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Abstract
Variance reduction is a crucial tool for improving the slow convergence of stochastic
gradient descent. Only a few variance-reducedmethods, however, have yet been shown
to directly benefit from Nesterov’s acceleration techniques to match the convergence
rates of accelerated gradientmethods. Such approaches rely on “negativemomentum”,
a technique for further variance reduction that is generally specific to the SVRG
gradient estimator. In this work, we show for the first time that negative momentum
is unnecessary for acceleration and develop a universal acceleration framework that
allows all popular variance-reducedmethods to achieve accelerated convergence rates.
The constants appearing in these rates, including their dependence on the number of
functions n, scale with the mean-squared-error and bias of the gradient estimator. In
a series of numerical experiments, we demonstrate that versions of SAGA, SVRG,
SARAH, and SARGE using our framework significantly outperform non-accelerated
versions and compare favourably with algorithms using negative momentum.
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1 Introduction

We are interested in solving the following composite convex minimisation problem:

min
x∈Rm

{
F(x)

def= f (x) + g(x)
def= 1

n

n∑
i=1

fi (x) + g(x)

}
. (1)

Throughout, we assume fi : Rm → R are convex and have L-Lipschitz continuous
gradients for all i .We also assume g : Rm → R∪{∞} is proper, lower semicontinuous,
and μ-strongly convex with μ ≥ 0, but we do not require g to be differentiable.
Problems of this form are ubiquitous in many fields, including machine learning,
compressed sensing, and image processing (see, e.g., [11,12,25,35]). Fundamental
examples include LASSO [35] and matrix completion [12], where f is a least-squares
loss and g is the �1 or nuclear norm, respectively, and sparse logistic regression, where
f is the logistic loss and g is the �1 norm.
One well-studied algorithm that solves (1) is the forward-backward splitting algo-

rithm [13,29]. This method has a worst-case convergence rate of O (1/T ) when F is
not strongly convex, and when F is μ-strongly convex, it converges linearly with a
rate of O (

(1 + κ−1)−T
)
, where κ

def= L/μ is the condition number of F . The inertial
forward-backward splitting algorithm [9] converges at an even faster rate ofO (

1/T 2
)

without strong convexity and a linear rate of O (
(1 + κ−1/2)−T

)
when F is strongly

convex. The inertial forward-backward method is able to achieve these optimal con-
vergence rates because it incorporates momentum, using information from previous
iterates to adjust the current iterate.

Although the inertial forward-backward algorithm converges quickly, it requires
access to the full gradient∇ f at each iteration, which can be costly, for instance, when
n is large. Inmany applications, commonproblem sizes are so large that computing∇ f
is prohibitively expensive. Stochastic gradient methods exploit the separable structure
of f , using the gradient of a few of the components ∇ fi to estimate the full gradient
at the current iterate. In most cases, the complexity of computing∇ fi for one i is 1/n-
times the complexity of computing the full gradient, so stochastic gradient methods
generally have a much smaller per-iteration complexity than full-gradient methods.
Moreover, it has recently been shown that the optimal convergence rates of stochastic

gradient methods are O (
n/T 2

)
without strong convexity and O

(
θ−T
S

)
with θS

def=
1+

√
μ
Ln when g is μ-strongly convex, matching the optimal dependence on T and κ

of full-gradient methods [37].1 Stochastic gradient methods have undergone several
revolutions to improve their convergence rates before achieving this lower bound.

1 The results in [37] are complexity bounds, bounding the number of gradient and prox oracle calls required
to achieve a given tolerance. For algorithms performing O(1) oracle calls per iteration, these complexity
bounds imply the stated bounds on convergence rates.
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Accelerating variance-reduced stochastic gradient methods 673

We summarise these revolutions below, beginning with traditional stochastic gradient
descent.

Stochastic Gradient Descent (SGD). Stochastic gradient descent, dating back to [32],
uses the gradients ∇ f j , ∀ j ∈ Jk ⊂ {1, 2, . . . , n} to estimate the full gradient.
The mini-batch Jk is an index set chosen uniformly at random from all subsets of
{1, 2, . . . , n} with cardinality b

def= |Jk |. When b 
 n, the per-iteration complexity
of stochastic gradient descent is much less than full-gradient methods. However, the
per-iteration savings come at the cost of a slower convergence rate, as SGD converges
at a rate ofO(1/

√
T ) in the worst case. Still, SGD outperforms full-gradient methods

on many problems, especially if a low-accuracy solution is acceptable.

Variance Reduction. Variance-reduced estimators use gradient information from pre-
vious iterates to construct a better estimate of the gradient at the current step, ensuring
that the mean-squared error of these estimates decreases as the iterations increase.
Variance-reduction improves the convergence rates of stochastic gradient methods,
but either have a higher per-iteration complexity or have larger storage requirements
than SGD. The two most popular variance-reduced algorithms are SVRG [21] and
SAGA [15], which use the following estimators to approximate ∇ f (xk+1):

∇̃SVRG
k+1

def= 1

b

⎛
⎝∑

j∈Jk

∇ f j (xk+1) − ∇ f j (̃x)

⎞
⎠ + ∇ f (̃x) (2)

∇̃SAGA
k+1

def= 1

b

⎛
⎝∑

j∈Jk

∇ f j (xk+1) − ∇ f j (ϕ
j
k )

⎞
⎠ + 1

n

n∑
i=1

∇ fi (ϕ
i
k). (3)

In SVRG, the full gradient∇ f (̃x) is computed everym ≈ 2n iterations, and∇ f (̃x) is
stored and used for future gradient estimators. SAGA takes a similar approach, storing
n past stochastic gradients, and updating the stored gradients so that ∇ f j (ϕ

j
k+1) =

∇ f j (xk+1). In this work, we consider a variant of SVRG where the full gradient is
computed at every iteration with probability 1/p ∈ (0, 1] rather than deterministically
computing the full gradient every 2n iterations.

SVRG, SAGA, and related variance-reducedmethods converge at a rate ofO (n/T )

when no strong convexity is present.With strong convexity, these algorithms enjoy lin-

ear convergence, with a rate of O(
(
1 + (n + κ)−1

)−T
). Although these convergence

rates are significantly faster than the rate of SGD, they do not match the asymptotic
convergence rates of accelerated first-order methods, converging likeO (

n/T 2
)
with-

out strong convexity and O((1 + (nκ)−1/2)−T ) with strong convexity.

Variance Reduction with Bias. SAGA and SVRG are unbiased gradient estimators
because they satisfy Ek∇̃k+1 = ∇ f (xk+1), where Ek is the expectation conditioned
on the first k iterates. There are several popular variance-reduced algorithms that
use biased gradient estimators [27,33]. In [16], the authors develop a framework for
proving convergence guarantees for biased methods, suggesting that the convergence
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674 D. Driggs et al.

rates of biased stochastic gradient estimators depend on the sum of two terms:

γ 2
Ek‖∇̃k+1 − ∇ f (xk+1)‖2 + γ

〈∇ f (xk+1) − Ek∇̃k+1, xk+1 − x∗〉 .
These terms are the mean-squared error (MSE) of the gradient estimator and the “bias
term”, respectively. The authors also show that recursive gradient estimators such
as SARAH [27] and SARGE [16] minimise these terms better than other biased or
unbiased estimators, leading to better convergence rates in some settings. The SARAH
gradient estimator is

∇̃SARAH
k+1

def=
{

1
b

(∑
j∈Jk ∇ f j (xk+1) − ∇ f j (xk)

)
+ ∇̃SARAH

k w.p. 1 − 1
p ,

∇ f (xk+1) w.p. 1
p .

(4)

As with SVRG, we consider a slight variant of the SARAH estimator in this work,
where we compute the full gradient at every step with probability 1/p. The SARGE
gradient estimator is similar to the SAGA estimator.

∇̃SARGE
k+1

def= 1

b

⎛
⎝∑

j∈Jk

∇ f j (xk+1) − ψ
j
k

⎞
⎠ + 1

n

n∑
i=1

ψ i
k

−
(
1 − b

n

)⎛
⎝1

b

∑
j∈Jk

∇ f j (xk) − ∇̃SARGE
k

⎞
⎠ , (5)

where the variables ψ i
k follow the update rule ψ

j
k+1 = ∇ f j (xk+1)− (

1 − b
n

)∇ f j (xk)

for all j ∈ Jk , and ψ i
k+1 = ψ i

k otherwise. Like SAGA, SARGE uses stored gradient
information to avoid having to compute the full gradient. These estimators differ
from SAGA and SVRG because they are biased (i.e., Ek∇̃k+1 �= ∇ f (xk+1). Many
works have recently shown that algorithms using the SARAH or SARGE gradient
estimators achieve faster convergence rates than algorithms using other estimators
in certain settings. Importantly, these recursive gradient methods produce algorithms
that achieve the oracle complexity lower bound for non-convex composite optimisation
[16,17,30,36,42]. They have not yet been shown to achieve optimal convergence rates
for convex problems.

Variance Reduction with Negative Momentum. Starting with Katyusha [2] and fol-
lowed by many others [1,3,4,22,34,40,41], a family of stochastic gradient algorithms
have recently emerged that achieve the optimal convergence rates implied by Wood-
worth and Srebro [37]. There are two components to these algorithms that make this
acceleration possible. First, these algorithms incorporate momentum into each iter-
ation, either through linear coupling [6], as in the case of [1–4,40], or in a more
traditional manner reminiscent of Nesterov’s accelerated gradient descent [34,41].
Second, these algorithms incorporate an “anchor-point” into their momentum updates
that supposedly softens the negative effects of bad gradient evaluations. Almost all of
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Accelerating variance-reduced stochastic gradient methods 675

these algorithms are an accelerated form of SVRG with updates of the form

xk+1 = x̃ + τk(xk − x̃), or

xk+1 = τ1zk + τ2 x̃ + (1 − τ1 − τ2)yk,

using traditional acceleration or linear coupling, respectively (zk and yk are as defined
in Algorithm 1, and τk, τ1, τ2 ∈ [0, 1]). We see that these updates “attract” the current
iterate toward a “safe” point, x̃ , where we know the full gradient. Because of this
“attractive” rather than “repulsive” quality, updates of this type have been termed
“negative momentum”.

There are several issues with negative momentum. Most importantly, negative
momentum is algorithm-specific. Unlike Nesterov’s method of momentum or linear
coupling, negative momentum cannot be applied to other stochastic gradient algo-
rithms. SAGA, for example, cannot be accelerated using negative momentum of this
form, because there does not exist a point x̃ where we compute the full gradient (how-
ever, see [40]). Also, numerical experiments show that negative momentum is often
unnecessary to achieve acceleration (see the discussion in [2] or Sect. 7, for example),
suggesting that acceleration is possible without it.

Other Accelerated Methods. Outside of the family of algorithms using negative-
momentum, there exist many stochastic gradient methods that achieve near-optimal
convergence rates, including Catalyst [24] and RPDG [23]. Catalyst’s convergence
rates are a logarithmic factor worse than Katyusha’s when the objective is strongly
convex or smooth. RPDG achieves optimal convergence rates in the strongly con-
vex setting, matching Katyusha’s rate. When strong convexity is not present, RPDG
achieves optimal rates up to a logarithmic factor. We include further discussion of
these and other related works in Sect. 3.

Contributions. In this work, we provide a framework to accelerate many stochastic
gradient algorithms that does not require negativemomentum.We introduce theMSEB
property, a property that implies natural bounds on the bias and MSE of a gradient
estimator, and we prove accelerated convergence rates for all MSEB gradient estima-
tors. As special cases, we show that incorporating the SAGA, SVRG, SARAH, and
SARGE gradient estimators into the framework of Algorithm 1 creates a stochastic
gradient method with an O (

1/T 2
)
convergence rate without strong convexity, and a

linear convergence rate that scales with
√

κ when strong convexity is present, achiev-
ing the optimal convergence rates in both cases up to a factor of n depending on the
bias and MSE of the estimator.

Roadmap.We introduce our algorithm and state ourmain result in Sect. 2.We compare
our results to existingwork in Sect. 3. The next four sections are devoted to proving our
main results. In Sect. 4, we review elementary results on the subdifferential relation,
results on the proximal operator, and lemmas from convex analysis.We prove a general
inequality for accelerated stochastic gradient methods using any stochastic gradient
estimator in Sect. 5. This inequality implies that many stochastic gradient methods
can be accelerated using our momentum scheme; to prove an accelerated convergence
rate for a specific algorithm, we only need to apply an algorithm-specific bound on the
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676 D. Driggs et al.

MSE and bias of the gradient estimator. We do this for the SAGA, SVRG, SARAH,
and SARGE gradient estimators in Sect. 6. Finally, in Sect. 7, we demonstrate the
performance of our algorithms in numerical experiments.

Algorithm 1 A Universal Framework for Acceleration
Input: Set step size γk and momentum parameter τk as in Theorem 1 if μ = 0 or as in Theorem 2

otherwise, and gradient estimator ∇̃.
1: Initialise z0 = y0 = x0.
2: for k = 0, 1, · · · , T − 1 do
3: xk+1 ← τk zk + (1 − τk )yk .
4: Compute ∇̃k+1, an estimate of ∇ f (xk+1).
5: zk+1 ← proxγk g

(
zk − γk ∇̃k+1

)
.

