reynolds numbers of We = ρ0u2

bdb/T = 1−10 and
Re = ubdb/v = 550−3300, where T = 72 gs−2 is the surface tension between nitrogen
and water and ν = 8.9 × 10−3 cm2s−1 is the kinematic viscosity of water. Source
volume fluxes between Qb ≈ 2.5 − 18.5 cm3s−1 (measured at a pressure of 2 bara)
were supplied to the bubble nozzle, and with ambient stratification strengths between
N ≈ 0.4 − 1.4 s−1, the non-dimensional slip velocity of the plumes varied between
UN ≈ 1.9 − 4.4. This range was constrained by the experimental apparatus as flow
rates less than 2.5 cm3s−1 could not be reliably measured and only surface intrusions
were produced when either Qb > 18.5 cm3s−1 or N < 0.4 s−1.

Experiments were captured at 24Hz using a Nikon D300s camera, fitted with
an AF-S Micro NIKKOR 60mm f/2.8G ED lens. For each experiment, the camera
was placed on a 1.2 m high tripod approximately 2.5 m from the experimental tank.
Experimental images were processed using MATLAB R2020B. After the end of the
filming period, prior to the submerged intrusions impacting the wall, samples were
taken from the lowest intrusion in 5 cm increments from the centre of the plume to
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Exp Qb B0 N UN n bi Qs

(cm3s−1) (cm4s−3) (s−1) (-) (-) (cm) (cm3s−1)
2 10 9810 1.11 2.39 2 2.3 175.9
4 5 4905 0.92 2.98 2 2.4 148.4
5 8 7850 0.97 2.61 2 3.7 247.8
6 15 14715 1.41 2.03 2 4.3 139.4
7 10 9810 1.00 2.45 2 4.2 241.0
9 17.5 17170 1.17 2.05 1 6.4 210.3
10 5 4905 1.21 2.78 2 2.9 122.9
11 12.5 12260 1.16 2.23 2 4.9 170.7
12 9 8830 1.35 2.34 2 4.2 142.3
13 18.5 18150 1.27 1.98 1 3.7 172.1
14 2.5 2450 0.52 4.09 1 3.2 215.6
15 5 4905 0.63 3.28 1 2.6 291.1
16 2.5 2450 0.41 4.32 1 2.8 374.7
17 2.5 2450 0.76 3.72 2 3.0 163.7

Table 6.1 List of experimental parameters. Here, n is the number of submerged
intrusions; bi is the inner plume radius; and Qs is the volume flux of the surface
intrusion, determined using the method described by Sigurðardóttir et al. (2020)
(for details concerning the estimation of the inner plume radius and the intrusion
volume flux, see Appendix B). Note that these authors, using the same experimental
apparatus as in this study, determined the volume flux of submerged intrusions as
Qi ≈ 0.13(B3

0/N5)1/4.

the tip of the intrusion. Note that during the sampling procedure, the gas supply
was turned off to prevent any further intrusion spread such that samples could be
taken from both the left and right-hand sides of the intrusion. The fluid density of the
samples was recorded using an Anton Paar DMA35n density meter. The concentration
of dye within each sample was determined using a Thermo Scientific Evolution 201
UV-Visible spectrophotometer.

Note that in all experiments, the time to achieve a filling box like flow (Baines
and Leitch, 1992) was large compared to the length of the experiment and any major
changes to the local concentration/density were the result of isolated mixing events
rather than filling box effects.

6.4 Theory

Measurements taken from within the submerged intrusions show the concentration of
dye decreases radially away from the edge of the plume until reaching some steady
value at large distances. This is a very interesting result, especially due to the fact
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that both the flowrate and density appear to remain independent of intrusion radius.
In this section, we develop a model for the transport of dissolved species in a bubble
plume and consider two distinct regions which are depicted in Figure 6.3. Firstly, a
mixing region close to the bubble core where the intrusion concentration decays radially,
followed by a non-mixing region at large radial distances where the concentration of
dissolved species is constant.

In a bubble plume spreading event, at the peel height, the majority of fluid (and
any dissolved species) will peel from the plume bubble core and will subsequently begin
to spread radially with the intrusion. Importantly, entrainment into both the inner and
outer plumes results in significant mixing which can cause a portion of the dissolved
species to recirculate back into the plume, with the potential of being carried to greater
levels in the environment. To simplify this complex behaviour within the mixing region,
we propose the use of a diffusion coefficient D to model the mass transfer of dissolved
species from the intrusion into the entrainment region between the multiple spreading
currents as this is where re-circulation is most likely to occur. This simplification is
shown visually in Figure 6.3, where a peeling event of thickness Li is split into two
equally thick horizontal regions, one associated with the spreading intrusion and the
other with the entrainment of ambient fluid.

By considering the constant intrusion volume flux Qi and the length scale Li/2, we
write a mass balance accounting for the diffusion of dissolved species from the intrusion
into the entrainment region above as

Qicir = Qicir+dr +D
(cir − cer)

Li/2 2πrdr, (6.8)

where cir and cer are the respective concentrations of dissolved species in the intrusion
and entrainment region at some radius, r. This balance may be re-arranged such that
the change in intrusion concentration with radius can be written as

dci

dr
= −4Dπr

QiLi
(cir − cer). (6.9)

If considering the mass transfer from the perspective of the entrainment region, we
have

dce

dr
= −4Dπr

QeLi
(cir − cer), (6.10)

which can then be utilised with (6.9) to give
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Entrainment zone
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Fig. 6.3 A submerged peeling event schematic showing intrusion and entrainment zones.
Q is volume flux; c is concentration of dissolved species; and the subscripts i and e
refer to the respective values within the intrusion and entrainment regions. bi is the
radius of the inner plume, Rm is the radius of the mixing region; and D is the diffusion
coefficient.

dci

dr
= Qe

Qi

dce

dr
. (6.11)

Following the integration of equation (6.11) between the intrusion radius r and the
plume radius bi, after some rearrangement, the concentration in the entrainment region
can be determined as

ce = Qi

Qe

(
ci − ci0 + Qe

Qi
ce0

)
, (6.12)

where ci0 and ce0 represent the concentration in the intrusion and the entrainment
region at r = bi. Upon substituting (6.12) into (6.9),

dci

dr
= −4Dπr

QiLi

[
ci

(
1− Qi

Qe

)
− Qi

Qe

(
ci0 + Qe

Qi
ce0

)]
. (6.13)

This gives the first order ordinary differential equation,

dci

dr
+ 4Dπr

QiLi
(a · ci +m) = 0, (6.14)
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where a = (1− Qi
Qe

), with an expected value between 0 and 1; and m = Qi
Qe

(
ci0 + Qe

Qi
ce0
)
.