6: yk+1 ← τk zk+1 + (1 − τk )yk .
7: end for

2 Algorithm andmain results

The algorithm we propose is outlined in Algorithm 1. Algorithm 1 takes as input any
stochastic gradient estimator ∇̃k+1, so it can be interpreted as a framework for accel-
erating existing stochastic gradient methods. This algorithm incorporates momentum
through linear coupling [6], but is related to Nesterov’s accelerated gradient method
after rewriting xk+1 as follows:

xk+1 = yk + (1 − τk)(yk − yk−1).

With τk = 1, there is no momentum, and the momentum becomes more aggressive
for smaller τk . Although linear coupling provides the impetus for our acceleration
framework, similar acceleration schemes appear in earlier works, including Auslender
and Teboulle [8], and Ghadimi and Lan, 2016 [19].

We show that as long as the MSE and bias of a stochastic gradient estimator satisfy
certain bounds and the parameters γk and τk are chosen correctly, Algorithm 1 con-
verges at an accelerated rate. There are three principles for choosing γk and τk so that
Algorithm 1 achieves acceleration.

1. The step size γk should be small, roughly O (1/n) with the exact dependence on
n decreasing with larger MSE and bias of the gradient estimator.

2. On non-strongly convex objectives, the step size should grow sufficiently slowly,
so that γ 2

k (1 − ρ) ≤ γ 2
k−1

(
1 − ρ

2

)
with ρ = O (1/n) decreasing with largerMSE

and bias.
3. The momentum should become more aggressive with smaller step sizes, with

τk = O
(

1
nγk

)
.

For strongly convex objectives, γk and τk can be kept constant.
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Accelerating variance-reduced stochastic gradient methods 677

For Algorithm 1 to converge, the stochastic gradient estimator must have controlled
bias and MSE. Specifically, we require the estimator to satisfy the MSEB property,2

introduced below.

Definition 1 For any sequence {xk+1}, let ∇̃k+1 be a stochastic gradient estimator gen-
erated from the points {x�+1}k�=0. The estimator ∇̃k+1 satisfies theMSEB(M1, M2, ρM ,

ρB, ρF ) property if there exist constants M1, M2 ≥ 0, ρM , ρB, ρF ∈ (0, 1], and
sequences Mk and Fk satisfying

∇ f (xk+1) − Ek∇̃k+1 = (1 − ρB)
(∇ f (xk) − ∇̃k

)
,

E‖∇̃k+1 − ∇ f (xk+1)‖2 ≤ Mk,

Mk ≤ M1

n

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2 + Fk + (1 − ρM )Mk−1,

and

Fk ≤
k∑

�=0

M2(1 − ρF )k−�

n

n∑
i=1

E‖∇ fi (x�+1) − ∇ fi (x�)‖2.

On a high-level, the MSEB property guarantees that the bias and MSE of the gradient
estimator decrease sufficiently quickly with k.

Remark 1 In [10], the authors study the convergence of unbiased stochastic gradient
methods under first- and second-moment bounds on the gradient estimator. The bounds
implied by the MSEB property are similar, but with the crucial difference that they
are non-Markovian; we allow our bound on Mk to depend on all preceding iterates,
not just xk .

In this work, we show that most existing stochastic gradient estimators satisfy the
MSEB property, including SAGA, SVRG, SARAH, SARGE, and the full gradient
estimator. We list their associated parameters in the following propositions.

Proposition 1 The full gradient estimator ∇̃k+1 = ∇ f (xk+1) satisfies theMSEB prop-
erty with M1 = M2 = 0 and ρM = ρB = ρF = 1.

Proof The bias and MSE of the full gradient estimator are zero, so it is clear these
parameter choices satisfy the bounds in the MSEB property. ��

Although trivial, Proposition 1 allows us to show that our analysis recovers the
accelerated convergence rates of the inertial forward-backward algorithm as a special
case. The MSEB property applies to the SAGA and SVRG estimators non-trivially.

Proposition 2 The SAGA gradient estimator (3) satisfies the MSEB property with
M1 = O(n/b2), ρM = O(b/n), M2 = 0, and ρB = ρF = 1. Setting p = O(n/b), the
SVRG gradient estimator (2) satisfies the MSEB property with the same parameters.

2 Because this property asserts bounds on themean-squared-error and bias of a stochastic gradient estimator,
the name MSEB is a natural choice. We suggest the pronunciation “M-SEB”.
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678 D. Driggs et al.

We prove Proposition 2 in “Appendix C”. We are able to choose ρB = 1 for the
SAGA and SVRG gradient estimators because they are unbiased, and we can choose
M2 = 0 and ρF = 1 for these estimators because they admit Markovian bounds on
their variance. This is not true for SARAH and SARGE, but these estimators are still
compatible with our framework. We prove Propositions 3 and 4 in “Appendices D
and E”, respectively.

Proposition 3 Setting p = O(n), the SARAHgradient estimator (4) satisfies theMSEB
property with M1 = O(1), M2 = 0, ρM = O(1/n), ρB = O(1/n), and ρF = 1.

Proposition 4 The SARGE gradient estimator (5) satisfies the MSEB property with
M1 = O(1/n), M2 = O(1/n2), ρM = O(b/n), ρB = O(b/n), and ρF = O(b/n).

All gradient estimators satisfying the MSEB property can be accelerated using the
framework of Algorithm 1, as the following two theorems guarantee.

Theorem 1 (Acceleration Without Strong Convexity) Suppose the stochastic gradi-
ent estimator ∇̃k+1 satisfies the MSEB(M1, M2, ρM , ρB , ρF ) property. Define the
constants

Θ1
def= 1 + 8(1 − ρB)

ρ2
BρM

, Θ2
def= M1ρF + 2M2

ρMρF
, and ρ

def= min{ρM , ρB, ρF }.

With

c ≥ max

{
2
(
1 + √

1 + 8Θ1Θ2(2 − ρM + ρBρM )
)

2 − ρM + ρBρM
, 16Θ1Θ2

}
,

and ν ≥ max
{
0, 2−6ρ

ρ

}
, set γk = k+ν+4

2cL and τk = 1
cLγk

. After T iterations, Algo-

rithm 1 produces a point yT satisfying the following bound on its suboptimality:

EF(yT ) − F(x∗) ≤ K1(ν + 2)(ν + 4)

(T + ν + 3)2
,

where

K1
def= F(y0) − F(x∗) + 2cL

(ν + 2)(ν + 4)
‖z0 − x∗‖2.

A similar result gives an accelerated linear convergence rate when strong convexity is
present.

Theorem 2 (Acceleration With Strong Convexity)
Suppose the stochastic gradient estimator ∇̃k+1 satisfies the MSEB(M1, M2,

ρM , ρB , ρF ) property and g is μ-strongly convex with μ > 0. With the constants
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Accelerating variance-reduced stochastic gradient methods 679

Θ1,Θ2, c, and ν set as in Theorem 1, set γ = min{ 1√
μcL

,
ρ
2μ } and τ = μγ . After T

iterations, Algorithm 1 produces a point zT satisfying the following bound:

E‖zT − x∗‖2 ≤ K2

(
1 + min

{√
μ

Lc
,
ρ

2

})−T

.

where

K2
def= 2

μ

(
F(y0) − F(x∗)

) + ‖z0 − x∗‖2

Remark 2 Althoughweprove accelerated convergence rates formanypopular gradient
estimators, the generality of Theorems 1 and 2 allows our results to extend easily to
gradient estimators not considered in this work as well. These include, for example,
the gradient estimators considered in [20].

Remark 3 With some manipulation, we see that these rates with c = ν = O(n) are
similar to the rates proved for Katyusha. In [2], the author shows that in the non-
strongly convex case, Katyusha satisfies

EF (̃xS) − F(x∗) ≤ O
(
F(x0) − F(x∗)

S2
+ L‖x0 − x∗‖2

PS2

)
.

Recall that Katyusha follows the algorithmic framework of SVRG; S denotes the
epoch number, x̃S the point where the full gradient was computed at the beginning of
epoch S, and P = O(n) is the epoch length. In our notation, S = T /P = O (T /n).
Theorem 1with c = ν = O(n) shows that Algorithm 1 achieves a similar convergence
rate of

EF(yT ) − F(x∗) ≤ O
(
n2

T 2

(
F(y0) − F(x∗) + L

n
‖z0 − x∗‖2

))
.

In the strongly convex case, an appropriately adapted version of Katyusha satisfies

EF (̃xS) − F(x∗) ≤

⎧⎪⎨
⎪⎩
O
((

1 +
√

μ√
LP

)−SP
)

4
3 ≤

√
L√
μn

O
(( 3

2

)−S
) √

L√
μn < 4

3 .

Similarly, with c = ρ = O(n), Theorem 2 shows that the iterates of Algorithm 1
satisfy

1

2
E‖zT − x∗‖2 ≤ O

((
1 + min

{√
μ

Ln
,
1

n

})−T
)

,

which again matches the rate of Katyusha. Of course, not all stochastic gradient esti-
mators satisfy the bounds necessary to set c = ν = ρ = O(n), so these optimal rates
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are conditional on being able to construct an “optimal estimator”. SAGA, SVRG,
SARAH, and SARGE all require c to be slightly larger than O(n).

The proofs of Theorems 1 and 2 use a linear coupling argument adapted from [6],
but we use a different adaptation than the one in [2] used to prove convergence rates for
Katyusha. To explain the differences between our approach and existing approaches,
let us give a high-level description of linear coupling and the generalisation used in
[2].

In [6], the authors suggest that gradient descent andmirror descent can be coupled to
create an accelerated algorithm.We do not discuss gradient descent andmirror descent
in detail (for this, see [6]), but the main idea of linear coupling can be understood from
only two bounds arising from these algorithms. For the purpose of this argument,
suppose g ≡ 0, so that F ≡ f . Gradient descent with step size η satisfies the following
bound on the decrease of the objective (equation (2.1) in [6]):

f (xk+1) ≤ f (xk) − 1

η
‖∇ f (xk+1)‖2. (6)

This bound shows that gradient descent is indeed a descent method; it is guaranteed
to make progress at each iteration. The iterates of mirror descent using step size γ

satisfy a bound on the sub-optimality of each iterate (equation (2.2) in [6]).

〈∇ f (xk), xk − x∗〉 ≤ 1

2
‖xk − x∗‖2 − 1

2
‖xk+1 − x∗‖2 + γ 2

2
‖∇ f (xk)‖2. (7)

While gradient descent is guaranteed to make progress proportional to ‖∇ f (xk)‖2
each iteration, mirror descent potentially introduces an “error” that is proportional
to ‖∇ f (xk)‖2. Linear coupling takes advantage of this duality. Loosely speaking, by
combining the sequence of iterates produced by gradient descent with the sequence
produced by mirror descent, the guaranteed progress of gradient descent balances the
potential error introduced by mirror descent, accelerating convergence.

This argument does not immediately hold for stochastic gradient methods. This is
because in addition to the norm ‖∇ f (xk)‖2 arising in inequalities (6) and (7), we also
get the MSE of our gradient estimator ‖∇̃k − ∇ f (xk)‖2 as well as a “bias term”. In
the stochastic setting, analogues of inequalities (6) and (7) read

f (xk+1) ≤ f (xk) + 〈∇ f (xk+1), xk+1 − xk〉
= f (xk) − 1

η
‖∇̃k+1‖2 + 〈∇ f (xk+1) − ∇̃k+1, xk+1 − xk〉

≤ f (xk) +
(

ε

2η2
− 1

η

)
‖∇̃k+1‖2 + 1

2ε
‖∇̃k+1 − ∇ f (xk+1)‖2,

where the last inequality is Young’s, and
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Accelerating variance-reduced stochastic gradient methods 681

γ ( f (xk) − f (x∗)) ≤ 1

2
‖xk − x∗‖2 − 1

2
‖xk+1 − x∗‖2

+ γ
〈∇ f (xk) − ∇̃k, xk − x∗〉 + γ 2

2
‖∇̃k‖2.

If the MSE or bias term is too large, the gradient step is no longer a descent step, and
the progress does not balance the “error terms” in each of these inequalities, so we
cannot expect linear coupling to offer any acceleration. This problemwith theMSEand
bias term exists for non-accelerated algorithms as well, and all analyses of stochastic
gradient methods bound the effect of these terms, but in different ways. Katyusha and
other accelerated algorithms in this family incorporate negative momentum to cancel
part of the MSE. In contrast, analyses of non-accelerated algorithms do not try to
cancel any of the variance, but show that the variance decreases fast enough so that it
does not affect convergence rates.

3 Related work

Besides Katyusha, there are many algorithms that use negative momentum for accel-
eration. In [34], the authors consider an accelerated version of SVRG that combines
negative momentum with Nesterov’s momentum to achieve the optimal

√
κ depen-

dence in the strongly convex case. This approach to acceleration is almost the same as
Katyusha, but uses a traditional form of Nesterov’s momentum instead of linear cou-
pling.MiG [41] is another variant of these algorithms, corresponding to Katyusha with
a certain parameter set to zero.VARAG is another approach to accelerated SVRGusing
negative momentum. VARAG achieves optimal convergence rates in the non-strongly
convex and strongly convex settings under the framework of a single algorithm, and
it converges linearly on problems that admit a global error bound, a quality that other
algorithms have not yet been shown to possess [22].

The only direct acceleration of a SAGA-like algorithm is SSNM from [40]. Using
the notation of (3), SSNM chooses a point from the set {ϕi

k}ni=1 uniformly at ran-
dom, and uses this point as the “anchor point” for negative-momentum acceleration.
Although SSNM admits fast convergence rates, there are a few undesirable qualities
of this approach. SAGA has heavy storage requirements because it must store n gradi-
ents from previous iterations, and SSNM exacerbates this storage problem by storing
n points from previous iterations as well. SSNM must also compute two stochastic
gradients each iteration, so its per-iteration computational cost is similar to SVRG and
Katyusha, and always higher than SAGA’s.

Many algorithms for non-convex optimisation also use negative momentum for
acceleration. KatyushaX [3] is a version of Katyusha adapted to optimise sum-of-non-
convex objectives. To achieve its acceleration, KatyushaX uses classical momentum
and a “retraction step”, which is effectively an application of negative momentum
(this relationship is acknowledged in [3] as well). Natasha [1] and Natasha2 [4] are
accelerated algorithms for finding stationary points of non-convex objectives. Both
algorithms employ a “retraction step” that is similar to negative momentum [1].
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There are also many accelerated stochastic gradient algorithms that do not use
negative momentum. In [28], the author applies Nesterov’s momentum to SVRG
without any sort of negative momentum, proving a linear convergence rate in the
strongly convex regime. However, the proven convergence rate is suboptimal, as it
implies even worse performance than SVRG when the batch size is small and worse
performance than accelerated full-gradient methods when the batch size is close to n.
Our results show that a particular application of Nesterov’s momentum to SVRG does
provide acceleration.

Point-SAGA [14] is another SAGA-like algorithm that achieves optimal conver-
gence rates, but point-SAGAmust compute the proximal operator corresponding to F
rather than the proximal operator corresponding to g. This is not possible in general,
even if the proximal operator corresponding to g is easy to compute, so point-SAGA
applies to a different class of functions than the class we consider in this work.

There are also many algorithms that indirectly accelerate stochastic gradient meth-
ods. This class of algorithms include Catalyst [24], APPA [18], and the primal-dual
methods in [39]. These algorithms call a variance-reduced stochastic gradient method
as a subroutine, and provide acceleration using an inner-outer loop structure. These
algorithms are often difficult to implement in practice due to the difficulty of solving
their inner-loop subproblems, and they achieve a convergence rate that is only optimal
up to a logarithmic factor.

4 Preliminaries

In this section, we present some basic definitions and results from optimisation and
convex analysis. Much of our analysis involves Bregman divergences. The Bregman
divergence associated with a function h is defined as

Dξ
h (y, x)

def= h(y) − h(x) + 〈ξ, x − y〉,

where ξ ∈ ∂h(x) and ∂ is the subdifferential operator. If h is differentiable, we drop
the superscript ξ as the subgradient is unique. The function h is convex if and only if
Dξ
h (y, x) ≥ 0 for all x and y. We say h is μ-strongly convex with μ ≥ 0 if and only if

μ

2
‖x − y‖2 ≤ Dξ

h (y, x).

Bregman divergences also arise in the following fundamental inequality.

Lemma 1 ([26], Thm. 2.1.5) Suppose f is convex with an L-Lipschitz continuous
gradient. We have for all x, y ∈ R

m,

‖∇ f (x) − ∇ f (y)‖2 ≤ 2LD f (y, x).

Lemma 1 is equivalent to the following result, which is more specific to our analysis
due to the finite-sum structure of the smooth term in (1).
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Lemma 2 Let f (x) = 1
n

∑n
i=1 fi (x), where each fi is convex with an L-Lipschitz

continuous gradient. Then for every x, y ∈ R
m

1

n

n∑
i=1

‖∇ fi (x) − ∇ fi (y)‖2 ≤ 2LD f (y, x).

Proof This follows from applying Lemma 1 to each component fi . ��
The proximal operator is defined as

proxg(y) = arg min
x∈Rm

{
1

2
‖x − y‖2 + g(x)

}
.

The proximal operator is also defined implicitly as y − proxg(y) ∈ ∂g(proxg (y)).
From this definition of the proximal operator, the following standard inequality is
clear.

Lemma 3 Suppose g is μ-strongly convex with μ ≥ 0, and suppose z =
proxηg (x − ηd) for some x, d ∈ R

m and constant η. Then, for any y ∈ R
m,

η〈d, z − y〉 ≤ 1

2
‖x − y‖2 − 1 + μη

2
‖z − y‖2 − 1

2
‖z − x‖2 − ηg(z) + ηg(y).

Proof By the strong convexity of g,

g(z) − g(y) ≤ 〈ξ, z − y〉 − μ

2
‖z − y‖2 ∀ξ ∈ ∂g(z)

From the implicit definition of the proximal operator, we know that 1
η
(z− x)+d ∈

∂g(z). Therefore,

g(z) − g(y) ≤ 〈ξ, z − y〉 − μ

2
‖z − y‖2

= 1

η
〈z − x + ηd, z − y〉 − μ

2
‖z − y‖2

= 〈d, z − y〉 + 1

2η
‖x − y‖2 − 1 + μη

2η
‖z − y‖2 − 1

2η
‖z − x‖2.

Multiplying by η and rearranging yields the assertion. ��

5 The acceleration framework

To apply the linear coupling framework, we must couple stochastic analogues of (6)
and (7) to construct a lower bound on the one-iteration progress of Algorithm 1.
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Lemma 4 (One-Iteration Progress) The following bound describes the progress made
by one iteration of Algorithm 1.

0 ≤γk(1 − τk)

τk
F(yk) − γk

τk
F(yk+1) + γk F(x∗) + γ 2

k ‖∇̃k+1 − ∇ f (xk+1)‖2

+ γk

τk

(
L

2
− 1

4τkγk

)
‖xk+1 − yk+1‖2 + 1

2
‖zk − x∗‖2

− 1 + μγk

2
‖zk+1 − x∗‖2 + γk

〈∇ f (xk+1) − ∇̃k+1, zk − x∗〉
− γk(1 − τk)

τk
D f (yk, xk+1).

Proof We use a linear coupling argument. The extrapolated iterate xk+1 can be viewed
as a convex combination of an iterate produced from mirror descent (namely, zk) and
one from gradient descent (yk). This allows us to provide two bounds on the term
f (xk+1) − f (x∗): one is a regret bound inspired by the classical analysis of mirror
descent, and the other is inspired by the traditional descent guarantee of gradient
descent.

γk( f (xk+1) − f (x∗))
1©≤ γk〈∇ f (xk+1), xk+1 − x∗〉
= γk〈∇ f (xk+1), xk+1 − zk〉 + γk〈∇ f (xk+1), zk − x∗〉
2©= γk(1 − τk)

τk
〈∇ f (xk+1), yk − xk+1〉 + γk〈∇ f (xk+1), zk − x∗〉

= γk(1 − τk)

τk
( f (yk) − f (xk+1)) + γk

〈∇̃k+1, zk − x∗〉
− γk(1 − τk)

τk
D f (yk, xk+1) + γk

〈∇ f (xk+1) − ∇̃k+1, zk − x∗〉
= γk(1 − τk)

τk
( f (yk) − f (xk+1)) + γk

〈∇̃k+1, zk − zk+1
〉

+ γk
〈∇̃k+1, zk+1 − x∗〉 − γk(1 − τk)

τk
D f (yk, xk+1)

+ γk
〈∇ f (xk+1) − ∇̃k+1, zk − x∗〉

3©= γk(1 − τk)

τk
( f (yk) − f (xk+1)) + γk

τk

〈∇̃k+1, xk+1 − yk+1
〉

+ γk
〈∇̃k+1, zk+1 − x∗〉 − γk(1 − τk)

τk
D f (yk, xk+1)

+ γk
〈∇ f (xk+1) − ∇̃k+1, zk − x∗〉 (8)

Inequality 1© uses the convexity of f , 2© follows from the fact that xk+1 = τk zk +
(1 − τk)yk , and 3© uses xk+1 − yk+1 = τk(zk − zk+1). We proceed to bound the
inner product 〈∇̃k+1, zk+1 − x∗〉 involving the sequence zk+1 using a regret bound
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Accelerating variance-reduced stochastic gradient methods 685

from mirror descent, and we bound the term 〈∇̃k+1, xk+1 − yk+1〉 using an argument
similar to the descent guarantee of gradient descent.

By Lemma 3 with z = zk+1, x = zk , y = x∗, d = ∇̃k+1, and η = γk ,

γk
〈∇̃k+1, zk+1 − x∗〉
≤ 1

2
‖zk − x∗‖2 − 1 + μγk

2
‖zk+1 − x∗‖2 − 1

2
‖zk+1 − zk‖2

− γkg(zk+1) + γkg(x
∗)

= 1

2
‖zk − x∗‖2 − 1 + μγk

2
‖zk+1 − x∗‖2 − 1

2τ 2k
‖xk+1 − yk+1‖2

− γkg(zk+1) + γkg(x
∗). (9)

For the other term,

γk

τk
〈∇̃k+1, xk+1 − yk+1〉

= γk

τk
〈∇ f (xk+1), xk+1 − yk+1〉 + γk

τk
〈∇̃k+1 − ∇ f (xk+1), xk+1 − yk+1〉

1©≤ γk

τk
( f (xk+1) − f (yk+1)) + γk

τk
〈∇̃k+1 − ∇ f (xk+1), xk+1 − yk+1〉

+ Lγk

2τk
‖xk+1 − yk+1‖2

2©≤ γk

τk
( f (xk+1) − f (yk+1)) + γ 2

k ‖∇̃k+1 − ∇ f (xk+1)‖2

+
(
Lγk

2τk
+ 1

4τ 2k

)
‖xk+1 − yk+1‖2

= γk

τk
( f (xk+1) − F(yk+1)) + γ 2

k ‖∇̃k+1 − ∇ f (xk+1)‖2

+
(
Lγk

2τk
+ 1

4τ 2k

)
‖xk+1 − yk+1‖2 + γk

τk
g(yk+1)

3©≤ γk

τk
( f (xk+1) − F(yk+1)) + γ 2

k ‖∇̃k+1 − ∇ f (xk+1)‖2

+
(
Lγk

2τk
+ 1

4τ 2k

)
‖xk+1 − yk+1‖2 + γkg(zk+1) + γk(1 − τk)

τk
g(yk). (10)

Inequality 1© follows from the Lipschitz continuity of ∇ fi , 2© is Young’s inequality,
and 3© uses the convexity of g and the update rule yk+1 = τk zk+1 + (1 − τk)yk .
Combining inequalities (9) and (10) with (8) and rearranging yields the assertion. ��

Lemma 4 completes the linear coupling part of our argument. If not for the MSE
and bias terms, we could telescope this inequality as in [6] and prove an accelerated
convergence rate. Aswith all analyses of stochastic gradient methods, we need a useful
bound on these qualities of the estimator.

123



686 D. Driggs et al.

Existing analyses of unbiased stochastic gradient methods bound the variance term
by a pair of terms that telescope over several iterations, showing that the variance tends
to zero with the number of iterations. It is difficult to generalise these arguments to
accelerated stochastic methods because one must prove that the variance decreases at
an accelerated rate that is inconsistent with existing variance bounds. In the analysis of
Katyusha, negative momentum cancels part of the variance term, leaving telescoping
terms that decrease at an accelerated rate. Without negative momentum, we must
handle the variance term differently.

In the inequality of Lemma 4, we have two non-positive terms:

− 1

τ 2k
‖xk+1 − yk+1‖2 and − γk(1 − τk)

τk
D f (yk, xk+1).

This makes our strategy clear: we must bound the MSE and bias terms by terms of the
form ‖xk+1 − yk+1‖2 and D f (yk, xk+1). The following two lemmas use the MSEB
property to establish bounds of this form.

Lemma 5 (BiasTermBound) Suppose the stochastic gradient estimator ∇̃k+1 satisfies
the MSEB(M1, M2, ρM , ρB , ρF ) property, let ρ = min{ρM , ρB, ρF }, and let {σk}
and {sk} be any non-negative sequences satisfying σks2k (1 − ρ) ≤ σk−1s2k−1

(
1 − ρ

2

)
and σk (1 − ρ) ≤ σk−1

(
1 − ρ

2

)
. The bias term can be bounded as

T−1∑
k=0

σkskE
〈∇ f (xk+1) − ∇̃k+1, zk − x∗〉

≤ (1 − ρB)

T−1∑
k=0

σkE

[
8s2k

ρ2
BρM

∥∥∇ f (xk+1) − ∇̃k+1
∥∥2 + ρM

8τ 2k
‖xk+1 − yk+1‖2

]
.