With the boundary condition ci = ci0 when r = bi, the solution to (6.14) is

ci = −m

a
+
(

ci0 + m

a

)
exp

[
−2aDπ

QiLi
(r2 − b2

i )
]

, (6.15)

or

ci

ci0
= −1−a

a
+
(

1+ 1−a

a

)
exp

[
−2aDπ

QiLi
(r2 − b2

i )
]

, (6.16)

when ce0 is assumed to be negligible. The model can be further simplified by assuming
Qi = Qe, which then following the integration of equation (6.14), gives the quadratic
decay equation,

ci

ci0
= 1− 2Dπ

QiLi
(r2 − b2

i ). (6.17)

Although significantly simpler than (6.16), the assumptions built into equation
(6.17) requires that all fluid entrained into the bubble core of the plume peels into
the intrusion for each spreading event. Such behaviour has been observed in previous
studies considering surface or Type 1 intrusions, however, peeling efficiencies of less
than one are expected for submerged intrusions produced by Type 2 and Type 3 plumes
(Socolofsky and Adams, 2005). In either case, irrespective of whether a > 0 or a = 0,
the concentration within the mixing zone is expected to decay linearly with r2 until
reaching the critical radius, Rm, associated with the end of the mixing region. Beyond
this critical radius, the concentration is expected to remain constant.

Here, it can also be noted that the simpler derivation, equation (6.17), may be
re-cast easily in terms of the non-mixing region concentration, c∞/ci0, and the mixing
radius, Rm, as

ci

ci0
= 1−

(
1− c∞

ci0

) 1− j(r2 − b2
i )

1− j(R2
m − b2

i ) (6.18)

where j = 2Dπ/QiLi and c∞/ci0 is simply calculated from (6.17) with r = Rm.

6.4.1 Model extension to experimental images

The model derived above is suitable for direct comparison to intrusion concentration
samples taken at known radial positions from the axis of a bubble plume. Although
useful in settings where intrusion sampling and any subsequent analysis is straight
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Fig. 6.4 A schematic of an axisymmetric bubble plume intrusion from above.

forward, equations (6.16) and (6.17) are not necessarily useful for application to studies
where sampling and analysis may prove difficult. Therefore, we extend our approach
such that the models can be applied to front-on images of bubble plume intrusions
through the utilisation of the Beer-Lambert Law (Beer, 1852; Lambert, 1760), of which
the modern derivation reads

A = ϵlca, (6.19)

where A is absorbance, ϵ is the molar absorptivity, l is the optical distance and ca is
the concentration of the attenuating species. This law enables the intensity of light
captured in the image to be converted into an average dye concentration across the
depth of the intrusion.

If we consider an axisymmetric intrusion viewed from above (Figure 6.4), images
would be captured in an experiment by a camera positioned directly in line with
the plume, at x = 0, with the lens pointing down the y-axis. Due to the circular
nature of the intrusion, the total light path decreases with x and is equivalent to 2yb,
which is equivalent to 2(R2

tip − x2)1/2. With the presence of the mixed region, the
concentration across the intrusion cannot be determined by yb alone. Using yb, along
with the associated light path of the mixed region, 2ybm = 2(R2

m −x2)1/2, the average
concentration across the intrusion, ci, can be written with respect to x as
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c̄i

ci0
= 1

2yb

[
c̄im

ci0
2ybm + c̄∞

ci0
2(yb −ybm)

]
, (6.20)

where c̄im and c̄∞ are the average dye concentration inside and outside of the mixed
region. As concentration is constant outside the mixed region, c̄∞/ci0 can simply be
calculated from equation (6.16) or (6.17), depending upon the chosen value of a, with
r = Rm. Comparatively, to determine the average dye concentration in the mixed
region with respect to x, equations (6.16) and (6.17) must be integrated. By initially
converting from a one-dimensional coordinate system into Cartesian coordinates using
r2 = x2 +y2, the resulting equations, after some rearrangement, were integrated between
the limits of ybm and −ybm for a fixed value of x to give

c̄im

ci0
=



1− j

2ybm

[
(x2 − b2

i )2ybm + 2
3y3

bm

]
, a = 0,

1−

(
1− c̄∞

ci0

)
(
1− e−ja(R2

m−b2
i )
)
1− erf(ybm(ja)1/2)π1/2e−ja(x2−b2

i )

2ybm(ja)1/2

 , a > 0,

(6.21)

where erf is the error function.
In its current form, equation (6.20) cannot be directly compared to the image

intensity of an intrusion as ci0 can only be determined from directly sampling the
centre of the plume. To remedy this, the average concentration across the intrusion
can be presented in terms of image intensity, c̄i2yb. In this case, the equivalent for
c̄i0 is the maximum image intensity, cmax2Rtip. The ratio of the sample and image
maxima can be written as

cmax2Rtip

ci0
= 2bi + c̄im

ci0
2(Rm − bi)+ c̄∞

ci0
2(Rtip −Rm). (6.22)

After dividing (6.20) by the left-hand side of (6.22), the outcome is an equation suitable
for direct comparison to experimental images of submerged intrusions spreading from
a bubble plume,

c̄i2yb

cmax2Rtip
= c̄im2ybm

cmax2Rtip
+ c̄∞2(yb −ybm)

cmax2Rtip
. (6.23)



126 Diffusion of dissolved species from ellipsoidal bubble plumes

6.4.2 Definition of a

In order for the a > 0 model to be useful, the coefficient a must be predictable, however,
in the form,

a = 1− Qi

Qe
, (6.24)

this is not possible as there is no reliable way to determine the level of entrainment
into the outer plume experimentally. Therefore, (6.24) must be manipulated such
that a becomes a function of known parameters and is thus predictable. Consider the
mass balance presented in (6.3b) yet normalised by the entrainment flux into the outer
plume, Qe. This gives

1+ Qp

Qe
= Qi

Qe
+ Qr

Qe
, (6.25)

or

a = Qr −Qp

Qe
. (6.26)

Here it can be readily identified that a is a function of the volume of fluid both being
entrained and detrained from the inner plume during a peeling event. A number of
methods exist to estimate entrainment and detrainment from the bubble core including
continuous peeling models proposed by Crounse et al. (2007) and Yang et al. (2016),
however, the most suitable approach here is to utilise the peeling efficiency (Socolofsky,
2001),

f = Qp

Qn +Qr
, (6.27)

which is a known function of UN . When considering the 1st peeling event (n = 1),
entrainment between the source and the trap height is expected to be small and in
this case, we may substitute (6.27) into (6.26) to give

a ≈ Qr

Qe
(1−f). (6.28)

This substitution deems to be very useful as Socolofsky (2001) determined Qr/Qe

to be a constant statistically independent of UN and thus, a must scale simply with
the peeling efficiency as
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a ∼ (1−f). (6.29)

The peeling efficiency in the past has been presented a linear function of UN (Socolofsky
and Adams, 2003), however we propose an alternative approach to determine f , and
subsequently a, from experimental liquid flowrate measurements.