Proof Because zk depends only on the first k − 1 iterates, we can use the MSEB
property to say

σkskE
〈∇ f (xk+1) − ∇̃k+1, zk − x∗〉

= σkskE
〈∇ f (xk+1) − Ek∇̃k+1, zk − x∗〉

1©= σksk(1 − ρB)E
〈∇ f (xk) − ∇̃k, zk − x∗〉

2©= σk(1 − ρB)E
[
sk
〈∇ f (xk) − ∇̃k, zk − zk−1

〉
+ sk

〈∇ f (xk) − Ek−1∇̃k, zk−1 − x∗〉 ]
3©≤ σk(1 − ρB)E

[
4s2k

ρMρB

∥∥∇ f (xk) − ∇̃k
∥∥2 + ρMρB

16
‖zk − zk−1‖2

+ sk
〈∇ f (xk) − Ek−1∇̃k, zk−1 − x∗〉 ].
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Equality 1© is due to theMSEBproperty.We are able to pass the conditional expectation
into the second inner product in 2© because zk−1 is independent of ∇̃k conditioned on
the first k − 2 iterates, and inequality 3© is Young’s. We can repeat this process once
more, applying the MSEB property to obtain

σk(1 − ρB)E

[
4s2k

ρMρB

∥∥∇ f (xk) − ∇̃k
∥∥2 + ρMρB

16
‖zk − zk−1‖2

+ sk(1 − ρB)
〈∇ f (xk−1) − ∇̃k−1, zk−1 − x∗〉 ]

≤ σk(1 − ρB)E

[
4s2k

ρMρB

∥∥∇ f (xk) − ∇̃k
∥∥2 + 4s2k (1 − ρB)

ρMρB

∥∥∇ f (xk−1) − ∇̃k−1
∥∥2

+ ρMρB

16

(
‖zk − zk−1‖2 + (1 − ρB)‖zk−1 − zk−2‖2

)

+ sk(1 − ρB)
〈∇ f (xk−1) − ∇̃k−1, zk−2 − x∗〉 ]

4©≤ (1 − ρB)E

[
4σks2k
ρMρB

∥∥∇ f (xk) − ∇̃k
∥∥2

+ 4σk−1s2k−1

(
1 − ρB

2

)
ρMρB

∥∥∇ f (xk−1) − ∇̃k−1
∥∥2 + ρMρB

16

(
σk‖zk − zk−1‖2

+ σk−1

(
1 − ρB

2

)
‖zk−1 − zk−2‖2

)

+ σksk(1 − ρB)
〈∇ f (xk−1) − ∇̃k−1, zk−2 − x∗〉 ].

Inequality 4© uses our hypotheses on the decrease of σks2k and σk . This is a recursive
inequality, and expanding the recursion yields

σkskE
〈∇ f (xk+1) − Ek∇̃k+1, zk − x∗〉

≤ (1 − ρB)

k∑
�=1

σ�E

[
4s2� (1 − ρB

2 )k−�

ρMρB

∥∥∇ f (x�) − ∇̃�

∥∥2

+ ρMρB(1 − ρB
2 )k−�

16
‖z� − z�−1‖2

]
.

The above uses the fact that ∇̃1 = ∇ f (x1), so the inner product 〈∇ f (x1) − ∇̃1,

z0 − x∗〉 = 0. Taking the sum over the iterations k = 0 to k = T − 1, we apply
Lemma 7 to simplify this bound.
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T−1∑
k=0

σkskE
〈∇ f (xk+1) − Ek∇̃k+1, zk − x∗〉

≤ (1 − ρB)

T−1∑
k=1

k∑
�=1

σ�E

[4s2� (1 − ρB
2 )k−�

ρMρB

∥∥∇ f (x�) − ∇̃�

∥∥2

+ ρMρB(1 − ρB
2 )k−�

16
‖z� − z�−1‖2

]
1©≤ (1 − ρB)

T−1∑
k=0

σkE

[
8s2k

ρ2
BρM

∥∥∇ f (xk+1) − ∇̃k+1
∥∥2 + ρM

8
‖zk+1 − zk‖2

]

2©= (1 − ρB)

T−1∑
k=0

σkE

[
8s2k

ρ2
BρM

∥∥∇ f (xk+1) − ∇̃k+1
∥∥2 + ρM

8τ 2k
‖xk+1 − yk+1‖2

]
.

Inequality 1© follows from Lemma 7, and equality 2© is the identity yk+1 − xk+1 =
τk(zk+1 − zk). ��

This bound on the bias term includes the MSE, so to complete our bound on the
bias term, we must combine Lemma 5 with the following lemma.

Lemma 6 (MSE Bound) Suppose the stochastic gradient estimator ∇̃k+1 satisfies the
MSEB(M1, M2, ρM , ρB, ρF ) property, let ρ = min{ρM , ρB, ρF }, and let {sk} be any
non-negative sequence satisfying s2k (1 − ρ) ≤ s2k−1

(
1 − ρ

2

)
. For convenience, define

Θ2 = M1ρF+2M2
ρMρF

. The MSE of the gradient estimator is bounded as

T−1∑
k=0

s2kE‖∇ f (xk+1) − ∇̃k+1‖2

≤
T−1∑
k=0

4Θ2Ls
2
kE

[
2D f (yk, xk+1) + L‖xk+1 − yk+1‖2

]

Proof First, we derive a bound on the sequence Fk arising in the MSEB property.
Taking the sum from k = 0 to k = T − 1,

T−1∑
k=0

s2kFk ≤
T−1∑
k=0

k∑
�=0

M2s2k (1 − ρF )k−�

n

n∑
i=1

E‖∇ fi (x�+1) − ∇ fi (x�)‖2

1©≤
T−1∑
k=0

k∑
�=0

M2s2� (1 − ρF
2 )k−�

n

n∑
i=1

E‖∇ fi (x�+1) − ∇ fi (x�)‖2

2©≤
T−1∑
k=0

2M2s2k
nρF

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2.
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Inequality 1© uses the fact that s2k (1 − ρF ) ≤ s2k−1

(
1 − ρF

2

)
, and 2© uses Lemma 7.

With this bound on Fk , we proceed to bound Mk in a similar fashion.

T−1∑
k=0

s2kE‖∇ f (xk+1) − ∇̃k+1‖2

≤
T−1∑
k=0

M1s2k
n

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2 + s2kFk + s2k (1 − ρM )Mk−1

≤
T−1∑
k=0

(M1ρF + 2M2)s2k
nρF

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2 + s2k (1 − ρM )Mk−1

≤
T−1∑
k=0

k∑
�=1

Θ2s2k (1 − ρM )k−�ρM

n

n∑
i=1

E‖∇ fi (x�+1) − ∇ fi (x�)‖2

1©≤
T−1∑
k=0

k∑
�=1

Θ2s2� (1 − ρM
2 )k−�ρM

n

n∑
i=1

E‖∇ fi (x�+1) − ∇ fi (x�)‖2

2©≤
T−1∑
k=0

2Θ2s2k
n

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2

3©≤
T−1∑
k=0

4Θ2s2k
n

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (yk)‖2

+ 4Θ2s2k
n

n∑
i=1

E‖∇ fi (yk) − ∇ fi (xk)‖2

4©≤
T−1∑
k=0

(
8Θ2Ls

2
kED f (yk, xk+1) + 4Θ2L

2s2kE‖xk − yk‖2
)

.

Inequality 1©uses s2k (1−ρM ) ≤ s2k−1

(
1 − ρM

2

)
, 2©usesLemma7, 3©uses the inequality

‖a−c‖2 ≤ 2‖a−b‖2 +2‖b−c‖2, and 4© uses Lemma 1 and the Lipschitz continuity
of ∇ fi . ��

Lemmas 5 and 6 show that it is possible to cancel the bias term and the MSE
using the non-negative terms appearing in the inequality of Lemma 4. Without these
terms, we can telescope this inequality over several iterations and prove accelerated
convergence rates. We are now prepared to prove Theorems 1 and 2.

Proof of Theorem 1 We set μ = 0 in the inequality of Lemma 4, apply the full expec-
tation operator, and sum the result over the iterations k = 0 to k = T − 1.

0 ≤1

2
‖z0 − x∗‖2 − 1

2
E‖zT − x∗‖2 +

T−1∑
k=0

E

[γk(1 − τk)

τk
F(yk) − γk

τk
F(yk+1)
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+ γk F(x∗) + γk

τk

(
L

2
− 1

4τkγk

)
‖xk+1 − yk+1‖2 − γk(1 − τk)

τk
D(yk, xk+1)

+ γk
〈∇ f (xk+1) − ∇̃k+1, zk − x∗〉 + γ 2

k ‖∇ f (xk+1) − ∇̃k+1‖2
]
.

We bound the terms in the final line, beginning with the bias term. Our choice for γk
satisfies γ 2

k (1 − ρ) ≤ γ 2
k−1

(
1 − ρ

2

)
, so with sk = γk and σk = 1, we apply Lemma 5.

This gives

0 ≤1

2
‖z0 − x∗‖2 +

T−1∑
k=0

E

[
γk(1 − τk)

τk
F(yk) − γk

τk
F(yk+1) + γk F(x∗)

+
(

γk

τk

(
L

2
− 1

4τkγk

)
+ (1 − ρB)ρM

8τ 2k

)
‖xk+1 − yk+1‖2

− γk(1 − τk)

τk
D(yk, xk+1) + γ 2

k Θ1‖∇ f (xk+1) − ∇̃k+1‖2
]
,

where we have dropped the term−1/2E‖zT − x∗‖2 because it is non-positive. Apply-
ing Lemma 6 to bound the MSE, we have

0 ≤1

2
‖z0 − x∗‖2 +

T−1∑
k=0

E

[γk(1 − τk)

τk
F(yk) − γk

τk
F(yk+1)

+ γk F(x∗) +
(
8γ 2

k LΘ1Θ2 − γk(1 − τk)

τk

)
D(yk, xk+1)

+
(

ρM (1 − ρB)

8τ 2k
+ 4γ 2

k L
2Θ1Θ2 + γk

τk

(
L

2
− 1

4τkγk

))
‖xk+1 − yk+1‖2

]
.

(11)

With the parameters set as in the theorem statement, it is clear that the final two
lines of (11) are non-positive (see “Appendix B” for a proof). This allows us to drop
these lines from the inequality, leaving

0 ≤1

2
‖z0 − x∗‖2 +

T−1∑
k=0

E

[
γk(1 − τk)

τk
F(yk) − γk

τk
F(yk+1) + γk F(x∗)

]
.

Rewriting τk in terms of γk shows that this is equivalent to

0 ≤1

2
‖z0 − x∗‖2 +

T−1∑
k=0

E

[
(cLγ 2

k − γk)F(yk) − cLγ 2
k F(yk+1) + γk F(x∗)

]
.
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Our choice for γk satisfies cLγ 2
k − γk = cLγ 2

k−1 − 1
4cL , allowing the F(yk) terms to

telescope. Hence, our inequality is equivalent to

0 ≤ −cLγ 2
T−1E[F(yT ) − F(x∗)] − 1

4cL

T−1∑
k=1

E
[
F(yk) − F(x∗)

]

+ (cLγ 2
0 − γ0)(F(y0) − F(x∗)) + 1

2
‖z0 − x∗‖2 − 1

2
E‖zT − x∗‖2.

Using the facts that cLγ 2
T−1 = (T+ν+3)2

4cL , cLγ 2
0 − γ0 = (ν+2)(ν+4)

4cL , and F(yk) ≤
F(x∗), we have

(T + ν + 3)2

4cL
E
[
F(yT ) − F(x∗)

]
≤ (ν + 2)(ν + 4)

4cL
(F(y0) − F(x∗)) + 1

2
‖z0 − x∗‖2.

Dropping the term 1/2‖zT − x∗‖2 on the left side of this inequality and rearranging,
we have proved the assertion.

��
A similar argument proves an accelerated linear convergence rate when strong

convexity is present.

Proof of Theorem 2 We recall the inequality of Lemma 4.

γ

τ

(
F(yk+1) − F(x∗)

) + (1 + μγ )

2
‖zk+1 − x∗‖2

≤ γ (1 − τ)

τ

(
F(yk) − F(x∗)

) + 1

2
‖zk − x∗‖2 + γ 2‖∇̃k+1 − ∇ f (xk+1)‖2

+ γ

τ

(
L

2
− 1

4τγ

)
‖xk+1 − yk+1‖2 − γ (1 − τ)

τ
D f (yk, xk+1)

+ γ
〈∇ f (xk+1) − ∇̃k+1, zk − x∗〉 .

By our choice of γ and τ , we have

γ

τ

(
γ (1 − τ)

τ

)−1

= 1

1 − τ
≥ 1 + τ = 1 + μγ.

Therefore, we can extract a factor of (1 + μγ ) from the left.

(1 + μγ )

(
γ (1 − τ)

τ

(
F(yk+1) − F(x∗)

) + 1

2
‖zk+1 − x∗‖2

)

≤ γ (1 − τ)

τ

(
F(yk) − F(x∗)

) + 1

2
‖zk − x∗‖2 + γ 2‖∇̃k+1 − ∇ f (xk+1)‖2
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+ γ

τ

(
L

2
− 1

4τγ

)
‖xk+1 − yk+1‖2 − γ (1 − τ)

τ
D f (yk, xk+1)

+ γ
〈∇ f (xk+1) − ∇̃k+1, zk − x∗〉 .

Multiplying this inequality by (1+μγ )k , summing over iterations k = 0 to k = T −1,
and applying the full expectation operator, we obtain the bound

(1 + μγ )TE

[
γ (1 − τ)

τ

(
F(yT ) − F(x∗)

) + 1

2
‖zT − x∗‖2

]

≤ γ (1 − τ)

τ

(
F(y0) − F(x∗)

) + 1

2
‖z0 − x∗‖2

+
T−1∑
k=0

(1 + μγ )kE
[
γ 2‖∇̃k+1 − ∇ f (xk+1)‖2

+ γ

τ

(
L

2
− 1

4τγ

)
‖xk+1 − yk+1‖2

− γ (1 − τ)

τ
D f (yk, xk+1) + γ

〈∇ f (xk+1) − ∇̃k+1, zk − x∗〉 ]. (12)

As in the proof of Theorem 1, we bound the bias term and the MSE using Lemmas 5
and 6, respectively. To apply Lemma 5, we let σk = (1 + μγ )k and sk = γ . These
choices are appropriate because (1+ μγ )k(1− ρ) ≤ (1+ μγ )k−1(1− ρ

2 ) due to the
fact that μγ ≤ ρ/2.

Combining these bounds with (12), we have

(1 + μγ )TE

[
γ (1 − τ)

τ

(
F(yT ) − F(x∗)

) + 1

2
‖zT − x∗‖2

]

≤ γ (1 − τ)

τ

(
F(y0) − F(x∗)

) + 1

2
‖z0 − x∗‖2

+
T−1∑
k=0

(1 + μγ )kE

[(
8γ 2LΘ1Θ2 − γ (1 − τ)

τ

)
D(yk, xk+1)

+
(

ρM (1 − ρB)

8τ 2
+ 4γ 2L2Θ1Θ2 + γ

τ

(
L

2
− 1

4τγ

))
‖xk+1 − yk+1‖2

]
.

The parameter settings in the theorem statement ensure the final two lines are non-
positive (see “Appendix B” for details). This gives

1

2
E‖zT − x∗‖2

≤ (1 + μγ )−T
(

γ (1 − τ)

τ

(
F(y0) − F(x∗)

) + 1

2
‖z0 − x∗‖2

)

≤
(
1 + min

{√
μ

Lc
,
ρ

2

})−T (
1

μ

(
F(y0) − F(x∗)

) + 1

2
‖z0 − x∗‖2

)
,
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which is the desired result. ��

6 Convergence rates for specific estimators

In light of Theorems 1 and 2, we must only establish suitable bounds on the MSE
and bias terms of a gradient estimator to prove accelerated convergence rates for
Algorithm 1. We consider four variance-reduced gradient estimators: SAGA, SVRG,
SARAH, and SARGE, beginning with the unbiased estimators. We defer proofs to the
“Appendix”. To preserve the generality of our framework, we have not optimised the
constants appearing in the presented convergence rates.

Theorem 3 (SAGA Convergence Rates) When using the SAGA gradient estimator in

Algorithm 1, set b ≤ 4
√
2n2/3, γk = b3(k+ 4n

b +4)
192n2L

, and τk = b3

96n2Lγk
. After T iterations,

the suboptimalty at yT satisfies

EF(yT ) − F(x∗) ≤ ( 4nb + 2)( 4nb + 4)K1

(T + 4n
b + 3)2

,

where

K1 =
(
F(y0) − F(x∗) + 192n2L

b3( 4nb + 2)( 4nb + 4)
‖z0 − x∗‖2

)
.

If g is μ-strongly convex, set γ = min
{

b3/2

4n
√
6μL

, b
4nμ

}
and τ = μγ . After T

iterations, the point zT satisfies

E‖zT − x∗‖2 ≤
(
1 + min

{
b3/2

√
μ

4n
√
6L

,
b

4n

})−T

K2,

where K2 is defined as in Theorem 2.

It is enlightening to compare these rates to existing convergence rates for full and
stochastic gradientmethods. In the non-strongly convex setting, our convergence rate is
O (

n2/T 2
)
, matching that of Katyusha. As with Katyusha, this rate could be improved

for SVRG using the epoch-doubling procedure in SVRG++ (see Allen-Zhu, 2018 [7]
for further details). In the strongly convex case, if F is poorly conditioned so that

L/μ ≥ O(b), we prove linear convergence at the rate O
((

1 + b3/2
√

μ

n
√
L

)−T
)
. With

b = n2/3, this rate matches the convergence rate of inertial forward-backward on the
same problem (i.e., the rate is independent of n), but we require only n2/3 stochastic
gradient evaluations per iteration compared to the n evaluations that full gradient
methods require. This is reminiscent of the results of [5,31], where the authors show
that SAGA and SVRG achieve the same convergence rate as full gradient methods
on non-convex problems using only n2/3 stochastic gradient evaluations per iteration.
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This is slightly worse than the results proven for Katyusha, which requires O(
√
n)

stochastic gradient evaluation per iteration to match the convergence rate of full-
gradient methods.

The analogous convergence guarantees for SVRG are included in Theorem 4.

Theorem 4 (SVRG Convergence Rates) When using the SVRG gradient estimator in
Algorithm 1, set b ≤ 32p2, γk = b(k+4p+4)

192p2L
, and τk = b

96p2Lγk
. After T iterations, the

suboptimalty at yT satisfies

EF(yT ) − F(x∗) ≤ (4p + 2)(4p + 4)K1

(T + 4p + 3)2
,

where

K1 =
(
F(y0) − F(x∗) + 192p2L

b(4p + 2)(4p + 4)
‖z0 − x∗‖2

)
.

If g is μ-strongly convex, set γ = min
{ √

b
4p

√
6μL

, 1
4pμ

}
and τ = μγ . After T

iterations, the point zT satisfies

E‖zT − x∗‖2 ≤
(
1 + min

{ √
bμ

4p
√
6L

,
b

4p

})−T

K2,

where K2 is defined as in Theorem 2.

The convergence rates for SVRG are similar to the rates for SAGA if p and b
are chosen appropriately. In the strongly convex case, setting b = p2 allows SVRG
to match the convergence rate of full gradient methods, and the expected number of
stochastic gradient evaluations per iteration is n/p + b. To minimise the number of
stochastic gradient evaluations while maintaining the convergence rate of full gradient
methods, we set p = O(n1/3), showing that Algorithm 1 using the SVRG gradient
estimator achieves the same convergence rate as full gradient methods using only
O(n2/3) stochastic gradient evaluations per iteration.

Remark 4 The above discussion shows that when using the SAGA gradient estimator
on a strongly convex objective with b = O(n2/3) and γ = O(1/

√
μL), Algorithm 1

finds a point satisfying E‖zT − x∗‖2 ≤ ε in O(n2/3
√

κ log(1/ε)) iterations. This is
compared to the complexity lower bound ofO(

√
nκ log(1/ε)) achieved by Katyusha

[37]. SVRG has a similar complexity when b = n2/3 and p = n1/3.

The SARAH gradient estimator is similar to the SVRG estimator, as both estima-
tors require the full gradient to be computed periodically. SARAH differs from SVRG
by using previous estimates of the gradient to inform future estimates. The recursive
nature of the estimator seems to decrease its MSE, which can be observed in experi-
ments and in theory [16,27]. However, this comes at the cost of introducing bias into
the estimator.

123
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Biased stochastic gradient methods are underdeveloped compared to their unbiased
counterparts. The convergence proofs for biased algorithms are traditionally complex
and difficult to generalize (see [33], for example), and proximal support has only
recently been extended to the biased algorithmsSARAHandSARGE, aswell as biased
versions of SAGA and SVRG in the convex setting [16]. It is difficult to determine
conclusively if the negative effect of the bias outweighs the benefits of a lower MSE.
We show that Algorithm 1 is able to achieve accelerated rates of convergence using
biased estimators as well, beginning with the SARAH estimator.

Theorem 5 (SARAH Convergence Rates) When using the SARAH gradient estima-
tor in Algorithm 1, set γk = k+2p+4

288p4L
and τk = 1

144p4Lγk
. After T iterations, the

suboptimalty at yT satisfies

EF(yT ) − F(x∗) ≤ (2p + 2)(2p + 4)K1

(T + 2p + 3)2
.

where

K1 =
(
F(y0) − F(x∗) + 288p4L

(2p + 2)(2p + 4)
‖z0 − x∗‖2

)
.

If g is μ-strongly convex, set γ = min
{√

1
144p4μL

, 1
2pμ

}
and τ = μγ . After T

iterations, the point zT satisfies

E‖zT − x∗‖2 ≤
(
1 + min

{√
μ

144p4L
,
1

2p

})−T

K2,

where K2 is defined as in Theorem 2.

We provide a proof of this result in “Appendix D”. Theorem 5 shows that using the
SARAHgradient estimator inAlgorithm 1 achieves an optimalO (

1/T 2
)
convergence

rate on convex objectives, but with p = O(n), the constant is a factor of n2 worse
than it is for accelerated SAGA, SVRG, and Katyusha. In the strongly convex case,
setting p = O(n) and b = O(1) guarantees a linear convergence rate of O((1 +
n−2√μ/L)−T ), achieving the optimal dependence on the condition number, but with
a constant that is a factor of n worse than accelerated SAGA and SVRG, and a factor
of n3/2 worse than Katyusha. Despite this dependence on n, experimental results,
including those in Sect. 7 and [27], show that the SARAH gradient estimator exhibits
competitive performance.

Finally, we provide convergence rates for the SARGE estimator. In [16], the authors
introduce the SARGE gradient estimator to mimic the recursive nature of SARAH but
trade larger storage costs for a lower average per-iteration complexity, similar to the
relationship between SAGA and SVRG. We prove in “Appendix E” that SARGE
satisfies the MSEB property with similar constants to SARAH, and achieves similar
convergence rates as well.
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Theorem 6 (SARGE Convergence Rates) Let3 c = 86016n4/b4. When using the

SARGE gradient estimator in Algorithm 1, set γk = k+ 4n
b +4

2cL and τk = 1
cLγk

. After T
iterations, the suboptimalty at yT satisfies

EF(yT ) − F(x∗) ≤ 2( 2nb + 1)( 2nb + 2)K1

(T + 4n
b + 3)2

,

where

K1 =
(
F(y0) − F(x∗) + 86016n4

b4( 2nb + 1)( 2nb + 2)
‖z0 − x∗‖2

)
.

If g isμ-strongly convex, setγ = min
{

1√
cμL

, b
4nμ

}
and τ = μγ . After T iterations,

the point zT satisfies

E‖zT − x∗‖2 ≤
(
1 + min

{
48b2

√
154μ

n2
√
L

,
b

4n

})−T

K2,

where K2 is defined as in Theorem 2.

The convergence rates for SARGE are of the same order as the convergence rates
for SARAH, even though SARGE requires fewer stochastic gradient evaluations per
iteration on average.

Although our bound on the MSE of the SARAH and SARGE estimators is a factor
of n smaller than our bound on the MSE of the SAGA and SVRG estimators, the
analytical difficulties due to the bias lead to a worse dependence on n. Nevertheless,
SARAH and SARGE are competitive in practice, as we demonstrate in the following
section.

7 Numerical experiments

To test our acceleration framework, we use it to accelerate SAGA, SVRG, SARAH,
and SARGE on a series of ridge regression and LASSO tasks using the binary classi-
fication data sets australian, mushrooms, phishing, and ijcnn1 from the
LIBSVM4 database.We include Katyusha andKatyushans for comparison as well. For
SVRG and SARAH, we compare our accelerated variants that compute the full gra-
dient probabilistically to the non-accelerated versions that compute the full gradient
deterministically at the beginning of each epoch.

3 Throughout this manuscript, we have sacrificed smaller constants for generality and ease of exposition,
so the constant appearing in c is not optimal.
4 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

123

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


Accelerating variance-reduced stochastic gradient methods 697

Fig. 1 Performance comparison for solving ridge regression among different algorithms

With feature vectors ai and labels yi for i ∈ {1, 2, . . . , n}, ridge regression and
LASSO can be written as

min
x∈Rm

1

n

n∑
i=1

(
a�
i x − yi

)2 + λR(x),

where R ≡ 1
2‖ · ‖2 in ridge regression and R ≡ ‖ · ‖1 for LASSO. Letting g ≡ λR, it

is clear that g is λ-strongly convex in ridge regression and g is not strongly convex for
LASSO. In all our experiments, we rescale the value of the data to [−1, 1]. For ridge
regression, we set λ = 1/n, and for LASSO, we set λ = 1/

√
n.