If we consider (6.3c) and (6.24), their combination gives

Qn+1 = Qn +naQe, (6.30)

where n is the number of submerged intrusions. If entrainment between the source
and the first peeling event is negligible (Q1 ≈ 0) and entrainment into the outer plume
remains consistent for all peeling events, the volume flux of the surface intrusion can
be written as

Qs = Qe (1+na) . (6.31)

Upon dividing (6.31) by Qi, the subsequent result, following some rearrangement,
allows a to be determined as

a = (Qs/Qi −1)
(Qs/Qi +n) , (6.32)

along with the expected scaling of

f ∼ 1− (Qs/Qi −1)
(Qs/Qi +n) . (6.33)

6.5 Results

Of the experiments conducted, all were consistent with previous experimental bubble
plume studies. Once released into the environment, the bubbles rise upwards due
to buoyancy and burst once reaching the liquid surface. Close to the bubble source,
ambient liquid becomes entrained into the bubble core, carrying liquid to greater
heights in the environment, before peeling away from the rising bubbles and descending
in the environment as an outer plume. Due to the stratified nature of the environment,
a portion of fluid in the outer plume spreads as a submerged lateral intrusion, whilst
some is also re-entrained into the bubble core as demonstrated by the presence of dye
in each of the peeling events present throughout the tank. The following subsections
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detail our observations and provide experimental validation of the model derived in
section 6.4.

6.5.1 Concentration of dissolved species

Figure 6.5 details the experimental measurements of concentration of dissolved species,
normalised by the concentration at r = bi, against the intrusion radius. Two clear
regimes are seen to be present, with a significant decrease in concentration occurring
at radial distances close to the bubble core. With intrusion radius non-dimensionalised,
the radial extent of the mixing region clearly appears to be a function of the length
scale, Lp = (B0/N3)1/4. Values of mixing radius were determined first by fitting
equation (6.17) (with 2Dπ/QiLi set to a constant) to the experimental concentration
measurements and setting Rm equivalent to the radius where the first instance of
ci = cinf occurred. The mixing radius values which gave the best fit to the experimental
data followed Rm/Lp = 1.34 ± 0.05 (see Figure 6.6a). Notably, Lemckert and Imberger
(1993b) determined a similar coefficient for the outer plume radius of their plumes,
bo/Lp = 0.97 ± 0.28, suggesting Rm is approximately equivalent to the outer plume
radius. An observation also of interest is that Type 2 plumes (1.6 < UN < 2.4) appear
to decay to a lesser value of c∞/ci0 than their Type 3 (UN > 2.4) counterparts. This,
however, is expected given that the coefficient a increases with non-dimensional slip
velocity.

To apply our diffusion model, parameters including the diffusion coefficient D, the
intrusion flowrate Qi, the height of the peeling event Li, and the value of a must
be defined. Previous experimental work suggests that Qi ∼ (B3

0/N5)1/4 and Li ∼ Lp,
however the coefficient associated with each scaling term varies greatly across different
studies with Qi/(B3

0/N5)1/4 = 0.13−0.90 (Sigurðardóttir et al., 2020; Socolofsky and
Adams, 2003) and Li/Lp = 0.70−4.50 (Chen, 2001). In order to prevent the use of a
combination of coefficients being used from different studies, we propose an effective
diffusion coefficient in the form δ = D/QiLi. As we expect the diffusion coefficient
to scale as D ∼ (B0/N)1/2, it is also expected that δ ∼ L−2

p . Prior to evaluating the
value of δ/L−2

p , a value of a must be selected to determine the appropriate equation
to compare to the experimental data. Note that in all our experiments, the surface
intrusion volume flux exceeds that of the submerged currents, suggesting that a > 0 in
all cases, however both a = 0 and a > 0 models are compared to the experimental data
in order to determine the suitability of each.

When a = 0, a best fit value of δ/L−2
p = 0.053 ± 0.004 is determined, providing a

reasonable fit to the experimental measurements within the mixing region (see Figure
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Fig. 6.5 Normalised intrusion concentration, ci/ci0, against dimensionless intrusion
radius. Experiments are separated into Type 2 ( ) and Type 3 ( ) plumes. The solid,
dashed and dotted lines correspond to the diffusion models: a = 0 ( ) and a > 0 with
values of a = 0.01 ( ) and a = 0.50 ( ). Note that the line associated with a = 0
falls within the two a > 0 curves because the a = 0 model can only predict a single,
best fit value of cinf for a given value of δ. In comparison, the a > 0 model can predict
a range of cinf for a given value of δ and a given range of a.

6.6b). Beyond the mixing region however, the single value of (c∞/ci0)a=0 = 0.40 leads
to a 10% error between the model and the experimental measurements. In the case
of a > 0, a for each experiment was estimated using equation (6.33), resulting in
δ/L−2

p = 0.058 ± 0.002). Unlike the quadratic decay case, here c∞/ci0 is not a set value
and is determined by the magnitude of a. When considering (6.29), a is equivalent to
a constant multiplied by a function of UN , with the constant representing the ratio of
entrainment fluxes into the inner and outer plumes. The approach by Socolofsky and
Adams (2003) suggests Qr/Qe ≈ 1.07 and with this estimate, a simply reduces to

a = 1−f, (6.34)

which subsequently allows the peeling efficiency to be directly computed from surface
and submerged intrusion volume fluxes, resulting in similar values to those determined
by Socolofsky (2001) and Yang et al. (2016) (see Figure 6.7a). Previously, the peeling
efficiency has been predicted using f = 1 − 0.07U1.2

N (Socolofsky, 2001); however, in
this form, f = 0 when UN ≈ 9.2. In nature, it is unlikely that liquid peeling from
bubble plumes will become 100% inefficient for UN > 9.2, instead we expect that f

will approach zero asymptotically and thus, suggest
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Fig. 6.6 Experimental measurements of (a) the mixing radius Rm with the solid line
representing the scaling Rm/Lp = 1.34, and (b) the effective diffusion coefficient δ
for a > 0 ( ) and a = 0 ( ) with the solid and dashed lines representing the scaling
δa>0/L−2
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Fig. 6.7 (a) The plume peeling efficiency f against UN . Results from this work ( ) are
compared with Socolofsky and Adams (2005) ( ) and Yang et al. (2016) ( ). The solid
line represents equation (6.35). (b) c∞/ci0 against UN . The solid and dashed lines
correspond to the model with a > 0 ( ) and a = 0 ( ) respectively.
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Fig. 6.8 Comparison of the model extension to the concentration profile of the first
submerged intrusion above the source in Experiment 9. The solid line denotes the
intrusion concentration profile gained through image analysis; and the dashed and
dotted lines correspond to the diffusion models with a = 0.16 ( ) and a = 0 ( ).
Model inputs here include Ri = 25 cm and cmax2Ri/ci0 = 30.3 cm.

f = 1− 0.07U2
N

1.6+0.07U2
N

. (6.35)

Through a combination of (6.34) and (6.35), the a > 0 model can be compared
to the experimental data to show a good fit across both the mixing and non-mixing
regions (see Figure 6.7b).