For accurate comparisons, we automate all our parameter tuning. For our experi-
ments using ridge regression, we select the step size and momentum parameters from
the set {1/t : t ∈ N}. For LASSO, we use the parameters suggested by Theorem 1, but
we scale the step size by a constant s ∈ N, and we rescale the momentum parameter
so that τ0 = 1/2. We perform the same parameter-tuning procedure for Katyusha, and
set the negative momentum parameter τ2 = 1/2 as suggested in [2] unless otherwise
stated. In our accelerated variants of SVRG and SARAH, we set p = 1

2n , and for the
non-accelerated variants and Katyusha, we set the epoch length to 2n. We use a batch
size of b = 1 for all algorithms.

Wemeasure performancewith respect to the suboptimality F(xk+1)−F(x∗), where
x∗ is a low-tolerance solution found using forward-backward. To fairly compare algo-
rithms that require a different number of stochastic gradient evaluations per iteration,
we report their performance with respect to the number of effective full gradient com-
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Fig. 2 Performance comparison for solving LASSO among different algorithms. In Katyusha, the negative
momentum parameters τ2 = 0, 1

2 are not tuned

putations they perform on average each iteration. By this metric, SAGA performs 1/n
full gradient computations each iteration, while SVRG performs an average of 2

n + 1
2n ,

for example.
Figures 1 and 2 display the median of 100 trials of ridge regression and LASSO,

respectively. We observe the following trends:

– Acceleration without negative momentum significantly improves the performance
of SAGA, SVRG, SARAH, and SARGE in most cases. The improvement is least
dramatic on the smallest data set, australian, and slightly less dramatic for
the biased algorithms, SARAH and SARGE.

– Because they require only one stochastic gradient evaluation per iteration, SAGA
and Accelerated SAGA require significantly less computation to achieve the same
accuracy as other methods.

– In the strongly convex setting, Katyusha performs similarly to or better than SVRG
with acceleration in most cases.

– In the non-strongly convex setting, Katyushans performs much worse than other
methods when using negative momentum. Without negative momentum, it per-
forms much better than all algorithms except Accelerated SAGA. Because
Katyusha without negative momentum is almost exactly the same algorithm as
Accelerated SVRG, this improved performance is likely due to the second prox-
imal step and additional step size η in Katyusha. All of the algorithms presented
in this work can adopt these features without changing their convergence rates.
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8 Conclusion

Although acceleration is a widely used and an extensively researched technique in
first-order optimisation, its application to stochastic gradient methods is still poorly
understood. The introduction of negative momentum adds another layer of complex-
ity to this line of research. Although algorithms using negative momentum enjoy fast
convergence rates and strong performance when the parameters are tuned appropri-
ately, it is unclear if negative momentum is necessary for acceleration. In this work,
we propose a universal framework for accelerating stochastic gradient methods that
does not rely on negative momentum.

Because our approach does not rely on negative momentum, it applies to a much
broader class of stochastic gradient estimators. As long as the estimator admits natural
bounds on its bias andMSE, it can be used in our framework to produce an accelerated
stochastic gradient method with an optimal 1/T 2 dependence on convex problems and
an optimal

√
κ dependence in the strongly convex setting. The bias and MSE of the

estimator appear only in the constants of our convergence rates. From this perspective,
negative momentum is effectively a variance-reduction technique, reducing the vari-
ance in the iterates to improve the dependence on n in the convergence rates. A natural
question for future research is whether there exist gradient estimators with smaller bias
andMSE than SAGA, SVRG, SARAH, and SARGE that can be accelerated using our
framework and admit a better dependence on n.
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A One technical lemma

Lemma 7 Given a non-negative sequence σk , a constant ρ ∈ [0, 1], and an index
T ≥ 1, the following estimate holds:

T∑
k=1

k∑
�=1

(1 − ρ)k−�σ� ≤ 1

ρ

T∑
k=1

σk .
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Proof This follows from expanding the double-sum and computing a series:

T∑
k=1

k∑
�=1

(1 − ρ)k−�σ� = [σ1] + [(1 − ρ)σ1 + σ2] + [(1 − ρ)2σ1 + (1 − ρ)σ2 + σ3] + · · ·

= [1 + (1 − ρ) + (1 − ρ)2 + · · · + (1 − ρ)T−1]σ1
+ [1 + (1 − ρ) + (1 − ρ)2 + · · · + (1 − ρ)T−2]σ2 + · · ·

≤
( ∞∑

�=0

(1 − ρ)�

)(
T∑

k=1

σk

)

= 1

ρ

T∑
k=1

σk .

��

B Proofs of non-positivity

The goal is to show that the two terms

ρM (1 − ρB)

8τ 2k
+ 4γ 2L2Θ1Θ2 + γk

τk

(
L

2
− 1

4τkγk

)
and 8γ 2

k LΘ1Θ2 − γk(1 − τk)

τk

(13)

are non-positive with the parameter choices of Theorems 1 and 2. We consider three
cases.

Case 1. Let γk and τk be as in the statement of Theorem 1. For the first term in (13),

ρM (1 − ρB)

8τ 2k
+ 4γ 2

k L
2Θ1Θ2 + γk

τk

(
L

2
− 1

4τkγk

)

= γ 2
k L

2
(

ρM (1 − ρB)c2

8
+ 4Θ1Θ2 + 4c

(
1

2
− c

4

))

The constraint

c ≥ 2

2 − ρM + ρBρM

(
1 + √

1 + 8Θ1Θ2(2 − ρM + ρBρM )
)

ensures that this quadratic in c is non-positive. For the second term,we require τk ≤ 1/2
for all k, which holds because τk = 2

k+ν+4 ≤ 1
2 . Therefore,

8γ 2
k LΘ1Θ2 − γk(1 − τk)

τk
≤ 8γ 2

k LΘ1Θ2 − cLγ 2
k Θ1Θ2

2
.
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The constraint c ≥ 16Θ1Θ2 implies that this quantity is non-positive.

Case 2. Let γ and τ be as in the statement of Theorem 2, and suppose 1√
μLc

≤ ρ
2μ . In

this case, τ =
√

μ
Lc = 1

Lcγ . As in Case 1,

ρM (1 − ρB)

8τ 2
+ 4γ 2L2Θ1Θ2 + γ

τ

(
L

2
− 1

4τγ

)

= γ 2L2
(

ρM (1 − ρB)c2

8
+ 4Θ1Θ2 + 4c

(
1

2
− c

4

))
,

which is non-positive due to the constraints on c. For the second term, all we must

show is that 1 − τ ≥ 1/2. We have τ =
√

μ
Lc ≤ 1√

c
, and c is larger than 4, so the

constraint c ≥ 16Θ1Θ2 ensures that the second term in (13) is non-positive.

Case 3. In Theorem 2, suppose instead that ρ
2μ ≤ 1√

μLc
, so that γ = ρ

2μ and τ = ρ
2 .

This assumption implies the inequality L
μ

≤ 4
cρ2 , so

ρM (1 − ρB)

8τ 2
+ 4γ 2L2Θ1Θ2 + γ

τ

(
L

2
− 1

4τγ

)

= ρM (1 − ρB)

8μ2γ 2 + 4γ 2L2Θ1Θ2 + 1

μ

(
L

2
− 1

4μγ 2

)

= ρM (1 − ρB)

2ρ2 + ρ2L2Θ1Θ2

μ2 + L

2μ
− 1

ρ2

≤ ρM (1 − ρB)

2ρ2 + 16Θ1Θ2

c2ρ2 + 2

cρ2 − 1

ρ2

= 1

c2ρ2

(
ρM (1 − ρB)c2

2
+ 16Θ1Θ2 + 2c − c2

)
.

This is a quadratic in c with the root

2

2 − ρM + ρBρM

(
1 + √

1 + 8Θ1Θ2(2 − ρM + ρBρM )
)

.

Because c is larger than this quantity, this term is non-positive. For the second term in
(13),

8γ 2LΘ1Θ2 − γ (1 − τ)

τ
= 2LΘ1Θ2ρ

2

μ2 − 1

2μ
≤ 8Θ1Θ2

cμ
− 1

2μ
≤ 0,

where the last inequality follows from the fact that c ≥ 16Θ1Θ2.
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C Proofs for SAGA and SVRG

Our results for SAGA and SVRG require the following lemma, which appears also as
[31, Lem. 7].

Lemma 8 Suppose X1, . . . , Xt are independent random variables satisfying Ek Xi =
0 for all i . Then

Ek‖X1 + · · · + Xt‖2 = Ek[‖X1‖2 + · · · + ‖Xt‖2].

Proof Our hypotheses on these random variables imply Ek[Xi X j ] = 0 for i �= j .
Therefore,

Ek‖X1 + · · · + Xt‖2 =
t∑

i, j=1

Ek[Xi X j ] = ‖X1‖2 + · · · + ‖Xt‖2.

��
We begin with a standard bound on the variance ‖∇̃SAGA

k+1 − ∇ f (xk+1)‖2 that is an
easy consequence of the variance bound in [15], but [15] and relatedworks [2,14,21,38]
ultimately use a much looser bound in their convergence analysis.

Lemma 9 The variance of the SAGA gradient estimator with minibatches of size b is
bounded as follows:

Ek‖∇̃SAGA
k+1 − ∇ f (xk+1)‖2 ≤ 1

bn

n∑
i=1

‖∇ fi (xk+1) − ∇ fi (ϕ
i
k)‖2

Proof Let Xi = ∇ f j (xk+1) − ∇ f j (ϕ
j
k ) for j ∈ Jk . We then have

Ek‖∇̃SAGA
k+1 − ∇ f (xk+1)‖2

= Ek‖1
b

∑
j∈Jk

(∇ f j (xk+1) − ∇ f j (ϕ
j
k )) + 1

n

n∑
i=1

∇ fi (ϕ
i
k) − ∇ f (xk+1)‖2

= Ek‖1
b

b∑
i=1

Xi − Ek Xi‖2

1©= 1

b2
Ek

b∑
i=1

‖Xi‖2

= 1

b2
Ek

∑
j∈Jk

∥∥∥∇ f j (xk+1) − ∇ f j (ϕ
j
k )

∥∥∥2

= 1

bn

n∑
i=1

‖∇ fi (xk+1) − ∇ fi (ϕ
i
k)‖2.
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Equality 1© is due to Lemma 8. ��
Lemma 9 provides a variance bound that is compatible with the MSEB property,

as we show in the following lemma.

Lemma 10 The SAGA gradient estimator satisfies the MSEB property with M1 = 3n
b2
,

ρM = b
2n , M2 = 0, and ρB = ρF = 1.

Proof Lemma 9 shows that the MSE of the SAGA gradient estimator is dominated by
1
bn

∑n
i=1 E‖∇ fi (xk+1) −∇ fi (ϕi

k)‖2, so we choose this sequence for Mk . Using the
inequality ‖a − c‖2 ≤ (1 + 2n

b )‖a − b‖2 + (1 + b
2n )‖b − c‖2,

Mk = 1

bn

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (ϕ
i
k)‖2

≤ 1 + 2n
b

bn

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2

+ 1 + b
2n

bn

n∑
i=1

E‖∇ fi (xk) − ∇ fi (ϕ
i
k)‖2

1©= 1 + 2n
b

bn

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2

+ 1 + b
2n

bn

(
1 − b

n

) n∑
i=1

E‖∇ fi (xk) − ∇ fi (ϕ
i
k−1)‖2

2©≤ 3

b2

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2

+ 1

bn

(
1 − b

2n

) n∑
i=1

E‖∇ fi (xk) − ∇ fi (ϕ
i
k−1)‖2

= 3

b2

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2 +
(
1 − b

2n

)
Mk−1.

Equality 1© follows from computing expectations and the update rule for ϕi
k :

n∑
i=1

E‖∇ fi (xk) − ∇ fi (ϕ
i
k)‖2 = 1

b

∑
j∈Jk−1

E‖∇ f j (xk) − ∇ f j (ϕ
j
k )‖2

+ E

n∑
i /∈Jk−1

‖∇ fi (xk) − ∇ fi (ϕ
i
k−1)‖2

= 0 +
(
1 − b

n

) n∑
i=1

E‖∇ fi (xk) − ∇ fi (ϕ
i
k−1)‖2,
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and 2© follows from the the inequalities
(
1 + b

2n

) (
1 − b

n

) ≤ (
1 − b

2n

)
and 1+ 2n

b ≤ 3n
b .

This shows that we can take M1 = 3n
b2
, M2 = 0, and ρF = 1. Because the SAGA

gradient estimator is unbiased, we can clearly set ρB = 1, proving the claim. ��
A similar result holds for the SVRG gradient estimator.

Corollary 1 The SVRG gradient estimator satisfies the MSEB property with M1 = 3p
b ,

ρM = 1
2p , M2 = 0, and ρB = ρF = 1.

Proof Following the same argument as in the proof of Lemma 9, we have the bound

E‖∇̃SVRG
k+1 − ∇ f (xk+1)‖2 ≤ 1 − 1/p

bn

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (̃x)‖2.

The factor 1 − 1/p that appears is due to the fact that ∇̃k+1 = ∇ f (xk+1) with
probability 1/p. With Mk = 1−1/p

bn

∑n
i=1 E‖∇ fi (xk+1) − ∇ fi (̃x)‖2, we follow the

proof of Lemma 10.

Mk = 1 − 1/p

bn

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (̃x)‖2

≤ (1 + 2p)(1 − 1/p)

bn

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2

+ (1 + 1
2p )(1 − 1/p)

bn

n∑
i=1

E‖∇ fi (xk) − ∇ fi (̃x)‖2

1©= (1 + 2p)(1 − 1/p)

bn

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2

+ (1 + 1
2p )(1 − 1/p)2

bn

n∑
i=1

E‖∇ fi (xk) − ∇ fi (̃x)‖2

≤ 3p

bn

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2 +
(
1 − 1

2p

)
Mk−1.

Equality 1© follows from the fact that x̃ = xk with probability 1/p. ��
With theMSEB property established for the SAGA and SVRG gradient estimators,

we can apply Theorems 1 and 2 to get a rate of convergence. For the SAGA estimator,
Lemma 10 ensures that the choices c = 96n2

b3
and ρ = b

2n satisfy the hypotheses of

Theorems 1 and 2 as long as b ≤ 4
√
2n2/3. Similarly, for the SVRG estimator, the

choices c = b
96p2

and ρ = 1
2p satisfy the conditions of Theorems 1 and 2 as long as

b ≤ 32p2.
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Accelerating variance-reduced stochastic gradient methods 705

D Proofs for SARAH

To prove the convergence rates of Theorem 5, we first show that the SARAH gradient
estimator satisfies the MSEB property.

Lemma 11 The SARAH gradient estimator satisfies the MSEB property with M1 = 1,
M2 = 0, ρM = 1/p, ρB = 1/p, and ρF = 1.

Proof The SARAH gradient estimator is equal to ∇ f (xk+1) with probability 1/p, so
the expectation of the SARAH gradient estimator is

Ek∇̃SARAH
k+1 = 1

p
∇ f (xk+1) +

(
1 − 1

p

)⎛
⎝ 1

b
Ek

⎛
⎝∑

j∈Jk

∇ f j (xk+1) − ∇ f j (xk)

⎞
⎠ + ∇̃SARAH

k

⎞
⎠

= 1

p
∇ f (xk+1) +

(
1 − 1

p

) (∇ f (xk+1) − ∇ f (xk) + ∇̃SARAH
k

)

Therefore,

∇ f (xk+1) − Ek∇̃SARAH
k+1 =

(
1 − 1

p

)(
∇ f (xk) − ∇̃SARAH

k

)
,

so ρB = 1/p. Next, we prove a bound on the MSE. Let Ek,p denote the expectation
conditioned on the first k iterations and the event that the full gradient is not computed
at iteration k + 1. Under the condition that the full gradient is not computed, the
expectation of the SARAH estimator is

Ek,p∇̃SARAH
k+1 = 1

b
Ek,p

⎛
⎝∑

j∈Jk

∇ f j (xk+1) − ∇ f j (xk)

⎞
⎠ + ∇̃SARAH

k

= ∇ f (xk+1) − ∇ f (xk) + ∇̃SARAH
k

The beginning of our proof is similar to the proof of theMSE bound in [27, Lem. 2].

Ek,p‖∇̃SARAH
k+1 − ∇ f (xk+1)‖2

= Ek,p
∥∥∇̃SARAH

k − ∇ f (xk) + ∇ f (xk) − ∇ f (xk+1) + ∇̃SARAH
k+1 − ∇̃SARAH

k

∥∥2
= ∥∥∇̃SARAH

k − ∇ f (xk)
∥∥2 + ‖∇ f (xk) − ∇ f (xk+1)‖2 + Ek,p

∥∥∇̃SARAH
k+1 − ∇̃SARAH

k

∥∥2
+ 2〈∇ f (xk) − ∇̃SARAH

k ,∇ f (xk+1) − ∇ f (xk)〉
− 2

〈∇ f (xk) − ∇̃SARAH
k ,Ek,p

[∇̃SARAH
k+1 − ∇̃SARAH

k

]〉
− 2

〈∇ f (xk+1) − ∇ f (xk),Ek,p
[∇̃SARAH

k+1 − ∇̃SARAH
k

]〉
.

We consider each inner product separately. The first inner product is equal to

2〈∇ f (xk) − ∇̃SARAH
k ,∇ f (xk+1) − ∇ f (xk)〉

= −‖∇ f (xk) − ∇̃SARAH
k ‖2 − ‖∇ f (xk+1) − ∇ f (xk)‖2 + ‖∇ f (xk+1) − ∇̃SARAH

k ‖2.
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For the next two inner products, we use the fact that

Ek,p[∇̃SARAH
k+1 − ∇̃SARAH

k ] = ∇ f (xk+1) − ∇ f (xk).

With this equality established, we see that the second inner product is equal to

− 2
〈∇ f (xk) − ∇̃SARAH

k ,Ek,p
[∇̃SARAH

k+1 − ∇̃SARAH
k

]〉
= −2〈∇ f (xk) − ∇̃SARAH

k ,∇ f (xk+1) − ∇ f (xk)〉
= ‖∇ f (xk) − ∇̃SARAH

k ‖2 + ‖∇ f (xk+1) − ∇ f (xk)‖2 − ‖∇ f (xk+1) − ∇̃SARAH
k ‖2.

The third inner product can be bounded using a similar procedure.

− 2
〈
∇ f (xk+1) − ∇ f (xk),Ek,p

[
∇̃SARAH
k+1 − ∇̃SARAH

k

]〉
= −2〈∇ f (xk+1) − ∇ f (xk),∇ f (xk+1) − ∇ f (xk)〉
= −2‖∇ f (xk+1) − ∇ f (xk)‖2.

Altogether, we have

Ek,p‖∇̃SARAH
k+1 − ∇ f (xk+1)‖2

≤ ∥∥∇̃SARAH
k − ∇ f (xk)

∥∥2 − ‖∇ f (xk+1) − ∇ f (xk)‖2 + Ek,p‖∇̃SARAH
k+1 − ∇̃SARAH

k ‖2

≤ ∥∥∇̃SARAH
k − ∇ f (xk)

∥∥2 + Ek,p‖∇̃SARAH
k+1 − ∇̃SARAH

k ‖2.

For the second term,

Ek,p‖∇̃SARAH
k+1 − ∇̃SARAH

k ‖2 =Ek,p

∥∥∥∥∥∥
1

b

⎛
⎝∑

j∈Jk

∇ f j (xk+1) − ∇ f j (xk)

⎞
⎠
∥∥∥∥∥∥
2

≤ 1

b
Ek,p

⎡
⎣∑

j∈Jk

‖∇ f j (xk+1) − ∇ f j (xk)‖2
⎤
⎦

= 1

n

n∑
i=1

‖∇ fi (xk+1) − ∇ fi (xk)‖2.

The inequality is Jensen’s. This results in the recursive inequality

Ek,p‖∇̃SARAH
k+1 − ∇ f (xk+1)‖2

≤
∥∥∥∇̃SARAH

k − ∇ f (xk)
∥∥∥2 + 1

n

n∑
i=1

‖∇ fi (xk+1) − ∇ fi (xk)‖2.
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This provides a bound on the MSE under the condition that the full gradient is not
computed at iteration k. If the full gradient is computed, the MSE of the estimator is
clearly equal to zero, so applying the full expectation operator yields

E‖∇̃SARAH
k+1 − ∇ f (xk+1)‖2

≤
(
1 − 1

p

)(
E

∥∥∥∇̃SARAH
k − ∇ f (xk)

∥∥∥2 + 1

n

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2
)

.

With Mk = E‖∇̃SARAH
k+1 − ∇ f (xk+1)‖2, it is clear that we can take M1 = 1, ρM =

1/p, M2 = 0, and ρF = 1. ��

With theseMSEB constants established, convergence rates easily follow from The-
orems 1 and 2 with c = 144p4 and ρ = 1/p.

E Proofs for SARGE

For the proofs in this section, we rewrite the SARGE gradient estimator in terms of
the SAGA estimator to make the analysis easier to follow. Define the operator

∇̃ξ -SAGA
k+1

def= 1

b

⎛
⎝∑

j∈Jk

∇ f j (xk) − ∇ f j (ξ
j
k )

⎞
⎠ + 1

n

n∑
i=1

∇ fi (ξ
i
k),

where the variables {ξ ik}ni=1 follow the update rules ξ
j
k+1 = xk for all j ∈ Jk and

ξ ik+1 = ξ ik for all i /∈ Jk . The SARGE estimator is equal to

∇̃SARGE
k+1 = ∇̃SAGA

k+1 −
(
1 − b

n

)(
∇̃ξ -SAGA
k+1 − ∇̃SARGE

k+1

)
.

Before we begin, we require a bound on the MSE of the ξ -SAGA gradient estimator
that follows immediately from Lemma 10.

Lemma 12 The MSE of the ξ -SAGA gradient estimator satisfies the following bound:

E

∥∥∥∇̃ξ -SAGA
k+1 − ∇ f (xk)

∥∥∥2 ≤ 3

b2

k∑
�=1

(
1 − b

2n

)k−� n∑
i=1

E‖∇ fi (x�) − ∇ fi (x�−1)‖2.

Proof Following the proof of Lemma 9,

Ek

∥∥∥∇̃ξ -SAGA
k+1 − ∇ f (xk)

∥∥∥2
123



708 D. Driggs et al.

= Ek

∥∥∥∥∥∥
1

b

∑
j∈Jk

(
∇ f j (xk) − ∇ f j (ξ

j
k )
)

− ∇ f (xk) + 1

n

n∑
i=1

∇ fi (ξ
i
k)

∥∥∥∥∥∥
2

1©= 1

bn

n∑
i=1

∥∥∥∇ fi (xk) − ∇ fi (ξ
i
k)

∥∥∥2 .

Equality 1© is an application of Lemma 8. To continue, we follow the proof of
Lemma 10.

E

∥∥∥∇̃ξ -SAGA
k+1 − ∇ f (xk)

∥∥∥2
≤ 1

bn

n∑
i=1

E

∥∥∥∇ fi (xk) − ∇ fi (ξ
i
k)

∥∥∥2

≤ (1 + 2n
b )

bn

n∑
i=1

E‖∇ fi (xk) − ∇ fi (xk−1)‖2

+ 1

bn

(
1 + b

2n

) n∑
i=1

E

∥∥∥∇ fi (xk−1) − ∇ fi (ξ
i
k)

∥∥∥2

2©= (1 + 2n
b )

bn

n∑
i=1

E‖∇ fi (xk) − ∇ fi (xk−1)‖2

+ 1

bn

(
1 + b

2n

)(
1 − b

n

) n∑
i=1

E

∥∥∥∇ fi (xk−1) − ∇ fi (ξ
i
k−1)

∥∥∥2
3©≤ 3

b2

n∑
i=1

E‖∇ fi (xk) − ∇ fi (xk−1)‖2

+ 1

bn

(
1 − b

2n

) n∑
i=1

E

∥∥∥∇ fi (xk−1) − ∇ fi (ξ
i
k−1)

∥∥∥2

≤ 3

b2

k∑
�=1

(
1 − b

2n

)k−� n∑
i=1

E‖∇ fi (x�) − ∇ fi (x�−1)‖2.

Equality 2© follows from computing expectations, and 3© uses the estimate
(
1 − b

n

)(
1 + b

2n

) ≤ (
1 − b

2n

)
. ��

Due to the recursive nature of the SARGE gradient estimator, its MSE depends
on the difference between the current estimate and the estimate from the previous
iteration. This is true for the recursive SARAH gradient estimate as well, but bounding
the quantity ‖∇̃SARAH

k −∇̃SARAH
k−1 ‖2 is amuchmore straightforward task than bounding

the same quantity for the SARGE estimator. The next lemma provides this bound.
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Lemma 13 The SARGE gradient estimator satisfies the following bound:

E‖∇̃SARGE
k+1 − ∇̃SARGE

k ‖2

≤ 27 + 12b

n2

k∑
�=1

(
1 − b

2n

)k−� n∑
i=1

E‖∇ fi (x�) − ∇ fi (x�−1)‖2

+ 12

n

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2 + 3b2

2n2
E
∥∥∇ f (xk) − ∇̃SARGE

k

∥∥2 .

Proof To begin, we use the standard inequality ‖a − c‖2 ≤ (1 + δ)‖a − b‖2 + (1 +
δ−1)‖b − c‖2 for any δ > 0 twice. For simplicity, we set δ = √

3/2 − 1 and use the
fact that 1 + 1√

3/2−1
≤ 6 for both applications of this inequality.