A similar result is found for the model extension, with equation (6.23), using
both zero and non-zero values of a, providing a reasonable fit to the concentration
profiles determined from image analysis in all experiments. An example of this fit is
shown in Figure 6.8. Interestingly, when considering the entire radial extent of the
intrusion, the difference between the two models is negligible with an average value of
c̄i,a>0/c̄i,a=0 = 0.99 ± 0.01 across all experiments. Note however this ratio increases
to a maximum of c̄i,a>0/c̄i,a=0 = 1.08 in the non-mixing region of intrusions where
c∞/ci0 ̸≈ (c∞/ci0)a=0. This suggests that the a > 0 extension to determine the diffusion
of dissolved species from the plume using intrusion images is superior to the simpler
a = 0 approach, especially for intrusions where Rtip ≫ Rm. However, it is also worth
noting that if the user of this model is interested in utilising the methodology described
to determine the magnitude of the plume mixing radius, to then subsequently estimate
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source values of B0, the simpler method is expected to also provide a reasonable
estimate.

As a final comment regarding the fit of the model to the experimental images,
the derivation in section 6.4.1 is based upon the assumption of symmetry around the
plume axis, and as shown in Figure 6.2, the intrusions created initially do show some
asymmetry. However, upon turning off the central plume, disturbances in the tank
tend to settle, creating defined horizontal intrusions. Although some concentration
variances may be present across the thickness of the intrusion in the theta direction,
by taking an average of the light intensity captured by the camera across the depth of
the intrusion, these differences are captured and distributed evenly, allowing for direct
comparison to the model. Also, in all of the experiments conducted in this study, the
difference in radius of the left- and right-hand sides of the lowest intrusion were less
than 10%.

6.5.2 Potential influence of mixing on radial spreading

Although not strictly relevant to the diffusion of dissolved species from a bubble
plume, however important in the overall scheme of mass transfer from the plume
to the environment, an interesting comparison can be made between the mixing
radius identified in this study and the expected transitional radius between intrusion
spreading regimes. The recent study of Sigurðardóttir et al. (2020) identified that
multiple intrusions emanating from Type 2 & 3 bubble plumes tended to spread three
times slower than individual intrusions produced either by plumes or through the direct
injection of fluid into a stratified environment when viscous forces were dominant (see
Ivey and Blake, 1985). Sigurðardóttir et al. (2020) suggested this potential reduction
in spreading rate was due to the counter-flow present between the multiple intrusions
associated with entrainment into the plume, and our findings here tend to support this
hypothesis.

Sigurðardóttir et al. (2020) determined the following equation for the transition
radius between spreading regimes in their bubble plume intrusions as

Rr ≈ 0.09(QiN)1/3(G/N)2/3, (6.36)

where G = (Q2
i N/ν3)1/5. If combined with their estimate, Qi ≈ 0.13(B3

0/N5)1/4, (6.36)
may be recast as

Rr ≈ 0.0265ν2/5(B0
9/N19)1/20. (6.37)
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Fig. 6.9 Intrusion radius against the scale (B9
0/N19)1/20. The points ( ) denote the

intrusion mixing radius and the solid line ( ) with the gradient 0.0265v−2/5, where
v = 8.9×10−3 cm2s−1, is the predicted radius where the spreading regime transition
occurs (Sigurðardóttir et al., 2020).

The comparison of this scaling with Rm in Figure 6.9 shows that the significant
reduction in spreading rate occurs shortly before exiting the mixing region, which we
have found is approximately equivalent to the edge of the downwards flowing outer
plume. At this point in the environment, both vertical and inwards radial mixing will
be strong and could have the potential to accentuate the deceleration of an already
slowing current. Importantly, this level of mixing is not present at such large radial
extents in either single-phase plumes or in simple asymmetric spreading currents and
is therefore the likely culprit for the decreased rate of spread in the viscous-buoyancy
regime of submerged bubble plume intrusions.

6.6 Conclusion

Our ellipsoidal bubble plume experiments in stratified fluid have shown the presence
of a defined mixing region at small radial distances along the submerged intrusions
spreading from the plume. In this region of the intrusion, the concentration of dissolved
species decays from a maximum value at the centre of the plume to some constant
concentration, which after the development of a simple diffusion model, is determined
to be inversely proportional to the efficiency at which entrained liquid peels from the
bubble core.
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The models developed for comparison to both direct measurements and experimental
images show reasonable fit to the experimental data. It is worth noting however
that the range of plume slip velocities studied was between 2 ≳ UN ≳ 4.5. This is
reasonable considering laboratory size constraints, however does not extend to the
range of non-dimensional slip velocities associated with bubble plumes in nature
where the environment is very weakly stratified. Therefore, it would be of interest for
future experiments to be conducted to explore whether the mixing behaviour remains
consistent for UN > 5.

Although limited to a somewhat restrictive range of UN , these findings are not
only useful in understanding how mass is transported radially away from a bubble
plume, but also provides insight into how localised mixing promotes the transport of
dissolved species to greater heights above the plume source. High concentrations of
dissolved species close to the edge of the plume has the potential to influence the rate
of bubble dissolution, a process expected to scale as dcb/dt ∼ (1− ci/ci0). Importantly,
the combination of such a model with the work which we have presented here could be
utilised to estimate the mass transfer associated with multiple submerged spreading
events, in addition to potentially predicting the flux of gas, if any, escaping from a
liquid environment of finite vertical extent. Note that the model presented in this work
does not account for bubble dissolution and it may be of interest to future authors
to extend the analysis to capture more of the physics associated with these complex
multiphase flows.