E‖∇̃SARGE
k+1 − ∇̃SARGE

k ‖2

= E

∥∥∥∥∇̃SAGA
k+1 −

(
1 − b

n

)(
∇̃ξ -SAGA
k+1 − ∇̃SARGE

k

)
− ∇̃SARGE

k

∥∥∥∥
2

≤ 6E
∥∥∥∇̃SAGA

k+1 − ∇̃ξ -SAGA
k+1

∥∥∥2 +
√
3b2√
2n2

E

∥∥∥∇̃ξ -SAGA
k+1 − ∇̃SARGE

k

∥∥∥2

≤ 6E
∥∥∥∇̃SAGA

k+1 − ∇̃ξ -SAGA
k+1

∥∥∥2 + 6
√
3b2√
2n2

E

∥∥∥∇̃ξ -SAGA
k+1 − ∇ f (xk)

∥∥∥2

+ 3b2

2n2
E

∥∥∥∇ f (xk) − ∇̃SARGE
k

∥∥∥2
≤ 6E

∥∥∥∇̃SAGA
k+1 − ∇̃ξ -SAGA

k+1

∥∥∥2 + 9b2

n2
E

∥∥∥∇̃ξ -SAGA
k+1 − ∇ f (xk)

∥∥∥2
+ 3b2

2n2
E

∥∥∥∇ f (xk) − ∇̃SARGE
k

∥∥∥2 . (14)

We now bound the first two of these three terms separately. Consider the first term.

6E
∥∥∥∇̃SAGA

k+1 − ∇̃ξ -SAGA
k+1

∥∥∥2

= 6E

∥∥∥∥1b
⎛
⎝∑

j∈Jk

∇ f j (xk+1) − ∇ f j (ϕ
j
k )

⎞
⎠ + 1

n

n∑
i=1

∇ fi (ϕ
i
k)

− 1

b

⎛
⎝ ∑

j∈Jk−1

∇ f j (xk) − ∇ f j (ξ
j
k )

⎞
⎠ − 1

n

n∑
i=1

∇ fi (ξ
i
k)

∥∥∥∥
2

≤ 12E

∥∥∥∥1b
⎛
⎝∑

j∈Jk

∇ f j (xk+1) − ∇ f j (xk)

⎞
⎠∥∥∥∥

2
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+ 12E

∥∥∥∥1b
⎛
⎝∑

j∈Jk

∇ f j (ϕ
j
k ) − ∇ f j (ξ

j
k )

⎞
⎠ − 1

n

n∑
i=1

∇ fi (ϕ
i
k) + 1

n

n∑
i=1

∇ fi (ξ
i
k)

∥∥∥∥
2

1©= 12E

∥∥∥∥1b
⎛
⎝∑

j∈Jk

∇ f j (xk+1) − ∇ f j (xk)

⎞
⎠∥∥∥∥

2

+ 12E

∥∥∥∥∥∥
1

b

⎛
⎝∑

j∈Jk

∇ f j (ϕ
j
k ) − ∇ f j (ξ

j
k )

⎞
⎠
∥∥∥∥∥∥
2

− 12

∥∥∥∥∥1n
n∑

i=1

∇ fi (ϕ
i
k) + 1

n

n∑
i=1

∇ fi (ξ
i
k)

∥∥∥∥∥
2

≤ 12

n

n∑
i=1

E ‖∇ fi (xk+1) − ∇ fi (xk)‖2 + 12E

∥∥∥∥∥∥
1

b

⎛
⎝∑

j∈Jk

∇ f j (ϕ
j
k ) − ∇ f j (ξ

j
k )

⎞
⎠
∥∥∥∥∥∥
2

≤ 12

n

n∑
i=1

E ‖∇ fi (xk+1) − ∇ fi (xk)‖2 + 12

b
E

∑
j∈Jk

∥∥∥∇ f j (ϕ
j
k ) − ∇ f j (ξ

j
k )

∥∥∥2 .

Equality 1© is the standard variance decomposition, which states that for any random
variable X , Ek‖X − Ek X‖2 = Ek‖X‖2 − ‖Ek X‖2. The second term can be reduced
further by computing the expectation. Let jk be any element of Jk . The probability that
∇ f jk (ϕ

jk
k ) = ∇ f jk−1(xk) is equal to the probability that jk ∈ Jk−1, which is b/n. The

probability that ∇ f jk (ϕ
jk
k ) = ∇ f jk−2(xk−1) is equal to the probability that jk /∈ Jk−1

and jk ∈ Jk−2, which is b/n (1 − b/n). Continuing in this way,

E

∥∥∥∇ f jk (ϕ
jk
k ) − ∇ f jk (ξ

jk
k )

∥∥∥2 = b

n

k∑
�=1

(
1 − b

n

)k−�

E‖∇ f j�−1(x�) − ∇ f j�−1(x�−1)‖2.

This implies that

12

b
E

∑
j∈Jk

∥∥∥∇ f j (ϕ
j
k ) − ∇ f j (ξ

j
k )

∥∥∥2

≤ 12b

n2

k∑
�=1

(
1 − b

n

)k−� n∑
i=1

‖∇ fi (x�) − ∇ fi (x�−1)‖2

≤ 12b

n2

k∑
�=1

(
1 − b

2n

)k−� n∑
i=1

‖∇ fi (x�) − ∇ fi (x�−1)‖2.
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We include the inequality of the second line to simplify later arguments. This com-
pletes our bound for the first term of (14). For the second term, we recall Lemma 12.

E

∥∥∥∇̃ξ -SAGA
k+1 − ∇ f (xk)

∥∥∥2 ≤ 3

b2

k∑
�=1

(
1 − b

2n

)k−� n∑
i=1

E‖∇ fi (x�) − ∇ fi (x�−1)‖2.

Combining all of these bounds, we have shown

E‖∇̃SARGE
k+1 − ∇̃SARGE

k ‖2

≤ 12

n

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2

+ 27 + 12b

n2

k∑
�=1

(
1 − b

2n

)k−� n∑
i=1

‖∇ fi (x�) − ∇ fi (x�−1)‖2

+ 3b2

2n2

∥∥∥∇ f (xk) − ∇̃SARGE
k

∥∥∥2 .

��
Lemma 13 allows us to take advantage of the recursive structure of our gradient
estimate. With this lemma established, we can prove a bound on the MSE.

Lemma 14 The SARGE gradient estimator satisfies the following recursive bound:

E‖∇̃SARGE
k+1 − ∇ f (xk+1)‖2

≤
(
1 − b

n
+ 3b2

2n2

)
E
∥∥∇̃SARGE

k − ∇ f (xk)
∥∥2 + 12

n

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2

+ 27 + 12b

n2

k∑
�=1

(
1 − b

2n

)k−� n∑
i=1

E‖∇ fi (x�) − ∇ fi (x�−1)‖2.

Proof The beginning of our proof is similar to the proof of the variance bound for the
SARAH gradient estimator in [27, Lem. 2].

Ek‖∇̃SARGE
k+1 − ∇ f (xk+1)‖2

= Ek

∥∥∥∇̃SARGE
k − ∇ f (xk) + ∇ f (xk) − ∇ f (xk+1) + ∇̃SARGE

k+1 − ∇̃SARGE
k

∥∥∥2
=
∥∥∥∇̃SARGE

k − ∇ f (xk)
∥∥∥2 + ‖∇ f (xk) − ∇ f (xk+1)‖2 + Ek

∥∥∥∇̃SARGE
k+1 − ∇̃SARGE

k

∥∥∥2
+ 2〈∇ f (xk) − ∇̃SARGE

k ,∇ f (xk+1) − ∇ f (xk)〉
− 2

〈
∇ f (xk) − ∇̃SARGE

k ,Ek

[
∇̃SARGE
k+1 − ∇̃SARGE

k

]〉
− 2

〈
∇ f (xk+1) − ∇ f (xk),Ek

[
∇̃SARGE
k+1 − ∇̃SARGE

k

]〉
.
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We consider each inner product separately. The first inner product is equal to

2〈∇ f (xk) − ∇̃SARGE
k ,∇ f (xk+1) − ∇ f (xk)〉

= −‖∇ f (xk) − ∇̃SARGE
k ‖2 − ‖∇ f (xk+1) − ∇ f (xk)‖2

+ ‖∇ f (xk+1) − ∇̃SARGE
k ‖2.

For the next two inner products, we use the fact that

Ek

[
∇̃SARGE
k+1 − ∇̃SARGE

k

]
= Ek

[
∇̃SAGA
k+1 −

(
1 − b

n

)
∇̃ξ -SAGA
k+1 +

(
1 − b

n

)
∇̃SARGE
k

]
− ∇̃SARGE

k

= ∇ f (xk+1) −
(
1 − b

n

)
∇ f (xk) − b

n
∇̃SARGE
k

= ∇ f (xk+1) − ∇ f (xk) + b

n

(
∇ f (xk) − ∇̃SARGE

k

)
.

With this equality established, we see that the second inner product is equal to

− 2
〈
∇ f (xk) − ∇̃SARGE

k ,Ek

[
∇̃SARGE
k+1 − ∇̃SARGE

k

]〉
= −2〈∇ f (xk) − ∇̃SARGE

k ,∇ f (xk+1) − ∇ f (xk)〉
− 2b

n
〈∇ f (xk) − ∇̃SARGE

k ,∇ f (xk) − ∇̃SARGE
k 〉

= ‖∇ f (xk) − ∇̃SARGE
k ‖2 + ‖∇ f (xk+1) − ∇ f (xk)‖2 − ‖∇ f (xk+1) − ∇̃SARGE

k ‖2

− 2b

n
‖∇ f (xk) − ∇̃SARGE

k ‖2

=
(
1 − 2b

n

)
‖∇ f (xk) − ∇̃SARGE

k ‖2 + ‖∇ f (xk+1) − ∇ f (xk)‖2

− ‖∇ f (xk+1) − ∇̃SARGE
k ‖2.

The third inner product can be bounded using a similar procedure.

− 2
〈
∇ f (xk+1) − ∇ f (xk),Ek

[
∇̃SARGE
k+1 − ∇̃SARGE

k

]〉
= −2〈∇ f (xk+1) − ∇ f (xk),∇ f (xk+1) − ∇ f (xk)〉

− 2b

n
〈∇ f (xk+1) − ∇ f (xk),∇ f (xk) − ∇̃SARGE

k 〉

≤ −2‖∇ f (xk+1) − ∇ f (xk)‖2 + b

n
‖∇ f (xk+1) − ∇ f (xk)‖2

+ b

n
‖∇ f (xk) − ∇̃SARGE

k ‖2

= −
(
2 − b

n

)
‖∇ f (xk+1) − ∇ f (xk)‖2 + 1

n
‖∇ f (xk) − ∇̃SARGE

k ‖2,
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where the inequality is Young’s. Altogether and after applying the full expectation
operator, we have

E‖∇̃SARGE
k+1 − ∇ f (xk+1)‖2

≤
(
1 − b

n

)
E

∥∥∥∇̃SARGE
k − ∇ f (xk)

∥∥∥2 −
(
1 − b

n

)
E‖∇ f (xk+1) − ∇ f (xk)‖2

+ E‖∇̃SARGE
k+1 − ∇̃SARGE

k ‖2

≤
(
1 − b

n

)
E

∥∥∥∇̃SARGE
k − ∇ f (xk)

∥∥∥2 + E‖∇̃SARGE
k+1 − ∇̃SARGE

k ‖2.

Finally, we bound the last term on the right using Lemma 13.

E‖∇̃SARGE
k+1 − ∇ f (xk+1)‖2

≤
(
1 − b

n
+ 3b2

2n2

)
E

∥∥∥∇̃SARGE
k − ∇ f (xk)

∥∥∥2 + 12

n

n∑
i=1

E‖∇ fi (xk+1) − ∇ fi (xk)‖2

+ 27 + 12b

n2

k∑
�=1

(
1 − b

2n

)k−� n∑
i=1

E‖∇ fi (x�) − ∇ fi (x�−1)‖2.

��
Lemma 14 shows that the SARGE gradient estimator satisfies the MSEB property

with suitably chosen parameters.

Corollary 2 The SARGE gradient estimator with b ≤ n/3 satisfies the MSEB property
with M1 = 12, M2 = (27 + 12b)/n2, ρM = b

2n , ρB = b/n, and ρF = b
2n .

Proof It is easy to see that ρB = b/n by computing the expectation of the SARGE
gradient estimator.

∇ f (xk+1) − Ek ∇̃SARGE
k+1 = ∇ f (xk+1) − Ek

[
∇̃SAGA
k+1 −

(
1 − b

n

)(
∇̃ξ -SAGA
k+1 − ∇̃SARGE

k

)]

=
(
1 − b

n

) (∇ f (xk) − ∇̃SARGE
k

)
.

The result of Lemma 14 makes it clear that M1 = 12. To determine ρM , we must
first choose a suitable sequence Mk . Let Mk = E‖∇̃SARGE

k+1 − ∇ f (xk+1)‖2. The
requirement that b ≤ n/3 implies 1 − b

n + 3b2

2n2
≤ 1 − b

2n , so Lemma 14 ensures that

with ρM = b
2n , Mk ≤ (1 − ρM )Mk−1.

Finally, wemust compute M2 and ρF with respect to some sequenceFk . Lemma 14
motivates the choice

Fk =
k∑

�=1

(
1 − b

2n

)k−� n∑
i=1

E‖∇ fi (x�) − ∇ fi (x�−1)‖2,
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714 D. Driggs et al.

and the choices M2 = 27+12b
n2

and ρF = b
2n are clear. ��

To prove the convergence rates of Theorem 6, we simply combine the MSEB
constants of Corollary 2 with Theorems 1 and 2.
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