Chapter 7

Conclusion and future work

In this thesis, the dynamics of stratified multiphase plumes, consisting of both liquid
and particles and liquid and bubbles, have been investigated. Related, yet unique
in their own right, particle-laden plumes and bubble plumes were created within the
laboratory with the intent of further exploring their behaviour within stratified am-
bients. Motivated by the qualitative observations made during these experiments of
both the plume itself and the resultant intrusion which spreads radially at the height
of neutral buoyancy, mathematical models were successfully developed to describe the
flow behaviour. These models will prove useful to those interested in understanding
the dynamics of similar flows present within industry and the natural world. In this
final chapter, a summary of the work presented in the previous chapters is provided
and appropriate conclusions are drawn. This is then followed by a short discussion on
the issues for future research.

7.1 Concluding remarks

In Chapter 3, stratified particle-laden plume experiments were conducted and five
different flow regimes were identified and qualitatively described. A key dividing
characteristic of these regimes was the development of particle-induced convection in
the environment around the plume. Building upon the work of Cardoso and Zarrebini
(2001a), a criterion for the onset of ambient convection was developed and a critical
Grashof number was determined to separate the plume regimes. The maximum steady-
state height of the plume, along with the particle-rich and particle-poor intrusion
heights, were also presented. These heights were compared to the model of Apsley
and Lane-Serff (2019), showing its suitability for plumes rising within a quiescent
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environment. A model was also developed to predict the change in intrusion interstitial
fluid height and was found to be accurate when compared to all experimental results.

Following on from the previous chapter, Chapter 4 put the spotlight on particle-laden
plumes rising through ambient convection. Direct measurements within the convection
column between the intrusion and the source showed that particle concentration is
independent of height and that the ambient density decreases to a lesser value, yet
remains stratified with a density gradient consistent with the quiescent surroundings.
Using this observation, a simple extension to the plume theory developed by Morton
et al. (1956), accounting for the steady-state conditions at the source, allows the
maximum steady-state plume height to be predicted with reasonable accuracy. The
change in ambient density within the convection column also provides a reasonable
estimate for the neutral buoyancy height of the secondary intrusion which develops
between the primary intrusion and the source in Type 3* plumes. Finally, an extension
of the analytical convection criterion, developed in Chapter 3, allows the radius of
convection to be estimated and in turn enables both the ambient and spreading level
particle concentration to be determined.

Chapter 5 is the first to concentrate solely on stratified bubble plumes and presents
a collaborative work specifically interested in the spreading rate of multiple submerged
intrusions. From our observations and subsequent analysis of the intrusion spreading
rates, we found that the initial spread at early times within the inertia-buoyancy regime
is consistent with previous experimental studies investigating the spread of a single
plume intrusion. This, however, was not the case at large times and radial distances
once viscous forces became important. Upon eliminating any wall effects, the multiple
intrusions appeared to spread around three times slower than an isolated intrusion,
suggesting the potential for a higher viscous friction as a result of the counter flow
produced between the intrusions as ambient fluid becomes entrained into the central
plume.

Continuing an interest in the intrusion of a bubble plume, this time from the
viewpoint of mass transfer to the environment, Chapter 6 explores the transport of
dissolved species from the plume to the water column. Liquid samples taken from the
centre of the plume along the radial intrusion show the decay of dissolved species from a
maximum value at the bubble core to some lesser concentration which remains constant
beyond a defined radius. In an attempt to predict the concentration of dissolved species
in a bubble plume intrusion, we developed a simple diffusion model with a mixing
and non-mixing region. This model was developed so that it could be compared to
both discrete measurements and front-on images with both proving to be successful in



7.2 Future research 137

predicting the change in dissolved species concentration with radius. Model parameters
including the diffusion coefficient, the intrusion mixing radius, and the ratio of de-
trainment to entrainment were determined using experimental measurements and were
found to be functions of both source values and stratification strength. An interesting
observation was that the mixing radius was almost equivalent to the spreading regime
transitional radius, providing further evidence that the slower spreading rate observed
in Chapter 5 is due to the entrainment and mixing of fluid occurring between the
multiple intrusions.

7.2 Future research

Chapters 3 and 4, along with the work of Apsley and Lane-Serff (2019), provides
a complete road map to the dynamics of stratified particle-laden plumes, detailing
the heights and particle concentrations of interest for plumes rising in both quiescent
and convecting environments. There does however remain some points of interest for
further research. As shown within this thesis, the work of Apsley and Lane-Serff (2019)
successfully predicts the height of pure Type 1/1* plumes, yet the current model does
not account for the changes to the flow behaviour associated with non-zero volume
and momentum fluxes. Although in their analysis they have provided an additional
term to account for any plume-top entrainment, it would be of interest to extend the
model further to account for real plume sources. Secondly, despite my best efforts, the
transition from a Type 3 to 3* plume remains unclear. In Chapter 3, it was shown using
both current and previous experiments that secondary intrusions appear to develop
once Uc > 1 cms−1, however this will likely break down for particles with settling
velocities exceeding this value. In Chapter 4, it was concluded that the transition
to a fountain-like downflow is likely either associated with the depth of the plume
trough or the observed difference in regimes is simply a characteristic associated with
the concentration of dye in the source feed. Therefore, it is suggested that future
authors focus their efforts specifically on firstly confirming whether concentration of
dye influences the observed regime transition before attempting to gain direct velocity
and density measurements within the trough region below the plume intrusion.

In regard to bubble plumes, the work presented here focuses mainly on the dynamics
of the intrusions rather than the plume itself and how dissolved species is transported
throughout the water column. Many of the plumes in nature (where it would be of
interest to apply this work) exist within very weakly stratified environments. Such



138 Conclusion and future work

an environment leads to plumes with large non-dimensional slip velocities which, in
most cases, exceed those of the experiments presented here. The experimental range
began at the lowest end of where multiple spreading events become present (UN ≈ 1.5),
however reached a maximum around UN ≈ 4.5 due to laboratory size constraints.
For comparison, UN ≈ 10 for Artic methane plumes rising in the Laptev Sea on the
Eastern Siberian Artic Shelf (Qb ≈ 5 cm3s−1 and N ≈ 0.01 s−1, Shakhova et al., 2014).
Therefore, to allow the model presented in Chapter 6 to be compared with confidence
to either these plumes or other examples, it would be worthwhile to conduct additional
experiments with larger values of UN . Also, as noted in Chapter 5, it would be of
interest to study the spreading of bubble plume intrusions in a larger radial space to
eliminate any concerns associated with confinement or limited intrusion spread.

Finally, the third area of future research with both industrial and natural applica-
tions is the development of particle-laden plumes or bubble plumes through chemical
reaction. Recent work in the Fluids and Environment group (see Mingotti and Car-
doso, 2019) investigated single-phase plumes with internal changes in buoyancy due to
chemical reaction. It would be of interest to build upon both this work and the work
presented in this thesis by investigating the dynamics of particle-laden plumes created
through precipitation reactions or bubble plumes created through solid-gas reactions.
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Appendix A

Additional experimental details

A.1 Apparatus

Annotated photographs of the experimental apparatus are shown in Figure A.1.

A.1.1 Double bucket system

The double bucket system used for all experiments consisted of two 118 L buckets
connected at the base, one of which was also connected to a Stuart Turner CH 4-
30 multistage pump (see Figure A.2). Unlike more traditional configurations where
the bucket directly feeding the experimental tank is mechanically agitated, a recycle
was utilised instead. The relative magnitude of the recycle and tank flowrates were
controlled with manual valves. The recycle was the larger of the two to ensure that the
bucket was well mixed. The flowrate into the experimental tank was small to ensure
laminar flow across the tank base. This ensured that the stratification being produced
would not be disturbed by the inflow. An example of the ambient stratification within
the experimental tank is shown in Figure A.3.

A.1.2 Agitated tank

The agitator used to disperse particles throughout the feed for the particle-laden plume
experiments was a six-blade turbine configuration with 50 mm long blades and a 340
mm long shaft. The agitator motor used was a SciQuip Basic20 Digital Overhead
Stirrer and was generally set at a rate of 400 RPM. The agitated tank had four evenly
spaced rectangular baffles, each with a depth of 30 mm.
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Fig. A.1 Experimental apparatus. The left-hand figure shows the configuration for particle-laden plumes. The right-hand
figure shows the extension to produce bubble plumes.
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Fig. A.2 Double bucket system
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Fig. A.3 An example of the density gradient built in the tank. The points correspond
to density measurements taken from within the mixed bucket for a known tank liquid
level above the plume nozzle. Here, dρe/dz = −0.7 ×103 gcm−4 and ρ0 = 1.024 gcm−3

giving a stratification strength of N = 0.82.
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A.1.3 Sampling traverse

In order to take accurate samples within the experimental tank without disrupting the
stratification, a custom traverse system was built. The traverse used was a 300 mm
long Type 30 RK LightUnit, purchased from Rose + Krieger and capable of 220 mm
travel. This unit was mounted to a custom apparatus above the tank such that it could
be moved horizontally across the tank width. A 20 ml syringe could be attached to
the traverse and a custom 400 mm long needle was used to take samples. The needles
used were approximately 16 gauge (1.2 mm internal diameter) as this was suitable to
sample particle-rich fluid without the needle blocking. The traverse system in visible
in Figure A.1.

A.2 Particle size

The ballotini used in the particle-laden plume experiments were purchased from
Sigmund Lindner GmbH (through VMR International) and are marketed as SiLibeads®.
The products purchased had size ranges of 40-70 µm and 70-110 µm respectively.
The silicon carbide particles were purchased from Washington Mills and had a size
distribution between 25-114 µm (Carborex® F180). All particles were sieved prior to
use to further narrow the size distribution. The larger ballotini was sieved between 90
µm and 106 µm sieves, whereas the smaller ballotini and silicon carbide was sieved using
63 µm and 75 µm sieves. This sieving lead to average particle sizes of 69 µm±2 µm
and 98 µm±2.5 µm.

A.3 Bubble size

Bubble size is dependent on many factors including upstream pressure and flowrate,
salinity and interface tension. Due to our interest in developing ellipsoidal bubbles,
where rise velocity is essentially constant irrespective of bubble size, controlling bubble
size was not important provided the diameters ranged between 1-20 mm. Using
1 mm diameter stainless steel tubing, bubble diameters ranged between 2-12 mm
for Qb < 20 cm3s−1. A smaller 0.5 mm tube was trialled for a few larger flowrate
experiments, but little to no difference was found when compared to the 1 mm tubing.



Appendix B

Measurement and data analysis

B.1 Heights of interest

B.1.1 Maximum plume height

The maximum height of particle-laden plumes were measured both at early stages
before the re-entrainment of particles, and at steady state after the significant reduction
in height occurred. Note that the method of measuring these heights, as described
below, was consistent in both cases.

After filming an experiment, every 24th frame (resulting in a single image per
second) of the video was extracted using MATLAB R2020B and the images were
subsequently subtracted from a base image taken prior to plume injection, eliminating
any inconsistencies in the light sheet. Each of these frames were then cropped such that
the nozzle was positioned at the base of the image. These cropped images were then
averaged across the width of the tank, creating a vector to represent the distribution
of light intensity through the vertical extent of the tank for each given second. These
vectors could then be combined to create a time series showing the plume height over
time (see Figure B.1). In this time series, the navy and maroon colours represent the
two extremes of light intensity, those being the maximum and minimum light captured
by the camera. On the left-hand side of the figure, shortly after plume injection,
particle concentration in the plume is low thus the light captured by the camera is
high. However, this light intensity decreases over time as particles become re-entrained.
In-order to effectively measure the height of the plume, a threshold of light intensity
needed to be determined for both the initial maximum height and the steady-state
height by comparing the false colour time series to a number of full-colour experimental
photographs. Once a threshold was determined, the time series was further cropped to
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Fig. B.1 A time series of particle-laden plume experiment 21 where navy and maroon
represent maximum and minimum values of light intensity. The area highlighted by
white dashed lines is an example focus area for further image analysis to determine the
steady-state plume height.
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Fig. B.2 A plot of steady-state plume height over time. It can be seen that even at
steady state, the plume height oscillates around a central average represented by the
straight black line. The dashed lines represent the upper and lower height limits.

fit either the initial experimental period prior to any significant height decay or the
period following the decay until the plume appears reach a steady-state value. Finally,
the number of pixels exceeding the threshold could be counted for each given time
period to determine the average plume height and the upper and lower height limits
(see Figure B.2).

B.1.2 Primary intrusion heights

Measuring the primary intrusion heights of a particle-laden plume, those being the
particle-rich intrusion and the particle-poor intrusion, at steady state was somewhat
complex due to each experiment falling under a different flow regime and having a
differing stratification strength in the environment. For example, in a Type 1 plume,
low particle concentration in the flow results in minimal separation of the fluid, making
differentiating the particle-rich and particle-poor intrusions a challenge, even in weakly
stratified ambients. Conversely, for plumes undergoing convection, the leading edge of
the particle-poor intrusion is easily visible above the plume maximum, however, the
fluid in the particle-rich intrusion immediately rises, posing an issue that either image
analysis removes the very dilute intrusion from processed images or a defined leading
edge may not exist independently of the particle-poor intrusion above.

Due to these reasons, these heights could not necessarily be determined from a single
image created through image analysis alone, but though different visual approaches
including viewing multiple stills, along with video footage, to understand where the
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radial spreading was occurring. This agile approach allowed the best height estimates
to be made. The following paragraphs provide descriptions and visual detail of the
approach taken in an attempt to show how the challenges described in attempting to
measure these heights were overcome.

A photograph and a time series of a Type 1 plume are presented in Figures B.3
and B.4. On first glance at the photograph (Figure B.3), no defined particle-rich and
particle-poor intrusion can be observed as only a single trailing edge is present. However,
upon further assessment, there does appear to be a clear difference in colouration
between the base and top of the intrusion, suggesting that a small portion of the fluid
initially spreading in the particle-rich intrusion is becoming buoyant following the
sedimentation of particles and is then reaching a new height of neutral buoyancy only
slightly above it’s original level. This is supported by the time series (Figure B.4),
where it can be clearly seen that the top portion of the intrusion thickens significantly
suggesting the development of a small particle-poor intrusion. By taking a vector from
the end of the time series, the height of the particle-poor intrusion can be estimated as
the point where the light intensity captured by the camera is at it’s smallest. This is
shown visually by the peak present in a plot of light intensity against height (see Figure
B.5). The height of the particle-rich intrusion can simply be estimated from the left-
and right-hand leading edges as indicated on Figure B.3. Alternatively, a similar light
intensity vs. height plot may be produced to determine this height by taking a vector,
offset from the centre of the plume at a distance where the particle-poor intrusion is
not present, from a time-averaged image at steady state. This allows direct comparison
of the two heights and enables the change in intrusion height to be estimated.

A second example, this time of a Type 3 plume, is shown in Figures B.6 and B.7.
Unlike the Type 1 example, where two distinctly different peaks are present (allowing
the two intrusions to be differentiated), the same is not the case for the Type 3 plume.
Two large peaks are observed to appear in the range of 14 cm to 18 cm above the source,
however, these are associated with the same (particle-poor) intrusion, with the offset
measurement simply appearing thinner, and of lower magnitude, than the measurement
taken at the centre of the plume. The particle-rich intrusion is faint, but visible to the
naked eye when viewing photographs (see Figure B.6) and can be determined from
the light intensity plots when considering the fact that, in this case, the light path of
the particle-rich intrusion is less than the particle-poor intrusion, resulting in smaller
light intensity peaks. This is because the majority of fluid initially spreading in the
particle-rich intrusion becomes buoyant, effectively feeding the particle-poor intrusion
rather than spreading further away from the edge of the plume.
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Fig. B.3 A photograph of experiment 11 taken after 300 seconds detailing the respective
heights of the particle-rich (zs) and particle-poor (zf ) intrusion. Note that the base of
the intrusion appears significantly lighter in colour suggesting fluid is rising from the
particle-rich intrusion to create a particle-poor intrusion above. The estimated heights
correspond to those estimated in Figure B.5.
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Fig. B.4 A time series of particle-laden plume experiment 11 where navy and maroon
represent maximum and minimum values of light intensity. Over time, the intrusion
appears to significantly thicken, with a skew towards the top of the intrusion, suggesting
most fluid is spreading there rather than along the base.
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Fig. B.5 A plot of light intensity against height for experiment 11, where ∆z = zf − zs

is the change in intrusion height. The vector taken at the centre of the plume ( )
shows light is obstructed significantly between 7 cm and 14 cm, however the intensity of
light is significantly skewed with the peak occurring at 12 cm (suggesting the presence
of a particle-poor intrusion) before falling to a minimum value associated with the light
obstructed by the plume. The offset vector ( ), taken 15 cm from the left-hand edge
of the plume, shows a parabolic curve of lesser intensity between 7 cm and 11 cm, with
a peak around 9 cm. This peak is not associated with the same particle-poor intrusion,
but the particle-rich intrusion, suggesting the two intrusions are stacked upon each
other and possibly even overlap.

This means the particle-poor radius, and it’s light path, increases over time, whereas the
light path associated with the particle-rich intrusion remains somewhat constant for the
entire length of the experiment. When looking at the smaller intensity peaks, both the
central and offset vectors show either a plateau or an increase in light intensity around
12 cm above the plume source (see Figure B.7) and when compared to experimental
images, gives a reasonable estimate of the particle-rich spreading height.

In all cases, irrespective of plume type, the primary intrusion heights estimated
using the approach described appear to be appropriate when compared to the video
footage of the experiments.

B.1.3 Secondary intrusion height

When compared to the measurement of the primary intrusions, estimating the secondary
intrusion height was very straight-forward and could be done by simply measuring the
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Fig. B.6 A photograph of experiment 55 taken after 300 seconds detailing the respective
heights of the particle-rich (zs) and particle-poor (zf ) intrusion. Although, the dyed
fluid is very dilute, the particle-rich intrusion is visible below particle-poor intrusion.
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Fig. B.7 A plot of light intensity against height for experiment 55, where ∆z = zf −zs is
the change in intrusion height. The vector taken at the centre of the plume ( ) shows
a maximum light obstruction between 14 and 18 cm (the thickness of the particle-poor
intrusion), leading into a secondary peak between 10 and 14 cm (the thickness of the
particle-rich intrusion). The light intensity then falls from this peak to a minimum
value associated with the light obstructed by the plume. The offset vector ( ), taken
outside the convection column, shows a similar peak between 15 and 17 cm, yet of
lower magnitude. This then continues to decay until reaching a plateau at 12 cm before
decaying to zero. The increase in light intensity below 5 cm is simply an artifact of the
image processing and is not associated with the flow. The positioning of the dashed
lines correspond to the leading edge heights, as detailed on Figure B.6.
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height of the left- and right-hand leading edges of the intrusion (see Figure B.8). It
could also be determined by measuring the distribution of light intensity through the
vertical extent of the tank in a vector located in an offset position on either the left or
right of the nozzle (see Figure B.9).

B.2 Plume radius

Throughout this thesis, the plume radius appears in a number of models and is utilised
to offset data when considering the extent of radial spread. Because of this, the plume
radius at the spreading height was required to be measured for all the multiphase
plume experiments presented. This however is not particularly straightforward as, at
steady-state, the plume radius is either obscured by a trough or column of particles;
or is present within a bubble plume peeling event where the inner and outer plumes
cannot be differentiated experimentally.

Due to these difficulties, the exact steady-state plume radius could not be determined
through image analysis. However when considering that the plume radius would
either be raised to a 1/4th power (see Chapter 3), essentially eliminating any small
measurement differences, or be compared to much larger values, such as the intrusion
radius (see Chapter 4 and 5), it was deemed suitable for the radius to be measured at
early plume stages prior to any significant obstruction so that a value of the correct
order of magnitude could be estimated.

Following this, the plume radius of both particle-laden and bubble plumes was
estimated by firstly time averaging the initial stills extracted from the video footage
before the plume radius became obstructed. In most cases, this was approximately
over 20 seconds. A light intensity vector was then taken across the width of the
tank at either the steady-state height of the particle-poor intrusion when accessing
particle-laden plumes or the height of furthest radial extent for a given peeling event
when accessing bubble plumes. Figures B.10 and B.11 show examples of these light
intensity plots.

B.3 Intrusion volume flux

Measurement of the intrusion volume flux followed the same procedure as described by
Sigurðardóttir (2019) and was used for both particle-laden and bubble plumes.

As per other image analysis methods, a single frame per second was extracted
from the experimental videos and a base image was subtracted to eliminate any
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Fig. B.8 A photograph of experiment 21 taken after 300 seconds detailing the respective
heights of the particle-rich (zs), particle-poor (zf ) and secondary (zsi) intrusion. The
estimated heights correspond to those estimated in Figure B.9.

0

20

40

60

80
∆z

zsi

Li
gh

t
in

te
ns

ity

0 8 16 24 0

6

12

18

Height (cm)

Light
intensity

Fig. B.9 A plot of light intensity against height for experiment 21, where ∆z = zf − zs

is the change in intrusion height. The vectors taken at both the centre of the plume
( ) and outside the convection column on the left-hand side ( ) show a maximum
light obstruction peak at 22 cm, with an approximate particle-poor intrusion thickness
between 16 and 27 cm. The second (and the smallest, in both cases) peak is observed
at 12 cm and is associated with the particle-rich intrusion. The third peak of the offset
vector, at a height of 5.5 cm above the source (or 12.5 cm above the tank floor), is
associated with the secondary intrusion. In the case of the central intensity vector,
the secondary intrusion is also identified by the plateau between 4 cm and 8 cm, with
peaks at 5 cm and 7.5 cm respectively. The variation in peaks reflects the presence of
smaller secondary intrusions close to the edge of the plume, whereas the offset peak
represents the height where the majority of fluid is spreading radially.
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Fig. B.10 A plot of light intensity across the tank in the early stages of a bubble plume
(experiment 17). The vector presented is associated with the first spreading event
height above the plume source. The estimate for the radius of the plume b is shown
with the double-sided arrow.
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Fig. B.11 A plot of light intensity across the tank in the early stages of a particle-laden
plume (experiment 55). The vector presented is associated with the steady-state
particle-rich intrusion height and the estimate for the radius of the plume b is shown
with the double-sided arrow.
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Fig. B.12 A photograph of a bubble plume (experiment 17) after 140 seconds, detailing
the control volume around the first submerged intrusion above the source.

inconsistencies in the light sheet. A control volume, spanning from the centre of the
plume to the tank wall, with a height equivalent to the intrusion thickness, was defined
on both the left- and right-hand sides of the plume (see Figure B.12). The radius
of the intrusion, Rtip, was then determined for each still image by firstly defining a
light intensity threshold associated with the intrusion boundaries before counting the
maximum number of pixels along the control volume where the light captured fell
below this threshold.

The total liquid volume in the intrusion can then be determined by integrating
around the axis of symmetry between the plume radius b and Rtip,

V (t) =
∫ Rtip

b
2πLi(r)rdr. (B.1)

This solution can be approximated through numerical integration as

V (t) ≈
Rtip∑
r=1

2πLi(r)r∆r. (B.2)

Using (B.2), the volume of the intrusion at a given time can be estimated. Then, by
determining the rate of change in volume over time, the volume flux of the intrusion,
Qi, may also be estimated.

Given that the intrusions produced (especially in the case of bubble plumes) are
not completely symmetric, average values of both Rtip and Qi (calculated from the
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combination of the left- and right-hand side estimates) are presented in the body of
the thesis.



Appendix C

Real source corrections

C.1 Entrainment coefficient

The entrainment coefficient, α, for each particle-laden plume was determined using the
bulk parameter method, specifically by rearranging (3.3) to

α =
[

(zmax − zv)
1.37(B0/N3)1/4

]−2
. (C.1)

A plot of α against σ shows the coefficient’s dependence upon the buoyancy
frequency parameter (Figure C.1). Konstantinidou and Papanicolaou (2003) proposed
that the entrainment coefficient of a stratified forced plume varied between pure plume
and pure jet values with the empirical expression,

α = αp exp
[
ln
(

αj

αp

)(
σ

σc

)2]
, (C.2)

where σc is the critical value of the buoyancy frequency parameter where momentum
begins to dominate flow behaviour. Using this expression, based upon the work of List
(1982) concerning forced plumes in an unstratified environment, Konstantinidou and
Papanicolaou (2003) suggested values of αp = 0.123, αj = 0.035 and σc = 2 to fit their
experiments. More typical values of αp = 0.118, αj = 0.076 and σc = 1 are also plotted
for comparison.
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Fig. C.1 Entrainment coefficient, α, against the buoyancy frequency parameter, σ. The
dashed line represents (C.2) with the model inputs of Konstantinidou and Papanicolaou
(2003). The solid line has inputs of αp = 0.118, αj = 0.076, σc = 1.

C.2 Virtual source

Written explicitly by Hunt and Kaye (2001), the two-step virtual source correction
for forced plumes consists of an exact correction, zv, and an asymptotic correction,
zavs, which is only appropriate at large distances from the real source. zv and zavs are
defined as

− zv

Lm
=
(

100
16α2

pπ

)1/4 ∫ 1

γ
v3(v5 −γ5)−1/2 dv, (C.3)

− zavs

Lm
=
(

0.078
α2

pπ

)1/4
γ3/2, (C.4)

where γ = (1−Γ0)5. Note that both (C.3) and (C.4) appear in a similar form to the
corrections presented in Hunt and Kaye (2001) (see their equations 12a-c), however, the
constant terms differ due to the definition of Lm in this study and the use of top hat
rather than Gaussian plume profiles. The asymptotic correction only becomes suitable
to include in the correction when z/Lm > 3α−1/2π−1/4γ3/2. For all experiments, the
appropriate value of z/Lm is achieved either above the maximum plume height or in
between the spreading and maximum heights. Because of this, only the exact value,
zv, is utilised as the virtual source correction in these experiments.
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